From 41166bc1926e218853d04ebe4d85af18857063ad Mon Sep 17 00:00:00 2001 From: elisno Date: Wed, 10 Jan 2024 15:11:23 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@b2de6bbefb660b6545cc1ec5020d5b910c25ad73 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3315 -> 3315 bytes .../benchmarking/noise_generation.doctree | Bin 83507 -> 83507 bytes .../.doctrees/cleanlab/classification.doctree | Bin 297397 -> 297397 bytes master/.doctrees/cleanlab/count.doctree | Bin 297132 -> 297132 bytes .../cleanlab/datalab/datalab.doctree | Bin 181018 -> 181018 bytes .../guide/custom_issue_manager.doctree | Bin 29123 -> 29123 bytes .../guide/generating_cluster_ids.doctree | Bin 6256 -> 6256 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5915 -> 5915 bytes .../guide/issue_type_description.doctree | Bin 97079 -> 97079 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5502 -> 5502 bytes .../cleanlab/datalab/internal/data.doctree | Bin 75965 -> 75965 bytes .../datalab/internal/data_issues.doctree | Bin 76753 -> 76753 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 43724 -> 43724 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4562 -> 4562 bytes .../datalab/internal/issue_finder.doctree | Bin 46509 -> 46509 bytes .../_notices/not_registered.doctree | Bin 3377 -> 3377 bytes .../internal/issue_manager/duplicate.doctree | Bin 73748 -> 73748 bytes .../internal/issue_manager/imbalance.doctree | Bin 71607 -> 71607 bytes .../internal/issue_manager/index.doctree | Bin 5820 -> 5820 bytes .../issue_manager/issue_manager.doctree | Bin 82549 -> 82549 bytes .../internal/issue_manager/label.doctree | Bin 87552 -> 87552 bytes .../internal/issue_manager/noniid.doctree | Bin 90234 -> 90234 bytes .../internal/issue_manager/null.doctree | Bin 64142 -> 64142 bytes .../internal/issue_manager/outlier.doctree | Bin 75773 -> 75773 bytes .../issue_manager/regression/index.doctree | Bin 3622 -> 3622 bytes .../issue_manager/regression/label.doctree | Bin 107652 -> 107652 bytes .../underperforming_group.doctree | Bin 121020 -> 121020 bytes .../cleanlab/datalab/internal/report.doctree | Bin 32315 -> 32315 bytes .../datalab/optional_dependencies.doctree | Bin 3389 -> 3389 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 102668 -> 102668 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 346504 -> 346504 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48181 -> 48181 bytes .../cleanlab/experimental/index.doctree | Bin 5382 -> 5382 bytes .../experimental/label_issues_batched.doctree | Bin 161811 -> 161811 bytes .../experimental/mnist_pytorch.doctree | Bin 492589 -> 492589 bytes master/.doctrees/cleanlab/filter.doctree | Bin 98823 -> 98823 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4550 -> 4550 bytes .../internal/label_quality_utils.doctree | Bin 19742 -> 19742 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 88865 -> 88865 bytes .../internal/multiannotator_utils.doctree | Bin 45614 -> 45614 bytes .../internal/multilabel_scorer.doctree | Bin 162776 -> 162776 bytes .../internal/multilabel_utils.doctree | Bin 33914 -> 33914 bytes .../cleanlab/internal/outlier.doctree | Bin 16196 -> 16196 bytes .../token_classification_utils.doctree | Bin 66017 -> 66017 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 208122 -> 208122 bytes .../cleanlab/internal/validation.doctree | Bin 33814 -> 33814 bytes .../cleanlab/models/fasttext.doctree | Bin 2403 -> 2403 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5060 -> 5060 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103797 -> 103797 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 171038 -> 171038 bytes .../multilabel_classification/dataset.doctree | Bin 67565 -> 67565 bytes .../multilabel_classification/filter.doctree | Bin 89621 -> 89621 bytes .../multilabel_classification/index.doctree | Bin 5009 -> 5009 bytes .../multilabel_classification/rank.doctree | Bin 46224 -> 46224 bytes .../cleanlab/object_detection/filter.doctree | Bin 36016 -> 36016 bytes .../cleanlab/object_detection/index.doctree | Bin 3927 -> 3927 bytes .../cleanlab/object_detection/rank.doctree | Bin 151195 -> 151195 bytes .../cleanlab/object_detection/summary.doctree | Bin 157619 -> 157619 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 102110 -> 102110 bytes master/.doctrees/cleanlab/rank.doctree | Bin 117415 -> 117415 bytes .../cleanlab/regression/index.doctree | Bin 3801 -> 3801 bytes .../cleanlab/regression/learn.doctree | Bin 220237 -> 220237 bytes .../cleanlab/regression/rank.doctree | Bin 19619 -> 19619 bytes .../cleanlab/segmentation/filter.doctree | Bin 29078 -> 29078 bytes .../cleanlab/segmentation/index.doctree | Bin 3855 -> 3855 bytes .../cleanlab/segmentation/rank.doctree | Bin 53242 -> 53242 bytes .../cleanlab/segmentation/summary.doctree | Bin 67310 -> 67310 bytes .../token_classification/filter.doctree | Bin 29360 -> 29360 bytes .../token_classification/index.doctree | Bin 4017 -> 4017 bytes .../token_classification/rank.doctree | Bin 66747 -> 66747 bytes .../token_classification/summary.doctree | Bin 84588 -> 84588 bytes master/.doctrees/environment.pickle | Bin 1796869 -> 1796869 bytes master/.doctrees/index.doctree | Bin 41848 -> 41848 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28054 -> 28054 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1276 +++++------ .../tutorials/datalab/datalab_advanced.ipynb | 336 +-- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1944 ++++++++--------- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 692 +++--- .../.doctrees/nbsphinx/tutorials/image.ipynb | 1840 ++++++++-------- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- .../nbsphinx/tutorials/object_detection.ipynb | 146 +- .../nbsphinx/tutorials/outliers.ipynb | 362 +-- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 1326 ++++++----- .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 164 +- .../tutorials/token_classification.ipynb | 171 +- master/.doctrees/tutorials/audio.doctree | Bin 327061 -> 327061 bytes .../datalab/datalab_advanced.doctree | Bin 198979 -> 198979 bytes .../datalab/datalab_quickstart.doctree | Bin 150645 -> 150645 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3058 -> 3058 bytes .../tutorials/datalab/tabular.doctree | Bin 121277 -> 121277 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 308691 -> 308691 bytes .../tutorials/dataset_health.doctree | Bin 330828 -> 330828 bytes master/.doctrees/tutorials/faq.doctree | Bin 175069 -> 175069 bytes master/.doctrees/tutorials/image.doctree | Bin 488609 -> 488553 bytes .../tutorials/indepth_overview.doctree | Bin 212787 -> 212787 bytes master/.doctrees/tutorials/index.doctree | Bin 3170 -> 3170 bytes .../tutorials/multiannotator.doctree | Bin 137341 -> 137341 bytes .../multilabel_classification.doctree | Bin 57571 -> 57571 bytes .../tutorials/object_detection.doctree | Bin 110970 -> 110970 bytes master/.doctrees/tutorials/outliers.doctree | Bin 106817 -> 106815 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17248 -> 17248 bytes master/.doctrees/tutorials/regression.doctree | Bin 80921 -> 80921 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 3096133 -> 3077855 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59757 -> 59757 bytes master/.doctrees/tutorials/text.doctree | Bin 90061 -> 90061 bytes .../tutorials/token_classification.doctree | Bin 188820 -> 187373 bytes master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1276 +++++------ .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 336 +-- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 18 +- master/tutorials/datalab/text.ipynb | 1944 ++++++++--------- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 692 +++--- master/tutorials/image.html | 254 +-- master/tutorials/image.ipynb | 1840 ++++++++-------- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- master/tutorials/object_detection.ipynb | 146 +- master/tutorials/outliers.html | 4 +- master/tutorials/outliers.ipynb | 362 +-- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 1869 ++++++++-------- master/tutorials/segmentation.ipynb | 1326 ++++++----- master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 2 +- master/tutorials/text.ipynb | 164 +- master/tutorials/token_classification.html | 74 +- master/tutorials/token_classification.ipynb | 171 +- versioning.js | 2 +- 159 files changed, 10339 insertions(+), 10526 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index fb34d3623..278c68cc7 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 8c225318e6cf8d2ee6cecc1cde9d9d90 +config: c1f0863980e8370a7afca0a268b5ef38 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index f2c285d69aab666b59969c23d147ed18e873245a..c9fc5e393a4b8d6010906632866f2450cbef0ec1 100644 GIT binary patch delta 175 zcmew?`B`#9IHRFymSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ kMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) kszH)znt5W%k diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index ddfd3d8861b89218131cc2c3bbfbb8328160551c..b391482a4c1866b18d9cfc2ed84f50e6f9c6ef62 100644 GIT binary patch delta 1655 zcmdno!@9YLbwfO(p=p+7MRHR)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*Z~Wpl delta 1655 zcmdno!@9YLbwfO(VVR+kWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGV#?+TjI3m6o9^hsn7mn&c?vV>R)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*Yv$Dk diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 7efe300a365b599b8abea437dc2fea7b0e299231..d8f6df2ef478e247a5e289f809d88d7ad011c9be 100644 GIT binary patch delta 4244 zcmbuDT}V@57{__v_e|5=hZ{^QFG>t4OV7}`oh)@!HzK9hRM50-PD-81)M{9gW*?x$ z;y`Z@mSNFN)Z%2%P4sag-F6c=^R6(m6p148#@@N|{ybgm^7sG!--q))JKMBsomQ=} zCgN~*DCYvc@aZDiUs9qt6*?OMFwq7K&gq3|PGs9~AmP&L$G>L~uVkP*PyW!*-sN8{X!i5!IO0~U&lyaFOd+mB60TE{xA=Qx~5 zr(-2J_^4X3lFDO;sewPpW)>dxQZK|SXbp0P>vQkyhbyjca`p!aBY$?AYu+0u?fv4X1r-+^GN=o;M4T8;*GhAe=A@%Sj=KF;`kc@ zTm;zRWe#h~z}MIVuXnMhh^?Ba0pc9p=_t7aUX-!{#8wtw2N!HEOz&gQO#0>g#vv&T z8C7g4fP)9%?ql||UqAe>x((9uq%VkXz>NSd0?cqGUuwk;fQtc`;cBTAN8BF}BV68# O7=ZX;58{u38T%h3Ea2k+ delta 4244 zcmbuDT}YEr7{@v1ywf!I;Re&nixOj$rQ6tC%Th;mBa$CA6*O(WDv?gbuNao3*#{`G zc%c)7Wmt3*wK&;x6MbArx7`HJyeo_>MWTqju`^fRzfTvt{QZCb^YET$?>3`ZXEbZ9 zfw%@;Zoe8DR13Wx)$Q{7y`GTY*WTvx6sbO+&+B))+YdNBs>|KxZ1J}HLao{anL|*4 zNEu)4RSaUDDj4fu-XfZn+tql#MH{N^L*d6oxNe2vP%T_%`j|eoDp2*u5a4 zdmvJ)4G*PjVje;BUAsw}xbvYeRlhmGo)wQiMk#^~>?IvyZZQw>cqYAksS4xW=sdc- zfM$QMW}rJy{SavH%C9Cg`+02waVs|F3?@RR5mzD!S1@u7+Zwu4hyiUjZy~K{vuP{2 zj5Ze-$t|=wWFc|1`Ms4)q0JUMDMp(Yvq&e}yu6(pMw@4I$TZr_c9KtM^Jp&VLYP5r zpeG0^5C<_MHV?>6`xbfoYj~`j7$E8-liLtGUY@iDWWvQ_{V;^CkaL&xbBVok5>BPl zaSslz)Jj)VdF&W9@CVtok*x*QgC%MQOe5zhX+(X$r*d(|qJBQzegO z6NNk1X(sfn(L)NZO)>^#%n>6tq0z*QH;rro$v>2QntoQkF_-gi`OF4OSD| z0d{zq!x}R1HTJ>lJ?trBt0roIJV#eLO74OeMQi}Em8I9kC7TN~2iY@|emTE!ROy9` za<;7E-~qV%nEmY65C5xfgS0&53*sAaGl0tgGYmSEX6yjC9Do_F7AbMW{Q)_`mHmhT N$RG9~{}`CH{{iJay$1jQ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 62d024e110b4d726874c6ea77465a9469bf60875..8dd690d2a96e2f08e6967ca91b88d4953427f2c0 100644 GIT binary patch delta 3738 zcmbuB&1(};6vdhMrV_PkjIkzlAzC%TN;4rdoeVXRf=wxrQl!;|iuszTZIPr4Q46MI zq0(I#a6l^+Q7jTfo!EzpEfmq67Ayr#UG8`LCv4e6#A5i|0Qxz0{IZ;F1-_O(-s=r@q1jWyt%b@muJp3KepVM%Rd~Af@ zzte~pJ{^bgg0{5KY)mdz)?@hhpM^Mp54O@UJA06O1~IqbVmsHZ0G!RQUYvF1xFM%~ zn3?cI%s#jJsf)4NJFe0JfLGVm6NEUJmnY95*RrN?cq<_yY=#akdSst|ahz^vU%NI*5U_q(mIgh{StTXH$~p2V1dy=~X!btY0{Gd|tuRe^KRf+`^n&Y{yhnC3 z=`Be&0~Yu<2QM&z1bgYGu_pWO%uHY!l3aai-E1$Q=ZgG}o69uK9G%n!iLoyC_ZV9G z=se^>u=-rNMR&2$ak>-mDp(i6OocdRi~m9ynxYq4?RR6%qRpf?v%Up-avMTGHw7A) z?;9+VdN*rZO)t}{n0)@U{P4Pi4*<5R&%;(^UR{R}&`p5`R*mvaKKm+K-VWm0u&t#!8ZAUd_h$=YCAY(19I2 zsO(k(26QqJ#UVx1)O}2GgCTm;fn(rl_M)QKde}i`77Y_`dEY?SxLG=A(a0T#CXg9abCNihE2Lz{UZ zZxmWaQQk%21d2Z=7EpXfUP5L6Mj1f)-#an|&ECAdps~0_{R8ahtWDRwHKL^K9{ryTuQT+UcA=Lg)M!qBZa~rP9AM4@w z?=}*JPbXn~SX*9fG$xlS8!`O*&*21s7n*51JAasa4l%djVjI`30G!RQUV?RHxnZ|+ zn3?cI+&Q=Qsf)APJFe0JfY;X5lZ3dKpC>OM*Rrl~bUPs;Y=#akcI<$jAE!In*Dg}q zf>2>214Q-%1gu|{<%>S%u96aAcNfCc`|!4FIz$zFPCyurCUGZUDGBxg^po9%`4Y?0q}YlW)J)k!^&7;U+~$I#SA z7a$LU)#vJMx`&O9)7^kq!MX@$DkLyl{1?jb6us2!yc=s4ZC2gN`WETw9S8y46sTi? zZ?H)0Zq~P&UZK}8`TS}5(G3?L0&Hc^!&YTJy#XPhn*w#L8si%R&Q-LWFUryxzI)$q DdG1i5 diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 305d59825154c2cfd3d2cc36a5336c6718acc7c8..db59af2173c5cd1558cd1fc5f897a9604cc279ce 100644 GIT binary patch delta 4421 zcmbuB-Afcv7>AkTuDP!3u3560A6bwD)vm4E&fIKfNaT*CL?7hMx?eW7eJEnBWSFT@ znHk5JP{Se#Ek)rFM+8IgB15Z-3c4`5D5#4J4Jx__o3+27-~0j3`~2SboO#dmc9?rR z%;V+4PIs+zK3H9^IGll^BFQZ|gP}sV=#02Mk|!jE!_|@MfXgE~MKRzCOCD*LgH|Ty z(0hYPbWnIw_}@5P?ki#Q#3F#GY}lKKp;R{5=vwnxh%TevXgaf{BpYDd&PHvb5yP23 z<4X#LQh$b#&2D~<2G?-fe>|1tZT;iK6KExlfOLHDEme(Zes9#yuKJH*_bq^Evo>akz16+t`mM$x`m?wJs1U7h&)x^sGZ&THt`V?WTiM~{6|tUUp` zE+N`dmCDMR=dcZ@u(7s}SlmkjGfSrVBMXwCnwwkOZk8DmxnoVDALPySY_ntQharnehM5|b zneiGY)UZfGOHp`Ema5O7B*^j>oJ@K zvc9HaC=F!k+3eOAXmAau{U_2{!S+AJcml1&QIL)gzNI>f=J!S{>{{SBcHiR1ZefkJ zAp(cDut=yY5&O-$Q;FDb)Vo1D^G49VS^n7|XkDB5#)b=t^jy%`pNRcnbZ;W|EwT0_ z=(+@HOLaP{Xr9A1oWjQ1K4E<;Y{%6mtY?LlUJs+z(#{xaJ$&m4YQ1~=A!>cslZ2w@ z)zc^%>)j9Z%9i_fVi!?i69biiQG47KHt^sX+UKvq*C-koD#Bg}g%ysrq1HX)!zkLy zIUY~}eCG{Neek&##RiQqrq46lRs zvybI0w4`Dv%~>$BZC~@w2dK0H@&pEf{$7ci|X#4qPixl7Y$jYATVz?p2L7 z@kJAv%ERRG0tRl~MWz!-U{JLJMt-@3EM?&_^!!H!SplzLybnEB4v}OmfkdtMEb4rW zl=A~&V!}56S`of@lK9Nf7$i0S63JB!VN%L7nn*V`3yEu0WD}IYN0%P!xX?w4u>aJ5 o{7?@m$36y0-8@24w0&get&d0{wo@do70KQJ4WNvVOp`O@FG{#hC;$Ke diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 58887c9c50dd2ff6a710855a76336708d3c40ec8..5d8e8e1c8e3a24e91db3cff825b2c0c613b2514f 100644 GIT binary patch delta 64 zcmX^7nDOvq#ti|ChNfAT70HQ3nfeAvCMK4qmIlcwhNcz*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) RszH)znt5W%<~fX4!~knZ6B7Uc diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 7c475ce892196e4ce15c3750fd968a5525e28088..ff641dc3c022870dbe526bc71c5c5debdb0d2afb 100644 GIT binary patch delta 67 zcmbQOH(PH*G^3GemSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ XMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) XszH)znt5W1{^avwx|??~CW-<8ox2m% diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 1f2144197f91b8b8faf616dbc3c57640d930df54..073994e9c2c10b9e51130db57e3c199473b93dc3 100644 GIT binary patch delta 68 zcmdn~jdlAs)(xqQhNfAT70HQ3nfeAvCMK4qmIlcwhNcz4LpwQim-e4h~jg_<=m delta 175 zcmeyT^-pVqFQZ|Zp^;^BVp+1jsY$Ytp{b>*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) jszH)znt5W%4LpwQim-e4h~j+*31~ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 5f6c35fd6cc017e13767ef87cec407100781b85f..d3edc8a4862d749ece5055728678b52ee4358a1a 100644 GIT binary patch delta 3706 zcmbtX?@JSL80Y4GSlih-8_Xy-l0|Q_^T%y>p;SW6p=mO(fh=~L8>}E`^}--Xh=MYD z;Y0W$h@dR0H^JjLM8*(f;0uK@P$O1vLQ?8oktSkymubE9xj*3Zr-;Z0mLU>S#wXV2W)d`o@9h@|$)e2WOeDo5j&m`BBFJnKUpp^TRo}R7 zR!|IQ!Z7QpgW+ryF4RWo6!kcN=o)G6Oc-Z9w7GTj_4w)V7->B;xQ|8G(UOH4osR`C zZ^c^;9C3EtftPLsm?9-$rDgkRJMR0C~-6BqsGi7Ae7EKamKh!tw+ zzSGsj{514xdnq#OJ!6At6Newp^27o(mdBxWTK<2)P82(%#Q0$@=0IO>yAk-$ zJ`=G3UHx8U$%y*q#UL?yO&#ju)zB>*0XF`Q*1I=%-l)OhtebeUTNG~WoCwiU`|Dyqij%cg zLxZ?+Z7N1Bpj`M$RL663KZvT3&)czBnx>|&!Rr?f(v0_vdM%6vxD^Y|eC*jnihi4; z62`tP8K6LJg{d-tSI4MA~J>;10NK|K#f?vgrwA4ktSkyH`99b+&|#+<9t5ne7QGYGUiLh zx9yB?&?kgtX;3~c`enfz7|zw?yeznR zGu~?Eh_h=B-26*2++~FdZ^5|GM_L^%LMyb2zo-$Y23kcsE(UsuDUNU~PPEvF6;{#x zr|XINRne<$EyTSa;cW2qj0NHXhab-J!~&`;k0a}}{QrRM80w4@X5rCzl!S~zrD%i9MgtD#oWzseqHtp8M1+>wUl;o^G}&m@ zHHZ_}rV`WwD#fovbv!rsgQyCHf)z{UX=?gaxM%So&3MnK+r*fFTQT9x$DTc;=(jm) zVeHG24hrN}m^vMJb&Ljhwc4SF;^ew^4%*k-vo(=c%2pyO7iKmt({5siLp@I?4sE7r z5Ay#!%0mOwPFvJ}h?a||lou8zN_&-eh?M&*Gi}jP*J$$r#t!pkPWkR&a(c>ARHm7| S6f5elUzc&8a>vVrYJLL~+)!8m diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 46459d89052599bbf2f962c6d8f2a03f7f5c7221..0dd5809240cfe246e3a54150b57ada11f76d05e0 100644 GIT binary patch delta 2904 zcmbuB%WD%+6oWd+MQzhCnLO-6@PVKP8G|6% zSSyz@B1so&agjyDBg{e(O9Ckc7XwN_Dk-kq)P$0AudszlRDCZlH6)Ic;AiN#U_86~Qmp!>`L zV8)|frqTiD14sKxn@!V6_xuiwo#B`EU2Pxb1!;mef}M2Bx9r4lY6L?r0JXH+ysG=@ z@&0p&+0t}c2)_Z$RFDpOfQAdwEGb8afr}whp5^a{_tNoWzYbw$flmPBcE~Zd=Q$6F|w*hR`cq%Uwk0{4fBoUzBD)H2HpW1PnLZ~GQfO%*VkTZEqnv(P_q0M_{NDRG{<{t zUf!y>jU|t0qf`v>x#BpTezA$3i>ODf%5*oFNKY+DKkIAgaoYHu)z^N|{yiI{FKZ*{ z>^A;sUEU4aCubz8Z>*wr8$a{ol^3%ci%xdLcjo`E-vDMRNC$mD!v$%Ew7wzWVu+My`1_%~bnNJ_Lzr3M;{drGa)6p=8yygC zP~yCfjBM+9N{%#;pq-=rI99=|2K7(80~U}w)^genpk(WV=oPNzE~0aOxEw{TPp+<@ z*3h*-Ktx;VF5duW&GY0)(A;D!LK`=$z{+pwhx1h=uY#20i9I{1WF-Cr=Ov?)&qq7x z*}cQa0NY*oDN|fT7Wp5(G&kx6-T?=rf!~%TR*IsHZd;{xHs{9uC#)&61$9rmi z-l}-bC7)=cRE+Ss;uxKNv5B6Gs7I~Jm2NPRo?4iG*4NPEbnrW?uY;iddp1m8)`rp9 z9sJX}x*N1lOiNVXSVip)e&)w3KV~-<-Ry|@+{c1c|2+uqgC&ZLg8f?$ee5an42oN9 m3bxB?`PpY|gOcXmF4k>{RpeOrNlO%1549h?CH_%Qx&8wBuwvi< diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index e3a6e5e4657b2ddde7f4d9019fa8f4d8a4a1b366..f9c1c37523c98c7d7c5b5aabf3c3b134ecae552e 100644 GIT binary patch delta 1212 zcmX?emFdh?rVYM~hNfAT70HQ3nfeAvCMK4qmIlcwhNczh%Ko*emyl>+US2^R8XXg6%>pDZ&; zV6$Vxelj9zvtf%4FIl#hO}=0tJXxnfbhFMRHFErI*a9|UGtZ2v0%W)VQVMWw4qREy F2mp|UX$SxS delta 1212 zcmX?emFdh?rVYM~hGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7A`w7=_5uc97{U8QLZvWGbEPFTuSzp4Cf;bjL!q*O8^OU~``231;%N zPR^4Qp8Uaxb@O{!ZWc0(P}J<%yj{tVJgpNquTpm-Bd|9sYG#q+Uq#J{n|*Zy$*^%U zNNa-rWhSzMXyWFtMhDr+(ptGW!ManHEUkr;H>h%Ko*emyl>+US2^R8XXg6%>pDZ&; zV6$Vxelj9zvtf%4FIl#hO}=0tJXxnfbhFMRHFErI*a9|UGtZ2v0%W)VQVMWw4qREy F2moYVUVH!m diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 2e570b6e4e580ba1ed40fb5ff8fe0987afe76afe..a33f28aa629824623068a38448feaf652e8ef7fc 100644 GIT binary patch delta 185 zcmcbld`WqOKck^(mSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ nMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) nszH)znt5W%<_5+&%tj<@)1NHBE;TuW^(^^X%{T90li~&dF4Hr# diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index b1c1ab36d300b4a3773d1518a9178a9ea3628c5f..806a8ce6d070f0b32a4006c0e682345098cced48 100644 GIT binary patch delta 1140 zcmZ4cnrZE8rVZhYhNfAT70HQ3nfeAvCMK4qmIlcwhNcz*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) RszH)znt5W%<}#+;TmU)Y5&8fC diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 47fd1c2d010da4fbb785ebf4d83df5ba4ab57b08..dbec5f571140ea7d6b99eda38cd4886538338d91 100644 GIT binary patch delta 2566 zcmbPofMv=7mJNZ7wx(H@70HQ3nfeAvCMK4qmIlcwhNczoho$&WOi&9h?NImt^hn-`?#bCIWY@&^;4%@2xV`N`A1`A^dY z4l=cN_pBhZke}S$BeT#k)CeehRsf1=2oki8-0o%;W{>?33j-a&Mlu zsfmn8+Z?!eD>)@g;NIz*&mFwPLwb;HzIbj88QLaaJU4N({T+Ta(rpA4gWGwT8SBVQ pTGKypF>-DX=3%TNGl5Ol7i8qxK23=6D;Y5abbZNoVAJafBLD)a{kH%B delta 2566 zcmbPofMv=7mJNZ7wq=G!mdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7EOi`N_rl#rdU0$*GeS^^GSVWPEN&vME5FCDRS$7+EI=G4CN?JOAWE zEQMrgU$~i-?Fb85T9oho$&WOi&9h?NImt^hn-`?#bCIWY@&^;4%@2xV`N`A1`A^dY z4l=cN_pBhZke}S$BeT#k)CeehRsf1=2oki8-0o%;W{>?33j-a&Mlu zsfmn8+Z?!eD>)@g;NIz*&mFwPLwb;HzIbj88QLaaJU4N({T+Ta(rpA4gWGwT8SBVQ pTGKypF>-DX=3%TNGl5Ol7i8qxK23=6D;Y5abbZNoVAJafBLE@J=aB#a diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index d78ea6a85d57810651b8ec012eb272573a3f56db..102ae3cb85c2b2c7a6e906af47bae538b35d11c0 100644 GIT binary patch delta 2528 zcmbuBODjZS7{@!DnJ|OKE!U+eY0emPd5c)E5n(i?SeVNpw}c@U%4$+fPQ7Uqu_9TZ zo;caaC{Z>R(xgVoZDX=mgEM>re;?rY{NCsPJiYI$?u+Wac+e@-+lJVT&oeP-mb|sK z%*G_2-(qu0{Wb@4_?aww`aNE&!znqPUaQO;%x?CN`6kViV^b48nP0oDJR-bW{#->P z1H3IYf|21^zL3q&#Bm5;<{?8a>Gc;PhEvGEbRZfuJ*R@n{=519zKc3txNy0ciP`TJ0;jDXr{TkPteMfJ$E&3 zr$UkKQM73tn=?^&%OKV-(N=35>z8P{V*s^AT=#&LuH6r)ai#kfFltvVQG4$OHkdU! z_E@lsL*acpdj3_Tqod)T3}~YiJ|D=Tr|GE8J z@XfG^j@Ip&m|08SL?^qmSn4CZvABrhhZZchADqVzbLi#x+z2)BTcY8{NTU~}|0qEX nH;HoS1PUcSMzE(kx%WENEDAFAOHfpIhVY1uE}&{(qdVank`Ern delta 2528 zcmbuBO)ErU6vw;VnJ|N9yySH$N}9RX+_`QM3pOH*rW6a~nvu7JF=e5wq>x)r8bz!~ z7N`?98yO|a#zLCZD0$nM?A727pTOS-_?_Q#{^#^OkG{|A`}{!%R~HgQMfHVLhvZU4 zK~f}_Pmu$D!R1zES(X%04AeMXsv!EEeNsU7^*j2<)JezW*wlpTXV>0p7U5onKUXox zAZtyHU}QL!$7QoKejLJ=*^(uP%;pOo!)eK)m_T&S_M8TymBnTbLs@=#4)LX)bQtdj zNh4?$ZOkH1#T6QMtZEf)J62Udt5`w3cEvggi* z?NlhTJ&HE2V{<0zY97S;CE99Dv2%8dth*0i$u%61DYgV1rqs zW1oOs92)E0F|#kxL`TEj8PG;)Y&K}8r%-M-h`-NU>3lAV?X$*`_|QVog4t;^+=QjB zvCXiJj@I3onAu3)Mkl+|Sn4CJp{S7JhXNMc56?!8HO@SGp}C1|=ggL}kA7u1cf(H-{<#&8KI diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 52ff2b8f44ec5babdd74453b8cd4a05cd42d9ee2..22e3732440b2a699c6413590da22f7f0ba0f7bb5 100644 GIT binary patch delta 62 zcmdm^yGM6JB%`5emSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ RMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) RszH)znt5W%<}OAfQ2%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24giHHMHv79 delta 2596 zcmey`!uqv^bwebhVVR+kWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGV#?+&Mk6w`O%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24gl!_FM0p~ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index f01bb1a22c2209c11e24d89173c61eb774f90396..90836a46dcb52575d6778307396e59f20cdc3348 100644 GIT binary patch delta 2852 zcmZoz!`iThb%Q6Pp=p+7MRHTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1b537DP delta 2852 zcmZoz!`iThb%Q6PVVR+kWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGV#?+!MkzA1OTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1bs~KhU diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 80a9a0f582eb9802fbc504c0fe8d15166844f502..9ed0562e6f9351992740efdc97265f656a0fc1d5 100644 GIT binary patch delta 2906 zcmex$fc4h_)(zf_hNfAT70HQ3nfeAvCMK4qmIlcwhNczqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^AqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^A@6TeUU*e+78YaYAk*e~3LKly$*C}sr+xE0g>*6XKCt$CMm?0+u4lTR zOxrilv^YSC&9c@z$+Q{l?^$-sm`M+|&4o@s$cyV)lP`p_ZnpHuCeP0h?Im7h`Wd4A zuWuqHw(A9unbIJ(&kW8X)Ar35Lbs6@*ASb-BGt)@wD!%Wac{^e+Y;~AZa$wb!9{us z1J*z_lk*FNHZLoZoo+sD8WZQiEnFqP4>cX3Sya3ci2bKT; delta 2522 zcmeDC%G~#rd4oHnQJJBUWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGVv7D`M`n}B26n8QH!()A8j`Gka-mb!WE(D_$=liIkg59}$7V8h+Hf_H zrL%hSObg-7)!aNRWNVk$>@6TeUU*e+78YaYAk*e~3LKly$*C}sr+xE0g>*6XKCt$CMm?0+u4lTR zOxrilv^YSC&9c@z$+Q{l?^$-sm`M+|&4o@s$cyV)lP`p_ZnpHuCeP0h?Im7h`Wd4A zuWuqHw(A9unbIJ(&kW8X)Ar35Lbs6@*ASb-BGt)@wD!%Wac{^e+Y;~AZa$wb!9{us z1J*z_lk*FNHZLoZoo+sD8WZQiEnFqP4>cX3SyZ}}V@#p{m diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 74983b4d232409aafd522913590dbd63079d4089..eacaa933ea41214fb6b61b08521304664667f185 100644 GIT binary patch delta 2831 zcmex+p5^a(mJPm)hNfAT70HQ3nfeAvCMK4qmIlcwhNczij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*09~9=U;qFB delta 2831 zcmex+p5^a(mJPm)hGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7A`w7!}CSHrbG+bg~Qc9?~rY>ij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*06*tAr2qf` diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 2e9d36b0bf31b4a07fc8707cbe2f757dbba4d2e6..0423a98e6df7a5d3e610ea79d690ccc751f05a30 100644 GIT binary patch delta 62 zcmZ1`vrJ|~Fr%SqmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ RMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) RszH)znt5W%<`%|9JODU;5$gZ| diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 8d51817d00706e46f49ce08dbc3de791d074f047..022518f3026627502f6e895951804f5e60fbadd3 100644 GIT binary patch delta 3362 zcmZoU$<}g`ZG$JHp=p+7MRH}Vi;;D5F7qDJt%d97pZuDokWBrX`Pu%kkg0bv zKb!F8i`-Sr4)F1S3Alv%_ zK|d&p_V=MZL~=>`yQKMv?sim3kD}Us(N)T>Cfc*Iyz#?%p@? zZobzN!AV~Ev0(E2V9w0~{h3_k>7PIO{&bfbzflaBzI zdMC>j@N7PMxPa`u2huNiB7~Pb`xi_;AJ4bhX+1p0CHqzTL%uv6{?=$NcU6 zW{lI>NO$)1jg5>`rYE>D3T*#v%ea7?3;;4=JJ1A8a&iF7dhY3w;fx^^xSxA_Z3N>s zA@WR^vn_|wkxakOnU=%Ix?Q-0(TALr2lW5E>3WTfL8Lo;J5cX#ankjHI~m)7os?8A E0JV1N^Z)<= delta 3362 zcmZoU$<}g`ZG$JHVVR+kWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGV#?+!Mr$&(O%GIKY?>}Vi;;D5F7qDJt%d97pZuDokWBrX`Pu%kkg0bv zKb!F8i`-Sr4)F1S3Alv%_ zK|d&p_V=MZL~=>`yQKMv?sim3kD}Us(N)T>Cfc*Iyz#?%p@? zZobzN!AV~Ev0(E2V9w0~{h3_k>7PIO{&bfbzflaBzI zdMC>j@N7PMxPa`u2huNiB7~Pb`xi_;AJ4bhX+1p0CHqzTL%uv6{?=$NcU6 zW{lI>NO$)1jg5>`rYE>D3T*#v%ea7?3;;4=JJ1A8a&iF7dhY3w;fx^^xSxA_Z3N>s zA@WR^vn_|wkxakOnU=%Ix?Q-0(TALr2lW5E>3WTfL8Lo;J5cX#ankjHI~m)7os?8A E0K3c20RR91 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index c0a31b509a6706390646c480e9d244cf3d1c799d..750838d917a97e01a8d86404c05adce7383a668f 100644 GIT binary patch delta 3933 zcmbuC-D{Fj9LG7$w9S_-HI=bggbiV`Y0l{r;#$Hi7CC6pqAt|U%^AAbMT;Pjpt4+q zoJbf5b`x75=nm~bZPn7VIJ#fkcr#KKl>8&mZtPpWpZQ@`$Td)oN8$ znI=wmLbx~{nVs%+MEm*#x8N9`aJs#YNw-JvObD@9WHJ(UdAtsj8BL9^8L!BZV_>?hAGp?E0WNi!}TQ-zC4aO*;8 zE4x2+9nIgsdlMc!fR)8lIo!UF{XG8=z4b=%i*r|TyO{mb5imOorMGrqLt~v+-hfux z$o%74Tu$cGHym>8xm)O+OU2i3o8{Oocbsyv58rK-V?Vp_Qi07}%&uX&Qob3){eCse zK3HkNaMrQ%yA?y}zvC9BelexNa5nO;8!VbuHg>bbr??6*d!N}g%*JR*4s~`z*;QXzTn8D-)k+txT?ZjrlI$tQ+iILZOh#mYv+nFqt*TNLKQAk{ AL;wH) delta 3933 zcmbuC-D{Fj9LG7$eA;~3Qd1d=Mc5D~n?CBy5Z4lBvB*J#7ImT7oEf_4!adYO6*U6-0E=O;Gf9v0xX`2qcP3-GA_X{(#T<{Jy`JM_j22D^;O# zjyTc|(Ho7Vql0c&RCKt#Zdb(XiA_0NLs5^% z=crGqqZ4fsNIy}mfuv8Fg-D4eokms>EZaf6-Qa)m8Ps(8Wayhw8WCm4?ve_K`+sg&&-AoWU;=wu4+`{_z z!38%H;@w9;ng zAJ^h?GM~I*mt)W0Lhrm)eEqgbj@^96At(FT-A+07)AKJC*vuQ*)l6G1w1c?cuVT3e z%N-cbdX|58VkrH0)XY>brqvkE#^3dWMbpaqPL}u-7eI4m{gDbosco~1P5%0dewdoL z_0Lmu(=urTdtYCbf%BY#B*205w+3PYlNTGTnSbmiRz24FV%bIvyf#2=;1A-~1G|Pu z4UA7!c@3|P5*xU7EnXWUV_jGWsNXNp&y(#u7$(oL%bBG!`?~q-^CW<+P>U}%cpd*X zL+aS&Z#`1JNz}Y@nGDEygf|`;?!&stSF5Cq{fUtplTh-J$K)P(4E)&|`D^?S0(_PW diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index c532ad4123108a90821c5902c7f339673e65941e..982690183acc20e64b7bc0dedc1b10f4b3c20a86 100644 GIT binary patch delta 1137 zcmdn}hjI5G#tq(#hNfAT70HQ3nfeAvCMK4qmIlcwhNczu5I!L&hW|md3Yzk=a@jc?#&xGJ;`t@)Kc!rJ>08Fw-lu5I!L&hW|md3Yzk=a@jc?#&xGJ;`t@)Kc!rJ>08Fw-l*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) RszH)znt5W%=B-Q}TmVis5?ufQ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 350be101263c452cf51aee6665d1ea7f17cd92cf..6401c813ba2566ae958bf98ace3f214dfbdc082c 100644 GIT binary patch delta 1279 zcmeBK#MZNjZG$hPp=p+7MRH zlY0UySz0qTPZCri&*2%H{Y47M(7O49*gJBf^@CW(=5on;GHjd-(%LVxi(FeD$+?ni z>jA~* zlY0UySz0qTPZCri&*2%H{Y47M(7O49*gJBf^@CW(=5on;GHjd-(%LVxi(FeD$+?ni z>jA~*#!!{1(z9=nX}|4%Kjh>8|9fudIcMKV zmD5z^G#$!d@s|14rFPrmqG)se@ZnaA)oh;=V~H~tT4JrSbF2jgwnAI}u-G_rTwMOJ z0&A>wMD(16_R{Fmh3_o37dUN7g!3S4igDXTD6`ckQXF$%s@jxD#eJC|<~dEiiy&pX z>gD&Tj7gnden#g{MT(jla76+vV(b~tMt^T-g~_O%47MOqys%I!OpQq8gj{XxHNYDR zK1(g^-|i1e&%b2`Cd3(I&r(;LLxVA@bG6yXe@I|sMsANTD_-RKbAP^L>~ozbgAHo` zv6HYc9IAizWGs1y`Z%Wu8#RaeG zsdT6pik_o+mN=%N)Oib&QR>7JBv-Yi^c$2Iy(AXRQ!dXysSlQoN2wQ9r-fUIbKD%Qa+2IZBPHH=)wYyI^X^UYJ_HA3ib54?ILGtUr{9mg&wBcqv`` zf}_;XV{1|A=!P?>wEnAXw8EQCet=SsHJwMP15d*ao6z1-ayf=aWV)&Np9`1x)?=9*c`lvoF$Myj=>yCj7ho1Cf3Y({M|7+_1 zZCWR@QJ&SbiIu@|2&+ak4oYjrwy>yuIu~MJ%KVv44?w#ReuMeb$m^^CoV;`r4sA&G z+BNd*E(@Ub_gFcyJ#3FzZg&e?AF-)G3rV=77=iK$T?TjPr2w+}NrwS4cR7%7s05Oy z2&06&V!6;wqq#k#W~65iQlu<8(N9VNwgq>Ixe)u)#z;vY3Y1)Ps2(K+b$7iyPFjlw zL&D0UcRvmiaqI)3`7}69x(O%0s89;flIJT@B?DiSDy5L0UAm5(UagtJFlB)ICD0Zy z53iMcyIWCJErlU*xHcIHtK-N-YT{{JT88vP6K8LezC_n2)$Er>0jIaCd_o*bGY?BU zBf$nx#RaJu**x0iA;fxW{Y6?H2;zDAP}z&xZb?VbSCi(zg@c|V?o0PVJPCv^Rb&Gf z4~k^E&17G661$QTUegR7MblxF{m337d%^wDsw-@2!#oJY#Bbk{-lcVeiL>FIiHed$UTw4_>UDmoF&gd z&df`f5N&7DqXlv+@coOsY)Is_D;$`Mmoa!#MVj9p#}Rc|?L8!CAtU>$JbdRFIgGEXlV?)rDY=hFVUh5<;90Yt-Hw0 z;n0^}yCeJ^_k9E%8$ON=OTd3Q|DaA`Kj!VG7^j-gM>{F9^7pQZ-s@E;me zLUkL_9~!*pKwSVAUzdaUzDQjdeHf|x2VDXryp92%ONm)@oj~ctf40x2H3_0B1y~DsT49hTLH7zwMJ{*VryM)?WYo2TddmJkkW{CYt+=ZR*TVENv-zGMJ4UOdFKZ|-}m{p^PMv{ zRQfEHKFj_bHn`O8NOrqQ-BxF!+hKPmI}=^WNuEM`;sAG2Qj#;-;qVN!CA#g7LfZ_d zC&@L_I&+@8*jhaA?S<|_pG%4N?PCr0fL(+#Pkk&6WPwXnmy)0aE)&G*K1wOg#vwAGriA3?-LangWBb5_!wZ2nNJrsPd z>gjPS9F(4U!v;)<&+g7um)l~aF{*F5&CGvDWkXXoTT6=O`~L!;Z@YVz?^tw%+GF?_ zEDWz2o;Mat-m5;!pM#B>SA9~@52c=%G#8~dP0d27b<;-xRMqabU`NTT{^rR8h+-&ZWby{{$XgDZXbk~(v>eb zN{v0d5|s|AJBdoSeU*n+c-^rNQ0n1^Gbpw933!Hwet!|A(&-IouD>__jZ&92ZA7U@ z&s+znYSYigTiw0JMazi56GL-vT6x)Pqr~oKohIV8VP;URutPa&yb!9uzIyZJ_X()GJ z0(%qXZhw_cN4X#OVjEEI+1J@j$%P;2PnssVtA%@|m8t3}fSib67Hh?FMSr9s?H+9qGpmHd`0?*VO;p zoFB^u1(T1Fc8y~)>aa`HG&JxeNc5u;`1Z{g>}1*eEf2dDIP;}8g6B4}7^^$h`S zXzN^-hSW@pUx*{AWFh+m_=Mk9hin4SLJ}?+W}tjRm&3hA$wbKp=>S0Heg_f`%Yfu5 z-Yg-nST1xEX;ufR5$W0e3@Mk6c9SxIZNdFwF2v!qHbFAR0wvcRss>3>?OiV$D6K?; zAz|e-1|A2AICg{38PqpRx(+8l-y@l{lrqTRmaZbFS8Jv)%;*_-3A6>w zyVpoz?X9S+lH!m!{F{t~)e&SOHSt6)EkgRCiSsr|U!v=is`p5PfYaMnJ|T{!DF>vj z319=LqFHK0Hjj3B2(gjQ|00z~f_R?okVELw4e22IYSJ9Ia4=H*J?U;tFoE!Q6gh&6 z2SqyFWO5ifiET*7_b6d}de?tCGRr7feBZw(-x4=zxm+uwZ2`3kf|v`mE66l4gr zOg^8kL{P73iVnSBNjNzA23`h=Ua53NphA~Nhia4snSn#O5Rc=ZT~fl^?vCToD-Sl$cZ33Y1R#XZti-k*a$d`Y)EP B;kf_+ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 5cf794a29d53dafff8447e95058b853b52609aca..a9c8bf6a244d9e2f49a2550d109af04bd3fd37c0 100644 GIT binary patch delta 1771 zcmdn`gK6szrVYW2wx(H@70HQ3nfeAvCMK4qmIlcwhNcz*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgW&{3UmMf delta 1771 zcmdn`gK6szrVYW2wq=G!mdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7EOi`N_rl#rdU0$*GekvMWvA#CX(@WK)1T!#DqDN@O8j>*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgVq3`=I~; diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 62ba3f688cca429c8779824df47b8fcb47d2fe91..7bd5530570feff9f256673ecba7a32852a522337 100644 GIT binary patch delta 175 zcmZqEYSY>f&S+?wWm%D&Sd^)6kYr+FX=-VZoMLEdVUT8OZfTxknVOoImY8I0Zed_y gkz|}|X>Mt@xr5Pwopf!JUvk_bOPAMX2d-mW0HXFY-~a#s delta 175 zcmZqEYSY>f&S+R>Xk?k3SeC4BYLaYZXliL{l4xn3mTG8XmTYcrZfa>{lxAUIl5A*{ gYLH}_W}cX`xr5Pwopf!JUvk_bOPAMX2d-mW0Qed*O8@`> diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 19e275352b2f27f1fbe485c187803b2970e352de..9f009ba37fb1100dec5061ede4f591273d31f707 100644 GIT binary patch delta 3415 zcmbuC&1(}u7>9W$U!OC4ZC8?XADr!p}b!Iaf% zy3yITn}v70!W1@f*4Z|UC~Vlto7q$Gkl*=wEu58vLeZ*U|#`YDAOeyujh)L9jWmW=J6@1gpZjGpR@bCPMb4all2 z{&lbJJh46k#n@^dPC;C7!7m`LH&3Fll14v)iDSAt9hZn_dYn}l_)1b1J zZpQ79)kUDaG15YBS78m$L`e~QS}YYeRR>lfyJRJ@jh~mvwV)e8c|U2zeL?B;P6r9` fz7ymTc2nwtiPK~@gjmAA|0Tw#(7?C!lI74}7!Vmn delta 3415 zcmbuC&1(}u7>9W$U!F}nywtA~iFH4Rij ziYS8}v5F$qcqlYD!t`K4g;JH)M4=ulc1AIOTxYPkYwDGF1`BW~&qL{Kq&7wV> zGLP(hg(+;~yr***QJ6N8H}j{`A%FAhb#Puv=39~IjZ7JrTC@*kfG-?bh@z4m+{Z7O z!)H+VAg#I~i*JpJcTB6%O-$V5+(R0CPwCx0jl!3;j1DI;(ahqLT7q=doXKIV?M?*K=zPs}}m z0`mH52-c55yDNeJC7gF9I6MwpT?sN3xamsp>@}=&CAd2Y?_3FXO~D`JBi7i)mG>}( zn_)}X2PuhcFFHQL3*-Q@{yB(?TU9uPdylM!VC);P7TgSulwlL|{(`maVHJ9X^#kUS zYjI3sc@esiuQE$NhX^}10bybH;n<__-*RyUe8^v=(dDg|w2Iw+^3zq9y5&oVJZ{JB zkkcj1`r@R6-LAqKk%^Ha_Ov)EVXF?TLUzfjWSh94k!wLWg7SW{1NQ}Gu{+%)B>GQ~ dN7zlN3nosJ*$`q0|NfWI(Qu2{(npp-a4bePY4KX3!;D2namKK{Dsge?7f*7@?ri^Kf)oO^V^xS)EoyoWT`GFa}{2u?u z`JZ#oy}P?TdUtztR|$(xu5~t+FKMWWjVnt^awa?D$}8fN)8eXi?P;>x^_6!m zRbY6e-V_`IhAz~{>2pIn!O-<4`>$ol_!|C;0v4j3hJ3j7jRHB0uAmlpjXSLqpC+M*1)Pu=cB6M)F6x5jP+m3cAMKxa{_;^Y*6&x; zpsK;EvQgDhHymqlQxU2f+?X+(KRn9X|)nEN)A*$N^+pDPR#8;m}RWn};L7~1ko=2g{J8RHbbKh!5 zRafthK%q0cVAVPuR*l^Yube6SE~6Rl{U9Gr)4>DiXwv`mhaISDcyAL5{pp9FqR;~$ z!Q0J&zRjrW=&?`Gx;Fg{?&0^2pF~wtKl7rou0MGlRgL{(C#u?d_B^U;|MHips`IOP zsA}BsepHozjqh~dyp5_3UP?z}?Y+DgRej(ZtQszJ!qOF) zDabvEIA7B1HWr3@UL44_qSzflY$A$n2xX%vc6>NX0n1A_BG?vGH}hWhJfKS~iUpyy z-51TCMg4v|k!4}mGH&`}3d=!tKc2=uLb2J?*$yDb#v>2$SoScgyD5Pcqq;9Au{u2y7tjDX*Jkri^^Di*{yHL|}0>IMM`f;tTY7ty6=HXrF6pOZTy{RMXAs!IT%0 zU>FJUKjpmVjHuVC!|ZcljGJICz+)+=kG+LNZ^}0wXGc(ZI(&kC2q=?K9z?P&a4wqm z4^|ZnWZUeN@GHy>x0(GK`w9rxoJah$iv@LWmAuGQh@T)8@f&wZ0n~4kyhynW1`-VK zhXI)r;Bvk>Ps*le?w3{o@+26(L;^Q!wq=U60<9Sr;6Un_CVh?+&Xo5hNQ;nWHNaee zL+E^p6d4ZW-DDVEAcga9i~}^MFZQV572hx3ak56wUY8Dm$E8AUG7K^KC^C(2d9d^0!z`QHBV;?$i3SY`BWXck8LTMIJs{tM z*TTqT+f;c^+|GJfG~M zn|1P!fcleQ(2*t3vrew2S6b!Ez_T3*@b4V{=a>t#EBAv4^tPVTA7PoQOQw6XvPQ$dVU0# zsia0h-f3Is3PDqb^n>Z)%yK1&@*9*f=x#`YA>%!?gWi8TvW(Ns|81y7UYi}sXC(71=P=Gb6W~vQ6jL{Xlia(RFajFd5*I6CAev;Y- zr+nj7^%eLzplYTXY|Wo*DQYAQr>Nhd1AqkA`$!7Rd){|))EeY5WcyNe3GG^-hTQ`+ zy#QBGewFF~7CQ;>rdmw2&iLp#i3bj-$f*AKoa#2ec&1MW)IMa=35K<_a8OMJ;^rpU zIixN_&PgV?=(L&zE9ab5k*_#OD9?f&A3U!<27`|bt8?LS4_#0Hw^~;gX8H zptt(tlPfCnR?`CSyQ((BF%OTZ4ah7tJ9ErU^&Fb8?hXz4n9d4$vZ5hBsj|R-)->ef zdJ8-uPhxtpeDnuvU8x&7vdAmP;=#*D8PP ze;v&j1i?J=c4+CDI6*EK4npb8v)U}+=I*wQO(WXu_&c@1g^hP9>p|N};3Q{wA(4_t OQXm_}d)>C_f&T>;e-Nnv delta 15184 zcmbtbZBSI#8J=^$mY^(zg%q5RHmkMW7_2 z`5ZTTQf;Uih4{2Ljg9 zoR6tcuvL2UI2TsnDqW605dx`t{eO*&@wa&t{#33Sq5Ivnm<5wZZ}YSxHX52r^zYMu zjwlPL|NP8vfY=RWS@wPy>EN}wEOlyY!c)JfG5&%dWerWsjRp_X|D02CH{`>oANM|j zG5mi09Xbr5ocn+%iZ6&gp%~=1nWEW~Ut!5Dl&0RKx#`?qZ zN>tUpDic*5^1-p%>k3d+dwnJv>ri7JpsF`Cb)$-d>!1^lSa5qb6r!T?^8-MbX6FZ9 zoQBRVhSbXkqD! z%oOCFM4T__H5-dWJue7lTT$$eFg6;+E{$MAD0XBNO9snJH=@}VR5$%z_5z?wES80# zwcQuTo3Q^rx+^iba z-IKyzL3RJ*VUMA@KTKmusBZ6cR)FgErm>kQw(DW`8j8Iyi=l^PikrpI69zpzhph(I zK3&RXT>y>?+!}wkSEZT))&L~yHo@zKtO&RazfI6q%#c?H20;~dm#{uyc9~!3Y{Cd;@4YQ7!B=YE0Jb57)UUj0$zMr^2PhuaH?!)HDJo~ zNiYnA2cL4@aYoeZ)M54oFvd+V7vSNP)y3XKqBrGhkFz7FJRLs4J_3|UDEA`S7C0|W z_y;Su1KBn^CF%3y^v`N(&~7>I3^ zkTa>d;gMkIKnEy~J0#li;xZ+Io;e^n;5991){F^0?^XcLe(7^y3R&B|01v127o=Kb z$2M1_bA+tXbJwLq;BhIRn+$zSK8j4^TOJ&||1is>=4jc0bfQ5+!pM{`unbld=N^>r z!E0e;vT3}$C+1E(aA&3*PTi^UofRY?XdJ=&pu8fv51GgUS4tgTc?NQD&RZ&1^PEB1 zOE;_K2Y~vMV9=2z(6LUgpjR8^%fPc83Gg4B!RMF@vtB-`Qx4%51G2`m2IU2`a+f>` z2>eG}(a3L&cxT*a%ey?(3|MT|Y)` zf>XY6y!tBq98f+@wOjM&TCy5L{mJV0=l~$W^&XM}^PczZEVUAO4B5U|T}Zp;s*(2q zO)tQUD7Rd70*jplcvBT7T5Wvv?B=08Dl)1+Ij8!}FP`bM9<>XZbb?_m&FfWDfVjB{ z_VlSskaLm=E;y}bz{*)?Rpcv963WwI#|O`=kHg?2{pu_@+(Q@Cjj*!qqS^y1Z@8o) zFX*lQ`1Fd3yw$Y8`>v|>aLoM!>QZEunw>f9rg{!dSbK|xd`xGBJXX<=pHx}k4>b+> zxZVPf3f0~~Mt*}sTf)~lwFr7LTssY9oCHH9a*Zh}<>fEhG?i}~tA&#A@C+btL~qfM zpgD#ZNt~>ea@nQb2!0nJf$cyvP1p4^w0{P#X+EVq$4(X^@;^Xlh}QW@>I}o?@ArnwXZDWNdC> zU}2GDoN8%qX*Rir@cJB@c*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) jszH)znt5W%<_5+tX417ywqbLcT+7-=y3WluY+c*{E?+TB diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index f762892d0e6c3d230890ccb28133893c1f67f627..0432aaf4893f05991039de4e96b4a4a0f3fba253 100644 GIT binary patch delta 545 zcmbO?i*ep8#to^AhNfAT70HQ3nfeAvCMK4qmIlcwhNcz%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)WF*1>%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)W zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!?)C_W delta 1740 zcmZ3ujdkHR)(z2&hGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7AtN7(bJ)Yr0`1WB6uv<~(-t^hRyswj#r^AZrsRpW!Ja-PXw)by_xm z;+@P!me$VA_M+}gWNLMgI7Y741Jc!G1QXD&otwYP?j+aN48 zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!Q_=Y? diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index cfab3480dba0f57502f8474c07a6659a30518b12..7eda4eb91571323bbfd0ef68a6f764b71ba5d353 100644 GIT binary patch delta 1973 zcmZ4YglXLqrVZ(ghNfAT70HQ3nfeAvCMK4qmIlcwhNczCfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-psQcE!R;M z^wvA-gFCi+eQdy*&U)#IGinu`EE5xB3JF75Mx2FxkG%oYO%Pct3gc@G5E>LKk}9xn zgQCQ|L5aSq7_b%rn0_?dgiJY!q8}#CiH+VYt1I0rdM39b>DHAV5XKq1kaX)xn}svI z4CytDF3MbqR@Jg@gH_wx=YphIua={zFQ*l4^`K3H}$XxhRde|3G3S~g0tar8(Xa!M8Een*86CgV09yw!)Tdq ze<#?K_!{UN2Mw%Wtll#KqRf0eO$;7-gyQ)glPEabg{}%6X9Z^sg17BAfxUNiG@$3- z)sZNkU74R6eP!Xi*NIeh-rFhm^(>qheMNolH?mWqM6v429V3Q|Q=x+K(W81 z9M`!TS!tzuAgK{JV52MxSeff^63?GW#h8Fs+S6%1u;9YhysG(QD7W!XvEuN2+cby=+ z{`N_hyoqiBXZ6QUL}{vwZJ}6T@c&WiJxtffu99(#K9AwhtWwWrHgNy`X@;Gl+A*m( z4w6Y;ZYBFzn&Dv;?kb`bx#K)t%fx5KE+0N175n%{u9IEzKH4)0ba4L-Ipx#0vS(Q?TNEl|wO0o2ta4?MDQJQ%Oj{9I*ZFEUr&u hhCIJiv4SqbB67=eWk>}~=>Nj>A6jNP(4fRCzX6$F%1uHV9(}*I>WTGOLY0!o4 zwaYD5FQt`4DD8(`P}qeqh%WXJ2KG=CQCJ2(482rmMhdj2`TPTZ-}=_K*Is9H212HR zkg3N9@8^5Y89O<6;osK2t!#$oP~|V-h}C9h^!KM@f8LL4T_?qomjU) zQE1+xL|;|(Tk`=-Kbk#4rkqC6&r=t~MsJo?m+TY0X{|`Q)g=doaZWvwZgokEP}571 zUc>0}%ynp0Z`K{K>eZ`@KvHaWmZ7MBNh{jwEq7uJG!ZSL%4@_XqLTHjF^I{le&D!K zbmXUEJ%_8?cws#y@R8XxlbtO%1O*V**$$EWSZ|tH^sQ|G?xLtJi9yF?-iAjg+P>)+ zmUfGHv*j0B_3*ZP*l<>|;ebU9mCXhc*0)^*XG3K+w%%zFue5hq?_*_x(_m zc7jcb;XvOcXkaVF`o?|`W#*I9#lVp#D8ABX61nHQ(N&@2Ecd)Y@b)GX*n4+J1A6}5 z9f{(_HCJl%m4$l06RE1+uM_)wmo1LIqCWRq*_lwHDE@xeh~eT)D0g!7sH6mX8W%ms zb*@70vQiC@)F>RVQI-X)%yl@4ubfM3F#%25)5!%axUhAN>u_X0$)A}t2yB*7mCH_= z%YK(7%Zm#sfO?U-%2!}3{j*?|3v;L{8O)KN&Z9{(C!b!!9wG|Y3#m0JdJo}?!*h?5 zh41u}K@OJE7i`&$sz_bs5-`wXY#4d-0ZL$9Asatsqatajptryl`d@P+o{yDxpCY^d z_DPn!nQjAT_18{BX{L-lOtHY=k5hSkl)5Ial5v8*P2kY1QqN{SaR0_N!_HCFgj5`d z$Rw|{l6@l0@URMZ=TnNTZKE5R_{`Ylqle_gKK_yGWS6{;8mEB{9=s=2KL0=kXc`fL zmmg`$EX;un#3`?^hs##3v(x1#i*jKGR-6|*6tlEBm3XxMh=5R)gcQsHYg(Gc^=ZtI fZL1Y4=prm4cdStcoq!4bUzq+w%PjjFlz8P2Ez-I@ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 32dad457b003166dfcd8e3ad55ec086110be3a8f..2422772f7d9ceea71feda607f0dfc7a00678638c 100644 GIT binary patch delta 1312 zcmey>!St(xX+u1tp=p+7MRH!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+CqRbP delta 1312 zcmey>!St(xX+u1tVVR+kWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGV#?$Rj6ccHrDz{ES%8^bofBC0lWFG!7J!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+^3Hq0 diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 60d87ea9dd6c9db57c792f2838f637bb6244bdc9..ff0243c83d14cffd61d71863dc567c5489af2c11 100644 GIT binary patch delta 534 zcmX?7ccgBEFQcJpmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ zMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) zszH)znt5W%xMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@j`i#(zL delta 1864 zcmaFZ%<{0AWkWHeZJD8wWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGVv2rBesZyXaeir0a_VHqyLyxFG2S&K*%YA8tjS@_ugTPThh;z6It3=X zu@#V|JA1N%F3;o*3c{NU+4a~cGD3WF9A70Pg+@#hn94+v5fYnU3pZ2d3W?2nVjYya zqD<1CQdhJ}Cs68&rExMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@j0OD$Ib diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 592528ecedb4c4d921c469b00e828f1a975ab2bc..eb73dcf41f090627bd93becd70519e41df318859 100644 GIT binary patch delta 8004 zcmbuE{Zmv`7{}+FWo5$!c3CzsAQ?s`CJS~0++729$And0WGP>2FcfeJn4oxx7lp(u zrU}EbOC3ja&r=2_3M891HRwS_j&Gf zo^xjIlwUvP*T3f`*7RyeOL=L1Rf?r7EzObcu#|7HrrRwQ={ARLi^J_TSD1=Y zvQdtDh$g+lzOe_Rg79I$Fokf!`b_8qSVp-kE2w7-wBjz zdA%B?I{F7u>T_?x)ULrJDD}&u4z$+6cYi~r8FC#e&Ho6V;f@m}D7F3LULADQ*UNpr zCBc|f>ho#k!i!xdNbZ!*#v0|~D-LX1%*o9^lo?>UR&vcQWYI2Skc0p9Vf|BLXl2*z zEi)E_jonR*{EV3#2l-qW9FE7~ddYB~nVt6#Gf#36E0{tlLv`XmuOb85z~k^w*N_*0 zCBcMl9lz)y--iVb6?d~s>c}+kl+ENiHioL63B8W@dx;hsMi-0UMi%qsP2?Fc1s4V* z7~IK9_7D?q-bI=*xRVQmH|~Vm@07;e1~%yv)5ngGrNH2bZ>XB^6~{;_5Q1HuBH3(a zh=lVgA8FGEUdI0%{{Dhoi$onJei9j;94C6@7${Y6;c$Hch?h2Qh-6jcB#FIzgZy@-ek7ccUshKx5 z(8E9n{x#wKE%ZuA;GLh>8=t49g_xe{yJ-a5wwIdt$=&o2ScU4szwM#X8Z3r%smsho zFFyeTsQNPp=rs2Jce1zpsGcu7L?^%ia|Q>&pJlAmq|a?G_t*aQI?)bl+0PAH%Gkuu;So7YE7&^q8PtK0=HRxm@OnSPc|27Z#~ r4Wd5WrO87p=sg+9i-R?Kw1bNN7ro{}RNw`O4k~}5!+C0==3MYU#`tDC delta 8004 zcmbuE{Zmv`7{}+FWrc8oU3NDxAQ?tRCJWdFT-JcyF<}*0S<06h422B>CMaIwMIkYZ zX~J;qQpXV;dBcKEbBl!oW1WBN*&$*I7%JqJ&972 z4_Bd7d*1*`ef~|D+Bt9(rG9zLj@CNx?r*3xL#{=o`5(bE+XB^mB&d65Q1HsBH3(a zkc9CmA8FP3U&j9&{{DhoH=zy_KZy)ajT0Sm43sLkaJaDm#7mntnpovHNno$sB!At3 z2@n017=Rl^Y2!Lpag)Te3%AI){|UG-$VKM&9V44+35P z&xI$iqMp0_&%s5G0gzn4zj>HO0i9Eq)|##1y!lbuawq!wVp<9;9F?EEJ({)brDon( zPmcf{_}7H@HPfrX{&#*}Z+L+k7h-y*>!RUo+g@tqr*_jrU=^wh|F)Y(YOom6U+5S;)6%o!Z)r-|S+@~mTY7})yC5HO*Q;s-vUSpZyl z06xTGKNFjK^J(e^=16tm!XXa8tNFt&QWG2Uh*#9e5Z!@xL2=>VeMQYcjJYnfU86>J z#Y6P`mf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S2G+|I}V delta 1562 zcmbQ%!8EOdX+tohZJD8wWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGVv2rBesZyXaeir0a_VHpAi2rw821{IYzk1P*W_nR7s=F_!zwV@iDf<6 zx*N#S88rEVoc!iKwuh`_YggVZ%6pB80__t8CX=sSW%Fs_OiHxh7AvDf`wvMaMzZ~` zviYEN51F=az982{rdD8_t88Xe3Zg{&FBN(6lMK)16mf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S1(w85DG diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index b284da156a5e2293338bde9a31b44417eedfbdf4..323feb4b40492471063b1d5024de81ec5967c748 100644 GIT binary patch delta 62 zcmaDX^jK(vAETjZmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ RMUru;P(76AJ(U delta 62 zcmaDX^jK(vAERNJp^;^BVp+1jsY$Ytp{b>*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) RszH)znt5W%=6c2_>;O06xmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ gMUruB8UO$Q delta 175 zcmX@2enfqPH=|*hp^;^BVp+1jsY$Ytp{b>*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) gszH)znt5W%<{HLDY@}X)Q`B!>9~;$6VW+6%vt6L|2nhT_l@xn1y50mKDL$h)6Qw zK(B*X3etsF#;FeLsx0~;q-BIRrFD^B^h*eZZlw41rMm9>{sG_b=X=g`p6B7r4VvZ# zO+#LCxSHkmhG6{UPAODYCc9**A?$E@q=?HcyTfv0V=xj7Io%$~;|Vz%Ww*SGou_d? z6+E?vXR_{QV^XENhb(-`yssG7FK4OkZIHZ%`8=!m?a~yMUX$DTn3P-s)9rk^>`N9V z=RVIS3ncaPxr$>}NE+bps#ap>4e*wl;q?&pKA`F!u4QAfB4r?-^7+%#T}X{p4?Y%) zBHg6pi}}aaHl)6PHJ7~0F@>N z<_n;}LB5cQ1GAX-4_D+u!~ky^-Hna30N?gDicEj)akad+Dia;Fg;jod2nAoX;MXSi zoBv;~Tv|td?wh^`T=k-s`KELD^&f|T*7~PE@iPN#vA=qyZv}<0v&V$G%pL$$*Wd|3 zYp4VmX}b88ojQSmCRB0?hCVK$qX1M-{AeS|FuAXo?!e@4C4_7)J+`!!&cNjAQbM+t z__Tv&U}#h#2hdUCjgxAD0*S*engK?%9I17RW+hasUp50_tgLyoUPRhx5_m{@ qVbvT~G2TvRfz_rvZ0MlH<@Omph-M(FF4F|E)76i(P=CWS*}nlqXw@75 delta 4036 zcmbuC-Aj{U7{7}XX= zwRalG7Pr|wp+G#e-RTI~ZBCEV5%9Re9X7|#kjv$AdhGVF+v*6}>>bviGwceq3+HG8 zPz6rzX4#Uv8cZq<4w0Ts>-L&){Zb*dH3rF>1+RMryH%6I(#vua%UctRV7iITIKGr% za^`h!&_hxmE7Tn|KvF+@*SH)zub*`_=hi~h`+#aB*COPj)ncZCD%jIg14xY}50;Nc zkZw}&X7;fshSc|ud_G>UhCbcfpoTtnexn-t^$VgJ`isO(HFRx%SPgy2<#sjn$}2%N zbkjf+(q+oCF$&)YzrrnJ6jmmy*x8|UDQHoiTr7^&l0|rV;|XTL%9GDPIy;=spwf6| zz7h%?U<=u9U>38HTwNJN^s~ z?*HZD#Wmz(-kE#ARTs5_cczqG`*9Fxt$+ICKeNCV`>Pj+mr)Qqdz4Gd>;X`986M}f ziY&lLQ^c=K)DH|aE|F6(^l>#E0ia6aN9)N0lZVZ88zz6V5VEU!CW`PkeUvI0JUQI^vc`eOhEvOjq1AFK-9AUbF^un=p zJJ;DSF$gEd+juxeQ@}$~ q3M=I>@QGeJ1FSa1VO<{;m)mFbAhH2(yhM}8PM1E?T>1^qYJLOA)w0z9 diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index e3e6176622282094c876ba5be3fd340cee502df9..e2aeae83bfb717039d42500be1576f5e892ac164 100644 GIT binary patch delta 1773 zcmbQYgKORnt_{(QhNfAT70HQ3nfeAvCMK4qmIlcwhNcz!OnD)ahKjOjTm`G#x<8nQ`-4E-0C{I?g*Vp_`x0H0$Cy8r+H delta 1773 zcmbQYgKORnt_{(QhGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7AtN7;liF>!OnD)ahKjOjTm`G#x<8nQ`-4E-0C{I?g*Vp_`x0O_XsVE_OC diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 3dd611935e7a5bd6895f61cf87136bd60453ab40..d1e67843b19f96d1adf2f3d11dc33774a3a8d61d 100644 GIT binary patch delta 1250 zcmaFc&+@jPWrHuHp=p+7MRHMnN*PO-@uw+pNa?o{4lDL0TuTVcSo(PJzin90g?Qp0wGOGl-2W zt(woc#tPvSMXwr-U9K(4Ks^2f=rb#tQ9ZdS4) zrhfAojYbYKwf;49b|hWv=EC9&yrgTJTv*(5~r}RN4G-i#ZQ@+BY9K mXv9aJ*2(AY%WYn9p^r@Mo6p_(woc#tPvSMXwr-U9K(4Ks^2f=rb#tQ9ZdS4) zrhfAojYbYKwf;49b|hWv=EC9&yrgTJTv*(5~r}RN4G-i#ZQ@+BY9K mXv9aJ*2(AY%WYn9p^r@Mo6p_6)(zf_hNfAT70HQ3nfeAvCMK4qmIlcwhNcz6)(zf_hGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7A_F82QN1HhCg@=4KV<7fhtv2-I3Kc_Z6;vUENnL)XPCS(^noy;#Z9 zI$3~IezJfl%Vr7w+2jNi&~~^Hg@RAX2{5P;n*~H=*~s)n!Cl_XSEX-CQlLG|jK7&I f?OmG{b~Q+mu66UpE0*n~YXhdQ;_d5V7}FU6z2oYM diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 2f87e8cc84ab78e984c8dc7022e3dff553846926..f9b6c78e7ddd130596a97014e8d10ea59472a5e0 100644 GIT binary patch delta 195 zcmbQJK2d!`A)~EnmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ zMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) zszH)znt5W1eoB6Fv3_xWX;E_O?8MXt{)n@t4g^U1%Pve9D delta 778 zcmbR6l4-(ArVZ|lhGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7A^a7&*w%wvow|nRMGGZ)8fHEWep+@-(&$6zG1&UPy*+LBXEQBAi*Q zWNDqa*@1rnIRPaoSWQkq2?|cw>?8MXt{)n@t4g^U1lt=y>q diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 4cba3b4acf0096834df5f2c957115794ac5dbe3d..6bc5e983bb14aedbb9926e5a392755f000115050 100644 GIT binary patch delta 540 zcmdlmlW7AGc{3WCW?5DwCl+Pu8zh;SSejZIB&QgfS{S66np>KuSf-{XrX?mBn_C!I zSR@&zTAEv$O|D_wNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0|4MdoOl2L delta 540 zcmdlmlW7AGc{3W885&t8Czd7ao0=pW8Jb#}nj~79r==R2m?fK=o10o18Kqemm?Rq- zr5YrerkN+EOs-+vNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0{~rsm$?7{ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 1d1ef2959021e1651cd0d3830333f602cb2b6fae..14e4307b877e8b982c6d6078eccbfe983e061c6a 100644 GIT binary patch delta 185 zcmcaEcU^8nJfop$mSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ nMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) nszH)znt5W%<_V0wj7B7D)1NHJDm6Ki`7HTb%{T94na2eHIx#ds diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 5d582ce216c545e20542b1e6ec3dff6739e46a2c..2ca5b61cc1774c253f626984bc3b54a4c9e723ef 100644 GIT binary patch delta 1759 zcmbO|mvi=9&JFI2hNfAT70HQ3nfeAvCMK4qmIlcwhNczwvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!wvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!*M{9$$9KTlTR>BBv1F|d(6klaW2GSfyq{E>&dei=NM#hCyxu@~^E{64oRpa%zS&c_pFID=-66iYNAxHYW$uvJ%qIDPLU%}PUM;LZGSW3T!tirrzOT}!b$@^qI_;*QPh4J0Vh56mhOn`?|y zDK=x889T*h1X;eN*o-eW2Pifp(_s(AX54c2W~Ct8Z$9KH$wi6&ijV|9^7L zNVj~tV*+Es_5w4;3Jx+gPX}ri-#)>f@fw-d7jEZ>WaMBc-TLi7w|fbZt`8Vjq0`?L zFmi8~DQ0{rNQnW{S{WMy$TZ-AC?m`C30D|ZwjaI5xP{y%0>Tvahm1$<$#P5B^bJ}} b^3&VR7zMU3Qe*M{9$$9KTlTR>BBv1F|d(6klaW2GSfyq{E>&dei=NM#hCyxu@~^E{64oRpa%zS&c_pFID=-66iYNAxHYW$uvJ%qIDPLU%}PUM;LZGSW3T!tirrzOT}!b$@^qI_;*QPh4J0Vh56mhOn`?|y zDK=x889T*h1X;eN*o-eW2Pifp(_s(AX54c2W~Ct8Z$9KH$wi6&ijV|9^7L zNVj~tV*+Es_5w4;3Jx+gPX}ri-#)>f@fw-d7jEZ>WaMBc-TLi7w|fbZt`8Vjq0`?L zFmi8~DQ0{rNQnW{S{WMy$TZ-AC?m`C30D|ZwjaI5xP{y%0>Tvahm1$<$#P5B^bJ}} b^3&VR7zMU3Qe%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~#e|rhxze delta 1385 zcmcaNm+jtMwhg|FhGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7Auo7!Q-7YvEd>%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~#;?nqU9` diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index fe830871b121024c0ca5aca82b04450566a669fc..71400def1e072038830611c9a19b42c3fa1d3ac2 100644 GIT binary patch delta 2023 zcmZ2Jm3{eC_6_cghNfAT70HQ3nfeAvCMK4qmIlcwhNcz!YR4WC01*%~P0yS;*GTvDt?`U4U%u&1C6}*eoOYo{cQ6 zv72WqWRVlbA1z}yPgGjXM5e8$RA-QD>j(8fa&0}YwT4`+oO&hXrHa_i+{P*7`t`5L zMsgi&W6?r}t(!kuN->ier!#GP$gpuTC?##S|3I!k4V@WT$#Sskx{cI!SN-|vmHY9E}BgeLO#soRiLt*>GrHqbbWS;3jeF@u>S2LQ* Ul5Qz5zk}*o{_QL$85c7G07i;ve*gdg delta 2023 zcmZ2Jm3{eC_6_cghGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7AsS7!YR4WC01*%~P0yS;*GTvDt?`U4U%u&1C6}*eoOYo{cQ6 zv72WqWRVlbA1z}yPgGjXM5e8$RA-QD>j(8fa&0}YwT4`+oO&hXrHa_i+{P*7`t`5L zMsgi&W6?r}t(!kuN->ier!#GP$gpuTC?##S|3I!k4V@WT$#Sskx{cI!SN-|vmHY9E}BgeLO#soRiLt*>GrHqbbWS;3jeF@u>S2LQ* Ul5Qz5zk}*o{_QL$85c7G0N3?b7ytkO diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 5e656340fbc68e644c217074a051ad690db6546b..c156caa5d3b2274e99aa2ea6a227699055d31f07 100644 GIT binary patch delta 183 zcmca9dsB8pFr%SqmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ pMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) pszH)znt5W%<`%|wGPF&ez$iL7g2ixh6Y~VpEd}Y`9Kq7a1pwrni6J|Xk}reEjM>>5fzm%T_u{cMr2bb&cMjj9zfstLJ6t0 zD;|0hMvo+fbciDskwg)g6*I^nav;43U-UwVpn}dFLa*=FKj8EI{Lb&3-#PbAk6Wk5 ztz!+u>26ccHw8Pw+Z>H9m+Dp>P0dcX;%ISuR8O-S3I$t&jb$Fip(u@IA=RUnYZ3Al zpq$?Qe4Z8{LWydDtu}3NLk1sAIaY$%WkerD*6@?|za|h(IOAprt>-(G*EZuQcX}tV zCI@(Tl|9wCkxd4uj~CV`rN&v!=?!S}Jq-XEi-!4^UQarNw)4mRqZCB{Tsn=Smdin8 zb7IkUZi%!2RvwFf2QW=HZW*pj0b7)FqaU>@BkPf2(+mC?t46Kg?i@y~GY@W}dzv}= z0WG-aQ2@1ekF^0-p3N6g(Qt8Q0uMdJ5lSo7agc|;N>pV+Wcw= zwX!#H)S5okiCPQZ9RRHS>ic|jPQ5cWqyDMeB|80d zEwFwe;g2hgSFKAM#KuPx# delta 4150 zcmbuC-%FEG7{@th&L6AkG$qU^(aOR`zGHJ+5fzm%T_u{cMzq#+sDY8`qCjuFP(o_$ z6%YLqMp=;%qeC3Ah$M=@te8Otkpt->yy!xRpn}djgs$JOf57MadCqgrbI$wDOqgdT z%!vR|B8tr&3PwUZ9QKe+akw4!pxYU4RqWLvr_le8YN!= zO7R@v3$z3gN>uf4x2Qv#a`;fj@e0f?Bl;n-fuFMeHGpVJNg5%vneTMHw&+K>;+e#n z?B|g>Yo>l9oAOgHFKuvD>StBO<5w4Y0{|J1wev51&TI(n!6zTU2m!0JXYCHzLEP75p<^k6ORoJ%U>d>6vtyeo|-#f0NsQ>H8p4C^NaV}A-s|G9VIzp zjgM3U53`(~<$&oEgydosi25@mKMP}-WKH5n7nv-B0-D&~T4E77HBa-#%#d`s*zptQWM+nrStk1k{$?+7l}i31Muajed_jzZXaC_ ztY1j@<7)j?Ytn$&+(zF57iJn}5-t`uI%thazh30`(1*aC%Ouw%_Fbf^S-(^(+pCr~ zl(WorhC(qoKs)U#ND(8?Xn!pbAlFbMqFIJT;F;4JP{SmgC&(&8D>U-UT@bPhODk!k XxW3iUW7XdP`G1!F_ZF(pFlqb;7plh% diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index b130c40fa921bc317c317050c8bbdd1e3653f98a..0731e7aabf16cfac04e0577e5fb5d764080fba9b 100644 GIT binary patch delta 522 zcmZ2HlX3A(#tpHIhNfAT70HQ3nfeAvCMK4qmIlcwhNcz^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYB-#wm* delta 524 zcmbRCm~q-;#tq(#hGm9EmdS}_$@-=y$wr2zmZm0&mgZ@xh9+jo=H}+6mPSTt76vBC zhDNCdNv3J$i7At77*~>^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYBq86FT diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index d4675975106801b4fd9c3d2fe68922b694dfc06f..119b17fcf4cb9a56361796ea9679cbb25455bac3 100644 GIT binary patch delta 185 zcmeB|>zCUQ&S+?wWm%D&Sd^)6kYr+FX=-VZoMLEdVUT8OZfTxknVOoImY8I0Zed_y mkz|}|X>Mt@xr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2PM%`}n# delta 185 zcmeB|>zCUQ&S+R>Xk?k3SeC4BYLaYZXliL{l4xn3mTG8XmTYcrZfa>{lxAUIl5A*{ mYLH}_W}cX`xr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2Q9!ZQ5; diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index f88a050e495cbd648f4053d53e20b2436a098459..fe7c648d1ff0aee66407af621fbdf58669c4a210 100644 GIT binary patch delta 769 zcmex0pZV8(<_+$QhNfAT70HQ3nfeAvCMK4qmIlcwhNczY-H?M3z?f$>;cmHv822 YlILiMcIEb0Ze-ZLfHidUY-H?M3z?f$>;cmHv822 YlILiMcIEb0Ze-ZLfHidUAp#An$F@3VMM{loXWh`U_ E0I}3J=l}o! delta 1042 zcmaFY%kr+5WrHuHVVR+kWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGV#?$?##dzMddM2M`4v+aITk)-jhW2Ix}Gdc&yc0dXRAp#An$F@3VMM{loXWh`U_ E0BC3~@c;k- diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index ec48a454524cc63afb6e55e5420b0b8bdff09d52..6144fd830801f89a5f654c1f61025a449658772e 100644 GIT binary patch delta 542 zcmdn+lyL(Pc{3WCW?5DwCl+Pu8zh;SSejZIB&QgfS{S66np>KuSf-{XrX?mBn_C!I zSR@&zTAEv$O|D`5Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4omV;7=E delta 542 zcmdn+lyL(Pc{3W885&t8Czd7ao0=pW8Jb#}nj~79r==R2m?fK=o10o18Kqemm?Rq- zr5YrerkN+EOs--4Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4om2=AST diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 3a25a9c407e4e0184f90b600d4269e31eb7492af..30f7876bf1f616a75ae4941c4a135cc5ed790b86 100644 GIT binary patch delta 185 zcmdlezfpceI-{X!mSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ qMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) qszH)znt5W%<{6CZ8I4HRra#%ARc`Vg7VF8Em}ilxee)icuUr6MZZ(wv diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index aee202c57cce686f45f9d128e8bd0256606ee61a..7621deda28efde7ffce3a7a770367c7e2c6c2967 100644 GIT binary patch delta 783 zcmdnp$+EkXWrI7Tp=p+7MRH1PjD2FrMqeKYtCt` zWNB^NY#|`ZM7q|^bwcXod9{6Wte83n={8QT6UyJLB7cIsxXIt#qu5tXmaXBFeMN*e dZ<%XPp3M;Lz4LXG$+A5RlrpvlGBai|0ssnQ=u7|r delta 783 zcmdnp$+EkXWrI7TVVR+kWpZL!vc9QFvXP;wrKw4xrFmMap@~_txw*NirIAsZg@H-3 zp;4+ql4+WGV#?$S#-C*9suK#^{DY~M91B5O|FD=clV|JXKP&>1PjD2FrMqeKYtCt` zWNB^NY#|`ZM7q|^bwcXod9{6Wte83n={8QT6UyJLB7cIsxXIt#qu5tXmaXBFeMN*e dZ<%XPp3M;Lz4LXG$+A5RlrpvlGBai|0sz-};c)-} diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index c116620b8151ba00413ab080ef0878af03909b9b..a933f159d8a8852f556a58326aac11bb2da7f6d2 100644 GIT binary patch delta 1079 zcmaDeh4sx8)(yUlhNfAT70HQ3nfeAvCMK4qmIlcwhNcz?UQ=MHec^4CNl&?UQ=MHec^4CNl&|2l^B$i0*yNifjHbEvKvB#PqDwiN!a;g;7RyS)G zS5+--ZAH;Vt6HU-mfBi$qyFFXn|p8M_4W0=ZvVbMJ|8*j{MPeZ&hPy0%-oZs=bjwx zl_M{|Z;96x5q@+enm^dmv{@Hf|aw=NFnzjgU-Xc8Q9^W(|+okw# zr@ky-8=o<8Tyo0r)N#x5J2aXwI+OqZ$LTa0o{>Dhk^Q@-N&k5b?fKz>QUluCQmSij zGg`5?Z4)8|(2@gQ73@Bls(pK#GW1LX#lK8`$>j8u#4+iKNsY!Oj!9dV-+&&Lb-(2f zy@Kbm{MHmRPHzn)&@Rmnv}cbEu@7mk+jpb|+4rVav7gAOBL&%G#s%2pn<@6>j4I`P z+^G#uoRBy^Wx}%j5IXm&M~JkHd|S$OJ@Olp)X<}${W2a;POUCg<}y{b-x=4yUN@?u zRK`~*|OBHEWZ>b_u*&3iUu(ye*CHaxhD#gzpGpdH< zPrh$^`JykAY6|+M7G3+=qZah5+hZas zQ}hH6#eQvcWqYI6745TI`=K~X9;<>(eYVL#9!Nb=^YF9#wyt9Lh>VaT=vVV7Ej z*<+$=*v~a@Y_FDDO{!@hd!#0ktYBYqhTE{dXi)pr%nEqo+AuuvVapQs`I(iZ>U82Q zsXEA-_N_)OyI*Dv+A>6`L}%M5HSM#;m9;CWflJeBQ<;`>nZg!Qc@*T~*X5@6m&0pF zfz-R290*RE)@oJz=4SprrQA)QoH23C1fg5cetf_7Z13ndYty+lN)3C%)|Kq1qI~F? z042n}#i*^BEzAwajfv9UWg}>Sf7YME6rfqu@mtdBqBpqZ(Kdb*EPKn8^Pp18ekHZC zz5M99_TyJ&dz+|QzCY;!`@@;#oW19&O3$LaoQ)esD<^D=Vd%M(Ns3#8d z=FWDuX1(#{$fv0u2##qaKq}CQaPJC8a`O5IxBX~%B^ujb@%Ol^Kj>^LHQ2*x zD-`yiQpY2|$N*uTcFz`#*bqhEmLFY)LT_sd4-I?v=n7)|*xQV2XZE=7viwpLCQis0 zmztP9zR`q~tO;zI_5qP~Y2E8G+F-xNJx#%_)j*H@N?gFQ_B&%O_Oh)5*_^~+GRKO2 zPwQIt+2hKP?>4!LYs8>dMMhc%nf+sTV|bNiD-qQXTjX8AzB@J8eyCYpdvr5z-;zaT z8<9Bnu95AuVjh5vThx(+)!KtoYls=cIXW@!&7pvNOBW@SIy!M=iv35UF8XL|mUngg zXhL99lg)vxYshm2SU1I)Dt#qm+G9Gyi8FozToPd%D+s_jQUnHF86hL(*C! z#!VgnD9%{ormo4oj43WE$Zv8RBhF3L{&W2&1<8~KDWvWR+exG}>` zjnCaj>!?KdX7sdXtMj6^rJHG89x?51{n zan6W!Q!jR!YUH@7lUJr1?&=1AOb-|Xz3$648$bBG?`K92x9a(Ug+`Q{y1YN%$aPUw z%Xe*NEOt`?b-az9MbyzyBgswGo!ZQ>x~T!dfkrPkm9(XmF#uGy==-Y46Pp;b-NKa4 zEsX>>HDg;>Bh5|CSzF%7a#PDcKVd9%Q!6?QGCH`a2M=^G#=EJtCps8&+|+ZED;jN> z%4XB6y8ZlZqrfeEq4Rd5SrK)-xsmUtUU}EwXzQllI=tA3a8vIs`M{X#rp`^BZ_IL2 z9}Q?}%yUzp4Vh?+7F0H8e__aK!*B~Pe4!fgZtB}vD~wJqs+tn;u+iB~mHeuO(cDdi zgqAki6;bbNMy8vJesH5P!cDbn|C-Uqq_RhDsMc|On9<5D?09>D(bY|L>mF&`@22`K zzGKXHQ~hsx8?t({c%hH9fC&lp`?!um7c z2s7Hds0MR)?lFeBs7AIScB5qx^-60a!$mc=Ha}qWcTvrQo5UK6TvViO=5AxAi)uBr zeG9|pqOxbL>(tEX>mqY=o_@)g=%!``IE+Cq>i#~%(u@TzYQFT0W{h!B`DH$+Z*+H2 z50#m?-{|J1%66G<^mb7X+nab9(_GY>4Q37;WTd#rllN`kWu&^O_x3*KZwzr!AHEsb z&3=1&lr-JmYDQyw%Nb#`C`xKVD;s)M)e6L1xp-L}d)4_(=yYF?G`ru%I`;kZLhSoj z8}`>`)U}5{T*Dr^#^1hwb~U|?Ap*?Ok%J@n%yYfLDl-tL?dduenZB*Iru#@e&OXXF=T&g^36^~|1-1a{RkJ};n`9P`?izqer@ghzR{XK%YYYF z`|bAb!8hqtOM8W{V(ja;gwcT4JQ`ugT8c*`JylZbg3^d#Y43P8!v4+Xwqm{!!;_SX zD9k@8a5K6YAhp0?<$crdP-%)$i|EDfZm{c0I)o=s&Mi$90}l?a`0a5c|1*cfPZKe5awM#(mO#{LlXI!Ki;Z zZU4fQ_gjWmOKQ+qO2cBrKK1Wd!QXE}|2J#5e7(ouf7}{~mDXKDJ}3Aq){tJ^r!1XLnlM*rNjVzv_iUN9PG4 z{mR++=MCx&sXoR{pjvhmK7Wo1I_Te6+2qXUH#a0y!S_2eo0` zF3)qx=XaoOkbk9*qJzBTW+w=u_-|GYLXO!W---6w*ZqdmfZ{+Rb?7o=aD4gP@E z=Ggt;skNzAKhIi}vkP0HoY@tNg*pCG?ar4Z{%hKuYF+UR`>Bt^+pc1!{)aYxptjuC zb?Dgpt&_ifqT!n<_qqVbR{tOK4qpWNvm1Z5XXD>6)&FOM;Mg{gN_4f8M@bF_|8=J! zzJcZH1}gOS98)|3{qymGfGwUeeBY!${i>~vx$OScI)v-ehz5Km4W*((-T#l#!B^q# zb&Kni{V&rkd?)cjaM3?+%?H*tkIQrag^4G%7kFJo>C> z19~$?YEQLZltS)y(`nK_bb;TT;nZTechMF&D$E{ z{w_7DjD|??_Nc;GLveBZg_m)yBG9uchu+1V)zqiF;_cVIoL^3Q(m_2XZlADcalA)oD4_O}j9{^i#HK!?`4-?N#xM)!*o?EmZN{JnaW ze}VTu+N;&H<*xg+6qe%=|Bnmk-=cr{H}{(YwoHX*?luj+ru-snFZzx!)?Hn(SI zi(mEq**m4*YYg)*W$*RzKive2G5mMvWB&c~U#ySu3sWD;>5V&a>!*1&`L_piU)rPnq`lom2NZ|34r39KWhWd!F1+)zuYU}V57m~}a^8}s-T_`C{xZ`CznJh3x0YM6IKW2(`P1eB9zXqQ zws{}o&pAT+gZ37`VR`vw;~7SOsTGIcUU|=C+;?k!?RNCP-DJf59Q>@yIrXhAg*Q=G z+wRqn{>_aGzxMQh*o>rFlvu+nkQVuPTj--@(g^dq)`%lseQEM)k1=%5uEdi1AKMkb zK=+k6zr4Hj8zwD&AM@YJxUf<6p|$VBExuaQv!s2|Bj(QooOeur8hZVQ z{nP*aEcS<58^7=Sf7jYbsW0>Us_&Vcc~9CEIr>9Qj$bP8Ho1(qyuym!d;I%eivKfx z!vAQJyJvRAujl_MX2)MIxMz0vX1k(ah5RXI$Dhf#XLk3@?$0zk&jO=8ZG6wGKpI9- zr@fY{{K=JjMtIK%|4bu9oQS{C!)E7u(<_}ye(0^y{WrZbsQGoT&uQjOuP>AbWr7HL*l^Xnd1~nPWySD=_-f<+5_RBkDUZABkT7-b3X~PKmY0HzZDJtMKqCTOVjAZCh`;t374nSp3h*F;o>m zniNN^TgqY5U=vI-!BP_>QbtR8n8GhfFecKQE#)TCbW&T%uS+o$)?ThgGbYMas6uNw znyMzs)v4uVIgpk!IlB|cZ(GZKDYzrBF;Q|qs?h;h!gRSIm1_f)LKaMJgE9VLJg^_z z$U|t=2w*d!G8H zd7+0~fxcx@83l51J9!YLrvUTrDp#bd?H~w@19|X(>_kY}PnW*-9i36qC8l};Vx z!4x;x!~*DS2M7-I02%qIT$bWGf?N_O*PtC8QNdk(APDV*q757l?6MUF+R+IrlLmmS z+*uw#pLcOR`*ddrh9-e5)kRLGZc)HCe=e7!C%QoJ1eX~l9YC-41opxOB(<_D1SJfR zKX#S-(^1YNs~c3B_XT$53Z}=B-Jwz=7G!33If-^81G~{3Rq$tQ@i$0*UJt13910RG z6i3gu1D4zq?fgb}VCQ?H?L*rGBT1=7dA*?g3K#8SFFBqzaYm!9@-Q02ZG{TPi{%>;p2cHOLWtP)IAc+Dj#s3iJ&NEd4MO_6#Lj5HI%V<1 zCw(FKJ`IBR$|-@A91F7Z5N_QIDEMh6dvGB|J^J(mc^M5`=&#hK_nBJS55hKaX#eBg zTxtj7Ah2;}_4}jT>)7(3QigW*hai3s$k6smd1^KQ^=e1v|Axv-GO1l%v#PQ2Cy7J2Fhpqz}19 z@$qsFHRnElVzd%XZ4;n!nuq0M378bRa0_>zuk@#ti4Y_Y1o>kky7wvW_naj8L3*3J zt#vZyh}j9q=u9#unTwsln?79bO>gpexH=q3b>${moFdz)AGi3T7OEc&8G%FtxGQ## zkXO@Kw)mWp^8Iv%GpaiZD{(a2^x;wR0@^bK*zL(`UpkVC$KGxQvXLQAqSv`O2j;0U zq@_U+mkKgHO-)=OvFvj0pG+tti zKa6O+#u$IS(0GS2{=}g131j>nK;s%?{INdcN5=STdWLr;{Nc~r85J4h@5~uBE8#=6 z;^S>bV`lPa(2O>W@khjr?u_v#xQu~}@pr3?5sdN2o{aH~@fVVe9LD&wLdHVI`1?D? zgN*TaYK+Gj<1e@v&oRc|F){Ws#$WTuHeP3xKV@N@W{kh!V0_LPf3Lu}!5F`t-|+Cq zAASS9QJOJ+qq-5u7{3?XsLL3?*xG2u7{8g>XvY}8KiIG`#_zT@hBC%)TQv;E@V){3 zoy;h|g3`!kjNgK2EMbgayl1RtjNkQUJk1!tUd-6e7{9;D*vA;ZAjx=xF|oLO$QZxk z#rTpjep86?9b^2i2}23MAAU)JQ8oY{>J{IXHG-MRzkxOyFvh=>HCiynzo#@hF~&c$ zGh!LzA6^-WjPXx#j4_Py?=p;OjPWIXBabn@v2848jIZw+>lovEo5p6w_`;r%y^~SC zjb$8Sj4#<3CmG{=62`}jab(-L${2?sjoXZIh{(_b@rO_D4L`>CFx9BR7@uz$VT^TQ zEQ+!AjCEs-zx-+pV5}v7DA`D1G=rJr80*hiHe>v$S0kS>{>-bff-!aM)kdSU6++#a5#&u!;Fz6Ec#=FPpKfjxpWgIaUsmsKQ0eFdfIqJF%ni950^=3pXOO zk`u?JHVRE@+B7meGBkO3Sa?L}i16l-&4)*(q$G|=Ols0RA~Yf*sYyy?^T=kj+ZW49 z%kx?Viku*y#Fj+*QXb7)k`YvG98y;&$@}R8o6?L54#*L_IT=n-cEy*rOqNek>ks8I zyhABV`V_e{SdgSSP2bkK%^gpN^aIGWCv{Ut_yDSmBSlN`@1mg{>^RvR^gcV$&+^imXLVYFJqacZgDKw{L_;kQg4=0xvb&Xo~d zmE;5`n)QI3=0vZrkW-!Ln3b~OM88-ik8`5wtK}>wdSi_|+KG;TSpLe1PI^S{=|tat z6q{i)w;}80sZR9#<8E}^lWz3(Q*xeDp>Tsd$BEY4#9boFyJ@q0TcSD@U@lwc%aNu9 zG!Cz^=4s-#UNhFrDU4BDaN^2V^ zfsTw9va@z#pWJFM9*f_JM4#9zZ;_%M17F5?{FOB!)I_JyAiWG_ zy(+&!`cTz5@URK@r#JS=oePJlH7II73b#vAtI*l2ay`oYOfE&QR7P2`C6A{CRg@ak z?I2X1-ioqf;6_r;A#C9?wmXL$dAtT`mzP{MX?_^{=!(1K8jf9uji zee=${DB8|&)M(f#l=tHE|eCJ~; zxBXL;>CP%wvEc$$r_$$9CZE+P)3o!Dwwel)hetGo)M;p%MqhwOX~nE%_#LRgHyXOU z8J=o!5gGwAOk<0rj4xp<*}1AYKhw1@AwBq!D@Qm^6{+=QE(DZc8AB@^g1$+DvvzYUPr!X zcDafMhb@4v+<>(5K3CBO--ODy8(k`J4u(*|i!N#DZz1(*3#pi}#E>5J9TIrAEt22= z9eQ|xWAgX%onKpidg+$@8F?LWbtN3es?_*LxwACe?9bIdq68yu@Y2;2%hcsN$h`SY zxyJHA$}rV=9!s;<%Jr6i0f%JJ0Vu-3G^qALbZt!!Wj|e;<{A@lHG?S2Q|U|@vt2{| z6HlnTPzG%W_p=H$lOdg57L{8kL-4^8*R#U@FDj4@UFmwZzY3MsHkS%~)lBl4k9>nP z2!dL`U~=jykrb;d1L;x=%uFYA2#!udA>q1Kq{=0b-kQmH!d3!;s^35WPj(nx{06)> zrNFCO6;=axwjAY^hVqY9QMBu&l`Zr}HKi;$e3W;7-H`g84u68Z2HfL8wCq#lw!SQK zdwQ*FMunq1oU$Kv8F^B9NEfx>`GZ~Nrz@Z=16!gjetr-<`ZWqJ{L1)>5KO<0^bS{q zpldy+>A;uHpfdIGfZbo&BF%EN4^U!$rP27&(Lm)UEvbaG(Y{@&T@_@S;g7^OS3#y3 zS6n?}y1GG-Mqfpdl7k^_Skq}}L(ro!vOZQDg4?}aZ7*!CVqHj&4{~)t zZe6H2_Mm2{@>0s(i}ae+2XB<(s*jj|=Y-&~CMpuW5`y})d95VHwREt2Tym*AfbM^RfjmNZlRe|4*Sm-4P?7PCSGvhTXj)&4^wk-h(Z zWOFbQg1VBc{e4?PAbFs`Gg?A$VVNa(>y1Yez%E7O)`IJ&_xO(<392Y~hN7~V~BFuc@V zd70ssp2}v1307q>!>hfOF@O}`SNV{Ze}v=Fp0Uc7UtvOx`YBl=0f(cXQd&0AlY^8& zo+cVSOxY-z=Ln&amCQW%zqHkJbuEF_K9vzRu!?9zOFo{uLM`4DN?L=#hMQu&){&C8yPITo2 zWvde%I!T!;QMU(>77n*s(ZVd0rs@hL_+1uyS!(YHnW{X%aNjiLX@+BGpgw>>*-C2< zz@f90&J5SjQF<`EK3D0=uuYz_TB47Z!{fnW*&0fC$Z2Gb(hHPuiRm)*ZH(H+u{>WH zY0{2Tiy!igSShUPI9tcA)C65XngTHquuh)z9#S{x36 zRdrZ_MPy9_w2JbeaztwVA3Mj5hQr}*G(KbExa1TX+sL~LHCUy*LB5Av;~NKlgXrKx z$neY|*kjYxNQ}#O1haOdyIknIkk&bEWl?qP! zyKPEU$19Ix2@y|G`gWzdBjQP=vy<*ssMK@3_>|JhNnhTnRB_bWpu8cGEz4Ct97DFI zM>nB-eWsv%KATZKsXxW9Q93wswkUB-Tw9=4a9rBTBc{LOv1gT2%*@FJbNTa1UuJ%> zjcu^MW5{-88VhGVrL=IA*`f4gX5x#=bil{Y>{LAHqsiDG^xUn?q0AZ14VL4^Zl$5b zbQucqQX?Fr_bP)-+HvY-rM-s`IU4O#R!KDTGgrxRSn5mN4xr@y&!gmy129NNeI4H) zR334nn_g3PJJFd(lzmP#_H}MwpObC%W`QE-j}^$7R*a(e51g?)wq0!HomnRy6)&l>X6345tr2 zW}^q{OW(w((TC(48hS&4cP^e1=Ck}8rM^>i;#=jG6Fu|2f^!#< zO~ft5%S_AB<3}E-;#oE|`uL9Wp|-rP>$bqyb#jB{->UoRDKA$e;B31u<#?!_X{L-u z_|ij#9RT%p)b~h3YN}H{H9~z%BF80{N#le+p5|W0s^;5L-6BmS zYzE3Y-fpSR{59TnZj^eRKJarjHsS@ts6#Xw`|*ls?5)u%EDorz0~Uw5SfK0MsVAN2 z!VW47UvL+8QenITt=>g-IMIt;)vg{Uw_^`A-^u;Br#jn-PO_@=B#QamRXxNhI?^+J zPy+8SFk-9pRa;1m`Z`i$xgi7^6sN+*8Ks=fYNW$+fLg^VYCMq3DYVWFQtNuq&PJ$Q z^iXvV6@;QnHHN9JBu0Iy?|ikBV|%=cAs}d^+SZYls19(_BI%OJYE_eVv>C4YdI(iV z;s`az$^B}iTIfVqq^dtk^vG>jT@YXCM!nNfm#IIZE-$6C=>qk2+#1c6DbQ6JDvs#{ zT6wG*<6)v1H^f4u)2ghR%NTbOxl4ZW{VSjX}0>Z6D`P9H#<@5{oL-K zYA8x@p87Iv)KLn>#w`le*MSy&$V92&QB`rM`RaTpEgJLmLKUY%Le*z6w}3#m6sUG5 z8oN}T>3jgK-N50qOvOsHXfk#H2tDDfG$IsYm}yrX%BE+1bsV4 z4Rw@wkZn@XN7gAL9NH=shpJ3F#yzC2aEh=YkjXROJH*j*jf#V%$sG_v+;baed1CjC zNLLf;@h~#p(+O6C1M9Mm7arz}K|3?9`-mFnq|a_tWx_((*m3Ytb&kn&3|+78bIJ>z zS7b-z6Y9m%B6`+M5}`8yj++5+&!ylW87K~vb@LQavTo%>h^(8Jh>tCo00*%E zID!Sh;VS@+T>)_53ZRV%IAjHi<5d70tODRj6#$2+0Qlw0034qJ;NTPhB2(E6IW7ed zZvu`;f#Pr!0LP*LI1mNEQ78ZoK>=|534miy033J%;HVP-hnxU7-UPtGCIF5!0dSb9 znSjS;NvLvAshch$N&p;ALT_;_sat6gNa|KbM3K7ri4YRf z=J*jbIe3ILIdX)=IBW!pV@5EY-X=ATfo>6@A_!CI$sKCf$m!q?U1sDXOq3{WZ7707 z9|a+DR44ep`%;9#G3$})V12=VF5*v$5lta4sM?S9u z?F;y;3&_VJ$s_>*E7RC=fC*PeTY z#iR?SXQI2I77_SwhjufL_FGd|NM!ivtdW)%SWN#+wU+eBH;)_w-xm-~0 z>jKfaOmSxyh+ZzDxVwue?)M_iwP}y~aSriz1iwR#TM(ry`9VkW}Dn=bH zMzM8q_B>k@2s109*vvp>3%e^22FF64HPCCO&`G5=Fq7fAqrezljLIlRv2k)LY^(*s zN{cAAQl@wcDG=t$RJKX7;T8$maGBy6r9fD45yhrlMBNNCDV}BujPIP32r-+iTR&yp zxto=3s(Cav)4A(O`KK()Pg&kSWtI9V%lD_OawaR=jE9@0@cXHn|4&(!f65B}DXaQV zSy4`wnOU@;V1FjrwwSPeF{)!Rs&g@_YcZ;OF{)=V%36%-V^Z19>|=`wq~(#w-}Y@q)MB@1umgu>&t4qBrPG|SJm+*2&TtgRr^U+8oN&o zq1yY@E+(E0aBZJDMarae`_*c+aKGBu#B(fSl`orLlVUbnYB?4kP_Ih3Y>;yZ8n|C{ zLk*&}htv{|JBQTup2)>^&JsiyURO&w-aM*SR;4M9Yj3H&WGT)O^PW0Qtvnbtz#22$ z1iUQ*#g~TwmeQ$nY9}erQS~FWzbcKQTN{vA^hauWI{u}qI-dJN{YI50I5u2^nRJ|Bq-4jDFbnAx=X#jqNNZ&oSVGEn?CWef<|_@P zj7es>d?|FWMR6P+WLYbf;_VdD=j{}hEIM;et?VcqV)%F;pQeH>SRm!ego_ujLVaAdq^siaD69k7gb zo>GJZb#3Y?&2=PxZh2W!c$OZzj8=O?J?C@OXz&F~Q)!-~;DY6#B#ky}wCj?^xA2lh zp~YWXo<{%!9bbjO^r7*WEcK;$g24niz_5Etog96xSvJcm?*yIwP{~pC8_NkvYVP>@ zTgx<0L<}-+S$asB4pg&)1+OB3X$H~4TNa&;zoRMCSk|7B`VguYM7LyZr__o&tT$P1 zz^p5(S`SIO-!a0Xy(vlasfDinpz!pLTBKW0i?mkd%F!rqt&tQ?XwM*8P%fa7wCJjz`1abmY$FP#xyONl>(S&?`34re|0r1WefOnPvJh%aPX9>V}l>io*fOnRl z_=*w$-%kSI`5$1A33z7-YK#eZX9Av!!jZ8F zKgK597@OFu*n|&b6E2KRcrZ5Mz~l-4#Rm5Uo=%={Uu?pAu?gqJCa&Ar#Ad`MJQtgA zTx`N`u?e@uCUzV);k4MqZ91FqSZu;!v56aWHsP+=gtuZ7I}MxgRcyjlv9YI;joS0R z!X_LQoA6U?!cDP>J%vp;DK_Dw*u(;46J}%+R+J}o-iSsu%J9)KzYJ`@`PiO zC#)w=7*C$C9h)$n26@6M$rF~7CtQ*|VK+A6kmQNWYk9&O$%DysDWj!eb=X`+>xk9i zW*Kb&K(DgeFn~>EwNy0*bunJ;MOzzaWhtzjHW-41<+MzIAIoWxSU@7mYcT**%WIug zcC3xJdeOD%S^)VUQ)^m`YjOA8SI5AjRzd3vwUi24H-N1bwEh5^pB4v@;HO!c>8JHK zllY=n;e4b}uc8*Ih%~<>pGsOJg`U*BXnjSkl&N;57ad;+y&Z3TIXZJn(`li<7HD#1le=XdxJUi9 znkLs`a!UkgwM~Y%$>0lKd=KsE0ky@Np@!O?_nrezVTgf+z&4Fe4RkdI| zxUs6%0pM#BL{`&6aRbb#rnOM>xMoAK;dxi{qf6(J(w>jh60X+CqpQ`lI7KKWQ|~aX zJk9p<4WNY2RE-tAsi3;%C*{!-)wNy#-&ThKXj;_|wd`-qUx?Nps z#SD$Q*VIay+=*t|Mh&gDDcby*ir3IohjHc6&YD^~DX*}W))PdpTClV{T3ZVPD38w9 z(t4RG%ro23T3c%Y{({ih}E)Izq6_on;VhsiV~~xny#w zl@?H#QOd7O>X;E3%ba6MJocce(7mqK7RfEHivc={F4onC0(7aTB>`-xrzHdU)YrzD zW!PY)_}*FwCrA%n!DemG52ZBK9H^t{T750i)O*I+bMr5$m8syGTF%uCqiAD@)?1oD zcS5vSfY=5Y#uMo223ndjfou7)X}O^dwce^=?6cCWgIZ;J@N?Bib5$Ukb~Qw?r;^kN zZ8?>!jZo~Vw5gGn4iFHEEN0N?P;Df@+o9SdfbL=16h+)L|HQ2L*)T1|WSln{35~T; zCgXz1IN4mQOKb1orb}oOtt`@L-$cs-c&Ujt%~br_RP5Un6&GpWw9=RDwHEwTeF_do zug{=5;aaAte#=yE80Ad2uo=eC3@Y7Bn`A0@(B9^-%(czX_vv)HnKlZbeRFLxz|Q8{ zR3)9;sI;loJ3<>_GRl|?6r(P0gKJW7B+8pkO(V4_0GlGU>84_Uso0?fx;LGkXrYY< z2yCg11z6M)r4Z@YHnoCUp;6OmMk`G1W9eioOzmSSytOu3;nPS1TOKa!ORZstf)Qad zP`kkD${}OjfqmYdKA{BlT_zGw(tozT03g}OvXgI+TEr0V@DWKNBojT8*U1xncDfCFp+hn_dB_&I?Kr?tR9#jeQ9kq zI0Xfr(TbC4MQ3fa%IC^PUT<^B4(_6Lg&?g9I!Fi>xl2)(d}^c8Idv>DU5UliC*(^^ zxv*{_FY4~ew5uyt{>jv+n>GeubvKyYWb)}Q!0hg@^T~9vJM3AcwBAf9y$8lI9_`^O z!3L9Ge+6pLtEX09N~CE$wSfR{_e2tj6x9p!NFvwb1ydE)QjZd>u+yT#BvPOi^F$)q ztT4eux^C5m0}Sj9%NEZbG@oTlEDW<$px{1QIaNpw_oiO;v=BNQVyQuw2Ea%J`*rhy z8lA)gl__B$Ogyo$FXj^=f6J8b57Fw-@x~U5dmh7W*S=c3luUuK+88C73x393@Vb=K z#1crW>s!1jx+_vlrrWXFWK-=EQ*CiS@%WW~=w$Ku1(QD^4udwCj>e(YlPRjdHr^C} zZHi&e&eTVD*UFiqo3zLZn-X~nn@Xl715g8z>@D*-G)Z5RamQr9%$*4pjaKo12b~y& zRxi^4RSu4}_*QUD-5j4V)IRw074~=J+fQpm(QPatbR-mpm_v^a(y|qyRMJcW({f$b zh!BlnihN8_wqc4I+||1|6gotkgM^+NqRj$mHdMFn0V4V>8H=v>_3VD4~-YWqUV-9Uf&?cyYAJ)elK&=w7vS-trL~Sa- zkBOR1VIRk6X+F0uNgHP}qD)4kWG%~N#F&gndRQjA7S3#n8Lq8CI_HLK3js1xw0wYD zDcTZ%MI!_V9;p?8+B#BO0ML4rwg}*e2?nQXb3vU;)#jL)q?nnY4ab0g*>Dvv&E&70 zfkCz^O$)*y$j&sagF2AQKCTa4s-@MZgemw9#PPuvpOVfkg^*69mnLa}6o@^NsbL+0 z8D>p7HgrOs)rZ4`C;kGWsdhFWUT>Rc!ac8;?NGhRR;9HV`M-6JN7 zGDc$~8AUIRhVu|bcNpYS%owemn#(B`^dV_327Pp*rKJ0*Tsk}kdv~F*g079%np2+) zt-Q%tWmXuoiXT6PO?Cz*bD_J2da~~I46O_@Q8TqJ0KGG{?f|PZ;g96f1yH8)COR`g zYhEHbbE3=Eb18eQ))`6%$7)^8;yL<|ZzZe%iyqK$0+eVeMZLyh1d7~tm<5?RP7A{` zTgG8)lS_BTiA=kU*Ls>-`)TnMl&Nr}#m8kFx%B0DOqID5H9>%a2_n~16SPiXR-Fj{ zDVHWr6y@DJ5j!i9-I+d=7>uGsle;LBv=gdaxH3^I1*)*)fTP9%w%BAg-ux-nw zl9NT*hD_E5nfjNwP|4Yeoac-Q7^{PsOe~ml{kH6_`Fv>u75G_NA+t(7rQG^MTxFx@h%5)8U$m)cpI> zhZ7+GaJuFV`Nip44^t5Ad~odqEQV8Oz_5jW^}ZC=0`3roQC(>Rv=IQSbFev2 zq8mBdAOPzuElJ@hvC+esO8_3Myo!w{$5P!r){?07Y%J?ZG;2221FTO8(83D9mmZgI^DTv3D@YC^0Fe2nu zp2p0!=&rd(NO5bA+ja9}C{&fXS~Z+=$IR7wD;&@^(oJFfBM`oqYYCvMb1VU_$Aw0Q zsj-MX`lAzJNLTZ4bnF_)R%(AgoN%EzkuvkKxBKvZt-LB2SjZm^slIvv=0GcLT>z)RN~QC$kG4`8fSJwHKPhF&g<1(ywy7^w4Ml&( zPk^n6QYI|KD6&%eLXp^O3pI{Z1TPY4PG6)AF>`*&Z0VrIu9n`@msUT8guY*dC8&hm z;$5r@UvbuJu_)-J#aPEh1rE_zZs^cu7QNKO5hGH@74_6wNNd(mPW2=)=D!AF>wm{9j8HDDa6?cTAf^jM5d|_V9Sa;6w-h{tCDoR!UqU>bG-+V3vLm>k*g_Vz#x?mIqm- zaHZDIEJ;+XdkPPtV~=5*yRo9ns6+0S^;&Q7E~?6{mGH$x0V62$Y3w&1T7>E*th0Dg z;VLcAOuJ>Q*$S_%)T+~$PgtA>d{**)NJ~UnMn5Es?a)IwOzB16J%pj#iy~L!aH$t% zuNKtq)z~uh;_0J5ja`Ge<-H@A92%_AqM(z$Mr$GsptWnT{g_Q3twDFrW>ri>tQxx( z(|!WYTnk?~!8rpl-})F1LlLm4PYWN0RS6NM9u{rk>2%1$T7=0RXL2_^jOkjaO*9!1 z&zdPzqBiR^iz&)7MWH((TDuj~+v0Vu#HTqEUx#|8(b;u4^GM_J%r^O$5j&ZTxh7-J zBiP)eQOQT)iwVUACLi9QPOm+JSk{^SdZ2U75ekb;1=Oq##UIf9DD*LSvqH4QE$U!0 zmYEDp(jkaUz5f{2;w);g9)mE8maNxO6~0qsJZ#z*oD{5skHcoNDC2Q00pR%Km@u-a z;S<<$XVJnZV3Fd9EoQpcpU|3vAM&I&%;aw~Q<}yO(v9{!jonWcr9F+QNhER5%rO2C683o>CxB=7 zSb|+9nni&da2SzA`5SP6yO2(7KphrR)r~N@g*0QMppKfL@+KTDcc6irFv2^~#!VO~ z^mr<@1#5~>zhSBuJfoTFN8iy)I#>Sj zv}X$%Z#-4mszs=CIPp8N=H~myCs2Vchb)y{)2Wbp(6y~F%Z(1LA{{@a%QW+pJFz+R z2OpHg40}oBRlq4=`w&S384vpQ8uAW1Cw`-kE81lBIEcJW=168Dhusk<6@@i}{`kD+Bsv>D8 zEv1TePMj%(!8>ag^08jYIVweR15E|Y78NON2O<=LJH+HZyhE$0^4&Zmp`UrE{M4s< z0NvREPeibjO+D;3+emF_^o!^y!A~{$r(eWgLNL-z24mA*JmgctOIX*0)~tSb2N?z(qRCZCHXM;U!L?N9)18;F zYzU=!{b*BlrxHc&(k!$Je@xl@yJhcxfbo54m!?viVVdl*upe*n18Dw-ckNd5sqJp; za`S1$ZXEdM)3x22)l6zdKM|PNv0KBhYD3Dav}g}j{Cs+7j}~ictm$XYBfIuMrTJdO zV>ln`wiio7Tgu*xR%^?3f6{CdF@<*BSH3D;{RkVv(3jEmLcYP>syYpR8O~o@TKKXy z)D%8r3Nw#mrYZFb!clFh^(z?f;>qo%aN{e;F@ny$g2SK)ig^{2PXuj!6^C3ARAnD# z@(3=*K~q`y)bD+Pv&YcWaINOjiG5msh3{V)$7t38ErP6H;I_gA96c@Ck0J`m8~kh) z+VL4YvPR|c*ep7|A2vRZf(~E~nn%+Q;E;~5Z5n6IY&;HP1sqKw2jREk9w*+9Ve(ft zL`7B~)GDfcGt0Qxk20&l@g8*9QogjSx8qrIr60v_f~52zt(hV?UzsUj(rsZfZkP-# zJvzN~2sSCyzBReb4R5_kV8;%HAORyGxJtOPT8U2A1> zgH7(%*R@JYXD%XsmwOt6zTPnmw_AtNRh>ychRLxr#T|op*O?wVhSP!0^w}}YcFn2W zaYP-P^MlRJlwfHQCZh!{IgL&~aval#&}eOHc$`4jHm8si*yA;)>=UqaA?|33MTNgP zf$k98E+)788wdloqtrLFaNIXq^9IgqGC9}SI65&#^C#o0O4Z!{Rwgxk6H{j<&3qG$ zkV!}0)CSV#4={)m5Xa;I?`vK-M>>10k`GmW3%$!Sn)4PGINWP`3(**nc50lt!5niE z%3CDOn-;x|?h>+eI`JlsJFoa@mGI2fw_(MZ)Z-+olu2t(BAhI=vhGgdEXR<0RMJYB zDNHj{5ZuM@Xyx(XWAA7YxMXtX9h7n#o zW>QzGc?yxguG|!4is6GcGZ_z>9Z*lzN)~FE#%`TLcivC(d+5OXspoq*jJ=;9eAN9Q z4zKvDJHfu*zRuM^C_HW|U@g&U&~5(!bLh{f$kV9re9AwKF%U^dPNTfxNtYE# ztt?F~CVh5@``KQUc@FsuphXO3(*_0!^csUS`W#@e*groIdw1pohq@EsUlSN_6qBYG zNjtFgqhiwWMbhz<@DcKvLo*q)p;Zi;(GCXr^e(_)v1+dGcX#G9hPg8r%jC{t(t;wX zSO||4ldde1&LZo_$Y&mnVKAEV85r~wgLpa!Fj&muGVHsk-)Eo25}I>WJaO?VZp%!eI@hqsO`$&5u*;c3h1akgO`*@Oi5offzry@J zg{FLkJ2dCX!{L>>f-RSYOFwUH0CBM7)M7;Q12Tdn`46azrp@4j#_=I#g!6wXIfzbGWZY8 zDxp^>{6T9#(cfvB*Z5^d99{iZOZFCOZCR}?9WSF-a_Pv5xDFCWo4?c2kY>R5Xr?&2 z|9k9(nTZ8G$Z7r9nAJMsk z>HQytX8k)jX&Fol@1O|=)9E|fd}TNcDZj$<9=hN1*?Mnj`0}^(XuOiEyrlO7NR#v! zfQ^zq0-&6SK1Ui#4|wP!rJ;qMdWyn#hx4mZjHixwD0=GCAl1F}c>qhj^b~+^z4T0g zR9T+_@Ug6q1?Z>fv&=`!Q^sn%?er@}PX|9<)n@~Ir0N*}eJuKXfDbJC{ibq7ieHak zm(AAnG2ma*^hE$Ux}FbE(pz6;YSp4y-g<31>8(!&zh?=N@KZO0BGuiR>-53K6)B}>Z?x# znBgm!pZE%y%PWhf$iusy^}zsL%c1r1=$Uf*D1d5aOqg2UzQe3SphBh?X2hOHELslAZ%vdox3?JJ`JCXk~t`gj7h ztb%r%K)b5I8lve=6}??)UVib^fyDdno3|_<-b|2QpQZ=trE$L}KS=Kb@L>>|c`Ee` z)@J}52}U`l(txT+Y6hLIs#^grM)V8|%LnXvz9}g_hhDUEY+f#33KfYft4AH%4 zRXv^W?z~eE1xTkl^>sVI&iY6%o#I1~S2{@z^v407Y#^B38|sgMy4nz>N+)V0sFtDn zL!eHD>MKi#J2^EtuNu8+Z(Vm@z3EJ>Zh=jN~tPlL{=l|;LH z=#9vyr5;-n*XzMG8gq_~>1+#qE}iP7m&7BX&GnVM>1mGE9!sMmQ0K9D_p-j+TRaiN zPawh_r-yP%$hWyJ^OQA~TDQ<2fbPi_`l=E_w=3&*HEV4u+iK~hpyJyK?K74(w?bLR zQm5AXRP3)_Zmo9)@Q#8BbfiU5`VxTPHZaqUw6%?12+%oNUjy)Yw2)1WL4F;nY+G1K zM_S)jUk=c!ouH1j!%*)?L)v3r=t$?=>-pZ|3eQX~(oDM63&lU%R_{tja4j4f9vv}$ zCR27too~&&))8q5o!^ko1uJHr?zQ<*OM3V;n=1T&_q(0r#WiZYopy9r9^ zt}phU%|t_LbSnL6~;yWm#K z;+|-eM0&R;hG!xT=!I!4k{};>$dZYUjsZJl=<}G%o`#9}=RJpAl zYPVjLX;mz;PKeM;nBs#hKFC>zQBGey7SF!j7qf994UN@p0Ow=Tbcr;spFR_JP_FgU zyYp3)IJ8JI9f(86B~yHV^hz?_?2nO^O!fi#YHzXiJWYa~$C3ndRH0o^>7(_-0G-F^ZvX^j z2$lCU^p`=c$pMX;%+lMyj~J7MX<!mL3mKdWxP3FlCB98sPjC$fBsuRJ{Q}+*FuB6g@o^^K%sa zXi|Nr!2+Xb)iiw=+>jrp=}`bJrt3ohXgVe(5ihs%jUYQ+o~v7_#|(_9TrpuM?BEqb=DK-g(ER?=MBG+QLzBwtvFX?ku_JSd@@&L-}!z$wS=hK8O{Q?E$%GPdr^sbI$toTJWnJrZ=RlRmg77t z;U+5As%M_4)!;lVlDYJHo=CQZ4cnPq+F;Wsn#tbeCvNtkSx@MdDSEEnm_A&fYjk)C z!s)s6;Cu|bT&lD{Pczl;u=<@oRCViJ>a2Nv0d@ts6rV4$Ih>EJLM}C3C~CcOq3E^m z7m9|BUnE*&?;<_HEVMuTK*OK5F4co5bG9C)Wbx&fT$;TYn~+@ke6e_}M*&)CF>NY< ztt_T11xR@@#VtW~7Sq8cSi~1o^QG8@EvCnpq9GTPYDXt6Cc};gdeYN&y_3c+D+cD{ z$uwj$%3tt+UWqz&)P3lP>!(yWJaT%jRQfu0Zn?|!a9k_cu?(|N5_MRP{bCaBU5z_tzzZl!P6iA+X6A~N~l z5kd8N6x%&39eLDMx+gffCn)C$ly1Xg*hgT*Jtm&7zaHb?N-NguQ_S)_$Ewd!!V(?t zv3x|2rfHAsnkjOy$ib-$*ONp99;>~TZa=PPA&E&(piQlG`3ccZsZWZMoOu#kO)JGe zB?@%vDfF6^20o45qLn^)TAvG$ya5Zem9B0OD#k{1rIpTa6lo@G63q8Di7NNrEYjS+ z8DmYf(j_j?C2sV1TD8Sh%&W}3N-;}aH8}Q+E@S4mQiZLe&U3elI)A+tTVyMZd`5K4 zd(U9BTPf;Up|bH=j3p~od`>jE?Kxp5SD%B!VWpwZV}M!d(DVAJ5~3J>ILI*kV(G`N zI<8)9)5}A;ejCQCkXB}CCA*_OMyQ%U5W+#};3z+$> zbj}1-cfdoi673Le>+_b@al{D3^S|toKE{#o{sv`+MRkOJhEdaW_yI!ck1;4 zYQBV(pcjpK37$|d+Vv7PD80zC3mfHLG;kLjm0q-W7d)Z?>;eQ*h244(@MgOqnN6#A z>pcN3?S{3?rj$LHQW9wY9=KBpUKOrTjN_+~FUCV`BXG2#>GvzIXkB~Z6lFe4?< z)>qIKX;kG^WST}9ufmej=*Fx13~v#zp38NZOREoIK3jW0Z%Lmc;th?P`(Sx#G<83$ zGL3%NkCfAB@&N(9K7dZnqCp4st{R_hVKP`ZoX#E9`xYM3%Ro~05T44SWrwgW%_6_o zu#*&LV2^TUk5cc~^;l^7lxP?qpPZPU9v{C96GD~4uwcZa59?D)2=@=*Thja29nq4m;1HXOCkWmqo2lpaB=sx)bQUh5y&qeaA;p{Qm>@ zAi3l+spQfN3B5z;y+foEKstmF63LQALXaXHMf%Yc7(qeoAC-@ye&hs|W>=IZSU`#( zAiao+Abj8Nd1c?iMmbiyyyIfrPOmFkm+=qqHY&ORLEQRav1>)i6| zye#5%cw|L-(CKhcT2Mh&ad95Ke#%-R#Gp!4$kd(wznRCH6;Z4E;d;6Ky?n_1d3;hAHzCXawEBvm)qb9WBBB@4BKX zv+of)tc2Tzrk z-g%Uo#=j0%u;%JEznFSf{bDLV_e;# zUcKUM&;VtAZJo}Iny&kv3+fqi|FOfXyPl(E;?*yoqXk93&z_^>pjT)AMlJN}T?m!W zQ$xLa+Iiafy!r$}_X~7QLE~MZjfQ>$zDUjX>WK*7U8KFdv#xrHF8w;|%u6(0XZ`6V zI`?(fEiO~Z&U)Qtn!(Q6d4(<&I_umkv~_mYUtgi^k)9C0N;APqdw-{6`E1?( zCQWF8e*Grhm0F-L-lPq1fwumj%ZUa0<{xwrEYSZ1Q#YM`{tT)`!;}A{`6u%WB;LfP1j5Rp_5y>_Pa|va=M;*mnuuw*YDC2 zOV>m1(Xl3-?zz#yGJW+x)zR_r>Q$;feePEL+n;i%(G)C)>PKOlLuF71uAo}e?|JDJ zR80y+6;uxjTPvtXD1=p1T__B!sJc^FS5Xb7aIK;mN};Ep8cX57eyT0~z(-%IQZ#)% zO{L*_{#1Xle%xPmpzxtTja958or-^@o9I+o6b?F7rYh$1&?vgUOn=A8a;d(0(ShbYe7 z%c`fI9IBd9cq3G0QwR&Al09{Cm>N#M%Y7Y2%W=MThEtvMb#AzNl)|^+RC2y<9HGY3 z4{pyyP@RkQ(Fj#cp-&}hODnyh5{=MG->pOorkNfSNsVZx*GJO4H`5VrD%niWank}R z(U;t+GlfP`s))kIDD@bH*k~$QqP@{nb!+`iG%e-Ux^9fBP9Y;kwWqKmMvbI!DMmf* zg!O6s}ZJW1U^OXf54gnv?!(QkCYitNy*J zdMUton{>Uiu4&7ORy3rUEz+TlXu?JMa3k7oiuC?Ps<)n$raC(L@BQ9H zeQy^1Lvs3JRYl)QQYJmQ^1ueQEI-{k!$Dx&4O~KTx zTC0XM+@>`h6^2O7)D=f-+6IT{kTxox0!<}ZKi!7rW0^kRh9rbj|L%V>?w-uW6^eDA87@ed=tdbK28}Ig{R&rD{{S)Si~rOx>n~dezB& z8+e=Ox4&{W)rlR|YCu;#dyli5zSEI5&YAk@PUPkz2VxMlb zGZQcAuC7w@@pL)}QF6n>>KY|i^iWPt>YnN)3T=B)Sfo$(QnM9zr$Co&A3jRAMN=|V zf?n8L)pxNzxJ68N8f&DFo^ht>wS81EAcdZORVlh*UsVcdtQ(zoHql4=sUYtd8moGGL_a!b?Cz)Lp=h$+b;(&-=l7>QYmwg4pN`Lqc&+3iyRN==%~?;c%TU9} zY2DY-i33y<8ty+p6;PnN)Z^hpH14mJd@u zI|lj+hO1Bq#m7geSdOblst8Absd8{%-EWi{tSgSD6*bVeZ?vk+C9Y;FMN!`wqduhM z)-2`6ynU>i$g$BlI-p^?!}ao-0V8x^t~yN_mvU+8AY+&=s2?!gw|cxv7%Z&S0aZE8C`i5&= ztj;-x`({m4Egeo%q>EmW9?(@+C{@b?3{>r+3rba0{Xr=mN{#f^mwN{E(XUKWFH;r0 z%hZb$u9nd;V7M-vthPIr==zUQBbVs!A5#;YOL)q32l*LQT^CGI>&ewr^*)7t%jqZ> zJB>E!C3?g(+DMnInXb+_=#>G})sqyaJx-^(Li!^L9mxuLq+A_1lQy10jQPq;+6fAE z%#*6EPVvzBm)@h`p~YON>(5eKoP|8y82xM>{iWV9o0fBLJ#{u6YI^I$Ids_QttZS; zPf@rxhuYLzub)dRuD7*e!ljrG!w1+;bc(jykoIKA|( z1#~^oOOITrHaRl1YZ09*GV~L4;G;mtzXi?=uHoN9-%>zty>kvNz!6Jm6U$h$PL0>u zUb?=>&>wo$0eZ3H@}=s@Fz&d7_SEP+bAOh;sIH)6Qr~5CGM>&$q*&irrn=JW8fgOh z#XH;Xq?WAW;um1E7URyS60wUnyy!`RI@42qI%kqqc=aPUZpVfDO#5F-#9){ zUw%rpbmlzR+A4a&DylMv57e9W;?;Dv&Cy@4RvQ9L!3NE=!>bzUjce#^n5QE&mCe($ zG+j64q0-2w>7bg&hvW|^1g}*$9C=&TsSQrNsEwb7nNRn+$IyifKOQqajZ!(BlE+~P z#@k@BEjwjx$JqG-y8wj(p8$#lJ_nSH@z~S&3Nnd{tfVGb{FDt%^f4REM5o#*Yd^B5 z3w#HdA@DuGBk&Vow!qK*r~?$5#$1sTC^Apr6kvhC8Nece-vCPlE&`ScTmdW>;O78n zvMUKZnAw|mGy#% zLXnpQLIJM`L;(IH;0C-d5ChmG5D$1$APKOUVX%i+bt>dtBlhO^o}IF)A=@WV6R=gF z4&VcU`hbrF8Uc0)Gy!;ai8P0NEYJ$@sQ^FqK+E)VfewH#1^B54D)F^IH^4Un4+Hj= z1HCA(7i7N_=?ge0kO4TvFoGA@VH%>z{Ah#O7>?K}>nO613!DI)5;zSwYxX}=rC zz(K$vfy03B8O)PBM;Pe*`;#rE%AxB_bL4 z=_kugLj*B4n0bxkl*i=9BR|Q`w~_&=0#yLj8O&2k4Ka;cHkc~w*eUaf6iu<7Kr@tY zAkfl)$7&?f21ObRv|SDQh^gdkBmI^b!~Y=p&E~=;sm1g=7fi0R{@>10E450t^u-0Spr; z1B?)u0vKh3$C?hww8i3wy=aML3Csp$GnnVI<^ghTFpFcnoubZ^Oa+#}5wgpc=JejQ~HI zM)0)2*MM~b-vXW$*q?##pBqHJLy?UP@_!7f^+g-Z%)V@=tRpD@s=zV8YXT<$ZwQ3(^J7u+`@_hY!Riq7SxGvBh@Vh`Kz#jr#0e=ak1O6813AiKB2XNPb zX=s1QL)muA2LdVx3)1@sZ5zZBUC z7$ER5V35FPfWZP^0)`6g0Sp(|3m7SIzyldAatJU+;0M51fg^x%0{o~a%}uVrNx*o4 z(*R3=AN-_I^0WE)Zx+CLNTC$D1Sl4`3Mdh{0hlE42Vk#rh0<;ZgzgugktU3d6{&_~EK1NtC&e%)pPZTCdO$&B<#v zm{z>Osj=qp%m2Hi{5Orz2qu5CowB+j`yGLF!2bk#0=5YB0lY8JAFxeeAi(pX$Y98J zfnk810wV#t1u_Aj2#f`MCXfU8g26m_$p0dxdHuQ^Jeb*UBtIYddj*OB`vpn>2L;Li zhXnZfTAIf90@DFM3d{r?G5eos*KEkoQsfE1ae)PZlLGuSE=}f?06&OJ@T2WDSj|KNQKW@{0<;nc1+)=}0JIZu z13C!s^UgHgP6F|OE&x9N@k7s4q?;5;0i+A?BhOT#hd>QLF9Ck$nM(8#;3u33`Ux}y zWC%27pzl8eMVg_=BLXb}Lj>9Yh6%I>j1cGq7$v}uNK->H1=0ao4E@aUzZYbj5x?@| zf3BUf`XYP0KnB1P7zD@{7y>917!D|A80tqK6KRN=<(XuQIq6L1)Ev$qixH;UV6vy% zDJuurGZ@Bj`8>cZ8%+5*cFM{}_7eg{0MC4p639YBWRI@D6&>y3E&xlWq|bpD*?|5tO7jGFvX8PxaR{}*e}^&n)M2& zJSP7cAJ?7kD19Nq`?Drz+nRconc&;B~+|0{k>Njq*Q%&4cj$Yl{d!Oio4K z7uW*WCa@Lop}>cL?E*UhI|X(Fb_;w8_=LcN1@r~vGb!>l;0u9o0bemle-YHwZ)`Bj zbg!MV4x#*hfgb<|1&%P#{(ng17>az)(9MrNegXVsgPF!rJ7xWf>|+e2T>dw}NgGW0 zQ+CR_i0oelt_;HU=UEYcCZ6W%H-Vdg3j%)uE(zQQTwyRzyWay`x52dHcROWOpohC@ z5`P#l#~**lUs5Cx@V9^h+z|)`+!f$Q?5Wm=a_m;P0Tl#d0Dc1T1bqL)DUyUDfdVOj zAc3lYV1XKdP=VTjaDjS&N&*c5ZU&E8VvQluQluFmR-h#yUZ4#iQJ_5_S)dajMW8F7 zia`1!*#D}D^hA*w0{r&?T12%3`UC0+3?x?PzYQjPfSt1VFAOyHAc2{H!2+`xX!=7%oD6A02AN92-n4p0HEa4rI?4*zJKV6!{de zSl|nQmth`HgL~tlX)L$FOk<^;vi2hTDS-ok)eN(_f;BWm6|80Ou$UU2;p76&{|O^( zu)$<+v{Tm4$bLcK1mGox0vqaIi}IToJQk1eUyQJsg~5#Q4yQ6X z`wB*Q&jyq2vs2b}WN#I?3HU(ZFTh6vw*fnH`1;#S<1S>E6mihMC}<`=W=Q8&d_qG6 zpW9$s@ui)z0#W{J0R{L*AQZ4yAYw3%fBQw;C~{CB25?9q9`LX^ z0LN@F4L^Yt&wowi|6=D`bpWRY>I2RQGy2Z$EP2gC{#0pbNp0Eq%+ zfMkIwfD{4#pAcVvR1ukpBGnjjc>&D<)U?4YpW1fHnuqMV3j0e@=5qzyy%$x`%?49J zx}CC~_aMKA$V-4;0P5h}v9YgQ;?oowCZ1Jw;$D;BkQ&fLQ{w0Z$0bGvKiniY!7AufS5k3W1e?RSfO8 zovQ&)+hE$c&Q4j+AbW$rbAT5FJTF3C5qTBxy1*NNHyL{HMBf6uV}qIK|Lm0Y9Ymw-Jsn2COCr>womJ|J)qa9H4bz)u2480h-% zn8t0;zy% z0@VSv1Zo573DgHP5=f&VKK?cpX@(*#1zG{x3bX@sWEjE??*!;-gK2noJ7uLKyQe@e zK;Lqp`R@lAAVmfO1`7-U3>O#y7%h+q7%Pws$Q5`LU@f+EWVmIIy?cnYvaKm*nZ zJOkJu@EqU;ffoUmzB5wfR6nG2pj=;NsEdoBkHikvKI6eSux4|rqop#FF z#o4s~ePmm(toqXjYnV;RbLy<`J&Z7}O) zJg0_pb{?|xZ7|t|cFHP3b_oUg{{fFs3YjcL9s^7hm=2gJ-~r4LmQnI0-l{@N4;6Jjc?DC;A(TT(rSV^s=3@t|0rmzzx730)GPjX2{?g zZv*byU}}7b{>;hQwEsJ3kPkZLLI)i{pnwYyED!<+7l;738K(0@qX4lsn2E;QDJucl z$$7m0nGq^Osz{NlfEofd0d)lG0vZT31T+?C0%*>V!_8^|Xl(=jf7RAbTJ4bEQJ@o` zt3Wrv!vZ}3y#@LJ`ZMJ5L^A+`Y%t4WFj9>ve+cr2+xgZAz-WO?z*qzHJ`c6e{BLy> z{jN(Bps*5QD#Bod5eVZDCL@eOcoJbD!gz#92ptioAv}sO10f&b5#DcUx)Tw)BRqzX zg^-Of2w@gN`FO*S>Vwc8;R%H02z?R8BJ@Y-hcJ|%8>Gq4L6Uy}rPKrj{zZ>c{38_w z{vC+||2#y2e{G=90fBFWQ;P3)Q{cPW6!>l~1-_k1f$w-y;JcI*`1T|Py2UFM|~L>lp?9_CtZcZBXFv5ES?lodRF*Qs9eJ3Vd-!fiEy9@cE1a zpN1&#Nq|Bj0v`q`#Rnz|d^DlJyX&YR`hPT%dAiXt^|0v|WQDh`-gv|>Uavi-k^;Cv zE4=kt8U)h;COhV#hnBCZWi8VEPN--da$LEocLX!s^0*3iSr6n#HEEgIs6jDxL`9?K zJdmZAaq&m*w>bUbapiK2d%!BC+2iLu;M84^pOafu@F2H4K~?15Z&h65?@z|)$~XN2 zdCUp-bF}{81kKApz3+so=bBiaHBe7HNxg-9`?sGR&9QRlHMW8}>UNw`3GVwA-OqNuPCG@-nf41U zx?di&&1}aXu&Bn(GiB+WcpytBo}%KX?zj4`)AuK<=!f4ssU8~NiG{&=51_VLGC{Be{&F7U@f{y5AZE9qm!SZ~0%{M@|! z9R2q>WuZf*D7`XS#n?S2t*lF1^^WQ)G!VyRZyilkhf;h@_Ey&Wo2kgB?oD*+jhs|Asi-6`E5Ed1Zq~#GdBsx;$I{_j7oVpNSO)5) z=T%MggOaRgwWYpA?v|Pg`4Hl*t>2!aYEy-UI`{&W<3qWZx*wUN;?ea7z3y#@)2$0G zs6Zzl(y0k)%TyvYh!5=4T}kR16+`3a>8%%3wuetPGjOt@z{hq9JVz9G4k++hh5|R8 z0-t3l@L7fepI#_%(;<7Q@jT=W?V2?yD?e*&gOZ%$q7rJ9$xm4r z8tpXsaoS5St&TIp;dWW>m@u#WjTT=o3ay2rDSFq5fYb)225+!kwlr&U4r=|^@{6*l ze{rs}OlKsy5`5W5U1=w?nHsO~E96@^V0OfccZTx1Qcr z*Oj6R>(bk%Om0nv+I~E&i~bI+jG@hchsFf3m3gb{*_Q&U`sFq6&T{ZoAxJ>VB;HvG* z$PRn5o|CV+DKpIx7_S>OafQ(P5F%ED)pyMBbyyL$IK-LH`89NelkzLKqDC923FsFP zNS*HGYbx46U#%GE@{QgQ_G@Fmi8PX)y)P`$$wSm$NAK_idw2}J3mn6d`dW8alw+cA z*Z!~?wViy0?@iJ>ySgeAru5RdICpW!?^p9pLvEOT#|lQ32*pm9$>o z?m=&z+Sn^R#L0Pd@H4QlPk5-~G2ih%;fbk!Sv=C!g76gTwmzjOyqb%_8`HOpUeD0o z6&=9IGFmmy_jlFvttkqBw1FRgv(P7>39stpA#aLyG^1DEhxVpgvwgIzzpv)UUpI8+ z-QjheJVYJYWpto->-E1K7K*IRyTenEMGGLymEh0C%5+41dM$8D$G`|*z$f7~Iyk65 z_KFcr{P|l8^=;HAu*&N75n<>wzKK5BJ1|vmuNdKe0PYOnPDDLA)GwkHGU}t`)j@$F zl;NA<7jY&wb{JO~Ho)v}IVG~=4b#(;BI5lyw@j~`;Hv8TC@Et7XzI&-#N!c_DNKJn zA~mKxj~qHaCo6x__{`F>f`Tl5!$*7HyN^f2hF9nBQQnGO`u3$>!Ff>8V1wMElE<=2 zXoq7eqcxG08CcmDwlv~U74v3tI^e&#GAPb(Ic4k2w<2PxFYuJj5s6h9y#A9)vhoV) zp$|?3=1k7YFQX$9(sXc+m>QVso3%OO)ul1~ea#zccF!J#rNuefbOxhN!gc%hl^Rel z-UaO|RWmO%_oh;}>$Gunoa+h)R0hzS$wL8k_4sMX6>)9Osy2<&zWUwJ`JehYdEb^lQ+zZjOnC%XFA{9CLhY+eJ=nZC)qrP0$f<1t!q>b_~4&AhNO_f2Y;6AB(JB zgNM99*+m7#WpvgkrWI{O{VP+5e9uma+}6>&@t0O*<&}{!bfTERqbBN!oul}?Zc?-l z{~47;)0v=mY>iB%E|pJijZCC)mx4bRDbv^9qgTppe97hZrEiN&9&6sdO9zUGZGrLr z=6O-wA^OIFEgtd)losVqD&VceB!fCV`e;ecqgiJC8;R_scYPD&jx&ky zK4tln^5~qClRq%KsDwM&rVf~s+$q%iafc*#Dut{hcXLc+^BZxA(Pp%e0vXLLiYfY= zBzGgn6yMz>_itfN{?hM_)+ym3(e-f)z#Bwo*~UeMIpd3Hy_)fqPd_KsTaNn%`ZY1jhNAv~u68+K+D^c*E$rZ&FT4W+|PLa|*L*^EVt)TvC*s zQ(Brisc1qD&Aq{Zf4foUQB^@s$)mLLN{Yr(7vQCO_9%ChKNl?1JAb5O*S=2!<9%O_ zavv_Eo`yFbbjQ@Ej38waklVy^%U?nmdwK zv?=J;5qkpNw4&$g4&S+}G&K0{)kkqzW^P(}(eUh|!rZdbyrRNPx-u!rqwQ&~Uh$nf z-j7GpC-=FdF@<=&Z?!uk<gF=quqGY|jP`wY*gd=o_3WH_%bj9gz)LR>IsQXnbOoz}&b;MLOyt{3 z-Z0ceTLmAgvS_}U%k;)=uFAeGx7_<0`FVNi{!=q5h5BNCqfS&+3VZ8BB~rLpC#nXr zpRW~_Btvff^Ur~S0p?Z}wPx3`z-U_CTn!ygDOII{<<-yDjjCnd|4Ro%vKakV?I?dh zHGutQ-9S`)wRTh$8H%G-RenD4F37AG<;$!W{na@0=3DwskufbQMfY17t*HCw5i6rp zDa=?IUB{1an(0}~q7zV%*4D?=hkIw=g_Y5P9nG6?X%{8fI;Lj8Jd;yf@Bb~Zwl69srhQHG(p#!A z%ik5NzfFq?qRo7PZ)W?LIlUbPKF5-n7eAqHotM8CA4g$Fzu0Q#Ewi*szj-Avj+PkT zv7@6Ty`whH&gnEhCXT)ma1LKkW?T+T_T}}DT{V}wbiR8qwz_%oD;>)_?Qz9pIG$fC zo9M^4{j}piY$_F8@?C6l41?D-Ij^)VD?e`<9VHCZ&?|Sw)}U#dRD#~OHI|R|>Av7Y zvD=HxTV(kha4R-Sr*w(q7sy`j8ka~xb&E@OJnXB}E$)R}>hbxTH{xo=w%|$7;izyN zZC=HhdFDcw?m6m^O>uGN4Y0Iu_MZ>0LQ`m=Gd9K5r7>r0ifiU*;d^&e-1T+w#azSx z?|V+M`JUs)`S^lUj4wC__zRAC4=a6#diy(9ZF@M#;i|MOb&-_0Gs_e)E?)pW)`@zs3CDizYUAFY}BI{x`;3DxyoDv_*x&bu>nPmP{? zYP3gzX}M{M$CDuwLt3^?OP!e3qD||xmLYB0wrQQ(HY_tEq;+UoSXfw_wk=y`h6lG! z3u&1VJiJY2SZex`57W)ghhFL|E%Y-7XN0GQhG&g<=>z|QYUbe3b|Ed>wG6hUwD!+; zD*nT%FDq0h39`S1;QX($kw1r%L*%`WoM+0$xa>KA}uFxOzyHm+B?fV z7z&N)@j$6DklM6`q}o85(&O)GO>KL^n@Kgv=d^oG@B-<^Z7mQ;8%llGt&PnsG{{yh zrx9)Smz&y#xAV7cj%+VArMNlnO>MKrH@3}=Z0_Uj$}&AQH+4cru5Dd-ZQHo4K-;(3 z)ohbOs{sZ}0k+3y2G~;dDz=mD18p6`YTDAm18mctB(|_*n%Py+wAt$q;QIx z;2!R`tg!OvQ6t8u=8hUOqJ@EFq)cqNtgyaq*0%acy%tjUqu2mVL2F)!mg~6{`qP$g zO#YBnA)ha`Dy&4~Ebe|3d{2?`n+ksbjL16-LrHvwI|xt7;3GTNSVo?Op5E$h@r3B%ZKEM>dvx$$ORT zYYPgkjHaqc-YZ}tpJcVL9p7&u;ItSqIscHV0K~Z>q=z1lQ<5HjPRZOViEC%gr8@F@A!rpuL~1Rd#i{k;G{^ zyTh<2JZ+e!Fp>_D4Y@6BL7xXy{H0YpI!z2DJZH42?M8NG(RLo(6}IEqDB=LwuWF%B zX-RTZhv#LdV)#4kyJc2GI_WL@v29l81yTaWpw7U zLSrDI(;k1v)Y=W5z9q7fZC$R1?b)zEr>XLYca83{qu8H9R(VvVdttK4HZ7{Y7%DJw zD!5^)UHN`%OU+9km4i{wHX3AmB0E?NbL1NssnpgSF}^x36Uu}#l% zQi-NB5qge`DqpLWKG-AQQTxR5uh-U7T*83s74#$*)nv|#db*1Wy)s&lcTwG14AZB$ zsJPfGdb?8U)mQaG7d85mCHhPkHBCLIFZ6gQ-)Q{Ana?cN3tYmP-{tDlUDUi~+w}++ zwc+S)JJ}IEZA5`y?4s_Pmg`+X<%_;gy!(C~y|+`? z|DioudX$UuTX0LC=c0n1eMirAQLR4PrYE?lFg;H1+@+_wgafzE*894soZ)`{0TGlNrKAf>=!OA)I(ju!iI6W?xG%R*i3KhqMp?*>4`3Cv$>f*%S9dU zw^48JqE2XU>0?~fXC+tlZZ7JJZeo7 z^!$jh4z%s4dCf%$9Jwv909!QMQs<4a*kSDB=FE z-KvWMeg3&r*LG`8YYN>XHKrWh!<%BBMH*w*1aP6LtJy=h9h>b(_1)Z?q2xR%I7|L7 z&4}lle@jL@mHk^X;#u`}MW7XP8_c}ejHWUpRx^QLtYb_KtsAoO_?DMpN1#{l6a4N7C% z@)*d# zt#}>(FQ`@h58rp0+rPH2Lj9$*(hjRSLmFD9*LY|0SFYdSzj*z4^Y~ZpKi&@iv-Lam zzFW4K&c%!cpWjSf-rynWA^vBJd)&|Vdq(4}S?;>A4EXh_>{s09|7S?@p8pT8vSXV2 zm)5j?Q)#eRj+f39|DUSzfyQsE>iVf3UFqRYQe4?RgIKZsqM!fMm8Oy=?#W`J{Dt4; z!<#>@=AoZU0W@^4ltownTVXiIVhw-l`B_}uD2L!cq}$nHPhu`HGhogC@>uXYzfACD?e_M$B z-s$-N>uiMebTzvT|2GaUS3`05=XW$z=27?I^k39kRgc5>Ic$q#WPh*8sLn*U##Aub z-8cgO`=@UI%?-!l#0L%M+CBYmYb6WaZ*d%X{ofmoLhWv86qfBi%I35?THnvDg*XOx z9r^w@8z0B3AGDz^cJU-n#mzAs#M9p~#x~ze{#0gb>zG>aw@8ln|EAWgdepr>d41}Z z@fS7Af4)ii&cuIhlP0Ol+d2>LZv24LY}cvNwrt6pj*oP&^#@rlUq<<_ZRP>u@bX{R zxO}(gLE{eQ*ec(ks6fGSZk1_XZTLQ1!O-cCHfFv(^-r`nP3-K}g1SY!H>6)%Bg|{; z*5U7*%KjspA)Rh*aT{Z6GOIKQTN)Mn*YAq{U46iJ)*kf1{WmpAoy@z_yj&Ldo|A67wW0A{sP-QnqOx!0k$BX9)ve_#xD9pN7Kms_3u#%|=_Wj^S} zKi?wrH+Cccp!WY{H|9k0EbWCKll8uc-*t%%!#_1H>FQ5N$MUGh|J*;U8{^*i-?fRT zOI^S4NG!dc^arkZ__xx3)}AK(5VpDadBLyk3LkX$ZyebCWB3Q%?K%_qtB-De+rgi| zyX(zzZ$=-!1V39`%MHI<|K;h=gK_>F$2q^);z7q7H)PA40{+!UJio)_LC60Wc09kX z=0V5*dpbU=Jm#wFKS-Xm>99wue>fKKFI>j+>xmxp{$H#2eSJMLj9>o#ooj1GxMA(j zcvXaWUqtKE?wNGDu{;0zliyDDz!)AFgD?huIoY4q7&4oBG^A}k5jf@8?_XmdP-b#y z>9)M`@>w2zZJVDC{71sYzj=!I-A;nvQuk-Hi+I0`2zwE z4C{em{jrASUaT*o4QD)xr6m+~)?=x{pPP7KW)IBlk2N#IyZ8$vY*;?GJVw*=-+5f7 znYTQ0X~b=hJdZZPDXnN0lO;DjF40Hek=F%Jm40I7`0pVof8JAtv5ugtl}y?8s2@DM zC3@#a9Hf2lgGT|9=Wm$&sqMD8y4=J0lYkQ|@n&-Ile)j`k=GxvUHDTi?O=P|*->Uw zOeK?_);1-$`PeZdmKDyUm{z8AX4ZkqR5s5UwChvY?gU>`0ZpiCnnih)O*csg`HWu0 zBvDpnlj>P4zMcb%EzC1gSot?kjfPY=O{T9u^)yqWpXm~PTFo?tdi$9s(Yw`wWmhwq zVe0&$ojQ$ahEAakikm}wdnhr{ISg#z2mQjd1{GsN-4HTvojo~;p%XV-;7(6kMnwYD?W zkdi5~y(vVRY=8*{$TmPc<+L{qli8{3sq}7pQ!A+hDG{c3@b>eN&ZgQlBhOTmsz#b( zs8c+?tJ!{%DS(zU>6Zrb`$$s)jq3qyOq8iV9qb3pGTqdiDn~;lsRPJK(HOOz;(*Eul7OANX7Z!*y`kdYALQ8Hrs4D!*Z5{{RALwR$l}|`V16H{ z1a$?8HcFyrM*>Uhi$+fC3G7l|G<^3Vz(|s7(}I3b?#9i1rJpH7l#+sJ?krp8v!mr0>S%$=_B7!1?1gSbng{5 zyMp1S$0(LFicEtKImzAeaT>hDY;K(C>83d9&wY129lTdM0b875ve7#{Y!|gtd}&A~ z5*-u+a(AX_4Nc_XSTMpgkHT5G(MVH1eZg+v@JQ1_>cIv7d6JSqM@HeXvuuMcbojVE zY=g-Qln$h3K~Rg^K0C{_i0USq>ey>!o0?1Fvz_{kYVb$=$xgk5G5+qH{v>1k%{YBC zW66x|WQ@PYroYV?e=be`fHD4_nf^D%_=98m4aWG3VESFg_*-4NXLbDH&t~b>7~@Y? z>Gi7Pvzg-iPkKvc@@JIvXvX-{Lwaw<_;WpaGGqK<8$FXT{sfFZfieDAieA7Ne^x{< zVvN7Gp+CkLe~dzZhB5v)gZ?sO{B;6-FJt_A{(Su%M)}S3`dP;Kb?o{VjPdKo^_z_G z>$Y__Km6f0OY2^Y@vD>d0LJ)@zn?EsQv_Fd_7R##2DWV z)AM&Q%GZJPLyYmg5B(Hl9MRW5Wvmxt*BRrmoBlIn0~yl-@P|*lbzjE#h*Gc17@sNW zA&gCAEQ+y3jP+uSzeA}HWUMoPwpGtyRCL66#`>{1pRriR3K>gdYz1Sy-P6}IHiEI2 z7!%X^9>#_;?3p@*Wy2PO3iK*h%-b$`bAJCb@s z#yT?AhOr@xbp)1I=#h&roG+WPtfAh)?mo^GDAA{Ra7+B^x9filswpU6`l!;6!2$|xt-r8g&m z_x%Prl!_0S!g-leiL@!E?qqpgc04w53RF6LVH#tsL3U4t)bmS}y2&&MuDIdZ&5xMc z@^S`_%U!N(|8cs>S7Ox1UVEl#tOI>A-_+BA-YqbVbD#yYO}P%#G{^Lf12xZM1$rHs zUYc*prj#AXZ_)zfSHtYg538gAI%q{{eljD|){mI{Bu0HGWufUk2`j_G-`|{Gc9WUE z(5;X~(lq<%BGUjz;_ojqeI!k=Z(VF^;zlE7XKAoft3{)iqBN}(l;-qOQ!|NCAG_}| z(=Z1*Z#lPy;3{OYIMB(Dnz9_|cPmVz9O#&pCf$L4xym%&fo88UO?IF+*P2E<&R(oiQSA?1rFcV`smLrF6tzNGmph^x3_p%~F^> z`3(%%-&rR@oiqv#)GE^Cw@fGLqi~E!EYbbwdwI79e@@MQQE?hS?rm>%! zDo`T{dRVcikmLrHUI(FaZxzakI<}>PLs;K=uYthrZ3u2mGv!d&VJxn5W;?2E-*wnj zS7N#%eRst4u{79z@~CON+doqcTg;WJ^mR+kY=7yvX{aOd+9yrtk+|EtrcgH{yPofx zJ_V=wDN}nlYF-cZ_~1hn?N&V$ci3qZH)1MAy4Y4ceFklyOhYI7oP}V@dk@cF%bT;-}z=rWYWX)CH^4JwL+~ zgu4<;*(n#HvZtHV)qQr+w3&j3$=(!s3dXbNfMlWzpO{wvGfhP64oE?C^;6Tw^jbxj z8#X|LXm%wO_tno(s>Az@9t`KLP#yBRgaRG^z*(Sam!R@<92~kZWbBcK(D6Y|hu-2# zPT+6%TM4#I7we;CwqJ&3?eVC4yDLz-(%NY!IbXp}cC58*Jb>NB5c018p4a!_)ji|% zOk%_i`hhEQ2KC?n1IpXgKIuo(z29Blop(&16JQ zW*|*=hsx32rh4?5yS$HfNyr!z`kImuXKqiJ@W7oWPSX+QenrMphnpg~0Scs3Ly!e_ zremp3OYj0!@Gj3sO2T0#YH~7NU+7Hlga)a1M?8VuYBj1+4oQ935sz8RL9p;+lnk5K zVU%zVEgD?`yqs%rFxbIXrUhP5j=2uOcV6;ls(b@W2)noZ!S6GUAL)4y6azcr!8Fr^ z60EO;+@AUtCBU{gou+?>jD}YM?}aT+|1Qo4UZ{#<a+%2geXXlHGuS+3(lq% zmR7A1q_1=u*n@!xN!R!0YuWY9n0i!%d-FYXt$Qf;s1KdK1ZNh*soiPR^gM(7Xj&4Q=B6? zBoZoZN8?$XncxU33ew;)c=o#}RG^3b>1es-@2)`24)Qnj{`Y7dVME0ok@yoopmpwa zM6NqpptWH>L#a3z8E)we-V5uL8nk&C&TMc#6HHaR;)(pH9EG*d?kYz~Ojop@>?VKU zKws}6PjR4Kd&%n^=-uA(76-bwue`>Aj*FFNI#4NI#tMWJqp=C{JJKkMPLy~54l`@f zU!E+DvOn8ju4w{1Fi0Nd4j3{_-XQ^AO_4L*smD&Ijo`Q`hTPLpv1+@p63$7N8%d1% z*q_UgvFa9R>k)FM1ASqnJluiS)a3#Px+zP3M50J5yaP_H7LfNNNGoxS93nC5V=u{( z^BrjYaq?mZx_`X6jl`%A-R_{o*q0Z|BMjPJev!Q0fquAH-s(VCE|H&fp#5wv-2={)^i*)SLTTIBw8=saz<63yuq-Lw+ zlQi>lXU%X*IEW6eMwSCEp?a;?$c-gNee5}FO;K_pjPG!NW^}C z%^0YU{l|lBE&|>7w!GVc&O9RTbD)XuaN7%o`p0>k2=t2+@&O0B=Uv&`&EQ^qU%uwx zUi?5l??6wSmOpi%`_96u4Bf3C%f}q(((^oMI9)n!QatRPE^?#Vzjl@$C&m#p;Zu}; z?p2ij{HHu5fI5am#%FSxLEBG%E#^1@c9ipK(W$f$4Q=%)E-<2^AsGzYhA@y>t0dbC65DG(|BJr#qm*j0u{I^-K7!a z^9T;Izj9NWOCVBLE0yfcJ(MLNu&GyixB+Tr#lkR4Q`R!yvz&5;>Dv{QeN6B4R?O~z z`ztAjm@clORAlBA3AZ=hV_ zMA926H<=#POj*xR3Q@dR&!?4gj^)=|D^r-Shbym0^qGnoTmoaJp49L1`y3>SG_3s66dJ1CtaOD|4w}6GpZBK&7Tb)G}GYj4d9xI7n&a zMm_goT*M4j_K@FxjE1_y6gV`XK9ul?(#`&AiUL~}G*azo&q`GWI%tt}`81`LLEEF# z6(2XDYER8nFrD&K_HRZgB@T4ODCMq1H@|dRAtEomC@vdT*vGKKo!M-KeGDtSH(DuV zV(<6pzqL8aXb|@DaUPs7%s`VK{R%D6bfy9y4b`se zq3XR@S?oYJ7b`Xgnz&TKDoZ?o=5A*9UZ!Ba`Phot7g4Fcw6+A*h_X2s7@ov+0gaW| zTDi4-+M`?-LH}H!1l!9!roc4{`p6SP{m3-}Sky91qEM~SwPb!$%Ao8)Jrms8DA?ua>21;nPPWFk*X%uWW6ejAXzUD5g~(&!(#v(8v_V4 z00+fDaYU?_5e@^zu`qza9JavoDF(?gFmO2l2EfrT01kZtaNG-kgI)j}@B-jy7XXL4 zkT%D;Kyi=@fFoQ09Nq%p*cJc>wg5P)1<;k_Cx9H#0^qM}0dOP>fWue-9K!fFn)-9Bu;OSQ7vTntG`s%9P(r z7BMCO4lses(WPEygqDP==pRkQlzM3*poHGyXi_gP5lZS+QN)pY`HCPC(&h*fG&y{P zG&y#J#5iySilas_ojC^e2m{S5f<+K^r02FPJ==Bwcjz*`5P_mpVQWJXCi)~0v7?4T z4?UD2431e()&c8F{&NL?GW0NN`npnI8cYeVD{Y#yu^^Sj4LB9H0Dk0)hS0vuf4<^B zSMeu9L^bK)Po}2LME|kgfhLe1!k-M$U(9;5DOmgX&jI|&&_l^ zKN+GknANTYSP}du3V$+0M=-y9Fj!vv#|M8h^iibmP`2Wo_ceAZ0hlq{?Nr8#L0K$n zjr%^L6^cdmODV2CQzB-Vjbapw#$c8~ajTS4`|27L56NQvKpE;#8R{^oe16bSJz7S1 ztPFLqo{{Ka4^H&$GSrbW)H`LU<7KFmWvKU<%18D_qJH)7&myG^#huFq<-RT!oy!z= zcCqN?Qi{8~l;VCbrFJ$lsIKC<-Ga(*D9oZ*-&;obW*KT<8R|e8>QEW#a2blNi?e5M zQ7p`?lwvajl`rhBSQs1&*=wNJ455R{YGx$EzN1(lU53gjL$PskDr~I9!b(diwo<0p zh2Xo>4l3Uu*>FpRY`9FZM=2H-TuQMimr}Pv42o^DSpUI6i6FDVy7Nocz57}DhMHST zBc1!6H2sog{w2%vm#hlEWcmD(RoP(W8xe7%6u!Sy^ZO;M#xGexzhu?Ryq8EQxwYFHU+ zc9_wrJiip{bIVW*9F&(KT<8?qx4faGNK!QUyroPqKoC9smeOCc(71g{Q);kJ>0#jc z05|q2Q=~C;alcZViuNlB23}wmvwWq(demWqxxRhz0p+?RbwJ1v8gZoFR03(;A*G!C z-XY%fM3eQRIgl>Dqg1fJdsL~RNCWIQ-c$OSq-1-CGs-lj1}}>+$1E@aFN;8RF+et* zzNmDQV(hg(Q3fbdf4cJ`5{vmnsY1uUQWX2kUn;j1X}tZ#8;YB|6h@oAQ<9~gb`&DU z&CDw$B$Z{4yR977q#Oc_qU-Kv)t>HVepNNIZ-hdMy>24N_jNZP^N|)(&P1b7J`_CIEZYwcGOv>= z@LCFq^I8h?6`i}N)UcNfF@Gva5%#IW%-{J+d3HRQ=`M|?*JQOOt(|QyS2ESyK$=TU zKSP3`%Tr8&xw3uaRI{&Hve*k|n>RI(itWMAn`gOIU{A|4;miFVdZ@5Eo!DZoP9MH# zt|Rrfqm@)iiZTjzVXs-Gv75{l>=7Hy^W3F*MjwG)!G3*?**>ldAt1HrQJIvwBr{rt1OpCuVzk=`Ppx0{>nBFwu zYjYDxCs<3M9Sobh)YcwaaXP3rSfB%ykNbjPIbkj8O`#YtAXr=kv$q;PwtS$$WMdQm$~ z{Yma&R3Y1pDr7}eu1q66)fUn~LSqKf!pi>D?Z-XUcu5*-7&ACk5X|vc?8C~dA4}RavN}p9v=lWX3ZpJD$ zGgh%=v5KvXRqSM}Vk2V}`xvVjdRDQEv5HNMRV-?(VhdvxI~c3jz*xm9#VU3$ReR?>|3m2+hP^F7OPl>SjC>jDz+?Ev174{4U1K*HLPO0 zVih;(tYWWX6M#U=jDORz@u!>!ZRcunMyhq7L?RiCE6TLVLS`O6mAu! z(`j76`*xAne8}wjv9}#kB>(W){F?dQ?<1FfVMXsCLD?aI2y^5TIWrbr`_L zO6n*j4t3Gr>PK6esg)?CvN{-oqRQ%6fV-8|wwOA?tEe3SrdCnAE77d|UO&1qUG*ow zV@f@jP|K*Q_5#>aRUH7J`l?9)7GE`%nZD`(BZ)8jl{|tJ8dp=> z$|B9L$h*4QmV!^I9<;uiTES4e){l-CL2vteN-bKqUnxh|PpJx0@~kcr98z86@^W>x zxio-2t**8Q2=r5X$^*EdZiq^%mFe7RRih$5HNfDS4DRM9z&+}x)-$+fgImsDZD24w z4Mrb-wTHo|;CRko?PxGK=!xXZ1*n~oZCrqwXz+ash^4K;wS1vpbg z7>yH%uc6k$4;6B2s1X2LYN%ahKCI9iP;mo@7mQXbP+(29zQJv5a8qikZ45>;7o#>E zuc=ltxWN<>sJ5mWftVGNscE3v&EVtO2`5?Ggw#=wc*8|l6D3%XW`v43Mf^$r! zjX`P;MUg-5Ot3wpUG?vEGw*~2I0XCwbU*E-x{E8Z8aFz zy!6^?J0*r|HZ+#TeW?1<*O!peo==o=&en;c>$TM+StzAZT!>nQW_$SfljUSF-K(53onKO=?tMmxqfP}_mO zuz}i5>CaVL6idfvpla6}V7}>3K@CwIAz0?hGLSYmR2v#xGPo3>`j_NX@U1v%OlHn9 z$Cwh2J!UBMZlrcZa*G>bfcB>=jntt4JsPXS0bXpZrU7_2QO6r)crlhz;?$;`Ag#WJ zW!j#fDyWJvQ2W!3CTgmox7E>ek9>`YZt)GJva=id(}t#)TgTJArfMQUVlxcm@$^D7 zHB096F#Qd~a)X6uT!$Ezp)dDYgZQje80$)NBC% zU}TX+ql48E0PhE@69IaMs8i%D&f;%I#V>@Y83yB$!LYPcM;eUF2IEwi+KATO!v%rh zR%#`r(Ycj68DM8Cb(*30t)ZCE8Wk65--@NLI;-vYsU{TE2ECp|4cn+=4fQ*Qdh;kp zx+S3)Ls{e%s!lW%+-PqYEOT8b`aXxwhN>e0I)|x~0Ct3_Q)NC7)V&O?xNtSoU{o|1 zC`Kb*0N10SwkU57wQj3U0od49oo*=l8;V`pp?eWKZl_KF2xza416b4^r4Z>iFth?A z(5N{yBLc2Hg-%7lwWm;8;te_qfsb|wI|TapU(Zr zr{3Xc72HdVR&{{vXf@l=?rdmRPIhWHZ)7&p*eq2sxpVP zLvAtT>pH2)1|!X2pa~n1c%VUbvmfPjMlnT#nTGt$j%o*5Hw4{~M4xxY_z}YFIJ!O? z9_?5Q4CDeoa}dS;qqa8^MoD}P?sy~3*sf}SgONwqdpp(cc7+io z;YUMix*?oqXcu;aBTJ%>x;d*l%fTni9`KJow5~RG1jXIais`hXyEd>YRB2)2DIgYpBA%?VFu{2GE>=wkNRESLi)RlS&$1QuNV?0o|n|PoGS(0Jm@g)iHCqn+7A>ZFr zZAiykn$0dhHidR1s43DE3P@DP$b5vapK}$w5f!vD2hf@(W>1Rgi4>>M&xz_JL+x*d z+T#A=@oW9j$>QjSLaDrw1e|gs)(96(V2Hd8QNC`7n%&p8g%mtQ zeHaP7JVc!Z5IR(yV>}dKJoNrh^m!r03{$58>==egL1b6Y5XYuq6bVK{gMnE>{8~0Th50lA#eh1pZ}hHkNZjJ~^JEYpa2DBwO`V z_~1mJ5pS&4)S>43v}O(z1-rn}ggLLF5cbhNL9X#KopMHF89AMHj>gtuI^AOsK^?}Z zofM8|>BaFR&Bc(9Ni~;uJrzNR$6)0y6jsoU32GR{=crW-#ww%2@F~9h6qeXIaOFaG zE%jyH?{d_N$V3^d_5g?*tM&$1GZwp%2)Yc)P~J%Aa@DYMX=C%8wjM$GMPd?S*{}(-~;_xTcT!H$H$M_SuZ8r)sbG#aYXEu+=!X|?5jTf2rn4tDGwD!~D zDJWCP2(!1-I3nn)32>AV6qPGLajwYqbgtSB%vyQaJw;Gno+$6$JglokcIVf_hD=fi8TwyypE%Fq(~&(+hMT6dS?a*QJ_%Fb7N z85y@Vl#hLgB+sHuIH$ax50^EU!V1((fHehJn$M-11vmtoOR=-m;W9^ub=+v+Ds1-0 zgEdyM@f4WrxW?LC@|ulFeJ;(KjTw0^U7oFGE8@B21X>)64lXy%T${XSnZ3v|8+-B% z4dSkz;5q;{E*5JQ&jT1voNx4rB{; zo`)^C(9EN;g;?30pQlz)1Y@$JtG(u{(a5#me0889m?`mgmhLcP`wPse3BM`acu!C&{AT>Fco@5rH1ZLLGxi7yR9&_)m9j~P$+h^i^%4R z6>C8Y{b*GO8PXC*>2e-X+Z*|;ppa$A=gdO0X9b7%7U`_IzqmaYVo@j9YYp`^3*iGT zv}GZ-1Qzlt#46fCSpY^hFZ`mE<%`sEhHPU3)e1&`rsTp_L@6yr7)2J!E)t2oU8Hh^ zB509FbNV86h>`P7qoo5EJ6n2B0z{f}MkSbGNsV0t}<`3TI%;B76m`7u^0S*i9nN)nama^Zn=>}f1=H&k;P zb<_K0{nnd3ORI8cC3a$>fZ;Uu1*|t#FG6)KPnbQZWR)6Vq}@KzXoa^|s&(kAXU&e| zJqvlRR#Q=y(W`~A9a@c}lw$f}HHL06wOxawrDDooBdFbLuw>v1F!}%*w-&zT%n>+; zW^2_b=wz=|TS;AM-C8U^debLs(Ve|n6>f-C6W77*N72l6*a`D(8TLTTk9`_Pp@`Kq zp`yoORYC;U!y@5Mhdi!^8{F{*cjM!5*Fr7NV1&P9q)?rrpHR()XtE&+-T~3NEpTs( zpKvBV&5`&MsOLPo@B~gg=5cvu8+>@gZU$qn!PxU87B};#{8QM83B`p5AA3QK-hL8c ztaJOd0LPpo6c!l@s98fwIiUGc@YC4K3eggmsEff^W-#ESn<6On(bJfVbE(;S48mMm zvR)k}^IanSal^i_MZrAy3~VNsa-LBw0LPz!!^oxP&tl1)OGVGZBE=J%jdZ_zRt*Ec z>2vBZgTKv4X&P@AH$A6@Dnk3UM4m|eX~O|bq2AA{jqyzT=hYzqk3O#sGnC#)q>b&M zw0gI>7wvfgtDjuTdI7FUByrHlFy#;u_I?HDe;4+cgPbOsO93z9C?b~%U&Qfk0-bmf zb-;+-0Fz6g85;z3)BrU$;$XQGC2zzC??f9mVxVNwosHP$XL3_~v@5Y`^wkzrZ5oAaRlCSS-P2G<)*TE+1%omA zWjufVu-SD0IE?~d!U}#GjeZGJs(9AdP(AyS+T39H-IsTJBw%oBxKeC|#~*(g>)C1a z^~-3vY1H8rK@|ZQ%1sSrEQKm@-Atry!(ocZu7x3LzfEmyFj^Xn{B3G8B(-6i+S%ZT z8+`0Ss!{oq=1R^Eo<>o2^pHp_%FsbG1>@Osc68u0YW6CQc`@`}MOWi6=2f-3q1@-b z1e?BZu0(xb!$1}3#JWT+4Mu{&K%uIUddgg(Oy?vSLKwWGc1=IksyjxdNG{n>fVZed zS=$kx5ZoaK_wns&J*5qsfTh22r2PD6nm^s!j-7~Lrx|)!ZAMFNX!PsoD8V0P@Xx-E zwS-_~8w_}!HU=ZdVC3&mt4V$7(H&}t%pqcZGF{k@cNWmUzXLm;_k`R19Ua-CCk5#8H~X+tQ@?@t@+IFu-AmujX}_+!W(xnK6t#~9yV z@4}QKo-69lOMHKN`$RTCp3){YCgaw;F4xujntr65DsHb*V+uDhe&y zgBibwR_{?04UM(^4L`DL4^+bTs$P(G+Y1*oobvag$@pfY{+!Vu!hiPMSEUwR{{*YS z;5X3kLjIzwNi`b$26leKspt)Ls3F{H2*)0Wo2l?7B2mLB@=XkO@#L$9aKoFJiI&pE zH*pTMlsdcx&$E=ayoK|vrBrht-1t&1#z8|_Y^cwCiDSp$v)ES+q7(bn0rDW$I7YJ$ zsNod*C2lEP#;Mby{V1Z4oaAR~()Q1>9cxhqkIkpE`(fZSDDVIr&0OxZvIFSoR zHf{$o{Y|2#2eE0zBn6 zM4pDI<`K1%!Kh#`MCnFfGvlcBCU((lj$mWbmi8V&Oi4Uf*-#U6f4Q6H5RoJ_@{htr zwxy#-ajGX2YZ!_+Q-Ybiqed9qAcMQ*9ksfg$VIG6C(dHTH$H~3cIPmW#bIgT2BRG?#Zb_mo9NT@{1BXZ#ZdCWC8tI;$0kbUh`F}enY4xt_(zl{enJ806#W^JQrrn=c+X z!jPY@>tBOj_4cenf$yQ^U;bE4Fq96lQY8vHr`8+XfuGujt4$+AMuu2(m(5zH-^78i zzCDFw{^IJu_A=6P16)!O)_5O0%dK86ar3kwFR_VUR?Z8KmR)UdUVo1UARr zpZSVpSLRbV`47uT-z$}h17PM z(Zu^RPaf(@K)eL&WEp98sk9Rp{F5@$38m6ZvV4MkrqN6WZDsJxz ziKfBV1arqVHN#Ulj&I;N^lvESs@jWsR>wh9G(CJ>JaOeZuE`9bhBq+94WRfNSmO+! zk{g(e2GHj>#8sRo-@w5Spef(rq+kH;{ze@^vEiN`)c9MJZU8O#7IF0fbmdz$+2D8o z4l&dLWcv;k8$h3YhaGP+wYrIUFquZ(1T&dly@^O>tkVi71)I+(JUhbi@FSZwuMO z2KeYU)_BPj@x7Wqy5d zYSo=OCRyADNv2Ids98wU|3@@dGR^xDi{WJY*Z{46LR@q*t@ugJ2dI7r#hpwe@2I%| zAKyVdX)>k#jOf;6I`^|WhpD^h;>q;UU7^|J9%kjqRCEtbHkr=eQy-D}5^!PF<$W~Y z<+HUoX~FXMv>3d5tBR!c2gs7N4geb@Efb)!oA$8Og&uX&Mo3*s+_en33qM_(I=E|i zeWJTI4N}cRn-8$mL(2g8-a{J;Fv_G&0r=FUjRWW}YqN|;t5D7wyz2BDS<41LMbTyh ze4=PM0P$w+5rB`)+B`$K8l|kq+ka-O+8FR}sM;cc0!=FfDDSDQGPLT`EKjWgo$}Ns zf#0{BNb*EEJcAc4m)BYW_gB;gK~}4hkS(Z$rij6NoVCFK zJu9R2VrXk+Z6tty739#L=2g+U0vxS^RQglfsz{|jZK|qG2WaZ6O#oQuiwa@3tcI5C zPfHC@uDVtLs;Ig)3&6`yD+XBSr!53%>aXPkyy!2Us~doh7*ERsv?!G)+mRvqYpK+) zhL&a;KV_Ldo;ue+1B@qo4fOGNYF`uWHlB9Xgf)cGy_#AlfKGv0ciiPE4AkNQ&Ih7R zds5#ZZ3e)RAY|H;2G+uJS#-9R77Ng{wzd>tcWv!)fYdtLIsmu2+IoQJ>T1scB-9hK zoAtCOKs{Ptdm13BfuJrn&{lz(*-(27pn4-gZEK{hE|gN(LsB#C8Gz@S31;u++LNHJH%GB@h*}7$ zeXzC~)ahVtWjS#Hr!Hq!H;(o;D$Oj8&LwJQs8wpIt*Ic?8nYVzp)DR-Rq|dTRpa+- zRm0D_C(v|=OMZ+|)S%}t30J_I$YXQE95wfWrkY5s2 z>Ih>=qV*lMbxHp8%qbb7fDYMf48`f5FJ zlVx#VG)g>u*cW3mo(A@V?~12O{j?&0yjT<{9;g0-`Dh&aKb{)KYgSLOFx|&#@1q(W zQPtujc%#{>MC5G=*UB04gDgMDd82FzS|T2PKLI`%5#B`23UDbAjTcYj`)f0C@#IE- ztvBC4NkW@Up#w?ix+#=00R1wBZVkW?n?kmM+8R%>?7hTkU*fcbDR`h3>z$L6zRY-~ z>tz;QW&dPgYuf;h4HwK=Y1&p$t<$wv04}EsYITP8BB-93+VcQ6GX?d;2yFwX*pV3cg>-u) z27V!}9HnK6>llSqsDq+ap<23@>c!VYP@Ky~ac~^I(LI`u>smT4YP8AH_5j?<(sl!E z%hvV*OdqWs2IxLUI|<;QBUC=h(cS>HcC2;)V8l29T8!8BgSs_d+Y9jO1dR8YG$U6~ z(RteIpnl5JUITb#qM*i2(sqDqK3R*##$wE5c<6<+X|k3A;59`X1u$ibHX7j46v(Di z!>L*`fTXFgjp_8lRCw>{bl0E~rok?!)2eCOFzicynx;how41IC0ifw{SR!_Ad5-Z_OD%Yy-0#U2M3ou_s&^rr6vhA!`*+kHbRxQs+_7*>J zE1qUOtJR>Gxmrs)zfe=@@Dha9Bj~Y5Fcu@I`a&(sP`}6O_u{G6miyFM^SgyuAVg3~ zp~&WNAyy3$)VfI2dS#L5wI7Q_!=@|}EwXo!W-$uwhmE1`M_ZO^fi!lu79vmPi!c#1 zdok7{5%k4k@mQZ?v{D{zEQYP*(Y0cvoJUDZP@OzFxCB#t9)&H%f-H}oS&D|tBgKYJ z$|K!|2S(EiHm#e=dsqyQXVPfMCX~PUQLQ?4>#BLv5$7+eaF*oQ%97W2Sj5d)rnSKp zgYC=Un&wiMLvfe-y4_ zF3np37c-XvAA@h1i)bcRI&-PvN>sr@i&tu0Ro)<@V29EubqNX<^rRNbHw`>!##|f@ zTd2z_Oj#D%vkLufp~kCGYYVMftxfV2TkFZ(f{5j9)rQgZHJS$D{54n$;?}?#GzsG6 zYheTyI=@yt7`ILvZ#?)2KllhO-l7fj7T1qNaz)H7q9AaUw7m4xWx9nPe;n&F3srnV zn+RZi0u64V@1GEvjDAvN^6`^`ihl|#KMNgs%2~Q+Ik{)4;8~RJ#iuo{&yJ_X^G()c z{99MYH}mQ(6nbX)ezZPWam`Uwc#Qfk41omett%qj3g#Li#D~; z)n`RJje1U$7n~ju!g(1#K=s+KZUCEp+`wp`vdO6OgsPng5uv)gzh^?Yy&TPeKw@}neLS@5C7)uta_OfVl>&wDUuD^`EhlPf|f&pfs zL$7Ef%ZXz6;$%bjO{BY9G+e{jrd5G-{WgqOA+5pE8j0*RFuY&ZB9zp0zQ$(=D5fzxu_-F1T|2RCDJJtStfGr4c^CF9#k6-9Hb-4~ zHxNKocWZ&bLw7^co7U{s`T~5t8`jdBGWNiwMA7~|*jYu9=Ux;rie?$$_Fi;M6zOkZ z#7EKRZ@>pdQLi`Qk)mkJo9K#pRP!xlI*)SRf+fwPn{R0|JVo$&F4qBa-)8Zlw4U>%4@R4vHW1w$_IB9MwFj-%(MF z;YZP7xpe9%Of#3dy(7}!`wm83E=3%J&&#DF$I!#M)a5wrJeOWNj$dCeRZn z(0K`TLcu;yLN`<>{T5`W|?&Hee5PPDeaV&?FJafqK!@+J9ZR4SfpqEzqal> zKB}VY1Go#xCYwnmn_fuh9RgB92PslQ?=2)DA-RMkq#zJr0YMO!DlmeA*dLWgQ6E{c zQS6nXU;!zDfON!$AiU?yFZT$a&->3kcfK=sZm)ZHt{(p_-2>+7!{5@f%+uq(qbtlx z{la%a`~&O{-_gBrrEdLw&Fo)^trBeGJG1ZJa5;U4p+m8f|q7e2YZEuyjG>CtcPC8~rUwq7z{Nxy&$trc@_9s*M*`I>O(;&T0ni+obB;~c%f1eEMNTKa1 z8dYn02uLfawRZkY^W9n(AsqUd=CHMHcRDEDk)=yd(*RlemD53K^t|-MX*y31&@pF% zdedXm%rmq|m+Mt$f`%yb3u+}#6fL8(L48B+Ja#PCJIn)FSmO~As@Rmaj zrVw0BwWpu=dRJ5RDHK;zeJJdxriN1ptFG>&FtobrMPXxgHG;y`>S`2)zJ4m3!hii# zNBX^w?zB=g-L$4se-nSIzevyaS6wK)<4;2s=}4ykDk-NC8@Jx8at+L1#05H*p)VlKx+F}Ep&#r%52NMSPCLV?&UQL4Tur9% zRXCMwr&~s-eER+Eu?VWOpFR?yN+@L1plRu&H`ky6`siCVXu*uq6C-INM(ItFH1DHy zgquo^(hJi1s6fVZ7M|HSX{*F%TGn}3Er?F}daql?w7=@E@%0nS1o|Z*{ej=X6n6HBp)Wa0k zCeTKaua73ESrkSm(){M@|0Svc6sjlDB<9oKPSuN!>GTIv8eqD9A(`@~>%WrKLJD(g z(uk((8#UGU&gpcj^wO)o<<4F@CDjxTyI0Z0P^ud1SfR(%Qfnz(uBEb_E4XL_-DQ@O z{&!NF=5mGpt+sk5z<7t=dRJrBLH|%kEuoB@x@tWJXsAo(I~(bS^^}))NKyw zY8?ervudxJQ-6o{bW|89HB)mO?P(hvs6#raLJBmNWc_FdnvX&HTn8G}AYIW>4RdlM z1>QRAYpQzs_l~M8z@+Q<(p@{L`g(mQN4u#*6pFj6FDZ1okJev~FQ^AC z1&SFxX=f&0)=OQXlXENE@muC_Fz@jkBkz!%b(ZZZwPzx-0ekVYFAR z#45ZojCSeCI&Zjoi$dxMHNweFO8mPD8|p7c&}x~i<3}nV^4ic>RRY@T&{66M@|Q=c z;}lkoRzEr>`=*Xjq1^E0?6E4AJw;1P4?}ZplX^XGBcH; zsBcbG?-1|EQhvlY#zarI|TMsKz^Bm*#+ePXt3QLRCSQj^*amOl- zDWOB(c&$s+S;u(aylJYP!)c1#r&sk3=%K5Xsg(f+YTu`)mZ{qM?K1T!iuBi)`UYg^ z=gQTyR7L*^^)!Vm6?6<3uZyOu_Z;`@rVr3W-mkxXKuvLSdmUbSu>6>+tEbLTo5HD z4Efw#+6iXqm^G@SPVvzBca|>k&|;pYo6b|)owInnG5YZW`g6TwJ}u`AJ##)CYBF@< z0y=DD=qU@-BNT2gplQm`n;xVUm!YkN>KujPi_|4&F4sUiH1=!e#fg0IOs{oafz6&y!ym{1M2Fmm2_xa%8O4%d_&~i)FI`7x+X?#fb!u~fDcG#Fc6e0_y=6U}4ZG_I zO=Y|5d77@9x}(y_N9my2oe#-xQwZLmt~t7I->5b_@wqmBJ?0^5@?|1jxbXWj`Dv8O z<&?Z1Ly&KS$+qm2^&W;U6xa zN&$W`fJVETz=N6n9rB12`3ta)!L$Q%6Y!`FW^rt^Q`T){KQ2&>eu}4YY!>hbY!L`# z@T|3-5>Y7fj6f*hIe`eke+1ls7X@MfTLt0)FAF3AwlR$6D-tUe^12aw^LxWiS#^-@ z6Q~c^Af*1vq2& zKU3vd$ayJp0dQI13gDW+Z-74q{sP<(xCyw;z;9$&_hgv~uTH^0zK4%A{+#6Y+AJsX zT{f5*Q+CPqKmojf9)A>9PJ19}Sd0`w8+3&;={02nMV1Tb7+1Yooc9%~F_ye-xQ zK$bu@AeW(#7xHLqkNGy3g>2a=YYNI22^0fL1%9@qsp0FguzrIg z@QA=dz&ZwxnfS#JEk%|BHZTn5<+B3txD96cY_?O@YGiK_SPOVcKm(o;*l56GJtwjW zMgAkO1@NN4(}1l4&jDT*cmc3YU@PD?fmZ+5vdm1~d2X z+9~TDWbYK%3D_;L2k^eYhky^w24vpD{fP2tWB8PdFqmOw% zsPAimuK@=I4gtPpFz@*sW}x%$54M;pkJu^eC4 z+TgLSK+f4>T?1SY_ycfB;5y)nz)irf0=EIb3Ghozv~>SqDCSk_1bD97V&?vaow8iW z|3@Gga9bb@;GmZmP-P83b%7{=zd$S?Kp?>bafu`Ylt3yVM1WtJqFD(Os1Jw`;1{K+ zL?i>h8D+Vtk08bdGp})+@|gU1_4ph!!B&VYLb`0XmHwT(azKs$lnfc66Xk`)coQ6K}*8NmDhAV^m! zG8E9A!MqkV6428IGqb(zlr;v~eFVk>`Uy+~WC-K{26{yDAcF-807C@|0mB7~0V4%U z0iy*f0AmGa0LI(ku__^%wpjcQ7%j0Zf%$+O2J_n1B0!!EW^v@(DQZ^9RA31#0~89Z z02F2O`PWpr8d4%f)&fceG@x8yBVf9~Ccq4VEr3}9{Jt5@+H8U6s`kIRA}^rGJb|r% z1q|lJu?MM-DtX8TGxtmEl=V8wFBRAh@CxhztYGk%D&K*uk|H|+YXtTH)(Y_JYcv(> z1^9h6f=2~D2W%Ah3h=nV{=vBa+${19ifmypZ>sShG^p06Z7?(YtevtBBl~%QqktC# zP5@pKI0g7GfcHOs8;-{DiWK2@;0Rt7xCnS%;0oXkfolMtz#o7e0@nd=3*2O&^WVE7 zw^3xLKs9=Oh$dt=Lwi1u?x8+{4{b1u<6} zyO2RrWEWtF!25t<0v`cJ2z&|{CGZ7cjKE&NIDrEm$OMstfQbU%0kQ=S111UZtDZDB zc>*T@`2wc^mH@x_NrM#T@bTX)fOC){DRL1|B5(yzDsT-@F7O9ny1;e741t?~SpuHh zkl7;D=#4mv&IKUo(Ouz>M*?^A(asi((Oyo7fe=DVV{k#f1nAtBSzYzI*1&RUt z1xf*53se9O3h?{2G>&ftDgoaM%mo}a`=6Pv`H&x_$U?v|fyICm0{k{Ejpn2Pzlcll zv%o6A8G%OtzX*8NL(YqA09+J!9B^6S3BXl>rvTRko(23a!0+_Zl>I6265zVo|I7k- z8FE94ybAb7fZz6|N^T4AJH7;tN%qQp3s7C)U4Xy9Eb;5wkGz)e7Nf!lyIfok-!C5@$(fWHBc)mkJFMcN7|K)OIE zpo2gJpp$?b&_#gXcc$@n6Nm@g2jKG`zw}H+dPBLPJMV*n)#z5J*%jrwS^Jmt2Slg@Nb_2>L- z3^3CMlU-@2tXyQzVd%`|3jp(MFy$B6DXS3K3k8Y+o`*zAAxi`*080gC0K5W~fE5f6 z`BBFMSZ#xuibw2}wE)@c1Qt~dphcFT$OeIBfX4(@05%D%20S6K7VsoPxgT}7DFj;B z&)8rl>p4z&O#WlY|Bsz-Z3et3@FZZX0KZ61RlY3nJYbu^i-6Yz_-%3;M0|E~g&?k_Oq{!!hPXxXKe8wOR zNYJEyX@gm&d+n5U5ass^dt~cd%8=(r zonHVaY%t|d+9~S-vVRu1JPg;LXGHj&cpBp`0>1;!3;YGRC~yOCnZdm6ejD(s4Q48S zvr|?zdbyiM@rMC({PBnUB}D=Oe+wwUO@UCrEdhSTo@%`(*PaSDpqfAoz)v8afS-Rj zMUqe?P#^^mBv2a=EKm;+D$o!RF3V^3Ume} z3v>gd2=oBd66ie~`(GWAz9>>pfd3vqi>QIXAV4F5p@1d=BLK|=Mgv+1j03bJp!2^U zEryAZ)?9?aY%*=_l$C?*bb&lT2Y~`WCxJph7lC3xH-;=8XLsu3{jaAjW~9A2HGuQ) z=lr!+KO0PT2B(&D_6*cF$Oe-=#76 z0?Ppt1y%vF1s(xR5?Bw&Ghp_=4Ul{(@;JZ}cmhx;@D!kkA)6NmH+VzyJIw~OILhpl z^#Zah1hxV^4~V=1nJMrZpi(Epzu)$2lLOW&cMD{}hdpwXO zA|C>l3VZ_aGK}GIaPvGgj+Hi;ajdpe)?Q>kB5(k(j$tuZu%7y;f(;BF7E{AxoSeh? zKVX2(Hkj-!cFOt@*-r@^2Ry^@09WuV_0b6aV}q&SMLT7kLHVr=o;Ezde=)!|76voG zYn-w;`!WW2!v>S>vs2cu$lf9FJK$}BzX0zF+yLy%kODZ& zFpMX>4&bN_X2Opn#q(bu`9InDRwKYEfu?}d0xbY%8RqjixY;IJIOlCJ5ID7C2Tz~l4 zV)C7Kikj^+g9i$X1Oy3;0R#*1KYD14p#l>D;Q~2;8V1bqFAw6DA_ahGfkHs6KrtX* zpcIfOPyt95m;p!;;QtBn^+zp{xhPVHp*Js}1%UcCnB~*ZPFahP-I$>hmv2ISRAX}+ zO!+iBWqDD)6~igDN7@}tH4G;cZPOc0k`)> z74)>hRM6W_SxTPz5yq10h4C$WXutfsueQ0%HLa1Tq2H0y%&@fyn@iVGvLF6ayZs$QCo@ zC3ec1X7a6afeOG3fti5W4E#SjYYt$Z4W`BgcFKAX*$)XU=Jii2V5!J56j>p#60k<# z5x{x@4cI8~7+|x&6M&}#o(4Qe!GkG(9`d3Tc?s~cz$<{)1YQSh7w`ezVpz$G<88ou zHkie+%T8IlIh*$X4@5p>S!;bF@G0O6fiD631oi{I5jY6=PT+gM5rH28#|@aB?*!zO z6!{r&R^S)F1%ZozD*{&mzX|*f_)FkA;HJPo)W`eZJ^A($b5I|FAH!r`g#Lg)8_XgM zvQw5qcBnuYpoTysAX*>>5MKqf|0O_@rASRcErHsAdII$UjRYD4nh7)qv=nFsXd}?p zfX8Yt(g8&}3v>Z=7q}15OQ1KPuRuS*0D*ykAp%1IBLIB=F%mLHii`zJ5Xb~%Gd#%a zB?pjagIO>6oEp#B1;{S6!DJWNDXSRSr4&3EpbRoyiaY?AB~S^NE8qbv5O@&qkicTV zQh{ZF6#^^sasRP~<$j*>M^I$F4Q9$8wNusxWIryj39v=rNx(A#&jS7<@B&~f!z{D^ z{TH&$2u+0<>1%e%dL7x@1$=WVVJ;^)fUj+2K@i3qn)%m zA-}6YH$V@8o`CxW`T+V1WB>*+bmx%{1`M;oEQ=9HwWR!!$RA_pTVnwe1Tq2H2I$)! zYM=Sv>iD(h|EUzZ(0C|}L>P@Q17QgQ|G$ii^h78`=!!5Lp%kGlLSKXh2vZP>5ytX< zOSNSpj6j%#Fa%*HLVE-+!d!%92=fqTBXmTlK$wcK2w@_^DuiDA-XM*>Ka%_dD5dxp zNDBOm9tHl9iUR+RM1g-EqQJj4P~b=G6!5;fhh3P9t!+Sg91OQpukTcDDZ;@3jDZ$ z0^j0O;5&B;bcfD?Z;~nStuY0@^Yl>Un?VYEdq#opekkzW28F8i!DP?&|lhe1m5fr$biO(^j0IzDKv*`X-eUAH)@?lkUU$QUFiTDsNMkX2EoTnHqD?JuBBXuvY4U$5pfrIi}pyI)dqMcT5Gl^6tuy zYSk{YMY9rWh>8ZCbXS&M!Nm*iv^f3FG39dQ++{V=?BS=}?JaGee3$D^$El9|JFS*0 z_s(RDp8JPiAkU0-Cr9fefBLzYOR9LX-gjIzag|DP+6ihoWWe8kF5UbDwZkx38yI*U zgH5}$T+^^0s*=1ic$w~u^lwswYCn9JH({@%!+ui1VaKa-c)hKnmb)D%Rf7AD1$fHN z*J&qdLZ-O=&Ey`to3~L_uAlC*sFrOqWig(-D@!Myq~a&;w5G13cP4A;hfgZy`tfet z$#$m7GPL8Aiq{v}&fjTuU8nC%#_6$fnC4&Z=IN(sGcvWr>3;Dja^dbGQ)0nq@8b18 z(|`+g)X%EEYg8;Y&82$UX_XX}mj3UiH}^?M4eUH-hfGk zc?E^J`tP&KLeol7dUdjjvD;2s-I%uQopn`cAdb%7Mw+M*rTFOVt*Q67R*^cir3xnE zBQ>?pL6k_%Uk=jE&#AhJe8BcbmRFP)mlk9dmNn1In%1nKWM)w|9mI9XIckPwvR-~p z)kkY6$$DN#YGLG7nQ~HveDLr#)UVD^4XMIeI`}-5;{&>v8X;Mr;?V#IeE@Ex)2*kT zSAkAGu+t=@tx$nS)af1wO)4;JKl|b3lR5H57Q# zDe$?50-tLr@JWUOPZ|Y2SW)0 zo^#dn4ZSz`%z^kWTp;4U!rZK){<&GDMbsW5K9bf&@9Z6)NFTD877$X)kBjNOJ>z2t zUI_@P2T1J|UyI;oKuAqTm&J*JA-=@G&?`0Qs}vy#p(%-cjphx_Eh{gWnpK{gX%!a~ zQTw4r>GOP}Lt<)HrNX34Ar+KDX*%UdaGD;_P6ap`>0Jq~CVo7yJ{A|+!fC3ht#^GM zT-%h;1LH&Ep|N_m4vKe-^gWmu`hKAwUnA=Ii$i1Lxz8KgBda{CFe|%RX>LhzDNT^c zPgxQg?KJsu+Do6Xjx+t?c3Ezku%PPm7N0*H+5kmU^zP#Usm)9c-e9|IS=RJi)cUU# z7H3hj<6LKj9-QP#@Z~HG&1!WoUzA$;^bcD6HGZ1i=k?>t)*AKt_s`1CEkvTio2=(w z3`q7xzZbfPUmp#xDlF2pHE1>5n9`63MT0jmjaRl%-_tt zP4w=@t`uF=n7%+|a_ciR^y7YA{C8+g^lke)G$w$p!dsWeT-Vp?X6U!cPQHNl#_6>@-6AO{&^JFJY(#IrzFgt%tgr+p_fahuo4e}!bAN^2*UZ(> zH#jG3O%o?ybyH@VBQRdKXypo_?{Ia6|`!e9OP=^TVEVLxtZTg9^}Mh;kBLI=S|U$)`4yv+MjBj>7!-+Z5=>o!G%p(XiN`b7W0RQ+D{2=`rZa|kyhI#-AKMWiF6DN0@$78pVq zzBzsor(^Ou#O!amrLyBK)0IgP@&24!p;u3F)%Lxc6tQUnwdOu{c0^4Im9ryK zWB8WI8=9Y+Ral;%SynN1Y8HR)W47=0*%7hfb@@)pTm8NP1L&tq?p4&=EU&oqfvi&6 z;g~9DO=M*T*7Sufk2qM%e5afa_Ajpviu0?WY@PW^L@c!ip0X_>u{ML(zq~Z7plGf6 zTZcC=cY0P~1s#=;rUP@t%)nINyloNBFOT6nHgBleJ^K`umE`8o*^8P9*PT1pXh!XL zPwiZzj`_T~H{8>;bn~5JZ@k{W$dx#XZx+3-p#@V*3UdeKa_h_t5d!}%3X_2aWqJe5g5u9% znxt87ceL@mYi5nu7?Tsq1@CN{b)vpJvqqFZXI8BLFrc2V`K%hPUNWCGrW5Yv12tlu zYc0Ng)dTB9wsNfUy;V2zXpE!3Z$qcZY3@!ODgD`Q9`TQi27G%5cwXT5&2eE^95j9nKf5O#?X13?~3WHKCOEcpVdu@ z_ToRIl4v{+>76?wQ>j_y6FVXkDcqvq&qXTq)i+#jz2zB~+t>T8$mDGEHC{SYM7$Lk z?{99gb(c7Ik{{n}>-ll+@KRcXF250*pj<)4RV6a>toO zct%BGc>$euatnv%6qj;C+tdhik~@W3K<<*{PNk5QcIzVh7C%rZJ5=N9GA4q!N>q_j9E zx2!C)ym(43&Aq{Zf16U~LDkgU(#f>)N{h3p8Sp$kf4n=&p9@y#UEkBuYu|@~@xD*T zyAM@RYr|Wc}rxjk6Q&>=v$@^O_4Q43Vq%w1gD~ih5^s%qq4a|pUy^%U?mOGMG zv?=J;5nlwlX+>A+F5kFoH8=S0wMR)sW?ouV(eRw&qP&W-g5sh~x-Ka#pzWzrulmLv z@5ck_6Z_oJ7(=|?x6U1(R5e(Ql2TfPxQe-BK*vFM90r`W-yPY(j5nyPBD;*P7)E8% z=4&LRO3W5u&z!2lN#hqna`Bz(Zz?{ z$yCRRL+%9gDd!5>u%;adjP`wW$UUYOweFmH-JN1S$V=Z9Ird#(bTzBB&b;nUOl-~T zE(|r%R>23WEShiT3cckmS54pc>+XFm{Fd|5{il9Z3bn`lQlqHa6!tcXN~Cb1QB*x- zKiMEEN&4LS#~%X&1I*(pnws551EXnmb2W58rBtnI^euwN8%H%T-vg#YB3X=nrD2pm zpbo(P(rzFszS1zNmh{EZs;WApEMJ`2B+8fBB>J;S=3}^YM=^L-REi$BI$Alh_1M+X zsTAg{j&9_~56<+w710SONNekTYR5g>cYbwrU{~{TT-wEsoDQsA&7u$H9*C|7qhrdi zL6Lgr{^-DfHN14_HtE&VfsK6Y4@B4RK@CK|7adbSfSbUoq#S%HFxgiyD0c0G)U5NZuVd?)Z^6>hyxSM9c=X5f zmu3_F(rF0oI1rmk1($sjn;gU7bxkiQtH>%Wm_Lh3i{o#~Ug{B-NI~_COLh$NHR>7nR35eZ{N+n=4PyBLBOi{6 zCeh|ql38Fbb?LdI4%r$PXFdu`3uphi@LDv6`FilyxW+W(oUL)K9rJy!Z;ktPV>~~U z{D1Fqip*V(ALrxtrUQxnq?lZ?$R U3@j{?j8iSmEzLGxVLX%#0KE?s@c;k- delta 64 zcmbPsn{nE0#tn-Z4a*FTERz$aElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN U4UJL_l1$Ug6H_){VLX%#0HWg*Y5)KL diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index 22d86d2d5..26b787814 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:41.259375Z", - "iopub.status.busy": "2024-01-10T06:12:41.259181Z", - "iopub.status.idle": "2024-01-10T06:12:44.627929Z", - "shell.execute_reply": "2024-01-10T06:12:44.627193Z" + "iopub.execute_input": "2024-01-10T14:58:18.668950Z", + "iopub.status.busy": "2024-01-10T14:58:18.668761Z", + "iopub.status.idle": "2024-01-10T14:58:21.901115Z", + "shell.execute_reply": "2024-01-10T14:58:21.900497Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:44.631157Z", - "iopub.status.busy": "2024-01-10T06:12:44.630753Z", - "iopub.status.idle": "2024-01-10T06:12:44.634288Z", - "shell.execute_reply": "2024-01-10T06:12:44.633678Z" + "iopub.execute_input": "2024-01-10T14:58:21.904331Z", + "iopub.status.busy": "2024-01-10T14:58:21.903708Z", + "iopub.status.idle": "2024-01-10T14:58:21.907185Z", + "shell.execute_reply": "2024-01-10T14:58:21.906573Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:44.636787Z", - "iopub.status.busy": "2024-01-10T06:12:44.636307Z", - "iopub.status.idle": "2024-01-10T06:12:44.641333Z", - "shell.execute_reply": "2024-01-10T06:12:44.640736Z" + "iopub.execute_input": "2024-01-10T14:58:21.909522Z", + "iopub.status.busy": "2024-01-10T14:58:21.909178Z", + "iopub.status.idle": "2024-01-10T14:58:21.913887Z", + "shell.execute_reply": "2024-01-10T14:58:21.913417Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T06:12:44.643861Z", - "iopub.status.busy": "2024-01-10T06:12:44.643521Z", - "iopub.status.idle": "2024-01-10T06:12:46.354519Z", - "shell.execute_reply": "2024-01-10T06:12:46.353792Z" + "iopub.execute_input": "2024-01-10T14:58:21.916187Z", + "iopub.status.busy": "2024-01-10T14:58:21.915888Z", + "iopub.status.idle": "2024-01-10T14:58:23.515233Z", + "shell.execute_reply": "2024-01-10T14:58:23.514352Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T06:12:46.357667Z", - "iopub.status.busy": "2024-01-10T06:12:46.357425Z", - "iopub.status.idle": "2024-01-10T06:12:46.370136Z", - "shell.execute_reply": "2024-01-10T06:12:46.369486Z" + "iopub.execute_input": "2024-01-10T14:58:23.518555Z", + "iopub.status.busy": "2024-01-10T14:58:23.518070Z", + "iopub.status.idle": "2024-01-10T14:58:23.530275Z", + "shell.execute_reply": "2024-01-10T14:58:23.529672Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:46.403886Z", - "iopub.status.busy": "2024-01-10T06:12:46.403279Z", - "iopub.status.idle": "2024-01-10T06:12:46.409469Z", - "shell.execute_reply": "2024-01-10T06:12:46.408796Z" + "iopub.execute_input": "2024-01-10T14:58:23.562754Z", + "iopub.status.busy": "2024-01-10T14:58:23.562321Z", + "iopub.status.idle": "2024-01-10T14:58:23.568030Z", + "shell.execute_reply": "2024-01-10T14:58:23.567462Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T06:12:46.412199Z", - "iopub.status.busy": "2024-01-10T06:12:46.411701Z", - "iopub.status.idle": "2024-01-10T06:12:47.129236Z", - "shell.execute_reply": "2024-01-10T06:12:47.128626Z" + "iopub.execute_input": "2024-01-10T14:58:23.570490Z", + "iopub.status.busy": "2024-01-10T14:58:23.570110Z", + "iopub.status.idle": "2024-01-10T14:58:24.284389Z", + "shell.execute_reply": "2024-01-10T14:58:24.283694Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:47.131854Z", - "iopub.status.busy": "2024-01-10T06:12:47.131458Z", - "iopub.status.idle": "2024-01-10T06:12:48.015833Z", - "shell.execute_reply": "2024-01-10T06:12:48.015271Z" + "iopub.execute_input": "2024-01-10T14:58:24.287313Z", + "iopub.status.busy": "2024-01-10T14:58:24.286844Z", + "iopub.status.idle": "2024-01-10T14:58:24.969714Z", + "shell.execute_reply": "2024-01-10T14:58:24.969125Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-10T06:12:48.018530Z", - "iopub.status.busy": "2024-01-10T06:12:48.018300Z", - "iopub.status.idle": "2024-01-10T06:12:48.041148Z", - "shell.execute_reply": "2024-01-10T06:12:48.040614Z" + "iopub.execute_input": "2024-01-10T14:58:24.972731Z", + "iopub.status.busy": "2024-01-10T14:58:24.972359Z", + "iopub.status.idle": "2024-01-10T14:58:24.995317Z", + "shell.execute_reply": "2024-01-10T14:58:24.994716Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:48.043328Z", - "iopub.status.busy": "2024-01-10T06:12:48.043129Z", - "iopub.status.idle": "2024-01-10T06:12:48.046599Z", - "shell.execute_reply": "2024-01-10T06:12:48.046087Z" + "iopub.execute_input": "2024-01-10T14:58:24.997904Z", + "iopub.status.busy": "2024-01-10T14:58:24.997492Z", + "iopub.status.idle": "2024-01-10T14:58:25.000793Z", + "shell.execute_reply": "2024-01-10T14:58:25.000227Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:48.048804Z", - "iopub.status.busy": "2024-01-10T06:12:48.048609Z", - "iopub.status.idle": "2024-01-10T06:13:07.565893Z", - "shell.execute_reply": "2024-01-10T06:13:07.565174Z" + "iopub.execute_input": "2024-01-10T14:58:25.003088Z", + "iopub.status.busy": "2024-01-10T14:58:25.002801Z", + "iopub.status.idle": "2024-01-10T14:58:43.774968Z", + "shell.execute_reply": "2024-01-10T14:58:43.774333Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:07.569479Z", - "iopub.status.busy": "2024-01-10T06:13:07.568916Z", - "iopub.status.idle": "2024-01-10T06:13:07.573445Z", - "shell.execute_reply": "2024-01-10T06:13:07.572829Z" + "iopub.execute_input": "2024-01-10T14:58:43.777939Z", + "iopub.status.busy": "2024-01-10T14:58:43.777521Z", + "iopub.status.idle": "2024-01-10T14:58:43.781566Z", + "shell.execute_reply": "2024-01-10T14:58:43.780933Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:07.576084Z", - "iopub.status.busy": "2024-01-10T06:13:07.575635Z", - "iopub.status.idle": "2024-01-10T06:13:13.160325Z", - "shell.execute_reply": "2024-01-10T06:13:13.159580Z" + "iopub.execute_input": "2024-01-10T14:58:43.784229Z", + "iopub.status.busy": "2024-01-10T14:58:43.783774Z", + "iopub.status.idle": "2024-01-10T14:58:49.268183Z", + "shell.execute_reply": "2024-01-10T14:58:49.267513Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.163818Z", - "iopub.status.busy": "2024-01-10T06:13:13.163341Z", - "iopub.status.idle": "2024-01-10T06:13:13.169098Z", - "shell.execute_reply": "2024-01-10T06:13:13.168477Z" + "iopub.execute_input": "2024-01-10T14:58:49.271363Z", + "iopub.status.busy": "2024-01-10T14:58:49.270946Z", + "iopub.status.idle": "2024-01-10T14:58:49.276508Z", + "shell.execute_reply": "2024-01-10T14:58:49.275890Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.173106Z", - "iopub.status.busy": "2024-01-10T06:13:13.171931Z", - "iopub.status.idle": "2024-01-10T06:13:13.286084Z", - "shell.execute_reply": "2024-01-10T06:13:13.285356Z" + "iopub.execute_input": "2024-01-10T14:58:49.279388Z", + "iopub.status.busy": "2024-01-10T14:58:49.278949Z", + "iopub.status.idle": "2024-01-10T14:58:49.393691Z", + "shell.execute_reply": "2024-01-10T14:58:49.392953Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.289090Z", - "iopub.status.busy": "2024-01-10T06:13:13.288656Z", - "iopub.status.idle": "2024-01-10T06:13:13.298785Z", - "shell.execute_reply": "2024-01-10T06:13:13.298212Z" + "iopub.execute_input": "2024-01-10T14:58:49.396661Z", + "iopub.status.busy": "2024-01-10T14:58:49.396256Z", + "iopub.status.idle": "2024-01-10T14:58:49.406585Z", + "shell.execute_reply": "2024-01-10T14:58:49.406016Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.301337Z", - "iopub.status.busy": "2024-01-10T06:13:13.300949Z", - "iopub.status.idle": "2024-01-10T06:13:13.309539Z", - "shell.execute_reply": "2024-01-10T06:13:13.308933Z" + "iopub.execute_input": "2024-01-10T14:58:49.409138Z", + "iopub.status.busy": "2024-01-10T14:58:49.408770Z", + "iopub.status.idle": "2024-01-10T14:58:49.417093Z", + "shell.execute_reply": "2024-01-10T14:58:49.416454Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.312077Z", - "iopub.status.busy": "2024-01-10T06:13:13.311693Z", - "iopub.status.idle": "2024-01-10T06:13:13.316598Z", - "shell.execute_reply": "2024-01-10T06:13:13.316047Z" + "iopub.execute_input": "2024-01-10T14:58:49.419692Z", + "iopub.status.busy": "2024-01-10T14:58:49.419308Z", + "iopub.status.idle": "2024-01-10T14:58:49.423888Z", + "shell.execute_reply": "2024-01-10T14:58:49.423233Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.319161Z", - "iopub.status.busy": "2024-01-10T06:13:13.318787Z", - "iopub.status.idle": "2024-01-10T06:13:13.325198Z", - "shell.execute_reply": "2024-01-10T06:13:13.324553Z" + "iopub.execute_input": "2024-01-10T14:58:49.426320Z", + "iopub.status.busy": "2024-01-10T14:58:49.426003Z", + "iopub.status.idle": "2024-01-10T14:58:49.432389Z", + "shell.execute_reply": "2024-01-10T14:58:49.431778Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.327754Z", - "iopub.status.busy": "2024-01-10T06:13:13.327373Z", - "iopub.status.idle": "2024-01-10T06:13:13.443959Z", - "shell.execute_reply": "2024-01-10T06:13:13.443366Z" + "iopub.execute_input": "2024-01-10T14:58:49.434787Z", + "iopub.status.busy": "2024-01-10T14:58:49.434428Z", + "iopub.status.idle": "2024-01-10T14:58:49.548812Z", + "shell.execute_reply": "2024-01-10T14:58:49.548145Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.446679Z", - "iopub.status.busy": "2024-01-10T06:13:13.446417Z", - "iopub.status.idle": "2024-01-10T06:13:13.557900Z", - "shell.execute_reply": "2024-01-10T06:13:13.557249Z" + "iopub.execute_input": "2024-01-10T14:58:49.551386Z", + "iopub.status.busy": "2024-01-10T14:58:49.551035Z", + "iopub.status.idle": "2024-01-10T14:58:49.660719Z", + "shell.execute_reply": "2024-01-10T14:58:49.660055Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.560589Z", - "iopub.status.busy": "2024-01-10T06:13:13.560140Z", - "iopub.status.idle": "2024-01-10T06:13:13.670534Z", - "shell.execute_reply": "2024-01-10T06:13:13.669855Z" + "iopub.execute_input": "2024-01-10T14:58:49.663182Z", + "iopub.status.busy": "2024-01-10T14:58:49.662969Z", + "iopub.status.idle": "2024-01-10T14:58:49.770975Z", + "shell.execute_reply": "2024-01-10T14:58:49.770314Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.673234Z", - "iopub.status.busy": "2024-01-10T06:13:13.672760Z", - "iopub.status.idle": "2024-01-10T06:13:13.783675Z", - "shell.execute_reply": "2024-01-10T06:13:13.783105Z" + "iopub.execute_input": "2024-01-10T14:58:49.773379Z", + "iopub.status.busy": "2024-01-10T14:58:49.773175Z", + "iopub.status.idle": "2024-01-10T14:58:49.882826Z", + "shell.execute_reply": "2024-01-10T14:58:49.882220Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.786289Z", - "iopub.status.busy": "2024-01-10T06:13:13.785901Z", - "iopub.status.idle": "2024-01-10T06:13:13.789366Z", - "shell.execute_reply": "2024-01-10T06:13:13.788812Z" + "iopub.execute_input": "2024-01-10T14:58:49.885292Z", + "iopub.status.busy": "2024-01-10T14:58:49.885088Z", + "iopub.status.idle": "2024-01-10T14:58:49.888620Z", + "shell.execute_reply": "2024-01-10T14:58:49.888080Z" }, "nbsphinx": "hidden" }, @@ -1377,70 +1377,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06ab656526714167a212ab573f39a6e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c41a3321793d4d608d8a59946471fbcc", - "placeholder": "​", - "style": "IPY_MODEL_172b44924b8b475cb3b836b0f901ac71", - "value": " 129k/129k [00:00<00:00, 6.45MB/s]" - } - }, - "0834d56d62714c28b3aeb79b3ddc680d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_228b6665d63741019e33f90d71f5f3f9", - "placeholder": "​", - "style": "IPY_MODEL_cd45f60e3ff442c6a9dd8562909119d3", - "value": " 16.9M/16.9M [00:00<00:00, 254MB/s]" - } - }, - "0fce71ef080443ad95ba0ab7ab1fde8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_202693369eef41eeb079e15b2dca6fa5", - "placeholder": "​", - "style": "IPY_MODEL_111a40f2a0704b5cb8269c337a9d4501", - "value": " 3.20k/3.20k [00:00<00:00, 537kB/s]" - } - }, - "111a40f2a0704b5cb8269c337a9d4501": { + "0074814fbf264ac4a04bdeb51abcaab2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1455,22 +1392,29 @@ "description_width": "" } }, - "172b44924b8b475cb3b836b0f901ac71": { + "02d54a93c71f4717b776780ee1334673": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df30265328c142b1849ba3ca47b68fe7", + "IPY_MODEL_6bbd465e2f4046028edaa5e0082d76af", + "IPY_MODEL_e2aba32a91bf4f9dabd9e25f75f60e37" + ], + "layout": "IPY_MODEL_bdf1d068064c4e37bf3b0a036bd0710a" } }, - "202693369eef41eeb079e15b2dca6fa5": { + "05a419d84fc2472b8d03ecb51099197a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1522,7 +1466,7 @@ "width": null } }, - "228b6665d63741019e33f90d71f5f3f9": { + "1881dfe59f184d4ab3ce997d6b71097d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1574,59 +1518,206 @@ "width": null } }, - "2498f913b927410bb9ae4dcefb918991": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "2177d9eef2d14179bdab4a9fd9c1b915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "284824c022eb47e9a33898e1ecf7dda3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5a3fe8fa0d848ec9ec188729948a377", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3454223caf744f1fbf4c19967e38db8f", + "value": 16887676.0 + } + }, + "294a8ffab7f44974b28a07ffbb94882f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f781d9e0307c483fb140677b5258e2d6", + "placeholder": "​", + "style": "IPY_MODEL_460394fe32074436800a43db6ccac64e", + "value": " 2.04k/2.04k [00:00<00:00, 324kB/s]" + } + }, + "2c5bb790c5544dc296857be6357fbe27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b7b112df9d2e4aec93edbbc0d3c2d932", + "IPY_MODEL_6ea830a76c164f35aa74845442e1a10d", + "IPY_MODEL_fc5e50b0328147c4ab04b99bb3f04a3b" + ], + "layout": "IPY_MODEL_1881dfe59f184d4ab3ce997d6b71097d" } }, - "25c64fccecfb4812882e32cd62028cda": { + "3454223caf744f1fbf4c19967e38db8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "34b1268d4de040f2a5a31699ef1ede5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3c821907cbd14c19a78c25554493358d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df669b30fcd04ee4974fd952553f376e", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b2afdf832394f58976ee58105fc9ac4", + "value": 2041.0 + } + }, + "41828383ccc742919bc29139a2ba5bd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "447ff7ecb3fc411ea934e0d55e5af3d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "460394fe32074436800a43db6ccac64e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "48fb5229f100484292916171f30a77b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ec51dfd68c34f43aec5b39ee7b3b771": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1678,7 +1769,107 @@ "width": null } }, - "28125c9aef0d4dc093ba42b225b7c7ef": { + "541e0c9185044d10b9df997de483919d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9b85abadb14148da809553593daf41d5", + "placeholder": "​", + "style": "IPY_MODEL_a82707d6cf75449fa0bcd2b98e10b3a2", + "value": "classifier.ckpt: 100%" + } + }, + "5d6a6ab20b864187a3b7662c9dc5a7ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8e622334e195432cbba4e4d65e702507", + "placeholder": "​", + "style": "IPY_MODEL_41828383ccc742919bc29139a2ba5bd6", + "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]" + } + }, + "65d244fefe2e4b09a600a1d3a970a2e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "68fc1f991eb44edba2fc5bfe6e6edfd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2ce8e57fdb04b0798a6c4c16ae3467f", + "placeholder": "​", + "style": "IPY_MODEL_34b1268d4de040f2a5a31699ef1ede5c", + "value": "embedding_model.ckpt: 100%" + } + }, + "6902ffa71e7d475d9583c90ce2b2f911": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68fc1f991eb44edba2fc5bfe6e6edfd6", + "IPY_MODEL_284824c022eb47e9a33898e1ecf7dda3", + "IPY_MODEL_93ffb5dd7879400f9e7f477b93c509d0" + ], + "layout": "IPY_MODEL_d905e22f02584b999d73cc80ffee0110" + } + }, + "6bbd465e2f4046028edaa5e0082d76af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1694,15 +1885,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_25c64fccecfb4812882e32cd62028cda", - "max": 128619.0, + "layout": "IPY_MODEL_c0dfa3473ed64fa7a0044c0f437a6ff5", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fcee34ed095e4db6a88e4559efaff29f", - "value": 128619.0 + "style": "IPY_MODEL_2177d9eef2d14179bdab4a9fd9c1b915", + "value": 3201.0 } }, - "2ca02285df6a43f6900cce3b23ad30aa": { + "6c17a0abb12f4f9a9c6a52271fe66768": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1754,89 +1945,46 @@ "width": null } }, - "3223b85e60f248499b88202f60b03b49": { + "6ea830a76c164f35aa74845442e1a10d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffa606c5f25748859eb966e69110de72", - "IPY_MODEL_28125c9aef0d4dc093ba42b225b7c7ef", - "IPY_MODEL_06ab656526714167a212ab573f39a6e8" - ], - "layout": "IPY_MODEL_531bd00fa5ad4184b070387d6f1fcf62" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ec51dfd68c34f43aec5b39ee7b3b771", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e2059403b3c141c78b7dea525b593b9c", + "value": 128619.0 } }, - "34bc9fad69fc44a9ab325fff185f11f9": { + "8626655c6a774bc6a315f1cad23adca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "4162f5fe77e74a6482908480569b3dd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ed5b9304939b4878afcb87cc1e060aae", - "IPY_MODEL_fa64a22ea146494ca2914d3484db6765", - "IPY_MODEL_0fce71ef080443ad95ba0ab7ab1fde8c" - ], - "layout": "IPY_MODEL_f99279c3718c4390825bb04cca778044" - } - }, - "5133c28de8264b41a420172eca319163": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f7fda0a4e234263a3618a65ccc48db1", - "IPY_MODEL_5d33a6963baa4b95bba45ab0b9e33c8a", - "IPY_MODEL_0834d56d62714c28b3aeb79b3ddc680d" - ], - "layout": "IPY_MODEL_2ca02285df6a43f6900cce3b23ad30aa" - } - }, - "520a1c7807ef42ee92526b78323c1d3b": { + "8c44830cf4a14c1bbbf2a49980b485d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1851,7 +1999,7 @@ "description_width": "" } }, - "531bd00fa5ad4184b070387d6f1fcf62": { + "8e622334e195432cbba4e4d65e702507": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1903,7 +2051,7 @@ "width": null } }, - "557b8d9ac1ca4cf68a90a2259b2a61dd": { + "920a9387b971454687a4403592f0c76e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1955,31 +2103,7 @@ "width": null } }, - "5d33a6963baa4b95bba45ab0b9e33c8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d003c7d9dffe4306a34d02339a448a43", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6960472d0e964654a68f2ad54c93a2b4", - "value": 16887676.0 - } - }, - "60d401f5c6c74a328a80e74f9ba2de83": { + "938e795c39e94f739123942e85645be6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2015,234 +2139,60 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6960472d0e964654a68f2ad54c93a2b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6d27aad7fad246ef8d47399f2e4310da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "72aa3b5eca7d46d3a61ae6039af64c8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b970971e982644df933a6fc215f217f9", - "placeholder": "​", - "style": "IPY_MODEL_998226c5bbfd44e3a06638c497e2daa1", - "value": " 2.04k/2.04k [00:00<00:00, 328kB/s]" - } - }, - "850228d498cd4b3e87f32f1257313d81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "86951f39c00e4109b4ca60ffcc939b40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8f7fda0a4e234263a3618a65ccc48db1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ebe77964da2d45548943f4419f211879", - "placeholder": "​", - "style": "IPY_MODEL_fdeba1c93e6747be9c5211333d0768bc", - "value": "embedding_model.ckpt: 100%" - } - }, - "93b351e64c634bd99c642a728e59c557": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f6fd30592fee4f22ba0d241c0e2862e2", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_850228d498cd4b3e87f32f1257313d81", - "value": 2041.0 - } - }, - "990db9ddb0344d739ad0a89adcc4197e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eeb9be4c886941159edec7fc558e7a5a", - "IPY_MODEL_a4d57cf88a0e4fb6a5afe457b792d93e", - "IPY_MODEL_dbe436d691f14d889ecb1e75dee91ee6" - ], - "layout": "IPY_MODEL_e5513548b6dc4815a177c264a29d47eb" - } - }, - "998226c5bbfd44e3a06638c497e2daa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a4d57cf88a0e4fb6a5afe457b792d93e": { + "93ffb5dd7879400f9e7f477b93c509d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c6e0bbd765f348708cf3b1437c7cb9a8", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d27aad7fad246ef8d47399f2e4310da", - "value": 15856877.0 + "layout": "IPY_MODEL_e454c1f736c9495aa3bedadf94b43954", + "placeholder": "​", + "style": "IPY_MODEL_48fb5229f100484292916171f30a77b5", + "value": " 16.9M/16.9M [00:00<00:00, 177MB/s]" } }, - "a4ffd871ac9d43fc97f1519c2af296fa": { + "9b2afdf832394f58976ee58105fc9ac4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a6b20f82cfa9402a8c7fd2cf43db10f8", - "placeholder": "​", - "style": "IPY_MODEL_86951f39c00e4109b4ca60ffcc939b40", - "value": "hyperparams.yaml: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a6b20f82cfa9402a8c7fd2cf43db10f8": { + "9b85abadb14148da809553593daf41d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2294,7 +2244,7 @@ "width": null } }, - "b970971e982644df933a6fc215f217f9": { + "a452c26c8935444495eef8eccd537821": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2346,7 +2296,22 @@ "width": null } }, - "b990bf93a73a48fa96ef81a45ecc7cf8": { + "a82707d6cf75449fa0bcd2b98e10b3a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab34cc856bad403f9cdba111f873a306": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2398,37 +2363,28 @@ "width": null } }, - "bb8670831c2e4347bf8ee34b069cb5ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c169e87cf101414c8b083a4b20e420ca": { + "b7b112df9d2e4aec93edbbc0d3c2d932": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab34cc856bad403f9cdba111f873a306", + "placeholder": "​", + "style": "IPY_MODEL_8626655c6a774bc6a315f1cad23adca2", + "value": "label_encoder.txt: 100%" } }, - "c41a3321793d4d608d8a59946471fbcc": { + "bdf1d068064c4e37bf3b0a036bd0710a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2480,7 +2436,7 @@ "width": null } }, - "c6e0bbd765f348708cf3b1437c7cb9a8": { + "c0dfa3473ed64fa7a0044c0f437a6ff5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2532,22 +2488,7 @@ "width": null } }, - "cd45f60e3ff442c6a9dd8562909119d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d003c7d9dffe4306a34d02339a448a43": { + "c0f64d3aebb64bf3bb3d4db1e1c95af2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2599,28 +2540,29 @@ "width": null } }, - "dbe436d691f14d889ecb1e75dee91ee6": { + "c17f3317dc9f4e41b15f0c9f0afcb7f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_60d401f5c6c74a328a80e74f9ba2de83", - "placeholder": "​", - "style": "IPY_MODEL_520a1c7807ef42ee92526b78323c1d3b", - "value": " 15.9M/15.9M [00:00<00:00, 347MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fb7be2fc3b524b408dacb3a4ba1dfb8f", + "IPY_MODEL_3c821907cbd14c19a78c25554493358d", + "IPY_MODEL_294a8ffab7f44974b28a07ffbb94882f" + ], + "layout": "IPY_MODEL_920a9387b971454687a4403592f0c76e" } }, - "e420c8493f574d69aef12450cf0a9a14": { + "c2ce8e57fdb04b0798a6c4c16ae3467f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2672,7 +2614,7 @@ "width": null } }, - "e5513548b6dc4815a177c264a29d47eb": { + "c5a3fe8fa0d848ec9ec188729948a377": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2724,7 +2666,29 @@ "width": null } }, - "ebe77964da2d45548943f4419f211879": { + "cadb95e2bbdd4166b848cf44e71b2139": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_541e0c9185044d10b9df997de483919d", + "IPY_MODEL_f234f92a2ce2467bbaad67f8d5d7ec2b", + "IPY_MODEL_5d6a6ab20b864187a3b7662c9dc5a7ff" + ], + "layout": "IPY_MODEL_05a419d84fc2472b8d03ecb51099197a" + } + }, + "d905e22f02584b999d73cc80ffee0110": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2776,7 +2740,7 @@ "width": null } }, - "ed5b9304939b4878afcb87cc1e060aae": { + "df30265328c142b1849ba3ca47b68fe7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2791,13 +2755,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b990bf93a73a48fa96ef81a45ecc7cf8", + "layout": "IPY_MODEL_a452c26c8935444495eef8eccd537821", "placeholder": "​", - "style": "IPY_MODEL_f9c3e8763ecb425aa275ed93f80ef66a", + "style": "IPY_MODEL_0074814fbf264ac4a04bdeb51abcaab2", "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ee59111c59fe4214a106ea7b4d3bd396": { + "df669b30fcd04ee4974fd952553f376e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2849,7 +2813,23 @@ "width": null } }, - "eeb9be4c886941159edec7fc558e7a5a": { + "e2059403b3c141c78b7dea525b593b9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2aba32a91bf4f9dabd9e25f75f60e37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2864,35 +2844,89 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2498f913b927410bb9ae4dcefb918991", + "layout": "IPY_MODEL_6c17a0abb12f4f9a9c6a52271fe66768", "placeholder": "​", - "style": "IPY_MODEL_bb8670831c2e4347bf8ee34b069cb5ac", - "value": "classifier.ckpt: 100%" + "style": "IPY_MODEL_fb2c0bd27a2c4c5ba243a7e72cb1d8aa", + "value": " 3.20k/3.20k [00:00<00:00, 575kB/s]" + } + }, + "e454c1f736c9495aa3bedadf94b43954": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f544c0ca919a47c6a4bfa1f492857422": { + "f234f92a2ce2467bbaad67f8d5d7ec2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4ffd871ac9d43fc97f1519c2af296fa", - "IPY_MODEL_93b351e64c634bd99c642a728e59c557", - "IPY_MODEL_72aa3b5eca7d46d3a61ae6039af64c8c" - ], - "layout": "IPY_MODEL_ee59111c59fe4214a106ea7b4d3bd396" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_938e795c39e94f739123942e85645be6", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_447ff7ecb3fc411ea934e0d55e5af3d8", + "value": 15856877.0 } }, - "f6fd30592fee4f22ba0d241c0e2862e2": { + "f3bc5d140a7b4411a598d2ef76421a6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2944,7 +2978,7 @@ "width": null } }, - "f99279c3718c4390825bb04cca778044": { + "f781d9e0307c483fb140677b5258e2d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2996,7 +3030,7 @@ "width": null } }, - "f9c3e8763ecb425aa275ed93f80ef66a": { + "fb2c0bd27a2c4c5ba243a7e72cb1d8aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3011,62 +3045,28 @@ "description_width": "" } }, - "fa64a22ea146494ca2914d3484db6765": { + "fb7be2fc3b524b408dacb3a4ba1dfb8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_557b8d9ac1ca4cf68a90a2259b2a61dd", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_34bc9fad69fc44a9ab325fff185f11f9", - "value": 3201.0 - } - }, - "fcee34ed095e4db6a88e4559efaff29f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fdeba1c93e6747be9c5211333d0768bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_f3bc5d140a7b4411a598d2ef76421a6a", + "placeholder": "​", + "style": "IPY_MODEL_8c44830cf4a14c1bbbf2a49980b485d8", + "value": "hyperparams.yaml: 100%" } }, - "ffa606c5f25748859eb966e69110de72": { + "fc5e50b0328147c4ab04b99bb3f04a3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3081,10 +3081,10 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e420c8493f574d69aef12450cf0a9a14", + "layout": "IPY_MODEL_c0f64d3aebb64bf3bb3d4db1e1c95af2", "placeholder": "​", - "style": "IPY_MODEL_c169e87cf101414c8b083a4b20e420ca", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_65d244fefe2e4b09a600a1d3a970a2e6", + "value": " 129k/129k [00:00<00:00, 7.08MB/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 80ed64de9..02c5ba811 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:18.391900Z", - "iopub.status.busy": "2024-01-10T06:13:18.391450Z", - "iopub.status.idle": "2024-01-10T06:13:19.482980Z", - "shell.execute_reply": "2024-01-10T06:13:19.482325Z" + "iopub.execute_input": "2024-01-10T14:58:54.767356Z", + "iopub.status.busy": "2024-01-10T14:58:54.767167Z", + "iopub.status.idle": "2024-01-10T14:58:55.838400Z", + "shell.execute_reply": "2024-01-10T14:58:55.837772Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.486136Z", - "iopub.status.busy": "2024-01-10T06:13:19.485670Z", - "iopub.status.idle": "2024-01-10T06:13:19.488975Z", - "shell.execute_reply": "2024-01-10T06:13:19.488407Z" + "iopub.execute_input": "2024-01-10T14:58:55.841278Z", + "iopub.status.busy": "2024-01-10T14:58:55.840800Z", + "iopub.status.idle": "2024-01-10T14:58:55.843995Z", + "shell.execute_reply": "2024-01-10T14:58:55.843493Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.491624Z", - "iopub.status.busy": "2024-01-10T06:13:19.491166Z", - "iopub.status.idle": "2024-01-10T06:13:19.500559Z", - "shell.execute_reply": "2024-01-10T06:13:19.499968Z" + "iopub.execute_input": "2024-01-10T14:58:55.846449Z", + "iopub.status.busy": "2024-01-10T14:58:55.846072Z", + "iopub.status.idle": "2024-01-10T14:58:55.855516Z", + "shell.execute_reply": "2024-01-10T14:58:55.854990Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.503166Z", - "iopub.status.busy": "2024-01-10T06:13:19.502771Z", - "iopub.status.idle": "2024-01-10T06:13:19.507585Z", - "shell.execute_reply": "2024-01-10T06:13:19.507087Z" + "iopub.execute_input": "2024-01-10T14:58:55.857837Z", + "iopub.status.busy": "2024-01-10T14:58:55.857473Z", + "iopub.status.idle": "2024-01-10T14:58:55.862243Z", + "shell.execute_reply": "2024-01-10T14:58:55.861728Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.510043Z", - "iopub.status.busy": "2024-01-10T06:13:19.509670Z", - "iopub.status.idle": "2024-01-10T06:13:19.797634Z", - "shell.execute_reply": "2024-01-10T06:13:19.797007Z" + "iopub.execute_input": "2024-01-10T14:58:55.864825Z", + "iopub.status.busy": "2024-01-10T14:58:55.864431Z", + "iopub.status.idle": "2024-01-10T14:58:56.142843Z", + "shell.execute_reply": "2024-01-10T14:58:56.142195Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.800537Z", - "iopub.status.busy": "2024-01-10T06:13:19.800126Z", - "iopub.status.idle": "2024-01-10T06:13:20.113225Z", - "shell.execute_reply": "2024-01-10T06:13:20.112562Z" + "iopub.execute_input": "2024-01-10T14:58:56.145686Z", + "iopub.status.busy": "2024-01-10T14:58:56.145335Z", + "iopub.status.idle": "2024-01-10T14:58:56.519923Z", + "shell.execute_reply": "2024-01-10T14:58:56.519255Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:20.116093Z", - "iopub.status.busy": "2024-01-10T06:13:20.115570Z", - "iopub.status.idle": "2024-01-10T06:13:20.140762Z", - "shell.execute_reply": "2024-01-10T06:13:20.140077Z" + "iopub.execute_input": "2024-01-10T14:58:56.522457Z", + "iopub.status.busy": "2024-01-10T14:58:56.522228Z", + "iopub.status.idle": "2024-01-10T14:58:56.547157Z", + "shell.execute_reply": "2024-01-10T14:58:56.546599Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:20.143786Z", - "iopub.status.busy": "2024-01-10T06:13:20.143411Z", - "iopub.status.idle": "2024-01-10T06:13:20.155764Z", - "shell.execute_reply": "2024-01-10T06:13:20.155189Z" + "iopub.execute_input": "2024-01-10T14:58:56.549825Z", + "iopub.status.busy": "2024-01-10T14:58:56.549607Z", + "iopub.status.idle": "2024-01-10T14:58:56.561436Z", + "shell.execute_reply": "2024-01-10T14:58:56.560895Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:20.158588Z", - "iopub.status.busy": "2024-01-10T06:13:20.158210Z", - "iopub.status.idle": "2024-01-10T06:13:21.490758Z", - "shell.execute_reply": "2024-01-10T06:13:21.490064Z" + "iopub.execute_input": "2024-01-10T14:58:56.564157Z", + "iopub.status.busy": "2024-01-10T14:58:56.563818Z", + "iopub.status.idle": "2024-01-10T14:58:57.836813Z", + "shell.execute_reply": "2024-01-10T14:58:57.836183Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.493933Z", - "iopub.status.busy": "2024-01-10T06:13:21.493289Z", - "iopub.status.idle": "2024-01-10T06:13:21.516427Z", - "shell.execute_reply": "2024-01-10T06:13:21.515797Z" + "iopub.execute_input": "2024-01-10T14:58:57.839904Z", + "iopub.status.busy": "2024-01-10T14:58:57.839426Z", + "iopub.status.idle": "2024-01-10T14:58:57.861805Z", + "shell.execute_reply": "2024-01-10T14:58:57.861265Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.519110Z", - "iopub.status.busy": "2024-01-10T06:13:21.518726Z", - "iopub.status.idle": "2024-01-10T06:13:21.542421Z", - "shell.execute_reply": "2024-01-10T06:13:21.541682Z" + "iopub.execute_input": "2024-01-10T14:58:57.864465Z", + "iopub.status.busy": "2024-01-10T14:58:57.864101Z", + "iopub.status.idle": "2024-01-10T14:58:57.885138Z", + "shell.execute_reply": "2024-01-10T14:58:57.884495Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.545363Z", - "iopub.status.busy": "2024-01-10T06:13:21.544862Z", - "iopub.status.idle": "2024-01-10T06:13:21.560354Z", - "shell.execute_reply": "2024-01-10T06:13:21.559667Z" + "iopub.execute_input": "2024-01-10T14:58:57.887770Z", + "iopub.status.busy": "2024-01-10T14:58:57.887374Z", + "iopub.status.idle": "2024-01-10T14:58:57.901817Z", + "shell.execute_reply": "2024-01-10T14:58:57.901299Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.563179Z", - "iopub.status.busy": "2024-01-10T06:13:21.562695Z", - "iopub.status.idle": "2024-01-10T06:13:21.585983Z", - "shell.execute_reply": "2024-01-10T06:13:21.585340Z" + "iopub.execute_input": "2024-01-10T14:58:57.904415Z", + "iopub.status.busy": "2024-01-10T14:58:57.904050Z", + "iopub.status.idle": "2024-01-10T14:58:57.926963Z", + "shell.execute_reply": "2024-01-10T14:58:57.926322Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fea3d5c35ae9493f8a9be8704822e8fd", + "model_id": "72fad40a86864766b299b987b88cfd8a", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.588659Z", - "iopub.status.busy": "2024-01-10T06:13:21.588249Z", - "iopub.status.idle": "2024-01-10T06:13:21.604290Z", - "shell.execute_reply": "2024-01-10T06:13:21.603671Z" + "iopub.execute_input": "2024-01-10T14:58:57.931079Z", + "iopub.status.busy": "2024-01-10T14:58:57.930776Z", + "iopub.status.idle": "2024-01-10T14:58:57.945658Z", + "shell.execute_reply": "2024-01-10T14:58:57.945144Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.606904Z", - "iopub.status.busy": "2024-01-10T06:13:21.606491Z", - "iopub.status.idle": "2024-01-10T06:13:21.612922Z", - "shell.execute_reply": "2024-01-10T06:13:21.612309Z" + "iopub.execute_input": "2024-01-10T14:58:57.948048Z", + "iopub.status.busy": "2024-01-10T14:58:57.947845Z", + "iopub.status.idle": "2024-01-10T14:58:57.954175Z", + "shell.execute_reply": "2024-01-10T14:58:57.953612Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.615569Z", - "iopub.status.busy": "2024-01-10T06:13:21.615193Z", - "iopub.status.idle": "2024-01-10T06:13:21.634604Z", - "shell.execute_reply": "2024-01-10T06:13:21.634038Z" + "iopub.execute_input": "2024-01-10T14:58:57.956636Z", + "iopub.status.busy": "2024-01-10T14:58:57.956195Z", + "iopub.status.idle": "2024-01-10T14:58:57.975702Z", + "shell.execute_reply": "2024-01-10T14:58:57.975158Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07ce684158734aa2ad7d27dfdc5022e9": { + "1dd56a26d69048f6a3cafad4385d2b8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1445,13 +1445,81 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0fff0021442e4b26a3ef037cd77b53b9", + "layout": "IPY_MODEL_8443c9e833384832ac73d9d1c16736c9", "placeholder": "​", - "style": "IPY_MODEL_1c6e36c143374b619efebd1763224d51", - "value": " 132/132 [00:00<00:00, 10237.77 examples/s]" + "style": "IPY_MODEL_2cd88230aa32404fa9f821d2f7e73ee1", + "value": " 132/132 [00:00<00:00, 10218.87 examples/s]" } }, - "0fff0021442e4b26a3ef037cd77b53b9": { + "2cd88230aa32404fa9f821d2f7e73ee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4cb5a201e40a4148abe3078a636afcdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e69f1518dbd4f5f98b28e61ae5741e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "72fad40a86864766b299b987b88cfd8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eb0687177d3042cf8f0901f75f604e85", + "IPY_MODEL_a4e15f916f304af6a621a3edd208fbde", + "IPY_MODEL_1dd56a26d69048f6a3cafad4385d2b8a" + ], + "layout": "IPY_MODEL_761d6c7068ef43eab994d1e5d21d994c" + } + }, + "761d6c7068ef43eab994d1e5d21d994c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1503,7 +1571,7 @@ "width": null } }, - "13d483977eca497389f4722102d836b9": { + "7bcc3f1d4e8f4561af6fefcdbfa57573": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1555,82 +1623,7 @@ "width": null } }, - "1c6e36c143374b619efebd1763224d51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4666b6ad60954d5887cfd7eebc497a5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "777abd15d2bc4f3dbbcd901eb1bfa3d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_13d483977eca497389f4722102d836b9", - "placeholder": "​", - "style": "IPY_MODEL_4666b6ad60954d5887cfd7eebc497a5e", - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "822795f0acf14d819bd90d6ea63181ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bfd4faf7258443a39bd2fcd278bc83ac", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dac1e3e656dd43008dc2870d6342af0e", - "value": 132.0 - } - }, - "bfd4faf7258443a39bd2fcd278bc83ac": { + "8443c9e833384832ac73d9d1c16736c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1682,23 +1675,31 @@ "width": null } }, - "dac1e3e656dd43008dc2870d6342af0e": { + "a4e15f916f304af6a621a3edd208fbde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7bcc3f1d4e8f4561af6fefcdbfa57573", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6e69f1518dbd4f5f98b28e61ae5741e7", + "value": 132.0 } }, - "e6c108b6484046cdb7acc0ffe213b8ef": { + "cc4cc2f72a704431ba1a4a0b3aefb072": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1750,26 +1751,25 @@ "width": null } }, - "fea3d5c35ae9493f8a9be8704822e8fd": { + "eb0687177d3042cf8f0901f75f604e85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_777abd15d2bc4f3dbbcd901eb1bfa3d7", - "IPY_MODEL_822795f0acf14d819bd90d6ea63181ec", - "IPY_MODEL_07ce684158734aa2ad7d27dfdc5022e9" - ], - "layout": "IPY_MODEL_e6c108b6484046cdb7acc0ffe213b8ef" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc4cc2f72a704431ba1a4a0b3aefb072", + "placeholder": "​", + "style": "IPY_MODEL_4cb5a201e40a4148abe3078a636afcdd", + "value": "Saving the dataset (1/1 shards): 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 286e31e35..a87b1fc5a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:26.619683Z", - "iopub.status.busy": "2024-01-10T06:13:26.619488Z", - "iopub.status.idle": "2024-01-10T06:13:27.745801Z", - "shell.execute_reply": "2024-01-10T06:13:27.745151Z" + "iopub.execute_input": "2024-01-10T14:59:03.000059Z", + "iopub.status.busy": "2024-01-10T14:59:02.999862Z", + "iopub.status.idle": "2024-01-10T14:59:04.078943Z", + "shell.execute_reply": "2024-01-10T14:59:04.078330Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:27.748654Z", - "iopub.status.busy": "2024-01-10T06:13:27.748325Z", - "iopub.status.idle": "2024-01-10T06:13:27.751770Z", - "shell.execute_reply": "2024-01-10T06:13:27.751229Z" + "iopub.execute_input": "2024-01-10T14:59:04.081752Z", + "iopub.status.busy": "2024-01-10T14:59:04.081300Z", + "iopub.status.idle": "2024-01-10T14:59:04.084518Z", + "shell.execute_reply": "2024-01-10T14:59:04.083930Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:27.754354Z", - "iopub.status.busy": "2024-01-10T06:13:27.753974Z", - "iopub.status.idle": "2024-01-10T06:13:27.763975Z", - "shell.execute_reply": "2024-01-10T06:13:27.763377Z" + "iopub.execute_input": "2024-01-10T14:59:04.087061Z", + "iopub.status.busy": "2024-01-10T14:59:04.086706Z", + "iopub.status.idle": "2024-01-10T14:59:04.096607Z", + "shell.execute_reply": "2024-01-10T14:59:04.096118Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:27.766552Z", - "iopub.status.busy": "2024-01-10T06:13:27.766172Z", - "iopub.status.idle": "2024-01-10T06:13:27.771201Z", - "shell.execute_reply": "2024-01-10T06:13:27.770666Z" + "iopub.execute_input": "2024-01-10T14:59:04.098985Z", + "iopub.status.busy": "2024-01-10T14:59:04.098491Z", + "iopub.status.idle": "2024-01-10T14:59:04.103421Z", + "shell.execute_reply": "2024-01-10T14:59:04.102829Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:27.773953Z", - "iopub.status.busy": "2024-01-10T06:13:27.773555Z", - "iopub.status.idle": "2024-01-10T06:13:28.061463Z", - "shell.execute_reply": "2024-01-10T06:13:28.060825Z" + "iopub.execute_input": "2024-01-10T14:59:04.105879Z", + "iopub.status.busy": "2024-01-10T14:59:04.105439Z", + "iopub.status.idle": "2024-01-10T14:59:04.393020Z", + "shell.execute_reply": "2024-01-10T14:59:04.392350Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:28.064511Z", - "iopub.status.busy": "2024-01-10T06:13:28.064106Z", - "iopub.status.idle": "2024-01-10T06:13:28.444087Z", - "shell.execute_reply": "2024-01-10T06:13:28.443404Z" + "iopub.execute_input": "2024-01-10T14:59:04.395826Z", + "iopub.status.busy": "2024-01-10T14:59:04.395600Z", + "iopub.status.idle": "2024-01-10T14:59:04.765815Z", + "shell.execute_reply": "2024-01-10T14:59:04.765164Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:28.446987Z", - "iopub.status.busy": "2024-01-10T06:13:28.446714Z", - "iopub.status.idle": "2024-01-10T06:13:28.449701Z", - "shell.execute_reply": "2024-01-10T06:13:28.449201Z" + "iopub.execute_input": "2024-01-10T14:59:04.768430Z", + "iopub.status.busy": "2024-01-10T14:59:04.767972Z", + "iopub.status.idle": "2024-01-10T14:59:04.770856Z", + "shell.execute_reply": "2024-01-10T14:59:04.770335Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:28.452290Z", - "iopub.status.busy": "2024-01-10T06:13:28.451933Z", - "iopub.status.idle": "2024-01-10T06:13:28.490839Z", - "shell.execute_reply": "2024-01-10T06:13:28.490127Z" + "iopub.execute_input": "2024-01-10T14:59:04.773132Z", + "iopub.status.busy": "2024-01-10T14:59:04.772933Z", + "iopub.status.idle": "2024-01-10T14:59:04.811324Z", + "shell.execute_reply": "2024-01-10T14:59:04.810695Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:28.493623Z", - "iopub.status.busy": "2024-01-10T06:13:28.493214Z", - "iopub.status.idle": "2024-01-10T06:13:29.876381Z", - "shell.execute_reply": "2024-01-10T06:13:29.875700Z" + "iopub.execute_input": "2024-01-10T14:59:04.813573Z", + "iopub.status.busy": "2024-01-10T14:59:04.813373Z", + "iopub.status.idle": "2024-01-10T14:59:06.133380Z", + "shell.execute_reply": "2024-01-10T14:59:06.132660Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.879396Z", - "iopub.status.busy": "2024-01-10T06:13:29.878867Z", - "iopub.status.idle": "2024-01-10T06:13:29.905840Z", - "shell.execute_reply": "2024-01-10T06:13:29.905222Z" + "iopub.execute_input": "2024-01-10T14:59:06.136341Z", + "iopub.status.busy": "2024-01-10T14:59:06.135744Z", + "iopub.status.idle": "2024-01-10T14:59:06.161385Z", + "shell.execute_reply": "2024-01-10T14:59:06.160754Z" } }, "outputs": [ @@ -878,10 +878,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.908674Z", - "iopub.status.busy": "2024-01-10T06:13:29.908246Z", - "iopub.status.idle": "2024-01-10T06:13:29.915341Z", - "shell.execute_reply": "2024-01-10T06:13:29.914800Z" + "iopub.execute_input": "2024-01-10T14:59:06.164094Z", + "iopub.status.busy": "2024-01-10T14:59:06.163709Z", + "iopub.status.idle": "2024-01-10T14:59:06.170693Z", + "shell.execute_reply": "2024-01-10T14:59:06.170040Z" } }, "outputs": [ @@ -985,10 +985,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.917753Z", - "iopub.status.busy": "2024-01-10T06:13:29.917379Z", - "iopub.status.idle": "2024-01-10T06:13:29.923844Z", - "shell.execute_reply": "2024-01-10T06:13:29.923288Z" + "iopub.execute_input": "2024-01-10T14:59:06.173531Z", + "iopub.status.busy": "2024-01-10T14:59:06.172899Z", + "iopub.status.idle": "2024-01-10T14:59:06.179680Z", + "shell.execute_reply": "2024-01-10T14:59:06.179158Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.926169Z", - "iopub.status.busy": "2024-01-10T06:13:29.925829Z", - "iopub.status.idle": "2024-01-10T06:13:29.936668Z", - "shell.execute_reply": "2024-01-10T06:13:29.936027Z" + "iopub.execute_input": "2024-01-10T14:59:06.182064Z", + "iopub.status.busy": "2024-01-10T14:59:06.181860Z", + "iopub.status.idle": "2024-01-10T14:59:06.192735Z", + "shell.execute_reply": "2024-01-10T14:59:06.192198Z" } }, "outputs": [ @@ -1231,10 +1231,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.939259Z", - "iopub.status.busy": "2024-01-10T06:13:29.938858Z", - "iopub.status.idle": "2024-01-10T06:13:29.949031Z", - "shell.execute_reply": "2024-01-10T06:13:29.948457Z" + "iopub.execute_input": "2024-01-10T14:59:06.195091Z", + "iopub.status.busy": "2024-01-10T14:59:06.194847Z", + "iopub.status.idle": "2024-01-10T14:59:06.205008Z", + "shell.execute_reply": "2024-01-10T14:59:06.204451Z" } }, "outputs": [ @@ -1350,10 +1350,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.951601Z", - "iopub.status.busy": "2024-01-10T06:13:29.951195Z", - "iopub.status.idle": "2024-01-10T06:13:29.959192Z", - "shell.execute_reply": "2024-01-10T06:13:29.958517Z" + "iopub.execute_input": "2024-01-10T14:59:06.207787Z", + "iopub.status.busy": "2024-01-10T14:59:06.207584Z", + "iopub.status.idle": "2024-01-10T14:59:06.215303Z", + "shell.execute_reply": "2024-01-10T14:59:06.214681Z" }, "scrolled": true }, @@ -1478,10 +1478,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.961669Z", - "iopub.status.busy": "2024-01-10T06:13:29.961294Z", - "iopub.status.idle": "2024-01-10T06:13:29.971591Z", - "shell.execute_reply": "2024-01-10T06:13:29.970943Z" + "iopub.execute_input": "2024-01-10T14:59:06.217692Z", + "iopub.status.busy": "2024-01-10T14:59:06.217484Z", + "iopub.status.idle": "2024-01-10T14:59:06.227879Z", + "shell.execute_reply": "2024-01-10T14:59:06.227251Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 05c0fc6d0..ababc3071 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:34.642782Z", - "iopub.status.busy": "2024-01-10T06:13:34.642338Z", - "iopub.status.idle": "2024-01-10T06:13:35.711028Z", - "shell.execute_reply": "2024-01-10T06:13:35.710358Z" + "iopub.execute_input": "2024-01-10T14:59:10.981665Z", + "iopub.status.busy": "2024-01-10T14:59:10.981463Z", + "iopub.status.idle": "2024-01-10T14:59:12.008038Z", + "shell.execute_reply": "2024-01-10T14:59:12.007342Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.714280Z", - "iopub.status.busy": "2024-01-10T06:13:35.713776Z", - "iopub.status.idle": "2024-01-10T06:13:35.731031Z", - "shell.execute_reply": "2024-01-10T06:13:35.730464Z" + "iopub.execute_input": "2024-01-10T14:59:12.010994Z", + "iopub.status.busy": "2024-01-10T14:59:12.010677Z", + "iopub.status.idle": "2024-01-10T14:59:12.027240Z", + "shell.execute_reply": "2024-01-10T14:59:12.026590Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.733700Z", - "iopub.status.busy": "2024-01-10T06:13:35.733480Z", - "iopub.status.idle": "2024-01-10T06:13:35.919903Z", - "shell.execute_reply": "2024-01-10T06:13:35.919256Z" + "iopub.execute_input": "2024-01-10T14:59:12.030319Z", + "iopub.status.busy": "2024-01-10T14:59:12.029725Z", + "iopub.status.idle": "2024-01-10T14:59:12.179406Z", + "shell.execute_reply": "2024-01-10T14:59:12.178766Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.922543Z", - "iopub.status.busy": "2024-01-10T06:13:35.922146Z", - "iopub.status.idle": "2024-01-10T06:13:35.926047Z", - "shell.execute_reply": "2024-01-10T06:13:35.925541Z" + "iopub.execute_input": "2024-01-10T14:59:12.182187Z", + "iopub.status.busy": "2024-01-10T14:59:12.181713Z", + "iopub.status.idle": "2024-01-10T14:59:12.185520Z", + "shell.execute_reply": "2024-01-10T14:59:12.184931Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.928442Z", - "iopub.status.busy": "2024-01-10T06:13:35.928230Z", - "iopub.status.idle": "2024-01-10T06:13:35.936664Z", - "shell.execute_reply": "2024-01-10T06:13:35.935983Z" + "iopub.execute_input": "2024-01-10T14:59:12.187959Z", + "iopub.status.busy": "2024-01-10T14:59:12.187588Z", + "iopub.status.idle": "2024-01-10T14:59:12.195249Z", + "shell.execute_reply": "2024-01-10T14:59:12.194761Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.939625Z", - "iopub.status.busy": "2024-01-10T06:13:35.939226Z", - "iopub.status.idle": "2024-01-10T06:13:35.942101Z", - "shell.execute_reply": "2024-01-10T06:13:35.941546Z" + "iopub.execute_input": "2024-01-10T14:59:12.197697Z", + "iopub.status.busy": "2024-01-10T14:59:12.197262Z", + "iopub.status.idle": "2024-01-10T14:59:12.199985Z", + "shell.execute_reply": "2024-01-10T14:59:12.199461Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.944554Z", - "iopub.status.busy": "2024-01-10T06:13:35.944192Z", - "iopub.status.idle": "2024-01-10T06:13:39.637594Z", - "shell.execute_reply": "2024-01-10T06:13:39.636942Z" + "iopub.execute_input": "2024-01-10T14:59:12.202218Z", + "iopub.status.busy": "2024-01-10T14:59:12.202019Z", + "iopub.status.idle": "2024-01-10T14:59:15.789515Z", + "shell.execute_reply": "2024-01-10T14:59:15.788880Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:39.640668Z", - "iopub.status.busy": "2024-01-10T06:13:39.640285Z", - "iopub.status.idle": "2024-01-10T06:13:39.650224Z", - "shell.execute_reply": "2024-01-10T06:13:39.649592Z" + "iopub.execute_input": "2024-01-10T14:59:15.792602Z", + "iopub.status.busy": "2024-01-10T14:59:15.792171Z", + "iopub.status.idle": "2024-01-10T14:59:15.802081Z", + "shell.execute_reply": "2024-01-10T14:59:15.801589Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:39.653012Z", - "iopub.status.busy": "2024-01-10T06:13:39.652527Z", - "iopub.status.idle": "2024-01-10T06:13:41.067365Z", - "shell.execute_reply": "2024-01-10T06:13:41.066639Z" + "iopub.execute_input": "2024-01-10T14:59:15.804589Z", + "iopub.status.busy": "2024-01-10T14:59:15.804228Z", + "iopub.status.idle": "2024-01-10T14:59:17.180350Z", + "shell.execute_reply": "2024-01-10T14:59:17.179602Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.070894Z", - "iopub.status.busy": "2024-01-10T06:13:41.070181Z", - "iopub.status.idle": "2024-01-10T06:13:41.096554Z", - "shell.execute_reply": "2024-01-10T06:13:41.095923Z" + "iopub.execute_input": "2024-01-10T14:59:17.184988Z", + "iopub.status.busy": "2024-01-10T14:59:17.183614Z", + "iopub.status.idle": "2024-01-10T14:59:17.212346Z", + "shell.execute_reply": "2024-01-10T14:59:17.211645Z" }, "scrolled": true }, @@ -624,10 +624,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.099706Z", - "iopub.status.busy": "2024-01-10T06:13:41.099250Z", - "iopub.status.idle": "2024-01-10T06:13:41.109639Z", - "shell.execute_reply": "2024-01-10T06:13:41.109017Z" + "iopub.execute_input": "2024-01-10T14:59:17.216992Z", + "iopub.status.busy": "2024-01-10T14:59:17.215793Z", + "iopub.status.idle": "2024-01-10T14:59:17.229530Z", + "shell.execute_reply": "2024-01-10T14:59:17.228867Z" } }, "outputs": [ @@ -731,10 +731,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.113653Z", - "iopub.status.busy": "2024-01-10T06:13:41.112495Z", - "iopub.status.idle": "2024-01-10T06:13:41.128314Z", - "shell.execute_reply": "2024-01-10T06:13:41.127671Z" + "iopub.execute_input": "2024-01-10T14:59:17.234257Z", + "iopub.status.busy": "2024-01-10T14:59:17.233091Z", + "iopub.status.idle": "2024-01-10T14:59:17.248521Z", + "shell.execute_reply": "2024-01-10T14:59:17.247893Z" } }, "outputs": [ @@ -863,10 +863,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.132950Z", - "iopub.status.busy": "2024-01-10T06:13:41.131794Z", - "iopub.status.idle": "2024-01-10T06:13:41.145507Z", - "shell.execute_reply": "2024-01-10T06:13:41.144878Z" + "iopub.execute_input": "2024-01-10T14:59:17.253033Z", + "iopub.status.busy": "2024-01-10T14:59:17.251892Z", + "iopub.status.idle": "2024-01-10T14:59:17.264947Z", + "shell.execute_reply": "2024-01-10T14:59:17.264349Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.150079Z", - "iopub.status.busy": "2024-01-10T06:13:41.148942Z", - "iopub.status.idle": "2024-01-10T06:13:41.163497Z", - "shell.execute_reply": "2024-01-10T06:13:41.162983Z" + "iopub.execute_input": "2024-01-10T14:59:17.269322Z", + "iopub.status.busy": "2024-01-10T14:59:17.268190Z", + "iopub.status.idle": "2024-01-10T14:59:17.279638Z", + "shell.execute_reply": "2024-01-10T14:59:17.279028Z" } }, "outputs": [ @@ -1094,10 +1094,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.166435Z", - "iopub.status.busy": "2024-01-10T06:13:41.166050Z", - "iopub.status.idle": "2024-01-10T06:13:41.173457Z", - "shell.execute_reply": "2024-01-10T06:13:41.172926Z" + "iopub.execute_input": "2024-01-10T14:59:17.282394Z", + "iopub.status.busy": "2024-01-10T14:59:17.281813Z", + "iopub.status.idle": "2024-01-10T14:59:17.288968Z", + "shell.execute_reply": "2024-01-10T14:59:17.288435Z" } }, "outputs": [ @@ -1181,10 +1181,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.175909Z", - "iopub.status.busy": "2024-01-10T06:13:41.175694Z", - "iopub.status.idle": "2024-01-10T06:13:41.183057Z", - "shell.execute_reply": "2024-01-10T06:13:41.182383Z" + "iopub.execute_input": "2024-01-10T14:59:17.291408Z", + "iopub.status.busy": "2024-01-10T14:59:17.291060Z", + "iopub.status.idle": "2024-01-10T14:59:17.297989Z", + "shell.execute_reply": "2024-01-10T14:59:17.297472Z" } }, "outputs": [ @@ -1277,10 +1277,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.185507Z", - "iopub.status.busy": "2024-01-10T06:13:41.185293Z", - "iopub.status.idle": "2024-01-10T06:13:41.192997Z", - "shell.execute_reply": "2024-01-10T06:13:41.192302Z" + "iopub.execute_input": "2024-01-10T14:59:17.300419Z", + "iopub.status.busy": "2024-01-10T14:59:17.300054Z", + "iopub.status.idle": "2024-01-10T14:59:17.306917Z", + "shell.execute_reply": "2024-01-10T14:59:17.306349Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 316bee9cd..ca326d89b 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:45.711059Z", - "iopub.status.busy": "2024-01-10T06:13:45.710475Z", - "iopub.status.idle": "2024-01-10T06:13:48.261537Z", - "shell.execute_reply": "2024-01-10T06:13:48.260841Z" + "iopub.execute_input": "2024-01-10T14:59:22.092445Z", + "iopub.status.busy": "2024-01-10T14:59:22.092236Z", + "iopub.status.idle": "2024-01-10T14:59:24.403879Z", + "shell.execute_reply": "2024-01-10T14:59:24.403193Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ecde268159ad4b6c9238a02d8a130669", + "model_id": "862dcffe2cde478e97ab974c75c6ea32", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.264527Z", - "iopub.status.busy": "2024-01-10T06:13:48.264176Z", - "iopub.status.idle": "2024-01-10T06:13:48.267728Z", - "shell.execute_reply": "2024-01-10T06:13:48.267130Z" + "iopub.execute_input": "2024-01-10T14:59:24.407066Z", + "iopub.status.busy": "2024-01-10T14:59:24.406465Z", + "iopub.status.idle": "2024-01-10T14:59:24.410103Z", + "shell.execute_reply": "2024-01-10T14:59:24.409519Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.270213Z", - "iopub.status.busy": "2024-01-10T06:13:48.269855Z", - "iopub.status.idle": "2024-01-10T06:13:48.273267Z", - "shell.execute_reply": "2024-01-10T06:13:48.272653Z" + "iopub.execute_input": "2024-01-10T14:59:24.412607Z", + "iopub.status.busy": "2024-01-10T14:59:24.412258Z", + "iopub.status.idle": "2024-01-10T14:59:24.415950Z", + "shell.execute_reply": "2024-01-10T14:59:24.415466Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.275463Z", - "iopub.status.busy": "2024-01-10T06:13:48.275268Z", - "iopub.status.idle": "2024-01-10T06:13:48.347672Z", - "shell.execute_reply": "2024-01-10T06:13:48.346991Z" + "iopub.execute_input": "2024-01-10T14:59:24.418446Z", + "iopub.status.busy": "2024-01-10T14:59:24.417979Z", + "iopub.status.idle": "2024-01-10T14:59:24.476477Z", + "shell.execute_reply": "2024-01-10T14:59:24.475884Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.350279Z", - "iopub.status.busy": "2024-01-10T06:13:48.350052Z", - "iopub.status.idle": "2024-01-10T06:13:48.354861Z", - "shell.execute_reply": "2024-01-10T06:13:48.354307Z" + "iopub.execute_input": "2024-01-10T14:59:24.479032Z", + "iopub.status.busy": "2024-01-10T14:59:24.478651Z", + "iopub.status.idle": "2024-01-10T14:59:24.482763Z", + "shell.execute_reply": "2024-01-10T14:59:24.482154Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}\n" + "Classes: {'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.357102Z", - "iopub.status.busy": "2024-01-10T06:13:48.356899Z", - "iopub.status.idle": "2024-01-10T06:13:48.360744Z", - "shell.execute_reply": "2024-01-10T06:13:48.360210Z" + "iopub.execute_input": "2024-01-10T14:59:24.485240Z", + "iopub.status.busy": "2024-01-10T14:59:24.484873Z", + "iopub.status.idle": "2024-01-10T14:59:24.488318Z", + "shell.execute_reply": "2024-01-10T14:59:24.487706Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.363321Z", - "iopub.status.busy": "2024-01-10T06:13:48.363090Z", - "iopub.status.idle": "2024-01-10T06:13:57.704452Z", - "shell.execute_reply": "2024-01-10T06:13:57.703719Z" + "iopub.execute_input": "2024-01-10T14:59:24.490800Z", + "iopub.status.busy": "2024-01-10T14:59:24.490451Z", + "iopub.status.idle": "2024-01-10T14:59:33.672418Z", + "shell.execute_reply": "2024-01-10T14:59:33.671786Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8ffa81464b747aabcd524f5b6004746", + "model_id": "f2e849e51c874b17a848ea3fa7185a74", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5216ca84d3a1452cbddcd5994453d513", + "model_id": "94c85eae08a741ef81e270f9647311bf", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3fe28eb102c4226a6521a5c52251366", + "model_id": "f8fc9626652544dba8ec78fd1f4ae9d7", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9205d83347e448338bc7a0902cba4636", + "model_id": "84f0c6c7b270459db0855f5d976763e0", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e1ed050fd3e40b1a25a47dc3dc51056", + "model_id": "8935bc181d264ffc8db415b422beb496", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2f4fdacb911421b921cb9244d7615bb", + "model_id": "bc2109a4e2f84d67bbb8ab6cba21fab9", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a83cf26330f24f4ba5ef6fd1ad5505fe", + "model_id": "9b94f541e59245eda011ea6c11772a07", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:57.707843Z", - "iopub.status.busy": "2024-01-10T06:13:57.707437Z", - "iopub.status.idle": "2024-01-10T06:13:58.886455Z", - "shell.execute_reply": "2024-01-10T06:13:58.885773Z" + "iopub.execute_input": "2024-01-10T14:59:33.675731Z", + "iopub.status.busy": "2024-01-10T14:59:33.675246Z", + "iopub.status.idle": "2024-01-10T14:59:34.841910Z", + "shell.execute_reply": "2024-01-10T14:59:34.841238Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:58.890144Z", - "iopub.status.busy": "2024-01-10T06:13:58.889698Z", - "iopub.status.idle": "2024-01-10T06:13:58.892840Z", - "shell.execute_reply": "2024-01-10T06:13:58.892280Z" + "iopub.execute_input": "2024-01-10T14:59:34.845385Z", + "iopub.status.busy": "2024-01-10T14:59:34.844983Z", + "iopub.status.idle": "2024-01-10T14:59:34.848001Z", + "shell.execute_reply": "2024-01-10T14:59:34.847447Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:58.895717Z", - "iopub.status.busy": "2024-01-10T06:13:58.895295Z", - "iopub.status.idle": "2024-01-10T06:14:00.257372Z", - "shell.execute_reply": "2024-01-10T06:14:00.256547Z" + "iopub.execute_input": "2024-01-10T14:59:34.850802Z", + "iopub.status.busy": "2024-01-10T14:59:34.850433Z", + "iopub.status.idle": "2024-01-10T14:59:36.210865Z", + "shell.execute_reply": "2024-01-10T14:59:36.209994Z" }, "scrolled": true }, @@ -640,10 +640,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.261200Z", - "iopub.status.busy": "2024-01-10T06:14:00.260285Z", - "iopub.status.idle": "2024-01-10T06:14:00.295159Z", - "shell.execute_reply": "2024-01-10T06:14:00.294488Z" + "iopub.execute_input": "2024-01-10T14:59:36.214452Z", + "iopub.status.busy": "2024-01-10T14:59:36.213504Z", + "iopub.status.idle": "2024-01-10T14:59:36.247942Z", + "shell.execute_reply": "2024-01-10T14:59:36.247228Z" }, "scrolled": true }, @@ -808,10 +808,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.299424Z", - "iopub.status.busy": "2024-01-10T06:14:00.298094Z", - "iopub.status.idle": "2024-01-10T06:14:00.311396Z", - "shell.execute_reply": "2024-01-10T06:14:00.310797Z" + "iopub.execute_input": "2024-01-10T14:59:36.251096Z", + "iopub.status.busy": "2024-01-10T14:59:36.250420Z", + "iopub.status.idle": "2024-01-10T14:59:36.261728Z", + "shell.execute_reply": "2024-01-10T14:59:36.261092Z" }, "scrolled": true }, @@ -921,10 +921,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.315625Z", - "iopub.status.busy": "2024-01-10T06:14:00.314540Z", - "iopub.status.idle": "2024-01-10T06:14:00.320884Z", - "shell.execute_reply": "2024-01-10T06:14:00.320096Z" + "iopub.execute_input": "2024-01-10T14:59:36.264768Z", + "iopub.status.busy": "2024-01-10T14:59:36.264298Z", + "iopub.status.idle": "2024-01-10T14:59:36.269449Z", + "shell.execute_reply": "2024-01-10T14:59:36.268960Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.323848Z", - "iopub.status.busy": "2024-01-10T06:14:00.323481Z", - "iopub.status.idle": "2024-01-10T06:14:00.332079Z", - "shell.execute_reply": "2024-01-10T06:14:00.331155Z" + "iopub.execute_input": "2024-01-10T14:59:36.272221Z", + "iopub.status.busy": "2024-01-10T14:59:36.271614Z", + "iopub.status.idle": "2024-01-10T14:59:36.279936Z", + "shell.execute_reply": "2024-01-10T14:59:36.279356Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.334887Z", - "iopub.status.busy": "2024-01-10T06:14:00.334512Z", - "iopub.status.idle": "2024-01-10T06:14:00.341819Z", - "shell.execute_reply": "2024-01-10T06:14:00.341196Z" + "iopub.execute_input": "2024-01-10T14:59:36.282599Z", + "iopub.status.busy": "2024-01-10T14:59:36.282081Z", + "iopub.status.idle": "2024-01-10T14:59:36.289576Z", + "shell.execute_reply": "2024-01-10T14:59:36.288966Z" } }, "outputs": [ @@ -1168,10 +1168,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.344333Z", - "iopub.status.busy": "2024-01-10T06:14:00.343964Z", - "iopub.status.idle": "2024-01-10T06:14:00.350787Z", - "shell.execute_reply": "2024-01-10T06:14:00.350197Z" + "iopub.execute_input": "2024-01-10T14:59:36.291990Z", + "iopub.status.busy": "2024-01-10T14:59:36.291624Z", + "iopub.status.idle": "2024-01-10T14:59:36.297899Z", + "shell.execute_reply": "2024-01-10T14:59:36.297301Z" } }, "outputs": [ @@ -1279,10 +1279,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.353100Z", - "iopub.status.busy": "2024-01-10T06:14:00.352897Z", - "iopub.status.idle": "2024-01-10T06:14:00.362475Z", - "shell.execute_reply": "2024-01-10T06:14:00.361847Z" + "iopub.execute_input": "2024-01-10T14:59:36.300330Z", + "iopub.status.busy": "2024-01-10T14:59:36.299984Z", + "iopub.status.idle": "2024-01-10T14:59:36.309346Z", + "shell.execute_reply": "2024-01-10T14:59:36.308790Z" } }, "outputs": [ @@ -1393,10 +1393,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.364896Z", - "iopub.status.busy": "2024-01-10T06:14:00.364520Z", - "iopub.status.idle": "2024-01-10T06:14:00.370683Z", - "shell.execute_reply": "2024-01-10T06:14:00.370027Z" + "iopub.execute_input": "2024-01-10T14:59:36.311803Z", + "iopub.status.busy": "2024-01-10T14:59:36.311415Z", + "iopub.status.idle": "2024-01-10T14:59:36.317270Z", + "shell.execute_reply": "2024-01-10T14:59:36.316743Z" } }, "outputs": [ @@ -1464,10 +1464,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.373237Z", - "iopub.status.busy": "2024-01-10T06:14:00.372863Z", - "iopub.status.idle": "2024-01-10T06:14:00.555773Z", - "shell.execute_reply": "2024-01-10T06:14:00.555089Z" + "iopub.execute_input": "2024-01-10T14:59:36.319529Z", + "iopub.status.busy": "2024-01-10T14:59:36.319327Z", + "iopub.status.idle": "2024-01-10T14:59:36.325099Z", + "shell.execute_reply": "2024-01-10T14:59:36.324498Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.558702Z", - "iopub.status.busy": "2024-01-10T06:14:00.558311Z", - "iopub.status.idle": "2024-01-10T06:14:00.562319Z", - "shell.execute_reply": "2024-01-10T06:14:00.561767Z" + "iopub.execute_input": "2024-01-10T14:59:36.327483Z", + "iopub.status.busy": "2024-01-10T14:59:36.327281Z", + "iopub.status.idle": "2024-01-10T14:59:36.331149Z", + "shell.execute_reply": "2024-01-10T14:59:36.330531Z" } }, "outputs": [ @@ -1597,10 +1597,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.564637Z", - "iopub.status.busy": "2024-01-10T06:14:00.564438Z", - "iopub.status.idle": "2024-01-10T06:14:00.570104Z", - "shell.execute_reply": "2024-01-10T06:14:00.569531Z" + "iopub.execute_input": "2024-01-10T14:59:36.333455Z", + "iopub.status.busy": "2024-01-10T14:59:36.333256Z", + "iopub.status.idle": "2024-01-10T14:59:36.517964Z", + "shell.execute_reply": "2024-01-10T14:59:36.517303Z" }, "nbsphinx": "hidden" }, @@ -1650,75 +1650,28 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00aeb2f30e6344248d19643ed798bbc4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "07295e89cb4b472d930107e8be8c3829": { + "00917c17081843f6a5a5d44b91e6acd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd69eddaeade4dfbbc190d9d0f7cef92", + "placeholder": "​", + "style": "IPY_MODEL_fae8a5b5019e44ecad743866c942cf00", + "value": " 54.2M/54.2M [00:00<00:00, 266MB/s]" } }, - "0bcbb8b6b2d4472c93f1b70d408cd3ae": { + "01554e29f7bb4ab3bf4b0b53e7e8f147": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1734,22 +1687,7 @@ "description_width": "" } }, - "0bdd3c5d23d740bcbecf41f59a191232": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0cf1ac3dd226438bb8f2183f94973f95": { + "06c7f99c4f4d4c98b56c80428fe227a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1798,48 +1736,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "0e1ed050fd3e40b1a25a47dc3dc51056": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cc7b20aac74d43c4b6cd6b12d0aac738", - "IPY_MODEL_716710cbdfca4c36ad130987a4499373", - "IPY_MODEL_8ec5def0730d432096e2d85bcfac23b7" - ], - "layout": "IPY_MODEL_548c8271d3b54e1b9f45689a0af4ccba" - } - }, - "107c4fe3b4a3466da18c28dc8cee707d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "width": "20px" } }, - "1470e51bfd5741a397860a52aab1d71d": { + "075c0a2ff8984472a2407cb65c1af308": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1891,23 +1791,7 @@ "width": null } }, - "1712941961e44a459dbba5626cad267a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1aa2f8588c6444898d007a076c585e62": { + "0a601d68ed194795a8e3e30f9636b988": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1959,7 +1843,28 @@ "width": null } }, - "1d7fc981d1054225be5aceac76877fb0": { + "0dd83adc06cc448dbb45c8d5b083b1b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d88203f29b6041b9b084fcbe564b744c", + "placeholder": "​", + "style": "IPY_MODEL_97e3a9449c1045cf96051bf240fb3d86", + "value": " 232k/232k [00:00<00:00, 26.2MB/s]" + } + }, + "0f07dbed86ee4dedb4230e294d563b70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1974,7 +1879,7 @@ "description_width": "" } }, - "22324387e5b743e681be79d036fe31d6": { + "12cb6377a008434fb126f7a20059d295": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2026,59 +1931,165 @@ "width": null } }, - "2288246d5a4d4b4bb1a1f8e73a2b12b0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "1d0bb365cef642bf9aa028dfaf2da8bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_06c7f99c4f4d4c98b56c80428fe227a9", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a321f57989f746d79202da624285ed2c", + "value": 0.0 + } + }, + "2042be878078403c96190c096097d90d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c76748ec8a42450ba7223d8b626ba091", + "placeholder": "​", + "style": "IPY_MODEL_4274375b0fc249138d9065f3d789e378", + "value": " 2.21k/2.21k [00:00<00:00, 298kB/s]" + } + }, + "2459388b6cbd42c2a4d43684c4b9afdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9eee4112141543a9a4224b8b25ab2e5d", + "placeholder": "​", + "style": "IPY_MODEL_bb4e1551497a4ce4be301f4368f81676", + "value": " 466k/466k [00:00<00:00, 13.9MB/s]" + } + }, + "2886de46d9fd4702ab6e1c5b72e49072": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f7f728bec002499ab7823a03e95a2bf5", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b0612da6bf14497ab00ac2fcd669247", + "value": 665.0 + } + }, + "2b0612da6bf14497ab00ac2fcd669247": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "26520c10c4674e25ad89fb718b9068ce": { + "2c57a2dce6844d669534d4a56c9b289e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31cbafcf7296451f8eafa376459fce42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c3a89d32580e43a5abcb986b0342b26b", + "placeholder": "​", + "style": "IPY_MODEL_5d198168a65943669c64ed11ea145d06", + "value": " 391/391 [00:00<00:00, 51.0kB/s]" + } + }, + "33b12887dbb64274a7777cd6a46751fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3f6a155e08b14f70bd139c25bbfc97ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2093,13 +2104,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_63924927f0884276833e034800f11bb7", + "layout": "IPY_MODEL_54b1991278ba46e2b8bbd15c62221efa", "placeholder": "​", - "style": "IPY_MODEL_96700a76a0d44e99acf09ab0d477e8d4", - "value": " 665/665 [00:00<00:00, 79.8kB/s]" + "style": "IPY_MODEL_469e1113de45470581ebc31ed32169a1", + "value": "tokenizer.json: 100%" } }, - "2689e33ba4f945b7ac5af43480cf3280": { + "4274375b0fc249138d9065f3d789e378": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "43604c5ccc2f48e084d21528eff3c15d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2151,22 +2177,7 @@ "width": null } }, - "29250c8e90c943acb40ea406ff6da5fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "299ed4dc9db74c09a4b3e505aac77bff": { + "469e1113de45470581ebc31ed32169a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2181,49 +2192,31 @@ "description_width": "" } }, - "2b86d2d875af44f2b3a146159c86ec2f": { + "4791eeb7baf64c8d9fac236bf5132592": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5cf0f1b890b0431f9d2784e18231784a", - "placeholder": "​", - "style": "IPY_MODEL_29250c8e90c943acb40ea406ff6da5fa", - "value": " 2.21k/2.21k [00:00<00:00, 271kB/s]" - } - }, - "2d32842e064e40b0a1541bfad497928a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_34c788bf54c24aa5949787bb0eff94b7", - "placeholder": "​", - "style": "IPY_MODEL_1d7fc981d1054225be5aceac76877fb0", - "value": "README.md: 100%" + "layout": "IPY_MODEL_9faaecaae1734c61ae18e834186c1666", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01554e29f7bb4ab3bf4b0b53e7e8f147", + "value": 2211.0 } }, - "2e093e53552c4e41afeabb5b2a3769ad": { + "4880191d3d0547f39e1ae04216c88b71": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2275,7 +2268,28 @@ "width": null } }, - "2fdc481b5a9c4ec0ad0aaa7fa7cb3307": { + "4abeacb8c56a488785fb5b9d0945caed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52125d88b94b46f69d248404f8994683", + "placeholder": "​", + "style": "IPY_MODEL_6fe3adcc4a4041eabca98b1d60af84fd", + "value": " 665/665 [00:00<00:00, 81.4kB/s]" + } + }, + "52125d88b94b46f69d248404f8994683": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2327,7 +2341,7 @@ "width": null } }, - "34ac7447b3444f598b53edbda4e5eb49": { + "54b1991278ba46e2b8bbd15c62221efa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2379,7 +2393,22 @@ "width": null } }, - "34c788bf54c24aa5949787bb0eff94b7": { + "56636f85cdc9488bbcde50e0f31e8e05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "583b1f186cc546f4a39bdfdd40349e0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2431,7 +2460,28 @@ "width": null } }, - "3f584acf4fc44c58936eed00bb2fbd84": { + "5986e501975345c18931a5f0b9321683": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bad367d7aefa4a2b986452a5deea268f", + "placeholder": "​", + "style": "IPY_MODEL_56636f85cdc9488bbcde50e0f31e8e05", + "value": ".gitattributes: 100%" + } + }, + "5d198168a65943669c64ed11ea145d06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2446,22 +2496,23 @@ "description_width": "" } }, - "3f5be0ecc2ee4433a4c0d5fd1d44050d": { + "5eb8c83858cd483bafc5a9248fad2a68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "448413c257e146d0938329daabce12f7": { + "609217f73fbb420caa14bc522c18b15d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2513,7 +2564,7 @@ "width": null } }, - "45ab12896d8d462491cd97cbbe6e0de9": { + "614552c5e5f3422a9e39ded35cce6f7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2565,28 +2616,86 @@ "width": null } }, - "4bb63de4770d456d913a1961bcf657cb": { + "623fe1d3ad6e46fdb758928ae51160b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "692cd1c543c44d1f9a54e10a308abc35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1aa2f8588c6444898d007a076c585e62", - "placeholder": "​", - "style": "IPY_MODEL_dc10e1dfa7e84e1295522909b4df112e", - "value": "tokenizer_config.json: 100%" + "layout": "IPY_MODEL_ea99b5f99229433c84ef7bc51a9c130f", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fcdce2bba18d4262a99e80746cd7ed8b", + "value": 391.0 + } + }, + "699ecc7a765d443aa11b0205425189a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a601d68ed194795a8e3e30f9636b988", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5eb8c83858cd483bafc5a9248fad2a68", + "value": 29.0 + } + }, + "6a41a8086ed2471099f0596d310b417b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4bba66e3d211422d85ee43a076d810c6": { + "6befdc46f5d241a995ca903cc10cef7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2638,28 +2747,46 @@ "width": null } }, - "4d45f78561ad4e2dab7952457334e52f": { + "6fe3adcc4a4041eabca98b1d60af84fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7a6f92e7c9954a008ddc389e56a80eb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5ea866887ad340808b148446c2959147", - "placeholder": "​", - "style": "IPY_MODEL_611e0881e57549d683be88bce77f5e93", - "value": " 54.2M/54.2M [00:00<00:00, 300MB/s]" + "layout": "IPY_MODEL_7b994861070847fea1d4a823b3a35d09", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_623fe1d3ad6e46fdb758928ae51160b2", + "value": 231508.0 } }, - "4e23b67da06044dba971afb2dd4d1aa0": { + "7b994861070847fea1d4a823b3a35d09": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2711,52 +2838,44 @@ "width": null } }, - "4f56a289968f46b29b61725fc61088a3": { + "81591ea42d154551991b09bc36ec0ace": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0cf1ac3dd226438bb8f2183f94973f95", - "placeholder": "​", - "style": "IPY_MODEL_0bdd3c5d23d740bcbecf41f59a191232", - "value": " 391/391 [00:00<00:00, 50.7kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4f910b3893a04fd9bcdf56fca9550818": { + "84f0c6c7b270459db0855f5d976763e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8091370fb4e0431db0c9c95eb345ad39", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0bcbb8b6b2d4472c93f1b70d408cd3ae", - "value": 0.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f67b595c6d6840bb837ed3c0bac5d0c8", + "IPY_MODEL_ddea88fc65ed4f6dae2c94fb28fe25d2", + "IPY_MODEL_00917c17081843f6a5a5d44b91e6acd9" + ], + "layout": "IPY_MODEL_6befdc46f5d241a995ca903cc10cef7b" } }, - "5216ca84d3a1452cbddcd5994453d513": { + "862dcffe2cde478e97ab974c75c6ea32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2771,102 +2890,60 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2d32842e064e40b0a1541bfad497928a", - "IPY_MODEL_f0f5cf6ee8c24c67aa14f8cf08fe4995", - "IPY_MODEL_2b86d2d875af44f2b3a146159c86ec2f" + "IPY_MODEL_996f676633b94db4ab7ceea5a92391f5", + "IPY_MODEL_1d0bb365cef642bf9aa028dfaf2da8bf", + "IPY_MODEL_d318a49900f244a4acf9106cb605f223" ], - "layout": "IPY_MODEL_9727413214ed4e8f9466aeffdafda413" + "layout": "IPY_MODEL_614552c5e5f3422a9e39ded35cce6f7e" } }, - "548c53d229894551afc50feabf6d6b61": { + "890f4eb716014024a5979fa13eb74d7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "548c8271d3b54e1b9f45689a0af4ccba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6580715c12f4b788ec83b2fb386a5ee", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33b12887dbb64274a7777cd6a46751fd", + "value": 466062.0 } }, - "5490d628713d40f9a89e63379c65fad1": { + "8935bc181d264ffc8db415b422beb496": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed1fe01152fa4642ad138486a2634cc1", - "placeholder": "​", - "style": "IPY_MODEL_5b42a34f8c9842c387f1f19cb3ff7e41", - "value": " 0/0 [00:00<?, ?it/s]" + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3f6a155e08b14f70bd139c25bbfc97ee", + "IPY_MODEL_890f4eb716014024a5979fa13eb74d7c", + "IPY_MODEL_2459388b6cbd42c2a4d43684c4b9afdf" + ], + "layout": "IPY_MODEL_c31984e520ca42ca88ae7a5abd092a51" } }, - "5673c01340384e06bafc786376498d98": { + "926b0337f538498182c5aa19264b1a8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2918,7 +2995,29 @@ "width": null } }, - "5b42a34f8c9842c387f1f19cb3ff7e41": { + "94c85eae08a741ef81e270f9647311bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_be2b666b3d804f36913f6c87815b978c", + "IPY_MODEL_4791eeb7baf64c8d9fac236bf5132592", + "IPY_MODEL_2042be878078403c96190c096097d90d" + ], + "layout": "IPY_MODEL_583b1f186cc546f4a39bdfdd40349e0d" + } + }, + "97e3a9449c1045cf96051bf240fb3d86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2933,7 +3032,50 @@ "description_width": "" } }, - "5b5556e01ebd4822b2fb6d01833df8b3": { + "996f676633b94db4ab7ceea5a92391f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_075c0a2ff8984472a2407cb65c1af308", + "placeholder": "​", + "style": "IPY_MODEL_aa56e96131494666bf4ac89b82a1e4e5", + "value": "" + } + }, + "9b94f541e59245eda011ea6c11772a07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ffd34fdfbd9448afb84dbd6818b15c8d", + "IPY_MODEL_7a6f92e7c9954a008ddc389e56a80eb1", + "IPY_MODEL_0dd83adc06cc448dbb45c8d5b083b1b3" + ], + "layout": "IPY_MODEL_12cb6377a008434fb126f7a20059d295" + } + }, + "9eee4112141543a9a4224b8b25ab2e5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2985,7 +3127,7 @@ "width": null } }, - "5cf0f1b890b0431f9d2784e18231784a": { + "9faaecaae1734c61ae18e834186c1666": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3037,7 +3179,69 @@ "width": null } }, - "5ea866887ad340808b148446c2959147": { + "a321f57989f746d79202da624285ed2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a6b4b7c9957e4b819305afab73204cf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a956344db7a545cd957824d3ff7a2138": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aa56e96131494666bf4ac89b82a1e4e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b2c45c794eca4d8ea4aab4e4a2858c77": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3089,43 +3293,7 @@ "width": null } }, - "5f836f718e46477f9c5d4c1f0b77124b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bee13efee5384807a5acf80366bb301c", - "placeholder": "​", - "style": "IPY_MODEL_299ed4dc9db74c09a4b3e505aac77bff", - "value": " 232k/232k [00:00<00:00, 22.1MB/s]" - } - }, - "611e0881e57549d683be88bce77f5e93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "63924927f0884276833e034800f11bb7": { + "bad367d7aefa4a2b986452a5deea268f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3177,147 +3345,169 @@ "width": null } }, - "64a2b9e3be0f4e9abe6e46ced115eba4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "65ece1a93a484e9aac2d3dcb5fdc3536": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8a08d94d414a4bcdae4627a725465dbb", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_107c4fe3b4a3466da18c28dc8cee707d", - "value": 54245363.0 - } - }, - "6df5afad53374d6d8ab0eaa9b99fae57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_00aeb2f30e6344248d19643ed798bbc4", - "placeholder": "​", - "style": "IPY_MODEL_75440754a86442628eeaec421c0a38f4", - "value": ".gitattributes: 100%" - } - }, - "713082df2a4347929fd826c21024138e": { + "bb4e1551497a4ce4be301f4368f81676": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "716710cbdfca4c36ad130987a4499373": { + "bc2109a4e2f84d67bbb8ab6cba21fab9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2fdc481b5a9c4ec0ad0aaa7fa7cb3307", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_802d1cbe83234ba281ed3371ace74923", - "value": 466062.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c75aeff00b944db28a3423a3e33e24b4", + "IPY_MODEL_699ecc7a765d443aa11b0205425189a3", + "IPY_MODEL_f7f48121963b4ec7b6aa45f44f292c52" + ], + "layout": "IPY_MODEL_e1baa1f8f2054d8eab2aa13d0120b795" } }, - "75440754a86442628eeaec421c0a38f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "bded0c71aa4d4ae0923501e8367e757e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "79f717794c4a4d7782524bbabf970864": { + "be2b666b3d804f36913f6c87815b978c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_22324387e5b743e681be79d036fe31d6", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07295e89cb4b472d930107e8be8c3829", - "value": 391.0 + "layout": "IPY_MODEL_d83d11da89f7403db61c0c0c22942732", + "placeholder": "​", + "style": "IPY_MODEL_2c57a2dce6844d669534d4a56c9b289e", + "value": "README.md: 100%" + } + }, + "c31984e520ca42ca88ae7a5abd092a51": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7edb79c30d4044b7a47c715c2672cfbc": { + "c3a89d32580e43a5abcb986b0342b26b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3369,23 +3559,28 @@ "width": null } }, - "802d1cbe83234ba281ed3371ace74923": { + "c75aeff00b944db28a3423a3e33e24b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_926b0337f538498182c5aa19264b1a8d", + "placeholder": "​", + "style": "IPY_MODEL_fbb188a1c26343dba4a64537799f492c", + "value": "tokenizer_config.json: 100%" } }, - "8091370fb4e0431db0c9c95eb345ad39": { + "c76748ec8a42450ba7223d8b626ba091": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3434,10 +3629,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "83e38a4d06ee41978d13c8bc0fc7f05b": { + "d318a49900f244a4acf9106cb605f223": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3452,37 +3647,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_34ac7447b3444f598b53edbda4e5eb49", + "layout": "IPY_MODEL_dd4c5afca32949129c9e6f43b9b1413e", "placeholder": "​", - "style": "IPY_MODEL_3f584acf4fc44c58936eed00bb2fbd84", - "value": "config.json: 100%" + "style": "IPY_MODEL_81591ea42d154551991b09bc36ec0ace", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "83f4027e79e14315afd20df28b9abfdf": { + "d4a4587430474d8fb2e2e40550998d40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_84c39cc7a1444d2a9a639d6f61385d0c", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1712941961e44a459dbba5626cad267a", - "value": 231508.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "84c39cc7a1444d2a9a639d6f61385d0c": { + "d83d11da89f7403db61c0c0c22942732": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3534,7 +3720,7 @@ "width": null } }, - "8a08d94d414a4bcdae4627a725465dbb": { + "d88203f29b6041b9b084fcbe564b744c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3586,44 +3772,7 @@ "width": null } }, - "8a93b8a27e874ab58e3e844b2a4af451": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8bf51f93ea06457590d4b3262c7f7f95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a8e84cb8a6a14048bd15044652da2df5", - "placeholder": "​", - "style": "IPY_MODEL_d292cfd1afb542c782847708fc78ffed", - "value": "" - } - }, - "8ec5def0730d432096e2d85bcfac23b7": { + "dc47d97b3b07452a9c03cbe07c75252c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3638,50 +3787,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_448413c257e146d0938329daabce12f7", + "layout": "IPY_MODEL_43604c5ccc2f48e084d21528eff3c15d", "placeholder": "​", - "style": "IPY_MODEL_ae74085e8acf4192a5c6377c3f74f4aa", - "value": " 466k/466k [00:00<00:00, 12.5MB/s]" - } - }, - "9205d83347e448338bc7a0902cba4636": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d7190d315d09402f9308e2aa2d0abebb", - "IPY_MODEL_65ece1a93a484e9aac2d3dcb5fdc3536", - "IPY_MODEL_4d45f78561ad4e2dab7952457334e52f" - ], - "layout": "IPY_MODEL_a1355e0db37f4778b5ec8f1a709f24fa" - } - }, - "96700a76a0d44e99acf09ab0d477e8d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_0f07dbed86ee4dedb4230e294d563b70", + "value": "config.json: 100%" } }, - "9727413214ed4e8f9466aeffdafda413": { + "dd4c5afca32949129c9e6f43b9b1413e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3733,7 +3845,31 @@ "width": null } }, - "a1355e0db37f4778b5ec8f1a709f24fa": { + "ddea88fc65ed4f6dae2c94fb28fe25d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_609217f73fbb420caa14bc522c18b15d", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a956344db7a545cd957824d3ff7a2138", + "value": 54245363.0 + } + }, + "e1baa1f8f2054d8eab2aa13d0120b795": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3785,51 +3921,59 @@ "width": null } }, - "a2f4fdacb911421b921cb9244d7615bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4bb63de4770d456d913a1961bcf657cb", - "IPY_MODEL_bb9d4da501f6429484245a533c3f046b", - "IPY_MODEL_baf7e1b71fe4454d80981120c3297e64" - ], - "layout": "IPY_MODEL_d13975def1d44bfa9f8441616c936a6d" - } - }, - "a83cf26330f24f4ba5ef6fd1ad5505fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "e6580715c12f4b788ec83b2fb386a5ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d6a918d748714014855bbe6352ff3a56", - "IPY_MODEL_83f4027e79e14315afd20df28b9abfdf", - "IPY_MODEL_5f836f718e46477f9c5d4c1f0b77124b" - ], - "layout": "IPY_MODEL_1470e51bfd5741a397860a52aab1d71d" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a8e84cb8a6a14048bd15044652da2df5": { + "ea99b5f99229433c84ef7bc51a9c130f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3881,7 +4025,7 @@ "width": null } }, - "a8ffa81464b747aabcd524f5b6004746": { + "f2e849e51c874b17a848ea3fa7185a74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3896,83 +4040,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6df5afad53374d6d8ab0eaa9b99fae57", - "IPY_MODEL_79f717794c4a4d7782524bbabf970864", - "IPY_MODEL_4f56a289968f46b29b61725fc61088a3" + "IPY_MODEL_5986e501975345c18931a5f0b9321683", + "IPY_MODEL_692cd1c543c44d1f9a54e10a308abc35", + "IPY_MODEL_31cbafcf7296451f8eafa376459fce42" ], - "layout": "IPY_MODEL_2689e33ba4f945b7ac5af43480cf3280" - } - }, - "ae74085e8acf4192a5c6377c3f74f4aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b9e2ca9c7f43440a89be28ce852168f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ba1e2472b2594b9ea818d15f3c3d11bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "baac3a399e3843b58fa1e6dd697a4ef3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_45ab12896d8d462491cd97cbbe6e0de9", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_713082df2a4347929fd826c21024138e", - "value": 665.0 + "layout": "IPY_MODEL_bded0c71aa4d4ae0923501e8367e757e" } }, - "baf7e1b71fe4454d80981120c3297e64": { + "f67b595c6d6840bb837ed3c0bac5d0c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3987,37 +4062,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5673c01340384e06bafc786376498d98", + "layout": "IPY_MODEL_b2c45c794eca4d8ea4aab4e4a2858c77", "placeholder": "​", - "style": "IPY_MODEL_3f5be0ecc2ee4433a4c0d5fd1d44050d", - "value": " 29.0/29.0 [00:00<00:00, 3.62kB/s]" + "style": "IPY_MODEL_6a41a8086ed2471099f0596d310b417b", + "value": "pytorch_model.bin: 100%" } }, - "bb9d4da501f6429484245a533c3f046b": { + "f7f48121963b4ec7b6aa45f44f292c52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4bba66e3d211422d85ee43a076d810c6", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8a93b8a27e874ab58e3e844b2a4af451", - "value": 29.0 + "layout": "IPY_MODEL_f9e7c4cce0aa4b9aaff09fc9b622d605", + "placeholder": "​", + "style": "IPY_MODEL_a6b4b7c9957e4b819305afab73204cf6", + "value": " 29.0/29.0 [00:00<00:00, 3.64kB/s]" } }, - "bee13efee5384807a5acf80366bb301c": { + "f7f728bec002499ab7823a03e95a2bf5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4069,7 +4141,29 @@ "width": null } }, - "c2ee2fac0caf41bcb4e8a14a0536f3bf": { + "f8fc9626652544dba8ec78fd1f4ae9d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc47d97b3b07452a9c03cbe07c75252c", + "IPY_MODEL_2886de46d9fd4702ab6e1c5b72e49072", + "IPY_MODEL_4abeacb8c56a488785fb5b9d0945caed" + ], + "layout": "IPY_MODEL_4880191d3d0547f39e1ae04216c88b71" + } + }, + "f9e7c4cce0aa4b9aaff09fc9b622d605": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4121,28 +4215,37 @@ "width": null } }, - "cc7b20aac74d43c4b6cd6b12d0aac738": { + "fae8a5b5019e44ecad743866c942cf00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7edb79c30d4044b7a47c715c2672cfbc", - "placeholder": "​", - "style": "IPY_MODEL_548c53d229894551afc50feabf6d6b61", - "value": "tokenizer.json: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fbb188a1c26343dba4a64537799f492c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d13975def1d44bfa9f8441616c936a6d": { + "fbd8f018fee147b9a856a836508c2d32": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4194,123 +4297,23 @@ "width": null } }, - "d292cfd1afb542c782847708fc78ffed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d6a918d748714014855bbe6352ff3a56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2e093e53552c4e41afeabb5b2a3769ad", - "placeholder": "​", - "style": "IPY_MODEL_ba1e2472b2594b9ea818d15f3c3d11bb", - "value": "vocab.txt: 100%" - } - }, - "d7190d315d09402f9308e2aa2d0abebb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2288246d5a4d4b4bb1a1f8e73a2b12b0", - "placeholder": "​", - "style": "IPY_MODEL_b9e2ca9c7f43440a89be28ce852168f3", - "value": "pytorch_model.bin: 100%" - } - }, - "dc10e1dfa7e84e1295522909b4df112e": { + "fcdce2bba18d4262a99e80746cd7ed8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "e3fe28eb102c4226a6521a5c52251366": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_83e38a4d06ee41978d13c8bc0fc7f05b", - "IPY_MODEL_baac3a399e3843b58fa1e6dd697a4ef3", - "IPY_MODEL_26520c10c4674e25ad89fb718b9068ce" - ], - "layout": "IPY_MODEL_c2ee2fac0caf41bcb4e8a14a0536f3bf" - } - }, - "ecde268159ad4b6c9238a02d8a130669": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8bf51f93ea06457590d4b3262c7f7f95", - "IPY_MODEL_4f910b3893a04fd9bcdf56fca9550818", - "IPY_MODEL_5490d628713d40f9a89e63379c65fad1" - ], - "layout": "IPY_MODEL_5b5556e01ebd4822b2fb6d01833df8b3" - } - }, - "ed1fe01152fa4642ad138486a2634cc1": { + "fd69eddaeade4dfbbc190d9d0f7cef92": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4362,28 +4365,25 @@ "width": null } }, - "f0f5cf6ee8c24c67aa14f8cf08fe4995": { + "ffd34fdfbd9448afb84dbd6818b15c8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4e23b67da06044dba971afb2dd4d1aa0", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64a2b9e3be0f4e9abe6e46ced115eba4", - "value": 2211.0 + "layout": "IPY_MODEL_fbd8f018fee147b9a856a836508c2d32", + "placeholder": "​", + "style": "IPY_MODEL_d4a4587430474d8fb2e2e40550998d40", + "value": "vocab.txt: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 7b01efb69..44bd6d80e 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:06.083796Z", - "iopub.status.busy": "2024-01-10T06:14:06.083596Z", - "iopub.status.idle": "2024-01-10T06:14:07.138995Z", - "shell.execute_reply": "2024-01-10T06:14:07.138339Z" + "iopub.execute_input": "2024-01-10T14:59:41.334420Z", + "iopub.status.busy": "2024-01-10T14:59:41.333949Z", + "iopub.status.idle": "2024-01-10T14:59:42.355922Z", + "shell.execute_reply": "2024-01-10T14:59:42.355241Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:07.141966Z", - "iopub.status.busy": "2024-01-10T06:14:07.141624Z", - "iopub.status.idle": "2024-01-10T06:14:07.144683Z", - "shell.execute_reply": "2024-01-10T06:14:07.144141Z" + "iopub.execute_input": "2024-01-10T14:59:42.359064Z", + "iopub.status.busy": "2024-01-10T14:59:42.358534Z", + "iopub.status.idle": "2024-01-10T14:59:42.361625Z", + "shell.execute_reply": "2024-01-10T14:59:42.361111Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:07.147109Z", - "iopub.status.busy": "2024-01-10T06:14:07.146900Z", - "iopub.status.idle": "2024-01-10T06:14:07.160356Z", - "shell.execute_reply": "2024-01-10T06:14:07.159857Z" + "iopub.execute_input": "2024-01-10T14:59:42.364150Z", + "iopub.status.busy": "2024-01-10T14:59:42.363702Z", + "iopub.status.idle": "2024-01-10T14:59:42.376325Z", + "shell.execute_reply": "2024-01-10T14:59:42.375739Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:07.162918Z", - "iopub.status.busy": "2024-01-10T06:14:07.162487Z", - "iopub.status.idle": "2024-01-10T06:14:12.103424Z", - "shell.execute_reply": "2024-01-10T06:14:12.102793Z" + "iopub.execute_input": "2024-01-10T14:59:42.378959Z", + "iopub.status.busy": "2024-01-10T14:59:42.378603Z", + "iopub.status.idle": "2024-01-10T14:59:46.491752Z", + "shell.execute_reply": "2024-01-10T14:59:46.491163Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index b59c84e7b..5bfa51262 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:16.607280Z", - "iopub.status.busy": "2024-01-10T06:14:16.607078Z", - "iopub.status.idle": "2024-01-10T06:14:17.657250Z", - "shell.execute_reply": "2024-01-10T06:14:17.656618Z" + "iopub.execute_input": "2024-01-10T14:59:50.893165Z", + "iopub.status.busy": "2024-01-10T14:59:50.892970Z", + "iopub.status.idle": "2024-01-10T14:59:51.939588Z", + "shell.execute_reply": "2024-01-10T14:59:51.938934Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:17.660564Z", - "iopub.status.busy": "2024-01-10T06:14:17.659972Z", - "iopub.status.idle": "2024-01-10T06:14:17.663681Z", - "shell.execute_reply": "2024-01-10T06:14:17.663061Z" + "iopub.execute_input": "2024-01-10T14:59:51.943002Z", + "iopub.status.busy": "2024-01-10T14:59:51.942447Z", + "iopub.status.idle": "2024-01-10T14:59:51.946140Z", + "shell.execute_reply": "2024-01-10T14:59:51.945634Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:17.666105Z", - "iopub.status.busy": "2024-01-10T06:14:17.665680Z", - "iopub.status.idle": "2024-01-10T06:14:19.736489Z", - "shell.execute_reply": "2024-01-10T06:14:19.735788Z" + "iopub.execute_input": "2024-01-10T14:59:51.948844Z", + "iopub.status.busy": "2024-01-10T14:59:51.948364Z", + "iopub.status.idle": "2024-01-10T14:59:53.958972Z", + "shell.execute_reply": "2024-01-10T14:59:53.958235Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.740030Z", - "iopub.status.busy": "2024-01-10T06:14:19.739173Z", - "iopub.status.idle": "2024-01-10T06:14:19.787352Z", - "shell.execute_reply": "2024-01-10T06:14:19.786521Z" + "iopub.execute_input": "2024-01-10T14:59:53.962418Z", + "iopub.status.busy": "2024-01-10T14:59:53.961685Z", + "iopub.status.idle": "2024-01-10T14:59:53.998347Z", + "shell.execute_reply": "2024-01-10T14:59:53.997661Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.790338Z", - "iopub.status.busy": "2024-01-10T06:14:19.790052Z", - "iopub.status.idle": "2024-01-10T06:14:19.829158Z", - "shell.execute_reply": "2024-01-10T06:14:19.828462Z" + "iopub.execute_input": "2024-01-10T14:59:54.001353Z", + "iopub.status.busy": "2024-01-10T14:59:54.000979Z", + "iopub.status.idle": "2024-01-10T14:59:54.037345Z", + "shell.execute_reply": "2024-01-10T14:59:54.036554Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.832420Z", - "iopub.status.busy": "2024-01-10T06:14:19.831982Z", - "iopub.status.idle": "2024-01-10T06:14:19.835284Z", - "shell.execute_reply": "2024-01-10T06:14:19.834658Z" + "iopub.execute_input": "2024-01-10T14:59:54.040406Z", + "iopub.status.busy": "2024-01-10T14:59:54.040062Z", + "iopub.status.idle": "2024-01-10T14:59:54.043268Z", + "shell.execute_reply": "2024-01-10T14:59:54.042728Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.837757Z", - "iopub.status.busy": "2024-01-10T06:14:19.837304Z", - "iopub.status.idle": "2024-01-10T06:14:19.840314Z", - "shell.execute_reply": "2024-01-10T06:14:19.839702Z" + "iopub.execute_input": "2024-01-10T14:59:54.045714Z", + "iopub.status.busy": "2024-01-10T14:59:54.045356Z", + "iopub.status.idle": "2024-01-10T14:59:54.048133Z", + "shell.execute_reply": "2024-01-10T14:59:54.047607Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.843019Z", - "iopub.status.busy": "2024-01-10T06:14:19.842419Z", - "iopub.status.idle": "2024-01-10T06:14:19.870315Z", - "shell.execute_reply": "2024-01-10T06:14:19.869647Z" + "iopub.execute_input": "2024-01-10T14:59:54.050733Z", + "iopub.status.busy": "2024-01-10T14:59:54.050248Z", + "iopub.status.idle": "2024-01-10T14:59:54.078354Z", + "shell.execute_reply": "2024-01-10T14:59:54.077694Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8cfd59fe33214a6cacbf9a0ac8550cc0", + "model_id": "075f00108c9143bb95de45ad3e1b32a1", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9e9c54ccd4dc4b5f967bcea2a3fdb025", + "model_id": "187b0fc246824442903879754666f9fb", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.878259Z", - "iopub.status.busy": "2024-01-10T06:14:19.877780Z", - "iopub.status.idle": "2024-01-10T06:14:19.885221Z", - "shell.execute_reply": "2024-01-10T06:14:19.884563Z" + "iopub.execute_input": "2024-01-10T14:59:54.085049Z", + "iopub.status.busy": "2024-01-10T14:59:54.084695Z", + "iopub.status.idle": "2024-01-10T14:59:54.092109Z", + "shell.execute_reply": "2024-01-10T14:59:54.091490Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.888245Z", - "iopub.status.busy": "2024-01-10T06:14:19.887801Z", - "iopub.status.idle": "2024-01-10T06:14:19.891951Z", - "shell.execute_reply": "2024-01-10T06:14:19.891387Z" + "iopub.execute_input": "2024-01-10T14:59:54.094651Z", + "iopub.status.busy": "2024-01-10T14:59:54.094271Z", + "iopub.status.idle": "2024-01-10T14:59:54.098035Z", + "shell.execute_reply": "2024-01-10T14:59:54.097434Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.894543Z", - "iopub.status.busy": "2024-01-10T06:14:19.894157Z", - "iopub.status.idle": "2024-01-10T06:14:19.901425Z", - "shell.execute_reply": "2024-01-10T06:14:19.900807Z" + "iopub.execute_input": "2024-01-10T14:59:54.100245Z", + "iopub.status.busy": "2024-01-10T14:59:54.099912Z", + "iopub.status.idle": "2024-01-10T14:59:54.106735Z", + "shell.execute_reply": "2024-01-10T14:59:54.106126Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.904233Z", - "iopub.status.busy": "2024-01-10T06:14:19.903763Z", - "iopub.status.idle": "2024-01-10T06:14:19.946997Z", - "shell.execute_reply": "2024-01-10T06:14:19.946238Z" + "iopub.execute_input": "2024-01-10T14:59:54.108937Z", + "iopub.status.busy": "2024-01-10T14:59:54.108729Z", + "iopub.status.idle": "2024-01-10T14:59:54.146363Z", + "shell.execute_reply": "2024-01-10T14:59:54.145668Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.950396Z", - "iopub.status.busy": "2024-01-10T06:14:19.949775Z", - "iopub.status.idle": "2024-01-10T06:14:19.997923Z", - "shell.execute_reply": "2024-01-10T06:14:19.997218Z" + "iopub.execute_input": "2024-01-10T14:59:54.149318Z", + "iopub.status.busy": "2024-01-10T14:59:54.148912Z", + "iopub.status.idle": "2024-01-10T14:59:54.185413Z", + "shell.execute_reply": "2024-01-10T14:59:54.184745Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:20.001469Z", - "iopub.status.busy": "2024-01-10T06:14:20.000877Z", - "iopub.status.idle": "2024-01-10T06:14:20.125778Z", - "shell.execute_reply": "2024-01-10T06:14:20.125022Z" + "iopub.execute_input": "2024-01-10T14:59:54.188595Z", + "iopub.status.busy": "2024-01-10T14:59:54.188185Z", + "iopub.status.idle": "2024-01-10T14:59:54.302578Z", + "shell.execute_reply": "2024-01-10T14:59:54.301896Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:20.128815Z", - "iopub.status.busy": "2024-01-10T06:14:20.128382Z", - "iopub.status.idle": "2024-01-10T06:14:22.666460Z", - "shell.execute_reply": "2024-01-10T06:14:22.665723Z" + "iopub.execute_input": "2024-01-10T14:59:54.305610Z", + "iopub.status.busy": "2024-01-10T14:59:54.305065Z", + "iopub.status.idle": "2024-01-10T14:59:56.793121Z", + "shell.execute_reply": "2024-01-10T14:59:56.792360Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.669156Z", - "iopub.status.busy": "2024-01-10T06:14:22.668916Z", - "iopub.status.idle": "2024-01-10T06:14:22.729466Z", - "shell.execute_reply": "2024-01-10T06:14:22.728793Z" + "iopub.execute_input": "2024-01-10T14:59:56.796100Z", + "iopub.status.busy": "2024-01-10T14:59:56.795869Z", + "iopub.status.idle": "2024-01-10T14:59:56.854518Z", + "shell.execute_reply": "2024-01-10T14:59:56.853835Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "55d634cf", + "id": "79abd091", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "94584059", + "id": "6d19c12e", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "b9628b75", + "id": "8e189dcb", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.732231Z", - "iopub.status.busy": "2024-01-10T06:14:22.731955Z", - "iopub.status.idle": "2024-01-10T06:14:22.846588Z", - "shell.execute_reply": "2024-01-10T06:14:22.845700Z" + "iopub.execute_input": "2024-01-10T14:59:56.857079Z", + "iopub.status.busy": "2024-01-10T14:59:56.856723Z", + "iopub.status.idle": "2024-01-10T14:59:56.966714Z", + "shell.execute_reply": "2024-01-10T14:59:56.965883Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "c5fd2f4f", + "id": "96869909", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "cfb1a98d", + "id": "79a16416", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.850451Z", - "iopub.status.busy": "2024-01-10T06:14:22.849579Z", - "iopub.status.idle": "2024-01-10T06:14:22.926903Z", - "shell.execute_reply": "2024-01-10T06:14:22.926034Z" + "iopub.execute_input": "2024-01-10T14:59:56.970421Z", + "iopub.status.busy": "2024-01-10T14:59:56.969410Z", + "iopub.status.idle": "2024-01-10T14:59:57.046615Z", + "shell.execute_reply": "2024-01-10T14:59:57.045885Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "c797b51e", + "id": "3d459566", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "8e4b5314", + "id": "afc2b0b9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.930016Z", - "iopub.status.busy": "2024-01-10T06:14:22.929774Z", - "iopub.status.idle": "2024-01-10T06:14:22.938891Z", - "shell.execute_reply": "2024-01-10T06:14:22.938159Z" + "iopub.execute_input": "2024-01-10T14:59:57.049298Z", + "iopub.status.busy": "2024-01-10T14:59:57.048916Z", + "iopub.status.idle": "2024-01-10T14:59:57.057177Z", + "shell.execute_reply": "2024-01-10T14:59:57.056582Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "f2ecdef4", + "id": "82dbd54f", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "6fd6d9e2", + "id": "4a747a25", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.941671Z", - "iopub.status.busy": "2024-01-10T06:14:22.941170Z", - "iopub.status.idle": "2024-01-10T06:14:22.960867Z", - "shell.execute_reply": "2024-01-10T06:14:22.960198Z" + "iopub.execute_input": "2024-01-10T14:59:57.059676Z", + "iopub.status.busy": "2024-01-10T14:59:57.059243Z", + "iopub.status.idle": "2024-01-10T14:59:57.079299Z", + "shell.execute_reply": "2024-01-10T14:59:57.078739Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "5f4f4b91", + "id": "cc8f3506", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.963415Z", - "iopub.status.busy": "2024-01-10T06:14:22.963144Z", - "iopub.status.idle": "2024-01-10T06:14:22.967965Z", - "shell.execute_reply": "2024-01-10T06:14:22.967414Z" + "iopub.execute_input": "2024-01-10T14:59:57.081812Z", + "iopub.status.busy": "2024-01-10T14:59:57.081393Z", + "iopub.status.idle": "2024-01-10T14:59:57.085818Z", + "shell.execute_reply": "2024-01-10T14:59:57.085202Z" } }, "outputs": [ @@ -1205,132 +1205,45 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02873622a71341419941aef0bea6e764": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0fe2c8dcc89d4a6b876606303720da8f": { + "075f00108c9143bb95de45ad3e1b32a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_19c69f8250174c15836a73a9013c308f", + "IPY_MODEL_f2b1f15303b14f7280a65bf9226d7ae6", + "IPY_MODEL_180f325c4b8f41009bec369623aca77c" + ], + "layout": "IPY_MODEL_19738babb8c6474796f43941b0b5da8d" } }, - "1fa28da4022f49c4a420ea8bb4ec2b8a": { + "1557598dc31c495a9d7519e96caf3ae6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "2713f998e4784419837d175595e938da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a763fb86bc604616a2bccb416889f17e", - "placeholder": "​", - "style": "IPY_MODEL_3bf08f79e11044c8ae9e3d01b165f5f4", - "value": " 10000/? [00:00<00:00, 914329.56it/s]" - } - }, - "29567219cce744c894901fc5fc7153d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_78a360b742ee4bfdbe43f36a0804f07c", - "placeholder": "​", - "style": "IPY_MODEL_72e10f0daba942d680242edaf7b639de", - "value": "number of examples processed for estimating thresholds: " - } - }, - "3185b489256446899fe0eb2000abd99c": { + "180f325c4b8f41009bec369623aca77c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1345,52 +1258,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d72fa4dce6994dca8b4d202761dbdea7", + "layout": "IPY_MODEL_18d28aa507ef43beac8a8d3a63d2ea79", "placeholder": "​", - "style": "IPY_MODEL_1fa28da4022f49c4a420ea8bb4ec2b8a", - "value": " 10000/? [00:00<00:00, 1247859.10it/s]" - } - }, - "3bf08f79e11044c8ae9e3d01b165f5f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_2cd086b6d25b4143bc2ae32f4459db0b", + "value": " 10000/? [00:00<00:00, 935894.32it/s]" } }, - "6b53e6a747e74d2e95f8918385b84461": { + "187b0fc246824442903879754666f9fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_71e12b2915714163a8efb7d8d2520038", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_864de33388604a6eb55ee4141e8cc2d4", - "value": 50.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f59299d4afbb4249a61046c3a5e522aa", + "IPY_MODEL_f54e0ed2cc28430f8285ca5079656137", + "IPY_MODEL_c8b1b9260a22401c90b72c62787c2226" + ], + "layout": "IPY_MODEL_31070f1577a7498799ff2eec91b6441d" } }, - "71e12b2915714163a8efb7d8d2520038": { + "18d28aa507ef43beac8a8d3a63d2ea79": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1442,22 +1338,7 @@ "width": null } }, - "72e10f0daba942d680242edaf7b639de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "78a360b742ee4bfdbe43f36a0804f07c": { + "19738babb8c6474796f43941b0b5da8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1509,127 +1390,95 @@ "width": null } }, - "79c3f1111ee84f5193cd4e4f09142b4d": { + "19c69f8250174c15836a73a9013c308f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8248c43ab0a54ea49dace7b985c9d289": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e8af98ac12044b6db8b480e52844de57", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0fe2c8dcc89d4a6b876606303720da8f", - "value": 50.0 + "layout": "IPY_MODEL_637100a896df4d849534b2f362654c96", + "placeholder": "​", + "style": "IPY_MODEL_ec80fece88d644bfa5c589b0ba25b5c0", + "value": "number of examples processed for estimating thresholds: " } }, - "864de33388604a6eb55ee4141e8cc2d4": { + "2cd086b6d25b4143bc2ae32f4459db0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "8cfd59fe33214a6cacbf9a0ac8550cc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_29567219cce744c894901fc5fc7153d6", - "IPY_MODEL_6b53e6a747e74d2e95f8918385b84461", - "IPY_MODEL_2713f998e4784419837d175595e938da" - ], - "layout": "IPY_MODEL_fbe38660da0047debe95399554068fe2" - } - }, - "9e9c54ccd4dc4b5f967bcea2a3fdb025": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a6a5c473500a4e26903882a3f7500cf3", - "IPY_MODEL_8248c43ab0a54ea49dace7b985c9d289", - "IPY_MODEL_3185b489256446899fe0eb2000abd99c" - ], - "layout": "IPY_MODEL_bb2b6a662d9f4040851f3df8c7115e9a" - } - }, - "a6a5c473500a4e26903882a3f7500cf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "31070f1577a7498799ff2eec91b6441d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_02873622a71341419941aef0bea6e764", - "placeholder": "​", - "style": "IPY_MODEL_79c3f1111ee84f5193cd4e4f09142b4d", - "value": "number of examples processed for checking labels: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a763fb86bc604616a2bccb416889f17e": { + "52b366eb36b54b419859bfa0171b9e16": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1681,7 +1530,7 @@ "width": null } }, - "bb2b6a662d9f4040851f3df8c7115e9a": { + "637100a896df4d849534b2f362654c96": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1733,7 +1582,37 @@ "width": null } }, - "d72fa4dce6994dca8b4d202761dbdea7": { + "76f8f56743414c94bc06877a3304fa61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7dafcc1ce8304bc6bce2f0a04f82ebd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a152270654af43649f1664b7ece96dc4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1785,7 +1664,7 @@ "width": null } }, - "e8af98ac12044b6db8b480e52844de57": { + "a45ae2e5caff44cdb39d49840213da69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1837,7 +1716,44 @@ "width": null } }, - "fbe38660da0047debe95399554068fe2": { + "aa30ead3d6c2441584d3767f851fb6f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c8b1b9260a22401c90b72c62787c2226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e28a697de62c4e99a866def110006b3b", + "placeholder": "​", + "style": "IPY_MODEL_76f8f56743414c94bc06877a3304fa61", + "value": " 10000/? [00:00<00:00, 1136729.36it/s]" + } + }, + "e28a697de62c4e99a866def110006b3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1888,6 +1804,90 @@ "visibility": null, "width": null } + }, + "ec80fece88d644bfa5c589b0ba25b5c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f2b1f15303b14f7280a65bf9226d7ae6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a152270654af43649f1664b7ece96dc4", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1557598dc31c495a9d7519e96caf3ae6", + "value": 50.0 + } + }, + "f54e0ed2cc28430f8285ca5079656137": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a45ae2e5caff44cdb39d49840213da69", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa30ead3d6c2441584d3767f851fb6f0", + "value": 50.0 + } + }, + "f59299d4afbb4249a61046c3a5e522aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52b366eb36b54b419859bfa0171b9e16", + "placeholder": "​", + "style": "IPY_MODEL_7dafcc1ce8304bc6bce2f0a04f82ebd9", + "value": "number of examples processed for checking labels: " + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index ac230171a..a7f7a4707 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:27.983735Z", - "iopub.status.busy": "2024-01-10T06:14:27.983198Z", - "iopub.status.idle": "2024-01-10T06:14:30.187037Z", - "shell.execute_reply": "2024-01-10T06:14:30.186416Z" + "iopub.execute_input": "2024-01-10T15:00:02.259860Z", + "iopub.status.busy": "2024-01-10T15:00:02.259344Z", + "iopub.status.idle": "2024-01-10T15:00:04.424050Z", + "shell.execute_reply": "2024-01-10T15:00:04.423416Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:30.189697Z", - "iopub.status.busy": "2024-01-10T06:14:30.189376Z", - "iopub.status.idle": "2024-01-10T06:14:30.193168Z", - "shell.execute_reply": "2024-01-10T06:14:30.192626Z" + "iopub.execute_input": "2024-01-10T15:00:04.427155Z", + "iopub.status.busy": "2024-01-10T15:00:04.426599Z", + "iopub.status.idle": "2024-01-10T15:00:04.430600Z", + "shell.execute_reply": "2024-01-10T15:00:04.430047Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:30.195644Z", - "iopub.status.busy": "2024-01-10T06:14:30.195302Z", - "iopub.status.idle": "2024-01-10T06:14:32.296992Z", - "shell.execute_reply": "2024-01-10T06:14:32.296276Z" + "iopub.execute_input": "2024-01-10T15:00:04.433104Z", + "iopub.status.busy": "2024-01-10T15:00:04.432703Z", + "iopub.status.idle": "2024-01-10T15:00:06.135847Z", + "shell.execute_reply": "2024-01-10T15:00:06.135301Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a3915e0b726a46b79cb5df0f0080b054", + "model_id": "b9f8b67a42cd4066aaa973e62b8ca794", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6b5a69bbd21481db358d145d9702e00", + "model_id": "f290500824dc4995bf9dfe5f9f2b3425", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4aaf228d5dec484e9d76a93af99b330d", + "model_id": "ca3a18d2bf4b4fa68ed448ca06ccc823", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c98028da20994c76be789f56278cced6", + "model_id": "f0d31b197fe7409d990c55b1452c3705", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:32.299905Z", - "iopub.status.busy": "2024-01-10T06:14:32.299545Z", - "iopub.status.idle": "2024-01-10T06:14:32.303682Z", - "shell.execute_reply": "2024-01-10T06:14:32.303114Z" + "iopub.execute_input": "2024-01-10T15:00:06.138494Z", + "iopub.status.busy": "2024-01-10T15:00:06.138100Z", + "iopub.status.idle": "2024-01-10T15:00:06.142256Z", + "shell.execute_reply": "2024-01-10T15:00:06.141635Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:32.306297Z", - "iopub.status.busy": "2024-01-10T06:14:32.305739Z", - "iopub.status.idle": "2024-01-10T06:14:45.017686Z", - "shell.execute_reply": "2024-01-10T06:14:45.017075Z" + "iopub.execute_input": "2024-01-10T15:00:06.144792Z", + "iopub.status.busy": "2024-01-10T15:00:06.144285Z", + "iopub.status.idle": "2024-01-10T15:00:18.301514Z", + "shell.execute_reply": "2024-01-10T15:00:18.300790Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "49e601fd38364edaac3c9d83a3b91d37", + "model_id": "8a7ea3a7486345b3b0576e7ea7232743", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:45.020665Z", - "iopub.status.busy": "2024-01-10T06:14:45.020391Z", - "iopub.status.idle": "2024-01-10T06:15:07.261960Z", - "shell.execute_reply": "2024-01-10T06:15:07.261322Z" + "iopub.execute_input": "2024-01-10T15:00:18.305070Z", + "iopub.status.busy": "2024-01-10T15:00:18.304465Z", + "iopub.status.idle": "2024-01-10T15:00:39.413459Z", + "shell.execute_reply": "2024-01-10T15:00:39.412837Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.265138Z", - "iopub.status.busy": "2024-01-10T06:15:07.264694Z", - "iopub.status.idle": "2024-01-10T06:15:07.270905Z", - "shell.execute_reply": "2024-01-10T06:15:07.270259Z" + "iopub.execute_input": "2024-01-10T15:00:39.416560Z", + "iopub.status.busy": "2024-01-10T15:00:39.416130Z", + "iopub.status.idle": "2024-01-10T15:00:39.422080Z", + "shell.execute_reply": "2024-01-10T15:00:39.421556Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.273540Z", - "iopub.status.busy": "2024-01-10T06:15:07.273150Z", - "iopub.status.idle": "2024-01-10T06:15:07.277723Z", - "shell.execute_reply": "2024-01-10T06:15:07.277189Z" + "iopub.execute_input": "2024-01-10T15:00:39.424414Z", + "iopub.status.busy": "2024-01-10T15:00:39.424051Z", + "iopub.status.idle": "2024-01-10T15:00:39.428093Z", + "shell.execute_reply": "2024-01-10T15:00:39.427614Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.280348Z", - "iopub.status.busy": "2024-01-10T06:15:07.279953Z", - "iopub.status.idle": "2024-01-10T06:15:07.292535Z", - "shell.execute_reply": "2024-01-10T06:15:07.291681Z" + "iopub.execute_input": "2024-01-10T15:00:39.430452Z", + "iopub.status.busy": "2024-01-10T15:00:39.430093Z", + "iopub.status.idle": "2024-01-10T15:00:39.439781Z", + "shell.execute_reply": "2024-01-10T15:00:39.439252Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.295504Z", - "iopub.status.busy": "2024-01-10T06:15:07.294946Z", - "iopub.status.idle": "2024-01-10T06:15:07.327125Z", - "shell.execute_reply": "2024-01-10T06:15:07.326463Z" + "iopub.execute_input": "2024-01-10T15:00:39.442271Z", + "iopub.status.busy": "2024-01-10T15:00:39.441782Z", + "iopub.status.idle": "2024-01-10T15:00:39.469753Z", + "shell.execute_reply": "2024-01-10T15:00:39.469234Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.330122Z", - "iopub.status.busy": "2024-01-10T06:15:07.329678Z", - "iopub.status.idle": "2024-01-10T06:15:40.131617Z", - "shell.execute_reply": "2024-01-10T06:15:40.130564Z" + "iopub.execute_input": "2024-01-10T15:00:39.472447Z", + "iopub.status.busy": "2024-01-10T15:00:39.472049Z", + "iopub.status.idle": "2024-01-10T15:01:10.318115Z", + "shell.execute_reply": "2024-01-10T15:01:10.317294Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.995\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.674\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.856\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.384\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.60it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.84it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 49.93it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.30it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.41it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 61.59it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 67.49it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 65.91it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.40it/s]" + "100%|██████████| 40/40 [00:00<00:00, 61.51it/s]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.04it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.92it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 49.32it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 59.28it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 65.13it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 69.37it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.82it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.52it/s]" ] }, { @@ -882,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.786\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.606\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.727\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.416\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.26it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.40it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.49it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 61.21it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 65.51it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 69.51it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 63.01it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.37it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.37it/s]" ] }, { @@ -976,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.70it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.72it/s]" ] }, { @@ -984,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.88it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]" ] }, { @@ -992,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.35it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.20it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.31it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.89it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.14it/s]" ] }, { @@ -1038,14 +1038,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 5.020\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.563\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.627\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.317\n", "Computing feature embeddings ...\n" ] }, @@ -1062,7 +1062,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.29it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.06it/s]" ] }, { @@ -1070,7 +1070,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 43.17it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]" ] }, { @@ -1078,7 +1078,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.22it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]" ] }, { @@ -1086,7 +1086,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 62.89it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]" ] }, { @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 66.74it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.35it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.80it/s]" ] }, { @@ -1132,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.28it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.53it/s]" ] }, { @@ -1140,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 53.09it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]" ] }, { @@ -1148,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 63.84it/s]" + " 40%|████ | 16/40 [00:00<00:00, 53.87it/s]" ] }, { @@ -1156,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 68.71it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]" ] }, { @@ -1164,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 72.01it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 66.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.44it/s]" ] }, { @@ -1249,10 +1249,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:40.134484Z", - "iopub.status.busy": "2024-01-10T06:15:40.134046Z", - "iopub.status.idle": "2024-01-10T06:15:40.150308Z", - "shell.execute_reply": "2024-01-10T06:15:40.149745Z" + "iopub.execute_input": "2024-01-10T15:01:10.320887Z", + "iopub.status.busy": "2024-01-10T15:01:10.320635Z", + "iopub.status.idle": "2024-01-10T15:01:10.336127Z", + "shell.execute_reply": "2024-01-10T15:01:10.335651Z" } }, "outputs": [], @@ -1277,10 +1277,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:40.153062Z", - "iopub.status.busy": "2024-01-10T06:15:40.152743Z", - "iopub.status.idle": "2024-01-10T06:15:40.614160Z", - "shell.execute_reply": "2024-01-10T06:15:40.613451Z" + "iopub.execute_input": "2024-01-10T15:01:10.338583Z", + "iopub.status.busy": "2024-01-10T15:01:10.338209Z", + "iopub.status.idle": "2024-01-10T15:01:10.777774Z", + "shell.execute_reply": "2024-01-10T15:01:10.777077Z" } }, "outputs": [], @@ -1300,10 +1300,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:40.617172Z", - "iopub.status.busy": "2024-01-10T06:15:40.616955Z", - "iopub.status.idle": "2024-01-10T06:19:01.674604Z", - "shell.execute_reply": "2024-01-10T06:19:01.673956Z" + "iopub.execute_input": "2024-01-10T15:01:10.780594Z", + "iopub.status.busy": "2024-01-10T15:01:10.780378Z", + "iopub.status.idle": "2024-01-10T15:04:30.975742Z", + "shell.execute_reply": "2024-01-10T15:04:30.975036Z" } }, "outputs": [ @@ -1342,7 +1342,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dfe013943ca04be693b072c950762919", + "model_id": "eb174494cec7449c80000967dbef9224", "version_major": 2, "version_minor": 0 }, @@ -1381,10 +1381,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:01.677701Z", - "iopub.status.busy": "2024-01-10T06:19:01.676946Z", - "iopub.status.idle": "2024-01-10T06:19:02.197889Z", - "shell.execute_reply": "2024-01-10T06:19:02.197157Z" + "iopub.execute_input": "2024-01-10T15:04:30.978426Z", + "iopub.status.busy": "2024-01-10T15:04:30.977955Z", + "iopub.status.idle": "2024-01-10T15:04:31.496719Z", + "shell.execute_reply": "2024-01-10T15:04:31.496061Z" } }, "outputs": [ @@ -1596,10 +1596,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.201016Z", - "iopub.status.busy": "2024-01-10T06:19:02.200424Z", - "iopub.status.idle": "2024-01-10T06:19:02.240523Z", - "shell.execute_reply": "2024-01-10T06:19:02.239757Z" + "iopub.execute_input": "2024-01-10T15:04:31.499862Z", + "iopub.status.busy": "2024-01-10T15:04:31.499425Z", + "iopub.status.idle": "2024-01-10T15:04:31.562545Z", + "shell.execute_reply": "2024-01-10T15:04:31.561969Z" } }, "outputs": [ @@ -1703,10 +1703,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.243308Z", - "iopub.status.busy": "2024-01-10T06:19:02.243099Z", - "iopub.status.idle": "2024-01-10T06:19:02.253144Z", - "shell.execute_reply": "2024-01-10T06:19:02.252390Z" + "iopub.execute_input": "2024-01-10T15:04:31.565111Z", + "iopub.status.busy": "2024-01-10T15:04:31.564641Z", + "iopub.status.idle": "2024-01-10T15:04:31.573832Z", + "shell.execute_reply": "2024-01-10T15:04:31.573204Z" } }, "outputs": [ @@ -1836,10 +1836,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.255838Z", - "iopub.status.busy": "2024-01-10T06:19:02.255628Z", - "iopub.status.idle": "2024-01-10T06:19:02.261037Z", - "shell.execute_reply": "2024-01-10T06:19:02.260283Z" + "iopub.execute_input": "2024-01-10T15:04:31.576230Z", + "iopub.status.busy": "2024-01-10T15:04:31.575858Z", + "iopub.status.idle": "2024-01-10T15:04:31.580823Z", + "shell.execute_reply": "2024-01-10T15:04:31.580322Z" }, "nbsphinx": "hidden" }, @@ -1885,10 +1885,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.263582Z", - "iopub.status.busy": "2024-01-10T06:19:02.263372Z", - "iopub.status.idle": "2024-01-10T06:19:02.747505Z", - "shell.execute_reply": "2024-01-10T06:19:02.746806Z" + "iopub.execute_input": "2024-01-10T15:04:31.583353Z", + "iopub.status.busy": "2024-01-10T15:04:31.582863Z", + "iopub.status.idle": "2024-01-10T15:04:32.078729Z", + "shell.execute_reply": "2024-01-10T15:04:32.077999Z" } }, "outputs": [ @@ -1923,10 +1923,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.749994Z", - "iopub.status.busy": "2024-01-10T06:19:02.749785Z", - "iopub.status.idle": "2024-01-10T06:19:02.760052Z", - "shell.execute_reply": "2024-01-10T06:19:02.759451Z" + "iopub.execute_input": "2024-01-10T15:04:32.081461Z", + "iopub.status.busy": "2024-01-10T15:04:32.081063Z", + "iopub.status.idle": "2024-01-10T15:04:32.089988Z", + "shell.execute_reply": "2024-01-10T15:04:32.089379Z" } }, "outputs": [ @@ -2093,10 +2093,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.762581Z", - "iopub.status.busy": "2024-01-10T06:19:02.762116Z", - "iopub.status.idle": "2024-01-10T06:19:02.771043Z", - "shell.execute_reply": "2024-01-10T06:19:02.770414Z" + "iopub.execute_input": "2024-01-10T15:04:32.092549Z", + "iopub.status.busy": "2024-01-10T15:04:32.092192Z", + "iopub.status.idle": "2024-01-10T15:04:32.099974Z", + "shell.execute_reply": "2024-01-10T15:04:32.099484Z" }, "nbsphinx": "hidden" }, @@ -2172,10 +2172,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.773686Z", - "iopub.status.busy": "2024-01-10T06:19:02.773202Z", - "iopub.status.idle": "2024-01-10T06:19:03.493718Z", - "shell.execute_reply": "2024-01-10T06:19:03.493061Z" + "iopub.execute_input": "2024-01-10T15:04:32.102387Z", + "iopub.status.busy": "2024-01-10T15:04:32.101960Z", + "iopub.status.idle": "2024-01-10T15:04:32.570065Z", + "shell.execute_reply": "2024-01-10T15:04:32.569399Z" } }, "outputs": [ @@ -2212,10 +2212,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.496501Z", - "iopub.status.busy": "2024-01-10T06:19:03.496107Z", - "iopub.status.idle": "2024-01-10T06:19:03.513465Z", - "shell.execute_reply": "2024-01-10T06:19:03.512805Z" + "iopub.execute_input": "2024-01-10T15:04:32.572742Z", + "iopub.status.busy": "2024-01-10T15:04:32.572268Z", + "iopub.status.idle": "2024-01-10T15:04:32.588234Z", + "shell.execute_reply": "2024-01-10T15:04:32.587703Z" } }, "outputs": [ @@ -2372,10 +2372,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.516337Z", - "iopub.status.busy": "2024-01-10T06:19:03.515917Z", - "iopub.status.idle": "2024-01-10T06:19:03.521933Z", - "shell.execute_reply": "2024-01-10T06:19:03.521410Z" + "iopub.execute_input": "2024-01-10T15:04:32.590676Z", + "iopub.status.busy": "2024-01-10T15:04:32.590298Z", + "iopub.status.idle": "2024-01-10T15:04:32.596305Z", + "shell.execute_reply": "2024-01-10T15:04:32.595803Z" }, "nbsphinx": "hidden" }, @@ -2420,10 +2420,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.524251Z", - "iopub.status.busy": "2024-01-10T06:19:03.523892Z", - "iopub.status.idle": "2024-01-10T06:19:03.912280Z", - "shell.execute_reply": "2024-01-10T06:19:03.911576Z" + "iopub.execute_input": "2024-01-10T15:04:32.598706Z", + "iopub.status.busy": "2024-01-10T15:04:32.598338Z", + "iopub.status.idle": "2024-01-10T15:04:33.262834Z", + "shell.execute_reply": "2024-01-10T15:04:33.262161Z" } }, "outputs": [ @@ -2505,10 +2505,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.915329Z", - "iopub.status.busy": "2024-01-10T06:19:03.915107Z", - "iopub.status.idle": "2024-01-10T06:19:03.925635Z", - "shell.execute_reply": "2024-01-10T06:19:03.925000Z" + "iopub.execute_input": "2024-01-10T15:04:33.265775Z", + "iopub.status.busy": "2024-01-10T15:04:33.265530Z", + "iopub.status.idle": "2024-01-10T15:04:33.276077Z", + "shell.execute_reply": "2024-01-10T15:04:33.275421Z" } }, "outputs": [ @@ -2533,47 +2533,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2636,10 +2636,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.928193Z", - "iopub.status.busy": "2024-01-10T06:19:03.927986Z", - "iopub.status.idle": "2024-01-10T06:19:03.933195Z", - "shell.execute_reply": "2024-01-10T06:19:03.932669Z" + "iopub.execute_input": "2024-01-10T15:04:33.278895Z", + "iopub.status.busy": "2024-01-10T15:04:33.278657Z", + "iopub.status.idle": "2024-01-10T15:04:33.285169Z", + "shell.execute_reply": "2024-01-10T15:04:33.284523Z" }, "nbsphinx": "hidden" }, @@ -2676,10 +2676,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.935880Z", - "iopub.status.busy": "2024-01-10T06:19:03.935309Z", - "iopub.status.idle": "2024-01-10T06:19:04.104020Z", - "shell.execute_reply": "2024-01-10T06:19:04.103402Z" + "iopub.execute_input": "2024-01-10T15:04:33.287965Z", + "iopub.status.busy": "2024-01-10T15:04:33.287730Z", + "iopub.status.idle": "2024-01-10T15:04:33.487758Z", + "shell.execute_reply": "2024-01-10T15:04:33.487083Z" } }, "outputs": [ @@ -2721,10 +2721,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:04.106941Z", - "iopub.status.busy": "2024-01-10T06:19:04.106499Z", - "iopub.status.idle": "2024-01-10T06:19:04.115435Z", - "shell.execute_reply": "2024-01-10T06:19:04.114817Z" + "iopub.execute_input": "2024-01-10T15:04:33.490235Z", + "iopub.status.busy": "2024-01-10T15:04:33.490031Z", + "iopub.status.idle": "2024-01-10T15:04:33.498679Z", + "shell.execute_reply": "2024-01-10T15:04:33.498144Z" } }, "outputs": [ @@ -2810,10 +2810,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:04.117761Z", - "iopub.status.busy": "2024-01-10T06:19:04.117385Z", - "iopub.status.idle": "2024-01-10T06:19:04.309531Z", - "shell.execute_reply": "2024-01-10T06:19:04.308840Z" + "iopub.execute_input": "2024-01-10T15:04:33.501115Z", + "iopub.status.busy": "2024-01-10T15:04:33.500732Z", + "iopub.status.idle": "2024-01-10T15:04:33.699560Z", + "shell.execute_reply": "2024-01-10T15:04:33.698929Z" } }, "outputs": [ @@ -2853,10 +2853,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:04.312289Z", - "iopub.status.busy": "2024-01-10T06:19:04.311799Z", - "iopub.status.idle": "2024-01-10T06:19:04.316705Z", - "shell.execute_reply": "2024-01-10T06:19:04.316103Z" + "iopub.execute_input": "2024-01-10T15:04:33.702317Z", + "iopub.status.busy": "2024-01-10T15:04:33.701919Z", + "iopub.status.idle": "2024-01-10T15:04:33.706633Z", + "shell.execute_reply": "2024-01-10T15:04:33.706092Z" }, "nbsphinx": "hidden" }, @@ -2893,7 +2893,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "013214df95b64291a68080a23b498d9c": { + "04e4ae2e9732443b82af37f831ad18a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "112b9edaa54c411fa05ff60e3db9703c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2908,28 +2924,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bcf1b5301fd64b32aaf6b5bc496014ac", + "layout": "IPY_MODEL_4119165ce1a0454396504339dc2936a3", "placeholder": "​", - "style": "IPY_MODEL_0de47076f12f425aaf23ccfbd50f919d", - "value": " 2/2 [00:00<00:00, 310.86it/s]" + "style": "IPY_MODEL_81f0fab4dcf943af9f8f853b13f0b4a4", + "value": " 5.18M/5.18M [00:00<00:00, 15.8MB/s]" } }, - "0a79a261be2c484e94796f9d62c31f87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "1b00bb94c97b48db81ef550d08db758e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0cda3634af9749aa8e66efb500ef558a": { + "20d56237eaae4fc6b1a35901cd2d7a70": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2981,7 +3034,7 @@ "width": null } }, - "0d03cfe2e87e462c9a9b5432ae2d2024": { + "22fd5c8feced44949969236ff8c8f8c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3033,7 +3086,65 @@ "width": null } }, - "0de47076f12f425aaf23ccfbd50f919d": { + "241cbe4a6e3e4d4d9d6e9d22f4f3385b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a3b1109435a4736b03db0b1724a1442": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c86e818f0a9148bd95537441fe27026c", + "placeholder": "​", + "style": "IPY_MODEL_fa46b30146734cf0a97ec7dff997556d", + "value": "Downloading data: 100%" + } + }, + "2f2d629210df44a1954ce512820b9974": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cd5b6a6a0d34bbebe021beb8ff9a555", + "placeholder": "​", + "style": "IPY_MODEL_fbc7b405c321481196b289cba2b9602a", + "value": " 2/2 [00:00<00:00, 326.20it/s]" + } + }, + "30d262d335e4455cb26fa6ae8786ea57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3048,7 +3159,7 @@ "description_width": "" } }, - "0de5c1f9f47b48ec9f04d1bf5d3ad773": { + "31e88f00396f4838aa6fbf279617afea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3100,7 +3211,7 @@ "width": "20px" } }, - "0e160c96ba624dc8b6cea376b8066800": { + "32a4eedc1f8b44299bda1cb0f6abd26d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3152,7 +3263,7 @@ "width": null } }, - "10bb4e9e540347b6adf4e3fedbe1cc0e": { + "3863766608144d4bbae2dc8c00366428": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3168,7 +3279,7 @@ "description_width": "" } }, - "190459aade984ef2aea0d2515ff57cda": { + "3ccfadc694714dd88df84fa423c2c545": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3220,7 +3331,31 @@ "width": null } }, - "1b3b170418ce4c9ab3f8a55b5a6eabc9": { + "40f90b8814ba414e817c21d71281dd99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5f12e66dcc34cd894aa2fb362979871", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b312b11fc08244acb5c89f76e88653ff", + "value": 2.0 + } + }, + "4119165ce1a0454396504339dc2936a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3272,7 +3407,7 @@ "width": null } }, - "1bd85ee9e5b94936a4a0ca8c939715dd": { + "44e342404a6a44a69061b8bb99059003": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3324,28 +3459,7 @@ "width": null } }, - "1d21a5d038eb47648eec87e4e6006fd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0d03cfe2e87e462c9a9b5432ae2d2024", - "placeholder": "​", - "style": "IPY_MODEL_2ed35715096140afab738d789e6ea0ae", - "value": "Map (num_proc=4): 100%" - } - }, - "1f2895dbb9ee4dbeaa2353e1d22f7797": { + "45ab4026e1ff4814b9f2f20c4ffefbdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3397,7 +3511,7 @@ "width": null } }, - "200254c8d04f40b599b27cab58c62c23": { + "4b348afa95f54ad58600dc4f73a66315": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3449,31 +3563,95 @@ "width": null } }, - "2077df6b881c41f397694543602c3b21": { + "4f710dcf1dd545e5b2a12c8b5d0ebb77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "531306c3d4224ff59e7d053b01e9d583": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "53fade93864d442b9cdba0679cd70a5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_190459aade984ef2aea0d2515ff57cda", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ead0d8a08ab4a72a56b1bcf53e7b043", - "value": 30931277.0 + "layout": "IPY_MODEL_c273ef269f6b4139b28b78dd748d40a9", + "placeholder": "​", + "style": "IPY_MODEL_6e64b79aae00417680bd46c4ae245378", + "value": " 60000/0 [00:00<00:00, 908159.42 examples/s]" + } + }, + "55665cf5f5644591876a1ab6b8cf98a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_57cf6506fa2242dc96fcb0b457a2206a", + "placeholder": "​", + "style": "IPY_MODEL_62d37e620d8b4d3d8e23a6f9446c0f30", + "value": " 30.9M/30.9M [00:00<00:00, 84.4MB/s]" + } + }, + "56c95b5861374f539f8547df31e62298": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "22110adf8fbd44dc907195aa03315f8f": { + "57cf6506fa2242dc96fcb0b457a2206a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3525,68 +3703,59 @@ "width": null } }, - "2695bb154afc4c0ca3e73976aa6b1557": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "58b405bc9cc348dc929d12e142bb0650": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cf1ffd0a959c4b1b98e9116cbd853f84", - "placeholder": "​", - "style": "IPY_MODEL_0a79a261be2c484e94796f9d62c31f87", - "value": "Computing checksums: 100%" - } - }, - "26d3dec3ea8a42e78a9a1f322d8be9c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ea0795aea16d4e3ca4a1917ca4866577", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_10bb4e9e540347b6adf4e3fedbe1cc0e", - "value": 2.0 - } - }, - "2cc8abc90f014a1cae1e929a856c504c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2ed35715096140afab738d789e6ea0ae": { + "62d37e620d8b4d3d8e23a6f9446c0f30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3601,7 +3770,7 @@ "description_width": "" } }, - "312e7e414ea44c0cb196a98ae42a3820": { + "642e927f44e546abb691317a37cb9c45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3616,7 +3785,7 @@ "description_width": "" } }, - "38d235ba304a40398a6b2133d5d914d3": { + "6cd5b6a6a0d34bbebe021beb8ff9a555": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3668,71 +3837,22 @@ "width": null } }, - "398eb4cd325f46478a8fa7d7374a5549": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_eb5828f6121341f8b9392cbdc9416b5f", - "placeholder": "​", - "style": "IPY_MODEL_4ec21615f55d49f283bd0e6b2f5440a7", - "value": "Generating test split: " - } - }, - "3a2cf689648147339884bf21e41e0117": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8508ed2c71b941dd88b8226f584dd39f", - "placeholder": "​", - "style": "IPY_MODEL_ffc7d069ba3342649b031d7e4fc2b1e9", - "value": " 60000/60000 [00:12<00:00, 4348.01 examples/s]" - } - }, - "49e601fd38364edaac3c9d83a3b91d37": { + "6e64b79aae00417680bd46c4ae245378": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1d21a5d038eb47648eec87e4e6006fd2", - "IPY_MODEL_7354bbbddf5c490c9aef5c8baf007d83", - "IPY_MODEL_3a2cf689648147339884bf21e41e0117" - ], - "layout": "IPY_MODEL_1f2895dbb9ee4dbeaa2353e1d22f7797" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4aaf228d5dec484e9d76a93af99b330d": { + "6eb966bbd7c140f893c9852a659a12b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3747,50 +3867,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e69939aec370403db4aa8a60e3dd20e3", - "IPY_MODEL_6ec843e6a46940dba4f1613a2e697ff3", - "IPY_MODEL_e8532a073a86434db3784fb380727e9f" + "IPY_MODEL_def7d8c7aa354f3087d6be14e2d005af", + "IPY_MODEL_40f90b8814ba414e817c21d71281dd99", + "IPY_MODEL_2f2d629210df44a1954ce512820b9974" ], - "layout": "IPY_MODEL_ec15ac2ff1a445bd9ca4553a52d53b2f" - } - }, - "4be66381fb204b84afdc2415136fb407": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0e160c96ba624dc8b6cea376b8066800", - "placeholder": "​", - "style": "IPY_MODEL_55739e7c4da544cbb13ae2f33cc14e5c", - "value": "100%" - } - }, - "4ec21615f55d49f283bd0e6b2f5440a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_7fe60cd2bb9944088c770c6054b969f0" } }, - "4f1471abf2d545c7bf0b67cd9327b5b1": { + "73224719d91b43aea20d1947b20b9fae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3842,43 +3926,7 @@ "width": null } }, - "531d284991c7410f8db880db73019fac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1b3b170418ce4c9ab3f8a55b5a6eabc9", - "placeholder": "​", - "style": "IPY_MODEL_bc6ecce06e14491c86ba5776deecab56", - "value": " 60000/60000 [00:34<00:00, 1699.40it/s]" - } - }, - "55739e7c4da544cbb13ae2f33cc14e5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "56284ddcfc6f45b1ab26d5b2d7960182": { + "747917059fd846f3bab65dc46259cdd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3894,82 +3942,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0de5c1f9f47b48ec9f04d1bf5d3ad773", - "max": 1.0, + "layout": "IPY_MODEL_f936491928e643d991be5593f5ce8e2e", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_dda99bdff9404fdfb5828d3010b9f8a1", - "value": 1.0 - } - }, - "5dd680e3231f43718c6308a8e45e1da2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5ead0d8a08ab4a72a56b1bcf53e7b043": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "65858abaeaa64069a1e42170696ed7d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4f1471abf2d545c7bf0b67cd9327b5b1", - "placeholder": "​", - "style": "IPY_MODEL_65d9f41155d24ab983b2225422ae636e", - "value": " 30.9M/30.9M [00:00<00:00, 76.8MB/s]" - } - }, - "65d9f41155d24ab983b2225422ae636e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_3863766608144d4bbae2dc8c00366428", + "value": 60000.0 } }, - "6ec843e6a46940dba4f1613a2e697ff3": { + "7aabea0e51b14aa0a344f519dace41d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3985,76 +3966,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d7e4b9ab15f94205a4b550065dc49563", + "layout": "IPY_MODEL_fc957e7fcc8a4257b589cb24f6c097ed", "max": 1.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2cc8abc90f014a1cae1e929a856c504c", + "style": "IPY_MODEL_241cbe4a6e3e4d4d9d6e9d22f4f3385b", "value": 1.0 } }, - "7354bbbddf5c490c9aef5c8baf007d83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e6d905af2f524d45905c52a4563e3b9f", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c804c3d8105c4289a60d0a1dff6d3cfe", - "value": 60000.0 - } - }, - "78249ca6d2e148269fee22730149bfc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_38d235ba304a40398a6b2133d5d914d3", - "placeholder": "​", - "style": "IPY_MODEL_5dd680e3231f43718c6308a8e45e1da2", - "value": "Downloading data: 100%" - } - }, - "7c26ccdbd7a74a0f83ab2ec3744b92d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8508ed2c71b941dd88b8226f584dd39f": { + "7fe60cd2bb9944088c770c6054b969f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4106,59 +4026,43 @@ "width": null } }, - "899e58d8a40a465297f40aeada991389": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "8166aa3799774caf8b87e0123a21d7a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_32a4eedc1f8b44299bda1cb0f6abd26d", + "placeholder": "​", + "style": "IPY_MODEL_f479288994bb480f93a2890ac8b9689a", + "value": " 60000/60000 [00:12<00:00, 3528.13 examples/s]" + } + }, + "81f0fab4dcf943af9f8f853b13f0b4a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "89e68bddf9384821a6b84d7f2d4e482e": { + "84bcdef9932046f0930340bd8f083f61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4174,15 +4078,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c603b29c641542a68e01cfc8bcc23136", + "layout": "IPY_MODEL_df11331f35ed4acab017a87d9c99f632", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7c26ccdbd7a74a0f83ab2ec3744b92d4", + "style": "IPY_MODEL_04e4ae2e9732443b82af37f831ad18a1", "value": 60000.0 } }, - "9f23a3a591a44348963c1d972f09eea0": { + "8a7ea3a7486345b3b0576e7ea7232743": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f6c40051e8f24228bbec72cf3feba8a2", + "IPY_MODEL_747917059fd846f3bab65dc46259cdd9", + "IPY_MODEL_8166aa3799774caf8b87e0123a21d7a8" + ], + "layout": "IPY_MODEL_94105893d93745368f80f8601af838d5" + } + }, + "8f6b26b7119741c5b0e69e2bb959c0d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4234,29 +4160,23 @@ "width": null } }, - "a3915e0b726a46b79cb5df0f0080b054": { + "8fefc0d74ba54974b442c6b71acfca3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e0717ef2b1f241a585bab71f798c07aa", - "IPY_MODEL_2077df6b881c41f397694543602c3b21", - "IPY_MODEL_65858abaeaa64069a1e42170696ed7d5" - ], - "layout": "IPY_MODEL_200254c8d04f40b599b27cab58c62c23" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a6744175fe1842fe96c1f9105ae47256": { + "94105893d93745368f80f8601af838d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4308,45 +4228,49 @@ "width": null } }, - "a6b5a69bbd21481db358d145d9702e00": { + "975d8ea39a014452958aa146cb2be35e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_78249ca6d2e148269fee22730149bfc7", - "IPY_MODEL_df7c93e26eda4e248394e2244cfded4c", - "IPY_MODEL_d446110cb3c24b66987a4e37de6ccd06" - ], - "layout": "IPY_MODEL_22110adf8fbd44dc907195aa03315f8f" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b348afa95f54ad58600dc4f73a66315", + "placeholder": "​", + "style": "IPY_MODEL_642e927f44e546abb691317a37cb9c45", + "value": " 10000/0 [00:00<00:00, 533266.88 examples/s]" } }, - "afb50312cbe743948bbafaebb013b144": { + "99030e7333314a1aab3d9d361a77c853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f6b26b7119741c5b0e69e2bb959c0d0", + "placeholder": "​", + "style": "IPY_MODEL_f6c6eedc2b8040ef8b8f49905f4d1693", + "value": "100%" } }, - "b2ae5f58b0c44998937c4fd1e2f2054a": { + "9bb84796b7394d3785201ca53696b02a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4361,13 +4285,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e2e288cbd8d54b37921c3c1a587bb313", + "layout": "IPY_MODEL_58b405bc9cc348dc929d12e142bb0650", "placeholder": "​", - "style": "IPY_MODEL_312e7e414ea44c0cb196a98ae42a3820", - "value": " 10000/0 [00:00<00:00, 522062.71 examples/s]" + "style": "IPY_MODEL_56c95b5861374f539f8547df31e62298", + "value": " 60000/60000 [00:34<00:00, 1701.51it/s]" } }, - "bbdfd655d6b2431895de761767dbe4eb": { + "a43ef6625dea4b75a7bd60e2ad355251": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4382,7 +4306,7 @@ "description_width": "" } }, - "bc6ecce06e14491c86ba5776deecab56": { + "af56049c25a04736a48db4358cc9df58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4397,59 +4321,45 @@ "description_width": "" } }, - "bcf1b5301fd64b32aaf6b5bc496014ac": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "b312b11fc08244acb5c89f76e88653ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b9f8b67a42cd4066aaa973e62b8ca794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d92c2abcd7884d97888881358b3cd238", + "IPY_MODEL_db44e5262c4c49de8c97bca5ac255894", + "IPY_MODEL_55665cf5f5644591876a1ab6b8cf98a9" + ], + "layout": "IPY_MODEL_3ccfadc694714dd88df84fa423c2c545" } }, - "c0f6e3e01f79409296a19f5fac62b3aa": { + "bbc89641d4084f42bd9460c0e97e2df2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4501,7 +4411,28 @@ "width": null } }, - "c603b29c641542a68e01cfc8bcc23136": { + "bee57b4377fb4ff8b1a8962934c0ad90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73224719d91b43aea20d1947b20b9fae", + "placeholder": "​", + "style": "IPY_MODEL_af56049c25a04736a48db4358cc9df58", + "value": "Generating train split: " + } + }, + "bf53f28b041a4ed9a94303a3b2af0104": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4553,45 +4484,7 @@ "width": null } }, - "c804c3d8105c4289a60d0a1dff6d3cfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c98028da20994c76be789f56278cced6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_398eb4cd325f46478a8fa7d7374a5549", - "IPY_MODEL_56284ddcfc6f45b1ab26d5b2d7960182", - "IPY_MODEL_b2ae5f58b0c44998937c4fd1e2f2054a" - ], - "layout": "IPY_MODEL_1bd85ee9e5b94936a4a0ca8c939715dd" - } - }, - "cf1ffd0a959c4b1b98e9116cbd853f84": { + "c273ef269f6b4139b28b78dd748d40a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4643,28 +4536,31 @@ "width": null } }, - "d446110cb3c24b66987a4e37de6ccd06": { + "c5d6f7de1ab84a849a8e3bc128b311f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a6744175fe1842fe96c1f9105ae47256", - "placeholder": "​", - "style": "IPY_MODEL_f6100e7965f840b397c807782f4eacd6", - "value": " 5.18M/5.18M [00:00<00:00, 72.4MB/s]" + "layout": "IPY_MODEL_31e88f00396f4838aa6fbf279617afea", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d614f19d9865459793b1f30c2fa79913", + "value": 1.0 } }, - "d7e4b9ab15f94205a4b550065dc49563": { + "c5f12e66dcc34cd894aa2fb362979871": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4709,112 +4605,14 @@ "overflow": null, "overflow_x": null, "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" - } - }, - "d8935bf4844d43b294f1960ef9619de7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dda99bdff9404fdfb5828d3010b9f8a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "df7c93e26eda4e248394e2244cfded4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0f6e3e01f79409296a19f5fac62b3aa", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_afb50312cbe743948bbafaebb013b144", - "value": 5175617.0 - } - }, - "dfe013943ca04be693b072c950762919": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4be66381fb204b84afdc2415136fb407", - "IPY_MODEL_89e68bddf9384821a6b84d7f2d4e482e", - "IPY_MODEL_531d284991c7410f8db880db73019fac" - ], - "layout": "IPY_MODEL_899e58d8a40a465297f40aeada991389" - } - }, - "e0717ef2b1f241a585bab71f798c07aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9f23a3a591a44348963c1d972f09eea0", - "placeholder": "​", - "style": "IPY_MODEL_efb859ce22df4aedb5cd3bffda0adc5f", - "value": "Downloading data: 100%" + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e2e288cbd8d54b37921c3c1a587bb313": { + "c86e818f0a9148bd95537441fe27026c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4866,7 +4664,7 @@ "width": null } }, - "e36aa52b0d1c430cb96f1bdb16e44c82": { + "ca3a18d2bf4b4fa68ed448ca06ccc823": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4881,35 +4679,45 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2695bb154afc4c0ca3e73976aa6b1557", - "IPY_MODEL_26d3dec3ea8a42e78a9a1f322d8be9c3", - "IPY_MODEL_013214df95b64291a68080a23b498d9c" + "IPY_MODEL_bee57b4377fb4ff8b1a8962934c0ad90", + "IPY_MODEL_c5d6f7de1ab84a849a8e3bc128b311f1", + "IPY_MODEL_53fade93864d442b9cdba0679cd70a5b" ], - "layout": "IPY_MODEL_f20a65a9ab814f7e990cc1d89679131a" + "layout": "IPY_MODEL_45ab4026e1ff4814b9f2f20c4ffefbdb" } }, - "e69939aec370403db4aa8a60e3dd20e3": { + "cfe37b5719f04fd29e805d7127de5338": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0cda3634af9749aa8e66efb500ef558a", - "placeholder": "​", - "style": "IPY_MODEL_d8935bf4844d43b294f1960ef9619de7", - "value": "Generating train split: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d614f19d9865459793b1f30c2fa79913": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e6d905af2f524d45905c52a4563e3b9f": { + "d7f3a96589a84783a117d707db05a5d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4961,7 +4769,52 @@ "width": null } }, - "e8532a073a86434db3784fb380727e9f": { + "d92c2abcd7884d97888881358b3cd238": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44e342404a6a44a69061b8bb99059003", + "placeholder": "​", + "style": "IPY_MODEL_30d262d335e4455cb26fa6ae8786ea57", + "value": "Downloading data: 100%" + } + }, + "db44e5262c4c49de8c97bca5ac255894": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22fd5c8feced44949969236ff8c8f8c5", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f710dcf1dd545e5b2a12c8b5d0ebb77", + "value": 30931277.0 + } + }, + "def7d8c7aa354f3087d6be14e2d005af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4976,13 +4829,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eb9ca05ae5c842308439407a0dabc84b", + "layout": "IPY_MODEL_1b00bb94c97b48db81ef550d08db758e", "placeholder": "​", - "style": "IPY_MODEL_bbdfd655d6b2431895de761767dbe4eb", - "value": " 60000/0 [00:00<00:00, 804572.60 examples/s]" + "style": "IPY_MODEL_531306c3d4224ff59e7d053b01e9d583", + "value": "Computing checksums: 100%" } }, - "ea0795aea16d4e3ca4a1917ca4866577": { + "df11331f35ed4acab017a87d9c99f632": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5034,7 +4887,52 @@ "width": null } }, - "eb5828f6121341f8b9392cbdc9416b5f": { + "dfcc60c7ce4d427d9db728d1111175d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf53f28b041a4ed9a94303a3b2af0104", + "placeholder": "​", + "style": "IPY_MODEL_a43ef6625dea4b75a7bd60e2ad355251", + "value": "Generating test split: " + } + }, + "e36ce1e2b4ac46b89919510d19d88e00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20d56237eaae4fc6b1a35901cd2d7a70", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8fefc0d74ba54974b442c6b71acfca3f", + "value": 5175617.0 + } + }, + "e3a451c639764ba4a7e218a0a80bb64f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5086,7 +4984,73 @@ "width": null } }, - "eb9ca05ae5c842308439407a0dabc84b": { + "eb174494cec7449c80000967dbef9224": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99030e7333314a1aab3d9d361a77c853", + "IPY_MODEL_84bcdef9932046f0930340bd8f083f61", + "IPY_MODEL_9bb84796b7394d3785201ca53696b02a" + ], + "layout": "IPY_MODEL_bbc89641d4084f42bd9460c0e97e2df2" + } + }, + "f0d31b197fe7409d990c55b1452c3705": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dfcc60c7ce4d427d9db728d1111175d5", + "IPY_MODEL_7aabea0e51b14aa0a344f519dace41d4", + "IPY_MODEL_975d8ea39a014452958aa146cb2be35e" + ], + "layout": "IPY_MODEL_e3a451c639764ba4a7e218a0a80bb64f" + } + }, + "f290500824dc4995bf9dfe5f9f2b3425": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a3b1109435a4736b03db0b1724a1442", + "IPY_MODEL_e36ce1e2b4ac46b89919510d19d88e00", + "IPY_MODEL_112b9edaa54c411fa05ff60e3db9703c" + ], + "layout": "IPY_MODEL_f46d4bf4f0a14643be3fbdc4e3420fc1" + } + }, + "f46d4bf4f0a14643be3fbdc4e3420fc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5138,7 +5102,58 @@ "width": null } }, - "ec15ac2ff1a445bd9ca4553a52d53b2f": { + "f479288994bb480f93a2890ac8b9689a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f6c40051e8f24228bbec72cf3feba8a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7f3a96589a84783a117d707db05a5d7", + "placeholder": "​", + "style": "IPY_MODEL_cfe37b5719f04fd29e805d7127de5338", + "value": "Map (num_proc=4): 100%" + } + }, + "f6c6eedc2b8040ef8b8f49905f4d1693": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f936491928e643d991be5593f5ce8e2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5190,7 +5205,22 @@ "width": null } }, - "efb859ce22df4aedb5cd3bffda0adc5f": { + "fa46b30146734cf0a97ec7dff997556d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fbc7b405c321481196b289cba2b9602a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5205,7 +5235,7 @@ "description_width": "" } }, - "f20a65a9ab814f7e990cc1d89679131a": { + "fc957e7fcc8a4257b589cb24f6c097ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5254,37 +5284,7 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "f6100e7965f840b397c807782f4eacd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ffc7d069ba3342649b031d7e4fc2b1e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "width": "20px" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 3fb385f45..e4512dc87 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:10.230756Z", - "iopub.status.busy": "2024-01-10T06:19:10.230131Z", - "iopub.status.idle": "2024-01-10T06:19:11.356341Z", - "shell.execute_reply": "2024-01-10T06:19:11.355670Z" + "iopub.execute_input": "2024-01-10T15:04:39.321427Z", + "iopub.status.busy": "2024-01-10T15:04:39.321210Z", + "iopub.status.idle": "2024-01-10T15:04:40.398173Z", + "shell.execute_reply": "2024-01-10T15:04:40.397563Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.359495Z", - "iopub.status.busy": "2024-01-10T06:19:11.358950Z", - "iopub.status.idle": "2024-01-10T06:19:11.645037Z", - "shell.execute_reply": "2024-01-10T06:19:11.644365Z" + "iopub.execute_input": "2024-01-10T15:04:40.401187Z", + "iopub.status.busy": "2024-01-10T15:04:40.400737Z", + "iopub.status.idle": "2024-01-10T15:04:40.669725Z", + "shell.execute_reply": "2024-01-10T15:04:40.669115Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.648431Z", - "iopub.status.busy": "2024-01-10T06:19:11.647953Z", - "iopub.status.idle": "2024-01-10T06:19:11.660400Z", - "shell.execute_reply": "2024-01-10T06:19:11.659834Z" + "iopub.execute_input": "2024-01-10T15:04:40.672962Z", + "iopub.status.busy": "2024-01-10T15:04:40.672388Z", + "iopub.status.idle": "2024-01-10T15:04:40.684649Z", + "shell.execute_reply": "2024-01-10T15:04:40.684028Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.662953Z", - "iopub.status.busy": "2024-01-10T06:19:11.662542Z", - "iopub.status.idle": "2024-01-10T06:19:11.900160Z", - "shell.execute_reply": "2024-01-10T06:19:11.899470Z" + "iopub.execute_input": "2024-01-10T15:04:40.687271Z", + "iopub.status.busy": "2024-01-10T15:04:40.686818Z", + "iopub.status.idle": "2024-01-10T15:04:40.921516Z", + "shell.execute_reply": "2024-01-10T15:04:40.920869Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.903126Z", - "iopub.status.busy": "2024-01-10T06:19:11.902693Z", - "iopub.status.idle": "2024-01-10T06:19:11.929149Z", - "shell.execute_reply": "2024-01-10T06:19:11.928601Z" + "iopub.execute_input": "2024-01-10T15:04:40.924511Z", + "iopub.status.busy": "2024-01-10T15:04:40.924050Z", + "iopub.status.idle": "2024-01-10T15:04:40.951356Z", + "shell.execute_reply": "2024-01-10T15:04:40.950828Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.931771Z", - "iopub.status.busy": "2024-01-10T06:19:11.931369Z", - "iopub.status.idle": "2024-01-10T06:19:13.340850Z", - "shell.execute_reply": "2024-01-10T06:19:13.340122Z" + "iopub.execute_input": "2024-01-10T15:04:40.953852Z", + "iopub.status.busy": "2024-01-10T15:04:40.953477Z", + "iopub.status.idle": "2024-01-10T15:04:42.309859Z", + "shell.execute_reply": "2024-01-10T15:04:42.309107Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:13.343983Z", - "iopub.status.busy": "2024-01-10T06:19:13.343269Z", - "iopub.status.idle": "2024-01-10T06:19:13.368528Z", - "shell.execute_reply": "2024-01-10T06:19:13.367864Z" + "iopub.execute_input": "2024-01-10T15:04:42.312942Z", + "iopub.status.busy": "2024-01-10T15:04:42.312275Z", + "iopub.status.idle": "2024-01-10T15:04:42.337983Z", + "shell.execute_reply": "2024-01-10T15:04:42.337407Z" }, "scrolled": true }, @@ -641,10 +641,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:13.370923Z", - "iopub.status.busy": "2024-01-10T06:19:13.370715Z", - "iopub.status.idle": "2024-01-10T06:19:14.287348Z", - "shell.execute_reply": "2024-01-10T06:19:14.286696Z" + "iopub.execute_input": "2024-01-10T15:04:42.340434Z", + "iopub.status.busy": "2024-01-10T15:04:42.340211Z", + "iopub.status.idle": "2024-01-10T15:04:43.216594Z", + "shell.execute_reply": "2024-01-10T15:04:43.215893Z" }, "id": "AaHC5MRKjruT" }, @@ -763,10 +763,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.290089Z", - "iopub.status.busy": "2024-01-10T06:19:14.289653Z", - "iopub.status.idle": "2024-01-10T06:19:14.304321Z", - "shell.execute_reply": "2024-01-10T06:19:14.303795Z" + "iopub.execute_input": "2024-01-10T15:04:43.219465Z", + "iopub.status.busy": "2024-01-10T15:04:43.219248Z", + "iopub.status.idle": "2024-01-10T15:04:43.234139Z", + "shell.execute_reply": "2024-01-10T15:04:43.233465Z" }, "id": "Wy27rvyhjruU" }, @@ -815,10 +815,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.306556Z", - "iopub.status.busy": "2024-01-10T06:19:14.306353Z", - "iopub.status.idle": "2024-01-10T06:19:14.395464Z", - "shell.execute_reply": "2024-01-10T06:19:14.394757Z" + "iopub.execute_input": "2024-01-10T15:04:43.236729Z", + "iopub.status.busy": "2024-01-10T15:04:43.236367Z", + "iopub.status.idle": "2024-01-10T15:04:43.322460Z", + "shell.execute_reply": "2024-01-10T15:04:43.321810Z" }, "id": "Db8YHnyVjruU" }, @@ -925,10 +925,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.398081Z", - "iopub.status.busy": "2024-01-10T06:19:14.397790Z", - "iopub.status.idle": "2024-01-10T06:19:14.605263Z", - "shell.execute_reply": "2024-01-10T06:19:14.604556Z" + "iopub.execute_input": "2024-01-10T15:04:43.324966Z", + "iopub.status.busy": "2024-01-10T15:04:43.324713Z", + "iopub.status.idle": "2024-01-10T15:04:43.529247Z", + "shell.execute_reply": "2024-01-10T15:04:43.528571Z" }, "id": "iJqAHuS2jruV" }, @@ -965,10 +965,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.608187Z", - "iopub.status.busy": "2024-01-10T06:19:14.607708Z", - "iopub.status.idle": "2024-01-10T06:19:14.625986Z", - "shell.execute_reply": "2024-01-10T06:19:14.625325Z" + "iopub.execute_input": "2024-01-10T15:04:43.532132Z", + "iopub.status.busy": "2024-01-10T15:04:43.531690Z", + "iopub.status.idle": "2024-01-10T15:04:43.549245Z", + "shell.execute_reply": "2024-01-10T15:04:43.548725Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.628765Z", - "iopub.status.busy": "2024-01-10T06:19:14.628360Z", - "iopub.status.idle": "2024-01-10T06:19:14.639216Z", - "shell.execute_reply": "2024-01-10T06:19:14.638680Z" + "iopub.execute_input": "2024-01-10T15:04:43.551560Z", + "iopub.status.busy": "2024-01-10T15:04:43.551356Z", + "iopub.status.idle": "2024-01-10T15:04:43.561686Z", + "shell.execute_reply": "2024-01-10T15:04:43.561157Z" }, "id": "0lonvOYvjruV" }, @@ -1180,10 +1180,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.641682Z", - "iopub.status.busy": "2024-01-10T06:19:14.641288Z", - "iopub.status.idle": "2024-01-10T06:19:14.743511Z", - "shell.execute_reply": "2024-01-10T06:19:14.742754Z" + "iopub.execute_input": "2024-01-10T15:04:43.563888Z", + "iopub.status.busy": "2024-01-10T15:04:43.563685Z", + "iopub.status.idle": "2024-01-10T15:04:43.660140Z", + "shell.execute_reply": "2024-01-10T15:04:43.659441Z" }, "id": "MfqTCa3kjruV" }, @@ -1264,10 +1264,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.747035Z", - "iopub.status.busy": "2024-01-10T06:19:14.746126Z", - "iopub.status.idle": "2024-01-10T06:19:14.909743Z", - "shell.execute_reply": "2024-01-10T06:19:14.909013Z" + "iopub.execute_input": "2024-01-10T15:04:43.662836Z", + "iopub.status.busy": "2024-01-10T15:04:43.662578Z", + "iopub.status.idle": "2024-01-10T15:04:43.805417Z", + "shell.execute_reply": "2024-01-10T15:04:43.804781Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1327,10 +1327,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.912509Z", - "iopub.status.busy": "2024-01-10T06:19:14.912249Z", - "iopub.status.idle": "2024-01-10T06:19:14.916421Z", - "shell.execute_reply": "2024-01-10T06:19:14.915806Z" + "iopub.execute_input": "2024-01-10T15:04:43.808245Z", + "iopub.status.busy": "2024-01-10T15:04:43.807852Z", + "iopub.status.idle": "2024-01-10T15:04:43.812212Z", + "shell.execute_reply": "2024-01-10T15:04:43.811667Z" }, "id": "0rXP3ZPWjruW" }, @@ -1368,10 +1368,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.918795Z", - "iopub.status.busy": "2024-01-10T06:19:14.918435Z", - "iopub.status.idle": "2024-01-10T06:19:14.923066Z", - "shell.execute_reply": "2024-01-10T06:19:14.922436Z" + "iopub.execute_input": "2024-01-10T15:04:43.814450Z", + "iopub.status.busy": "2024-01-10T15:04:43.814232Z", + "iopub.status.idle": "2024-01-10T15:04:43.818838Z", + "shell.execute_reply": "2024-01-10T15:04:43.818307Z" }, "id": "-iRPe8KXjruW" }, @@ -1426,10 +1426,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.925674Z", - "iopub.status.busy": "2024-01-10T06:19:14.925282Z", - "iopub.status.idle": "2024-01-10T06:19:14.965643Z", - "shell.execute_reply": "2024-01-10T06:19:14.964962Z" + "iopub.execute_input": "2024-01-10T15:04:43.821246Z", + "iopub.status.busy": "2024-01-10T15:04:43.820961Z", + "iopub.status.idle": "2024-01-10T15:04:43.860597Z", + "shell.execute_reply": "2024-01-10T15:04:43.860082Z" }, "id": "ZpipUliyjruW" }, @@ -1480,10 +1480,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.968405Z", - "iopub.status.busy": "2024-01-10T06:19:14.968011Z", - "iopub.status.idle": "2024-01-10T06:19:15.015701Z", - "shell.execute_reply": "2024-01-10T06:19:15.015056Z" + "iopub.execute_input": "2024-01-10T15:04:43.863024Z", + "iopub.status.busy": "2024-01-10T15:04:43.862665Z", + "iopub.status.idle": "2024-01-10T15:04:43.907937Z", + "shell.execute_reply": "2024-01-10T15:04:43.907422Z" }, "id": "SLq-3q4xjruX" }, @@ -1552,10 +1552,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.018378Z", - "iopub.status.busy": "2024-01-10T06:19:15.017908Z", - "iopub.status.idle": "2024-01-10T06:19:15.125330Z", - "shell.execute_reply": "2024-01-10T06:19:15.124654Z" + "iopub.execute_input": "2024-01-10T15:04:43.910314Z", + "iopub.status.busy": "2024-01-10T15:04:43.910006Z", + "iopub.status.idle": "2024-01-10T15:04:44.013322Z", + "shell.execute_reply": "2024-01-10T15:04:44.012666Z" }, "id": "g5LHhhuqFbXK" }, @@ -1587,10 +1587,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.128752Z", - "iopub.status.busy": "2024-01-10T06:19:15.128227Z", - "iopub.status.idle": "2024-01-10T06:19:15.234835Z", - "shell.execute_reply": "2024-01-10T06:19:15.234115Z" + "iopub.execute_input": "2024-01-10T15:04:44.016380Z", + "iopub.status.busy": "2024-01-10T15:04:44.015987Z", + "iopub.status.idle": "2024-01-10T15:04:44.118865Z", + "shell.execute_reply": "2024-01-10T15:04:44.118170Z" }, "id": "p7w8F8ezBcet" }, @@ -1647,10 +1647,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.237722Z", - "iopub.status.busy": "2024-01-10T06:19:15.237193Z", - "iopub.status.idle": "2024-01-10T06:19:15.449470Z", - "shell.execute_reply": "2024-01-10T06:19:15.448775Z" + "iopub.execute_input": "2024-01-10T15:04:44.121545Z", + "iopub.status.busy": "2024-01-10T15:04:44.121287Z", + "iopub.status.idle": "2024-01-10T15:04:44.325172Z", + "shell.execute_reply": "2024-01-10T15:04:44.324514Z" }, "id": "WETRL74tE_sU" }, @@ -1685,10 +1685,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.452306Z", - "iopub.status.busy": "2024-01-10T06:19:15.451848Z", - "iopub.status.idle": "2024-01-10T06:19:15.710564Z", - "shell.execute_reply": "2024-01-10T06:19:15.709859Z" + "iopub.execute_input": "2024-01-10T15:04:44.327830Z", + "iopub.status.busy": "2024-01-10T15:04:44.327618Z", + "iopub.status.idle": "2024-01-10T15:04:44.538647Z", + "shell.execute_reply": "2024-01-10T15:04:44.537948Z" }, "id": "kCfdx2gOLmXS" }, @@ -1850,10 +1850,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.713390Z", - "iopub.status.busy": "2024-01-10T06:19:15.712976Z", - "iopub.status.idle": "2024-01-10T06:19:15.719738Z", - "shell.execute_reply": "2024-01-10T06:19:15.719219Z" + "iopub.execute_input": "2024-01-10T15:04:44.541174Z", + "iopub.status.busy": "2024-01-10T15:04:44.540920Z", + "iopub.status.idle": "2024-01-10T15:04:44.547632Z", + "shell.execute_reply": "2024-01-10T15:04:44.547125Z" }, "id": "-uogYRWFYnuu" }, @@ -1907,10 +1907,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.722264Z", - "iopub.status.busy": "2024-01-10T06:19:15.721862Z", - "iopub.status.idle": "2024-01-10T06:19:15.932373Z", - "shell.execute_reply": "2024-01-10T06:19:15.931673Z" + "iopub.execute_input": "2024-01-10T15:04:44.550054Z", + "iopub.status.busy": "2024-01-10T15:04:44.549609Z", + "iopub.status.idle": "2024-01-10T15:04:44.759728Z", + "shell.execute_reply": "2024-01-10T15:04:44.759057Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1957,10 +1957,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.935084Z", - "iopub.status.busy": "2024-01-10T06:19:15.934687Z", - "iopub.status.idle": "2024-01-10T06:19:17.019541Z", - "shell.execute_reply": "2024-01-10T06:19:17.018918Z" + "iopub.execute_input": "2024-01-10T15:04:44.762443Z", + "iopub.status.busy": "2024-01-10T15:04:44.762199Z", + "iopub.status.idle": "2024-01-10T15:04:45.836039Z", + "shell.execute_reply": "2024-01-10T15:04:45.835321Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 7cb50be92..8180291e1 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:22.603434Z", - "iopub.status.busy": "2024-01-10T06:19:22.602873Z", - "iopub.status.idle": "2024-01-10T06:19:23.665537Z", - "shell.execute_reply": "2024-01-10T06:19:23.664891Z" + "iopub.execute_input": "2024-01-10T15:04:50.783329Z", + "iopub.status.busy": "2024-01-10T15:04:50.783126Z", + "iopub.status.idle": "2024-01-10T15:04:51.826636Z", + "shell.execute_reply": "2024-01-10T15:04:51.825904Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.668685Z", - "iopub.status.busy": "2024-01-10T06:19:23.668141Z", - "iopub.status.idle": "2024-01-10T06:19:23.671557Z", - "shell.execute_reply": "2024-01-10T06:19:23.671020Z" + "iopub.execute_input": "2024-01-10T15:04:51.829702Z", + "iopub.status.busy": "2024-01-10T15:04:51.829194Z", + "iopub.status.idle": "2024-01-10T15:04:51.832552Z", + "shell.execute_reply": "2024-01-10T15:04:51.832031Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.674086Z", - "iopub.status.busy": "2024-01-10T06:19:23.673671Z", - "iopub.status.idle": "2024-01-10T06:19:23.682706Z", - "shell.execute_reply": "2024-01-10T06:19:23.682135Z" + "iopub.execute_input": "2024-01-10T15:04:51.835101Z", + "iopub.status.busy": "2024-01-10T15:04:51.834739Z", + "iopub.status.idle": "2024-01-10T15:04:51.843086Z", + "shell.execute_reply": "2024-01-10T15:04:51.842467Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.685247Z", - "iopub.status.busy": "2024-01-10T06:19:23.684914Z", - "iopub.status.idle": "2024-01-10T06:19:23.734906Z", - "shell.execute_reply": "2024-01-10T06:19:23.734183Z" + "iopub.execute_input": "2024-01-10T15:04:51.845548Z", + "iopub.status.busy": "2024-01-10T15:04:51.845151Z", + "iopub.status.idle": "2024-01-10T15:04:51.893885Z", + "shell.execute_reply": "2024-01-10T15:04:51.893321Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.737938Z", - "iopub.status.busy": "2024-01-10T06:19:23.737532Z", - "iopub.status.idle": "2024-01-10T06:19:23.757560Z", - "shell.execute_reply": "2024-01-10T06:19:23.757012Z" + "iopub.execute_input": "2024-01-10T15:04:51.896881Z", + "iopub.status.busy": "2024-01-10T15:04:51.896499Z", + "iopub.status.idle": "2024-01-10T15:04:51.916606Z", + "shell.execute_reply": "2024-01-10T15:04:51.915938Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.760066Z", - "iopub.status.busy": "2024-01-10T06:19:23.759679Z", - "iopub.status.idle": "2024-01-10T06:19:23.763929Z", - "shell.execute_reply": "2024-01-10T06:19:23.763417Z" + "iopub.execute_input": "2024-01-10T15:04:51.919078Z", + "iopub.status.busy": "2024-01-10T15:04:51.918771Z", + "iopub.status.idle": "2024-01-10T15:04:51.922997Z", + "shell.execute_reply": "2024-01-10T15:04:51.922404Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.766305Z", - "iopub.status.busy": "2024-01-10T06:19:23.766011Z", - "iopub.status.idle": "2024-01-10T06:19:23.794834Z", - "shell.execute_reply": "2024-01-10T06:19:23.794302Z" + "iopub.execute_input": "2024-01-10T15:04:51.925555Z", + "iopub.status.busy": "2024-01-10T15:04:51.925142Z", + "iopub.status.idle": "2024-01-10T15:04:51.952755Z", + "shell.execute_reply": "2024-01-10T15:04:51.952205Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.797382Z", - "iopub.status.busy": "2024-01-10T06:19:23.796952Z", - "iopub.status.idle": "2024-01-10T06:19:23.825002Z", - "shell.execute_reply": "2024-01-10T06:19:23.824392Z" + "iopub.execute_input": "2024-01-10T15:04:51.955378Z", + "iopub.status.busy": "2024-01-10T15:04:51.955021Z", + "iopub.status.idle": "2024-01-10T15:04:51.982908Z", + "shell.execute_reply": "2024-01-10T15:04:51.982212Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.827645Z", - "iopub.status.busy": "2024-01-10T06:19:23.827204Z", - "iopub.status.idle": "2024-01-10T06:19:25.187592Z", - "shell.execute_reply": "2024-01-10T06:19:25.186950Z" + "iopub.execute_input": "2024-01-10T15:04:51.985756Z", + "iopub.status.busy": "2024-01-10T15:04:51.985347Z", + "iopub.status.idle": "2024-01-10T15:04:53.313475Z", + "shell.execute_reply": "2024-01-10T15:04:53.312740Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.190794Z", - "iopub.status.busy": "2024-01-10T06:19:25.190198Z", - "iopub.status.idle": "2024-01-10T06:19:25.197978Z", - "shell.execute_reply": "2024-01-10T06:19:25.197424Z" + "iopub.execute_input": "2024-01-10T15:04:53.316625Z", + "iopub.status.busy": "2024-01-10T15:04:53.316007Z", + "iopub.status.idle": "2024-01-10T15:04:53.323561Z", + "shell.execute_reply": "2024-01-10T15:04:53.322982Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.200289Z", - "iopub.status.busy": "2024-01-10T06:19:25.200085Z", - "iopub.status.idle": "2024-01-10T06:19:25.214416Z", - "shell.execute_reply": "2024-01-10T06:19:25.213870Z" + "iopub.execute_input": "2024-01-10T15:04:53.325875Z", + "iopub.status.busy": "2024-01-10T15:04:53.325667Z", + "iopub.status.idle": "2024-01-10T15:04:53.340152Z", + "shell.execute_reply": "2024-01-10T15:04:53.339548Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.216891Z", - "iopub.status.busy": "2024-01-10T06:19:25.216535Z", - "iopub.status.idle": "2024-01-10T06:19:25.223577Z", - "shell.execute_reply": "2024-01-10T06:19:25.223059Z" + "iopub.execute_input": "2024-01-10T15:04:53.342762Z", + "iopub.status.busy": "2024-01-10T15:04:53.342417Z", + "iopub.status.idle": "2024-01-10T15:04:53.349564Z", + "shell.execute_reply": "2024-01-10T15:04:53.349025Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.225967Z", - "iopub.status.busy": "2024-01-10T06:19:25.225725Z", - "iopub.status.idle": "2024-01-10T06:19:25.228713Z", - "shell.execute_reply": "2024-01-10T06:19:25.228156Z" + "iopub.execute_input": "2024-01-10T15:04:53.352271Z", + "iopub.status.busy": "2024-01-10T15:04:53.351762Z", + "iopub.status.idle": "2024-01-10T15:04:53.355076Z", + "shell.execute_reply": "2024-01-10T15:04:53.354457Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.231173Z", - "iopub.status.busy": "2024-01-10T06:19:25.230771Z", - "iopub.status.idle": "2024-01-10T06:19:25.234695Z", - "shell.execute_reply": "2024-01-10T06:19:25.234060Z" + "iopub.execute_input": "2024-01-10T15:04:53.357254Z", + "iopub.status.busy": "2024-01-10T15:04:53.357058Z", + "iopub.status.idle": "2024-01-10T15:04:53.361396Z", + "shell.execute_reply": "2024-01-10T15:04:53.360858Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.237168Z", - "iopub.status.busy": "2024-01-10T06:19:25.236804Z", - "iopub.status.idle": "2024-01-10T06:19:25.239581Z", - "shell.execute_reply": "2024-01-10T06:19:25.239043Z" + "iopub.execute_input": "2024-01-10T15:04:53.363765Z", + "iopub.status.busy": "2024-01-10T15:04:53.363566Z", + "iopub.status.idle": "2024-01-10T15:04:53.366344Z", + "shell.execute_reply": "2024-01-10T15:04:53.365793Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.241971Z", - "iopub.status.busy": "2024-01-10T06:19:25.241612Z", - "iopub.status.idle": "2024-01-10T06:19:25.246328Z", - "shell.execute_reply": "2024-01-10T06:19:25.245820Z" + "iopub.execute_input": "2024-01-10T15:04:53.368515Z", + "iopub.status.busy": "2024-01-10T15:04:53.368321Z", + "iopub.status.idle": "2024-01-10T15:04:53.373186Z", + "shell.execute_reply": "2024-01-10T15:04:53.372649Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.248797Z", - "iopub.status.busy": "2024-01-10T06:19:25.248447Z", - "iopub.status.idle": "2024-01-10T06:19:25.282644Z", - "shell.execute_reply": "2024-01-10T06:19:25.282066Z" + "iopub.execute_input": "2024-01-10T15:04:53.375385Z", + "iopub.status.busy": "2024-01-10T15:04:53.375190Z", + "iopub.status.idle": "2024-01-10T15:04:53.408376Z", + "shell.execute_reply": "2024-01-10T15:04:53.407826Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.285678Z", - "iopub.status.busy": "2024-01-10T06:19:25.285230Z", - "iopub.status.idle": "2024-01-10T06:19:25.290437Z", - "shell.execute_reply": "2024-01-10T06:19:25.289851Z" + "iopub.execute_input": "2024-01-10T15:04:53.410874Z", + "iopub.status.busy": "2024-01-10T15:04:53.410653Z", + "iopub.status.idle": "2024-01-10T15:04:53.415959Z", + "shell.execute_reply": "2024-01-10T15:04:53.415316Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 7b346383f..883facccf 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:30.967895Z", - "iopub.status.busy": "2024-01-10T06:19:30.967699Z", - "iopub.status.idle": "2024-01-10T06:19:32.111090Z", - "shell.execute_reply": "2024-01-10T06:19:32.110423Z" + "iopub.execute_input": "2024-01-10T15:04:57.995421Z", + "iopub.status.busy": "2024-01-10T15:04:57.994869Z", + "iopub.status.idle": "2024-01-10T15:04:59.063658Z", + "shell.execute_reply": "2024-01-10T15:04:59.063044Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:32.114057Z", - "iopub.status.busy": "2024-01-10T06:19:32.113591Z", - "iopub.status.idle": "2024-01-10T06:19:32.424380Z", - "shell.execute_reply": "2024-01-10T06:19:32.423712Z" + "iopub.execute_input": "2024-01-10T15:04:59.066519Z", + "iopub.status.busy": "2024-01-10T15:04:59.066032Z", + "iopub.status.idle": "2024-01-10T15:04:59.351331Z", + "shell.execute_reply": "2024-01-10T15:04:59.350714Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:32.427902Z", - "iopub.status.busy": "2024-01-10T06:19:32.427455Z", - "iopub.status.idle": "2024-01-10T06:19:32.442273Z", - "shell.execute_reply": "2024-01-10T06:19:32.441703Z" + "iopub.execute_input": "2024-01-10T15:04:59.354669Z", + "iopub.status.busy": "2024-01-10T15:04:59.353939Z", + "iopub.status.idle": "2024-01-10T15:04:59.368315Z", + "shell.execute_reply": "2024-01-10T15:04:59.367767Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:32.445046Z", - "iopub.status.busy": "2024-01-10T06:19:32.444637Z", - "iopub.status.idle": "2024-01-10T06:19:35.158086Z", - "shell.execute_reply": "2024-01-10T06:19:35.157420Z" + "iopub.execute_input": "2024-01-10T15:04:59.371031Z", + "iopub.status.busy": "2024-01-10T15:04:59.370527Z", + "iopub.status.idle": "2024-01-10T15:05:02.017065Z", + "shell.execute_reply": "2024-01-10T15:05:02.016392Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:35.160758Z", - "iopub.status.busy": "2024-01-10T06:19:35.160383Z", - "iopub.status.idle": "2024-01-10T06:19:36.735870Z", - "shell.execute_reply": "2024-01-10T06:19:36.735258Z" + "iopub.execute_input": "2024-01-10T15:05:02.019842Z", + "iopub.status.busy": "2024-01-10T15:05:02.019353Z", + "iopub.status.idle": "2024-01-10T15:05:03.569470Z", + "shell.execute_reply": "2024-01-10T15:05:03.568744Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:36.738886Z", - "iopub.status.busy": "2024-01-10T06:19:36.738441Z", - "iopub.status.idle": "2024-01-10T06:19:36.743531Z", - "shell.execute_reply": "2024-01-10T06:19:36.742994Z" + "iopub.execute_input": "2024-01-10T15:05:03.572548Z", + "iopub.status.busy": "2024-01-10T15:05:03.572275Z", + "iopub.status.idle": "2024-01-10T15:05:03.577674Z", + "shell.execute_reply": "2024-01-10T15:05:03.577121Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:36.745916Z", - "iopub.status.busy": "2024-01-10T06:19:36.745544Z", - "iopub.status.idle": "2024-01-10T06:19:38.110520Z", - "shell.execute_reply": "2024-01-10T06:19:38.109746Z" + "iopub.execute_input": "2024-01-10T15:05:03.579952Z", + "iopub.status.busy": "2024-01-10T15:05:03.579756Z", + "iopub.status.idle": "2024-01-10T15:05:04.913128Z", + "shell.execute_reply": "2024-01-10T15:05:04.912391Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:38.113635Z", - "iopub.status.busy": "2024-01-10T06:19:38.112981Z", - "iopub.status.idle": "2024-01-10T06:19:40.958055Z", - "shell.execute_reply": "2024-01-10T06:19:40.957384Z" + "iopub.execute_input": "2024-01-10T15:05:04.916164Z", + "iopub.status.busy": "2024-01-10T15:05:04.915585Z", + "iopub.status.idle": "2024-01-10T15:05:07.716474Z", + "shell.execute_reply": "2024-01-10T15:05:07.715777Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:40.960715Z", - "iopub.status.busy": "2024-01-10T06:19:40.960355Z", - "iopub.status.idle": "2024-01-10T06:19:40.965359Z", - "shell.execute_reply": "2024-01-10T06:19:40.964831Z" + "iopub.execute_input": "2024-01-10T15:05:07.719265Z", + "iopub.status.busy": "2024-01-10T15:05:07.718870Z", + "iopub.status.idle": "2024-01-10T15:05:07.723863Z", + "shell.execute_reply": "2024-01-10T15:05:07.723278Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:40.967914Z", - "iopub.status.busy": "2024-01-10T06:19:40.967542Z", - "iopub.status.idle": "2024-01-10T06:19:40.971564Z", - "shell.execute_reply": "2024-01-10T06:19:40.971006Z" + "iopub.execute_input": "2024-01-10T15:05:07.726393Z", + "iopub.status.busy": "2024-01-10T15:05:07.725965Z", + "iopub.status.idle": "2024-01-10T15:05:07.730416Z", + "shell.execute_reply": "2024-01-10T15:05:07.729818Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:40.973986Z", - "iopub.status.busy": "2024-01-10T06:19:40.973628Z", - "iopub.status.idle": "2024-01-10T06:19:40.976974Z", - "shell.execute_reply": "2024-01-10T06:19:40.976437Z" + "iopub.execute_input": "2024-01-10T15:05:07.733070Z", + "iopub.status.busy": "2024-01-10T15:05:07.732646Z", + "iopub.status.idle": "2024-01-10T15:05:07.736463Z", + "shell.execute_reply": "2024-01-10T15:05:07.735937Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index c7c6f8441..0edcfe438 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:45.560642Z", - "iopub.status.busy": "2024-01-10T06:19:45.560184Z", - "iopub.status.idle": "2024-01-10T06:19:46.672378Z", - "shell.execute_reply": "2024-01-10T06:19:46.671781Z" + "iopub.execute_input": "2024-01-10T15:05:12.798585Z", + "iopub.status.busy": "2024-01-10T15:05:12.798073Z", + "iopub.status.idle": "2024-01-10T15:05:13.866039Z", + "shell.execute_reply": "2024-01-10T15:05:13.865443Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:46.675636Z", - "iopub.status.busy": "2024-01-10T06:19:46.674959Z", - "iopub.status.idle": "2024-01-10T06:19:48.039619Z", - "shell.execute_reply": "2024-01-10T06:19:48.038865Z" + "iopub.execute_input": "2024-01-10T15:05:13.868940Z", + "iopub.status.busy": "2024-01-10T15:05:13.868454Z", + "iopub.status.idle": "2024-01-10T15:05:14.949563Z", + "shell.execute_reply": "2024-01-10T15:05:14.948721Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.042749Z", - "iopub.status.busy": "2024-01-10T06:19:48.042298Z", - "iopub.status.idle": "2024-01-10T06:19:48.045718Z", - "shell.execute_reply": "2024-01-10T06:19:48.045190Z" + "iopub.execute_input": "2024-01-10T15:05:14.952677Z", + "iopub.status.busy": "2024-01-10T15:05:14.952191Z", + "iopub.status.idle": "2024-01-10T15:05:14.955616Z", + "shell.execute_reply": "2024-01-10T15:05:14.955008Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.048076Z", - "iopub.status.busy": "2024-01-10T06:19:48.047707Z", - "iopub.status.idle": "2024-01-10T06:19:48.053658Z", - "shell.execute_reply": "2024-01-10T06:19:48.053131Z" + "iopub.execute_input": "2024-01-10T15:05:14.957997Z", + "iopub.status.busy": "2024-01-10T15:05:14.957548Z", + "iopub.status.idle": "2024-01-10T15:05:14.963154Z", + "shell.execute_reply": "2024-01-10T15:05:14.962555Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.056002Z", - "iopub.status.busy": "2024-01-10T06:19:48.055627Z", - "iopub.status.idle": "2024-01-10T06:19:48.667461Z", - "shell.execute_reply": "2024-01-10T06:19:48.666800Z" + "iopub.execute_input": "2024-01-10T15:05:14.965462Z", + "iopub.status.busy": "2024-01-10T15:05:14.965123Z", + "iopub.status.idle": "2024-01-10T15:05:15.556137Z", + "shell.execute_reply": "2024-01-10T15:05:15.555454Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.670652Z", - "iopub.status.busy": "2024-01-10T06:19:48.670174Z", - "iopub.status.idle": "2024-01-10T06:19:48.676467Z", - "shell.execute_reply": "2024-01-10T06:19:48.675874Z" + "iopub.execute_input": "2024-01-10T15:05:15.558867Z", + "iopub.status.busy": "2024-01-10T15:05:15.558399Z", + "iopub.status.idle": "2024-01-10T15:05:15.564398Z", + "shell.execute_reply": "2024-01-10T15:05:15.563798Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.678861Z", - "iopub.status.busy": "2024-01-10T06:19:48.678516Z", - "iopub.status.idle": "2024-01-10T06:19:48.682696Z", - "shell.execute_reply": "2024-01-10T06:19:48.682085Z" + "iopub.execute_input": "2024-01-10T15:05:15.566741Z", + "iopub.status.busy": "2024-01-10T15:05:15.566311Z", + "iopub.status.idle": "2024-01-10T15:05:15.570332Z", + "shell.execute_reply": "2024-01-10T15:05:15.569792Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.685095Z", - "iopub.status.busy": "2024-01-10T06:19:48.684751Z", - "iopub.status.idle": "2024-01-10T06:19:49.298576Z", - "shell.execute_reply": "2024-01-10T06:19:49.297851Z" + "iopub.execute_input": "2024-01-10T15:05:15.572792Z", + "iopub.status.busy": "2024-01-10T15:05:15.572353Z", + "iopub.status.idle": "2024-01-10T15:05:16.202060Z", + "shell.execute_reply": "2024-01-10T15:05:16.201337Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:49.301316Z", - "iopub.status.busy": "2024-01-10T06:19:49.301086Z", - "iopub.status.idle": "2024-01-10T06:19:49.403290Z", - "shell.execute_reply": "2024-01-10T06:19:49.402577Z" + "iopub.execute_input": "2024-01-10T15:05:16.204642Z", + "iopub.status.busy": "2024-01-10T15:05:16.204383Z", + "iopub.status.idle": "2024-01-10T15:05:16.306469Z", + "shell.execute_reply": "2024-01-10T15:05:16.305762Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:49.406087Z", - "iopub.status.busy": "2024-01-10T06:19:49.405678Z", - "iopub.status.idle": "2024-01-10T06:19:49.410408Z", - "shell.execute_reply": "2024-01-10T06:19:49.409813Z" + "iopub.execute_input": "2024-01-10T15:05:16.309130Z", + "iopub.status.busy": "2024-01-10T15:05:16.308732Z", + "iopub.status.idle": "2024-01-10T15:05:16.313357Z", + "shell.execute_reply": "2024-01-10T15:05:16.312853Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:49.412718Z", - "iopub.status.busy": "2024-01-10T06:19:49.412513Z", - "iopub.status.idle": "2024-01-10T06:19:49.802789Z", - "shell.execute_reply": "2024-01-10T06:19:49.802086Z" + "iopub.execute_input": "2024-01-10T15:05:16.315806Z", + "iopub.status.busy": "2024-01-10T15:05:16.315435Z", + "iopub.status.idle": "2024-01-10T15:05:16.693878Z", + "shell.execute_reply": "2024-01-10T15:05:16.693255Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:49.805807Z", - "iopub.status.busy": "2024-01-10T06:19:49.805357Z", - "iopub.status.idle": "2024-01-10T06:19:50.143112Z", - "shell.execute_reply": "2024-01-10T06:19:50.142432Z" + "iopub.execute_input": "2024-01-10T15:05:16.696815Z", + "iopub.status.busy": "2024-01-10T15:05:16.696424Z", + "iopub.status.idle": "2024-01-10T15:05:17.035024Z", + "shell.execute_reply": "2024-01-10T15:05:17.034337Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:50.146573Z", - "iopub.status.busy": "2024-01-10T06:19:50.146168Z", - "iopub.status.idle": "2024-01-10T06:19:50.502588Z", - "shell.execute_reply": "2024-01-10T06:19:50.501862Z" + "iopub.execute_input": "2024-01-10T15:05:17.037837Z", + "iopub.status.busy": "2024-01-10T15:05:17.037417Z", + "iopub.status.idle": "2024-01-10T15:05:17.422882Z", + "shell.execute_reply": "2024-01-10T15:05:17.422145Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:50.506244Z", - "iopub.status.busy": "2024-01-10T06:19:50.505804Z", - "iopub.status.idle": "2024-01-10T06:19:50.969893Z", - "shell.execute_reply": "2024-01-10T06:19:50.969270Z" + "iopub.execute_input": "2024-01-10T15:05:17.426253Z", + "iopub.status.busy": "2024-01-10T15:05:17.426038Z", + "iopub.status.idle": "2024-01-10T15:05:17.886876Z", + "shell.execute_reply": "2024-01-10T15:05:17.886152Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:50.974645Z", - "iopub.status.busy": "2024-01-10T06:19:50.974221Z", - "iopub.status.idle": "2024-01-10T06:19:51.430649Z", - "shell.execute_reply": "2024-01-10T06:19:51.429876Z" + "iopub.execute_input": "2024-01-10T15:05:17.891350Z", + "iopub.status.busy": "2024-01-10T15:05:17.890881Z", + "iopub.status.idle": "2024-01-10T15:05:18.343030Z", + "shell.execute_reply": "2024-01-10T15:05:18.342340Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:51.434311Z", - "iopub.status.busy": "2024-01-10T06:19:51.433913Z", - "iopub.status.idle": "2024-01-10T06:19:51.777065Z", - "shell.execute_reply": "2024-01-10T06:19:51.776398Z" + "iopub.execute_input": "2024-01-10T15:05:18.346622Z", + "iopub.status.busy": "2024-01-10T15:05:18.346403Z", + "iopub.status.idle": "2024-01-10T15:05:18.651727Z", + "shell.execute_reply": "2024-01-10T15:05:18.651095Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:51.779898Z", - "iopub.status.busy": "2024-01-10T06:19:51.779494Z", - "iopub.status.idle": "2024-01-10T06:19:51.980612Z", - "shell.execute_reply": "2024-01-10T06:19:51.979893Z" + "iopub.execute_input": "2024-01-10T15:05:18.654753Z", + "iopub.status.busy": "2024-01-10T15:05:18.654541Z", + "iopub.status.idle": "2024-01-10T15:05:18.834710Z", + "shell.execute_reply": "2024-01-10T15:05:18.834079Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:51.983380Z", - "iopub.status.busy": "2024-01-10T06:19:51.982885Z", - "iopub.status.idle": "2024-01-10T06:19:51.986852Z", - "shell.execute_reply": "2024-01-10T06:19:51.986244Z" + "iopub.execute_input": "2024-01-10T15:05:18.837502Z", + "iopub.status.busy": "2024-01-10T15:05:18.837116Z", + "iopub.status.idle": "2024-01-10T15:05:18.840846Z", + "shell.execute_reply": "2024-01-10T15:05:18.840288Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 7da4b0e12..b7951f2ed 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:54.392516Z", - "iopub.status.busy": "2024-01-10T06:19:54.392326Z", - "iopub.status.idle": "2024-01-10T06:19:56.392552Z", - "shell.execute_reply": "2024-01-10T06:19:56.391830Z" + "iopub.execute_input": "2024-01-10T15:05:21.209538Z", + "iopub.status.busy": "2024-01-10T15:05:21.209083Z", + "iopub.status.idle": "2024-01-10T15:05:23.168339Z", + "shell.execute_reply": "2024-01-10T15:05:23.167738Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:56.395661Z", - "iopub.status.busy": "2024-01-10T06:19:56.395318Z", - "iopub.status.idle": "2024-01-10T06:19:56.729764Z", - "shell.execute_reply": "2024-01-10T06:19:56.729033Z" + "iopub.execute_input": "2024-01-10T15:05:23.171269Z", + "iopub.status.busy": "2024-01-10T15:05:23.170786Z", + "iopub.status.idle": "2024-01-10T15:05:23.484028Z", + "shell.execute_reply": "2024-01-10T15:05:23.483358Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:56.732778Z", - "iopub.status.busy": "2024-01-10T06:19:56.732256Z", - "iopub.status.idle": "2024-01-10T06:19:56.736298Z", - "shell.execute_reply": "2024-01-10T06:19:56.735811Z" + "iopub.execute_input": "2024-01-10T15:05:23.486930Z", + "iopub.status.busy": "2024-01-10T15:05:23.486490Z", + "iopub.status.idle": "2024-01-10T15:05:23.490918Z", + "shell.execute_reply": "2024-01-10T15:05:23.490318Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:56.738602Z", - "iopub.status.busy": "2024-01-10T06:19:56.738240Z", - "iopub.status.idle": "2024-01-10T06:20:01.246797Z", - "shell.execute_reply": "2024-01-10T06:20:01.246106Z" + "iopub.execute_input": "2024-01-10T15:05:23.493502Z", + "iopub.status.busy": "2024-01-10T15:05:23.493138Z", + "iopub.status.idle": "2024-01-10T15:05:28.442075Z", + "shell.execute_reply": "2024-01-10T15:05:28.441402Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9eb539b8c1f4f97a89e8db15123410e", + "model_id": "12b5dc69acf9453bb2a2322dbaea9e6c", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:01.249671Z", - "iopub.status.busy": "2024-01-10T06:20:01.249198Z", - "iopub.status.idle": "2024-01-10T06:20:01.254431Z", - "shell.execute_reply": "2024-01-10T06:20:01.253797Z" + "iopub.execute_input": "2024-01-10T15:05:28.444744Z", + "iopub.status.busy": "2024-01-10T15:05:28.444438Z", + "iopub.status.idle": "2024-01-10T15:05:28.449732Z", + "shell.execute_reply": "2024-01-10T15:05:28.449104Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:01.256861Z", - "iopub.status.busy": "2024-01-10T06:20:01.256438Z", - "iopub.status.idle": "2024-01-10T06:20:01.804589Z", - "shell.execute_reply": "2024-01-10T06:20:01.803886Z" + "iopub.execute_input": "2024-01-10T15:05:28.451896Z", + "iopub.status.busy": "2024-01-10T15:05:28.451699Z", + "iopub.status.idle": "2024-01-10T15:05:28.992331Z", + "shell.execute_reply": "2024-01-10T15:05:28.991675Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:01.807206Z", - "iopub.status.busy": "2024-01-10T06:20:01.806947Z", - "iopub.status.idle": "2024-01-10T06:20:02.469451Z", - "shell.execute_reply": "2024-01-10T06:20:02.468760Z" + "iopub.execute_input": "2024-01-10T15:05:28.994883Z", + "iopub.status.busy": "2024-01-10T15:05:28.994563Z", + "iopub.status.idle": "2024-01-10T15:05:29.632591Z", + "shell.execute_reply": "2024-01-10T15:05:29.631923Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:02.472091Z", - "iopub.status.busy": "2024-01-10T06:20:02.471875Z", - "iopub.status.idle": "2024-01-10T06:20:02.475815Z", - "shell.execute_reply": "2024-01-10T06:20:02.475238Z" + "iopub.execute_input": "2024-01-10T15:05:29.635020Z", + "iopub.status.busy": "2024-01-10T15:05:29.634812Z", + "iopub.status.idle": "2024-01-10T15:05:29.638498Z", + "shell.execute_reply": "2024-01-10T15:05:29.637971Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:02.478426Z", - "iopub.status.busy": "2024-01-10T06:20:02.478197Z", - "iopub.status.idle": "2024-01-10T06:20:14.823323Z", - "shell.execute_reply": "2024-01-10T06:20:14.822587Z" + "iopub.execute_input": "2024-01-10T15:05:29.640771Z", + "iopub.status.busy": "2024-01-10T15:05:29.640568Z", + "iopub.status.idle": "2024-01-10T15:05:41.708773Z", + "shell.execute_reply": "2024-01-10T15:05:41.708043Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:14.826047Z", - "iopub.status.busy": "2024-01-10T06:20:14.825621Z", - "iopub.status.idle": "2024-01-10T06:20:16.419516Z", - "shell.execute_reply": "2024-01-10T06:20:16.418738Z" + "iopub.execute_input": "2024-01-10T15:05:41.711626Z", + "iopub.status.busy": "2024-01-10T15:05:41.711383Z", + "iopub.status.idle": "2024-01-10T15:05:43.253756Z", + "shell.execute_reply": "2024-01-10T15:05:43.253067Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:16.422525Z", - "iopub.status.busy": "2024-01-10T06:20:16.421993Z", - "iopub.status.idle": "2024-01-10T06:20:16.690358Z", - "shell.execute_reply": "2024-01-10T06:20:16.689659Z" + "iopub.execute_input": "2024-01-10T15:05:43.256773Z", + "iopub.status.busy": "2024-01-10T15:05:43.256277Z", + "iopub.status.idle": "2024-01-10T15:05:43.490070Z", + "shell.execute_reply": "2024-01-10T15:05:43.489306Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:16.694052Z", - "iopub.status.busy": "2024-01-10T06:20:16.693495Z", - "iopub.status.idle": "2024-01-10T06:20:17.376849Z", - "shell.execute_reply": "2024-01-10T06:20:17.376222Z" + "iopub.execute_input": "2024-01-10T15:05:43.492964Z", + "iopub.status.busy": "2024-01-10T15:05:43.492754Z", + "iopub.status.idle": "2024-01-10T15:05:44.153715Z", + "shell.execute_reply": "2024-01-10T15:05:44.153035Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:17.379909Z", - "iopub.status.busy": "2024-01-10T06:20:17.379542Z", - "iopub.status.idle": "2024-01-10T06:20:17.889849Z", - "shell.execute_reply": "2024-01-10T06:20:17.889143Z" + "iopub.execute_input": "2024-01-10T15:05:44.156860Z", + "iopub.status.busy": "2024-01-10T15:05:44.156265Z", + "iopub.status.idle": "2024-01-10T15:05:44.600989Z", + "shell.execute_reply": "2024-01-10T15:05:44.600344Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:17.892718Z", - "iopub.status.busy": "2024-01-10T06:20:17.892281Z", - "iopub.status.idle": "2024-01-10T06:20:18.146698Z", - "shell.execute_reply": "2024-01-10T06:20:18.145918Z" + "iopub.execute_input": "2024-01-10T15:05:44.603532Z", + "iopub.status.busy": "2024-01-10T15:05:44.603285Z", + "iopub.status.idle": "2024-01-10T15:05:44.834017Z", + "shell.execute_reply": "2024-01-10T15:05:44.833363Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:18.150320Z", - "iopub.status.busy": "2024-01-10T06:20:18.149921Z", - "iopub.status.idle": "2024-01-10T06:20:18.235461Z", - "shell.execute_reply": "2024-01-10T06:20:18.234877Z" + "iopub.execute_input": "2024-01-10T15:05:44.836783Z", + "iopub.status.busy": "2024-01-10T15:05:44.836577Z", + "iopub.status.idle": "2024-01-10T15:05:44.906830Z", + "shell.execute_reply": "2024-01-10T15:05:44.906100Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:18.238296Z", - "iopub.status.busy": "2024-01-10T06:20:18.238059Z", - "iopub.status.idle": "2024-01-10T06:20:56.606997Z", - "shell.execute_reply": "2024-01-10T06:20:56.606212Z" + "iopub.execute_input": "2024-01-10T15:05:44.909479Z", + "iopub.status.busy": "2024-01-10T15:05:44.909272Z", + "iopub.status.idle": "2024-01-10T15:06:22.582521Z", + "shell.execute_reply": "2024-01-10T15:06:22.581741Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:56.609877Z", - "iopub.status.busy": "2024-01-10T06:20:56.609373Z", - "iopub.status.idle": "2024-01-10T06:20:57.846657Z", - "shell.execute_reply": "2024-01-10T06:20:57.845936Z" + "iopub.execute_input": "2024-01-10T15:06:22.585549Z", + "iopub.status.busy": "2024-01-10T15:06:22.585031Z", + "iopub.status.idle": "2024-01-10T15:06:23.781983Z", + "shell.execute_reply": "2024-01-10T15:06:23.781235Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:57.850038Z", - "iopub.status.busy": "2024-01-10T06:20:57.849349Z", - "iopub.status.idle": "2024-01-10T06:20:58.037779Z", - "shell.execute_reply": "2024-01-10T06:20:58.037164Z" + "iopub.execute_input": "2024-01-10T15:06:23.785275Z", + "iopub.status.busy": "2024-01-10T15:06:23.784715Z", + "iopub.status.idle": "2024-01-10T15:06:23.971240Z", + "shell.execute_reply": "2024-01-10T15:06:23.970521Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:58.040792Z", - "iopub.status.busy": "2024-01-10T06:20:58.040310Z", - "iopub.status.idle": "2024-01-10T06:20:58.043677Z", - "shell.execute_reply": "2024-01-10T06:20:58.043170Z" + "iopub.execute_input": "2024-01-10T15:06:23.974385Z", + "iopub.status.busy": "2024-01-10T15:06:23.973877Z", + "iopub.status.idle": "2024-01-10T15:06:23.977333Z", + "shell.execute_reply": "2024-01-10T15:06:23.976741Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:58.045942Z", - "iopub.status.busy": "2024-01-10T06:20:58.045737Z", - "iopub.status.idle": "2024-01-10T06:20:58.054356Z", - "shell.execute_reply": "2024-01-10T06:20:58.053867Z" + "iopub.execute_input": "2024-01-10T15:06:23.980026Z", + "iopub.status.busy": "2024-01-10T15:06:23.979554Z", + "iopub.status.idle": "2024-01-10T15:06:23.988254Z", + "shell.execute_reply": "2024-01-10T15:06:23.987626Z" }, "nbsphinx": "hidden" }, @@ -1017,38 +1017,29 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "327a08e1d5534ee99c966c84c3365801": { + "12b5dc69acf9453bb2a2322dbaea9e6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "409c38572c3f42069bdd6f978250bae9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63007a6fc93b49709da9d544e853c969", + "IPY_MODEL_d7964db947004dd4847db06986c2782f", + "IPY_MODEL_7c7aa399fdf6477b9c5cd4ed997af3de" + ], + "layout": "IPY_MODEL_4c40bcb3b3dc4ef3b2ae47f5a41e9edb" } }, - "5424c6f35faa4960b53ddef1c4ec0405": { + "3c990076fa7e41c9b75fb0558cd2796a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1100,7 +1091,7 @@ "width": null } }, - "5ba665ca475147dd93b0e931cb42babc": { + "4c40bcb3b3dc4ef3b2ae47f5a41e9edb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1152,7 +1143,7 @@ "width": null } }, - "6c1729328c1842ab8fbe77faf7094fc4": { + "57ce946020574bf0a08e97d7b957ddcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1167,7 +1158,28 @@ "description_width": "" } }, - "831d732aa1314d0fb6bdef874bcd5787": { + "63007a6fc93b49709da9d544e853c969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74345e7936394989952187bbc936b1ea", + "placeholder": "​", + "style": "IPY_MODEL_57ce946020574bf0a08e97d7b957ddcc", + "value": "100%" + } + }, + "74345e7936394989952187bbc936b1ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1219,52 +1231,7 @@ "width": null } }, - "9f7917b60d274c8d9aff9ccbf9989105": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5424c6f35faa4960b53ddef1c4ec0405", - "placeholder": "​", - "style": "IPY_MODEL_409c38572c3f42069bdd6f978250bae9", - "value": " 170498071/170498071 [00:01<00:00, 109601673.05it/s]" - } - }, - "b47353d08b504eda93deb2aba25e51a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_831d732aa1314d0fb6bdef874bcd5787", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_327a08e1d5534ee99c966c84c3365801", - "value": 170498071.0 - } - }, - "ceb5d255b6e1467bbf644bfe84de536e": { + "7c7aa399fdf6477b9c5cd4ed997af3de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1279,35 +1246,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fcb1d9c928d4414fa8045d1040339642", + "layout": "IPY_MODEL_80ec456e29c04104985c3f1eb9345bbb", "placeholder": "​", - "style": "IPY_MODEL_6c1729328c1842ab8fbe77faf7094fc4", - "value": "100%" + "style": "IPY_MODEL_c5920de7f42947c2b7985c7a2976cf6d", + "value": " 170498071/170498071 [00:02<00:00, 77009113.30it/s]" } }, - "d9eb539b8c1f4f97a89e8db15123410e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ceb5d255b6e1467bbf644bfe84de536e", - "IPY_MODEL_b47353d08b504eda93deb2aba25e51a2", - "IPY_MODEL_9f7917b60d274c8d9aff9ccbf9989105" - ], - "layout": "IPY_MODEL_5ba665ca475147dd93b0e931cb42babc" - } - }, - "fcb1d9c928d4414fa8045d1040339642": { + "80ec456e29c04104985c3f1eb9345bbb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,6 +1303,61 @@ "visibility": null, "width": null } + }, + "acf564a6e0f34550a5d77cb082e2e4a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c5920de7f42947c2b7985c7a2976cf6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d7964db947004dd4847db06986c2782f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3c990076fa7e41c9b75fb0558cd2796a", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_acf564a6e0f34550a5d77cb082e2e4a5", + "value": 170498071.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index e4f71e4a3..4a2dadcf3 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:03.429780Z", - "iopub.status.busy": "2024-01-10T06:21:03.429318Z", - "iopub.status.idle": "2024-01-10T06:21:04.536960Z", - "shell.execute_reply": "2024-01-10T06:21:04.536343Z" + "iopub.execute_input": "2024-01-10T15:06:29.103769Z", + "iopub.status.busy": "2024-01-10T15:06:29.103575Z", + "iopub.status.idle": "2024-01-10T15:06:30.201917Z", + "shell.execute_reply": "2024-01-10T15:06:30.201295Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.539950Z", - "iopub.status.busy": "2024-01-10T06:21:04.539416Z", - "iopub.status.idle": "2024-01-10T06:21:04.555703Z", - "shell.execute_reply": "2024-01-10T06:21:04.555171Z" + "iopub.execute_input": "2024-01-10T15:06:30.204907Z", + "iopub.status.busy": "2024-01-10T15:06:30.204366Z", + "iopub.status.idle": "2024-01-10T15:06:30.220770Z", + "shell.execute_reply": "2024-01-10T15:06:30.220132Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.558355Z", - "iopub.status.busy": "2024-01-10T06:21:04.557984Z", - "iopub.status.idle": "2024-01-10T06:21:04.561236Z", - "shell.execute_reply": "2024-01-10T06:21:04.560643Z" + "iopub.execute_input": "2024-01-10T15:06:30.223523Z", + "iopub.status.busy": "2024-01-10T15:06:30.223104Z", + "iopub.status.idle": "2024-01-10T15:06:30.226245Z", + "shell.execute_reply": "2024-01-10T15:06:30.225690Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.563519Z", - "iopub.status.busy": "2024-01-10T06:21:04.563180Z", - "iopub.status.idle": "2024-01-10T06:21:04.709969Z", - "shell.execute_reply": "2024-01-10T06:21:04.709340Z" + "iopub.execute_input": "2024-01-10T15:06:30.228543Z", + "iopub.status.busy": "2024-01-10T15:06:30.228257Z", + "iopub.status.idle": "2024-01-10T15:06:30.317626Z", + "shell.execute_reply": "2024-01-10T15:06:30.316982Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.712608Z", - "iopub.status.busy": "2024-01-10T06:21:04.712301Z", - "iopub.status.idle": "2024-01-10T06:21:04.987624Z", - "shell.execute_reply": "2024-01-10T06:21:04.986929Z" + "iopub.execute_input": "2024-01-10T15:06:30.320512Z", + "iopub.status.busy": "2024-01-10T15:06:30.319930Z", + "iopub.status.idle": "2024-01-10T15:06:30.587833Z", + "shell.execute_reply": "2024-01-10T15:06:30.587097Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.990511Z", - "iopub.status.busy": "2024-01-10T06:21:04.990062Z", - "iopub.status.idle": "2024-01-10T06:21:05.250260Z", - "shell.execute_reply": "2024-01-10T06:21:05.249551Z" + "iopub.execute_input": "2024-01-10T15:06:30.590520Z", + "iopub.status.busy": "2024-01-10T15:06:30.590253Z", + "iopub.status.idle": "2024-01-10T15:06:30.846918Z", + "shell.execute_reply": "2024-01-10T15:06:30.846204Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:05.252808Z", - "iopub.status.busy": "2024-01-10T06:21:05.252554Z", - "iopub.status.idle": "2024-01-10T06:21:05.257434Z", - "shell.execute_reply": "2024-01-10T06:21:05.256897Z" + "iopub.execute_input": "2024-01-10T15:06:30.849576Z", + "iopub.status.busy": "2024-01-10T15:06:30.849180Z", + "iopub.status.idle": "2024-01-10T15:06:30.854014Z", + "shell.execute_reply": "2024-01-10T15:06:30.853474Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:05.259727Z", - "iopub.status.busy": "2024-01-10T06:21:05.259513Z", - "iopub.status.idle": "2024-01-10T06:21:05.266109Z", - "shell.execute_reply": "2024-01-10T06:21:05.265624Z" + "iopub.execute_input": "2024-01-10T15:06:30.856453Z", + "iopub.status.busy": "2024-01-10T15:06:30.856086Z", + "iopub.status.idle": "2024-01-10T15:06:30.862321Z", + "shell.execute_reply": "2024-01-10T15:06:30.861851Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:05.268611Z", - "iopub.status.busy": "2024-01-10T06:21:05.268134Z", - "iopub.status.idle": "2024-01-10T06:21:05.271485Z", - "shell.execute_reply": "2024-01-10T06:21:05.270856Z" + "iopub.execute_input": "2024-01-10T15:06:30.864795Z", + "iopub.status.busy": "2024-01-10T15:06:30.864430Z", + "iopub.status.idle": "2024-01-10T15:06:30.867161Z", + "shell.execute_reply": "2024-01-10T15:06:30.866611Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:05.273934Z", - "iopub.status.busy": "2024-01-10T06:21:05.273375Z", - "iopub.status.idle": "2024-01-10T06:21:15.493411Z", - "shell.execute_reply": "2024-01-10T06:21:15.492743Z" + "iopub.execute_input": "2024-01-10T15:06:30.869425Z", + "iopub.status.busy": "2024-01-10T15:06:30.869055Z", + "iopub.status.idle": "2024-01-10T15:06:41.017037Z", + "shell.execute_reply": "2024-01-10T15:06:41.016307Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.496814Z", - "iopub.status.busy": "2024-01-10T06:21:15.496375Z", - "iopub.status.idle": "2024-01-10T06:21:15.504366Z", - "shell.execute_reply": "2024-01-10T06:21:15.503841Z" + "iopub.execute_input": "2024-01-10T15:06:41.020063Z", + "iopub.status.busy": "2024-01-10T15:06:41.019675Z", + "iopub.status.idle": "2024-01-10T15:06:41.027115Z", + "shell.execute_reply": "2024-01-10T15:06:41.026544Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.506693Z", - "iopub.status.busy": "2024-01-10T06:21:15.506461Z", - "iopub.status.idle": "2024-01-10T06:21:15.510803Z", - "shell.execute_reply": "2024-01-10T06:21:15.510172Z" + "iopub.execute_input": "2024-01-10T15:06:41.029405Z", + "iopub.status.busy": "2024-01-10T15:06:41.029205Z", + "iopub.status.idle": "2024-01-10T15:06:41.033215Z", + "shell.execute_reply": "2024-01-10T15:06:41.032594Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.513231Z", - "iopub.status.busy": "2024-01-10T06:21:15.512862Z", - "iopub.status.idle": "2024-01-10T06:21:15.516362Z", - "shell.execute_reply": "2024-01-10T06:21:15.515734Z" + "iopub.execute_input": "2024-01-10T15:06:41.035823Z", + "iopub.status.busy": "2024-01-10T15:06:41.035383Z", + "iopub.status.idle": "2024-01-10T15:06:41.039101Z", + "shell.execute_reply": "2024-01-10T15:06:41.038455Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.518807Z", - "iopub.status.busy": "2024-01-10T06:21:15.518425Z", - "iopub.status.idle": "2024-01-10T06:21:15.521733Z", - "shell.execute_reply": "2024-01-10T06:21:15.521168Z" + "iopub.execute_input": "2024-01-10T15:06:41.041445Z", + "iopub.status.busy": "2024-01-10T15:06:41.041078Z", + "iopub.status.idle": "2024-01-10T15:06:41.044279Z", + "shell.execute_reply": "2024-01-10T15:06:41.043724Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.524184Z", - "iopub.status.busy": "2024-01-10T06:21:15.523785Z", - "iopub.status.idle": "2024-01-10T06:21:15.533773Z", - "shell.execute_reply": "2024-01-10T06:21:15.532950Z" + "iopub.execute_input": "2024-01-10T15:06:41.046671Z", + "iopub.status.busy": "2024-01-10T15:06:41.046309Z", + "iopub.status.idle": "2024-01-10T15:06:41.054894Z", + "shell.execute_reply": "2024-01-10T15:06:41.054326Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.536364Z", - "iopub.status.busy": "2024-01-10T06:21:15.536012Z", - "iopub.status.idle": "2024-01-10T06:21:15.684972Z", - "shell.execute_reply": "2024-01-10T06:21:15.684237Z" + "iopub.execute_input": "2024-01-10T15:06:41.057327Z", + "iopub.status.busy": "2024-01-10T15:06:41.056960Z", + "iopub.status.idle": "2024-01-10T15:06:41.205394Z", + "shell.execute_reply": "2024-01-10T15:06:41.204692Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.688080Z", - "iopub.status.busy": "2024-01-10T06:21:15.687659Z", - "iopub.status.idle": "2024-01-10T06:21:15.819421Z", - "shell.execute_reply": "2024-01-10T06:21:15.818612Z" + "iopub.execute_input": "2024-01-10T15:06:41.208175Z", + "iopub.status.busy": "2024-01-10T15:06:41.207750Z", + "iopub.status.idle": "2024-01-10T15:06:41.341273Z", + "shell.execute_reply": "2024-01-10T15:06:41.340668Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.822502Z", - "iopub.status.busy": "2024-01-10T06:21:15.822274Z", - "iopub.status.idle": "2024-01-10T06:21:16.418907Z", - "shell.execute_reply": "2024-01-10T06:21:16.418233Z" + "iopub.execute_input": "2024-01-10T15:06:41.344029Z", + "iopub.status.busy": "2024-01-10T15:06:41.343669Z", + "iopub.status.idle": "2024-01-10T15:06:41.924486Z", + "shell.execute_reply": "2024-01-10T15:06:41.923868Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:16.422520Z", - "iopub.status.busy": "2024-01-10T06:21:16.421868Z", - "iopub.status.idle": "2024-01-10T06:21:16.505313Z", - "shell.execute_reply": "2024-01-10T06:21:16.504636Z" + "iopub.execute_input": "2024-01-10T15:06:41.927461Z", + "iopub.status.busy": "2024-01-10T15:06:41.927030Z", + "iopub.status.idle": "2024-01-10T15:06:42.019961Z", + "shell.execute_reply": "2024-01-10T15:06:42.019298Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:16.508240Z", - "iopub.status.busy": "2024-01-10T06:21:16.507734Z", - "iopub.status.idle": "2024-01-10T06:21:16.517478Z", - "shell.execute_reply": "2024-01-10T06:21:16.517004Z" + "iopub.execute_input": "2024-01-10T15:06:42.023210Z", + "iopub.status.busy": "2024-01-10T15:06:42.022968Z", + "iopub.status.idle": "2024-01-10T15:06:42.033293Z", + "shell.execute_reply": "2024-01-10T15:06:42.032670Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 0b819b0e6..eece6be9f 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:21.347024Z", - "iopub.status.busy": "2024-01-10T06:21:21.346437Z", - "iopub.status.idle": "2024-01-10T06:21:23.189285Z", - "shell.execute_reply": "2024-01-10T06:21:23.188541Z" + "iopub.execute_input": "2024-01-10T15:06:47.292158Z", + "iopub.status.busy": "2024-01-10T15:06:47.291962Z", + "iopub.status.idle": "2024-01-10T15:06:48.758411Z", + "shell.execute_reply": "2024-01-10T15:06:48.757602Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:23.192088Z", - "iopub.status.busy": "2024-01-10T06:21:23.191880Z", - "iopub.status.idle": "2024-01-10T06:22:22.377569Z", - "shell.execute_reply": "2024-01-10T06:22:22.376808Z" + "iopub.execute_input": "2024-01-10T15:06:48.761354Z", + "iopub.status.busy": "2024-01-10T15:06:48.761148Z", + "iopub.status.idle": "2024-01-10T15:07:46.996636Z", + "shell.execute_reply": "2024-01-10T15:07:46.995933Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:22.380517Z", - "iopub.status.busy": "2024-01-10T06:22:22.380259Z", - "iopub.status.idle": "2024-01-10T06:22:23.450564Z", - "shell.execute_reply": "2024-01-10T06:22:23.449819Z" + "iopub.execute_input": "2024-01-10T15:07:46.999673Z", + "iopub.status.busy": "2024-01-10T15:07:46.999269Z", + "iopub.status.idle": "2024-01-10T15:07:48.026262Z", + "shell.execute_reply": "2024-01-10T15:07:48.025653Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.453830Z", - "iopub.status.busy": "2024-01-10T06:22:23.453429Z", - "iopub.status.idle": "2024-01-10T06:22:23.457253Z", - "shell.execute_reply": "2024-01-10T06:22:23.456696Z" + "iopub.execute_input": "2024-01-10T15:07:48.029294Z", + "iopub.status.busy": "2024-01-10T15:07:48.028808Z", + "iopub.status.idle": "2024-01-10T15:07:48.032207Z", + "shell.execute_reply": "2024-01-10T15:07:48.031670Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.459910Z", - "iopub.status.busy": "2024-01-10T06:22:23.459513Z", - "iopub.status.idle": "2024-01-10T06:22:23.463699Z", - "shell.execute_reply": "2024-01-10T06:22:23.463158Z" + "iopub.execute_input": "2024-01-10T15:07:48.034648Z", + "iopub.status.busy": "2024-01-10T15:07:48.034350Z", + "iopub.status.idle": "2024-01-10T15:07:48.038691Z", + "shell.execute_reply": "2024-01-10T15:07:48.038183Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.466289Z", - "iopub.status.busy": "2024-01-10T06:22:23.465906Z", - "iopub.status.idle": "2024-01-10T06:22:23.469976Z", - "shell.execute_reply": "2024-01-10T06:22:23.469453Z" + "iopub.execute_input": "2024-01-10T15:07:48.041106Z", + "iopub.status.busy": "2024-01-10T15:07:48.040752Z", + "iopub.status.idle": "2024-01-10T15:07:48.044635Z", + "shell.execute_reply": "2024-01-10T15:07:48.044122Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.472455Z", - "iopub.status.busy": "2024-01-10T06:22:23.472097Z", - "iopub.status.idle": "2024-01-10T06:22:23.475073Z", - "shell.execute_reply": "2024-01-10T06:22:23.474523Z" + "iopub.execute_input": "2024-01-10T15:07:48.047132Z", + "iopub.status.busy": "2024-01-10T15:07:48.046640Z", + "iopub.status.idle": "2024-01-10T15:07:48.049918Z", + "shell.execute_reply": "2024-01-10T15:07:48.049426Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.477540Z", - "iopub.status.busy": "2024-01-10T06:22:23.477156Z", - "iopub.status.idle": "2024-01-10T06:23:49.090785Z", - "shell.execute_reply": "2024-01-10T06:23:49.089964Z" + "iopub.execute_input": "2024-01-10T15:07:48.052275Z", + "iopub.status.busy": "2024-01-10T15:07:48.051926Z", + "iopub.status.idle": "2024-01-10T15:09:13.774763Z", + "shell.execute_reply": "2024-01-10T15:09:13.774061Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7834e62875da4394bdfc03b1501fa4a9", + "model_id": "f6f7d2e0db9b4e23bd565eeb1ebe8323", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e3415f4577c42cb941753dfe0086640", + "model_id": "ea68cf0375d04b00803fe43e815130fb", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:23:49.094028Z", - "iopub.status.busy": "2024-01-10T06:23:49.093573Z", - "iopub.status.idle": "2024-01-10T06:23:49.874024Z", - "shell.execute_reply": "2024-01-10T06:23:49.873433Z" + "iopub.execute_input": "2024-01-10T15:09:13.777691Z", + "iopub.status.busy": "2024-01-10T15:09:13.777270Z", + "iopub.status.idle": "2024-01-10T15:09:14.581171Z", + "shell.execute_reply": "2024-01-10T15:09:14.580511Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:23:49.876789Z", - "iopub.status.busy": "2024-01-10T06:23:49.876371Z", - "iopub.status.idle": "2024-01-10T06:23:52.004759Z", - "shell.execute_reply": "2024-01-10T06:23:52.004056Z" + "iopub.execute_input": "2024-01-10T15:09:14.583844Z", + "iopub.status.busy": "2024-01-10T15:09:14.583393Z", + "iopub.status.idle": "2024-01-10T15:09:16.702396Z", + "shell.execute_reply": "2024-01-10T15:09:16.701727Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:23:52.007358Z", - "iopub.status.busy": "2024-01-10T06:23:52.007130Z", - "iopub.status.idle": "2024-01-10T06:24:21.670500Z", - "shell.execute_reply": "2024-01-10T06:24:21.669841Z" + "iopub.execute_input": "2024-01-10T15:09:16.705033Z", + "iopub.status.busy": "2024-01-10T15:09:16.704641Z", + "iopub.status.idle": "2024-01-10T15:09:45.984596Z", + "shell.execute_reply": "2024-01-10T15:09:45.984026Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17062/4997817 [00:00<00:29, 170604.30it/s]" + " 0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34285/4997817 [00:00<00:28, 171551.99it/s]" + " 1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 51456/4997817 [00:00<00:28, 171618.24it/s]" + " 1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 68618/4997817 [00:00<00:28, 170859.63it/s]" + " 1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 85805/4997817 [00:00<00:28, 171220.50it/s]" + " 2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 102949/4997817 [00:00<00:28, 171291.99it/s]" + " 2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 120095/4997817 [00:00<00:28, 171343.43it/s]" + " 2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 137230/4997817 [00:00<00:28, 170491.36it/s]" + " 3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 154281/4997817 [00:00<00:28, 169872.65it/s]" + " 3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 171280/4997817 [00:01<00:28, 169905.50it/s]" + " 3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 188272/4997817 [00:01<00:28, 169777.04it/s]" + " 4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 205575/4997817 [00:01<00:28, 170760.61it/s]" + " 4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 222652/4997817 [00:01<00:27, 170740.73it/s]" + " 4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 240083/4997817 [00:01<00:27, 171811.81it/s]" + " 5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 257360/4997817 [00:01<00:27, 172096.03it/s]" + " 5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 274605/4997817 [00:01<00:27, 172199.32it/s]" + " 6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 291886/4997817 [00:01<00:27, 172379.81it/s]" + " 6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 309125/4997817 [00:01<00:27, 172152.38it/s]" + " 6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 326341/4997817 [00:01<00:27, 171949.71it/s]" + " 7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 343537/4997817 [00:02<00:27, 171568.72it/s]" + " 7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 360817/4997817 [00:02<00:26, 171933.30it/s]" + " 7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 378023/4997817 [00:02<00:26, 171967.12it/s]" + " 8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 395220/4997817 [00:02<00:26, 171770.69it/s]" + " 8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 412518/4997817 [00:02<00:26, 172129.64it/s]" + " 8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 429746/4997817 [00:02<00:26, 172171.06it/s]" + " 9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 446964/4997817 [00:02<00:26, 171908.29it/s]" + " 9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 464155/4997817 [00:02<00:26, 171900.62it/s]" + " 9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 481346/4997817 [00:02<00:26, 171355.90it/s]" + " 10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 498619/4997817 [00:02<00:26, 171763.37it/s]" + " 10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 515796/4997817 [00:03<00:26, 171727.53it/s]" + " 10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 532984/4997817 [00:03<00:25, 171768.71it/s]" + " 11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 550240/4997817 [00:03<00:25, 172001.07it/s]" + " 11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 567441/4997817 [00:03<00:25, 171961.52it/s]" + " 11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 584638/4997817 [00:03<00:25, 171920.86it/s]" + " 12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 601962/4997817 [00:03<00:25, 172313.17it/s]" + " 12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 619303/4997817 [00:03<00:25, 172639.01it/s]" + " 13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 636567/4997817 [00:03<00:25, 172200.43it/s]" + " 13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 653788/4997817 [00:03<00:25, 171788.02it/s]" + " 13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 670968/4997817 [00:03<00:25, 171514.66it/s]" + " 14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 688120/4997817 [00:04<00:25, 170996.88it/s]" + " 14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 705275/4997817 [00:04<00:25, 171158.72it/s]" + " 14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 722435/4997817 [00:04<00:24, 171285.85it/s]" + " 15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739806/4997817 [00:04<00:24, 172008.35it/s]" + " 15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 757008/4997817 [00:04<00:24, 171692.60it/s]" + " 15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 774255/4997817 [00:04<00:24, 171920.65it/s]" + " 16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 791671/4997817 [00:04<00:24, 172588.53it/s]" + " 16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 809012/4997817 [00:04<00:24, 172830.16it/s]" + " 16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 826296/4997817 [00:04<00:24, 171982.40it/s]" + " 17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 843496/4997817 [00:04<00:24, 171799.85it/s]" + " 17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 860677/4997817 [00:05<00:24, 171324.91it/s]" + " 17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 877842/4997817 [00:05<00:24, 171418.27it/s]" + " 18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 894985/4997817 [00:05<00:23, 171219.42it/s]" + " 18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 912146/4997817 [00:05<00:23, 171332.99it/s]" + " 18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 929303/4997817 [00:05<00:23, 171399.71it/s]" + " 19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 946444/4997817 [00:05<00:23, 171377.87it/s]" + " 19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 963692/4997817 [00:05<00:23, 171703.39it/s]" + " 19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 981048/4997817 [00:05<00:23, 172255.53it/s]" + " 20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 998359/4997817 [00:05<00:23, 172508.56it/s]" + " 20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1015635/4997817 [00:05<00:23, 172579.19it/s]" + " 20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1032893/4997817 [00:06<00:23, 171418.64it/s]" + " 21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1050039/4997817 [00:06<00:23, 171426.89it/s]" + " 21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1067207/4997817 [00:06<00:22, 171496.74it/s]" + " 21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1084358/4997817 [00:06<00:22, 171268.82it/s]" + " 22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1101486/4997817 [00:06<00:22, 171044.54it/s]" + " 22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1118591/4997817 [00:06<00:22, 170922.72it/s]" + " 23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1135684/4997817 [00:06<00:22, 170420.58it/s]" + " 23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1152727/4997817 [00:06<00:22, 170051.09it/s]" + " 23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1169733/4997817 [00:06<00:22, 169752.62it/s]" + " 24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1186709/4997817 [00:06<00:22, 169681.27it/s]" + " 24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1203678/4997817 [00:07<00:22, 168904.33it/s]" + " 24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1220652/4997817 [00:07<00:22, 169150.94it/s]" + " 25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1237634/4997817 [00:07<00:22, 169345.74it/s]" + " 25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1254570/4997817 [00:07<00:22, 168349.15it/s]" + " 25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1271732/4997817 [00:07<00:22, 169320.67it/s]" + " 26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288750/4997817 [00:07<00:21, 169571.98it/s]" + " 26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1305766/4997817 [00:07<00:21, 169742.82it/s]" + " 26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1322775/4997817 [00:07<00:21, 169844.98it/s]" + " 27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1339793/4997817 [00:07<00:21, 169941.26it/s]" + " 27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1356788/4997817 [00:07<00:21, 169935.91it/s]" + " 27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1373885/4997817 [00:08<00:21, 170242.78it/s]" + " 28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1390910/4997817 [00:08<00:21, 169776.77it/s]" + " 28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1407889/4997817 [00:08<00:21, 169776.41it/s]" + " 28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1424867/4997817 [00:08<00:21, 169328.10it/s]" + " 29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1441920/4997817 [00:08<00:20, 169683.76it/s]" + " 29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1458889/4997817 [00:08<00:20, 169554.49it/s]" + " 29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1475845/4997817 [00:08<00:20, 169207.98it/s]" + " 30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1492767/4997817 [00:08<00:20, 169207.52it/s]" + " 30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1509688/4997817 [00:08<00:20, 169069.76it/s]" + " 30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1526596/4997817 [00:08<00:20, 168995.55it/s]" + " 31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1543496/4997817 [00:09<00:20, 168767.01it/s]" + " 31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1560373/4997817 [00:09<00:20, 168411.56it/s]" + " 31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1577215/4997817 [00:09<00:20, 168093.60it/s]" + " 32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1594025/4997817 [00:09<00:20, 167736.99it/s]" + " 32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1610799/4997817 [00:09<00:20, 167579.26it/s]" + " 32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1627581/4997817 [00:09<00:20, 167648.89it/s]" + " 33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1644346/4997817 [00:09<00:20, 167601.44it/s]" + " 33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1661107/4997817 [00:09<00:19, 167408.64it/s]" + " 34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1678158/4997817 [00:09<00:19, 168332.79it/s]" + " 34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1695148/4997817 [00:09<00:19, 168799.16it/s]" + " 34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1712162/4997817 [00:10<00:19, 169197.65it/s]" + " 35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1729082/4997817 [00:10<00:19, 169086.37it/s]" + " 35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1746091/4997817 [00:10<00:19, 169383.58it/s]" + " 35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1763030/4997817 [00:10<00:19, 169294.56it/s]" + " 36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1779986/4997817 [00:10<00:18, 169370.78it/s]" + " 36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1796940/4997817 [00:10<00:18, 169415.99it/s]" + " 36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1813941/4997817 [00:10<00:18, 169588.95it/s]" + " 37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1830917/4997817 [00:10<00:18, 169635.93it/s]" + " 37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1847932/4997817 [00:10<00:18, 169786.39it/s]" + " 37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1864911/4997817 [00:10<00:18, 169662.56it/s]" + " 38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1881878/4997817 [00:11<00:18, 169612.46it/s]" + " 38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1898840/4997817 [00:11<00:18, 169466.51it/s]" + " 38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1915967/4997817 [00:11<00:18, 170001.55it/s]" + " 39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1932968/4997817 [00:11<00:18, 169939.64it/s]" + " 39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949963/4997817 [00:11<00:17, 169565.43it/s]" + " 39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1966920/4997817 [00:11<00:17, 168922.06it/s]" + " 40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1983850/4997817 [00:11<00:17, 169030.80it/s]" + " 40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2000770/4997817 [00:11<00:17, 169076.88it/s]" + " 40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2017733/4997817 [00:11<00:17, 169238.17it/s]" + " 41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2034658/4997817 [00:11<00:17, 168730.09it/s]" + " 41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2051532/4997817 [00:12<00:17, 168386.60it/s]" + " 41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068372/4997817 [00:12<00:17, 168018.51it/s]" + " 42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2085260/4997817 [00:12<00:17, 168270.79it/s]" + " 42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2102088/4997817 [00:12<00:17, 168030.44it/s]" + " 43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2118962/4997817 [00:12<00:17, 168240.31it/s]" + " 43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2135787/4997817 [00:12<00:17, 168132.74it/s]" + " 43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2152601/4997817 [00:12<00:16, 167646.09it/s]" + " 44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2169423/4997817 [00:12<00:16, 167813.54it/s]" + " 44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2186297/4997817 [00:12<00:16, 168085.58it/s]" + " 44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2203175/4997817 [00:12<00:16, 168289.27it/s]" + " 45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2220005/4997817 [00:13<00:16, 168276.19it/s]" + " 45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2236833/4997817 [00:13<00:16, 168121.20it/s]" + " 45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2253646/4997817 [00:13<00:16, 168054.37it/s]" + " 46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2270452/4997817 [00:13<00:16, 167426.00it/s]" + " 46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2287196/4997817 [00:13<00:16, 167340.06it/s]" + " 46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2303931/4997817 [00:13<00:16, 167280.92it/s]" + " 47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2320696/4997817 [00:13<00:15, 167387.15it/s]" + " 47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2337572/4997817 [00:13<00:15, 167794.33it/s]" + " 47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2354510/4997817 [00:13<00:15, 168265.82it/s]" + " 48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2371337/4997817 [00:13<00:15, 168146.95it/s]" + " 48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2388246/4997817 [00:14<00:15, 168426.12it/s]" + " 48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2405089/4997817 [00:14<00:15, 167971.38it/s]" + " 49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421887/4997817 [00:14<00:15, 167875.18it/s]" + " 49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2438756/4997817 [00:14<00:15, 168116.52it/s]" + " 49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2455622/4997817 [00:14<00:15, 168275.76it/s]" + " 50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472450/4997817 [00:14<00:15, 168246.55it/s]" + " 50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2489275/4997817 [00:14<00:14, 168100.11it/s]" + " 51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2506165/4997817 [00:14<00:14, 168336.59it/s]" + " 51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2523041/4997817 [00:14<00:14, 168459.70it/s]" + " 51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2539888/4997817 [00:14<00:14, 168363.19it/s]" + " 52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2556725/4997817 [00:15<00:14, 168317.16it/s]" + " 52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2573557/4997817 [00:15<00:14, 168314.33it/s]" + " 52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2590389/4997817 [00:15<00:14, 168159.93it/s]" + " 53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2607206/4997817 [00:15<00:14, 168024.45it/s]" + " 53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2624021/4997817 [00:15<00:14, 168057.67it/s]" + " 53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2640827/4997817 [00:15<00:14, 167450.44it/s]" + " 54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2657654/4997817 [00:15<00:13, 167690.91it/s]" + " 54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674611/4997817 [00:15<00:13, 168247.89it/s]" + " 54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691437/4997817 [00:15<00:13, 168060.02it/s]" + " 55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2708244/4997817 [00:15<00:13, 167385.05it/s]" + " 55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2725000/4997817 [00:16<00:13, 167432.83it/s]" + " 55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2741821/4997817 [00:16<00:13, 167661.64it/s]" + " 56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2758588/4997817 [00:16<00:13, 167266.26it/s]" + " 56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2775352/4997817 [00:16<00:13, 167374.50it/s]" + " 56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2792090/4997817 [00:16<00:13, 167063.45it/s]" + " 57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2808802/4997817 [00:16<00:13, 167076.13it/s]" + " 57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2825510/4997817 [00:16<00:13, 167042.04it/s]" + " 57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2842215/4997817 [00:16<00:12, 166910.37it/s]" + " 58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2858913/4997817 [00:16<00:12, 166926.75it/s]" + " 58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2875624/4997817 [00:16<00:12, 166976.93it/s]" + " 59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2892322/4997817 [00:17<00:12, 166542.29it/s]" + " 59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2909084/4997817 [00:17<00:12, 166860.46it/s]" + " 59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2925771/4997817 [00:17<00:12, 166846.81it/s]" + " 60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2942500/4997817 [00:17<00:12, 166975.59it/s]" + " 60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2959198/4997817 [00:17<00:12, 166708.79it/s]" + " 60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2975877/4997817 [00:17<00:12, 166728.16it/s]" + " 61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2992600/4997817 [00:17<00:12, 166874.28it/s]" + " 61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3009402/4997817 [00:17<00:11, 167212.72it/s]" + " 61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3026124/4997817 [00:17<00:11, 166887.50it/s]" + " 62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3042813/4997817 [00:17<00:11, 166464.96it/s]" + " 62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3059512/4997817 [00:18<00:11, 166617.29it/s]" + " 62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3076399/4997817 [00:18<00:11, 167287.27it/s]" + " 63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3093129/4997817 [00:18<00:11, 167242.52it/s]" + " 63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3109854/4997817 [00:18<00:11, 164570.09it/s]" + " 63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3127061/4997817 [00:18<00:11, 166789.86it/s]" + " 64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3144295/4997817 [00:18<00:11, 168437.03it/s]" + " 64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3161147/4997817 [00:18<00:10, 168085.75it/s]" + " 64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3178372/4997817 [00:18<00:10, 169324.97it/s]" + " 65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3195555/4997817 [00:18<00:10, 170071.05it/s]" + " 65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3212860/4997817 [00:18<00:10, 170957.60it/s]" + " 65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3230096/4997817 [00:19<00:10, 171374.10it/s]" + " 66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3247326/4997817 [00:19<00:10, 171646.00it/s]" + " 66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3264493/4997817 [00:19<00:10, 171542.68it/s]" + " 66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3281649/4997817 [00:19<00:10, 171525.74it/s]" + " 67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3298803/4997817 [00:19<00:09, 171132.61it/s]" + " 67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3315917/4997817 [00:19<00:09, 170861.86it/s]" + " 67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3333004/4997817 [00:19<00:09, 170374.69it/s]" + " 68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3350043/4997817 [00:19<00:09, 170335.87it/s]" + " 68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3367100/4997817 [00:19<00:09, 170400.36it/s]" + " 68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384218/4997817 [00:19<00:09, 170631.02it/s]" + " 69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3401284/4997817 [00:20<00:09, 170636.34it/s]" + " 69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3418357/4997817 [00:20<00:09, 170658.72it/s]" + " 70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3435515/4997817 [00:20<00:09, 170931.41it/s]" + " 70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3452609/4997817 [00:20<00:09, 163949.22it/s]" + " 70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3469894/4997817 [00:20<00:09, 166538.18it/s]" + " 71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3486928/4997817 [00:20<00:09, 167650.09it/s]" + " 71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3503919/4997817 [00:20<00:08, 168314.40it/s]" + " 71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3520963/4997817 [00:20<00:08, 168940.54it/s]" + " 72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3538111/4997817 [00:20<00:08, 169693.53it/s]" + " 72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3555434/4997817 [00:20<00:08, 170745.59it/s]" + " 72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3572660/4997817 [00:21<00:08, 171192.35it/s]" + " 73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3590030/4997817 [00:21<00:08, 171938.61it/s]" + " 73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3607303/4997817 [00:21<00:08, 172172.46it/s]" + " 73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3624594/4997817 [00:21<00:07, 172387.33it/s]" + " 74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3641836/4997817 [00:21<00:07, 171859.14it/s]" + " 74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3659025/4997817 [00:21<00:07, 171633.99it/s]" + " 74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3676190/4997817 [00:21<00:07, 171400.84it/s]" + " 75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3693332/4997817 [00:21<00:07, 171243.48it/s]" + " 75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3710458/4997817 [00:21<00:07, 171013.54it/s]" + " 75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3727633/4997817 [00:21<00:07, 171229.98it/s]" + " 76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3744757/4997817 [00:22<00:07, 171012.21it/s]" + " 76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3761899/4997817 [00:22<00:07, 171129.30it/s]" + " 77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3779084/4997817 [00:22<00:07, 171340.31it/s]" + " 77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3796219/4997817 [00:22<00:07, 167422.50it/s]" + " 77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3813525/4997817 [00:22<00:07, 169081.57it/s]" + " 78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3830826/4997817 [00:22<00:06, 170242.46it/s]" + " 78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3847923/4997817 [00:22<00:06, 170454.10it/s]" + " 78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865103/4997817 [00:22<00:06, 170852.37it/s]" + " 79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3882263/4997817 [00:22<00:06, 171072.12it/s]" + " 79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3899433/4997817 [00:22<00:06, 171255.46it/s]" + " 79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3916562/4997817 [00:23<00:06, 170928.63it/s]" + " 80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3933884/4997817 [00:23<00:06, 171610.47it/s]" + " 80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3951103/4997817 [00:23<00:06, 171779.99it/s]" + " 80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3968283/4997817 [00:23<00:05, 171759.78it/s]" + " 81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3985460/4997817 [00:23<00:05, 171748.29it/s]" + " 81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4002799/4997817 [00:23<00:05, 172236.63it/s]" + " 81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4020024/4997817 [00:23<00:05, 172120.48it/s]" + " 82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4037255/4997817 [00:23<00:05, 172171.92it/s]" + " 82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4054562/4997817 [00:23<00:05, 172438.26it/s]" + " 82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4071846/4997817 [00:23<00:05, 172553.59it/s]" + " 83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4089102/4997817 [00:24<00:05, 172236.48it/s]" + " 83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4106326/4997817 [00:24<00:05, 172177.95it/s]" + " 83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4123603/4997817 [00:24<00:05, 172350.70it/s]" + " 84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4140839/4997817 [00:24<00:04, 171954.68it/s]" + " 84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4158035/4997817 [00:24<00:04, 168862.02it/s]" + " 85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4175226/4997817 [00:24<00:04, 169758.76it/s]" + " 85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4192212/4997817 [00:24<00:04, 168849.98it/s]" + " 85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4209250/4997817 [00:24<00:04, 169300.67it/s]" + " 86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4226465/4997817 [00:24<00:04, 170143.89it/s]" + " 86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4243806/4997817 [00:24<00:04, 171114.46it/s]" + " 86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4261227/4997817 [00:25<00:04, 172034.61it/s]" + " 87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4278528/4997817 [00:25<00:04, 172320.83it/s]" + " 87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4295937/4997817 [00:25<00:04, 172845.19it/s]" + " 87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4313308/4997817 [00:25<00:03, 173100.25it/s]" + " 88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4330658/4997817 [00:25<00:03, 173214.54it/s]" + " 88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4347981/4997817 [00:25<00:03, 173208.95it/s]" + " 88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4365307/4997817 [00:25<00:03, 173218.73it/s]" + " 89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4382688/4997817 [00:25<00:03, 173390.64it/s]" + " 89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4400068/4997817 [00:25<00:03, 173507.38it/s]" + " 89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4417419/4997817 [00:25<00:03, 173309.43it/s]" + " 90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4434751/4997817 [00:26<00:03, 172930.69it/s]" + " 90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4452045/4997817 [00:26<00:03, 172511.48it/s]" + " 90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4469335/4997817 [00:26<00:03, 172622.79it/s]" + " 91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4486598/4997817 [00:26<00:02, 171589.70it/s]" + " 91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4503759/4997817 [00:26<00:02, 171412.36it/s]" + " 91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4520902/4997817 [00:26<00:02, 171343.15it/s]" + " 92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4538037/4997817 [00:26<00:02, 171239.33it/s]" + " 92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4555162/4997817 [00:26<00:02, 170876.40it/s]" + " 92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4572250/4997817 [00:26<00:02, 170565.73it/s]" + " 93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589307/4997817 [00:27<00:02, 170097.89it/s]" + " 93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4606318/4997817 [00:27<00:02, 169865.84it/s]" + " 93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4623305/4997817 [00:27<00:02, 169631.05it/s]" + " 94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4640269/4997817 [00:27<00:02, 168872.65it/s]" + " 94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4657235/4997817 [00:27<00:02, 169105.83it/s]" + " 95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4674147/4997817 [00:27<00:01, 168226.74it/s]" + " 95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4690976/4997817 [00:27<00:01, 168242.05it/s]" + " 95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4707801/4997817 [00:27<00:01, 168102.89it/s]" + " 96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4724647/4997817 [00:27<00:01, 168205.59it/s]" + " 96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4741468/4997817 [00:27<00:01, 167808.58it/s]" + " 96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4758250/4997817 [00:28<00:01, 167370.08it/s]" + " 97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4774988/4997817 [00:28<00:01, 167262.31it/s]" + " 97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4791806/4997817 [00:28<00:01, 167533.12it/s]" + " 97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4808560/4997817 [00:28<00:01, 167179.89it/s]" + " 98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4825279/4997817 [00:28<00:01, 167129.34it/s]" + " 98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4842096/4997817 [00:28<00:00, 167436.03it/s]" + " 98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4859300/4997817 [00:28<00:00, 168811.84it/s]" + " 99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]" ] }, { @@ -2826,7 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4876497/4997817 [00:28<00:00, 169752.70it/s]" + " 99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]" ] }, { @@ -2834,7 +2834,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4893694/4997817 [00:28<00:00, 170413.45it/s]" + " 99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]" ] }, { @@ -2842,7 +2842,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4910769/4997817 [00:28<00:00, 170510.26it/s]" + "100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]" ] }, { @@ -2850,47 +2850,14 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4927821/4997817 [00:29<00:00, 170169.42it/s]" + "100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\r", - " 99%|█████████▉| 4944989/4997817 [00:29<00:00, 170616.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4962051/4997817 [00:29<00:00, 169773.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4979093/4997817 [00:29<00:00, 169963.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4996091/4997817 [00:29<00:00, 169052.24it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997817/4997817 [00:29<00:00, 169841.26it/s]" + "\n" ] }, { @@ -2919,13 +2886,6 @@ "Class 'traffic sign' is potentially mislabeled as class for 'building' 5011 pixels in the dataset\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - }, { "data": { "text/html": [ @@ -3129,10 +3089,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:21.672999Z", - "iopub.status.busy": "2024-01-10T06:24:21.672753Z", - "iopub.status.idle": "2024-01-10T06:24:28.676821Z", - "shell.execute_reply": "2024-01-10T06:24:28.676174Z" + "iopub.execute_input": "2024-01-10T15:09:45.987247Z", + "iopub.status.busy": "2024-01-10T15:09:45.986790Z", + "iopub.status.idle": "2024-01-10T15:09:53.045750Z", + "shell.execute_reply": "2024-01-10T15:09:53.045106Z" } }, "outputs": [], @@ -3146,10 +3106,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:28.679808Z", - "iopub.status.busy": "2024-01-10T06:24:28.679561Z", - "iopub.status.idle": "2024-01-10T06:24:31.714840Z", - "shell.execute_reply": "2024-01-10T06:24:31.714156Z" + "iopub.execute_input": "2024-01-10T15:09:53.048843Z", + "iopub.status.busy": "2024-01-10T15:09:53.048334Z", + "iopub.status.idle": "2024-01-10T15:09:56.152244Z", + "shell.execute_reply": "2024-01-10T15:09:56.151592Z" } }, "outputs": [ @@ -3218,17 +3178,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:31.717634Z", - "iopub.status.busy": "2024-01-10T06:24:31.717196Z", - "iopub.status.idle": "2024-01-10T06:24:33.061235Z", - "shell.execute_reply": "2024-01-10T06:24:33.060598Z" + "iopub.execute_input": "2024-01-10T15:09:56.155042Z", + "iopub.status.busy": "2024-01-10T15:09:56.154624Z", + "iopub.status.idle": "2024-01-10T15:09:57.461482Z", + "shell.execute_reply": "2024-01-10T15:09:57.460863Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "df32bb08ce9040a1b285945a0db7765e", + "model_id": "10262fae8e7241aaa83534e155136cc8", "version_major": 2, "version_minor": 0 }, @@ -3258,10 +3218,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:33.064302Z", - "iopub.status.busy": "2024-01-10T06:24:33.063926Z", - "iopub.status.idle": "2024-01-10T06:24:33.282005Z", - "shell.execute_reply": "2024-01-10T06:24:33.281307Z" + "iopub.execute_input": "2024-01-10T15:09:57.464475Z", + "iopub.status.busy": "2024-01-10T15:09:57.464040Z", + "iopub.status.idle": "2024-01-10T15:09:57.681100Z", + "shell.execute_reply": "2024-01-10T15:09:57.680532Z" } }, "outputs": [], @@ -3275,10 +3235,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:33.285032Z", - "iopub.status.busy": "2024-01-10T06:24:33.284637Z", - "iopub.status.idle": "2024-01-10T06:24:38.039867Z", - "shell.execute_reply": "2024-01-10T06:24:38.039183Z" + "iopub.execute_input": "2024-01-10T15:09:57.684107Z", + "iopub.status.busy": "2024-01-10T15:09:57.683636Z", + "iopub.status.idle": "2024-01-10T15:10:02.403620Z", + "shell.execute_reply": "2024-01-10T15:10:02.403082Z" } }, "outputs": [ @@ -3351,10 +3311,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:38.042406Z", - "iopub.status.busy": "2024-01-10T06:24:38.042157Z", - "iopub.status.idle": "2024-01-10T06:24:38.099615Z", - "shell.execute_reply": "2024-01-10T06:24:38.099002Z" + "iopub.execute_input": "2024-01-10T15:10:02.406244Z", + "iopub.status.busy": "2024-01-10T15:10:02.405893Z", + "iopub.status.idle": "2024-01-10T15:10:02.462753Z", + "shell.execute_reply": "2024-01-10T15:10:02.462023Z" }, "nbsphinx": "hidden" }, @@ -3398,67 +3358,102 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0193408c614a4e7ba4873c78a9a9bb6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "0cabd023fdf0459dade56fdbdab8a722": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56cad0e7c51f49fbb45538b279800284", - "placeholder": "​", - "style": "IPY_MODEL_bf748ca37ab847a08123be51451437cc", - "value": "number of examples processed for estimating thresholds: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "06974f46f32c4476932bd765003f434a": { + "10262fae8e7241aaa83534e155136cc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20604eb91f914901b8cd049fe40aed0c", + "IPY_MODEL_a4ad64cf3b8e42cbbd156ea3ad023cf0", + "IPY_MODEL_c021c3820ba740b698720b87aaae46aa" + ], + "layout": "IPY_MODEL_7884f1c305fa4100a3bb6774296775e3" } }, - "0870fef1c46e4952a7824e05fc431a34": { + "20604eb91f914901b8cd049fe40aed0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_66b6aaa2007c4b1496649534471df1db", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_639ef487ed3b42848922bc4d9bae0928", - "value": 30.0 + "layout": "IPY_MODEL_0cabd023fdf0459dade56fdbdab8a722", + "placeholder": "​", + "style": "IPY_MODEL_a398413dd01349efb0e6af391f0dd506", + "value": "images processed using softmin: 100%" } }, - "0fa1181f8e9b40ffb9c9c728c90621b5": { + "327d4e33d6c34e26aa9b7dc644a5a780": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3510,7 +3505,7 @@ "width": null } }, - "10f6d3dbf30f4eb9b246516eea1577b6": { + "3b176614773d47b69402c245a311bef1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3525,37 +3520,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bb9aed613f8f4289816e5ab5039366fb", + "layout": "IPY_MODEL_5ba9455423fc49b9afd09dd55a76d451", "placeholder": "​", - "style": "IPY_MODEL_ffbaaada2c4e444c92e4121cd1a4d331", - "value": "images processed using softmin: 100%" + "style": "IPY_MODEL_ea9c235a65204d95915e6252ce4849a9", + "value": " 30/30 [00:00<00:00, 405.15it/s]" } }, - "11aed75ad6be4af3af712b1b7648058f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2f0f6f38ef674c39b106ff3aea167574", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e02709833da447092b32b34e9cd7eea", - "value": 30.0 - } - }, - "228f616c7eff4a4fbdd71be5df385c68": { + "41785dfc20e04971b132df33fa7c9385": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3607,22 +3578,7 @@ "width": null } }, - "230fb679cc3c47188ee2b769167c7d0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "24f1f455503e4ea1905214c2491c6a8f": { + "59d122979e00418d9d2b44a0649e9c99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3674,7 +3630,7 @@ "width": null } }, - "29a7642e497c4e9b96745b11371f32ef": { + "5b31e79b52f449bbb8406036a81145c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3689,35 +3645,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7d8733a782dc4953accc99a9a8b481c9", + "layout": "IPY_MODEL_327d4e33d6c34e26aa9b7dc644a5a780", "placeholder": "​", - "style": "IPY_MODEL_230fb679cc3c47188ee2b769167c7d0b", - "value": "number of examples processed for checking labels: 100%" + "style": "IPY_MODEL_e9ce6ea46e8e4c9fabad8b42c3aeb9f3", + "value": " 30/30 [00:36<00:00, 1.25s/it]" } }, - "2e3415f4577c42cb941753dfe0086640": { + "5b945b8979b1403c81a800af34b66e03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_29a7642e497c4e9b96745b11371f32ef", - "IPY_MODEL_11aed75ad6be4af3af712b1b7648058f", - "IPY_MODEL_512a68cdbfd0462688ff6b886482cf94" - ], - "layout": "IPY_MODEL_228f616c7eff4a4fbdd71be5df385c68" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d4f8b63ff55f44d0806b2c2907aefec4", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c6113d8dbfe84dd9b62fdc3abc1bb77f", + "value": 30.0 } }, - "2f0f6f38ef674c39b106ff3aea167574": { + "5ba9455423fc49b9afd09dd55a76d451": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3769,22 +3727,7 @@ "width": null } }, - "43b3b5ba40fa4150ac9fe67bc77e7088": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4b2548e688284560a51e01b3a7d4b30a": { + "7884f1c305fa4100a3bb6774296775e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3836,23 +3779,7 @@ "width": null } }, - "4e02709833da447092b32b34e9cd7eea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "512a68cdbfd0462688ff6b886482cf94": { + "79d27e5270204d64987b0e80dd9182ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3867,13 +3794,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4b2548e688284560a51e01b3a7d4b30a", + "layout": "IPY_MODEL_a63ee572a83d4d56897761721e4b9463", "placeholder": "​", - "style": "IPY_MODEL_737617a1f83a4f60aacfbd1431505249", - "value": " 30/30 [00:36<00:00, 1.22s/it]" + "style": "IPY_MODEL_da1005f0226e4c098b0ba80da39e5dde", + "value": "number of examples processed for estimating thresholds: 100%" } }, - "56cad0e7c51f49fbb45538b279800284": { + "7a602a978fd545f79286c9665c899a5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3925,23 +3852,7 @@ "width": null } }, - "639ef487ed3b42848922bc4d9bae0928": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "66b6aaa2007c4b1496649534471df1db": { + "7c23cb9954844791b103ca64e83fc5b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3993,7 +3904,23 @@ "width": null } }, - "737617a1f83a4f60aacfbd1431505249": { + "85e8dd09ec894b74b87290c37be9fa4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8745eabd766a4561977991454dbae104": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4008,7 +3935,77 @@ "description_width": "" } }, - "7655e393baf14941a470099ab54010ed": { + "9eaf86d2100845cf89b90fbec4d83ff0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9f5aabf00d6c4045899a995a8dbacb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a398413dd01349efb0e6af391f0dd506": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a4ad64cf3b8e42cbbd156ea3ad023cf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a602a978fd545f79286c9665c899a5f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_85e8dd09ec894b74b87290c37be9fa4d", + "value": 30.0 + } + }, + "a63ee572a83d4d56897761721e4b9463": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4060,29 +4057,7 @@ "width": null } }, - "7834e62875da4394bdfc03b1501fa4a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0193408c614a4e7ba4873c78a9a9bb6f", - "IPY_MODEL_0870fef1c46e4952a7824e05fc431a34", - "IPY_MODEL_8e940a4d278d48d5bb2e566940734bee" - ], - "layout": "IPY_MODEL_f9ed9bb79eea437e994e4b439e1c1812" - } - }, - "7d8733a782dc4953accc99a9a8b481c9": { + "b9a8cc73eed24f51a6f043294d33fa58": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4134,7 +4109,28 @@ "width": null } }, - "8e940a4d278d48d5bb2e566940734bee": { + "c021c3820ba740b698720b87aaae46aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d805351f37ea4bda8b93d3028d6b823b", + "placeholder": "​", + "style": "IPY_MODEL_8745eabd766a4561977991454dbae104", + "value": " 30/30 [00:01<00:00, 23.52it/s]" + } + }, + "c1b440b00f9f47e78b555fe6d71caf22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4149,13 +4145,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0fa1181f8e9b40ffb9c9c728c90621b5", + "layout": "IPY_MODEL_7c23cb9954844791b103ca64e83fc5b3", "placeholder": "​", - "style": "IPY_MODEL_43b3b5ba40fa4150ac9fe67bc77e7088", - "value": " 30/30 [00:00<00:00, 426.95it/s]" + "style": "IPY_MODEL_9f5aabf00d6c4045899a995a8dbacb97", + "value": "number of examples processed for checking labels: 100%" } }, - "97e851aacf72467a845502595d456b40": { + "c369934d7c86476eb48d4583e720e228": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4171,15 +4167,31 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_24f1f455503e4ea1905214c2491c6a8f", + "layout": "IPY_MODEL_59d122979e00418d9d2b44a0649e9c99", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_edcc710314394fceac64a53876ee634d", + "style": "IPY_MODEL_9eaf86d2100845cf89b90fbec4d83ff0", "value": 30.0 } }, - "bb9aed613f8f4289816e5ab5039366fb": { + "c6113d8dbfe84dd9b62fdc3abc1bb77f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d4f8b63ff55f44d0806b2c2907aefec4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4231,22 +4243,7 @@ "width": null } }, - "bf748ca37ab847a08123be51451437cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c5ba6d8db93145e486d14e332442a993": { + "d805351f37ea4bda8b93d3028d6b823b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4298,28 +4295,37 @@ "width": null } }, - "cb6f5dbf185a4cbca65ae3e7c593eede": { + "da1005f0226e4c098b0ba80da39e5dde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c5ba6d8db93145e486d14e332442a993", - "placeholder": "​", - "style": "IPY_MODEL_06974f46f32c4476932bd765003f434a", - "value": " 30/30 [00:01<00:00, 22.49it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "df32bb08ce9040a1b285945a0db7765e": { + "e9ce6ea46e8e4c9fabad8b42c3aeb9f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea68cf0375d04b00803fe43e815130fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4334,94 +4340,48 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_10f6d3dbf30f4eb9b246516eea1577b6", - "IPY_MODEL_97e851aacf72467a845502595d456b40", - "IPY_MODEL_cb6f5dbf185a4cbca65ae3e7c593eede" + "IPY_MODEL_c1b440b00f9f47e78b555fe6d71caf22", + "IPY_MODEL_c369934d7c86476eb48d4583e720e228", + "IPY_MODEL_5b31e79b52f449bbb8406036a81145c5" ], - "layout": "IPY_MODEL_7655e393baf14941a470099ab54010ed" + "layout": "IPY_MODEL_41785dfc20e04971b132df33fa7c9385" } }, - "edcc710314394fceac64a53876ee634d": { + "ea9c235a65204d95915e6252ce4849a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f9ed9bb79eea437e994e4b439e1c1812": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ffbaaada2c4e444c92e4121cd1a4d331": { + "f6f7d2e0db9b4e23bd565eeb1ebe8323": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79d27e5270204d64987b0e80dd9182ed", + "IPY_MODEL_5b945b8979b1403c81a800af34b66e03", + "IPY_MODEL_3b176614773d47b69402c245a311bef1" + ], + "layout": "IPY_MODEL_b9a8cc73eed24f51a6f043294d33fa58" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 14b0c1a72..cc587dc77 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:42.729158Z", - "iopub.status.busy": "2024-01-10T06:24:42.728964Z", - "iopub.status.idle": "2024-01-10T06:24:43.794701Z", - "shell.execute_reply": "2024-01-10T06:24:43.793968Z" + "iopub.execute_input": "2024-01-10T15:10:06.731555Z", + "iopub.status.busy": "2024-01-10T15:10:06.731098Z", + "iopub.status.idle": "2024-01-10T15:10:07.811523Z", + "shell.execute_reply": "2024-01-10T15:10:07.810902Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.797884Z", - "iopub.status.busy": "2024-01-10T06:24:43.797509Z", - "iopub.status.idle": "2024-01-10T06:24:43.814538Z", - "shell.execute_reply": "2024-01-10T06:24:43.814038Z" + "iopub.execute_input": "2024-01-10T15:10:07.814997Z", + "iopub.status.busy": "2024-01-10T15:10:07.814188Z", + "iopub.status.idle": "2024-01-10T15:10:07.833169Z", + "shell.execute_reply": "2024-01-10T15:10:07.832624Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.817105Z", - "iopub.status.busy": "2024-01-10T06:24:43.816655Z", - "iopub.status.idle": "2024-01-10T06:24:43.872030Z", - "shell.execute_reply": "2024-01-10T06:24:43.871363Z" + "iopub.execute_input": "2024-01-10T15:10:07.836050Z", + "iopub.status.busy": "2024-01-10T15:10:07.835668Z", + "iopub.status.idle": "2024-01-10T15:10:07.885520Z", + "shell.execute_reply": "2024-01-10T15:10:07.884971Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.874729Z", - "iopub.status.busy": "2024-01-10T06:24:43.874284Z", - "iopub.status.idle": "2024-01-10T06:24:43.878216Z", - "shell.execute_reply": "2024-01-10T06:24:43.877614Z" + "iopub.execute_input": "2024-01-10T15:10:07.888062Z", + "iopub.status.busy": "2024-01-10T15:10:07.887689Z", + "iopub.status.idle": "2024-01-10T15:10:07.891398Z", + "shell.execute_reply": "2024-01-10T15:10:07.890891Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.880614Z", - "iopub.status.busy": "2024-01-10T06:24:43.880280Z", - "iopub.status.idle": "2024-01-10T06:24:43.889118Z", - "shell.execute_reply": "2024-01-10T06:24:43.888491Z" + "iopub.execute_input": "2024-01-10T15:10:07.893720Z", + "iopub.status.busy": "2024-01-10T15:10:07.893356Z", + "iopub.status.idle": "2024-01-10T15:10:07.902385Z", + "shell.execute_reply": "2024-01-10T15:10:07.901725Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.891570Z", - "iopub.status.busy": "2024-01-10T06:24:43.891224Z", - "iopub.status.idle": "2024-01-10T06:24:43.894040Z", - "shell.execute_reply": "2024-01-10T06:24:43.893453Z" + "iopub.execute_input": "2024-01-10T15:10:07.904892Z", + "iopub.status.busy": "2024-01-10T15:10:07.904653Z", + "iopub.status.idle": "2024-01-10T15:10:07.907458Z", + "shell.execute_reply": "2024-01-10T15:10:07.906901Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.896323Z", - "iopub.status.busy": "2024-01-10T06:24:43.895979Z", - "iopub.status.idle": "2024-01-10T06:24:44.485147Z", - "shell.execute_reply": "2024-01-10T06:24:44.484416Z" + "iopub.execute_input": "2024-01-10T15:10:07.909680Z", + "iopub.status.busy": "2024-01-10T15:10:07.909473Z", + "iopub.status.idle": "2024-01-10T15:10:08.495611Z", + "shell.execute_reply": "2024-01-10T15:10:08.494992Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:44.488107Z", - "iopub.status.busy": "2024-01-10T06:24:44.487864Z", - "iopub.status.idle": "2024-01-10T06:24:45.798377Z", - "shell.execute_reply": "2024-01-10T06:24:45.797616Z" + "iopub.execute_input": "2024-01-10T15:10:08.498344Z", + "iopub.status.busy": "2024-01-10T15:10:08.498125Z", + "iopub.status.idle": "2024-01-10T15:10:09.775405Z", + "shell.execute_reply": "2024-01-10T15:10:09.774608Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.801399Z", - "iopub.status.busy": "2024-01-10T06:24:45.800854Z", - "iopub.status.idle": "2024-01-10T06:24:45.811242Z", - "shell.execute_reply": "2024-01-10T06:24:45.810638Z" + "iopub.execute_input": "2024-01-10T15:10:09.778762Z", + "iopub.status.busy": "2024-01-10T15:10:09.778133Z", + "iopub.status.idle": "2024-01-10T15:10:09.788828Z", + "shell.execute_reply": "2024-01-10T15:10:09.788286Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.813764Z", - "iopub.status.busy": "2024-01-10T06:24:45.813278Z", - "iopub.status.idle": "2024-01-10T06:24:45.817782Z", - "shell.execute_reply": "2024-01-10T06:24:45.817299Z" + "iopub.execute_input": "2024-01-10T15:10:09.791421Z", + "iopub.status.busy": "2024-01-10T15:10:09.791212Z", + "iopub.status.idle": "2024-01-10T15:10:09.795823Z", + "shell.execute_reply": "2024-01-10T15:10:09.795276Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.820268Z", - "iopub.status.busy": "2024-01-10T06:24:45.819907Z", - "iopub.status.idle": "2024-01-10T06:24:45.827154Z", - "shell.execute_reply": "2024-01-10T06:24:45.826654Z" + "iopub.execute_input": "2024-01-10T15:10:09.798077Z", + "iopub.status.busy": "2024-01-10T15:10:09.797879Z", + "iopub.status.idle": "2024-01-10T15:10:09.805698Z", + "shell.execute_reply": "2024-01-10T15:10:09.805152Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.829331Z", - "iopub.status.busy": "2024-01-10T06:24:45.829134Z", - "iopub.status.idle": "2024-01-10T06:24:45.955067Z", - "shell.execute_reply": "2024-01-10T06:24:45.954445Z" + "iopub.execute_input": "2024-01-10T15:10:09.808315Z", + "iopub.status.busy": "2024-01-10T15:10:09.807943Z", + "iopub.status.idle": "2024-01-10T15:10:09.933595Z", + "shell.execute_reply": "2024-01-10T15:10:09.932999Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.957778Z", - "iopub.status.busy": "2024-01-10T06:24:45.957338Z", - "iopub.status.idle": "2024-01-10T06:24:45.960533Z", - "shell.execute_reply": "2024-01-10T06:24:45.960010Z" + "iopub.execute_input": "2024-01-10T15:10:09.936259Z", + "iopub.status.busy": "2024-01-10T15:10:09.935880Z", + "iopub.status.idle": "2024-01-10T15:10:09.938920Z", + "shell.execute_reply": "2024-01-10T15:10:09.938378Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.962889Z", - "iopub.status.busy": "2024-01-10T06:24:45.962509Z", - "iopub.status.idle": "2024-01-10T06:24:47.449565Z", - "shell.execute_reply": "2024-01-10T06:24:47.448717Z" + "iopub.execute_input": "2024-01-10T15:10:09.941355Z", + "iopub.status.busy": "2024-01-10T15:10:09.940977Z", + "iopub.status.idle": "2024-01-10T15:10:11.374923Z", + "shell.execute_reply": "2024-01-10T15:10:11.374140Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:47.452855Z", - "iopub.status.busy": "2024-01-10T06:24:47.452615Z", - "iopub.status.idle": "2024-01-10T06:24:47.467433Z", - "shell.execute_reply": "2024-01-10T06:24:47.466813Z" + "iopub.execute_input": "2024-01-10T15:10:11.377786Z", + "iopub.status.busy": "2024-01-10T15:10:11.377568Z", + "iopub.status.idle": "2024-01-10T15:10:11.391936Z", + "shell.execute_reply": "2024-01-10T15:10:11.391279Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:47.469992Z", - "iopub.status.busy": "2024-01-10T06:24:47.469772Z", - "iopub.status.idle": "2024-01-10T06:24:47.521859Z", - "shell.execute_reply": "2024-01-10T06:24:47.521269Z" + "iopub.execute_input": "2024-01-10T15:10:11.394770Z", + "iopub.status.busy": "2024-01-10T15:10:11.394348Z", + "iopub.status.idle": "2024-01-10T15:10:11.437897Z", + "shell.execute_reply": "2024-01-10T15:10:11.437359Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index dd78280b5..806779347 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:52.618988Z", - "iopub.status.busy": "2024-01-10T06:24:52.618787Z", - "iopub.status.idle": "2024-01-10T06:24:54.768251Z", - "shell.execute_reply": "2024-01-10T06:24:54.767619Z" + "iopub.execute_input": "2024-01-10T15:10:16.790552Z", + "iopub.status.busy": "2024-01-10T15:10:16.790082Z", + "iopub.status.idle": "2024-01-10T15:10:18.889335Z", + "shell.execute_reply": "2024-01-10T15:10:18.888712Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.771423Z", - "iopub.status.busy": "2024-01-10T06:24:54.770954Z", - "iopub.status.idle": "2024-01-10T06:24:54.774574Z", - "shell.execute_reply": "2024-01-10T06:24:54.774036Z" + "iopub.execute_input": "2024-01-10T15:10:18.892121Z", + "iopub.status.busy": "2024-01-10T15:10:18.891795Z", + "iopub.status.idle": "2024-01-10T15:10:18.895297Z", + "shell.execute_reply": "2024-01-10T15:10:18.894789Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.777223Z", - "iopub.status.busy": "2024-01-10T06:24:54.776831Z", - "iopub.status.idle": "2024-01-10T06:24:54.780144Z", - "shell.execute_reply": "2024-01-10T06:24:54.779593Z" + "iopub.execute_input": "2024-01-10T15:10:18.897631Z", + "iopub.status.busy": "2024-01-10T15:10:18.897294Z", + "iopub.status.idle": "2024-01-10T15:10:18.900472Z", + "shell.execute_reply": "2024-01-10T15:10:18.899942Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.782533Z", - "iopub.status.busy": "2024-01-10T06:24:54.782227Z", - "iopub.status.idle": "2024-01-10T06:24:54.838961Z", - "shell.execute_reply": "2024-01-10T06:24:54.838278Z" + "iopub.execute_input": "2024-01-10T15:10:18.902850Z", + "iopub.status.busy": "2024-01-10T15:10:18.902503Z", + "iopub.status.idle": "2024-01-10T15:10:18.950825Z", + "shell.execute_reply": "2024-01-10T15:10:18.950198Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.841750Z", - "iopub.status.busy": "2024-01-10T06:24:54.841341Z", - "iopub.status.idle": "2024-01-10T06:24:54.845275Z", - "shell.execute_reply": "2024-01-10T06:24:54.844697Z" + "iopub.execute_input": "2024-01-10T15:10:18.953409Z", + "iopub.status.busy": "2024-01-10T15:10:18.953034Z", + "iopub.status.idle": "2024-01-10T15:10:18.956975Z", + "shell.execute_reply": "2024-01-10T15:10:18.956461Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.847786Z", - "iopub.status.busy": "2024-01-10T06:24:54.847407Z", - "iopub.status.idle": "2024-01-10T06:24:54.851172Z", - "shell.execute_reply": "2024-01-10T06:24:54.850541Z" + "iopub.execute_input": "2024-01-10T15:10:18.959537Z", + "iopub.status.busy": "2024-01-10T15:10:18.959163Z", + "iopub.status.idle": "2024-01-10T15:10:18.962874Z", + "shell.execute_reply": "2024-01-10T15:10:18.962229Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'card_payment_fee_charged'}\n" + "Classes: {'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.853595Z", - "iopub.status.busy": "2024-01-10T06:24:54.853213Z", - "iopub.status.idle": "2024-01-10T06:24:54.856682Z", - "shell.execute_reply": "2024-01-10T06:24:54.856054Z" + "iopub.execute_input": "2024-01-10T15:10:18.965276Z", + "iopub.status.busy": "2024-01-10T15:10:18.964930Z", + "iopub.status.idle": "2024-01-10T15:10:18.968315Z", + "shell.execute_reply": "2024-01-10T15:10:18.967709Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.858931Z", - "iopub.status.busy": "2024-01-10T06:24:54.858734Z", - "iopub.status.idle": "2024-01-10T06:24:54.862328Z", - "shell.execute_reply": "2024-01-10T06:24:54.861802Z" + "iopub.execute_input": "2024-01-10T15:10:18.970723Z", + "iopub.status.busy": "2024-01-10T15:10:18.970346Z", + "iopub.status.idle": "2024-01-10T15:10:18.973815Z", + "shell.execute_reply": "2024-01-10T15:10:18.973276Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.864650Z", - "iopub.status.busy": "2024-01-10T06:24:54.864455Z", - "iopub.status.idle": "2024-01-10T06:25:03.694998Z", - "shell.execute_reply": "2024-01-10T06:25:03.694259Z" + "iopub.execute_input": "2024-01-10T15:10:18.976281Z", + "iopub.status.busy": "2024-01-10T15:10:18.975813Z", + "iopub.status.idle": "2024-01-10T15:10:27.589830Z", + "shell.execute_reply": "2024-01-10T15:10:27.589082Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:03.698230Z", - "iopub.status.busy": "2024-01-10T06:25:03.697870Z", - "iopub.status.idle": "2024-01-10T06:25:03.701022Z", - "shell.execute_reply": "2024-01-10T06:25:03.700397Z" + "iopub.execute_input": "2024-01-10T15:10:27.593536Z", + "iopub.status.busy": "2024-01-10T15:10:27.592977Z", + "iopub.status.idle": "2024-01-10T15:10:27.596244Z", + "shell.execute_reply": "2024-01-10T15:10:27.595606Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:03.703600Z", - "iopub.status.busy": "2024-01-10T06:25:03.703134Z", - "iopub.status.idle": "2024-01-10T06:25:03.706162Z", - "shell.execute_reply": "2024-01-10T06:25:03.705544Z" + "iopub.execute_input": "2024-01-10T15:10:27.598714Z", + "iopub.status.busy": "2024-01-10T15:10:27.598260Z", + "iopub.status.idle": "2024-01-10T15:10:27.601298Z", + "shell.execute_reply": "2024-01-10T15:10:27.600678Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:03.708555Z", - "iopub.status.busy": "2024-01-10T06:25:03.708183Z", - "iopub.status.idle": "2024-01-10T06:25:05.979551Z", - "shell.execute_reply": "2024-01-10T06:25:05.978797Z" + "iopub.execute_input": "2024-01-10T15:10:27.603699Z", + "iopub.status.busy": "2024-01-10T15:10:27.603332Z", + "iopub.status.idle": "2024-01-10T15:10:29.839909Z", + "shell.execute_reply": "2024-01-10T15:10:29.839076Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:05.983253Z", - "iopub.status.busy": "2024-01-10T06:25:05.982458Z", - "iopub.status.idle": "2024-01-10T06:25:05.990517Z", - "shell.execute_reply": "2024-01-10T06:25:05.989921Z" + "iopub.execute_input": "2024-01-10T15:10:29.843986Z", + "iopub.status.busy": "2024-01-10T15:10:29.842887Z", + "iopub.status.idle": "2024-01-10T15:10:29.851253Z", + "shell.execute_reply": "2024-01-10T15:10:29.850730Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:05.993149Z", - "iopub.status.busy": "2024-01-10T06:25:05.992845Z", - "iopub.status.idle": "2024-01-10T06:25:05.996822Z", - "shell.execute_reply": "2024-01-10T06:25:05.996286Z" + "iopub.execute_input": "2024-01-10T15:10:29.853752Z", + "iopub.status.busy": "2024-01-10T15:10:29.853315Z", + "iopub.status.idle": "2024-01-10T15:10:29.857532Z", + "shell.execute_reply": "2024-01-10T15:10:29.856980Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:05.999247Z", - "iopub.status.busy": "2024-01-10T06:25:05.998879Z", - "iopub.status.idle": "2024-01-10T06:25:06.002319Z", - "shell.execute_reply": "2024-01-10T06:25:06.001677Z" + "iopub.execute_input": "2024-01-10T15:10:29.859922Z", + "iopub.status.busy": "2024-01-10T15:10:29.859552Z", + "iopub.status.idle": "2024-01-10T15:10:29.862975Z", + "shell.execute_reply": "2024-01-10T15:10:29.862318Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.004793Z", - "iopub.status.busy": "2024-01-10T06:25:06.004424Z", - "iopub.status.idle": "2024-01-10T06:25:06.007616Z", - "shell.execute_reply": "2024-01-10T06:25:06.007047Z" + "iopub.execute_input": "2024-01-10T15:10:29.865590Z", + "iopub.status.busy": "2024-01-10T15:10:29.865060Z", + "iopub.status.idle": "2024-01-10T15:10:29.868486Z", + "shell.execute_reply": "2024-01-10T15:10:29.867944Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.009917Z", - "iopub.status.busy": "2024-01-10T06:25:06.009623Z", - "iopub.status.idle": "2024-01-10T06:25:06.017029Z", - "shell.execute_reply": "2024-01-10T06:25:06.016419Z" + "iopub.execute_input": "2024-01-10T15:10:29.870591Z", + "iopub.status.busy": "2024-01-10T15:10:29.870397Z", + "iopub.status.idle": "2024-01-10T15:10:29.877780Z", + "shell.execute_reply": "2024-01-10T15:10:29.877252Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.019636Z", - "iopub.status.busy": "2024-01-10T06:25:06.019266Z", - "iopub.status.idle": "2024-01-10T06:25:06.263328Z", - "shell.execute_reply": "2024-01-10T06:25:06.262591Z" + "iopub.execute_input": "2024-01-10T15:10:29.880219Z", + "iopub.status.busy": "2024-01-10T15:10:29.880022Z", + "iopub.status.idle": "2024-01-10T15:10:30.144805Z", + "shell.execute_reply": "2024-01-10T15:10:30.144168Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.266421Z", - "iopub.status.busy": "2024-01-10T06:25:06.265949Z", - "iopub.status.idle": "2024-01-10T06:25:06.566167Z", - "shell.execute_reply": "2024-01-10T06:25:06.565453Z" + "iopub.execute_input": "2024-01-10T15:10:30.148970Z", + "iopub.status.busy": "2024-01-10T15:10:30.147638Z", + "iopub.status.idle": "2024-01-10T15:10:30.428192Z", + "shell.execute_reply": "2024-01-10T15:10:30.427509Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.569388Z", - "iopub.status.busy": "2024-01-10T06:25:06.568888Z", - "iopub.status.idle": "2024-01-10T06:25:06.573451Z", - "shell.execute_reply": "2024-01-10T06:25:06.572835Z" + "iopub.execute_input": "2024-01-10T15:10:30.432036Z", + "iopub.status.busy": "2024-01-10T15:10:30.431584Z", + "iopub.status.idle": "2024-01-10T15:10:30.437238Z", + "shell.execute_reply": "2024-01-10T15:10:30.436640Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 02e4c67c0..c750e759e 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:11.829123Z", - "iopub.status.busy": "2024-01-10T06:25:11.828927Z", - "iopub.status.idle": "2024-01-10T06:25:13.287001Z", - "shell.execute_reply": "2024-01-10T06:25:13.286300Z" + "iopub.execute_input": "2024-01-10T15:10:35.984210Z", + "iopub.status.busy": "2024-01-10T15:10:35.984011Z", + "iopub.status.idle": "2024-01-10T15:10:37.320142Z", + "shell.execute_reply": "2024-01-10T15:10:37.319429Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-10 06:25:11-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-01-10 15:10:36-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.247, 2400:52e0:1a00::1070:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "185.93.1.247, 2400:52e0:1a00::1069:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 100%[===================>] 959.94K 6.19MB/s in 0.2s \r\n", "\r\n", - "2024-01-10 06:25:12 (93.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -123,23 +137,24 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", - " inflating: data/valid.txt \r\n" + " inflating: data/train.txt " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-10 06:25:12-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.203.65, 3.5.25.47, 54.231.172.185, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.203.65|:443... connected.\r\n" + "\r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "--2024-01-10 15:10:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.241.84, 3.5.25.164, 3.5.25.202, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.241.84|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -160,17 +175,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 64%[===========> ] 10.46M 52.3MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 53.8MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-01-10 06:25:13 (53.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:13.289925Z", - "iopub.status.busy": "2024-01-10T06:25:13.289508Z", - "iopub.status.idle": "2024-01-10T06:25:14.320211Z", - "shell.execute_reply": "2024-01-10T06:25:14.319499Z" + "iopub.execute_input": "2024-01-10T15:10:37.323300Z", + "iopub.status.busy": "2024-01-10T15:10:37.322818Z", + "iopub.status.idle": "2024-01-10T15:10:38.382549Z", + "shell.execute_reply": "2024-01-10T15:10:38.381846Z" }, "nbsphinx": "hidden" }, @@ -201,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:14.323244Z", - "iopub.status.busy": "2024-01-10T06:25:14.322862Z", - "iopub.status.idle": "2024-01-10T06:25:14.326575Z", - "shell.execute_reply": "2024-01-10T06:25:14.326063Z" + "iopub.execute_input": "2024-01-10T15:10:38.385611Z", + "iopub.status.busy": "2024-01-10T15:10:38.385072Z", + "iopub.status.idle": "2024-01-10T15:10:38.388744Z", + "shell.execute_reply": "2024-01-10T15:10:38.388204Z" } }, "outputs": [], @@ -280,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:14.329189Z", - "iopub.status.busy": "2024-01-10T06:25:14.328717Z", - "iopub.status.idle": "2024-01-10T06:25:14.332104Z", - "shell.execute_reply": "2024-01-10T06:25:14.331612Z" + "iopub.execute_input": "2024-01-10T15:10:38.391232Z", + "iopub.status.busy": "2024-01-10T15:10:38.390763Z", + "iopub.status.idle": "2024-01-10T15:10:38.394013Z", + "shell.execute_reply": "2024-01-10T15:10:38.393407Z" }, "nbsphinx": "hidden" }, @@ -301,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:14.334506Z", - "iopub.status.busy": "2024-01-10T06:25:14.334060Z", - "iopub.status.idle": "2024-01-10T06:25:22.328376Z", - "shell.execute_reply": "2024-01-10T06:25:22.327664Z" + "iopub.execute_input": "2024-01-10T15:10:38.396403Z", + "iopub.status.busy": "2024-01-10T15:10:38.395914Z", + "iopub.status.idle": "2024-01-10T15:10:46.275104Z", + "shell.execute_reply": "2024-01-10T15:10:46.274509Z" } }, "outputs": [], @@ -378,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:22.331443Z", - "iopub.status.busy": "2024-01-10T06:25:22.331210Z", - "iopub.status.idle": "2024-01-10T06:25:22.337488Z", - "shell.execute_reply": "2024-01-10T06:25:22.336872Z" + "iopub.execute_input": "2024-01-10T15:10:46.278341Z", + "iopub.status.busy": "2024-01-10T15:10:46.277773Z", + "iopub.status.idle": "2024-01-10T15:10:46.283971Z", + "shell.execute_reply": "2024-01-10T15:10:46.283371Z" }, "nbsphinx": "hidden" }, @@ -421,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:22.339951Z", - "iopub.status.busy": "2024-01-10T06:25:22.339480Z", - "iopub.status.idle": "2024-01-10T06:25:22.800732Z", - "shell.execute_reply": "2024-01-10T06:25:22.799973Z" + "iopub.execute_input": "2024-01-10T15:10:46.286389Z", + "iopub.status.busy": "2024-01-10T15:10:46.286016Z", + "iopub.status.idle": "2024-01-10T15:10:46.716858Z", + "shell.execute_reply": "2024-01-10T15:10:46.716253Z" } }, "outputs": [], @@ -461,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:22.803694Z", - "iopub.status.busy": "2024-01-10T06:25:22.803441Z", - "iopub.status.idle": "2024-01-10T06:25:22.809754Z", - "shell.execute_reply": "2024-01-10T06:25:22.809121Z" + "iopub.execute_input": "2024-01-10T15:10:46.719903Z", + "iopub.status.busy": "2024-01-10T15:10:46.719490Z", + "iopub.status.idle": "2024-01-10T15:10:46.725601Z", + "shell.execute_reply": "2024-01-10T15:10:46.724970Z" } }, "outputs": [ @@ -536,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:22.812247Z", - "iopub.status.busy": "2024-01-10T06:25:22.811889Z", - "iopub.status.idle": "2024-01-10T06:25:24.829457Z", - "shell.execute_reply": "2024-01-10T06:25:24.828653Z" + "iopub.execute_input": "2024-01-10T15:10:46.728384Z", + "iopub.status.busy": "2024-01-10T15:10:46.727907Z", + "iopub.status.idle": "2024-01-10T15:10:48.714011Z", + "shell.execute_reply": "2024-01-10T15:10:48.713188Z" } }, "outputs": [], @@ -561,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:24.833068Z", - "iopub.status.busy": "2024-01-10T06:25:24.832222Z", - "iopub.status.idle": "2024-01-10T06:25:24.839537Z", - "shell.execute_reply": "2024-01-10T06:25:24.838871Z" + "iopub.execute_input": "2024-01-10T15:10:48.717702Z", + "iopub.status.busy": "2024-01-10T15:10:48.716931Z", + "iopub.status.idle": "2024-01-10T15:10:48.724053Z", + "shell.execute_reply": "2024-01-10T15:10:48.723390Z" } }, "outputs": [ @@ -600,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:24.842146Z", - "iopub.status.busy": "2024-01-10T06:25:24.841643Z", - "iopub.status.idle": "2024-01-10T06:25:24.866755Z", - "shell.execute_reply": "2024-01-10T06:25:24.866053Z" + "iopub.execute_input": "2024-01-10T15:10:48.726479Z", + "iopub.status.busy": "2024-01-10T15:10:48.726260Z", + "iopub.status.idle": "2024-01-10T15:10:48.744195Z", + "shell.execute_reply": "2024-01-10T15:10:48.743625Z" } }, "outputs": [ @@ -781,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:24.869362Z", - "iopub.status.busy": "2024-01-10T06:25:24.869006Z", - "iopub.status.idle": "2024-01-10T06:25:24.901803Z", - "shell.execute_reply": "2024-01-10T06:25:24.901116Z" + "iopub.execute_input": "2024-01-10T15:10:48.746569Z", + "iopub.status.busy": "2024-01-10T15:10:48.746363Z", + "iopub.status.idle": "2024-01-10T15:10:48.779493Z", + "shell.execute_reply": "2024-01-10T15:10:48.778801Z" } }, "outputs": [ @@ -886,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:24.904601Z", - "iopub.status.busy": "2024-01-10T06:25:24.904369Z", - "iopub.status.idle": "2024-01-10T06:25:24.912699Z", - "shell.execute_reply": "2024-01-10T06:25:24.912132Z" + "iopub.execute_input": "2024-01-10T15:10:48.782066Z", + "iopub.status.busy": "2024-01-10T15:10:48.781813Z", + "iopub.status.idle": "2024-01-10T15:10:48.790722Z", + "shell.execute_reply": "2024-01-10T15:10:48.790178Z" } }, "outputs": [ @@ -963,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:24.915153Z", - "iopub.status.busy": "2024-01-10T06:25:24.914932Z", - "iopub.status.idle": "2024-01-10T06:25:26.819403Z", - "shell.execute_reply": "2024-01-10T06:25:26.818778Z" + "iopub.execute_input": "2024-01-10T15:10:48.793202Z", + "iopub.status.busy": "2024-01-10T15:10:48.792863Z", + "iopub.status.idle": "2024-01-10T15:10:50.628648Z", + "shell.execute_reply": "2024-01-10T15:10:50.628005Z" } }, "outputs": [ @@ -1138,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:26.821955Z", - "iopub.status.busy": "2024-01-10T06:25:26.821736Z", - "iopub.status.idle": "2024-01-10T06:25:26.826080Z", - "shell.execute_reply": "2024-01-10T06:25:26.825582Z" + "iopub.execute_input": "2024-01-10T15:10:50.631396Z", + "iopub.status.busy": "2024-01-10T15:10:50.630923Z", + "iopub.status.idle": "2024-01-10T15:10:50.635324Z", + "shell.execute_reply": "2024-01-10T15:10:50.634741Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index 4741172b944c6482161a4d6505d9d6a1d1806316..b1794ab7fa0a4ef0677a6a5f802151de6db61655 100644 GIT binary patch delta 8950 zcmeHMONeDx6{V~@DQD7UMAG!T-8eAxr_N`e&qiXaXh5)S6H!oz$=T-v>O^!9CozZv z4LS%&xETo!6b!M`1r$;5TvdzHM`(sd>dA4OGB)UCU}Yp=C; zz5f1%*WbTz_st{izQ;e#>4)DvQ9{IyRW8~^)m-3ExYpE?*br5WVk-ysKYMue^M^+V z`25K7;nCr*ezPdedlsu&E{bX;4%7-e{eeJp7mj|QG(P&m7OVN}yrw}t<>ENZcE|%%1|2e!coqS_>V)>6d zhwmJW9XIOqm%E3z$BqXyoqlup#MrE42fHc-q($rGI2Kb|@MLuIX=Qvles%cla48c- zt8$|>`za#LBw~(8Xmn*tr-#SOAG|aC{^f$oi;M zB3s1goU%uD=31_!F-$2ov`1*DNgy#XsnD7TQ;cROnw|%%Xgap*bn~x=*RRs|zi{%S z=dZl{^0n~_8WDgyZFS zG`xE7N~cck3QT|bYu|d|*6lBT=_@bv8g=*SPS)C$=dVqlx_|h@Go9G#Is@4y+iGk{ zl}NE>u35(z45J3ghOk{*ixe4Sb80AU(@olpEB2w8AyF-ofJ7&)dVG{t{1P2-?_lg$Z`0hX zi;m&xtp|rU78MDH$zXkE%+{2w)RIbLfZwuPV%j}7EMfx^4L7Y6MKWwydmVJM7(M{$ zRtT5a0$#3^5CfA^jVrK+huCJPczW#)hT+{h{O(}vn5I<}BlT>*`-|b~bsfU34>4C* zxoQ9~Ob-%fF2Uvu#%Q%Ft*5{L88}*3$FnjR5JA^aC^&FJv>6OjjhM!Gb_;X8>O6v? zPJiw`eSX@C`T%pC*whAdsr1RoH+XgQ~^fS`{0*g;b(_S zO-xo&Oh^U;#bE@HO`!&pMVB~Tes%cxOm43nEKGvKCb7nlY>c9zh{m!N ziWY+G2o+kYWr($kY*1Cjx$0808ws|?STh#&G^l?y$c{)##fKJ)D|msKF8^&f-sUx^ zi}T&Mc@Mls=Q|LmYsbTrke<<@tqSy)CTPE?7!ujBEvb<%J98sN6I3W3d^;;%@Vn$< zWaeN6$+&|yN4i4F=;$zq3VzR^7^wFOvB#Rr8f|^^D-qT;e0p*C^cbs$l0cRV)FSu~f^3gUso4*D|6iK%HYx(jLV z1;m6^fNIcU5ac$+_3E^XzD}pg?$e#beJCq?!L89pH9PDi#m5Z1U`XO;0TgQxR3z*W zLp91ljaac5_Bw|sXgv&HCunWqjRsrmN?#Lpr4%qYL7f(o2&4j)1Yql=)&DMaT}N&{ z7@i%wF5G=Ed~(DhOHeA#1B39lafS%gTDKT%vT8F@R!iN&8}FS1i3BV*_-3 XJn zRPrwTu+(X7068p(ghVlPfe2{YW>eUj4g9*+SN$4$hX45VaCM=Yr-Gu0c$&FEEEKTl zsxwq(+YE<|26M$g?blY}ohVLTDXg0|aZt&e&CxabpogndqQKjluq&one>3CtO%X)@ zJRCRsDdf)iF07*QJ>#E$W_ao(+)!}~e%N2odeuP@M=Ef_<~olvFQ7hrpCNT7N(|ak z0wm>p7buu3K055!-eP;es=b;+XXMwb(=MQTox1yUCv$Q}eq%Sd_x?S^>DRZ0Z|~14 z`?Jdatn&E#-!1_6XO+hvcJ^nL{aNL4N3Tavv_Gpn_NcQztL)Dz`?Jdatg=6=;2)3O no6i2MvU@YypH=4nmG93g`?JdV2f$rD`hPpCEOA!((?|ac1-~rF delta 8914 zcmeHM&8uWb6{qdH8Fw<1h-8><1{a3RL zKo*H4f)Xe1f!d5p1b35-xSat(+_-iZvdORe_Iv4L@g-JnyN~+c_}}Bc;TlHFU;`w ziPggk^IyKPY_1if@Mx=*8&MKfh;>$#f}={~kKUVKTpj;seq&e$tB6A37;@ocYVgfa z(`3ETrUX4b`>SsbznCqeNyh5xI6K3s#F!nEcna0VZ0-2N_vV+zqi+w7uKsm*{?4pl z$6t@nPPgQu)y>4LRAsGV;w($=NX3I_mVU){*T87@@ zZ{3?ezDUul=yi>O9CK;W7;$ag??&3U@zs9}msZQK4^IsXJVGwplv-h~MwD|VWRAX4 z5!v=KLTDdAdaWScw=yqY(EOS;_qK?8oJK@wsH;xpnXWBp%Cvai- z`Rq=oM{*TwfAt&ReeTxnFF*aY=Q<$u=b!E!+0|#Sji0?gfAs0z=B6VkN}23SEDc9s zloP{6kwFKTgYfw3UGx>iyE$BOiaixoqhkk-yU<7qI3JBr;$7O=vPMUACJBxy0t&)b zl1i}}lYu*6^o(|Yn=SU&V8+kCJbY`3_w6s>?#shti<+wUsIUkXww6N#Ntks6Om*-R zPA4I0r6$oRzdFx8RVV_UF~$_-T}XL{b<5B|UQxo843jfroDSk_&Y1)Fyn6E|!=Go1 z{fkdHU3AtR-+C~Aasi1;&N*A0@sI?)KDicE@w(Y&wtU;{V*weo&8cb{HcCKdEG1Y+ zQ32esOfB5-?TQL$uXV+d*AVNFjMU^~GNoh}#$y^D*=k2;{VnA>OPlfCpAAo3C(E}! zBpqd03%D%}95T&CrE;z&kr8-+tN@N@hJ{5VP++NRy-BQvNoh||3ZtWTE8y~t*_~cn z&QqrY%a71<|5>SWMzqd`WFnfiK7|q`>nxm`3lfzO*_a5bSH=^Xh<0OGz^Za=Qe14A zVWyG{+18p4wrRcX{l?&yO&sGbRp7Q9VH*@R)Qba`ulR!~0W6(@_@@ZD^T2kY3XbMB^EuCUCe5Pulxh7dwRl9!~R0jKV^ z=qx`ze|gZ$?z;DXJ6yYN{EoY|7|EkHui?HXsz4B81TmPcUsp8g+oXl89YI*2oz+9y zIY2!E2W8zx95xB$)ZKa=I#0SDLeD?lJF+v<^)@$=E<0q-R6v9VPIwh^GfA`Yz-Nkb zmcgDHt`zbj#e;UlYaAE$Cc-t~idvN^R!y7}NGRYPf*`H6Fx0vAHHJrr{sG=nWw+3=OSW2}@u zfvTa5;Gqcjw#np|&`03078NZ(3?_vDA_03%8g4UfQmBb_gtyoXv^PMeWQEj>OpxH9 z32d&@v%5~$DM7}Y4~A#@B^*B(KC{H_K;-~WYRLM)6{^q#xzA0(p7pMjF0zJ^z_A)q z8zW_f1PUSs6Vw84*)Zu({~hkk7LZ1Ti&DeYl|#U`Q*^EZwGf=@X`LzmGP}}Qc|*3& znlk?W#_+@fDash!)}p})Iu%L~8zX`PLS@QZIhdpaQ7bX-Hk?9Y51TV77?%_xC~ls9 z*X9ZVoboNB7|trF!2hPS%k~h>Cbrr_3(NA z>CTyjQ@Sm?+xqwahA{s6*6_Xl@ZvB;xi}fbVTkha3C>}NvNLx&rQczQau}iXRK8ajBW}GixAJeKv59WL?u3dfVxF)C-@Hp zi;JCM3)>Wm7*|XX+kipR=z;@L(8dAlbOUpk?{U6w2K~;U-+8`%fT=5X+2f7Nv(!mx zm8Cu~1vDvRO|UUyLMIGR04Jg~RzIx9+iJY(zpV{V7$il|prz5;aci9g;{bdLfX$0f z)q~=^4A?ER@ zjAYTYb6ezTHH9*=e93eYROY8pbA}>@z$qjbV)sOSyW4#IOpZ3Uw#kv^@doL%>ucmm zRV32fACPlJ9?iWkWTN(7de4*LXsDEeIb87BdMJ^06Hb$^6(ir;x|47lR@1$4VE$ykBNu23jT%0?9 z^3>VIVqE{4E}7U}m}wr3$i#F(rO#euGgddN>E_aqEEJ=^-@*M3{_g#L2mkqz{bvU| K?Px?!AN&b1B~d&8 delta 1939 zcmeH|yK7ZJ5XL!68sjY`jm14)Fpa_NV|HiPS_Q%AO<`eiiTjwX6qG>lLGbklsJF=J z1pfoU;$Www&@xRBLd1yJrU;TogRU*eX1;HBSI528aqs!sA+aQ+i+(B2 zYKT&3r@=eSB)~*O)K1E5IYc3e2c6NUht*_TO;+ReI+IsPN2NVEa4K8x0$Jo>r6ikE z^WsDGptGvIv{k*^=!cvj`;1as0OgenN#>X&+7PYs?TvLdKT#(i1t~Jxqy&m{o1!d= z$taLMb86>4vZqzQ0HD*E``3$d6Ps#oZ?j{~;|V? zL_7ubF&0&lLIq3tw$Q7(?Cjwm D$M;Ra diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 6521938d2fcda1707759e0d764e77c6ffee4b2d7..3a1cbc113cf5b8828f18f93f24f4ec66edcac1d7 100644 GIT binary patch delta 72 zcmex5gY)YQ&J9;M4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R c3@j{?j8iSmEzO!)x!PH|7`L->F%>ug0DHC-U;qFB delta 72 zcmex5gY)YQ&J9;M4a*FTERz$aElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN c4UJL_l1$Ug6H}U5x!PH|7`L->F%>ug09{fP*#H0l diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index baf5b1b06c7309249a1cba5a430d7df4e62d1504..9086c755440b503f11a04d6a24e649671edf22c1 100644 GIT binary patch delta 62 zcmew){z-g8BBP;cmSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ RMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) RszH)znt5W%=1GhRTmW4z5>WsE diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 956200ca7c3105a2232d001d03f515d087071a2b..65c550ca4cfb5cc5fc119f871f7ab22273371fa8 100644 GIT binary patch delta 68 zcmdnHnSJkO_6_?u4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R Y3@j{?j8iSmEzO$Wb8dgn$$0KO03b#eF#rGn delta 68 zcmdnHnSJkO_6_?u4a*FTERz$aElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN Y4UJL_l1$Ug6H}Vsb8dgn$$0KO00aIOssI20 diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 769e8e3e33f97fb302c5cd4a74d257df4117623a..c39250611d3a133013cee1b85731d16eadd525a2 100644 GIT binary patch delta 14890 zcmeHNZRnk49p=1%in!3`Hrd#Dn9*dL|K0B|LXnYH(B_sFu4eOo-R4Z^rs5Zs=?BTT zoG123ED0;a2va7UvLI)Dt3=VhM3_O5VN!mm4+YiroadbFoT2}_4-tJhim-XEMZ(Z=}TNga@{d1_i!QK(vq5WHl7s5(QLZs4=EVb3qrsT5oTpMDH=gDfT zPWHH|%pa?ZxK~?!RgH=e-{svVC{_??SB^K6BeS z!&mm-JACnmwZr=ltUkXv1CDU|1jFM8s`|(;IxC0oyK!CZeun+ObYS(0cH7Oa+dEj* zT|d11fckHI=R~}5>-s9QWQ0wU2BU?i+8JSzXbj#Bhp19$Gch0J; z2u3ECh{4a&lnqTxlWdjHoKm01pDQkEKF7ZDo3pBHaLMDR}+z6Wwjsl)`S=AR9K;u^2okmtT)WjBvO6!sqV_r z_m1`N>I|$^8M&l5#~UCWoYw)RQ##AIrFn#<&v&X)-1?bSJ#uv+teid3h7IEbMLdpl zIp8v^u$0+glga{{@l;Tr+5=UFN{fsT3>98TNv)-xSRc4bxQ~!VM>qE#?F=|IPFPDw zWmNR&9FwZludN&85z_gbea1+TyUlkWDa z5Zl))e%f7Cc^A3TQM;6pG0a<|gk(-epnxfpM@RnI+u2_ags5yJj$;J`g~vlml1Sz> znM7s~RY`mSe@3mATmYCTy41-`yhWW+W}1bixNR27<>Siw;h%Rm4gz<^M$VvqlHdTZ z56w9|K~8$6+FL&O>+Xm80~x6`*oIRQ@1~RuN~GA7TV!%1^~vk-Amh?daf*7LL)Hvz zC}{@GX2&&tZF5M1P2f}r?k5LXKCY?KYKxc<)}K@yT5aH>22mAQ^?3O;8?n@DZs8M9jiUO&CaEO|ET67 zD2iVg99>WYUR0`msP;_>m4FHZefg$f9O<&;Hv)apL$nSg}A!z{Jy)oiiRVW>Q5+1#xf#Bb!a4?P9 zH|DGgMN~Uf$)vz+5s3-(;MGCf)-z+%=(peQ9_>^f)udrG9>M0BD@%C>vuiK}Dyj+7 z8ea(7CS@sRef+Pz4OM{Hg2oKs7N`^Aod%ag<013BBbH7MfWru`r6)NsP#MSN5(Qd_ z8oP%NX%DcTL4^2(4HIo}9Z-uD&V^V-8rM?OyZRT7u79lmWM@!_TX%lcqg5$tz2a}( zEt{>Gft57e)7<0{iY>_2aqD9SE23Q3)b3!MSVeI>p{>%J%%iH5g7d4Fzb+C_p=$Y4 zVc}SBWQ}rWJX8b0BUz{&!?+{xhZ40vw{^Tl74t;VMhJRfNHmO1AT=0R1qLvd#sSvP3BrAa| zXH+tia^```(fRj-#Reo39X*Iwr6f>YA^kZ)vTgyg_EyM~DN&Voe{s$__D3cMqYK2EiDjS&qIs|ks1S~kS)wL=o z?qUegb_8w#H0Pk~X;j3)hvXWEoa$QC!Q_HBK`IBr)<$NJ3K59~C%e=x9pkJRygf)E zc09Jaw{feXOJW9T2n-!SBacK1ow-dYf#WG$`D#xH;8r%Ba5?JYJ&Hzs#FXvYm zuIx0_O2=xUhJwZ@;Knmpi4jm46%dGwK@$0CMpn)u^BSkDA@?A!tOO!Ooy$L|O&Kjm{L+qazPDsDjP%(n9b@FdST@;ZVRl zfKLL1S1>Jel|t6^?Jlhf5q*7NYj0DPqp~UDnjDH##4`j?O#}uqJYELbx2Vc487F-s zS(9i^8bM@6fp`TAnY2Y=K)`f5P)!Uq0-Ot#DWeb`dP2DnYZ&U4EpZj&wty;xCH22_ zZ}X*SrEEK`2$fG65Kw4=Fx~8 z>i6; zHXhr7oP(Q!tq+PZh6dbd=PqEX5=dQ2DM#j_bP|ca984euVo*J;qZ2vUBqG!=_zwMo ztO>rvZD7)S^x-t_qqY2nm~NbrgF?)D-;UlT12mSCpp>CK0juiJ1Y=C#3=FP|r7_Wd zy1yPp0^36SMLPknm?tMFgq^T0 zD(!M{RsHvCdz+T{lAXa6ZWYa>B%2bA4WPohgktPGxDq~iN>YX1;Rwd@@y^|)_m~HV zDJ0+g>e5Y}f>P;3EtH5u%A*#;{aR>JiB>JgGokehKV*$*jsGA)Lm1wa`zQc47~-Zk zCQNpbIW@;m3eAlWw9~4oj2wiAE)@gyGl?#M;}a~E0@pY1>utM676LbSGnIkNPE??U zB_W*aEIFFwsMK&c*arSLK<7-W0xK{9#VgamK)o>(@L3;}W)Z%r45p>iQzAm#6nc>88+RP{fmo0S_ z;;Q<*d-_{8%__k}J>CIAuSthSNO*?dLl;s;ysjU4s(az6wH<}7dCRk{7%V)Hn1@d( zJLgxI?rRFRE0#Z*l`Yt`hmbdl66gmgVRW0|?P0w<@(JpvX~(1JE5>tzTy{~xO=XBe zX)N*%(;o1XXR~5ZI|T`YRKe>DM~I0ra5!z~eRRP*oq(+n*w*{L)Z4kM6nGA7oJwLQ zfXhCbOeh3sq5`p;Y2sr*KuloZszzd=dkDiKF|Oi7fK&|>Yl1T*QbH=CFFH|JIY%x~ z@qGl|jLRM#&Z9t$<#I5ymZcQ7O;cR)a$!lm`%$zvV7nOMfC1X%f}-(`7s{}E5;a2$ z5hf}TYznr65r)=+CPtYg67w+(ARs=_$vxdTTu&l;KJaO1y`zNmgI+q6Y3u^CdM3|)Uzv?ehGZWVF}?Rdusgn4AMcq@#R zX3baOf#N)ZN(nl@digu^e2TYf`IA{$ulr8l)R#Tc`&?-ZwU~h|W?=6%cWVnsY3#O` zfh}fWiy0V3%8MCTJCa_^z|NSxEoNYg8Q6F(Ij{B>GqCpy8@8B% zEoNYg8Q5Y5wwQsnenf6W9VdOY*~toN@-GExarM~lePj_>cxG&YViCUj9| zT|{c7?(mB+2}{EWGbY%TU1&u&{g7BU5oOSiVFhzh7X{Vx?Qb7F=TQ6YqUdJB{G2)G zJ>UA)yVkSTvz~S4*%w~%>O zK^5cE$={#;$^l#U_9L(=){r3j1 znml=AeAexUPx$p)j<3JhpSUd_kN)_ix%pMQ4(8i#JACxu`iW!ycwWb6)9kzM{Ndp2 z$)Ap#KiPX^JbPpR{lPht%Z}*(;p0!HoA>W-ye-9Bgp`6I<9&!p2`VaR#>kMK@CQFU zt{j>idwkc)_uPHzv_=W8qqmf#=cGgoDdBm}5h za3&%Np}mFyuc8tH57Yh2RSwNw?)eAtG$)u!R!TCN2!GoUjb{$e4xY5^pH?|Ed)h;f zob|GXWu6mLtR$I<1@49NWKxtVD$Z2@w928A#~wfPWsMhwO7bx{&Pnj#1jomMC>hOF z2(wG89_lXbZPUGYoRzT%EhQ@mBn7W>(Is)8lwzvn{&BTKc-%*>erkI4Q-jr?HI_Lp z4J&~%Bgs=>(M6|nkfeN)ZhGtISFRkje|vOz#+Zc|f(<%|L}WyCvhZM7B4#7fqJ8?* z@a*Yx&#l}u*j*fFL0Tt0!v#2`UQxP4@9?6Qx0hXlllKmXKN*ZGFVOz@;gzedt60u^ zR+~My`f_OczLv!`EqVDv$}Z77NtC$ndo6bdE04^n7+S24v+?|W?J zn*+pYk?Eq^Cw2|lbrrK|vr~Ka%zVm;m&`a?;yl@wTECm2*acaXKMesliYq&%hi}TiHsMX#rpw>5PK)!?ZarPOB);dy)%Mqy4tHH%aZC0= z6haC@P_jZ@mKnZ-KZsS-HAlHQPJByRvJ{n9m5F zWXKvKK{j!x;Z!oth7fzRJ<5zCV)(;bjg!c^oP9>^=aG47OMi5RvPPp?c%+{~CQ{Of zbzs?h7o00TD>HrO?Za;jnu>AiGqPfr+E4soW#5>^!aXW{LN7vaQ0Iz3Iu=LH;LjGo zo(JUubUqnX5;7TdhZu4!#0&D1J1*K&Uq@Y;xv?9)7Ra>DX4tZhGZ zbhLBYW2<7lFBlD5XjzJO{L_^SFJWuu$Q$>cxN)9r8iZ4j;?;e5o+k|Yb0QrPy+ zPxQ%#GFYJkQ{?4CgF9-m*$N%AI4x=G>BSf3<%>W=L0IG!>wTvzWY8v|R-^Ez0E*ky zc##sJ*!$l1n?5$WbhMki2zX-1tWb77WSv2UQSvxiq3?4Oo$ccHH}_uo7%x|R?cZq-i_^w9QZnUue!XnCIA-&feohX z(+5Ulo=id2=LtLov`U4ne9S%?ZH*~mig4dQXhcHj3EW;&M{t|H`#0#sibb0pXb4FVCj#(^=~8s^ z=t$FFeR1VJI1sE(=mDlnW-20dq!f(GMXPfZWqRuT(KiRdBz%%jbIhbid2M0#X)AdlC01eIGMop*%t{TU==*7 zua^!Wv?PPF#q+FF($09wWeP^{{Gh4XZ67*wboJXSX1B0Kt<{__N&-y4Yr%YxQVRV` zp^pUwG@}O4hEK96q$^5(i9}I>;-VHL#zMzolHJtC##X`^bYq4S#DQ0^wTRJ#fmjx% z+FRcMmeV(Yn(;nWE4HbU8jh2`&oPY@nkOTQrX4X}F0FVciiaY-fmbhCR^iQKb z7%WPjgG&sB5C1Y?7-_Q~0-Tve&LU}pnufW+x)Kbx!7*)PAI9E~n(f{Xx7ap4aL#bw ze&g2cCd@^VGgxnA5s>F-y8s?Q@0kK`lA+8CU}a>SH?c}&!d9qNa#LUpoNh@9|M8-Yt%}P_GDAEF=xX}Kf?44 zOsgC-_ZZCx1=s<1C_E`b=D~!kWKTc)23D~h+K;b|-r7`brw8_r&KnD1tstE+NrT3N znR3sI%|@c}askHw5)VNm7MK))5mXIg7)b)8f|zYrOF z=NSm(;HwxQ5?~104)kXavqy2qX|HRWw{hp`p%{5a%^fk&O`Pgm4x!fC2}O5VtaBL!ETcoArPgO%S*Sbizb3 zb^|w#@D5M-oSZ_q0k5jqZNK{Ph>vSl4;>g@*g&lV6No~YPJ0H5C9c_}POQvalvxZ= z-f+{*ViNB9E_VVtp_ax(Sqx+_zrhM^##ojMGu?$q!JGz`tO^lr1CzkU*jTgKR{~$L z+5Yt%!;99$n%V@U&SfhMParVhw!sxrm{dGN%ZiX9=kcgWhjS!VLa|MwFpG0-HSosnXl%-P*J2oIz`1AYiV^eyFyZw)UUU4Xs=Nlt)b81kTbSwbqK z0EUP=Y7bmL+}SCJ9U%-3W13ft7YJPrd4huIp$H)AjC5bx=X2I#^SZs|(D16a*@dPR z?`qA4hA7;e6k<%oCPY~qAzF}i7EBMyve96ED(mT4cXgE>+$i&e!U129wh%diHRb{( zFfK8LE_(l9jGm`u%AK-^a<3C~S11M=RHkTU;-+3Tu2^mPA6Iyj7F*5jyKWt>jg>Ys zGLAL{UX6h-0Q|-RJ(}Q*>y_AEpaHwY{F`IPONb=+L1YQ6fP)}H4c{z-;wb#0*znqS)C_My8H_PIM;g=!$m$AA1PdXIOTKGRL7_4rSDl{+ zHDD?fkV1oi0s^vz{T8MwRZtb6)yxUsoEvKI@I^xqw~2wEDJ)zdQ-V(w=~Y*hc21xA z>hO`lxMI6~^^PHLDyBnw!~M`XLe5;~lHm!2dDIH%FIc5wqZILd|C!-M zmxwjKsi|=?EGx)ENkR0$h>r5XyaLM(kbd|E+7@q}`WdlDTUs2LZKSW3om(kl<-)=S z+M0@2sXhNoBip|A;o&=%E3)N^Y`G%azQWx`KbI@Af3==luE>@vvVXC@+}g61E3$vT zqFb)WmMgMeU|X)pmMgNw`?(j@ghlJQ<%$eq>f#^0oXd~P71?q{wsl9hT#+qTWXl!V zxU!d7uE<_o%Pm)A-O_KlB3rJ=mMgL?%iHCOY|(CRxgzU+l)1XATCT`8{x{42X+<{0 JifnquKLLb8w$K0o diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 7fad303640f58e24a00e7aa75e0d3a01ef5e18e1..f01281abd27bb6bbb8d5047161dcd26345abe8f4 100644 GIT binary patch delta 84 zcmX>zL*&d1kqvt|4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R j3@j{?j8iSmEzO$Wa<;$aWCUU+AZ7+)mhEpjS>u@ixO*G( delta 84 zcmX>zL*&d1kqvt|4a*FTERz$aElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN j4UJL_l1$Ug6H}Vsa<;$aWCUU+AZ7+)mhEpjS>u@ilfxTq diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 61f8a96d59533566cc3b05d0c6c39cf7a0bdaf32..70fd685c8ff8b1a12a9edc6ac975e64fe1799cf2 100644 GIT binary patch delta 3699 zcmeH}y^Eby5XQML7A7DfsGaVci>?yF=A1Kg=A5w-@q-Yfi=+`*;+!u?Dp8A=um~|= zCoC(xm0JdEB#`1_BUt+fqzG$imp-Ml-g_}o@KkoUxz*u)=9!t_Jooti>ErvS@7_6O z{WZRx<@2lOO+sYPCKv0YX+Cf$T&pxm5Tc1OLFK@7_~_X)_a2@4>a)=V-;A*)X0`|^ zu`d<96sR_V6MJ}Y<5u_4J-GSD)1!?cnU)<=bcpEKK-2;}5>exp{`yq!(KionFCN^U z-THnM>zxaRJW4|#wWMXO9q?OyKo8KvOdYuKq@UBzBC-o zUTrSfW<3~47F%%92>I05IVwS)&EFVr&ZmQMcxCbM&Ec0>SAP2Kt>IEvecGB2FN_4i z8Y5BbZdjt037A|1a_TNKt*q3nGgEsp7D7x-eD;x(N#cC+*({FV8xCfpxxbvoE^;A)0~dZ4i|N_#YGWsLe*KMDmh9lAOyu#3A{4k zaxsw-6|EOf)+sxw;2NUmqCVCJ)FwEeF~x@37)~_@^Tp6Jp*PjhOQhu4rn zJBd5su6}v`i@o{&{<(2(IY3O3Qp|(_6$|yoXthvZ)ZWTekC4U7arj~Ob#E$jRlKnK z@s&#-zWvVoSGw!?#B1AW*nIEYWG@aczT303G%gBwb=4~&I+|P(a6yh}oP{E^o~8(x zs+XXUGL5=tSRhbn(c6}&nKfA+tEt81>>`5E#fc}t2>Zvcu@-6{U z)t}^1caEcH1xLxSiK|_c6^gW+t)c}6Q>K)wYeo!ewKWx9F6LJA>{xptEhTiwLe?N< z5MT8c$@J^x;rYexN5h@j*b_ckPP^5SJ%MZI@W*eT+g=W)DrBT5yOPUTnI#gH+N?5S zC_!3nWS|zCr+}c4WmZFmVh93iu4&CH%yLZH1V=`kLt`_W6kH}3V#rSK-U_px=+a3? z@`SS2(EJ3x<72G#_lmsjfxx@3X5HCL;~P0}N0*Oc{gVMSSILh=vFdaL;aWxal_ zDckN@(qZa-IsE;`_H_4?VXqq{tFdm9Y?EaFm7bd@jg{Vlk8$qi29d28#tT*|(VL{*&ikx&P$!7oUz)TJ_w-Ik1>Q zNhLQr&u+MOYNUWwZ|{hLQ38^^7eRePs1&F;fArFD zFnKj(?V7U~f zf`u5_*j9Wi(Rx?I{JZVp7bVaEoxOK{Fk=sMc5r^UGNu?@%M^0aAqN{00&PL z--DdB>%(iv79H@G51)K~@w1)j?(T(g+OjwbLC0+j#wuBN!ZCY~CQuVN+OLj5<}cIm z!{n=;C{sn;zV_jbtM9+{_PaN_+j!!1XI^Q#b75w$3}@fzQCbogN{uOL9H>Y+)Jz%4 zhzAv;ijNE8ADr6I5frLL_p7R}GDV$LaK=T@kx^UuiU6sgOW7okl8|fCwaiSua0TLj z_^OA#^p)wLFMVZzq6+{?7iwX7X0%C~$)Z6J11=@ph+JH=`iKxVZ`o-^i8@c$0y55i zzdpP$e|&lPQkO0yUobjvOhSRc8Z@*>u&BS3=2qV70k6FE-?(+*t*!l^zIlFgDNK#f zl7^=QB~nXLT`Cxe!PZT-fY&1U0nhEo+Y1EN93eg#eWs8Z_i>bG4C%l~uo|mCbs+ zu(DZCpOZH0F6RlG^#*oiv&|kQRZ|0I|Ib^SvwI&6JKZWdN}6?(t()xM%X8gi$I5x# XWa}ndH`%eztpB^o<{uvnyU+d&#Tf_8 diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index 39739e8c9871d1ab0bc2b84b6b1db9920f061fdb..c23e7b26506e5223c8ec9a16ec33803ec22b7757 100644 GIT binary patch delta 19026 zcmeHNd-PXTmFJxAgNLFZPZ9Wi#SwY=<=lJDeH>l_0wQ68`79LgQ&3a{F?uLUS&b5b zKj>H{%1oL$*(juUsx@URYsR(E!lji4bMN=}z@OYzYig}o>-YQP zcke!DfA2nzy+3>Jv(L_#$Gp6MO!davcJfg5-u{+zxm+IwYgSHWp%BuMEQ&41XQ|^! zFP2FXq(R6%pZR{s6X{8J_tX8aJ+%?a)DK-R5Ox#`=DI-;NRKD39r{t=Nzopx+SpdY zw0n?0v0o##C36__Z4pO8N+(QZoF+~xQ#<6scJ!CZnFjmAb`P3E`!%9~2bLe(VJbqA z2CkpPLSRhHjiSi6x%pfvlm6VxXFk)nk+PUup(VXE@dT5x!~!`^XbH!TxW|gol`-kh zec_yYj&JyZmtcUN@LevPkcZ6i+yrf&&23NQqbp_7pBs7Q`O7P=C)%&sv&cNZwdW`L zse*6PF=|OWIjw#1o{{ZGJ$aPrwdS|A`%i8<8XVhJ^u2i7iou(__UE6N)c%bp2WW=f zeSdH%t#Dtctryd=?Vs9vRwwcMy+3Oa8{5C~)JZL3h8pw+>EHhCA8l&2jBQ`FZ*~W< z`-y$G9j6|+hE5>9I`~VvQk}MjPOSP(NLjUpx@g_IpAOl*V*lw>9lDl|&%1(wbe_6w zU5nhhj*1rNt-t;eQD6BWJvrz6@dqhybv=3D&6+xAIBiy)rsJrGX3$jqs)HOof=)Lb zyPtaP9I75To=(a6P9*en)fm+xmyDt^=j;3CFNnH&G@YFD?HEn{yyN`09jsVu$}ZFee|E&I-ZQ#K8;LOFOH)Y#^_&W+}*&TFF&bDPR!8AX1C$$aRKix@Z=N-QrLi*KJ z^^0aXq^0J3k=}**ywM2Qbb!pr$vp?inK{oJ z6UgL(XXjaTVcxiAGP&;fs@IfuzDj5RfS%mGWPdep+AyEE<}LgBeDWchH$wGRQSk44 ziZb=wB9ilF&nzVU3Xc7Y2+x1k_8#KaYYuCAg|&#sQioH~_${`rwt5UGhJujgCmXLnpd z{+8+{Gx(KP5l<6$y-DZl4fM19SCNsX|Br7$r%cls*O2*j>X{L*P>()KrfcHuXUQTw zvkmLXr>SnRW@DsdUVuOln?FJp>fV3*2pMg9AAO0Op&L%S0SZzTO{dsIqalXW8dAYq z_M465Gc;#uDab71DDnxi$n?MW6J$!!ua(2JJ^m>&r+>v|F5q*5`b;|+`PtjZ01BJE z=r;0G{hYI_I!2w{PNISsVZcu9YbO9v=5~Ony1t!E(my^{x8A(%rft`6TQU4{(xwJ~ zvpOp~u#F6-R9NkMpK1fDPEkt~Ik83me(z9quOi>e>5uEa5$e+0$x(U3%v|ILK1VjS zez9s_TemMfv2S2@-RH?r1GAH;C@=>&J6RJzSs%~rV-Jw`8Hk-ggt~Mf79RLIL303I zUCnXtgX9GRt*7W#0IQ>0U*4rrz@Vzv6on2NR5heQRsEK|{dElm23Adv*$4xxhBUBh z80~-7P+)M?^cY+IZcN~PServKgriBux#$-mTT<7klHQ?HufMHlKsoCfIc}_ z%QR-7@9_gx2ATNqr)bpQ zxOJ?jSFB&**+FX0ZaT6T2hd#Wv|~q4SH})gJNBHh?=du2KJC}hqy2i`vuF_Y>lo@o zmy^r1J7<(}1+|-rXZC>+^hT;1TH4ms1axh>?)~&AdaUV%icQlE|2~?|tZVHyu>mwo ztGL#yxmwlVI*Hy4LuCpGdYyhkm1gUX>8H@4rUM#unr^ra&wABuT7`~6b-bK}^2{@D z*|!+|B&~o)8PB^(tB&~vRA+9^a+ILMY2FCEnUgnO?$WvSnum=vPUY_6_32R>4Vijn z7afxAnn^zljAZJ>UC{kQW8f`{9{^E1xQ?1b`_rOhM+5rW`uUpE={*%{i4MJ)tqEw& zS$JlH7Sb(LH+1L=)E1=iwfZev^B#Jt;efg<(my$H7M<0<1|)X5K~r`i9jR7dK>Ouw z>iP@lzT&kbHdSCcvG@%_Q}xD$^p<1HCpv-k?hEOpF5k(%e-XWuQf{d&7gLR;lhqX$ z(~+NDP6u=}YCwH_8U0?-aBuM}fb@n-=%xBhV_hLzyRN!k{R6A76*T=mrCzXgGR3EdaFQH9OU~i4Y=Jb_z5LGeIxC}PcRnviJna#*P?zg&X|tVspZ;|KowofBg>SKZE$$`)}7@ACzOIDB=dA|GWtj z`ad6BJMYlnKL87adZ8H>Fb~cDeW(8T8^@FB5Sy#$&ioA)un+;Tm7RKz29*zuAu{hk z81d19c{W{OSZ=&e!^zL*B4RgRf%?xk9WUHZAE{8kwKh7~w3{F`WSY0^wtv*>kETxb zHylR&^;`DZF0KCH&}f|e_OqvGwUY_4rlVU&|G1?@2(aA3aEsgqWRcsrB4f{VXpv!T;iArUz*r!)Rn(wYf#^ z+>8j=Fb?~Tmi65&NM#J;>syeDnVwa@g{;agj;CI^k__p8O9Ou&ZP*&m$*`&;n-CA& zugvV3W0>aPE3cip7KvD%(!L94&2VP7zm6eS5`2x^M~C)n$y0FJLvj|g?Um_0a`Yfh zGk#}w&!5U(dK2@mOe@CTU0M&{>Y1?^`Mf{SKUN1{{*AeP`m76+?R^S&-2Tc>$EXKm z+IRc<%FipCJzst2S#o?G6Z>d`tEFq`5Vho4Br%TONn~)B(RX7Rs#&@%<(zk8HDAka zrWLH^N-$w9NA=A`T59iAWEh1otqqmadg?vyFgcnDYxs^&WdBjCVEtwl!{{dA@Ne|U zgkfa!`&E!V*iF&t?X<~*EKFXA?A4e9*sXduJZm_ zjU==@9Gri~IB`Hd#Ht zo6J+s&8Qyx@VBb}`dc;d)#^}nRi#>22mh-&LhTq=YpSzftqxP`U#%XeK7Uf}R3#6B z+*6QEwfSImhIdnD zI9PMV^0m>`Ym!D|<=W+jT)B4bx?}(szVJ0Fu%^v8R#U$hf9I|NgTri(=?2Xp9N#c^ zW#E##h6aPhnS2L>#~IImpgBC(&)M@PBg1D>v_8R^W%=sC$+a;XHa#_C^_pbXfSj}O z*Pg^_h1`Z2qsRZ8NsLe<4^{u(tpBpk4OnJ&VA=A&))w#qf5zzVVzraopIcp5x4%{O z|G&SI*3&8*gr-g#l4K5N5Z#fa^PPThVC8KWAnR~rvMQ2U1k4cks*C-T!I(gg;I z%7rU!?xv}aMn7`0=U=NYskVvKvsfIZRvbIRNu1CQEIaZ;CuT_)BEZRNL$iZlt=&r6 zViaH!$9C;Vpb!!#ek8px3Y;La9mki7q+o5ky}pl>3Rh#j`uiFsvOTrctDn#Yp(wKm zCIUAQ_$Qfbg?<>K(t&Cajst?)(rO!LF-8`1?j%AuP88ZMiYr0ld%l|lPKJ5hMjElS zBRdGA*z;5#U0d+qS)qs_WXwW*GZX3HG5CpZacC-PYs`4pV;PjQR+GjV}Yx+ z<4C$`6rz&lcxXWWHD|XTydJoR+7yfZP{cg;6PpKaDur+(mU2ZtiIx4~sQL}0;W)1A zM5&WHF6JpM-*W>i2wjx5Qt1aWpFyKUZlLylx5gSJa+&(_!usT?zG#ZG<|2w6cm4HK z8sm5rr9m9IQh1h#W8aTcAB8Mo^T>{%Lxp0M)YdX+%MP-kY(vID;F(J+cx5GX^sp=SkAiqf9iy0K+cV-oI0iIv!)2qJ-9l+uz8EYgx#S+)AA z`tX)X9a%h6jSK7NG)g3=>cnemqZ$!x!ngdC1=13J7)!_D2o9|@LAYYOQL%;CR5wIO zAzY7(NOOA#BI7ib(!=7an_lWrOFQ79Wg!ybP9Qw)hK$G1bIY?uU}5%JEx$q9O62BR zSt2&pmNjXtWl0N`kXQi%E5RkKOmHsa$VNyN6sX`^DMNi2m0K7S4^XoO_Bj|TPho^X z4q3TjS(Y8jBo44+k+7^ZU{0F4EWtda$2itRLqh{yN0Q6)DU`?+>dPx(SQe6+E{2r~ zHx?)hW1+F+f`NL!}m$4mu*O4Yh}_^ z<3shu=avXh^$J}VtXh|ho7S+K%z&pAG6vTrwCfap9Qsz0Iu45&-aW@p3d?gik^wj3 zv4Go1Q%5FV%%Hc-N@VQ#3O=uJ2yJnada)mQ0nkXKocUhth6yHU$Ba3FS%ODq)$b*Z zGTFK6mWbwRz{dKNh8x9B=)%F`W`PL9ButoX;o$=u0>^1Nfi#RTPv%722GGEC+|c%A z6b7(0m)Q#LuQd-lwPWnA4eU#?l|VtHtPXa^W^na@*R(b)+j4&G9#Sg2fRQ814%FSZ z)cJ7lAKi;3qtcu;s8UE48{<&j}ga3w`xFYl<0vg7IK3rg7jF3|Vi7gNjbe%~9a2mvkR> zuf>HzxMACmE&b;?G5nZG2+O2D^kUsAm;3g2>ysJ+mj-=YT9ioPL;z>*GUVS#g^}^O z+$ub0!xeTSZ4a(6afBO$p(`y8%;jDL(-ThDNgx_W${27NAXdl4Kj{Fc5kf)_5JNh^ ztvqxskzCkjnc%H^>J$2LZo6(18OqYfYD32IKsZ+9a_Iq20)ab(w&g=-fF~hpHb{4t zR!eUx>KXMEx58hRY*KdvE79D;lEkvLYnkJMvO;RF;f41u_D`VN!@x((Qc z`!JfEAGxF@lGUJR>Ps4Bg4K=B)JL|(UdjVxR6bm?@O)fYwLG9aY6gfXoj5-f%8e~b z6AsXU*G!p6V_POZb97V<$L;`7y6Pz~NgyVLD^GD40%H!5PTEn*(ye3HN z(J_|o;9-_nqQ2d^%T~6-63Zr81fr>BagNy2!TDzp1<0MSJwW(KA}ZogHWLCd0bdBi z#N}{gkUaF^Pq>HGvVs^GW@$^j3nzj&Geo^ia+Go0lu7s=fnW)tvCmVtGgSRCX)BSN z+hLj5+zx$&Z?--+!u@WzZ6{=jD{)p7;vPKCm%1h+*cn$VI_|eK!4j>PDb9Rxh#_Lj zm0dGNv~rf9sDb4{q6J3}eTlhi1)dlAj$zF+#uE9=Xz}?aqPvCK<1EHb&Nm2$uE-3- zNa_^d$I+-QW90l6V#|=ZxF1=Zr_I9oD1saWHm(J&MjU`s97o_B3Q2)$+qmv&U@#B3 zWr$<~=}G8uiKA2x2^o&)0@woDii|U#T#5XAat)_UcFROZ0;u)P;4Zmj7~(X-MYM!G zQlywyECqrM24w@>r-cf(l@wpI{G_yG*UTz+CXIfH!ge>kl0^$zrZ>K9M%Y;#5w~wy zI$lN1dRkfsDDbGH5YStM=%Mb>TZHH>Li83PdW#S}6hC^45IvW0;Kq835I86;D+Cl? zxug=%HKZ&#(e5omyh{P3w+L~>YD;esqPGaqHM{FALUfjndW#UfMTqVtklrFhZxO;= zGASzs6i1(BwE%texr6i;A$lr-^cEp{ix5YwwDcAsdW#UfMTjF;&Hmy=h-}}mzE528 EzmehyxBvhE delta 18294 zcmeHOd9)rym8a@`?@L}5NJt1_N!~}0B_w(2s;;iC4rGIb#6Td4FagOz^~Mefk$?ok z;(}mC#g|wtZn%x2=tzVfbr3i+sEi!I$S8^%qGK2Yqh<~&a+qIL_xBcr*W*8U=A4%k z@^w|+?%P%MyZ8R?t>)R?Q|@?nO5@tj9s7K_@tH2Rneiymo0HjrNH`0kK4)?Sb(mOOD$v^MoAo`xtDvM@?tMA<5zaPqfTh& zI5mA_OUpRWGK%ArGoe@-`+-WC2+}C@pw#Qt7hYd4G+rIBbKF8YvL&?6Iag_rW{FTD zi_%c)$k%xk#lG*Q?s2t3_Hoa?`Ntz#Nu)eHO>-}bL=wt43ssZ{l7}iuvQ)aq)e70i zeR$QU4{C`hlOD@cU-?pGsn&^~M5*$%A4e?p!}9IwgzV!cU-S>_JEAD)-T25d_xp`U zzHfhx{yLq~d*kw1=Ik@*{=FwZGP!s3qobV!Tio5N9^K}oj@?cU!QeF8*g4{{vnf@9 zdGJ;;&AjpY)YiL*Rs9g_Lz1_WgcHJ=GdaC*Odr4RC{omVG zba|nT^NM+?@ItonaeSJw_FNcb>8PE!1@FqDR}# z!^YA@=JKj>$1W=Ab#BU$s#Lq)p&wgUGfncqVvN~k`rv_4<-<- z-`-EsV;foTV6NbOC zl#Hb1?G>8P`QkDnn-&BIvGnXf_(m(2!hD_ zSCcu-&LHaHs?-Ox@Tv{K%r7sCFRdfj)2e&nk#w=eOi$GYZ01&Cdo&r}76WjOtGbt@ zWMPxC$~N|#Pa@lxaRHFS{9@AuvGP9I$*uXt^yoW68 z>IjvDt328~a5I@kLuJ?p$q#JjV1H?cC!1?}$!K>2Jf`_VFWF{qn6sVC!*6lrcA_Z_ zxmmH6cALL^h%6u2811~I*=oo`Rrfng>lSi&)tKvir15XH&#WHt^IOS+fsKZ9lf@~w zk%^U`S?RS)DIAB9$>pzpWr$ldsZS+5Qw>5RRN=8dV&kg*f zYXI8w&{^#Isx@@D$k}MMk!`OntdFx2jr**T!!`EoE23AU+DaBH?*1BR z0<8VA2~;m|SH;F}lGB_goL!Ezfn7C$>v^T%-4ByrI*-^>3If`5%aN`}tghdm56}jc zCI@dc9J~WK#_w4z-?|7+I4Iqs!#E@y#vyV2_wD09wSfrx5C?ShKK-O!t)ng{bE`*J zXorYJI|+*Ye{Q$pb63Iy(Akf7G%VgBkv(H~;)7R{Iab0V9-ZI*75Pd>L-dq3lpDZ( zUfBfTPa?vs+(RZ5H~cp|jO*@4y}QSvzAg0Z^W>0H$O3;U5e4r3?0(~RkSZiyz5U!t z=YMp1?{yE)zh@~;x@-(S8a_GfkHXW-Ch#TQRq?4&v_#mEHIAw#Ri#7gUAMQVA$yeS{lMO1-9>T8f%IB%4~29W^-cs4dslJWp>%E&k&>+>=a~72Q-spM%=#uU1h*O#Upt(>3+^N^0MBOoyWwG= z#tpr6B%SDn#!sj7F;uL=Z?h5f@M`jipkdiW5MAW1ime{Kfx1h#?1-R2DS{w+d@1rB zpH3=8Y!F>ob{-??@y$*N#SVrDq3+U!PMg@(DeJJi1e&!pg%vfo?IFf-Od z%LD7^sDa(iZ$4V}e5U%Xyyd)gbX%V+yyeu_cm%o|1?c6H{VA{3=ar3Mm1rDx7g6{v z@=NI!>N>{K^8pJCt-K6$5<@p$hPSapH{A``qT`Xv>B#1!>$rEsRloSqd+@ha{kf{8 z%+vouCLsnf7x(f>;`ODDvQh&bKnc@5RGh1WXE^X7Qoaqi!l zEnziSc%H}qrdtNR6mH$;|E{gr?|S+Rat?dVX}``J4pR3w-C3-8C$_?T<=2$Kv+#-* zoVvT+eCKX>Ogm6q^|QiG&@?ZMB`3K4V!n0HH26`vJQMrNNe8lSc*+C?NUkfY7y6tD}=KTkg6FV?a9R6wReb1UgLfb5v>krW? z@0$7yS>(j7`mFW6^IAlf16Q=j32xw-JL$b0eg4vh77jmY9mYxSs`%iS;4+BcyW+(~ z1|DOcb(-)OCs_}<_ipPg&|#xVDSpX4^wNVyvY9Q`&ry-P9ns%~$ie$s#l4Tw%V=M- zkDyHJ??M3a`dY;gchSZGdBl*}{ey@8r(HBKmf0{Aud;D)mZ}NXV)FzqDrWuI?hbg% zEZ26sgUqgMS?)5Ylw1EZyFFkpGsoHc213;4b)|gqg{Q4rgCq`jscNqrgK&eq+_{LP}STI0EBFPJ6+sIu!&4nMl}AVX7ub%px~X zT=_p%)kB~$uI*+BB2%_3l{vnYd+?7|)h9q^$_IkZEG$P3eTlx(7}G}$&i~r+X8ag3 zeaDK9pIDkRr!(X|o_hnwbX3&_*;!Iv7OQCo-T{QCJ=W$tvXTYuSzO89+1Y{j0QCv0 zF|eOS)!5jP9Y_ZyviFkXItJvL4yN|1`1+U*q=fd;P1VIVC*oq86PYru11X{Fba-{0 zx9s2X)_JWo&phTw!cVj(;!H+nT&i!rUK(kdhn&y<>HYS>vKG~RUzG$yD9Mza)dj8NDXP%nTIM`hH zhj!oOJ!RiP=Kj9E3;Oy#yQhK2+k5Y`eJAa0%qp8#?nU$VQH{gQ{5N%uDAxS0v4*_y z+K(x|y|-~W?LKeQ`cz+f!TR$yZMrOLwcPclCO+V!jutQK4^i*qAiNc7#&NQ3@7+Giw|$5CU{6g;Z@nArg6{1n$hF6^&NSk&YgMDVhMrJ4?ZnGv<|Fn4Fv5#?BsIg)O|CKP*stJI8kf%F!1EbTaJ(Zx6;vGS zTxW3%;t(?-tZ{vebmw6b`5DKyX_0ZEAPF1`k>qKXillgYb8|Q89$Kw7yH__?wdypQ zx1P~FxaF&q`#`<#2`vynm6kCgq>t0Bh>5hlb3vL)r7q z*x(7JQME$F1rGdV%5lc0xQy})a|jVrMHJ^rSfQ~_vo$EzU8nb_^PAIgb{7i4!T^Vg zO7J|3WWw@@d4bME$OBoyFPF^ovM`cCu7FZ_u0+9^DV~c=C#f7biBt&5n3u$U!bL1) zq(bb7AEud1lGKycBl09ODc&3xHk`#u6(A=^So9V@cwbZgS?In(rkoE>j<8wtl9S z797W{8lE!u5hqlfMTuWLeR}iPq*bTb?7pIT@@X}CGrKgK^@W#Z)8@30={Pr;ud6dGH!u(X&htq4w6d46^%y6Wh zCnE6@jaY3XG6Dg5&CREE9#E9=t4?=`)LPa0w$7O?kOCG5Fz7s$BKA2B#DTy#5fP4_ zg-)ui@lu!{QlOl{!Z@Id@SP-pbKt=`BXh^geGv>^5NGpgj@d|olu5(eC{J@g7LiJ$ zq%yZU#nmK+)|;AhZ)(12HuHLvbSZg>x14)g27pAYn8?E{io68u0wg1h80xH!DXloF zIj_;}V|@c2dnp)@4$)uJB$FBBa;-V0LO~(s=#rUN0LQp)^BZF;TmKV`H_YX z2|f6m6g(Ne1j2rra{ODtv_?CKf#r&|iXZw!b4DwR5ld|(3$UU{OtGw3(GV;i+n_{T z`3!vA0%HVMMEDjyQxU#S2_-Vy5ROn}ai7nytQX#f!@K%gNziC~4-+bp$3B7~2ky(r zQhJR#?d42rm9N})#6)xP=bIDe;7gwXflh)dU!gDBaACHok3?n(3v|Ns+_L*1hSh5k z1fct%$u_ZYyuA!~HDA}1o}~JOJw*!Ou`ER#{vl#Ql8Yyfap9B0-A2FGVS9-0>{S6{4+)_huNywON59bc%m@DcCw5k8UGD|Y!0Mxgn5t~EYC`$K;ptd^|Aa2PbyAO zDq_AY{pi#%;WpQf(@?{wdpW*gjk%>>0%VmN{axfX2yxrU6s(Z4Ru=g<4ggwFoD^w@ z@|wtSJaEVNngghF5tK8BAG_Yy|;w zvJ9R*)reyW@--jknEObE5F~d5hD{t1ho}~%rgCQH<0sz8zq@1QPdF;OB5!JEL^5= z2PpInDxL(eL6D9JVxeHzxfIo6WC6AY6rnm+O`=Y7MK0?U!_sCl5OaL*IUt==5rUXP zIUDXx$bcj5z!gf|AWqE3*?C!#tUHyftgCKY2HT5uqpuH0?rH=51%l_?yhT*dRaM}N_&twM2ui>))Yn(R>m;LLi?Qxnq?lZ?$R e3@j{?j8iSmEzO!ga<+fuWCUWS?H@UrolF4;ycwhb delta 76 zcmdn|k7x5go(%^$4a*FTERz$aElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN e4UJL_l1$Ug6H}T$a<+fuWCUWS?H@UrolF7fEg2mE diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index fe41afd8fb788c4d4f55f9f395b6607ea6b32fde..0de3f89acd614944f797f287cc3caf0eaa6f343e 100644 GIT binary patch delta 62 zcmaDP@knArAfusamSsh9Vo|2PL6V7yrKzPsa*Cm;g+ZFBxutoEWol|-T4Iv1xrKp+ RMUru*Nus5BTB@OmS+cpgxv8a*QJRH;NwT3) RszH)znt5W%<|f7mTmVxx5|aP` diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 31e89bb8be2bda2977cce6967229a9fbf2533a50..6bb179c72a87cea4c64f7f19dc454bcf0417caf5 100644 GIT binary patch delta 72 zcmeynf#dH6jtzS_4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R c3@j{?j8iSmEzO$Wa<;$aWZeFilW77U0GaElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN c4UJL_l1$Ug6H}Vsa<;$aWZeFilW77U0Dq diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 45d517721ab06038786233b0ae9f979ff049cc3a..0bc1cf2b171abce3fd8a7d52d72e7f6624923c3a 100644 GIT binary patch delta 80 zcmaESkooaJ<_(uPZB4T*E0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R k3@j{?j8iSmEzR^(@{^18i}Op1l2a!aGHY$NaElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN k4UJL_l1$Ug6I1k4@{^18i}Op1l2a!aGHY$NQxnq?lZ?$R Y3@j{?j8iSmEzO!ga&G^~$=JCZ09R!fpa1{> delta 68 zcmezMi0#)Swhae34a*FTERz$aElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN Y4UJL_l1$Ug6H}T$a&G^~$=JCZ06QHQ82|tP diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index fbbac4dc26610625fd87fbbe074eb8a48510d1f7..2db8a7393fc60a42110a8c47eecd881896858591 100644 GIT binary patch delta 2018 zcmeHHJ8P9e5M@OI!Ag=?3HRfIrU_2G|o1#HMIceT*qE5&))z4k-n&>}*uzRO#2gKSVqI=Vfv0ABb1P z>4vaQm5H_0jO>_=l8!=%wGw1LD5Ya4W=0DN3}GnX!Bw{t1vZpY?7iO*qy1lx#S_t3 zUH$R4)HVT`fRpEB5VJGYJj(;sTl33>JA|sTvarzAZ043>I$L?w2vmQm~1RI4X}R%cBt09W-h5% zq-sGlF=0;32a~c*_ zCs$?%f-xe57p0+J?-~Q4dA{HtbP@*9C0U_+{heQI3iGhGoQ42Ap z#RWmM(K-;!Z3HntM6k-=@J()tYawrCmv$L;<~eiD?vL%UpW9;_8{@D7hErTgQ-sL? zF=1q13!qEhdtzg1(3rp!EmVEXo4>~=?lzf=kYx!8DpvL}a0yv}z*q!b-XD`!okg2l za{r?`_wA^9drhtOPd!vKO|X!?H8Fw(%({w`Tx#$rDU%Pr53_1w>zTTExUt4Z9SUS3 zi={9pb}j`>);bCr_DTmw9;tQJ2zpC4>ma1D>@+cmMuG-R^Fz zm(bYuC zD||LY;&zwhMXE!TS_0-m)|FxH=T-Gpb&s&~TIoAo-FuTwZzV21ExqZc2U?%*t*y03 zga(tVmTHX1uC<5F?W!PQNi8Ie@S)~p19_8dMWY={&aQP$Fr+0G9_8ce8N4{1jmH!+ z$67fhsmy_4|JuQjuXBW5zNWLgf1}P`hBJ%H7qp(%da?oC@__U9yrzZasinDnVu{XC zis%W@=gd}gVGBvnNR%`}+?9_Z@uvssoqEx=(Ovy#Zr+=}F?;3e_4zI*|6SdsW^Zn? rf9RGv(NGuLuLX7KAfyK&-Ft+(Y&Ep^K}i4g-TcRphQWt*_2u{<8(S}i diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index b052e4363f1c471825e81c10c9ee10594bb1886f..dc000447b16d4a7aff5c0788a0c0826c4a301b12 100644 GIT binary patch delta 64 zcmaFR#`vI(af213p=p+7MRHQxnq?lZ?$R Y3@j{?j8iSmEzO#ra&CXh$!KB(04k{#7ytkO delta 68 zcmbRFgJtFqmJM4t4a*FTERz$aElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN Y4UJL_l1$Ug6H}U>a&CXh$!KB(01jalkpKVy diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 8ecff6aa180ddcc169600b6c2e699f781a6da0bb..f0380a59ffdceadb049fcc32b029f0fb99d8bf55 100644 GIT binary patch delta 91581 zcma%k2eehi^?qKvk6z@_9`Dw7+oL>gFQNj9peR_Qf`URsib#nSL;+1~AVNe&1r>}9 zE5zs+MM3NY0;thQ06~ofMZljCW8?qrY3JN~4*7?*?plxi&E7NLls$dUYd@{2_;BwF z6|0_WnaoZqUiF(Xzn$1OF*cJaW{Zj6T$s!j5*KCj#r%cEapT5ZG-hl%Uq}=RW7Fe` z`C{(+FIwLCMav5OD)FnruNuD^{5<&8;@1K{3eyU|*7&u-uPuJ<@N17>2mCtXcLaW& z@Txy4D{JP^;k6#b|Mazc&J0WmU?xOsKsd0%5#}>zC#--9@FU;n$+nRjF)MThz+ih26HQ!BYcc%}KWVf(|J^dv(LVD;#1r z<>`iiL&{e@-O$5RnadCfZ%w9e<}^EPI`Z)!?=;jIq?bgJ6EEv~ z>8QmMYVqqh|CnTC)<;Wj3+R8d0=a@VRZR+P`k`1SKJnd#vnz!qWJ-4(ho~LV_ZvDJ zq*lejM!(+>GE$qNr{8b*w88);_?izIf<|f!-eFrqYfp79k<(;h7P3TgBTdpDMK=DWe5}+ zjfOE4{H5U_s+BUN#Yn%5)NbLKIbP&{A(2R`{LiNf?B)L9vzD~*bz)7m-Z~4cO#y69 z=Gakn$ceO3@<=&G&-V6^@+~1`f6uVD zvleR`w;LyM9~y#?stvj%wmb~9GY`_o`holocUZ1-Rk0*V|}oE>-w{RKF5s!2GoFZ*}{ z9yDsLQ%yQ-^eC70Um)GH-(kMs9L4qY32?=+fL`Q zx#k?J=+kpNJN8U(ok40Pl4IALiE5?8Ybk&2Olr>%rpc=B;SlrbBgv^^2wxDDsw!Q`v8e&?#jM8|ZzoG$3wgE~b-vFOWJK14 z*K&T(7$P9#M4+0&vsE8A3}zQ!h~yhUE3jG9;ZUU^QqXd~=R!)qGyL{TO~fVPPaN-U z>0v!*dXK2i=My=0+7z$1I+IMKSYmx>BHJ(%Gz?HnKyx<9cHHRo*Q6YBe)$yd8I^4L zHCk!KbT3AdLP_?|J+4Ld6nX?1d%fpT{cycvo-PcmNIOL2-xGMZ-j<<)WI+-k{$m4oz(^>RrnUw4*z~hLTv=c z${GruQ0+q)ll>i-bn*yW5;QS^OVFmI<@~qvy#KCn0f0FL2ys>c-o4FXxAfx4Q zJUI+&vqTKzXcbyZ`QKN7k`Pxs=1c#cO5gR){tQM`NJa|8(-7WZtKcmf5 z6_Oct!3$m=jHe4UW2Kq(wl}<;3TDUm2PSr-jsaHi%YWlzM50 z6ttK>`d6wv+Kv`8O1w+xmVZN?sm`S^=3eoHw}BF$WOG0DPo$hb0)2pi$WpR7pJIF8 zMZ69%&;Fh2j*wH`Ap!_4eH93F(zXaRwvPG-dUKJl;}f$@jx zJ&yblWSrPNUxSPhqXZLZy`N*u{_n3rMj}*0B(kmrrW^BqfnO3Ts_MvCzB+*HHDa5k zW4{3t3o*$$`CA>e6@iF)#kXh@m4ysjz8lk}bOB2|pd_YCU{U8lh(lFQh4;wte9e!T zty0k4ZGC9WFv8}9n?&k6Yq7CSX%`kKu(r_h5ay|lppEy4JS?R@P$tPu3It;QlvhK+f_+f5~_fGLDp z(R?T9tFv%rLEr_}KI97?2IE(C_KmFUc#~e93(N{+MJ%gd@^&tXMUan0kgEnSjb%&( z9NaPfW;fp#73}?(=0Mg1PRLt z(l&V&o~YzF<#MD}zuvef{!1W?DbuNgV&5c5J`R8i5}O~2fSjz@%+ z9Zzk_*To>l&cKwf(IMqGrBERqVm5yu3L;INELqn!_!k);EeT~+;xPfsu;5Nigm3Rh z4Nc3@yff+Me2#7IM>SfDMetpp1nPMFDBn4iRRDx}w0jCJXThHxgT!mZ7z*}B;>)EE zPw4NnteCJ!d&q>f;{0f!ubrnRpDJSUOw=FR^TD!;SmnL;1YZ{$23JW~k*ztw*XSbW zwI})}VnG7N*rIbO`=u?hp8JoJd|fTbn5sM37j}yIsFQu)V=+QoGQnpKhZk{(`TF5- zcs0dDIw4zuboZjyobqdMun_6)(QQ8dYjCjSQbTlgwP*Q8U>*!(vJr?*NOYTTo&ydB zFs7T*;5%f-m7Q%!Zsx(=C98}iBwZ?wt65uD}`pe!@j{x z5HWx@^UiEv#0svhG|WMPIK-@Y9Y~j(;B&9@1+Xqu$m^oWWb z^Uat(O}?4xak-fDo2fEEuH2FcE$6s5%|~U@h_UnPd{m}#DQ|l#Ri<(=>v8q1eC)GS z&5wGEd}c9;p#ia|#sYtWP2Y%l>&~~xXBwoIkmf>)HEbZCY2;F4#Vo8E-1wqzP$hd| zBY92WR2Jxmg_@kc7B-RJ)R3`w*(UOvT5L18W1a8a3btZ1c}@)*t!)2Ol zSdq!${D9_^#)8GgQN_tZU@M(zhF2GyEO`~=Y)*Ys9lvq|^~Z#;j;{zdq#$P;f{lTU zEy2c!EmNB|QHN{*6JGEzVk>-V3(?4798=U446ag5EB^K#3dh1w!3Zm`Ht(ZwoN|8l z`&7XsAS#$JCFTzCZKz-tQX>srxD6GoT*{x=Mis1F%rNOzS zOkp`hRKVx14`gM?H(hdDV&bh7{x3s^)f zvCYyw-(m)5Aw~ftRMb`kBI?S6zDf_fvz5P1O){5E$x^|19}AZl`_qOd%B59#fUYt? zy2QsHi&f-Bt^A#AhA=}BtECN{c>WjPuu5U4nj&IbzoVfC!7KJQ4Mu;IJ5Oj^Xg9Y= z5bjrH;cSuITH)VbQ5K17TKlWCTCv%zd{gB|Q^P`1BBLuQ#$96dZb2)57aM{~lE5jT z6x-O!-{>OeU0eIn(4;BKdDKu+kpA!Uw*Ia*%oq!|^M_sJ{E~KlG&jqbQMjdpiJct3rgg`yKz}U+x{hfGi#6J={td=TH>Z#IG7NJmF-xJlZx{$>NQOEg)D)#)ds5s)h+32Ld%i#hn zO(MhHmHDSh|D?(q0*kCq+}{mn*kDzjMSCuT%4k6?1k{Yv0ec6cHd;Wf0{Br`|9>i6 z05&4;uCO9cwXv8;Ww6_Hk|b7BmB46!RR${*Al11Xtpy6VnqkY5{?K8;_mA;ETJbA> zU4Q@U6&_(fNA$XTq&7Q1BR}x#Vh4@s9mA1aN|aR6a-KWZf3U=yM%c)_KjdbLFC9d6 zw1{!1t&SpxlklZt6JK&nmV`h~ix8MW3zDTMiU=sHn2AFcyH28dO3GHX5$K}v=qiX{ zO;KnQEGwKg4U(7#IW>jd+$mI3HCn1jTy0imCAX5a^fc5}?D1t;V7A|j#8S_-qCPN@ z<f{XxJ15L6)UW=b{Zc z#JtOSa4b$aOOI9&mssIfk4B}e&ZaRQN&eRFtxBNP1zLwEvDi4YF(a>q94DxfY}`0< zPdd03^Ht-7ZzTELyuUMBx6EJTkvh^p&YeL1u>{x3?8OP>BV94>nJE0EE65rz)`>BZ zYNPz(i-}l1fyP6`suM-@VP?fZurpvSfz8>pWakj`<-euUft=0B`@0Bo(w$+hYv84?R?W3D52ZwEaD!rZd!{LxZGstKdtT_?P~n_lJbRWiz=6MEl@ig(ACdnLknp`4`HJHhXTc=@~7GN;sA zQfYvaZppNP?aNRmmRJU*^jb0<^tk){9pJgK7<=kQ^i1bJ{0D{5H+F% zs>u|a)7Zg(h@5J<&gwx(`_&Km&&3i1?VzuF&0oh>Ju3}Xbi*>+(JTGk%P?he=1PCG z454HQlkcwd@4<3JiAkll?KzY|x)d^c{T>IkYOKp<*=Za7U5Oi9Qz2JGl@_B3@atNW zEe%jB0|<`caPez{vrrngbfsJX9jg*5n(;J^9zNMy( zE*MA3Fq>-nFaD0$Nk|tlR|aQabrQS1^5DbUYyI7ANJm0SR^8avwf=frh#C=sk6GuR zOa~mX7qs;mIQVH>P@rh-?GO4-VEI>2B}*}>#x8rsA9F?cx>x)^(ium)L8Y|oHPiw( zg!g*gAH)y}^Rx^R^Lnx=%qGOF^CGrwBd9sC9-I78rF`HQH@afz9m(b}BtS)s7P{Gm_0kNAsY!5h)A%WBi1cv7A@y9K3 z3nfnREj#=_(eVx$+{lSU%qiymcKNZGG3@`ym*udw1+Rhg5efV?`%eGFJAMe@5V)3u z1D)V!M^*%4mQ;qW$m8_#&7b+PP`0Bg(5;4)gv-Dp09iY<)IXSwst(lK5N&U1bs%mN z+YElb$B%`wjh;YP8;(4qWE7YDfcj7#k4VQEd#TxE(wRb1lnlX>2H+ff zKHrR0w0;$VsEeG>{T7u=0ciMiz?~FmBtDp(Uk#!%7Q&3NWz~V0i=6K|i2CIM2qI29 z{G=bKk>nD2oDQc7=1FCWw3Jr~lo>;~aY0EcvJQ2q6Gp78@Y8Dptv&3LSfDkVRv&0ngS|@(JtdbU zwyKJ9Wu{dRs`3V_#d%y{X?9W%l!{Z%7qtsu#cZz^*)LJa30iDSyU<{Ei4XP6LX5q~ zeaIcBobT@#z^d8y0IHdVdSoh?zd6u@U0iKaFN<2Hke^!@=Ls2X(Fr72D;f150GZ`rRQb?5xbnupagI7*721+0;g88Wyc3v*9e2gNqcI9DlG{P zX0r=OY8kFguPGqY$}nTTg+K6N1>4uhX^1_l~x^T-CA zUX?u(xOTU&777zwqb_p3A|627B4e0To9S!1XN{j>9ZN1yW28-3noT}75OtCB zm07Br?T#lO2rZn}yCl$!GD?`lalOH8VJT?Y+;lw1Sy~3*Es9h@e;z`9&=@r^8~E!$ zz2JZY;wnZ1@=N;#+Eur^qvBT;zoLH=x=cDWi3Nv-&fp*Q54-?>l*?mYK4xN|M|D1l z-OL5sn{Xr)tZfLaWy$Xq1Z^82RaShAErkuo2F`=46xI}Hp(AUo;B0}GLBZJqYzCVK z2fozFBZHQX=G(>=olSA^38zA#M_*q$o@r9liH_R8J_Q6 zj=ch%*}|!TY8C2&$$>FdB>-mP`2;&~L%_e}5;U3;%x=1PK>%I1cUAzKZLX$=PYv`u zy!r!UsSJyS1U3b!43R@PGti8&zc?f)nYzLAuYhMwxgh-QiR5o2LV1g7Axz4l;*&E1 z=-n;Uig53YK-3lC$xF!TxapiW6~*WR@MTk}!?^n9KpTwZF=T}s?Z)O@5vWFLXsJl{ z?hO3evJ0+vghHxBs3HT;diLah3Bk8r5xAg|ZM+>l7e$4|Zdr3-Kz9ABW(3-l<5mQq z-GguFc7!Iuqae={G;p1;U05)pnDaRtQw3Al}5#Fp_gtC^f(Ou)9rz#Qphqs z@J4dHeU=2e9VP^u{zvo!M8%5PQh)sBKoA4bViqG{s>SHyl7-wIivkz3Q45g;76Ru6 zq!}J-*+OKU3&8g*r1~onS%0O9+)oEV+!z-z5op=_`F6M=7l5C*m};*JA~?AL{Lf3k zr#hFzQo+lY2fWo--pt68NGP=K7C`Hs*iTLgGEOo7<{qL#cChDs32BlcoIyH)t-BrW z)k2IVLBlEMr>!6sPC$}y%K4fTCXHc>I${lqm{K}05X2b1 zT+Az<3tU{OjR{`T814NHX5iIbDiLJj0V_;T$(CKr$Gi~up~7yDd$*qolX6ApjjR=86O z_Xr#(&33}o?{vlZ5pNSEsWWCDO?!k*G0xn-8~**PH;hffwaq>s!MhLmyBo%*|DBjw zHnq;8_fg**V!r)-qJ_y1wxU6chFfx;Di-BHth)__ZxkTTlT=vh0CT%m&!)-TV;^x7?Ig9H6BPO1Ui_k%n(S5rfEL z8uL)a3Truf<5IB78IU|afr^z2z(ZdNmnT$IT(mZX=QB=VC@9*(q^Jn8tO-so0H3>0 zcs&;tFv0-R3GlBDP&+E*a#?oZ6%0Do?W93R5|^{Enj|)!mwu0?Tp9q~hzO8j+rLMf zDg{y30J3DWw-Z0|KPWPZU$Bq-fHu6|e>^+%qc%*KW%KBtko&?W$?fLu`UxdwL6*wu z)9XDM9B@{L;DaXX>ifeL0VD}2C4Hpp7|5T9)VVDf|I3X0KPIooLmqlIJp44E*)&) zsalMUzbK|UZ}Yyr`!((2<66RMjERT?!yvxP&0m~9XhV-lGpOcwd- zql15|2;5O?t(|;(-LHOi`Pd2PHO*ao&Eoikn)!oDxEdSo5gsP66=7sRun{YLcpIiz znzc!cPHETi>obBqY`Dp)WQz75lV=9wHq;ahw8c*3j3L3%I5#8Ao1~)srV&8wN%kKa zY$(SmhsivfJv7*}98}7}`p%)jy*NlyYTan>J2}`?4%)Sc4GSLO@#GR1#oRw!Qdz!6~U?t z!J!NV2V?)cvx8q%IP6>cf$=Dx|Dr!`WUvz)JoeJ??gX+x@k?OD*o+!FeMD#i+kZx| znDG8{RZjC1rV=?Y?V+UaXTLb`t<;SJro38>B@vSCDu4ZSZGIr4IwMQ|AVo4y*h7 z%h2R;Q4_a&b`^tNRh>;F@uowEy||)Gq%BxA3WBj-a={cBHmW*51Xkp4T@A((U3he` zPIyadccI7+1M#3#85=RkiY5!x)rWMqZom?6%OycP-O}M{ zD++s72pjTX*P%ZJd+1b{AV{i;X28?IxC2IYG7(L=EBH}G2^SYDtDYebEvXvVZe_<( z^a2nRafpj5hjCwdd72GbfjO>$bzT(n;!qp%0vmjXL3zhN1}~}f2)MLD2yK%K@c)S2 z76O@|>?0H4{||%mD;^5|RN=61X@fkx|KYU%^$4{L|64SO$HG{K{cR0O9dCrGr_i3H z{~Dl{0D1}Sz#0_4L(H32QT=~nBMspN8hAR`-6NIcq3yn#(9>C%F*t1#I6CEg!P8XX zZ&?qgVGJ6jU7JD8Md{~fXgrg_2stnL6mqy2CC+Vw51hF{u-=lw8&NpKv4-5ZL(T`j zC>*!|1R1Fyiw$IOY=L4S$k+mxo=!1;Xq|A^&hVho?xh{F$xtoqf@N;K#nrwjG-Y=igV9By)DS=Vk2H2G@*@HP4>rfqPTSY@Q zSzefL7xf+>cy%bnTj2I2;RWL6Eyd^>Bf5}dv46Yz0M*Rp70R+?NSX|rfP>j>6(OI9 zQf9t3xuqi1%ZP2(y8N3eq)BI~(tzqvPdBCCAEes&RM$}Vnl#2;x;oM|V!b(ZOzV)h zN<&~KAT-3*u;>u;zx+aV@#r2QO!$RCN(VVDVNk3FtnCqMuz|+pl7>)|o1FV9L#U1Q z9YZ}tgo>F;$24Ck?y7Zbb%-2c9vdB|(6FPf?p1;ne4zoU#0V@BFE~Rdz_+#z(QsBE zij+{1UIe6kc%2t#o+Muh9qJM4ZKNg+o@*bX!K>5MR3FM#Td~4F*b!9Nu5hTjLRUbX zZZLN`rbI%11)xR?AkS7uLcPm{{EKejpbb$JOH3$UBLqA7%3p{1vX zy6JS0T}$=l<56eaRsYp1gc(*5w}lg|{rC`EJyt%LpxqQw23+n-3>^@{@_~wH z(Ul=oSOJQS3DE3e$G}t?CZ=&aVmJBJaUrZ2*i2e#pc}Izb~WGN5IkjKL2*u?ua^LhrjM)PWr{BGksLbpSsbb9KQdp7@ z&rcIW3!{_}mLP&?3QC2nVXuAeg}8zHhw*5M*#E&p$)fm(nJ_2bPXse>wZSZNAlB28 z+wC2kgvMyIXX$`ale^AEmxTUP!*07Z)SmU78)}2;0#YoSWg4%CVO3u|Cg7h-?NDPd zEU+S*xgg{%Q#2sI`!Xs%?;_N0Dnr^L!W;DPIY>10*}&<+A?)Vgg&OcYq6CaC+r22{ zW1FwEYZ;Iqx-x_(Nq@Kj-MUlrw8bh(PK-~P2}jJ%Uy2Hq5C`>%sVHEqvn<91)l-(@ z{}zNOb9C4}NklQ*ptJp?V&wc!b3?zWWcS{RtP`lIG1#<8;@ZXXMJPps7(L>L*$&w= zm5<`#U4I|?rox`W5}1LUN=AvC-*6)hSyEUFPid!GDA1FuVz)`Kasg+6l#3F7Ye8r# z?KF`!iU)m!v?kVJKnaskC%6lgT;#m@520UZpUGkERFH9z^LrMDa1wdl!|3J<`4pb( zLXP8V0+yh*e%EsnoBa&R2s?5LL7rm&vKdE^9(@Fvlly*f?=&{6Uhua`hZlb!T>sFzL00Q}0oP)~5pn>r!F zq=DJmH+4!%0siR=G!PxI9m7rBV#Jb@WQWTR=Fz<`wuc&QAgYxBF$&)iYH|a3;uWf< zkH3w=5;jGgbcaM36-_Vk4j5XXWpwGTP)}u4B~?Yom%dK5b@N9isiin;|FKCVpo|>kKm%}p6%3T6hKV|n;tl73U0leVt&pR_!DJGM50U$Y{a{| zbM}Ihh(yP)jDb^cVXRcnUwH@q#BR-sA7o_wWh%M%sJs?_2giXyd%;vjOtsZ>KgENn z15WIkgQz(UF`vC7^y^A?a&03VA=wkrQSFun*JC8TrMA)M2JZPG)Z0bQ_v{M&tAhD| z)=4ZiIr?XvjuJT^^)b0hB36}wKis`J)Lp*BoXX(i5%|gn9X23t29~W~!UcBiL7Iyz z%@T+|vWKc8aTEbgdneST#I&f8#L~be`s~XeFe4??q*(&-PG3`NS7}X5_(0B&xsAe% zmSAR6G63)QW9SgvrHcv?as&92KU2+2^lI$L68N(QZ+0cJ)Y@P*oxrq69islAS7WEc zhVb=n3>*&R-&Z%H9G3-ASA}s+R9KfCL?DE^YJpbN^ZGUhZH9%aLHTc5G@=;SCQH&@ z8ipN8mL#ndlKBB$CIryG3*3KuZ18jK$_ueL9wTcoS)!t#0Rr1dzzq7ldJ3?=##2C zmC7dg^>PFF)1gLuKC8^Al@_p5X(=_xqY)~^n~z5ifmhu@sl)n^esed2qr!M->0)-? z8K@<~wiQOb@`^C@$9H8ymvHNXdhE$<$GJ4KFF*(~p!ffP!(ZTCgXQRqfGXA&l{GWZP5eyii=>2b6Y|aQp_J0e{ho^KNKT^&Qv(iq_ixPA;GWcFe`eDk zZa9V?GobOj8n%1{S{mN6$Cyv;mX_(3xA` z)QNvExbZA3w_8Rjk1#S5nx>lJ>uka-ftFchP%j%`H#=x(Bf9)Dvz8|6h)$3$6P+M_ zawC?Mnr6Zi;lfS^2aps^nqvu%^5`XvxPh(_7zIKeW#1)@y6Zy&nofuK%Hi9vqwBIGg~uz-4l9KCEs1j*4Raj!=8dOzGqJ%T|o%n>L% z<|gvqMviqx$mN4>r%j<+YBMVtiU8tWw~6zpOAxvQ8JmyIYwT^4+ik9yPF1wbrcv}S zFp06nC7yWedl}Wx8H-W&_>iBZNG*mA{mUh#q4$F!s-*&{-V<14x809?a{>6otEmjz z-r0y16;hKVlufZ)`IiU5P^uDW+5G82q|^oA?_Nt~n0N$E!Ubm29x-VtG02C^rCJJp zw5XXt_oW&jE=F4)bOS{+LX9FdKgH<>&>bwOhUtDIP_6a5UXePBqdClgd`7S=*x7(S!a zT;%*OcQj&%O~z!`VyubYSrnKBTINK7xd1$TS0l#QE{H5E7l5;+R94;Jg15vsosu}M zvi0=FuJYws^m#arIs{{|yVszw3@RR^$`jg*?)Jkq$SHS>@4lZ3?TL+O)5`hpX?IVgi+F=fp31Y6| zM$wr&ntR?uV@w<-MBn$(2rN*(>x&^4)Om|ljhG38J=!GMrxdghFY?mRuVS5V2ph2t zjZ&)H(x+lywhax_0!wUP`ZPJ8E!)w?tPrJ%@36xpjck{wfBFonu_uGwZ}fW=t;1Nr z$P{Tif)+5od=C>>4WQZqpal$2?d=rv;vSx zoB$uOfokl}pCSiHi(;dzU8E&D`jy|38x@)=Dazzm-;x`30{qoYR7nE|$&ET;cELfD zloEqHzeRC_8_gx@aRFIQ_&AkeN3BvJAO}Q|qZU~%=X2jz+-SviCLg!Pn4Jo!0SFIKk9<}+ZHVkDVn}&p+`|- zJS6nw@q!bZKvC+dges%+n?TV5Y(_7u41?j?UM8I-ic5N%#E{&k_gQrqgR>DSkV<6> znI$MT)R=Z1^PFj_#Nkq>ET2T@|H-P`SK@)U?88LJNc+77o()9~`yjc2{L@Gsh z%jm=4f}sT>F#^mp!O#WZ)1!u=goz=#IOxd(K7yYGStbQP7l3bXGW=X%$%}<>$s+|Yl}2}OS z2jO7n%5)e{6+S;H?AMVjU*A~Q(pZp#?N+110cC^W(g;o&9qwZTtpth)>hfVcUiiW# z77M3^Lzjem*`qHrabq!ju%_i5RcgV5`NxO-SV6}3mD!eMVLCxVujyfhpNgC^!v+e+ z3ouXl&<9_=kvc}qHw*}4D@|qqnZzBx+m*vDvK7Z*-x}nD_(qRHj3xu`W*0fn4hmx@ zO)|DDT6&VL3&I~6Of`DXh;V}kPjthTv#rZ$tcH({W72-x*< zQ4)tdS_}_k5qQlcWQLB&Q>TPuc&i9+0vJ*_!69EB76oTP zC{;k%Ts-M=WU*7u@4GyFDW=8379|?JGfs9*&-jPP;<6B9>ZPl~%{C1!=N)E*EA6I0 zM8usZBE8)-ZoE2-?T8~+hU?hW%fl_j0Yq6Fp_|3VAzc=w&!IoD4Aqg2Cz`q{P}b|w zaJXC*wFe;EdM!>ieSRHP$z}JUN=j{2WE5cC>+!*Cg3xS+`RD;r(E30d~zTH&NXLabGoVKIU}Q#MY1eguR!;W8BlZp7@$Q$Offy2?m;dEwRn!qT7jI+ZV|r%CwLk z2nw5c=lex+dlq6-ZLuWW&cjv>idM5j&xdR97DfUGBDJ5vMvJTNo$|Mqhd-}y zwQZ#hyy03!qRZ6>{E-Uw(O1Y_;b=Lkq3lEOKCOJ*@7As4SPcZDfasC5Wv`MaGXR*7 z&dZxnix)mhWjpI#a;zc%#VVQ|H084YhBwHy8qhM^{!MbN2C$p0c#?|un)gjwRW7Ln zt$p7lNU<~tx@r}%tlt@?r3-wIvwyf-o0RyrC7p=W_tinQ3)?aSRp7&&Vb5Vgw)qeP z16L#bIZo~tv^!f?su2`5ess95wJk!~jUM?Cs<**Q6EyoHv>SJfH@!ek82NzxIi1?W zgk{K-#{X|9zWhZrUlXi`jzZ#CSVb^G!-*_D<0kF^mE?~-5K0e$=t2;32adB`dv!y& z)3dLIM_}hwrPpYuBEo%wV5p)RBGys(_GR>#INo~N*wxwQ@5%%cq zhCbgw_2icCF^9u9>~l+k5gIS1@g|!ZFaG=``ce&1r6nlOX8k9O6E{l3hCKY^?Z!0-AymHplW5C3xba9C%g3ke$Ap^e(H`^5u6BID$;1_&I+|Fwm@hc@zgFnSfd{2Gc zFoc1b-zds*l!`>Hw=2T8eni|xwTa-n-69<&diS-7^l_2%6aGbY_kzV}wre|K`8}D& z*qg`+hf~xCaZz$z+(J>_VUZr^Nl}Q6|1|`^^Q-X0N=Fb?rub9~&gBj!=3U*wSP>xy z!v8e{Z@EAGeZ_wb!cfxA)XEH#eE6JisK|dfA_CWrT?DMAAycqhR-j7*YMino5P^4h zLBHx0fp>QTe9M2R+&4Bx#6l-oMWoo+5>};OtM3|tZVq1SE#iS*S?sASCV1FbqVFLIf;gI_K+qRpnw{5->SW{~ zAmqHZHiBh&K~HHRLTu~-#Ya6cC%7dU!Te6xlSxtbHYX#P-)XtAcU7whmf{67%bt}A z!OQ}T+P*fCI4y$Wi?^B--sZ=!SR5)Bq%08T1XyIE)LZ~Qpf2)TS_BpLkZwdI?TOt# zQD7Em*%Jlk0`S#cBNcXgmWp8HrV_7@psafQIsy+=Ol0tupeijowW#i4E;s=`$Y3xk zup(=FR-~6*%OL!!Uv$q@E-vZ3=SzMnvF=RE)C7l+`&SBJe~m2>&7+L4CY- zIO>(t>e}HbX(P6hazRWHq`8r*Z@BD*Pu$3lXM&s$AEGfBE_(r^?`MJ@&6`XeRdT+n zS&{P^JrKYnu=p_hinf^XfLl;03TE0Mm^Hh|c`&7THP{VW30XHB`K*&@x5)3z5V?6% zBXulsR-|Q33P)sg3F1B*edJz#JaH^a(232O773Rtipy?LEb`C$5zoEjP>50$QR7J! zX;u{CW0yv{mgw6CQTYgf|Q~CE#Hu~@e6MuTf=K5UB3lrEt!;r@FQ68Ho5gMt zfih=wjNnHuU12S?qO$zahzMp6pczn>OO-*huL8<7N1PYIuEq~HNBmVe%#f!4iAIIA zbAtJ;cvEgCLqX;>hAa?RhV8v2(#NRKlMUE~5myOU{w9LGn~itFBGlNb5s@ykdT6V3 z5W2^LNU&0&Dy_=y1q)C)6rvJqOxKT(U~6O3JrSQVU8>yS-bil)m1{4WsHkGoNPI(@ z%2Yfyp*{!$su(5WB~M-2Sec|pnLxF-Q$@U(w0oK&8>oUJoBm1!_n7cPg!)1ZXa=e& zGJ#O$NsA!a$C4`zVes_J6h*%=XsLl-A0xJFy>$gqoAdzMO%iXP6a@hUpohWfK`#bs zUD)gg;M^>nsxv+ahR%P~gCJ-Dr~m@sEv}{Jh@vdfm2FZ6k@K2)k6=(F^$D~LZ+QfR zA`38vXUwH$iGu8GPgJQc$TpUv#=!pTBUr5Z=SyhUxIKdGMp-ss-2`W1#6v^F|AdS; zKrI3E!qBF*AZjUSIUhKWh#vh6Rduq4lyvtu|5&rz4C&wfs*9kqBu$NBDIsruog z2KfYE{b1zu%BsuhO_Jdyk**#Q>8w2=BBm1?RVTRzYf!FMSS*R16z1-8*wwCACLy#k z@=-a@>h$rPEJ;jw{>z?pVVgo*-(US&{CHN*& zGsdL@x1pcZV)FDP=AZv5f=iiSY>zYwj1s4PHsSKS<}d7tgrrHrwd0j$pWhKlxT^9I z&qi=9bN`1bnNHPf_tJQdl2jfo-|}1pXA3|PE2TNid{>`fh8js!d-b_ZPz|9clCVq` z&P@Q$5L>L!YD|_mVe)I6$#oIz_a!UK!Hx9Tq9ddAIB*M#;&>9MAu@yDGjGz~(C@*` zA?6#lpcb<^KY*A6WZ(rS?~wC>?~p&cxLuSsud-N8pZWpjM`^61U~CcmHiD0Yk&og-=YwAk_Nkj>^L?!>Ow6#);YfZ%zIzf~y)?G8SKPisWBOBlsHG;1T0YOLF1ncE$_*@cR z^rIJ--)J92`$RT$6M^s@B3NLnheq+m7F;zdF!9(DvH{-5K=_iXvJU#O!zc>#$8?IK zc_Iri&UH}-b$B8Js3?WzUphz8Fj44&bjxbgK2e!z0+2;{iBTgc2k5I&8bh}Uj0TRH zwoTE1{7{1`dqG+S8FO?L&zzIC96^F}ql}dhkFu)?+msZ- zx1UPR5vPJhH$o%kG`tTT37N>|oo2^qphOrR6gi(9u0x3r?it03;jA;^eE?D?(xVD0 z^8C-qV^Kj!Nyt6Q)JeaNCQM+g%E3N=u}>5Wg@3(}ylQ#)_T$K(YN=8vB%&DJPrevU zG>eH?Gp^FUWMCj7sE&f=rY)Oj_7b$_CQq3-ZLM%~a$A>56vRf|?)&V2kRp z@C07^gTRi&&s>&#TnJX@OCPSPU ze|soZ>z{s4{yI}Ark0!*#U*+i{K7Co)au7>utT*H%Ckpj2=^})w3NqBCw9wjj$(6) ztg#hmq6bpu#If1!vqTT1Ag#zQz9rh%rlRHizF!l$b7!MQ8G9OJ_sv#m5YcEcuRljo z^3f+0i}beO@+iJKhvy*0iz6#P8 z-D&T~23G-Q`NbHr7!8lm$nobUD_-4%PDPPT8yoGyM&A;xRYpaHoXnz)c1&1Y#iD7u zP}}S~jmUj@S2SQpg-Y+cqba*kt33K!Vm5y{N;sFr;tG+fD&Ve>_`G;=1>B&K<1_TM zmGRb-s4Vy-xC-qN()_bCiBInb;7$Rtt+S(bl8jUmweP3Z>{%*} zYSNI8Y@Kr>jRC+iptN4TIf}>T2^a5dfnlRmB%oGCl_z$69SY)09-D8WULWje4;S%~ znoc2@sZ?082&JL7QiqR1^V3ud-(r=#()fxFKEO+zq2T4jMA2DdJSvAX6v29Y)nxf% zLrmf_O2Yehj}K;4bSg5*Ohl%bm1_u#UGG%PbRs1+nMf)$n>kxT{%|*Od;ITFG|)nU z&SMfee7+Rx@5p6wN^8V>&uMh8@Zj zMGj;O3G9cC85YB}I(%_KuH6XY7E((Ht=xb!nxR(EV*dSmnr)3#3O2>)JP_FvD>q<@ zMo4;u;NXR_MFwM|tQ%YY3x?A9Y#KQ!xh3$I z7^bw0#=4io^l@igk4&;w-DAx*H7(}@K8a$j@yB?ns-j7z#gOHwh8TRQh*Tv^nf+^1 zEM||h1m*m*C{`Pv_r-8X-$nV5&!nkTFSVzXZV_LE!1scN#k#V!KSyiuo-k@2zCS&Q zwTkL2DGO6eVdzuTg7{%Te$#;x_LyK}{*?5`Fe4P|^sTu;jM!U{v23_IF@ES<&D;qx z;_VdknFkeXtXCG$i-2#BT0G!dNK+q4uLPllkr0iwP*{Q8okm9D{bHqL0KVlH#ZRdr zo4aGZ2zzSyKK)>}F^6K6dW2x9hT|#EoGKS(DT10WWDBV^xi73%pUmZi; zJ!%-VQZ$1XyzmjZB5wTXUS!WO_#-#;%KTSd@FliE9h&m(j6gnXbmT zzh?}K;<+*K$EDVF2zKol)M|H(-`$(o{&PGS<%{$pmSBsUa#_6qH-AD2Rx7b2>w874 zFT90OqN{S)(ZKTCvzZt+G(Na0)~IpHdOG2S09biDfwiAZZdIttQqe}AoDoa7D2cVR zEAugIYb=;zl2fYMJj+UtEk2?8O)++SO@})w)k4NKi}5PU_O2{=Leoj?=KirUlmRFl zx`9pnE3vk;`3LXC4BTzvT5%RNmr~S=CcFmtz=2fKlDULsN=T7DOFEdfog9nEh-B)u zNlDz&p`(mA_?k=c=LS*vg0@OYsh(u*rk5U~N;ZVsLa69jw&wa+LoJSdX3W_U@N-8| zxQQA|iw=e2yT6~~;Q3v{RpEvee#~OHR)Mc;fwP$)*r+2U$V3Q+Nr#Fs+2M3muqG`f zilC^|V#OsC=bcGT=+^7t332QW*UE`uHC}|k;uAfaaMbmvD;82qhf z26KWJKC6qfJ)-0?xR7J!Rf3ue_~Al$3WpBwJ5e#i!`oy~5)%e#QZ<;Zy#b`9J((00 z+33YFtcYlpT9pR=_+-P&MG3rABJ8$!uc?Ms4qLwXzA9D746Z_&!?J>w3kX_ptqvuA z;}xdFBr1sslk%jjC@~8&(ScY}S(J&C$>7y94Ko)lQDROxzkU``+skA1Y}NI#T6{(V z3o9>NAM@7YvM+`fYSOsuxmd&D0^If(ytL7)COtN$5}S?tu8(2j*zZXc5WyKycoN?d zLW}dRiFt)l8*HL&_Y`QBs|mA{Z;WC7xcnuRWLqGkykIqQ-BtO^o2li2Zvfw^!4bKl zC`(U3C$_*fAbWAP=>vUK3jaImJLd$5js@28=fB<7-b447GZ zBIzO}OCO-Zy60_jLih}WEGs;fj?wV)2tGV>@;l@v4T46F(J&Uc_U$6~qT#&<>p*Sl0(_S#MFf@L`io~pmP5U~A^;@H;LEir_ie3*9q?&@T zF;B+ov6+nl(yFh~jbC#B-LV0*Dg(csWl9?3Yu13{l5b;J{?P_CMhsdy%yk-`kAu(4W1x*)F()=;j0?VFC5j#CNAt^3GKKwdWP!uD0B1|O)@h`8A;X7v( z0yiOtuxk&*8u3u1l-KGgB}s>duo>O}r$Qv1YLcV7+8;Mk4gI+`9>kX&X;**mNpX}U zj{56M29LLhH`=gTiKW?nKaz_wI$F;6y+eg~(l3}d63T+zGSiGj1H03>mK5gRR zGF0m`-yyW6QcaEV$?sEbUDYlgJWL37Z$%uwyd++u{pAN#p5Pk56&>_whAgIqVkc=l z1KE%rgf4-3V%ygZ;6rvRy2wB>YVk!b3d2~{A463WUj;1#3b&hflP6tN3zNPvr*x?v=I#2Adgnc{|!I3UWx=_H^ zL)3F0g0ux<@k4-lBAviCvDPvGKc!_{vnJTo<7%vcKv!=0Q^C?jARAn(OtYN>21^_j3*Q!pLGc;guZN=sTYyK|yX`zwU`s5*3v-$JIO^|P zqfG+IoYrc8zDb3NMQAX}O&N!X@t$*0mR*V#c((q4xuW+X)F}hh5vy+M@edR~M z$W-hvl0h-kzjtChA`KE?41!(4uAu?`ZboqnxWUBCB*bozpOGhCzB%!Fws3O1wgyiL zV*^AKVH&ITFAv0{P@Cq&8_H2ES|o9J6J7nKtmMZd$8RUo!Y*M^-hDkA*v(#Q4L^T?; zY}x{tv~;wbcQ~1fxnU6qN>mb*7DZJCK|7{3*}g^KX6a}-zx5O<=cdIbjWS16I;Ji* z>9EUro6}V(2XX!o_X^pVop3$)0u0ti>Ekehmxa_4LfaqUMLmF0&|*GegrbE*jsy<; z2z6Ij6Wboce+R!Ktr4Qth!c))mde&P9Xtd4KGJKk8G zq!AzS!QLP~SBE_%v2}dSQfiS7EU+@(#P+XS1>iqRF)OIU` z`{iD0mt&6$& zu}&^{;&`=r6QR$u@t`{ls?Dwl?{=9YYH3o$9y+%TA1j{rc=9jtkkOXOQqh8IUsr_R zaV0TLtg$7yL=$AK6xk78H&aoCd(EL4U$8TdCmeC-OsvF#Bg$FJYaquE!M_qU!w5Y> znC8>wDr!n$z(?^ONGKnvA^OxcioA4kPBLTzgA?-U!ACYyrqDIGTnwZh~ZiA0|* zXwi6a7f*0ph5XG0MB?h#kyHU8tMHy3!pmjE z(eI*tNlSz%OQ*a65+=B^bo?KP!>;#Cl57f_-_lWALjLMv@)XVBP>uJSu@Ss8PPfy= z^D6Wn7g&TX1Sckdhv_*1l3p|px z;M&$b_mP*l`7Jm;%a+yw6&=6L6mPgcj_rxx?TAM({=++iqWO4|IH!q;AvR+svf@q@ ziiOomtiXP^GoEsh^Q%_Iu|%KP9gkK)iw#^9$7ef*Ik5}#k{$2}puk#w6i=JbO345H zcpU5U$9)oyltb*+PcVYf)^+&Ho+2t=?TJULaf%63P&fi?0AaIMJRClewfqleeRvjL zgV?_zFv-69GM=_{w3u&s7EG4>6pv^nWL$T=o04O*mj{Nh1!aiVW7GG=GtwL>XfYr5 zJn?z#fKHzsWTOtnllEwg*2Xo8RTy8rN#(ExPxZ}{#M{KEdn>+=&#!h!!6#`Cjdybp zn#W#6n*pDg)Szl05$Vpr$A;(_KqjSaSsMI-H>lNsj7b)OS_y2@<&p5l4b=8gK2X7m zW=gai+<~Jl$d_M6O+)!$ergb0*lou1=8{agn9tcN3n!{H5IsJINVbF%0~tG_Y)LZG z7AZ(E|M^{2GA3mfNF|f9#i3MYy-!ZyrJ5!k?R5BgPUdKpNrd&bT`(PgpT!+PU0!y?6 zE6bWK8RvZ?reIWFd2A=+P8W#b1REYNDB$*0r>1#sa#31Vc#jOvpZHH4OX;GpBuI%+ zpgck+XjzzvNEDVO*9H?m$FZO;%E|(bl3-=YwbIjv;#g4Md_q&GCRr#Z3rp&n@N8=V zm%zlsiF5F#tOe8(K+h&_IX&y+1%u%wA5-8(>y{8L=b(6RKaYKE&;B>Q^O1D6g~7NI4VNqBr4u5)6|4H z#aza=3%t<$OLc_Bj@=Y7k-`$COTfxqX>mQ#y6-p05if40={(g$cIt)j8wSA0A9v-j z#sOk!r`u!;$&ic&=$oB}6!Aq^R8-~=yJF6LWPO>l)^6gJk33ix2g zqAeO}WaJ zcl6R1KfXGq$wzd3LIcN9vBDroOKbA_egDfr+CV0vTP_D_r?@zvY21=GLYMOTflX}$ zdr8G5XuGSB2M!DTwPPs{re2F02~hS0XxQ-f!Peo4EHGOpM*>I=J(iecm&}&QDHZeB zP%6VC{=H6JiPFwLpuM;# z^*L2hYQ#eixC|>w6x}Rl#bW(pBD)1IZc}5B5c*4kGQ=unQ_*sM+u4d%7}px`YDaPy zI@!E7NN4=OD^{f;ytJbXf>y>U=0}{XSYcDssRUYS7o|H!DOMp*I!Q01vCR)rw@uDN zjjce-6`TxScBNXWl;#I7RKzgAA)Bn@*VG+IlVXSkVi@8$umji8c*KZ}!I={jGfe#) zC<8NWTsq|Z=Sf7Z{h!Gh<#SjuRm?D&QhPb;{)}W;7~&%=&)PmiF4O2}IY0lmMC=7l z4pX2Do}kWKXfbg$?@vYwAoS73CsoPTsVG5g!|CXHlKqwL8iOgijxKJF^T z3?r=q?ma7F@?B@@;zm9UgS1sFF&HGQK*ZqW%EkPR*@_niS_CRu!k(CU30l&gN{F;4 zXgTG4==F-0N??i7lf=qJY18jbdEw*9*u5uOwW$;yAi<{6)*bN)tmk^PFoSs{#@c{Y zjipjeVtE|1|E<)+i2{>2B}C%lJmyocp??$h2+;NxJ=c^`_N?&YWaavW)W3=1vh0~8 zUi&6;*I2V9b0X<8{X0zwLMDO1J*WP&tMp3-~pF2uu zN&-?1BqR`$E6H81gOt#b8kHsrTm^zcsG>q3fPi$Q4AKt-8z8ZriVFC#7Z7Y%0lO#) z*v0aD&(5=VH(@Z}-~alD9&Bf(WshSkk6@rBH2i&H?4roD=n};ONP878WHh)h9-Yur02-#Pe-_bQ ztkj}Q6erod>%n+*2|c3YHudNdiX^b{ULM^;-|*QTU)R)I4?_SidsFM-$~UfqO|EmY zJ*Uwj;>EDYchP$Y;ob5W4{yX7oY6EjMJFs$+vSkOWF3NY)N%?>ygbR|A5ZY;CY;qP z$<^_Spy>*e%q3y7_Vd_g*D$qY6EEPB*oKR)@_YFeGgkT_KJ5$jwwk64S&gSYTy0~s zYMLx+RqV)fd{!~nHnmC|5Z#>D0#C0BS<(EgUTok6oZq-dUK}^M;Q~%?l}lsSyvV1N zPW6&2Dq*eu#tH5s?46hSq=NV`A9^thik?}B4Tr?Nd4$$BNrRcvhI?*y9v3F5IH8y0 z!!r~VpV|0J4mh>d(9CH!=QEm^aB-0U4&Y)%kl*8G}vuLF&M7 zvN<1Rja!##%83`llE<5mWib6SO^%C7V=3R};qLAqSwxg~GU3ugBgEzZ4>nUKw!bi? zXed|54Ys$NtZG$k@%MSSXLVT)RZqeSiZBF}7Gsy4<59J0Z_36}4{W@R>2R<~yVrwt zKK#k%o9#_)l2!aBi}vl!mK{uXl_ECrHy+=s9TQxGA`{MO;KZ{{1lU$5xhifF;T5VB zvGW%wxK^x7KT}QBF$_V*>yvCXHtlZ;5qAu*VWmfl5I%7~4Zok!AIGq9R#UPP*UVhW z(mR+O3MTemO_PYQEor$w9m0ax?hGMfcGSEj>!O`Z&ZJ_!60z&+m_*}g@zqK?M7Nq> z6t4;er&T}paXk~-Z$&RtTO(hYHQ0oY(bx;M*L-jvVK90Fw(8c(F{b%e+D^8-x5=R& ztQW>QH{v06=xfU1s*2$zd@WNuUi3-ZaP(GgiEDI--98-syK-slxh6cA0Ru#pB;cPB zroxMX9?ead0ay0I4CulHh*t^G1>wYpXOPrD4L^f zBHNd(g~RQMJ6H&(oskrAM~KE*xiDsGW5T39aDXX0ZYd5R8plPzo*WZy)Q=39+Tr;D zzmdd)!3hNqiTT&r8U-Z_?It|c!|`H0AtH|#$IT#Ww|=Z{q@*7oUkF315VsOP93hZbUaSLW2JkroZODH~ z;0DLJU-PilMlVxMF8WyNnRINbf-v|miexokbHhJC|9&a&o3al5hUK|@57<_gVm&p|`=1&4J^J$M8dQLLo zBERH*Q#(yP;RO@lI*zNg#}`^ank%kJ*waFamnR!MGBqAmT%W}4rg|hf5|2@C(Idla zUi{{7gGYI4wVG&4j81&PgxAP4quTN~9$u0v zVU)+0q)0Z}Ypxz((g6vQw_K7UnLIq7$C!B-S4Eg*`BEhc(&fgojveN4Y{Vh-$b<@3 zp~}bl=?4zMYC-|4oUvbx_o>`Vd63sXk08YXJVkffYQ^Z{JQ-S7x7iDPAYaYrIZ9@1jUCFY2qgMQGe?!$;`- zl}lqy?&Vi1SD(NT8MTbMy-_}rI?g;nQa2;@H*)_|?jXKj>BC=Hkqr zPpJaQrLmkne40cwIW@53sMag7gPNT`7t@1jhiwgX6*ka;N{hyMadB+D zVAB~BcFIWD<~mU!&Gyz8cwa=bNwt;?{DlO?{U)I~FQYTAt6|RN>x_7u*ooJLePd}= zyt$#do%TiFO3K?BnlVw~OTTh?tn3JHKT~5fCQVH%DxsMam(E>ko6X!8SHyiSt8MmH zE{vtT#hdT7x}t9K@y+7ylgnev-$C;s8r+JrdoEJ;-&s~F?bciOex?Y}w{r2#b z&BG9jJ6?+S?{RcRckFai>to(xh$UCka!1vnUDpg>ZblTj?|Y#|U=QhAcK6(@Nc zAsW4IGS`giz)O>;CZF-S;%qB(P7NQ{b8B-UUQNeOEBy{XV#>iw8F4M%G1s(OTn?os zHsLh2Qd?aQxBQiNVOP7)Z_76437=e-usSQ->{gV=em%omYkyn4rZTmxnK@n;NfRqO z%SYTvAM%1-AaEPJOK)>i+LqXftK3x!(QsE<&HPsaX=&G8X!EhbUy0Sse=4YSu`hq+ zfwr)j@r#8Yv2D2d3fgZTt(@8kKY=nkp(TZ9u9aX1pPTk1e>xZArx44)0nft7~a$8xI?6Kvb&O$eLym zH6~FU;AShQnlXuLX0=l~V$Q>MgQU?dYQZJ|Dvo_s+pLFqk&+=mOrw=e#U|7<>y7HR zIkB~cEojEwa=!D5_GNA!SIvYbg=_e?t9ek0^4Pl#;}Ho85jDrcD^7_Aq*^m3ba9JX zP#2fSMm32?b+J~2b#Zy@%Vs>T_pd`I$JabO6c+!U?x8)n*R^yox@la2gV6;<$pyJqzRthPH zl)U3r2O~a)g@7<=YJRvvH->=Re5YQQ)=za?1ML(J?lxD_vF}I3-6t7}z3br7yfP83 zW9Mfk>U0?C{1z*lS&G()E6_tQ{o{_*Yo!>Y7Zt}kb>OkwJ_XIADS6(|<2WO3Y1NsE z=83D~<`9ijdxZiO;7nZcQYUkEowa9&8mjUCSlValSF%CFTGorDb~bO+8m^6!`((Oa zzhrZHL=MxuCcVCcGD7bmf{F(cI|cZA-8{tx!_;) zu>-w%9>y;>x7LoT0YBP=f@EkG#PIulxjDO%KJMXgIX`3Qm|h&~-H$hL{rUWaQCZ0j zucBIAtcx8PK#^k&E#~y3pk4S?t$igRXll$REHPI)AjOUY_;&&jvrA@mRm?Ml!o?Yb zzsbULUL71e*#@V5go$4Xdbtj{BsM2MBJm% z^gJw~KhzIzB_OWcBu(5R0&`oSEmofhY6xgn@)MA6Sqq{wRi`mHz{AjMve!0bb1uMNi zy(M0V%BjoBV&=ZA^Z{I+&OmGHRGGSlgu@ZzFBNlQM*xwYj~N3m2Sjh=#I-LuwJ#H*?0h}T4Xi{iWe z<~GR{yGSTpUehq?hNw; z!-u>Q8SKrm*-eedk@cwgTEkEAUeaF6`Z<0~QYSHdFQCyyE%C+}`ikK=uYM!Bx0LdG zD!BI0?o{6Jgt<5WrWdXq@Uk4b#o*?;RJk9tX8X#J#+GGT7cjcZn7vPqv(_nIeXNL@ zf!daiY1JS_D<~+_+TVC}89Q|*w{yy8{3sL_`*ZTR2}5zNHRTIl*rE)rk9G3<&3Nxp ztC)716Aj-pQ8Bc%T|1=3rD|7Frrn@U`Ig&^lxa=P8r^QTvV9lQ>(u(17vG+!r6`yo z3P#s&S8!}YBAC-XSt;@Ql9qotd1;cRC3+3YjUpUo<|SWJ9YtQ#x++5CPZ<1X@<+9SJ3 ztswWggZrU=e_tI-u3?*Soa(mJOpt&|8FO!r=p%^e{EK0vAKUrwQSh>adzzB6&7C|Lkg={X6};G zf(naTSstp5h*6j)QsdM#NvS!TsA2VwW*gYKvh*f~x0C92RMhRVTuY|$_bgVBYw2$o z5Sx{28D+riS+N4ME$_&NYh#T}mWBpHNR)N%ZmF5-pJSkpyp7EpYwABFHpXl@ZeTN3 znp4?8tHorvO*?q?ip-kE$#d8qt0gzCtjEq;Egr*C>4*{emY(q=OolCzvO$4mZd_T9 z?JlsG4f~`cu>ZML9I@gCOHS=!JQ=7Xvp;6ODy>pwM`p8gwJ-CqKWvs(hWB_18?ixu z)wdhpo+En1(K+nYjh43TfZg(?;jB2|&5;(5@r-srHaj^jy>^X~_hFwW)rjLUT&`ec znU}S$&b>x|O7B+L>sa#or^C|9*s@&o!4~Krybm@l7ak8eEhmj`P1%TT9bmz;Bkc&? zWkxx<1b{Kvi2X1*J^hj{CuM7c(Kx!C6?HSYj5n6^p1z-5>9suEaDKU=+7#YvM^@K* z?Q~ROjHSJC3M_ZFIQhYRlxxOUj!W-aIiB0HS=60(GkUmYdpp^7cYy6zD%svowx1x| zIQU;}&!dW;CgWd`@w1(9Z8EfzWp~5N=gPIOHdoaCFY*B5Up*`(4+V2Y_0hkOnnUd8 zIq8fw>}qM;@Y+fqdXR^%b47kQ!5h7_M}}y0Rg%_bGj})3Erua%Z#PTGICCyPfmv9W z?v@&9x59z=PNFu1HfF~Lqu6L%tR3V`+06U!t#jGBo|f~*O{ixn$Ob>xPcg2a%MSFi z+$)rIo)ayJ;$UyfM6NEfTAH&ny)B)M2Zig^D>G|w#pphkbpCJo4Hjq0 zR^ci3WFN~tM&ohezjjoV(io~#+k2@uXY|Jy`kAHe(#O#GxuQq^fOPRO^m%{FF5~6% zcz35BU2h&gLhsSP&ZQm=Akm}YO$?$+Zue!giN)!&jUDERX7kRA&)xOd&DW$)%;c}3 z6-NAFZy1Z2?S8-C>u@=oVY|zPR|A7VJVh+F%=J`tRMxDk3Z?`nk1L(pX^r@@CEDV; zdHnp8%e1pXjAy5q&Dm{k&JNBsRVLh9x>RLLn)PXI# z8s}3G<@4g_$9n9qYb^(jo9Bts;~@@hm={YMY;hQjdo}-^Q(h9KZ0QioL&j&RQvCFo z@&;*8fkGqGDwN0Gyf&+`5kBIzGL*5SdvV&}6MyafdcFLibZ_N8`Brx9#bFks(RdzJ z$(WKNu%NvYyj@BoTOSgtbGpRe_Jt=pmO&d>E zPTg>XrqsJ(uldvsajcdoZ7#o5H~gBsH5v_XOUTUI@z`o}W*?!&~ntekKKR%a@8gID_zbA`-#3aD4zN+hf zQY-nX&Y}U!&4ytKH-pKIs|0RlR&q0e+>B3hGx-1DroM2qIpJmlxfygb+#IUp<`HtU zFUie@|AU*x!p)}%Hz&x=_)@s3wLnhVZ{+6ZBsV9x8|>@D&moseS}T@6+47*V%>wPm zPwnhB7+(BXJ`5@+IFALVScYYUoDpxp?TAENu87kavUzRpKw+@ZXY=^Ok#I0pG1F39 zBO~a>CkaB{P#_ZaIzu5}025~@=y>A z6k-++IYam$hYz<_`LevQ6P3X)cDQU5Te-{9u|{UdkNeTC2wvTFhn+#})Euw{P{EMj z;S0M$p|E!B;}2TO44EEZsL&I3@fRj-&JaEe?ezp~VH_L6g0I4GNSNLChGmx_qlzl9 zOo!E8weJIUtobZsSb9_T-Pe}7NTnaSbU6zhk)YET@cAPln=ce{x%?h?i0==V6j#{q z3l=(De*V1O8N#k&c30S4=qe0`@l|A>ANMwp0}+=afE#&OwdL_3U7mm&dnBRRoi4w_ zZV!YbWLAso|4;>o)s|6(b2h1=wK;oZndNe%9uI@GAMjbTW?3?`5R^9<^q~Dhh0ch} z?srFU^A@i>h8&KFACDxGLX5a0o={=f77F+R&Tye4fTnhZ!vT9Z5ccw&Ftua1K4MvH zm|a!dWx;o!LBmJ&AK1M|zfo27S^4Oy@|Sg^gOd?9;bA;wGCX2XN# z5PDs}>Ga#s;ljQkZhjCtE_@H7^`q@6NAx%ZWs*supO)y-&Xb6 z19%}S=yyBOM3JB?APq)e#O3z~A~svd9dz<1P(JijpUaQg#t$1s=~u-Qz=8Fn~OL0lgey8V7% zz!M6((Lfl5UM=A?v!JoU?y%qK##N;==!^IR{*X7|EW}(H4)`J>aE!p&hKzv29>)CW zD#X0&3j_lAQViA>y8T#nfmX$4qI|v*1F(t;V0SYNz|1OrPjXnBu@ieOX%^R%f^k!C z6kX40_jp~QND!R?3sgO5D@S1{!bhGb=yTwua;+j_;tc!U-e3e<(78f3C)&Ylb40>U zN7!q}H8c94I980lsv1ikPgQkN`Dk>Ze@&h~`g&9qoJfJk@3s~CeI9QlgqQ9k9()7P z9rU@~t|0G>_!JLLZ`8nESJ)fE3>=2a8Spp*c=y?73pzZ3Fk0Iw&Id`S!VJIDkJCml z;s~He6b1u<5LRr3{SJS~hA|R}VYGgY)6BouAflZKTm8FpHZaTDG}9LJ2e|1-2$Lwr zv_BMfxg()K$RF_fJ^C0C&583JUW<1i9()be7mnb}=Eh0dXOH0g=E7b2_|VJ1O>dhM zUDzJMH{E?Ud%zn+7x1C=ZT@fwJ+K@p61}zR8t~p)rSCUQR!?TgYjfeLMa1F3ph67Z zfX@-aOKaYcJK)9apVT=sydI}3jNoxz^E+MG#@^$>m&%+jCnl0G77*f6<_dB03u5&| z5HG3VtdGyK;pB%#w4o*O8!+s|@D^4@G*#DtM^lAwC&SpwDZtZ>!ld(_$Ln=QP!U{; z_??)|{fxUKW*~SRb>tXFOyx@9M@x2 z2KVv17H@;K8MKgFd?A~aPOKjS!xICBqJWa&Ff&jrn+(A zg4lbVtPdMwcNJOj$Yt~b_EJ~tI^(bfY*aUEALGb5?164phjIE`cA}fLjd9QdR%Ft&PGdFv|3C`=|1hoOz~%h!k$6~sXUTLt@4K^P5HFuLwmB9$mAs0-$M!CH z4gZvk#InSa*ZE&dVWs2^{?~J`RC1XAwW%KdI--@qV#%BQFaA`!R!bBi*g9 z7>qwJV6CsS+KlJ10LfR--B^7g^IvVXa=EA*mckC}Wz9@I3kLU)i&CrM*-gng+*jU| zzuT}-km(BrX(bXeNT;#+LUy8OehVF5kfy`YZut)ydlTJ*=pjTyR?)9Dl;}xBPat|W z(U4Vi>J<{bfoMkbeMCc6(SsZ7v|&dg?1Ka!B^a^_-q1vcqde^I$n`fw|3Nfl6@8+q zL^oa}Qr>WpNO|@m(O8gGberZ9-HGT9ME4^avWgzpLZ^@3kFW_25j>4x$SQd6l{y?n z*lcDWODZe4&YERhM*J4yA*=Ww)027QljQwzqF*8!vWoV$lITx~K0)+Zq9Lp3Ss8J9 z9|FHqq9Lp3C-ZeW?S(|xKM`DWiO4u)75sOB4o7*| znM*`_wOk@Ho=-Gn72VA)(S3;SN%T;nA*<*`g%UlP=!rznAsVuZe#4>Dr(Q$Y1g|If zeu5#Z;D#<8j`FadC;AZ4$B2fkqKCRA`V7&hiM~KIWEH*1BhgKkij+56DpKBNsc10B zD*BXHrz?&jY=W;MxIe*=Rd7yw9ggy_#}XYTdOFdNRrL4{61|G({`J>RIvlP>ui*VypP~L z1V1Zah$?t>4+(ys;CBiBO280R@bR9>u))YOud~{X{|MHYx?J>b$SSyHZyj#^RsL>) z<}Mcl!$&A&6&mQHqfta`xK6;u1P2I)tb*^oT7qW@_%?!<5DZxbf7e%ncL{h0!H*IQ zSq0ns>+rcVdc?02`Z1x9Rp|5qIvV8>|0ewYOmM9gBGZsn@cx0xu(99`WY`6rEBRE3vE#w-qiq0J&(RUHOg6M5TLsro@-=NceV?jLX zCkTFpV8|-?;Tv^0%A@|AT%RKP{7Pmowq7dgUq?#tWvfKO>#hKp^ zA0rsD%JcU(>97{`n^f;Ni2md*77brAXvYKz{+-}o2u@io@(o$#dd5VF&RQ*6D`T~Y z+D0^F75z+UoNkGz3GPksaDpMLVB_RC%t!T9q9+kOcQu=I6QWkby{1U;W`Z{m{2;l8 zta80{szkqtqbH)N34WX4|Eb}l({y-Jn?%sx5&RdykX4?W+@ix#9(1!cBHxYIhV-FgiCi+RDUtPn}Zo6a_CeD)JF9`mW;2+5~WR>ej z%Ov{pwahRJO}|#;KYgu8VZF6V`1jd5oK}dYUn?@`B)A8`kX4>LmFsYnH~na$ZzOuc zT6Ssy)x=1TCL1TP?%k!#2**DueL=!c1Zi0FevLsrq3-67E*5`A2wd!WKvuY;(9 zuUR0$HP(ro8P$Jep)<(G{5!KD&>l;FbzpCH$eRj$u2ljuK) z{*~z3c=MP~5|CB2YlTE-Gtpd`Of;9BXvix1wv`gykLW%`U(ZwhBPue2E4ek~h zuYb45c+0y*#v!X*KfYC>y+pf+?umczN7QQg!Zr!^6FidOiR2ox%5|6R61|w{g+#9> z8nTMMV~0dPLi9eO4-pMnMZbEFM1Mr|`$V6#jlHi&fM8=I9M8+F!5E+N8 za(&&s5}m(+l|O>UCip6X&1(4W`y_ZMxxS9*Fwu}zu0Oe7qUR7ji|FN`V~AP}XFn*x z_Y=H};261vta3eew?rQ!`Uue{iH5AA_w14A3q=1$be)YNrGSM#({q9C)c;S*!_kB!)&k_7R!T*qJ$ST(>AD8GBn?%B!ZW0O4-6Wa| zvWk8uCehu9?m~1i(U4Viizg-eCZfj?ecL8>^fiR7hDSXm!D|V=i{KsP8nVjuJ^Lm4 zSx|@3*aW{$@P0M?&C?S66}kSL=%0y(ta6?ItVE}778$>6v&eX>%`AEhQEyhlQw~V5 zk6<^!y*7*Hf~<1=#6gJ;5Iu_MQlcTN=)Vq0^b(>M5q&q&kX3Zo|4Hme^o^f00a6CD9{5>cz+jju>>Il*NFuOQcuRjyCID$x%ReJ{~Z5Di&Hw|!lr z-y-@=qE8VGSw)w;A<=&l{X5Zhx3aXaE*bVihb6e}R*~_nt)jggTSa?8R=NJ^h(r(A z$_%H`*aY7|a9=g-J1W7qkn5>L-$68FmFu!&61|P+%|!3ridXm%wHp54TN3;V!7md0 z9=V3Ba$Wl!i9S#C4@6hnCUOQ@MfZPKqOaU0GTv;P$ao&nkX7_u?@4rbqKk;WW*e*c z31O?@_l`^O%>@ta6?Hfkdy{#-hKXu?fD1;MHo_|DgmQAlFY5{RYvHRjzk^ zB+*|J{RPp#Y-8mYE*bT=A4_mrR3!ZJs7QE5R5TZ4m22AxiEdA{hv?o!Lsrq#PD*r; z=+Q(^A{w%ae(ID&FD3d;qBlfYu`xg2poahXRDvHP_+f(oN3J2OTzCImqCde=HS_Io zrCl0+NAQPg_|7jRIAy!Yc#Z9XZoFM&9J0#w;V&iHMzodaPLS&$YBk*GYY84s@DPH> zkZZ^)*TcS%=($ACCVC~&kX7{N(-Qq4(f1MkB+-yn^rzoS^xH%qCHm9t>|BFOhTZOr z1ph_w9|YIiAu$RrCu#N%W6IpB1#h zz|y+q=Nloa;JUvg!-jNb=$UUfHor$pxWS~chUTnGw|rOS^|%9nmCzmn?Mmpi0`00q z*Zd}-69hV*(3t`quSDPfT|${a*ATi>plg(9s|yl(P@vBcdRU;(DAC}b68eomza;cm zfqtn(@B2$a8?vMQkl_Y9MTRrksXk~Oh^p2(^S8uy5UiKjK7xg)Vhi!SM69)r;_g3o zQq%nUiJdH1h${9LgTyWq>|$a!3KpV@ecC9oj|=t@VxJc*L=|hOA+aX}`w_8c1Pf8c z_N*zfwORC9@6?d?@k^QN=E)C9!tF<`dglun<-3n<)}|yr!lB#{qdPgKq8Ibx0M+<0UeqKbW~ zvBb7yX=7327WauPn*|F|#nx{su{{Objo9l13sJ=uH`CckS7S|?=Jh5bX9*Ibid@%R zC!>6>S})kO#O@L-L>2pC3yD1>*k_47B3OtjHZxsfPYd=dVt*4XL=_uusk24Jh_+%H za-4d<$Z>0IVT<;Gs3IR|rIS$}?Nx&H5qq^@A*$FPG9)%E*Z{Fp1Pf8cI$KNZa=|Vk z7Pql@ogu2&TeEaFZI~YIqeQ+SNQf%(*=(JR@@P*AuOAcpyUDi%#PmM&hn%7}OjuRwA6?rUIC!;*t`GPGc z7OQf2jUlSorY4EqBiILs-7i>(D)t7m#J(%ow}|~*un<*j)S|N$VLjSEiM)*27ox@x zRpggeos9Bmb6M-fXrHzZiuQ2}7NUwZ7f5WeU2p( zU1!U0LbO_qw-H$(NQf%(k3yY{@@QWd>?_26AXtbhwzE@We-`X{Vym;GYmjA#Dt5k0 zVq39uE0N_ZcZ)1r1Pf8czT(!|;wgw$BfAqhSdb7^bCfT&`}bduPP zf^AQ1U%^6DvAa7EP+kGTg=lJdbDp7`Gp`Ms>qT3bTZ1Lt;P(GAjf|ZdpSGxIBE=0#qQ`Yv3Y{cc}TR6 zN3al8?AHS%_8P$sBzCl5A*xvGAf5HEMYLLtXApU(AR(&A$;CPu<2qzwG#V_V1FdG2CH}mS%#=$iw5f~e?6K-52Ah2_lX=^1qo3_ zE*PSdQ66n?!S*0_h+rYA*w^rRnxq>AlLR|~SnO2KYYb7vrVf|b4T5FF-X~ayDt7So zI?LaR7UV%9j|vi^irg?lC!;*t?*#h|v402_qKZ9ngTyvwlU_oW8&-%cXS3qh5G_O% z+XipUCuORWU^@`oPp}YG?6^@n%U^~TWQfRVf`q6d_m0-dD35lfV3!fQMX(T6?2mql zeNwQG6Z?{2A*xt!P+~t7>Pl`WQ%vD)PB- zoaE6u1#2g^t6(9j*px96d!t~lCw9DGA*$GZV2jNiB3j&w8sVe4zXVf7NUy1@+OHjuu~r*%YPHwfE_x48begEqi>d2lVICD zB3j5RScoci=LDVQ?>h@}5RraCLR68bC+cLBM>|unw-UQpun<*j!6b>@DcJ4A;vXI@ zL=`)Avcw)1>}$k+Bv^SEguy* z&KE31729pP#P$(vPhy7(7NUw>bc@7J7VJb~=Li;}ihW~-&hodL1-YKc`vnP6MK-)m zC!;*t=LLI+*kgi)sA7lSF0p3>dz#n_f`zDJH_epTCam?Z$a15{M3&ny`%h>gh@7=H zUudYdw8l;2CWP1YKiqn0ttk_yO%8_FjLqX8rJy}Z*38lk@;9A@xvR)re_;;dMdnUl t!rY89-CUICWvnn5evFwr7IZO87X~46gKd-Q*SCSXdiZ$G&m9W}{Xe-GGnW7W delta 98444 zcmb4s2e?(m)%JJWx%7I0%jNWbFK{@$*Z`w|hzNXE1OW?8QHaLG4#o}&B z$V|>ny6D%RwY}}LwpI95<5z=UEq-x^F){JP@T z4ZrUAHQ?6+zn=K@!mkm(-uN})*N1=B*7@&Y-dsMFzBrrA=Q0;fN~a3x3oe>`VLWv~ zA`?$co`fQ^!(*H`{Z}de(EmFB)yA8=IF(LhCZ{vG+=c1ng%=dkiCiXi(d3Kc@q9L$ zj!R?zO^Od0?|k+2>THrN{LJY1Va-YZ|-vNoRKh>!7h%D$f4;q|;j# z;oVm_Csz|xb;Q}g=C5)(9I!_^Rl~wRV;`<^Hk3shRy%#=0Dksr=Qma55O&$qvJk~N z@l{Vd`#7re86xF$Br=&qtiT5EbWUMsJr70-sFy&2-Tgf5sKi=IWUH_5+ns;>yz{JT zN{9X4GJVz!z9HV6D z>9K5T+LZ&Y7{6$0J$_y1osbA!_tCxcy~e-myxF{As9q`XbKh}JsTOu9V~0#;gY({# zSol3>4~-ZK?ELqf{*qMw`}dsxsVYfkYyaW&m83qq4GpI@laI@$Q=3R8<81XraC&T~ zv%3lOB_NiG+esyhN#(VrdZoadccFVoL&VBRm!0E3A3Gb$V6oj!UuiPGVmCTQX*!$t zFQ>OOnQ!?Q`a*58kS?eOmMrLQarKwTSVJfjK?OGNkkeZi*XeLaLG_Ie`_Rs$hHMpt zh~BaBfU}1QXjA|E(dkpBOa;;E&pn71SE_N(u`VO;B85Ny+u6}k6E7IuJC#nw(rk`1 zJcWTr_qt@2k!=@N|mp9PXLIn(JK+8mX5^mL1pN^46w`6!;VM zuBp|vNJUsh`D#g;&HgAlgk96l)x!j|nYq1OzB)1^6;#IjyLPT`tICLf-W%R86+gS9 z%jKv|C-VtvLw)MAg?ug<%d$y(LZbZL>oOW_qrePN@R>?ANN2vrKo7pC!G%U76hNX; zTdUgQIf-~QC~E|o*1*JXDw)=H^>U#dX=|nexTx&Okf|`J$%XipNak79?XJc)c|7~F zg+iRIn&`TOZS%UiYpjETWzgqkjpPhH8^*`^T!>kOjh^f3VZ&q>Zwb13RKTfnLJ%u&m+GpLUYiItw|p|kmY(5iY%6(SOvL6t&^(PzAL{B>m&hBiDlXs{MgU** zclorY4dUq-u_U#FXS;e>tgipTJA|zn?&_|r5^Pgt$0pDz3{4xv=Ol=ufwk9Vjm6ou zgU}phK}$^Xohjm&$>iAR%Uq2@FBi{c<7k(&{)T5hSaz?C8@R|*;Rzz?K|e1G@(#xm zO~RJWQarSx7|eiagS1>K0HR)Hxdi0rp5QuKRl)LggW&hFneq*Th-osLq1r_7$fe`4 zoQ!-R*-(Of-k-{lG!$w{fzA3upgaF@D7v1Ihd-Mnu;pfi4^Zl%(~TUCNg#MgJEpj> zGyGI^IxSx>OO#^Z;H?$;7RfI=4SlXU9%uW#E_ZDrpGdGdZw98Z6VGrp7|HdN97Bk? z{tTDTNK~?CqwMdVfwEKj;GnCI78VuqTeP~X$+ks! z&RB{SxfDiLx4T@m$#?;c>vh+3)@KspgppoP>9Kf&8? z_Yii;MR2;2u8sWPMd&KUseJE6)Juw!S?v^+Bbhc#@KdI^+B(=Z6J6bEbLniHI*7}W zOcV-u<}93xXHFA}Z$kAFN>cd|QVb0vng8N4*Z)?t0~Z=PXxN|ub8P1T42(geL240T zXfg0WTq9%FWd71D*T+?C(`2J;R*>kZ0$7u|?@HAf93gSCd1iBxJDea|52G8dBD-o#pb^ku|Ac zT6+8jdH`uaiU0Eo^qq3zZRfb!J8I*FMAE31OcK>{unOZCQ0Z2e(imJxSe|Xa4Q|oN zaD67p4n~{1^UUq8v#KRR4wJ~JlM#)KD2b<S6c3Rcy$B~V z**xN_=qRAly*6#&9V~c~`1rJ{4dU-Er7lluRgdCHsnyscucL0jsX-bg)TYTm%&!$~ z5cfYyA;2(d!x;FTGY?As}aKtNE)xY&lQwbtm6F8YAU{6bkYN^KpD|<|K#d}u$zywiECVLN1~9; z#W3`w$hGZt3cLzIQ3y%0dx<3gZ?3aRWDFrCt&MSh*^FALW6FY zp>%C#-U}2>RjS3zM=zjnXh4g9v0mkB8W*_^-at={Oft!q?n2;AfOuU|;JP$^54GiAPB~Te8i_+G>UG+D6SNS;(U(X}zC z6fa$O?m{y%5ZEUq%U<1u3N23M9Y1nSuC7CJ8lhiO5QYvejhw{(xf|~*CZlo>L>?f{os>%TD$~_dJN)?{l0}{3AEJhv&Ul;v1o@WDhI;XK?exTT70BDtQ%p4Wi zgZt2lOOp8~`@lk`cl`>F3KD0lK6VaabB|CsB0B_VJ6{}xQ%jP0@+%N1O=ly%HnO!^ z;S0Y;`>Dn=V$cegyE;)|y9Pxrp`te!iRj*O>K{w?q4Q;xBo!~tHvHb(op1U8N;BG!R4K)UQ!hWfiWja(8r8CsMNg zBvP3SO(;Hvm)`De+&v5c^8p0J+39WE{^CS_UmG`G*)ho=8;=$i(Q`_Bch54|()R8^ zX)^z`y&G@srKV~+x&5Wd{FF}a&JOmgdUwaV0;bstqAw$eWK-p=fCRV9$Ve*4rB7pd!08erKnR#yGI}M3}GPEL+Oj|XxIfSjG%;FYdU|U z(fwH!>(xn@(~2^XGfHDk=gocGPDdn>$rZ8#(uG1UpU8R7i^q?Nr^1(Bc`W{u%!-G3 zE}4sEI$@j*4!IlJTXPqamqQ!j7E_>uMIgoI zG{QF(K>k?B{hz8zDEqhx4yvTuHtNRAO|p>3i@nc{L0T@GmxHvYV{V$TQvg*m20aP3 zKZdqclFai1s1=KJu)`QliHlZTpF}Gz#RezQic6CD?MZ6ICFyM5VDLzlr1Q_xL?NEU zJ1kLfV4jb{_?$;E8u;z8AfX|={}7a8n~w#Fl4Ra^97xn4olUyQ-DDW5T83$-Jtw$( zYDC-d4RmALPstmpf1EndZCWu>srZ=oE0X1J4|cm9b=h1RaZOf0A)8?H=c4=FFwEW4 zg3zcU5yQZK?J#%1l1{^r1luqs(w+A@#eHtIf~XcG)OkMo-211xdsz@|tYL&ZXi2vi zn=!)uX_W=iD%XtE`J0)D{NEnw?&PS;r?Yq^5mk{WU^+ZcPt<8_=9!2lCI)kaW!dsG zVa`lP2{1b88uoSP^=E-jEkSJQNYsb2CLXJAoa63gLfTmEx$dBuY_T=|T(B__tuXyO zv_YMPMd79M5FE)JN!6-Si4?||qE(%L0W#N6eNsR14mUObx;ICarwIY%io=2Ts8WNHCv7dv6hP0vGKL-t+Y#4IRrfSj2T6*{|jBG9T z`J9{FUX(wFsS4TM>3>@fVI?Vc2W4si2%!0VES_YS-a(lf$%xO8pECnXdavJsr!8g~ zFa$^EkbrkOrs{5==Wf*L+RiKU+##K6G2^-m4_6In@s|1SpiZ@j-!$KSsE#ea46Q1M zNiBm#CXr?nPr|D`)qw@U(q9EF{RNs-3CKi^lqB;DmY_*R^7%wEZXYP5je$Z&EPod;hnJW0Fr9wy?ip>R zMxKrMy*toqY0iG{o>uKIXZ$!CwCJ+1szyu^PW^+sS8Ie<-|z0j*8aiWA@tuZ$MSjp z9Yp zsmF>%)fRV;w!*oTxtxbN=V^3FjdsvzESF@9o<_eckMZqK!+8}zcIX+zg$jx%K1(rs z+)DJWWD>JVtoJInQ!MYqR|cjta)kxJB5FPp!{!1aZAr&^EE1Pqj(4Nm*11orX8(MO zhH@}SEDG&-(hVy& zucydal*-p_qPi(gW_w?vXk9Gq-$J9aOpXdnRpG!&AgybPSG>Re9fdbBY@i@4&N{q@ z(wC<5v)@DU6|m_KG)7hm;?Wu1h5?$?vVj+E!vL)`ojt0CTPJGHHT zf2YWuPU7WP5~5KU-aKicRuD2VIYz>wk|0!?&WG-%*!{#mD0ai5Xk2oThUE}it0hh* zr0o%<(q#VN9*W%yKcLucnA1AMsx+Bb?{#}HO3UKKgj!Zz1`kd3GPmLYGS`ShAQ%K4 zK;FfvJa-U-f$Bt-?flH$$B~p)#89Bk*X~9GsFy&Bo%FRkRGi4~`WoYa;#Btdf84?1 zME=!(+}#}Pj?dif9r<`6j`>Lx-d&CH(Rv3)0xx{*?qLNmO&>$q4u9S3cK4|zUHK$!+~e+P=o6&Op0URruqJD>cU5^lsIryPqV@b| zW??8Za15*BA~weui=m8A1t?LFx61W=Es zsV6Bfdd#OCJ-y0c!A_oFX)>SD$%B4hYU<7|9=wDW=fL0Y;z7?(r_zcBhCo=(O02}1 zq#$7;7&2kq3=vh3Fw>=mh{C-ZJ$R8JNYIdo2*84a2DB-`K_^=*&FJI7Ym7#;f?%PO zEedbDJa~a9E?_!FQ>|n%Xq%W+CVw0=jJ@YvIt+Aqvn^#LRX$m zIu!&jzu$vil_;PmiDeGK&<@iAZY-T-OA;uH9jXDuR(B3|$2^ATfvPHg(?HK_Rm%Rt z7EcehWxfY9;gDMOI>rUWRGQGBVV#(kRV4F#$cdgkC3X$fu{on)+Nv%Xf8r!+s7dV2 zrH1ONrbVc$`%Y&gPe8~>=yXRal@wdhPCzltWD;L>ecuMY^Hgegm9uDrG>3VQBkEv`L++?PO1<7OB$>X;AQ6t!Vkhqea-m`)W#*zb1unAr?Dx=TOYk zfCB){qy6F>3VFrJeEm6ycq&~MQ;LgjweUPouQJ%C^E|=QWZrWeB3@}aOP#NCw&cLC zJzqq;Y&wlsIn)5wsdISW5fdJfi@_nSAuNUi%CU7kD`2`ibI9V3FIF+CGD~|_D z2XQv)9FMC$m&Az77`fEn=;>90oOGiHV-CAGpMRt05{z3gUv|EyNgELZmq|ByFmNeC zmfYkC7bo&hZt@($z@15+c6=t^ajs$ z<6xe*xHSmMyVOWS=BMI5M4%~-g*>NZnUSI?6 zN3qId{M!5Rh>@TX1BorRs&w9qS=!T<;JGPOHLA_txdef#JjUNyf@e$xkR4iRl&8cf zKlWh{rlXSiLW+%k5yOKCPaDrXwVJ#0DTJJqT|hqdu%hdE8iA(*$glVV+NLzUK!6dcEx+#rnURt{lc7Oc%s`E^dx81MU>$49FNNvvt0{#OR{O}{g*wT)7pVy z%TW0ARh>CyVJiIWHBVPsIY?pZ1w`DnSZu;(F51ws_aB}{Z1OLHTDEz@*3@cDMfy5n z$J3lmpn(~E#FK-c;W3{`3R7L@BbcAI9WD{3Y}nlGpkXFs=E5+xa|?Kw#xT`E#**y7 z+n%tQY*9G%Z=P-l9BHg;i28`9(}?P#KEMN0F9w2*)0}QB$Z#i%`*dGf`o;i zAk3CNfte04z%CUd-7qq5yC+(b%HQAaIgFrCER3>;9Eo^wI{(>D59SAse+$E;L;`0s z62!pih~t!$vDpa}dZV`$W2lRWCAnUzB>9{@9?TDH`T!kWDuD~Oq{ARhuMK0TZ?_>v zR;Z4sMM0a}xz~gFfwemjkW6z1N>u_{r2s$mOX?#j?Ab~SM%WXN1*TaqdM;sy|4qS7 zBiIyAr#JHK*ssw{OVjxsUwbaa1QZn5uFYs$Ql2H;*t0d^TZC>6X;VwSMg5i}^H0C^ z{D4^~!;&F>@0Vy-C8_*>4-o~-QevJ`R!SU4m$1>5jxHVgH!8)%>f-_{ND^i`X2nQ{ zFR1d)z$}!oCF=v}Z1!(aA4I`|XiLPwl5SYqU+X=L87OT@rL&`7locOa?``k6XS}zu zwvfYU9X$HfWeYhhXl{5ClOBQw{#FpS=>v*k%}i8=2^c!G^J7^jFJ?El{|CjE0w5&* z3!`EK$oOw5ZV96VnMMUA6R;X>)6I)H&bPit(=Y{0%`Wxch-6^NOza-HqQP6|U^6>< zJJja0*ocLPjT0ua*cK;VO51hv_BIh%1QJ7yp4!QaU}9+KbiTBYcVacWTQymglSE-yerBmEZWka^?3JJ6&W;@ygqMJC6Hg@^ZGE2kfQBzH+dV| zC+Sc`zCZ`~qYps>(>cXX3*Hri-%E>fT<4NAuRP**8g?PizTlaP2Qfg zRGre%i_^{eP3@= zv4m+}a4*u=DDP76B4U2g-;1|KQ8t~2mSK{9C754(thZBbx2Zj+AD#X`|1&ju&q@DN z^*{8F%{o1NI^R3cy9Qy5b_^|uc%AS`DxEO~Ajh8W?Z^h5i0+^TkgX6%v+GVrYa5WU zg6Jy%CEU6zN-Y89b39e8)4SHdA@BL)w>i2YkG{4_{0g`Nm85=wK)6oQq;03tpQ$` zK^1Hw%Ff6OjBIUo`2St*?ctz`Y>(xDOfJiIE%CY>*kzhD#^0cU7d4I5ODxIeP4nU{ zO{e3Th`C2G1pn$P@2G0Fd<>rV0>^3)%8uY5t%{-eic7t{ttbcxG)c_DRs;mJ<MFs=M|&3gat&LBTMI)Bi?|@ov->%Ei z)#BHcmtm8xLm-jGRW+*$^`|@V$i^yaj^6FjI8l^B`re^9n{?iKK3s2AK3Kr`dN z_D0QQltLtD`Bw|jGO;#_NeW+H3_+y4*q-sit=>L0CD7qpz0Eq+v^07V+NNnq18mm4 z7$N8!bUI&qFAX~~G&I1lgGN&Yyw{193y|n-BBYYS9$Rc)`ZY{x4I+)1;dRjl-tHlK zq!1#;8Pu1QikMpkk*2cfkGE1h)oK=t)0Wbc!-PzW#K!_ybl&+rwZa$Xd$E#$U2<`c zuQyx8G2qEzYaqR7iE}85R#3p~e+LCjZPe5hY)!zb`N1l07YC-iai9o~$H%=+ zgq9plQHV#xwcOii1rb{a%(1nc`mw2nW{J>r@E`~_{n>k7wSj?LZ;37J;~&C4e4c`e zR3k{+bFHD6VgeR>SFiEzt+HZTY0fHCVp*Nt>nQHW(ULIy)1=aJR~<+-)oMsu!{$y< zij*evZm&| z3m&JKkBK~*-lW~@bGO2;8mgBNmT9-5Z|US(N@iP^;JMxMHu{!C2CbmrLP*!)AhGWq z{3%oj(3bkY3vcLTi={i>MV~Set*~@A1}0Bz#CWls*4OV*g`~yS(bXS{SciA?gBP|; zXNx~adp8mEQH-TxXiXn{4!@WH`Y2Sk{4UbKlRGFN++fn9ek)+u^rS`=cC7ToL1zHV1oe|H`P$j zA^>FpK%Ea%BRW~hZ~YzG>6q?5nhk&k7QSU|lC7mDU@Zvr`qXN~GzMZAxD;s!YpZ+u z=+$3irp|^&AEKfL%px>!S8rbz1ja0uw^n^fgN}RwcZ$sPVv=eN9@i#9a|i{j+GW^b zj}L*dNW*tK_>A>}kAx&QhfG{Y)grHOo;A8sx(BEjU36_ZBKEw+{MU11| z0Ush{8I(ws1NiE=4;`(X3Xv)YaA(Tb#=)HZQ1)y*l}j;2ER72SGV%bQAXWza!GmI$ z=_tKW%JPZF_^=we#E;@jn8;xr0*~CCLHAH5h?xl7D03SZ@I@^eromT__x-i14pS#z z-^8v9*@Su-xyp-z?x{CsRW^rw-m=DyALI)->T)?8?Ka593n^nO;=Un1tXh|X@u9xv zGUV0bwb3rc0c1=pekW;*f_N(KJrWyDA# zijg!Y7Ed3Z1x6;Q)!5Ei+MX(&vKRX~F)F7r>Pj#w1Mmm0Bt~h(9ZY(NxQM%9612aH zR!;>Z6Qm*#2=rRmD+BOd*AgX(7?gxPFJOzr_-!fmM&;=~4_^4Rl=Q!-UKJrD#sr{D<|#BX9a#INg>r zcD=&`O%7bIWnkFB4lG0DBW2S0;8oNIu74DLKq`$|@9T{{fx@EL_72Vn$ig6D^%Bc4 zkVQN$N#}ofnp*tW#b~vv95yvjL`*JK>+!4z$vCDjN#W{@tUS2AVkIh7r(>H$Hil!{ z2Unsti&Ocz>qI0L>69%=WSKapJzzbBVU5%iLWX9przl*K&R6{WTSlX8a~cy%p8>j|X{LC#$P z4l<@!UZO3>ar73EFj*v1c+@tyHRhZ z7T&l3$Vto9yM5A#kJ2?qN_<#jt3I@onrIA9gib%4t*V41N_9AN-c0 z;Ee}-n5@SOjjA@x?SP(Gs06((tjo8)jv5C=fn%X$HyVQt15IFT>n!XW+jYc;8Rw2) z`z0=qUM|`dt1Ar|6F{};DIYPFSyiVqywfAE*CoL&TLP1^w`eG-) z(*kO>dprA^%cb*?o&6ZjndYJ3IUK-dl2d`)O=(wZ2dfRDSX2sqlw-%q7!>wK~kJW7pR-qqi?MD|^` zAK`FiJAZGsvzNcNN;W%Uo=xg#IJ433DnV8^B5U1Bg*a~v`_HUq$9M8K8P=#;sDklK z7h8p?QmmNHiE70PfV;GLeY5|QDmL6LilCa9DjZcyS)DKX`h!^WP2{mAwPT>am%6Jm zo4`RP72zLA`myj^L1I@D^<4qvi4?UuiB1~jZ%~(A3gdD-wLj{|6L2dsr^+j{BU1?OC`m+f*&Kud?BAl5R@O;(9M@`g?!kx&yH z)#e0;pYC`utf^8;Sw3cve@3-oiul=JdG{V1;8X@mCF0HKf6{sh$obFwhpQ@Ef21!e zrjl-W2({(TU|O3gU}Bd%A?`QD(NNr&ASMUl2MnbRR1{sHG(m`3k6?_bQH!pa*SqF4 zKZ59tsGmlXLP}S!vLR1Yf_)#WggqC~k6O{6EWl>ztzQ_$aQ31JgQ`Du5b(2x(AnbXmpG-g^`Jskxs zP3K3aqmP#Xm~VzZS|*)eHp7q891|w{X%vDjIK&8VR@^jwKTY7CwgSe#um$L}gq!~=##@mmi$yYp>x zh~Z_E{q5`WLYwkM!Lc!a=4;JE*&{dmyB5Qy@m)9j-E8x8o3hpVz+3zn+nL3dq>Q4C zzRgxN0!mZkrNhe#DxB7Ch$j2xk<%8LUn^B269W5DGEywbF$Z!0Z7dB0iKcoT}HJ4F%W|6OwsDJ*ft>Om>^6FFh})=H)XA*0e)z)AMa7_n-Ta37M%_5gPOdE2c+ogD}`u1 zBGp_bolkh!k9ViOi~QowMQP8}0yAvKFR{k|x|E^^<^b^)D=R6VL!(stxNm$6m1Kf6 z#X(?!J-!%)&`LU;cUvZgr~;9-L>jb}dkEX|5Nb&yT8DLg7`0TI&VRXFj897uHfO1k zyR2_jD*mq(^dxxU0Teou$Y6}x+T>p~Jqx(g*?$xW?XfOl)<;fm(gndXb1qpo@G3coW*RQ_vG;In8e zO?O&L1B(NHf*au%+$&;nV;sk!)EMjjXZ$XUfO3@(NU#r|@wZe0`8h9B)4%!8@QcWx za^aOVv5ME`IlsG=@~1xM@7p?2{_<0=;CT){z3 z6qo8|acw*%8LkOj!am=OVX6gJJ_Jsay|FF+=87nvy#)a=B$X>WP?(ZazVX-KKT($d zB3@vN|K@KAx5{*ZfBrW_(^d+z&VTnew^Ej$|95JJgEphHCgX_a)>eopl$MJkpKbQL zP26aNgr~`YeN9XS0(!2d`5(8_tK0HdQSFI1nXl{2mW_y${Y^t8)}s(KXxB=Vz>~s`Cm&y zw&BB;)`{{J2mB$rZ9B&j+x@*&Bf`xR#*u=;UcXDj%6$S(vm5sMTQsElJ|KCVpv`yw ziFDmIzSywS-_vGSyiLsB>33_`Zuj#q{e3l5Z1;*E{QK#~ZE4r8IN^XQ5M^1c_^%)R zn2%fV89hA_uoBc<@HTTNgkh8F2`YeqrF)}l>G{A>-BXWm#;O$?+R2VF)Lr)%!q&l=fT9XNWrj7>q(>*l5 zGO*-V2H@ewKpzK-AMm%sAuC)>)A<>MO>Bh7vzae?rn5V016b}e0F1p5+-c$BueAZJ z^p&LZnV!JpYKyst*3g@v)RIdV-X4L5A_3Fvv26lHMGmz&BMDwN|z>3S-wA z8KSz2y90P(Na4$IqVDSO7{!J@afcmM-w&8&h-cSDzmcrsr-0NoNDjIpf0HmW=Dg%I5vP^l{6UQafO?r zx11bk6qoVRSRqS0U}=vf(KK;!7q7w#f@uYeuP+#6u_>R-PZ$yC(Uz|A73%VsKe4sI zcI!k~S|?Q-#`_*`aIPRBXq%W@XN-#po4eo++Ll796Jo8=E>*uH^*O#MAh zF+<0Fg91zI*p^_RU0n*}#T46ma-f%T57r=YOhCLrj~x=|UM!`GDx~7<;UNLSn?1H zv+zhmv5Y+ ziqTYyaEB=%ODP3J8)?C50Ylpc^1+kr?vQe3X$&Jq8&MvqBqlsk0p!as(jKWGB0W+8 z7=O7qG-QA9^LViGPd<;9{kCs(@ji zr9C9`;-DG*?9V!fUBT%s30aR(Vi4War4i0vmi0P8`4oE-P-& z0ZwSCi1NcXP&-&K*<@j1s>%pA=rWd|{PH>EhvpgRTR2lITLKO2QhEA9iCAid3%avG zkh4f&P$DEU*96?y zU_z0+^A{;3$*imB$`!Vl{d5AE^Fz z&ZgL|1JWTca!7cttsj&zN1lMe%pl;E=Rn-$v9= z4u8!)7AM9)9iwx6uT7$=a5%CZ!}XHj-eLhw)rH5kH1Ox%Q{3IcxFvt6GhcfgVgYlv zGGHmXvJUEfEnt!L;6D|0JX=KZN)3R!Q9J^R46yAYG9xqD@>SDHV5_G%p0xMPfTzX) zRkH#}r+)@)4D{2GMNga@+O=CmXkpjnjIT9jnK+kp?xp~~zJ*N90uxAfmuw33*HE$D z5ub`kt?k;2)Mbk*Qc;$oNH6XUd|$@~y@^(s$z*Zk5H)jUAG^WnaME=4xgA#K0n-sB zFh-~>rz?&Ywf!paGt5W)gSrXXw-kcxivvsGjR3A;yL~W65Z9okY{LGP-vs`KX|~Op zfW>#Jgm8dS!lK-Tg+1Sr3l@A#FS2Q@gIYa+&?ojR9J3qc*QilIM11U7xN$f7k;aVj zK~wBlNE}uCU3EDjL`6`c6p_JD@SaAkRs)KNVXRlFwD}PzQ ziF=I#TIm}F>|7T_pnL8B0v#5iQ6=C{i!2Gely~_Ov$1y`!8k0wg~sd}rzZ$LD1pz9 zZa#uRP9>C|(jkbU=xJZ0cBC>&Kr7lxS-g{cUlqixjcMO5a$I%LR}tlZ>Kw#CbY^X^ zYegBhsy1jVq0K&zbPHl23i@5ymfB$Z+H3-&4srpWy(t`|!O3u%=YSJ%*_wfYfxrqx zzpt5&*)2>34Bp~v;B$Hh5#GVPo5e0=EoAQ9ggu)e?vc8xNXjNC_cPNiHotHN5!1mI z(`Zx_yBc_^qUda7Q6_j)4GW4GPN(A7+o-BJjni|pH~XjKBVec`69Pp*v0R)eB32gb zY*>#yjmyGTl7?kfETwMLF`~J!VMoCgkz504cT^x@yrD(0MHtrtX0brmC>EKtYTni_ z_+1?v&=|z!tk|i9Jz%On@m(%8Z?(-1QiT$Tn+$uytf{2|{(35ih1SKLf|z6xMpdrR zle1N)IBk&DWb>ThXzFNy=W{`I@m*1noyT}yqZP_ zJ#`{`Az-t>CX5dDs|51T&Zj5D_#r{JHgDH{cu25+d5BM(M9&6L$4ox%=)|r)v!l@$ z%DlBWAO+@bN7lrZb>K0av=7r_f~vJr<`@iJ*)Ei8*$uvrYN zlTaxpSggGBT59prrv%-#I5T98BRPx@jYWPUUWb!u-%m z_*UwgzOpaYT0tKlm=@-Bog3!CK2`za3vZ<=-!u`8)--P`0TcWyfV|Be)abz;(=@p( zrt8t@>0B;0q{$nF1aT9>v=AV=Qi$riR7ZRTVd?@3kAkz(932!Zs8Umm5k!5LLq%Pi zfGUfy`;XsJ)DvV)0kcGcs0mm#N8KCj{%p$N4F3tu(xi)7)>kcbiUxh;IwL?g|Elp?L9NRM-ikI| z2H;gogWq945XxE(X8Z361}dWbSHGwF9KHnc8@DZ{F<~Vu6ki#l{hByv4WeG$f2$Cb z2MB#q?YIXiFqG(sud2QOI92HK-(UnQH9-?YFtRB=t~ULVphxS9x;Ct?d?eV;MqS@Hw8nN))Q4J^<-cMO9W=AD@YnfK@vf^6yUSgQ11jor`4)i z8q{UqvIzfl9T>0)526v^+IPI1ZFmL4n-q=ua%pV+z$XZt;VG>D;|NQpKnIIJiY@18 zDMcpQY6+HjA2)Ffdo_4&wN2<wG_+O~*pMMtbkfJpBdI_E=7T;v?HBhzRUiiioQ27Xfw8b|S zB>2p?sYN)Sq`)n6F+C%55rNzEj45T$%JfVH3BK!HY9_8#6vTB_b|b- z6-=;UOU3$Ef{n^?Nql5bT(9upE9ko!168(x(hUn}C;hde4dRdOAScXwonAhmoM#(M zCkSo%G5{y|YBg>%!9YJ&0pq_01dUF;gDo3qGMg zh1oM|4vK#&mu9OcBIF2 z!#aj~;X;xOt;Sia9~U9cf1r69yZ(Feyf9$HGVWN6r`cggh+=P9kl)@A`Z-4M5(O*O zEOFU8TmJ+0*0;0^Vf?OPyXDKpdFWiUe!HxSb#m?3~0=}Kc3nY=nljg`1r zOqzPqqwng`M$Jjbu`qT;Xuf|qN9AeI=!x#aP&klR5^910_==s=iXxYUPMS_a_p zBV-_)g5hOY%5~ zqi}h#JmJ`Bc8L$wp&@yvyo3sT)+vSyXab%tb$L0|!(x5a$JhZ4H~4A{&}RC>U}%6w z?3OwPVnHjpnnOVRdJ*3QOM{lN=Ev<`Ppsm)pALJfAC;&uGg5uskihD${kj0gqGNfl>*!IThIsqPvK zmkYwBmbMH=oYGja{y(OLut*2jd28@0ApE6j6yLuv7HQxyOv%u@f)G%ogg}8D71O#l zi1(fq!huEj#?YqHsS-e&Rc*q4Dfq)L^eshKrs0GEPeEm;s~XIv`C`qlTh#nE?5y8>o+fwI5d! zY#0&hVMXQf9B}sHs5X{G2)COCY1Eg2S#|k_In+Zy+NUhrH9>elnJjt!<`B+?EWRM* zuE}6iLE@}XqeFZIBg@t~T$i#NW}@}rW;F>JHt9CrEW7K%P=BqZst$YI*lxS|^t8L|s*uaHYtv?{u0kBq zc^2!>SxC=35T@~Y*50i1c-ctGJtpAor2`4JRxR*6@uu;4S&(nIk7^ja#d(G}qqe6i zN}3lJ{(!t!nXoiYX&?0aSHgI52~{)bVAtP&ZXIz>hu}!b;sGS0H|oGA>-j>@}Wy z7`2hE{APLIIdG~*v@)AH2SqMT=T|KYVXf}ct5k`~h!ERAQI6U!KllXEy_$)-Kq2t7 z!wC&s#){i->2-A9od|8Xz(N2RhycLLCYx~|8c@kQst=Sr7|JRPm@Bxz9>N{{}`NQi&SZD+*FXAB`SQ))A)Vo&T zld5oUIXL<7={g0}8}>j6;~yhg$_slvUkPDV5u_-t8@N^jD~h{DxMu{52(`8OJT{jeHsBuigl9duH-mt=^bnWGadm$1j5 zvZ9h9p>&Al;8URirlt+!o_|u*S^Ny@O4ufX4yh;)v0U*lVF!nRMQDmtyFt!!Bz$&`ObBe&=F%dEmv6zgD9L4GgL= zX9S9|@~UFv)Gt4!X9`#%b_xrk9_F9qS;=w#xy>)V;qtLQ7=AbS1=?bRVjhHkT!v81(2`& zhN`pg77&#pf+(rVBlIBZGfWGrhSft`K-E;KSLr0)f1n!evj7e%)S104 z)i#?izS)>#vtGwDLr_g?SW+c8M&H2v6iuc)#s_u@qfWuoR|5&QwSTyWbcL|JA%Xpu zM6{M{3)F7<&d)<}t!RVzv)#k!tVFkxGEuI8@kGzCQN>t0OXr9+?M1`MKsn3Nad9Whza z$w!si?gu>jY?^d3p5|Oe{(u((8zS-(x_1PqVxOoAV=RlC4CvuPH^Jc5e9On!Yxzj$ zaBsGMTd0kR;>HZ|(RiGmtq#Y`bX*=H()nLo!ZefZR~VhYScmt_6TyFa!XDg6O7_rVu`gTL6Wb?2Fi>Lv zhOx)J;aG`0zw21V3~!RklA!=fc#pH0=WR|1zg)#W9qNy<>OtXG+TJtF*jIJ%L|=-3 zKL{BURgBPS)CuTuHclc`sNB_?BV`QqU2;okUoj8eg% z?qufb4i8`mTY`dWyi|$r7)HGjwMbj3OSQlkldz=#AA2hGLnj_3?BSL$M$q^I0NZkY zxF>sPblBlY&`2*WRJswu$D4EHpM zD?4Zzw>*;q@Y$E|`9CBr-|;<;Qa;guNva@Cr$! z+1N1%5_WBP727?*nvudZ@G;cgk&z!s_XH%lLi-D5Wd(@vLrWM7#?6vHf#-@OSKMqcuNpvBOL`Y z5W^claWa4DE>*j|SeF?Hj+g_(m%vfkRk#WKPdFF@KD~>eY7AHRTpCWA!jvM$oY8w! zMK)S=;K@EPH|x*%mXdQODo|uXsiZe?W;kU}5tbglkLqgi&rw%4@eh7(WNa7^;!TUG zVvf5S;;A?m`#=Hvr4iZj=%Fp|pIsfs%aMUN1cL9f-v+0oij(=o-%+J}a9!9ZRghCt z4aMzAgPMo1<#&etN{Il&))UvGLkd%tRQ}$hR40A!LY>HbEFio5E}gw4nU8sl>I7V{ zOB5v*fe2)9buG5VJc_vpknxp5iEA+SF%=v_A;%wEsmS0>Tv(&5lr=G)0-pdLipa-; zJPtM%dBd3JX+;OqO+^})-39(S(NK8c8OwKQ}>#o$dJ*4Wa!!cF+JH_XodC@O2l1n_-rQpz&a4Bqbzd3?ZI*qXeahE7y7 zCZ<)WX3S(mW!FnI6dbn#p)iG`gE$#RY-+M}@R|0WwOxr2Xh9r6Xzy9O-=P3@d9g!m z*hcCthgT!)DJ`l2VNdKkJMK}`jL;L!Ls|RFQwSx+^1|MWo2bvM`6Jv@qIL9-Mj3P- zLg$z*)N#NGF)@j+bUpGhCQs=55qK+w?-u?WGYjB_7Zn5TpwSpU)ce3%wBfi0+ZZ4l z6vg)!7rdt!`lSBgJ>dq6^<6z%hOoC@M1PVN2)3IC*|@1%WWD~M#P`&f&`~Ps&woi5 zkBk=?xM_PB3o++`JT76P8-0jPehVzg8|I08C6M>(5|NF-D7~&-VV;Ty_D1naK>nL<5j>2q`xr4M zkIf|LvIctxHk9i*$>!at`XYgPDNta~A4CQfK>lg(2nHL@JqW-g!ghU&XBuhB8Oblc zM(ovqHu?D;RCq};pWupMxN*t1c&L?tY~{CjsFfu1ZJr1gbJ`uD0TQi%#*c)t?IV>C zpPqawG?hJnga$$eR4<`8u?n-1)seQP7|%u`SQvP`DiWxHA~jgLq)OO~V;wLuxlHo4 z)sc8ei}A?;6oJp1_^JsIw-kE}@1l1I+;zEhC+`&s%vK*^(-* zFBipK@vXf`R+@g>Z(8J#TK5`d@4I;P-GH&pfQ5V!^vwl;7AxBe8n^y zm}7VK8Ex-z7_&cBEs>sVMDK{(l&qJMxW~FfBvzWt_YWo)9OI0j)sXcqRgoscy4X{F zU1uw#&9!$$F!^t27|Hz7lZpNJU5&z$IRj(^yBS5WCiBmSQr!|k9I3`?B|SH>88NxUZG zw(Z*6`$ggvFuwQ#^3{WbBK~k3_lN$ZtMEY}8ds8}AqY)k}iUFDVel{3g;qlQNO6}0!AK~1rO z_P;Mz4)ca_z7JO^{glg+2@Gt-o;5hk-`qL{+Q$Z$#iOk<4{3h-FO|pq!E!ou-Lq`% zR33~&v1m1f+~+G#p;$i4;Lk*;HKw!tt!tEbEBL3>INTj?rSVg*C+DAb9-0QOKEM#_ zt&tI@12>W9@ER;mx*R?)60l(P5=*g%r=dldI@lSB6>V`t62Ccum&a2tMc*Wx`EEl1 zRwhTk2S?pF!3t@M?iuKlTEk*6eS74cs(UX$f7GZ}dgyX=MV)L>diu@?ULOTB9N)kT zBQe8wMNlB`F?b~wyiBB?kQmmkz$*bUrQnds{K&!xt^HgY!6YAHBgaH=**Y29kinLT z>nB8lbc949+88J$O$Ec)wf96m5q!$2fRM_c@-S2mu?Sx9i47*5@Z$cLkr9_8kxiwr z_9Ui}h>i(i_M4!Bs3kKQlZ&`GL43Pu%EP*nguxA?Be;#8V0;Wp5|VlZXmg^9isXg4 z-M=%cNTXUwRFO`$l;OfhsfwOl5NX1Wutr#@;)XK&>uvO0Fw~4> z-ftE4!HGjJpDeg?DCW@uuXNvi}pfULH_hM%{86I^>b|eh^YKz0wyG}J1{9{R|H{GK-?;= z1QHh3ri8d$T1c>}4%qGC`G_KoChr%L_Gi5KenOnSpCI)Tdk})iAEEy)9K%@=?V{Eg z7lm5#3F4LTTPw5Bu55J{eLkh=*6}s!r?{HDApEPGLp!CqF2Yl2?Q7IkHLSb~IF^c& zchO(VgM7+<)u#L*AyV0+%9)*orLF>u_Z^m0E$}jwe zn(4Zoh@iNHF^-8~YNyJNxJy*tWq;`|gi#Bw97%VLV&ZPXJ8-0_Yy%jkPxZVh_p4)i1zQsKsVPq z1#(X7Z1Y7O4QI91IQg!X#=Cb>uEYoX_903qa9|a$fksop-3r)1+hq}6Tj5T8xX&&l zT}m=B1WLFRU+}X_h!!KQjQ)4DJHN446j2YYs*jMwHVkZbOuQHAA+P(Frr7EZ(IE`( zEEclo2OqW+St-u$a8nfV3=K`vGqbZ>g2QCVO@U%d*SewzTQh#3`3@YdXX8dh@r5PY za4BB9oQE;a)IdD}^m^5KKU#4~GJict?Q6|J^eq8?czP6HJrO$co$2ADR!Ez>`zv%Q ztzjhdlcLl@ywy=vHZo^`tkX9}5vy>UE7-(guH*QCLD5`Q z+k5`Un1!44kw3`p92^}kS#`mKVm^b~1@6Q&E=*Tnc1dmHJlCXuyJDFi2RET^@|aE$OwCF0V)ZbOcpqpGefN za4NsV#qFr4HARCKL|fb!i6$)R7K;~;qT1Zz)TI<2F-me-i!OIqa-!!6ZYF{uUkaELY0_n)EcX|^zOM9|} z${v^{O%-kL$?;TWf>s$N&{Bo4+T#5tMzM_dRvd-M;z%h=a6G!{D*)JVN5_VCVF+|x zA{sPNaX+>|W2j(o8-PzpYF!)3Z=Vvy0!O)H zyUvX|i=|{~q!i8zjEFY>qy*o2C3&Rp>2^z0F6ni$#8&OX+s64PqFu}4n8h|SI(mAv z#hOux1Rwt^a?H+?(1a=(xp9oWw53KqxJG#g)7J?KVAMR6V=!DYrZ(W1fJH$0L6UyD5s*OE?6RBgle{dJ=;>(Et-9Bj!3fjYk92sNFm~kuWifrkM43 z^_D1>FBeQe;I5z#C&W#xSpTHkqgcR1^9WSqN$Yz&inAAV8>D>I1n;1c?hxsDLAM6i zBMD*LREulk&cq_^Bl8WK0^G1X>J;FX9(a)gzYy7>RKpJOvWp5kuHPy`qCi#!B2q?S z$vqUb?!F@0#70eywyDjeu~v&}bYXcSFOTpXe)nnQyiI2Cls<%NYiRnENvOviW;p$BK#^8=Qcqo_(nDj(yiVt}_iWR9l zZ$^)kpzn=nlTtx|I+?xrON%`Vc>XQXq(#NB_vVw)kE+9{I_>p2uB6T!m*u?fdL=Aeg_B=Z$qlae4Z>w|B-Ae@Qwj;JR;+-G92 zLFOjhg5njY^28borDBxrxJ?&w!pVkqh|oAvQgHX+sF*Y@KX3;RuVLY|)UC$r0cL*Y|HhA9w8nhJ)os=re` zfI&GGkVurO-26U`%Jw}5m0W_3)uSG83pFj~ikaz$mqkMs1Rr^cA#8oI3{BgVm#O?; zJE-eFupE^jv0d**`&4IAa-lQ)WHf9^SC(cy8BLX>@@XGauYYo-E)`i)8sDtcd7G*H zi%*Eh3om0dfs5wxsXw;$3yfCiHuhYSy1tmNz5JDE(29#Yqy)p=^eFof zEe5rX(TJt`Q?%)2vws>JxC4#Zgq3-~bcOT09cWi3sO*!jxM?}orWxdq`3Q|$3R&t# zSrBK6V+YX8D@k;#@(xoJ@*h0FKb_4FNOrgrZpqN*{ z+pjohAUt3q^@Pyr0zuwPr{hIP=eP7|#=@B(EkWejy9OXT_?CMp6I@L|TN5c znqAEMWz>N|BwmjdOP*;9<;&>L|2z(Btq&Hai|Ec=kQxW9jLoCt60 z)$A5hxNZUSkLbWS?k|MICkBqRYxWkwW)7zf0(YM}(|+oL&Y)grf(R-V6bd~+5b zM106!%c=%7H<1ehhNMyH*a#`saKJyTtP`ZOUe(x~vg&B-Z1~{ji!C!PgBN(N;QkYv zI|xr`9!3)qC1P+x(vpid#y9<}8ILfugJ5j|*Ptl+1?>ID;8eV1q78&ijE+1KmZRFo zL&4C2Q;{xj5FU7{s`pS0aJKZkW_%7(nH0P9!5JYD@ADEgZKA%@TE}YgrID(pgBmuq zK#sR=$)l-$kHk=eNu0_O9T{_ZxU7_}%cR2;D+f?nG*&OM0y{ha9xF}f?3`wr zBpHN8z24tkPnQ!QFd;%2R>f7ae+@N9N}+>;nqx&;Mt;0$Tr-}-v7ezW+wB?>?7=7; zuCp_e`Ge%7@icQ!g_>?OY?I2c|kc)jyBO|uU&^7eh zqpb08yJI$mfzQXHVUiHr^%{n5(v8x(*jm|n zWOD>Jno8Jif9yy!C<7|Ce!K~43PE}O@p{;Es8m0%o`^?Ft{d zFg`|c;B2&XjVtp4FA#e=>!oyU7|-2J4GPplK9Z>1o?uIUqXKRShYJ5ym_CF7x1?Gp z%Aa3IO$bg323utsE=#u3^zn;S<8iSaKS%e(7uT>73OC}zWAqUjJV|Nbf5&hH$|8Y! zDUcx-_NxT)hZid!N_{LpVSO8I2#3_9eKGQf-@L+viEHz4RR0PX_dl#WBa2@~8@`Z* zE5-PuONo5vpQGob;#rJ$B=01GuJ}ImG}bcPhSjG8mS!EVK%X&nYAK!9E^9s;%R|4Q z5Ds&Kr9fyK%P@AzRaQWoI`nIb;Wl}G+w$f;RqU_7La)$>R=DBT|JUAmM@Ln>eVo04 zgieqSfg})8b~j-++p-`CA_&q|1Qf*G%?1ccM{G$59SqVLL}?a4L7KpVU_lhc3O{?r zSW#5OUQpie%sg8r8BG3t&+#0OWagRAJY}9c_wK!O=VGFbR7=%$cV;ypPw?al4>ZXW z>{3QQ-Lht8@n=&cLT6m$l8!_X^oHRVAIvM+&yRcV4Sxs)?w;{kt+1(q=u!;Y&e=FS zRucJ^WjSMrm>!KM__5BtijhYwfm@DfZ!y^1!~7UORmP8T2lkW=4-$VD3NsrG65hNZ z84na>4))PverSiQd7$#xSH=Ae1Utmenr?s1>@tT$G$txJ=?hj0m1hVvDdS7&4Eq(-FyvPnWlRCRu~a&o!}6y zouSK4^5g7=Z7_jLMe@Z#$VxMkuVf|bF#|^G@g}5DVc(wRjMhfFdiG6zP)*o@?5l(f z*o2ryY9mOmcleP6PulahC2i0zU2)m?a#C^q{n9?T8I>jAhc9G#?6Iv`_E-qtmO=54AG7dq zs`y#tKh}TYQ&nBea;JMwF0Sv9d*YJXc9dTqhUH?9V3K=T(NV-$FAL51gZpPbmX)5$ zTc~GEx3~)9`$LPq`0LAk*ui629n-38o8$Jf!Z&d)7<4o%p<2yDf1c;T>3Y1n-GBc! zP8QYgzUTsvD+^uOlp>hkfw#DL07YMNOHL6$ zzUZ~8<{}v#9jnze^im57V8^s-buHpoy{-qeHe>2d{vE$K8=cKch;!o}`^kWr@9`}VgE|@OdWH_T2VnfDXLr7?5JEF+MH{~Q$x4guEezdL-;Aet5hYX|%66IY z_=;o~~m~mmS86>eMwmqqU7mjr=g%+?Ay(L-y|G2eA^UUw9?Z$%Pqd?Drn##=={T zvc>hyj%be&19x1`o&D|-b9x-#o5UAyhO4;_EOX`O&atdcs#)CekRmKP;UWk7u8A4H z`Ut>U7+lDRS4`5cGUH+0z0J+|wFzmDx@NutUUVl;olDZ-Ep9?cQKY-~(_mbrI;Ov! z1I&1Ex4jja$NP&wH)fb|p&jlk267MPDG8r&{phmeQjL$FEf2e;JNf2BW7x(fu_7#f z;vyS&3XiG7M7TP1&oDlQ@CiRsxsZ=jSSY`80k1ORDv98fvr=uS#SJ_q;Sm|9^aht4 zm67$M_!RPVHZmU%v~YQa3j*9;bK%3`ct*;uhGlz&-1r-5XwwE1|+%Mty#*Q?1{b@ zUA-*yYYD|MqXTbou_%UhiLI9q#mtVvm@1k(*^`K3^_qrCX7eEaH4-CQy}l7eS6VfU zc822T@ffB|MhtUt!H*phqcKDWa`(P5?1p?CZP5l4MA5*-9?i!gcM)M|!eSo9>&GAg zM3alhMXD2Lh?}M(jMZuGVvkKn7^~GZ^xIM%#xpYz#%clV$wITUdQC&cE5dQCiG?QE z7OL3XQf|DBZJqhPSK^ywJd9DfjG~mwC`M%oVjFb)08ee%p;_qHwS4LlLFB!AFB(Kr z77b!`n#&-jRMk|PQnH>;dm@Nc0o-qw2x2w+j^D&5Mg3IlZ$qn*w~5B{2~`! zkp`5DqJcx^VpJ&iU&s0dY&6Ml9Z%RA38ZLr(Li#9Kgr=A^FcOdrEz^#w8jtY>1KCo zl`W+yzip#HrdO|To{a6QHd=OGyn{zFvCN#px=%LO!u$Swuhdgpa1!Oqm2nakFEn;p zYi?h$L4s`HWQ*3CJ5?0oMhlW#Y)ALyJ|4=>>&&UKjV?QA#&R;DK}?8)mzq0Nl*bFX zldW57#`c*}^Eew9>3`xu9-j}Et1j?15q_g;pvwPxh(ds0aX7KEkGJ4D58vm*({y<- z!g<_Oi^$+Nm$|s#xT#jDJ~Z$spUL2GN4yJ(9^FhjD|!@19GuPMA1EPFJaq^^U6rdt z?;PXP5ghDTS;*FHG&^F|P+y@NkMns31B+EjHV+=6ZQ5&YhgT8#*8s&m5_pvvS3$6F zt=S!^!%oX+>+5Ez3TB!imT*I9!I!==Sk*O{Mx!w~x6u<^vc~ zDV529;S`_p=)TRIB{j(elASHyW_DMq4ZTp#eR=t@ux$!)D55^5IyCTe=}kx6@p9r; zBM!8-_%(o=yH8_hF!+**&sb7@E!4xybI&6AQ?}sPj3WG-U^%Y5(Ec;zOoqgu3j3)` zPAq7IJDJ3BS%Q?|+YsB3X|liA`p{)($)&J?u~N495H5m*eX-S{W9N9P{cr?v$ipT0 z>S31fhVc&kP%mGJWgPIVJxhGn93N>RHzN0-1r9U#=#EI_uF+DG7s~mATuhDfY|;Qr zQ>6pptnC=aj$2S!e%CRxCn{1kgwAuH54}j{3s`Bv{q9sjyV4-k?E;U$Cm-@(Ax>-y z854qBtgV^&2ENnO=7ia7ND;vh@fZCHPnbPAL1=Tl1*zKl4RaR6!mRK<{OD7>;+Im6 z;T0NVt)_l&DaROJL>TH+*8-=veHOM@!xz0R?5ZpY?XPcNe9zo*`M9`JK#as)wGe~*tuu%7K-FZ=ID7hnz zc-VYh59i3h%CgYr3_j>5e#5Z1u)I7b#rccDVrRp@YFRKBhoxcP`Fp`mc2&Fu^Kn>4 zW6sGQnRxTCT_--~f7Z5OR_1Ml{+LE$Ys19zIKCrNwfj-$F@r>8F{J2zOD-Sy`~D%@ z74M{Zqw0svtEgIZkmKTG59jgN0e84~&f^m;__!`^dGPJ_;dy3USb#6PK)^TJhtsag z)uDNp^1+6;8A6C;AE#13R&!ZFeQva(CbZ#l8fe`7=WC`g(qcUt?)%gB7Gj(uGQO0H%V>-% z*M}0WB7f6mk37U;otfxTT>f#NV}#K@xzjp9Xz2i+&lpoOQ*;``@c|XKsDe<7!Q8!F z*%sW6;rlQ9Qut6}IUw$$^3}3uQZSTZ0alGcfU96{s>L0trRL(+@RDIXbHC|e;j681 z^~hZli~m5`=w+@8fn*D3ufquAhz3$fkSe2?nzvc6BgKth@c z-{B*zd>TZ2`3FbE3lJZ4v1HZ^*W)H1-ju`7AoHabSERNj)kbev7p=^MqDAb7iI%R$ zJm@%-*@7)CPwHcAfJMX7oe9r#OYVcDcSd$?QCL%C!phF%+l~VqBB;|>LQlEfw=cc_awZ| zwY@IvUtpXj(_i70pQDgOK`h76^+2@IP}nFa*f@D-W|n~npXp)oh+t6?Pz;eAj_MfG zuvmudB-e}XQm@I(W$)c$ak9bJC)H=ICRm!X#2%@)vHNbdOfW7jX5~Z7F2h^QmR(`_ z#TZ>I^J`?W%rE>a^6MSm+lXS3U#zUylFc^uOQ~(#RV*`X87Y02H(OjRQw&1Eib}8| z$A+RM&#~Q5$aCyNPN1?!cVw~9a&<9JvVmArhD}1Y-frQGMcw>)y?8%pWM3p$M1&=n zT$IbU^+kq7s%!FUw!2YU6XSK*%*W;nuIFWR9m%cF$>wq{`2-T4TcYq$G3D0p#WJ@( z<4rz-#XPsri5NH0P7sCk5}8$KDXbG1tP@#B})by{Bu$Zo;gS2tS&aVfBI1N`Apg^KN;|R@J|0|IR1=+Gr zbQFOT`Lq@WBA?jZZ&?N;{LXts&14(3V)#2?8Bhx!SHPo8o=kX?1dnNsJcetQ{`oi; zL?sDal7n9s_vK?6j@A?LU`i9C=}czN&CH8$4>gH1V{$2LrW}{Qxd9y^;khIV?PpRh zb)6}5=>l)kex}SNbRtH}#CvQoljl;Gn!;8&4&2tp=dmr~dt-14l{Rrn#8zYxewcIT zqQDVu>ZqAAeG+)jBZRFB*syb!MAm3ndU`@lUOizZ+wDfA_}}Aa%KSl7VUgfqk;or} z5&7eZDvIhajKr#f0c$8Eb$IXSfM+=FU+B zh|fn~&y>0ICCuZwgMUTtG~&H}1|NCu)G3vX;!9=jv?-ONk;oghD3!?rp&&&iNRd6K zU?j4~)P)`S)zXBe_}Xi& zX1Iu%7q#Z2Qrs5Cw8QnHJ2Bn8hct^!cSy`=)@D-H)|(}>w)QNZwPtqn44mK7P~c}c z8}BQ17Tb7>#cQ;i73r%UYcRo5-vG0rleH6{KkKq}w^{nJ4HGQ2GO)Rjx5B2H6|xQ6 z4`Ye1cxHX)?f3!2vCL{>Hum!EIQ?*>b9Ir512+V&@H4BI`!`@#Oy(8LlE@NbCwjbU7E7LD>B4t_!iRBq)?qM(&-AOJUXdkD zc%W^PI2DNyWijBAt?0#C^5QaX$ZFxm0%IpRa4E0cCLKr+g{`w>`k|#TRbVi6WQk?` z#f>>vLcy+%MQ@Sv9$fje4Oi?=?aC6b%}g{=vYn-5`!*)oOtsmjM%E^)@1*&w)@+$> z#_Wpe21=K1UhE|Q?~|JiKLfF(i$5ohrdu^JXEfcg^HVi6v6EM4Heqixv6|UUgOVF1 z4CS$~&yLBlt7fzE>oetn+8Y9%VncYVp0jCkyHSLMiOKC6DUoT0e#F>`PIG3^I=F8_lt(9BC+G;bbDmq5{l{92BPaXcad72Cn)JVfq4N#cX+G4Cj?gq}d6g zP&Qj87Fwo`rg;svMe{1ECu%@6ucFczD~yA)*^wVIee7etW%MtJ?q}3HP=t(&fq$4 z6y`24W{{=Rc;!^GR1_x75yNV_F~%Z+!Xk|A;;3qj<<%F}x{egw&K1x|J~JUYCxqt6 zk=#3nkECV)TuZaY#t9Vo31~KlUY!#fx7uQAWR%OGCEQQ7dmgrwG&Ii5!ACJI-QxF& zS~9jr+Z5v^_!~a?nf7u)Q+8pmWs>o#oQ_PXY?;mKHrmYtmTpOEBF>AZc5HnoEB1cj zr^VanCUs#vb4_2eN&770;%3doRvLfTzuYL9%NqY|>9FFHj?LrlLS^|4NsiEx{g(Hd z80#TAZNdJY!`nBDKg*4{kLzf{HcU^7XD{G7)U-w_O?=r>r}3P*rW(`7W)$92r$!C5 zy=$&G&l|VT<>{Hp{%>u5+6A@@&HzHQ3~Rma%dF3tRDe)C%Jj8Hm+$E%ibtU$Hz< z+xVUWQPu(UnYp1;Z&|!`j0O3gw=$Tw*dtin6t7KUgwi zo~g!Icri9}Y}Q!wfKNm7zO}q-G79Iho4&W?8B=7_6-!fU^14^P$6dj~d8QSxvDO#-7l6lan0tFzDwpu^);Fw)%VFSmQReF`BI-n zG_uCE0LAsiHNqbsO-ahRsII@cE(=Q>)b?^?_WUZ+?;?OH{F)xHO9}E2j|jG)&>R;J{=nf-ljh-JsVdDUVNJTg|&_}tR)RY&qKqJ z3K|{{YuFXl(9rbn3L24uPf5WkQZVTP6vQu3UHCn$;FqX^1_qFSbDP)pY@dtMh`GZ~+#_&qczOn#TIqw9YU-?XcptcJ0__HLbmj zX$$z#WNpTep2<)WbM$1Sg~r#i)-;S+qKz{lD@`yd#aBtKGoETn(-5 z;=Y4f;^_KjK{VUHS`f|lKO0&%8}SQew#O~xjjVBJL5Xbt3V(=fhYoRMRaACq8lOCI zNz2pSu~3X;oNb|)x*tr*FL31g{kFV7(2EbN`Rx8&Y}f8|`E2=q558g(WaqC=n&qjg zRr{h#J53Et88>NKx0QTFbkRx-Mt_(ZJ|EQX$-~hXT8HFX?MCl~F^OSYC=(+am64gh zn+%^x%=~2hUD9~t_JuL0z9!AA&lsyv!%uw!IJJCXD5JU6VKO!^lr#P{vX(v2!n)Jg zFRbd8FoG(@FU}=okGM~Q?nR>BO7`%HzV?-55A)?Gt*nM&e6x^!(#G1^ z_;H~~TrroUZeWtNMcg+Fd2Y2~vy-eTM$JW$2B{E)bL$r0)bT04sVNjhewSWiEtyEk z=2496Ds5|R%KODvB`}lcOB2ORUeUrr%D7?eka1lXQO0#%6wNr#qG-k?C0q9!*DaD6 zca3Odjk^q#n9tENI-g%G>!y*ytW+qR9acCqMqyEm!tYb9yNvru;k~4AE-8#F!XN*d z;zcx19a|*lsiTYdJavFI>uBBAB4V~^*HKg868rt0*qXEdjX;?xU29t&Xq@kY$8m3jyP!QG-h}8h(-!!Zt z4Xa4Qa?((c0}Tf&XxJ9kur*c#kbl##i8Q=V8r~rdDY@1^$OihnAo`5~<4yI3{g z#1Tk?kyv3c9%WZJtlNyFGI6byurns_D>mK7Zg*OTC%fH#x6kLpmT8`V({Fcr-FOD- za$w(ddwzjEKeTLtbx6$=e2y(x;LP&`^BsOCK9`t>9Z>uMXTI0(3-X;fLq4x{y(t-Q zDA)>u1@?f`9Yim=K0Ir125qi_fYV|3VHd8&)~2CG<<>V%DOKq8vq2@+0afZ{lRmRH zOLn;fzImM3gYMisk1HR|yiR|9LBQtl z!#_LR^m#+euCcB&l~gq}?V+*n;1Qz-47#FM|It-srBiKPRm9qlva%`fTbuW)$|dP| zZh@`9UEs(I7PvjmfWzyz+uQ{O4qwn`cY9o(nA}Xkk&=sjXY(8mIPc^;(E4!&f`E7f z`5weg9%LzYyDymUaryGy{-D!`t_nQ%T)*9qr3ra9S6%@_D4WnxR)uza0)-!CRVfxn zS&Ang`S0L|bbf$O5xzhm;Ki}v%kw+)>;bPF!sJ|st-$a0cmn}P0Fy{wUND#o+pr0* zC*aA)+Sh53BP`eJgVDK|DlqpT+r0>p%WtOF3|FOju7De}fHdn#9UGk2>JqUrw^wF zk2@H2JDmA+M0q{IJeQphvIpysJwBv{%a-f%y7G}Dn1f@EsN~##SIh>MSO>NX{;OU# z;WKNCWWV2wvC*;mp zJt+a4fZX|c`F?!4*69j5^V~Q{g7`|2)0yk@dL5L0Hau{17C12t!VM?p0!(Z9{6nBN zM*+TWh@(!Ns{%Nwx?n#(i{*0$`~jcaG-cd8*p_ zv$bI-e1E_jbEbk_t{}$1?<>I7kP~s{FX?$PGESS_7R)D~s`}kWXR4|OMLkNYN<_7F zRq+a+snV-*35OKU(d^vFq;!_N##+DL*o09l$2K0mA%NS9iPt1$vzymgTm5&b_}`@> zu6O^tRE%6${&%TZ=^FLFOU3^#6>;URo~Zu2RMcIg{&%VP-=(5>knsQcQjwkd%UZ{9 zltrIsBpjlfj-Ae1CmVPe^}u=S)p7Mo%1kxN8V09KnK*?VxnOOw?~?4*Ms(xi&{iWG z&n1SJv5(>)7+l7t*Uau~TsMzBQ#0F-e{^(qwqQY zR~dRKe4hXHEP5(D#{as%9{zek)S<`17x`cOQD)(B{?}yFg3$3=*~d-BcevfUF2`nk zQ^xG|vac}yLO9muWShQWle=d-*@W8JDT$|n;F(2_#2R>_QTR1l{*<%LXt7w5O&3eD z<6=oRWsL`ByNt$*S&w_OTZiF!jTN{%!Ce=#Wrf+jOvHB8vM*nvu;Yj=AjLBXF3`e> zO%-@K!Al6-ilcO$|YuQsR6t=-VGS+qP zk+E)bkBoI)R(@^eSf{m8U^l@Ig0CRhp@qk_R^ZVDk0kgOf=6oM9c>hN0l{+t-v*b7 zovUSkN>bR}#O@%)PZPXD3+J^{;P(lBhv3r$zoUhVk`*{^i41m)B{JBJksJJwsKHA8 zm4p3kiUL~+&ceSXaGBUFEt}9@VTTfXH7O1de6<$t-$8+k3BHryGJ@~a!pqVWcniS~ z5xkG!hqUn99ToTl!LKf1C+9|8epSo1$xzroi2aomCoGk*{#6U#l&Qe&m&$=kUMdI5 zMsPA4GOqGKJ)EV${Rr+u@CbtYXyI?n3OtSA$xGR$GPq3aWG&mts<7*bT}z6$5xiCl zPs>)|V+0>1_)UV3YT<)93VfE}ZwdaJ;BU3?Kb;h~xc(9H?gO+^v;k z-P5kHJ&5hLOb*l_g1c$q1-S}bNbnefZzFh&7Jk*Cz$*w|O7JFvmulflTnc=c;DZFe zMDRf^Jj|`YUl9B$!9NlFsTRK9qreT9%V5`AE(4adTt*vf0*fj~yF5>UJp?-m?nSUu z3#WHh;F|~@MeqcIM`_{lT@-jB!Se`a1kcmLyDnAWJp}J0_!)wCYT;kHD)0vczf17f z1i!0=J71>2HCM=Jn^wqZU$R0*+r)f#SB`c`cLmNS*i3L2g3Vg^xgH999l_TSoKNsI zTDVS61uh}@E`k>me3up;c!dIQCHP^2_Y?fE7GBXyflm_r8o{RseoYI%+gpMEB=|Ri zYp;~i{!I(F?W4dQR?4ADSt*CgE@1=Z?rU?L6|Xw|eHFSt(S3=&o@kVH^p>j>dOFcl zh@MR}$~yYnehR&w==+G?PBh9o+CD&`Um*H9qTeDKWgUI%K!yH+=uLoaPw-d?-%jvYJ-p}| z1zt(;G6_FG@G?F8`n3xDB*9Ne_+^5h(8EoyQ{XQN{!GF@6a1MT9x+UT8?BbnuFr;S zL$uqjmeH=iS{v>4!xcD>V3&k@6YSE%pN&vpAHg?Dcp||!>fy{A6nGKA^Ci57;Q4y^ zmXQklIKjIle1za#dU($$1^$rW_ayuc!SCte-)>akT1-aUVCN1X+D({@w!yT~zVs#q z&LP+$;Y$g&=;2bI0uLkjS_uaUzE%$(^DFR7g7L;YH~Sufi}Y~4da5xiLs z4-P8u{|J6v!k-ZQx*lFtpum3-{JVtftdY_FT@SxMMuF4T$e~JQN1leyxdf-K(GFGe zI0YU+@KqANf#9q3aDJfz-%9XQ3C|&Tsvdr1yaI0^_R(w;oBxEaO-h5p+^dcDlamyx8c zzYzSn9&SEEffLutXg6T?Hxcc2Yh|<>tkp*QhT9a_OR!tQR}$>j!y9i`U_Zg5B|M4X z(R%ocI~4eCf)_~mUV<0sVe?%IyqDnJ5`LE8-FkRpkph22@cR-zL-6~0cyF-+$KNNT z9mh_VBic>xlhKa5PaEw&N))&g!Bz=(CD^KmyOk>NaDsK< zmk?a6hhLnnz>gBVMZyON-lB&a%vInw2tFa-YPr@S!?x%-S7b)-zf~QG%F2U3EaKYUQypiB_ z65c`ZIz7CtOo5LRd`!ac5PVDz|FBqrefTE+ZIk+;Fqk61-3ke|4V%?<07RgpU%uM-N-q zDe%Vxe<0y+3I0G2PhPLU2^(azYqH&Sb9x!gHppn#+@Ov2{tXIjBRE^a-3ZRs!+&j5 z;1L90C*d&!U#Ew=KcK*~2riNEQi4nL@Z1L#cpJf6C47+Jt$O&ShZOitf=^2LQ-V+G z;YOPk_-}&$lyJR`GTMLY;cK@jaQa3$R2|rmmKZ80!5ubghw9#~3OtD5{t_NVaDP4g z@goX+8^O~hJdfb%dbqQvPdI|3&c)cDTyIp}_BKQRfzf157dib%&6!<5Ce~_?g zlZ^Hcdicj33Y@e_M!OYDO-8iM1h?9xjkaf(0{0^LatU8U@a1~=uH6bef#C5HzKh`T zdicm51!e@Vl<>m@uhhfwdlmQ@f}fP|YXm>3hx_eQ;I9e(Qo_Fx{G}dVx?h1Wc|b1f2fCZo>Ji256WoQV#^$ecJl{iv}--6 zjrP>171&O2j)X5GI7bg3ct(M*CwQ2I#}YhD5C45cfoBtp-MhHi%LtyShc7>>z}pFa zM8Z!H{D>Z&|C|E9MezS5{29Uj)5EVkufYEh{Fj95KP035mmY5Xf&yneB!?=E*?Yie z7r|){X@}~%7ZrFg!2=|GBf$go@O{S>_;!MCmGFECH@Wp8ta`zw4%7X?u`RIpX4RwT znQu)_>($M(FRA#P;ggq?9v`3{H^?4$kvSXm=5%~TfnO&0MG3!0@QZr5@Kpu=nc#C0 zHXfEka83{Jd`*GdJ}ifzHTIju5LgIq{jhcjetunndlTGK!q*bqQxAJjD)2;tZEYUMDeyN0eq#nenSs0{6c{*5PV+34YtZ?pVz~$eW}2iTjfx7WQ_|k zRBnPhZq*J|lhX=3gy4Y^9!>B-Jv{tt1-^se84_MV@C-e??i&SukYHT7bF+67yipH- zdPad?A^5n2-zWIE9?tkqfqx*2b;Dsa?w0!uAJs9SDhySKpMZQ4kG_m9Flh_y+!$2K`k zHa(n+O_O3)MUNzSgoFzT9-)V4m=t&}!Lua1g5X(t_^_eCI|$w;;ltZl>5hxKY^tfS z?-2W@WWONAZ|W8IuBE^=wzJ8*F~&U7riLtWZBCByx1PK^ULmu#%TY>a=az%@2-cL& zE?b*ZX#x3(1O>gC&_Mz%%X~7Nk6!2Bj`I1CGkmyTV^z-@(`YWM7Nk?lw#!?So#L=vVv7{+^HKrOP=`p!d zD*G{+#whF7{7h)1uzdvEOR&96grcZJA5T=!$pW1~YD)|0S6?hE6`2|{$gP3&Sl`$21kJxH4OljawQMp>shB}t(_CHfT6KkQ)3PF&RKU|R*Qw^PQu_D&h^ zRy$?9QP!z`w4FjbiMH=#o08!*!6@qBv&jlPis0)>^?0ID*3r&Xg`P+BY@%20WWIOc zwI05`y#ntfcss#Ql4_K7s-Nnh(C_YKL*Bq${+U=!{)*wDR!p$8dU=7G9j8z}FBwm|!2NMp>u&f0+t>*DjV?4ySjq9@%i3 z*xU7N3$wyLOqw4c&5sj}vQG0zi$cFf^vgtli1HT~b$XLkfqx_TXM$_(mhnber}|60 zmlAXNk+NHkR$EX`cug>hI@r=lf%_8N8%r|yyI{kJMp;KsvMKZwq9+nPb2mGA243so zeRc)DkKi=~KSHWe)~Wt8SD~NV&5nGJq2A5PJ4c;9qGvC2D(rWp`5V&w7imUWr+JP` zp_}iK@out5hAeFl+w>!x-lK(&yJO((Xe3^}yOh`gcqoeZj0}`@nj7ZDz}t+mL*)4f z6}tZ8GH7)k$LDR}_Tw^UDC*!b-4xhGaPH%Bw0aVavX0(G(o#75aCgf7y$TZQ%Ak8F3VK@Ph*s zICY;KuXg)n#5)m*y&%6#9Om@7>3a z1fp)EsDndSEAaCKKTE3LAk`@A==0Yo^!G%cA^JSgDC_7RLlwHkei`zn`(?;G?w13G zvW}j2okDjfy6b-VE;PX?>fo1$DeyRg3rO`0qEXh-i6azxInhgq-bggcI(q2!3Vn#^ z14JJu8f6{5_6CLioaplX@_lH6QPjbwMk;WFkc@cUkc@bnkc>FWIywz6%g0*#T#6?!z$BZoG?a# zhZ1}>sSXg0vX1UQR-ucDzLV%OqEXh-%f>167NQ>_dLPj!>*%)&75W6xuO5)^MiY#p z4sLU^0{=nqucSKRpo}=mI{Kzt6uSLE8S&(Ua=dIrqpYJJo}keEi0(u52%=He(cer| z=xIbxJ}BRhCKyE>+-b4`uOoOZsoq93$~t=56oo!U^iiVUBpPKMeQ>HmpC$TRqW>lu zWgY#`G=*;YgbaDJC*(WQPss5?Q3v*(?#h4v8bB)S*TDC_9-5{15r=ut#ZAR1*IJ$|M_FC=;%(Tr%6b@Z-M zh2BH-PNJV78f8vrH(rcgXKLO&ZbES7fNt%};-^lWJ|z%biRCQ#00wR7vUQfyp&{4Y7( bjV{zB%Hgox{A*6@I^-k1jQxnq?lZ?$R U3@j{?j8iSmEzLIH=j^)=0O+h0_W%F@ delta 64 zcmaERiTUj%<_+sO4a*FTERz$aElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN U4UJL_l1$Ug6H_+d=j^)=0M39FZ~y=R diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index adb335a6e298ae7d117650a8d1bf8740d444b363..b0cbcfbe518c43e5d510c7ba54ccc20fe00b9b19 100644 GIT binary patch delta 423 zcmX@RpY`m1)(tB-4NbEwE0Pn7GW89TOiV0IEe(=W3{5Qz(oD@Q%~LE>Qxnq?lZ?$R z3@j{?j8iSmEzLIHB^;*(38WTzXeG71TU9F?4ymzaElo`lEzQ$X4Nc6F&CShCEsc!QEDTJN z4UJL_l1$Ug6H_+d{ul?S-RS0^0q4L$xT%X(-ou{#V40l@l9S*B{}(HmDc1B zjS`cCs=bL*c&X;{WT$$G$t88>lU3`qrZ12KnkG=kGQCcTQ4+|InCxGtI(?-gqcpR6 zOzmXFpE8qA)uItuF3KWZ?FOrGB; sGuf$8eY&A4kR#WmI61sY5a<^_50I^AnIsgCw diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index e58d2cfa69b9996757b78f8004badb44d019a3fe..9cdd0b2d21bae0ade57f125be96bc1a98f9c5a9f 100644 GIT binary patch delta 9801 zcmcgyd3?>+wzpPt#!Tnr3=uM%kVHb}IVl;4AtI=u7kx#LN)AC2daK5GYRp5sQ@d3| zsN2TXlH8Qjs__|$QqdMyOVQrzbuJxVZ$G`a-X6{``8g8q`{Q1J@cXT`_L{zHuf6u~ zs5|QOjmyV-vF7<*P2R^0$?4AQrzV$HRU{@&N=wU5&rX^=B{@AS>GAZ;?93_IWo4z0 zmrhE}%u342nv`0Wotd4{{ENYyp-)cFNlwa1%^>6ZjwWB``;e;quAan3HKCf`$wDpZ z+V>$f^}70HG~B*_~XjTzZw-Kc>kWADUSRb{z#<+{h}%FVTE zp3co9iGxag%Y9;N>K4?+lxu2tlhT4Xl2zi6Itt0=55~Sl%Z*n*#C5FPmqEYvfM;5c_tf z^opl*Pl=#+4@@M*^P@oh7Dn?k!GO2gqTAV?f)sAGH7xO_il>uC#PcVyQp5w7Nqu1+ z^PJXzn8#%3M!I9VRx(Oo+x9Y)Bn>iPk>u06>J>omk%-z{QIn;56AX0LZ)J6EJ{-O>Q^ZApKuRlnv5 zPaAjwL~&?O3k4)%RX4**u2xuOZ;{n)Mz}Atgc0X#_D^eVo)B>iST=*jFxboaw1zzU z@XK(L#}coOWkOGCcRu&=*?zNBS^H_l*I``gL%u|_iVk@aZN z5_5POTp?Gs4aeeZq8Q?}vKV?2nAwXoF7hES)P~^zEyw*P)7VcdaL?BY+-3!XfjQ>~W+QL#kJ~ z*PKZ_c~6Y%>aVmlM+{d&&X=W-Gvn4F1M>Bj@Gj>k&wQy0cn=35B`GB>J}EgqImyv(77GZO z*o$ZK@Wc)?IlMIG-jsEi$#XJqKQqtX)sn|1?Zc~*@{6Q+WRlCh!vyNPsdM%-%UQ6y zs%#`-g75uuR;(6$K;C{9zL@WL=8YVg(n0*c`+vl4&=J^_rUPK=H99i*@pTv^NnUOe zi(VCH36PJsjQ}mVzOa(K_Vi44p!!wJ3h+Eg8I3HT_gIi0S5l($Xo!E5hp5v@0%v!{ zTJ@_<94O@T`2|7tcGp&rb<-^7siQkh!LFw%-3?_>zf?GWlZ$52@ z_s48?p02lCDZSOz)XK@$Kvp za=5BL@#|wGugn}7nUau_oRN@{mYk547UxJ!NKZ&fPe{&adu9rVW7b$-wII1Y+)8eZ z?7^l3f5(`ApE)*sV5FY5q(X5}5zkA6{_c7ibDkv5?%g)f9jcw%+DkO14yYb9pQ2vWSjBwA8WBv`cRMp*|G_K6kJu0J?qg)s- z<@LwFKn_=mYIcuwvtY6)^*L>&UZp3d0qNxJMJI5LEC{WWt6I%OEM)T_2dubDS(RQn z(c^-gGus(uW^0V?@lk;nA5`8}&-&ag%#R4LUoR zkGA}0A)eFo&Z({D((f|2x(BwMpe2HOQr|pkX?MWSTI)eOhfAL%j#b_D?(uFfe+h0I zg{1jrX@0hbL@m3HY?9M0{{wiD+jVgXs!6Wo8LsZmeO=|FTxYg0oz!p8pw+<7Ew!f$ zxeBv^++1-A;|!!}Wv*_qo5VW5;^iIgWuVGSVYyk~(ZsfC)p|B#F{`j#oENJ&)L3qi z^I91RUq1?K3}Vmg)^T$S4PsQAXAq-WnStKUVQ!D4Pld$CC&U-42ejmB<$g4bA!#L* zY*yJ%100_&CihCpOB0{hUghrO)Nx~X&1;P~UC>y~t%dhVLeDAF0f zVh{v#s&1R4ipz;=GYeraVyf@19)#*y+D6>3I)}KcGx9;%O6A5gUcFzoMs^fFtIBM$ zV{7083hAFKwf@`@?GElpfoHfo#6I3d8V}@<@|U|{xsjeP1PeVAiAh*yq`yUCHcm3q ziSZEG9J76-7uE=gB3x*spB#laZzoGPy&Z-&CPua%3dWZW#8lgbBo?t7UPCb)Y~Iii z1klW!h_@Cq9~#*Leyx&M@RDQAKkWFM7aSp9zn;(Pf9sYwgYy&@u{)2DNxRlC&h1@; z*}au<$nbbQdw*hgbl{OzEknzD4rN!g(`3i)DEQ7pfp?>WEr@E&MOGs0L?GXF)-l41 zjbo%F+L zTU<~if-jF)6+ui(4cd>SSJ(Fkk)4;K;4C+%y&{Os&+OA7US+bCVZ`*1H)-78Q+r*J z?+xDw*)Jraov?1R>KcWJN2s z*A+Gz>9>hc=$X4;o8u1a0EhbuIERpmBL{GZFHg9x6N;)M@s3Ec{J*zir7wwy$iXTp zI+JWT8izA|MI!%lv==T_=>3mPk@QSluh2RlcW@fV5xLrFWa6nFSnf+8Cb)U;@wI^a zrRbYv-aEtaO{w}9@f4N<_Bj~llU`n z*jLd|^xiP0XG=@EPNT}}FYmpG6Z}|SZDhx}betlkONq5*6_g5T9hZL0kCdK@#&Lck zUm@qG0JwSlnnNyzY%3?!;Y80h`i{!UMjQ%pP0G zge3n$DjxSE1^aS!Hn*ql&4d>uIoM6+T1zf2hrf~w7suc?+#$I?{>mb9?~hPvO4%Pk z&R@#Yh6`e|{m*;!U}lu?*6q<<5$_EVLbRVGw6i_fSA(x|NbILwfQ_)1EYvg_ld+G# z+#osrvh{xPX`VNX<$SXC)l7WEU+$5<{z~)B@mDq9jyA~@GVt>+aWNBRO=H*>QMkfi z)X-w4hJD*K*WOb@i~T8dfg;=>1Yt2L{4$j*;FVg@VMsGsNTXOAYz^n2JDj)O;r#kl zD8fgr;aqZubF?)aCde)ni5&$ppCo@*3EtG)72Nk}2oU$_X1`lmdJGK^GpKe6_pnRz z3x8|U>%=$qgaBo1($))}Ycqh|JK*_1BfGq@Kl1CB>vaH~w@>S*`P=|LL2D0+CDdeu zR0tBbTQ5M&JR5D5!;ib27mocro75FofDZt|G-~#P!B`z2n$3pOP|_077552-aeIIp)+l=0AEK0R z^L%WU!nC&yV)2Zk<|P}9Q>*#JLrntx%?t_jB|G@I#pp3RgyStmL2wYnDV)hc&=t|d zBW!bI0399(1KM#Ut}~Oi3TdWbL1!pZ^axJ0!buN?(~>h7vlQauE-)Imi!5nB<5{Zb z;Pk*v0ldw)Ms|g-0LM$|addVlOV&90L>Oe@EQP2KgK~wqL?K>dL>y-l*}uv4K4KE> zi|OTkS(s|~Ape@?IbabSqlX+YANQHqI1wjiAD8K_+2?!Lf(W?c1t+;Tq4f7r5QQzm zy745F6kF0x{kwym#^tl5yXCq>Gr3QtmnZ3*Xh@VC2R$AQo$*J7W9b3WlEZ#mGmBa~ zNgH~=JUl6b`jH3aGLakG`j|Xi`;~Vk`adzy1>?=Cle?!`G$!alC&WWEZHR?gI6w## zVL!9%N{MErEA=p|x)QkPH;K^S>|sgcMYDRr39K}WZBJ;>CY}fU~qQ2{Q1sS+o>aSTZys+@$AH zVTiUHckeS-L>k0+;m_vQcG6SQ*JZ*hh`K;=<4zGYv-n_w*I6nGbKx|-mBVr>hh%h_ zWS{UzNsepYLofz0Es%BUaQb5(=nTDSasi};qy=`=s)cX}otq00FjNRb8g0pi{ZdT` z{bL^VfQbr6mk&t_hZhu7DV)Z9NL4ru1>j5l3ZOeIRoIUgK%|PD2%zC#en>LKLc_mg#(b*b*iN!Ag9vd2OtY-gdAH+n;dB6 zDtKOXn%3>%xn=$6jlmdB=O2Vp_yb=Y_nfbHpmQ5Dq`GfeG}LhjeuHKqA!dIY*SU={ z@N!Ka(p_n3BtAqxJIva1i$&E3&RQf`r(KJVKp^55f?342$OH+$E(sf~jB?0Gh070AU-=4aY*y=)a}Uh2suID8WNq2mPpLWf1*Tu-Ph5~`mgum*QoTaSmGEFcwBcU=3r zVJN#&Smm!dT9%8QR^F}69+En(=!`E$Vi;bww!y^q&_5zE2S2cidzNc_6m9_gUPu(- zcUHNxK4xYmSWHfgT|2D;EKf7+*INEx5JGHnYX#fn*7_y}A2DLOO+psT-Ar+zIh))F+E+**k?feh2C-dfBRF-mzvTu-wGz4|cb;dUE`)UlCCiWAq!elf0|T~<0JL4BJNE1bAj z2*XB~c_jJ(ZnTMA*}&siZ4=OVSllh4`D7G>=Blj?8vMv6NBm1RG2*+njmBcc{}m!d z_=8PibB%c=uz^c-@fb{k)wF30_BVT2d0QgmuuEh@?dqnNZ5PPsj&LtC>@H&^WJlv* zy8?}FxK1)w6IdIC#r}qV~H$noawj!<*1RV_VP(ja(*{e~l@?1{NQ0h7ER+_9yksZ)z9w zi-(T+bn|(97G}GW-p8v5dYAtNyy*ou=udyfT;1#J>rriD1$n(85uI<)X_qky>gcnV zF@{;)cNybh1^xUo_R-Zc&uT-e>3^NY5OiLqgFnK)i*7LDN+;K`()k9P(^fj`1f_xP zqm|AT46&6?zHp`UGXHx{c`*B5M$Y0O7UUr35cZGwRP8L`PyF8M9Lk^g4B#BbpLmOO z4(Ct2=$#MqC!S*G2>wJ}J|80+a-IxgMV{bgcUIFwpJ0Dn8pQDAA82&+`gPPpHC=EO z3&a0jtF4|nr)qLpU3u)B@*d77m=2b;ceK3PomKSuReTNW6?EUqnNeUkH z$u0FQEzKpHa?;!__ew1*ZPBu-dR||JCWUeJ$BJ=~+2xX;|8OC|=3;$LaY|p2U}wgc;J{t4xDY zy?ZFB7nL7|;>telnh_lO!Y+X0miTKMdsa^`&-24+{f%I?U{$|6(E5)IX2g^LQ=xh2gRozP z`q)f$1E=gpHZXR{Fjd^HCP|_@`N#VwRQPw9*D$9cu|hq2I(+ZP7BJ7N-r5*S$){ggg9G=QT~H$;nm1w0$jqxoQ1AHxxe) zA9V{1g~7(Ms;N`U%Vw5OG|Sk`8`zmcF%~wcaQld7;YWc+vI31w+)$%zXotd3g{DF~ zrXkV(x(c_BoC-R%0BRiKR?C}OUj|_H6xS6wyo4?zK zXF*bh&;1iP-c7--{g5oAThcRAENLle7Ne_-(~XJUGt5~_Ce6Ucaf5+}s9=0VpeHjE zSBxL!LB;BO``t>)z$Yj8!4~0IbSFB|1k49lSI# z5>Jc`#}s=&tI0(uc8mM7#7ZC^^zV3rgwNPp+O_$<4!6H+mPPtCr@8(#4JKCBu|8tc z?-Bv^V?(JXm3urb3h{kWh-G-X)VQR?0OK@r9a>64Bx4Hm*VZl(X9j*&bsu)B3c{>^!{@Fa8r+Hc<~xO;qM;Oc=VpbIKChmmsZ(b$zS-z|}Wz8%V&4u;aiNNLScFtS;Ex4qan4oU$Q7xiJkNhQf_ ziW`FC%^?VgE#tjiJ~&fSyi`5TsrhH;OmlihnmOH)Vb0DZjnPDOH+Gxi7@c&eqo6d~d=2Rl{(_bbs7b< zD;1}+dqPr;1Xm9vk z%V(|(Ut2yc_(h9xtKvhN&J&sZqt?;+$pi*Lz65SBZEuqOQLCISKNp|cHH}ZQ2Nz@y z)~fK=g%`=&^R??C)t9_YQFwb7DNOQh#al5S7W$H}T3Zo`=VRRCG)gPI6^vY8+_~r& zj1bNy%9&uJ6}ecyFu~U~3@6ct5QV?OhYMP7^Imn`GMFuF``Csse$W(yZ8*h}HE<`g zq2BlAxW~5OwTB04O3B_P&Xni9=lMG$?k|jG_1tVIUc4*iHo{!T!yInT&NPk6ZTjnU z@5~-FebC<+qcP25&djzMjaljD3>%*o@jnei0yiiUsJ0JjvHmqJ?m1Je?eQ1aHVvQW zM4**vc`xB|wzWXJ((#HUyo>OHDZmf2EA_S^6+h5oO`P8QFnm zHC4$^sfnYUrIk&1$LpxD6wh6@DTGJ|T?>Wfe(tjBWvK8AFU9BL89CMd9GenhvwvaAV*F=9VHwklVxPN!Oh2Xy#ZaTd(f z-7Hq9)6q1beUSG3l#V(uJgLKVg?Vfy7Gr&MR))D7RTTwYJcDK24AdZAR$(}Y&(#;l zYB04yXY?lAtOM~-*8=}RCvaP8n+r_lO zwu)`nyXtuvujeFbY#g-3nQNli16aSN5N7&GB_+_EO>^kiKIp^hI57+@uV=$kf|0mZQUpx%!*$ccG#B`li2Y^B5(QD%tH=*WKUc&yI9_;;KOY?Aex!sIaX0qy zn9#k6e6eTS>|h&y^hbr?g_+`bOv{$W=kVG<(RfLib1A7Z}^G0W83Z~4GDPt zg#=vllE2sh^mi{y+MWofI9#S^y!c8SjB?YDZtvly$GzMIrnu=fFI$Pe^<<`ID@Ac1 z9=Mzr>;dAdSm4NnMgC$~$NftTnq9K2en%L-G_kaM17h9Il^L+r|E4!P zgw>d>{w^3a#z~Va%axFE;V;e%hodAYFk@Ts;;TuTgKm30;o~M-nl}X5fjhJS-wJvM z4DO-Ay{~oE9Ca^=K=n=&{9Cc?w9N9d({oL^`t#0chzgMOCe{Zc14On$cmSP7CfvDe z0%QhA>-Mq!kS2JpgpCOh2^${ZnXqi%k}vvt;(E!Evs=s9SiHVJla0a$_UwUC0U{P( z%N|zmJq(WoU|d`dn-!uZzj>HJXj|d>{v$CE)s|A7Q>2m{7U|{; zI2r>fg2V4wS06p@rqhaE$`xTMZY>nAAG1J-TYmWQ!F<)0lUbVY+yI(Tdty18itA1k z!3Ilb4mshn=evhH&FqKTztz|FeUk2>=N`w=gl83F$$ z|KtMs5vRSIq)`ho)bHpC!GTSRwSw&E_};6&U=;MG0`Ye*kqgA4Se7KSxbJ$8R*(Vw z&aSK6&9gp@hQWLlRmi|VxkCB}QiXJM{PJlp6;uSuB~mV!qC~)6f-hZ)g#LlIRUrd$ z=oeSmV$A=tH%NgZUlwy^lrM_|k!|S@8wHh%+;usFXw=C{T6BN7!u>nGiiT4z_uq24 zf86E1?&}zUZ-n~;n9}<*!h0^pFA-8jQF|gZkxW!VXpop+gM;Mx)pe&C;E4LRn=d2> z(Il&}lb>B28-CpG8@#kl8-C%#|K`v)Ou0ewGtzun;@KMpmB0LL!U)D67aawSOeMXo zW`1B3lJbMIc7qTP;?Sl;C;n2%kDnlk9fNjEJ~x49QbAE4&qnlyGlusefZ0I;)5n4Y z(zAnPq&cDKU_hX%705Xj6p((ErwMB`)TSon{J zRHRf8$RcmC6N?>FBbi?MtR2g2a;l$H8p!(HDlFxOu}GF6q?ton7{;5va5q-wWVtzg z!r5`+@U&!ixQUAlY$y?_L7pJ6wgtJH4QvjgHtd`b!LBeiMXZ3y!P2;3){(ywa_muA z&t%Eao>jPs^={&KE+R$ZZBkw?)km?;q*!!bVbJT5{+?uuW{<*VCN=hh4$`;LYz#X_ zYLk})sPy*3!Of|-DJAed)DtTaE4#j^{t6CX$y<5*WWCn=tDuDdz^h-az9 zS!ars-i_xV`bhHl!8sH5W4H-kuqDVGqGhbR4+H5y9C+QeDb92NxXMt>u>2khoyA|tgol7??CF; znH^@2kdMijzg(yNzGcsTl|8#q48hXrL>9%C%bqQBd4}X!Cnt7c&oOw}<=-}?e=BAG zP%rlv?@pmY&FAaWKZs`80>SD%M0xul3+5%fH@{*M#?E7UEE%Q98jqH)n58mf>C#l*>~K z-JF@ZykcD1I43|ln9CAiy_+4C$4zrKC01wJr}xB4AzZskB7CeDi-MCJAUfQRg~*57 z;Se$YIS=(>?HPO-A}84Ag6kRp-wvSxkR6t)3z&t!cuOj)9KWDYaY6)yHa{VpjYHvk z6C{R;DCUy8CTGNCmeUEkhsserDHESw%<4?gUl3hU97RKsDO5x;p1<%Ya{bB!K#rnk zo?lTpr|w|)0?guzc(wlg8V}>#P;m^*3YCum7i;cL&Z-lv$XTJThR)22Ud{yx>1*VR zccgz($!+J!U2HtO!gZ~;=(lrSiU+sfRg(F2_6Hmcm2bOlkhbliq9J&Q`ly@Yc6~RG z+XW5@#qDG6Ie*B6a{^+M)3Jwr%h<2d+I?&Q{3MvJuzeOP=5{Vf=Q?mZ?2AHAmx9So zCB%n`xW$Hf#I4}~dm#pTgo(Hr)ZE=}&czp4O$-|-1>a!#?S=_jn1GCaJF>LJBgu z_HYa9Ey26E1w|~savtpfF$_+G$)oW%WMh{UXM{Yxhv+p$EH@b;3ce1LWBFy69LvuI z>?UVr9IRl#4-fGW_J`oQf_WuO)ZpiYRH*bx5{rRdVIrU&#`t&j6wst_5zxeNkAVK( z5r+9eVYmn=({P^)oX@4g89x{rE*GL%Chp0BLO&=MM0X(yPPiz?%8C&lCJfGN?08(&|MMU4BbV})pvkJ121wjJktNNK`(G{N#229l*SE$ z4sOn>L12S7T^wiZVDM+eqNvxAyDP#)b$O_lG#n(+6_emwzC~VG>>H`L1ajcAK&+$l zr4lFtP#fe}fPo_AipAA%QCM736c#r@h2>%5Su#-xsRj{;WP?W>vh z%01(-XxVX|b2W-%Ep6`z31%qdwKCI1B)G7AO( diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index 78bcabc0a..d9ab1c6c3 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 873924016..e115c5ace 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index cdd9591b7..556c44fbc 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 8b5de05e2..0e79f0d34 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 0564cdc9b..6c795d6bb 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index c6c80e9ab..a3b02f334 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index c4902b61d..8ee2a8950 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 87c720199..fc1d97f22 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 47d015b46..23450f927 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -72,7 +72,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index eb416a0f5..5467949e5 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 205c8a7e4..8233fda47 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 0e51ee787..4b914bd5f 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 284494365..ce974e38c 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index cba87f74e..71b3bb363 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index da8832d68..8b5988838 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 78b871e9a..cb1b95cae 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 5aae23d45..34bb1f0e1 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 42, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 42, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 81, 82, 84, 86, 87, 90], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91, 93], "log_interv": 34, "01": [34, 59, 61, 73, 81, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90], "03": [69, 79, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90, 93], "039117": 74, "53": [74, 75, 77, 79, 81, 85, 86, 90, 91, 93], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 81, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 81, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91, 93], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91, 93], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "78": [77, 79, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 81, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86, 93], "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 81, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "change_pin": [78, 92], "card_payment_fee_charg": [78, 92], "apple_pay_or_google_pai": [78, 92], "visa_or_mastercard": [78, 92], "getting_spare_card": [78, 92], "card_about_to_expir": [78, 92], "lost_or_stolen_phon": [78, 92], "supported_cards_and_curr": [78, 92], "beneficiary_not_allow": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 86, 90, 93], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 81, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89, 90], "452381": 79, "459770": 79, "72": [79, 81, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "995": 81, "331": 81, "310": 81, "856": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "60it": [81, 90], "93it": [81, 90], "30it": [81, 90], "62": [81, 82, 86, 89, 90], "63": [81, 82, 86, 90], "41it": [81, 90], "49it": [81, 90], "40it": [81, 90], "04it": [81, 90], "32it": [81, 90], "28it": [81, 90], "13it": [81, 90], "85": [81, 86, 89, 90], "69": [81, 82, 89, 90], "37it": [81, 90], "82it": [81, 90], "492": 81, "085": 81, "786": 81, "290": [81, 86], "727": 81, "26it": [81, 90], "21it": [81, 90], "51it": [81, 90], "70it": [81, 90], "88it": [81, 90], "35it": [81, 90], "20it": [81, 90], "31it": [81, 90], "89it": [81, 90], "476": 81, "305": [81, 89], "328": [81, 86], "335": 81, "627": 81, "29it": [81, 90], "17it": [81, 90], "22it": [81, 90], "74it": [81, 90], "09it": [81, 90], "84it": [81, 90], "71it": [81, 90], "01it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85, 93], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": [86, 93], "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": [86, 93], "323": 86, "327": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": 86, "229": 86, "217": 86, "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": [86, 93], "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17062": 90, "170604": 90, "34285": 90, "171551": 90, "99it": 90, "51456": 90, "171618": 90, "24it": 90, "68618": 90, "170859": 90, "63it": 90, "85805": 90, "171220": 90, "50it": 90, "102949": 90, "171291": 90, "120095": 90, "171343": 90, "43it": 90, "137230": 90, "170491": 90, "36it": 90, "154281": 90, "169872": 90, "65it": 90, "171280": 90, "169905": 90, "188272": 90, "169777": 90, "205575": 90, "170760": 90, "61it": 90, "222652": 90, "170740": 90, "73it": 90, "240083": 90, "171811": 90, "81it": 90, "257360": 90, "172096": 90, "03it": 90, "274605": 90, "172199": 90, "291886": 90, "172379": 90, "309125": 90, "172152": 90, "38it": 90, "326341": 90, "171949": 90, "343537": 90, "171568": 90, "72it": 90, "360817": 90, "171933": 90, "378023": 90, "171967": 90, "12it": 90, "395220": 90, "171770": 90, "69it": 90, "412518": 90, "172129": 90, "64it": 90, "429746": 90, "172171": 90, "06it": 90, "446964": 90, "171908": 90, "464155": 90, "171900": 90, "62it": 90, "481346": 90, "171355": 90, "90it": 90, "498619": 90, "171763": 90, "515796": 90, "171727": 90, "53it": 90, "532984": 90, "171768": 90, "550240": 90, "172001": 90, "07it": 90, "567441": 90, "171961": 90, "52it": 90, "584638": 90, "171920": 90, "86it": 90, "601962": 90, "172313": 90, "619303": 90, "172639": 90, "636567": 90, "172200": 90, "653788": 90, "171788": 90, "02it": 90, "670968": 90, "171514": 90, "66it": 90, "688120": 90, "170996": 90, "705275": 90, "171158": 90, "722435": 90, "171285": 90, "85it": 90, "739806": 90, "172008": 90, "757008": 90, "171692": 90, "774255": 90, "791671": 90, "172588": 90, "809012": 90, "172830": 90, "16it": 90, "826296": 90, "171982": 90, "843496": 90, "171799": 90, "860677": 90, "171324": 90, "91it": 90, "877842": 90, "171418": 90, "27it": 90, "894985": 90, "171219": 90, "42it": 90, "912146": 90, "171332": 90, "929303": 90, "171399": 90, "946444": 90, "171377": 90, "87it": 90, "963692": 90, "171703": 90, "39it": 90, "981048": 90, "172255": 90, "998359": 90, "172508": 90, "56it": 90, "1015635": 90, "172579": 90, "19it": 90, "1032893": 90, "1050039": 90, "171426": 90, "1067207": 90, "171496": 90, "1084358": 90, "171268": 90, "1101486": 90, "171044": 90, "54it": 90, "1118591": 90, "170922": 90, "1135684": 90, "170420": 90, "58it": 90, "1152727": 90, "170051": 90, "1169733": 90, "169752": 90, "1186709": 90, "169681": 90, "1203678": 90, "168904": 90, "33it": 90, "1220652": 90, "169150": 90, "94it": 90, "1237634": 90, "169345": 90, "1254570": 90, "168349": 90, "15it": 90, "1271732": 90, "169320": 90, "67it": 90, "1288750": 90, "169571": 90, "98it": 90, "1305766": 90, "169742": 90, "1322775": 90, "169844": 90, "1339793": 90, "169941": 90, "1356788": 90, "169935": 90, "1373885": 90, "170242": 90, "78it": 90, "1390910": 90, "169776": 90, "77it": 90, "1407889": 90, "1424867": 90, "169328": 90, "10it": 90, "1441920": 90, "169683": 90, "76it": 90, "1458889": 90, "169554": 90, "1475845": 90, "169207": 90, "1492767": 90, "1509688": 90, "169069": 90, "1526596": 90, "168995": 90, "55it": 90, "1543496": 90, "168767": 90, "1560373": 90, "168411": 90, "1577215": 90, "168093": 90, "1594025": 90, "167736": 90, "1610799": 90, "167579": 90, "1627581": 90, "167648": 90, "1644346": 90, "167601": 90, "44it": 90, "1661107": 90, "167408": 90, "1678158": 90, "168332": 90, "79it": 90, "1695148": 90, "168799": 90, "1712162": 90, "169197": 90, "1729082": 90, "169086": 90, "1746091": 90, "169383": 90, "1763030": 90, "169294": 90, "1779986": 90, "169370": 90, "1796940": 90, "169415": 90, "1813941": 90, "169588": 90, "95it": 90, "1830917": 90, "169635": 90, "1847932": 90, "169786": 90, "1864911": 90, "169662": 90, "1881878": 90, "169612": 90, "46it": 90, "1898840": 90, "169466": 90, "1915967": 90, "170001": 90, "1932968": 90, "169939": 90, "1949963": 90, "169565": 90, "1966920": 90, "168922": 90, "1983850": 90, "169030": 90, "80it": 90, "2000770": 90, "169076": 90, "2017733": 90, "169238": 90, "2034658": 90, "168730": 90, "2051532": 90, "168386": 90, "2068372": 90, "168018": 90, "2085260": 90, "168270": 90, "2102088": 90, "168030": 90, "2118962": 90, "168240": 90, "2135787": 90, "168132": 90, "2152601": 90, "167646": 90, "2169423": 90, "167813": 90, "2186297": 90, "168085": 90, "2203175": 90, "168289": 90, "2220005": 90, "168276": 90, "2236833": 90, "168121": 90, "2253646": 90, "168054": 90, "2270452": 90, "167426": 90, "00it": 90, "2287196": 90, "167340": 90, "2303931": 90, "167280": 90, "92it": 90, "2320696": 90, "167387": 90, "2337572": 90, "167794": 90, "2354510": 90, "168265": 90, "2371337": 90, "168146": 90, "2388246": 90, "168426": 90, "2405089": 90, "167971": 90, "2421887": 90, "167875": 90, "18it": 90, "2438756": 90, "168116": 90, "2455622": 90, "168275": 90, "2472450": 90, "168246": 90, "2489275": 90, "168100": 90, "11it": 90, "2506165": 90, "168336": 90, "59it": 90, "2523041": 90, "168459": 90, "2539888": 90, "168363": 90, "2556725": 90, "168317": 90, "2573557": 90, "168314": 90, "2590389": 90, "168159": 90, "2607206": 90, "168024": 90, "45it": 90, "2624021": 90, "168057": 90, "2640827": 90, "167450": 90, "2657654": 90, "167690": 90, "2674611": 90, "168247": 90, "2691437": 90, "168060": 90, "2708244": 90, "167385": 90, "05it": 90, "2725000": 90, "167432": 90, "83it": 90, "2741821": 90, "167661": 90, "2758588": 90, "167266": 90, "2775352": 90, "167374": 90, "2792090": 90, "167063": 90, "2808802": 90, "167076": 90, "2825510": 90, "167042": 90, "2842215": 90, "166910": 90, "2858913": 90, "166926": 90, "75it": 90, "2875624": 90, "166976": 90, "2892322": 90, "166542": 90, "2909084": 90, "166860": 90, "2925771": 90, "166846": 90, "2942500": 90, "166975": 90, "2959198": 90, "166708": 90, "2975877": 90, "166728": 90, "2992600": 90, "166874": 90, "3009402": 90, "167212": 90, "3026124": 90, "166887": 90, "3042813": 90, "166464": 90, "96it": 90, "3059512": 90, "166617": 90, "3076399": 90, "167287": 90, "3093129": 90, "167242": 90, "3109854": 90, "164570": 90, "3127061": 90, "166789": 90, "3144295": 90, "168437": 90, "3161147": 90, "3178372": 90, "169324": 90, "97it": 90, "3195555": 90, "170071": 90, "3212860": 90, "170957": 90, "3230096": 90, "171374": 90, "3247326": 90, "171646": 90, "3264493": 90, "171542": 90, "68it": 90, "3281649": 90, "171525": 90, "3298803": 90, "171132": 90, "3315917": 90, "170861": 90, "3333004": 90, "170374": 90, "3350043": 90, "170335": 90, "3367100": 90, "170400": 90, "3384218": 90, "170631": 90, "3401284": 90, "170636": 90, "34it": 90, "3418357": 90, "170658": 90, "3435515": 90, "170931": 90, "3452609": 90, "163949": 90, "3469894": 90, "166538": 90, "3486928": 90, "167650": 90, "3503919": 90, "3520963": 90, "168940": 90, "3538111": 90, "169693": 90, "3555434": 90, "170745": 90, "3572660": 90, "171192": 90, "3590030": 90, "171938": 90, "3607303": 90, "172172": 90, "3624594": 90, "172387": 90, "3641836": 90, "171859": 90, "14it": 90, "3659025": 90, "171633": 90, "3676190": 90, "171400": 90, "3693332": 90, "171243": 90, "48it": 90, "3710458": 90, "171013": 90, "3727633": 90, "171229": 90, "3744757": 90, "171012": 90, "3761899": 90, "171129": 90, "3779084": 90, "171340": 90, "3796219": 90, "167422": 90, "3813525": 90, "169081": 90, "57it": 90, "3830826": 90, "3847923": 90, "170454": 90, "3865103": 90, "170852": 90, "3882263": 90, "171072": 90, "3899433": 90, "171255": 90, "3916562": 90, "170928": 90, "3933884": 90, "171610": 90, "47it": 90, "3951103": 90, "171779": 90, "3968283": 90, "171759": 90, "3985460": 90, "171748": 90, "4002799": 90, "172236": 90, "4020024": 90, "172120": 90, "4037255": 90, "4054562": 90, "172438": 90, "4071846": 90, "172553": 90, "4089102": 90, "4106326": 90, "172177": 90, "4123603": 90, "172350": 90, "4140839": 90, "171954": 90, "4158035": 90, "168862": 90, "4175226": 90, "169758": 90, "4192212": 90, "168849": 90, "4209250": 90, "169300": 90, "4226465": 90, "170143": 90, "4243806": 90, "171114": 90, "4261227": 90, "172034": 90, "4278528": 90, "172320": 90, "4295937": 90, "172845": 90, "4313308": 90, "173100": 90, "25it": 90, "4330658": 90, "173214": 90, "4347981": 90, "173208": 90, "4365307": 90, "173218": 90, "4382688": 90, "173390": 90, "4400068": 90, "173507": 90, "4417419": 90, "173309": 90, "4434751": 90, "172930": 90, "4452045": 90, "172511": 90, "4469335": 90, "172622": 90, "4486598": 90, "171589": 90, "4503759": 90, "171412": 90, "4520902": 90, "4538037": 90, "171239": 90, "4555162": 90, "170876": 90, "4572250": 90, "170565": 90, "4589307": 90, "170097": 90, "4606318": 90, "169865": 90, "4623305": 90, "169631": 90, "4640269": 90, "168872": 90, "4657235": 90, "169105": 90, "4674147": 90, "168226": 90, "4690976": 90, "168242": 90, "4707801": 90, "168102": 90, "4724647": 90, "168205": 90, "4741468": 90, "167808": 90, "4758250": 90, "167370": 90, "08it": 90, "4774988": 90, "167262": 90, "4791806": 90, "167533": 90, "4808560": 90, "167179": 90, "4825279": 90, "167129": 90, "4842096": 90, "167436": 90, "4859300": 90, "168811": 90, "4876497": 90, "4893694": 90, "170413": 90, "4910769": 90, "170510": 90, "4927821": 90, "170169": 90, "4944989": 90, "170616": 90, "4962051": 90, "169773": 90, "4979093": 90, "169963": 90, "4996091": 90, "169052": 90, "169841": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a00": 93, "1070": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "46m": 93, "3mb": 93, "26m": 93, "8mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 42, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 42, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 81, 82, 84, 86, 87, 90], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91], "log_interv": 34, "01": [34, 59, 61, 73, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 81, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90], "03": [69, 79, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92, 93], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90], "039117": 74, "53": [74, 75, 77, 79, 81, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90, 93], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 81, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91, 93], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "78": [77, 79, 81, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 81, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86, 93], "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "getting_spare_card": [78, 92], "card_payment_fee_charg": [78, 92], "visa_or_mastercard": [78, 92], "apple_pay_or_google_pai": [78, 92], "card_about_to_expir": [78, 92], "lost_or_stolen_phon": [78, 92], "beneficiary_not_allow": [78, 92], "change_pin": [78, 92], "supported_cards_and_curr": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90, 93], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 81, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 81, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89, 90], "452381": 79, "459770": 79, "72": [79, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "674": 81, "331": 81, "310": 81, "384": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "84it": [81, 90], "55it": [81, 90], "60it": [81, 90], "59it": [81, 90], "91it": [81, 90], "51it": [81, 90], "92it": [81, 90], "75it": [81, 90], "96it": [81, 90], "98it": [81, 90], "85": [81, 86, 89, 90], "69": [81, 82, 89, 90], "76it": [81, 90], "52it": [81, 90], "492": 81, "085": 81, "606": 81, "290": [81, 86], "416": 81, "40it": [81, 90], "46it": [81, 90], "29it": [81, 90], "62": [81, 82, 86, 89, 90], "63": [81, 82, 86, 90], "62it": [81, 90], "01it": 81, "37it": [81, 90], "72it": [81, 90], "03it": [81, 90], "19it": [81, 90], "35it": [81, 90], "14it": [81, 90], "476": 81, "305": [81, 89], "563": 81, "328": [81, 86], "335": 81, "317": [81, 86], "06it": [81, 90], "50it": [81, 90], "48it": [81, 90], "80it": [81, 90], "53it": [81, 90], "64it": [81, 90], "87it": 81, "73it": [81, 90], "44it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85, 93], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86, 93], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86, 93], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": [86, 93], "323": 86, "327": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": [86, 93], "230": 86, "215": 86, "220": 86, "229": 86, "217": 86, "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17030": 90, "170283": 90, "11it": 90, "34264": 90, "171485": 90, "88it": 90, "51459": 90, "171690": 90, "77it": 90, "68798": 90, "172355": 90, "31it": 90, "86035": 90, "172354": 90, "103290": 90, "172417": 90, "120703": 90, "172972": 90, "138001": 90, "172728": 90, "16it": 90, "155274": 90, "172330": 90, "12it": 90, "172583": 90, "172560": 90, "189950": 90, "172896": 90, "33it": 90, "207377": 90, "173308": 90, "224727": 90, "173361": 90, "26it": 90, "242162": 90, "173656": 90, "66it": 90, "259598": 90, "173865": 90, "277065": 90, "174102": 90, "294502": 90, "174179": 90, "23it": 90, "311920": 90, "173530": 90, "42it": 90, "329316": 90, "173655": 90, "30it": 90, "346687": 90, "173667": 90, "15it": 90, "364055": 90, "173627": 90, "381423": 90, "173638": 90, "78it": 90, "398834": 90, "173775": 90, "416212": 90, "173771": 90, "433590": 90, "173442": 90, "63it": 90, "451024": 90, "173705": 90, "468446": 90, "173855": 90, "02it": 90, "485832": 90, "173762": 90, "18it": 90, "503243": 90, "173861": 90, "520727": 90, "174151": 90, "56it": 90, "538143": 90, "173998": 90, "555543": 90, "173843": 90, "572928": 90, "173780": 90, "39it": 90, "590307": 90, "607678": 90, "173383": 90, "625113": 90, "173668": 90, "642500": 90, "173724": 90, "659873": 90, "173457": 90, "677219": 90, "172924": 90, "694526": 90, "172965": 90, "24it": 90, "711823": 90, "172894": 90, "79it": 90, "729176": 90, "173080": 90, "82it": 90, "746485": 90, "173034": 90, "68it": 90, "763789": 90, "172857": 90, "781271": 90, "173443": 90, "798719": 90, "173750": 90, "95it": 90, "816121": 90, "173827": 90, "43it": 90, "833504": 90, "173400": 90, "850845": 90, "167499": 90, "61it": 90, "868055": 90, "168840": 90, "885319": 90, "169955": 90, "902466": 90, "170400": 90, "94it": 90, "919525": 90, "169551": 90, "936548": 90, "169750": 90, "27it": 90, "953712": 90, "170310": 90, "970942": 90, "170900": 90, "988152": 90, "171255": 90, "1005330": 90, "171410": 90, "1022474": 90, "171375": 90, "10it": 90, "1039638": 90, "171449": 90, "1056785": 90, "170869": 90, "67it": 90, "1073989": 90, "171215": 90, "58it": 90, "1091214": 90, "171520": 90, "1108873": 90, "173035": 90, "1126178": 90, "173017": 90, "1143481": 90, "172777": 90, "34it": 90, "1160760": 90, "172497": 90, "49it": 90, "1178011": 90, "172168": 90, "93it": 90, "1195229": 90, "171842": 90, "38it": 90, "1212414": 90, "171680": 90, "1229583": 90, "171672": 90, "1246751": 90, "171577": 90, "1263909": 90, "170978": 90, "1281008": 90, "170704": 90, "1298079": 90, "170500": 90, "85it": 90, "1315214": 90, "170750": 90, "1332308": 90, "170803": 90, "1349517": 90, "171186": 90, "09it": 90, "1366636": 90, "166974": 90, "1383357": 90, "165352": 90, "54it": 90, "1400601": 90, "167432": 90, "22it": 90, "1417755": 90, "168644": 90, "1434981": 90, "169716": 90, "13it": 90, "1452216": 90, "170497": 90, "47it": 90, "1469393": 90, "170873": 90, "1486659": 90, "171405": 90, "04it": 90, "1503878": 90, "171636": 90, "21it": 90, "1521101": 90, "171810": 90, "1538285": 90, "171554": 90, "86it": 90, "1555442": 90, "171482": 90, "32it": 90, "1572592": 90, "171358": 90, "69it": 90, "1589729": 90, "171312": 90, "1606861": 90, "171261": 90, "1623988": 90, "170981": 90, "1641087": 90, "170445": 90, "1658133": 90, "170120": 90, "99it": 90, "1675146": 90, "170047": 90, "1692384": 90, "170742": 90, "41it": 90, "1709536": 90, "170970": 90, "1726634": 90, "167250": 90, "1743827": 90, "168626": 90, "1761126": 90, "169916": 90, "1778432": 90, "170847": 90, "1795743": 90, "171517": 90, "1813098": 90, "172119": 90, "1830442": 90, "172511": 90, "1847697": 90, "172177": 90, "1864918": 90, "171675": 90, "1882375": 90, "172536": 90, "1899650": 90, "172598": 90, "1916965": 90, "172759": 90, "1934403": 90, "173239": 90, "1951857": 90, "173625": 90, "1969233": 90, "173662": 90, "00it": 90, "1986600": 90, "173510": 90, "89it": 90, "2003989": 90, "173620": 90, "71it": 90, "2021352": 90, "172889": 90, "28it": 90, "2038726": 90, "173140": 90, "08it": 90, "2056041": 90, "173049": 90, "2073347": 90, "172756": 90, "2090709": 90, "173011": 90, "2108068": 90, "173181": 90, "70it": 90, "2125387": 90, "172719": 90, "2142660": 90, "172428": 90, "2159948": 90, "172559": 90, "2177205": 90, "172309": 90, "45it": 90, "2194525": 90, "172572": 90, "65it": 90, "2211921": 90, "172984": 90, "81it": 90, "2229384": 90, "173474": 90, "2246736": 90, "173484": 90, "2264085": 90, "173437": 90, "2281429": 90, "173352": 90, "2298765": 90, "173188": 90, "2316084": 90, "172913": 90, "2333554": 90, "173444": 90, "2351018": 90, "173801": 90, "2368666": 90, "174599": 90, "2386153": 90, "174676": 90, "2403645": 90, "174745": 90, "2421181": 90, "174925": 90, "2438674": 90, "174394": 90, "2456114": 90, "174173": 90, "2473532": 90, "174114": 90, "97it": 90, "2490944": 90, "74it": 90, "2508369": 90, "173973": 90, "2525845": 90, "174206": 90, "2543266": 90, "174161": 90, "2560683": 90, "174022": 90, "2578111": 90, "174097": 90, "2595521": 90, "173869": 90, "07it": 90, "2612909": 90, "173294": 90, "2630242": 90, "173299": 90, "2647637": 90, "173488": 90, "2664987": 90, "173398": 90, "2682372": 90, "173528": 90, "2699726": 90, "173257": 90, "2717059": 90, "173274": 90, "2734428": 90, "173396": 90, "2751845": 90, "2769208": 90, "173567": 90, "2786565": 90, "173300": 90, "2803896": 90, "173040": 90, "2821321": 90, "173399": 90, "2838662": 90, "172859": 90, "2855949": 90, "172569": 90, "83it": 90, "2873207": 90, "172224": 90, "2890430": 90, "172181": 90, "2907649": 90, "171902": 90, "2924840": 90, "171671": 90, "2942008": 90, "171384": 90, "2959147": 90, "170767": 90, "2976284": 90, "170944": 90, "2993383": 90, "170955": 90, "3010479": 90, "170751": 90, "3027555": 90, "169701": 90, "3044709": 90, "170245": 90, "3061914": 90, "170780": 90, "3079054": 90, "170963": 90, "3096212": 90, "171145": 90, "3113415": 90, "3130557": 90, "163730": 90, "3147711": 90, "165993": 90, "3164858": 90, "167595": 90, "36it": 90, "3182091": 90, "168989": 90, "3199280": 90, "169848": 90, "3216488": 90, "170509": 90, "3233615": 90, "170733": 90, "3250701": 90, "170719": 90, "3267782": 90, "170590": 90, "3284892": 90, "170740": 90, "17it": 90, "3301991": 90, "170812": 90, "3319326": 90, "171568": 90, "3336579": 90, "171854": 90, "3353840": 90, "172075": 90, "3371135": 90, "172332": 90, "57it": 90, "3388521": 90, "172784": 90, "3405882": 90, "173027": 90, "3423271": 90, "173281": 90, "3440656": 90, "173448": 90, "3458002": 90, "173131": 90, "3475316": 90, "173016": 90, "3492618": 90, "165765": 90, "3509821": 90, "167583": 90, "3527050": 90, "168961": 90, "3544520": 90, "170652": 90, "3561999": 90, "171875": 90, "3579426": 90, "172585": 90, "3596925": 90, "3614455": 90, "173894": 90, "3632081": 90, "174596": 90, "3649547": 90, "174498": 90, "3667092": 90, "174781": 90, "3684574": 90, "174323": 90, "3702009": 90, "174312": 90, "3719522": 90, "174553": 90, "3736979": 90, "174483": 90, "3754510": 90, "174726": 90, "3772090": 90, "175044": 90, "3789595": 90, "174949": 90, "3807095": 90, "174961": 90, "3824592": 90, "174435": 90, "3842037": 90, "166864": 90, "3859405": 90, "168839": 90, "3876822": 90, "170399": 90, "3894424": 90, "172056": 90, "3911949": 90, "172999": 90, "3929356": 90, "173315": 90, "3946836": 90, "173753": 90, "3964224": 90, "173621": 90, "3981595": 90, "173277": 90, "3998970": 90, "173415": 90, "4016316": 90, "172667": 90, "4033587": 90, "172523": 90, "4050842": 90, "172384": 90, "4068083": 90, "171361": 90, "4085389": 90, "171865": 90, "4102681": 90, "172176": 90, "4120022": 90, "172542": 90, "4137278": 90, "172439": 90, "4154574": 90, "172592": 90, "4171871": 90, "172702": 90, "4189189": 90, "172841": 90, "4206509": 90, "172945": 90, "4223872": 90, "173149": 90, "4241236": 90, "173293": 90, "4258566": 90, "172867": 90, "4275854": 90, "4293140": 90, "172477": 90, "4310389": 90, "172149": 90, "4327605": 90, "172139": 90, "4344830": 90, "172169": 90, "4362076": 90, "172251": 90, "4379302": 90, "171900": 90, "4396523": 90, "171990": 90, "4413723": 90, "171969": 90, "4430938": 90, "172020": 90, "4448169": 90, "172104": 90, "4465473": 90, "172382": 90, "4482712": 90, "172378": 90, "4499970": 90, "172434": 90, "4517217": 90, "172442": 90, "4534462": 90, "172125": 90, "4551698": 90, "172191": 90, "4568918": 90, "172049": 90, "4586146": 90, "172115": 90, "4603359": 90, "172117": 90, "4620571": 90, "172059": 90, "4637778": 90, "171793": 90, "4654966": 90, "171816": 90, "4672149": 90, "4689331": 90, "171560": 90, "20it": 90, "4706520": 90, "171657": 90, "4723686": 90, "167919": 90, "4740781": 90, "168811": 90, "4757868": 90, "169418": 90, "4774923": 90, "4791930": 90, "169843": 90, "4809039": 90, "170212": 90, "4826135": 90, "170433": 90, "4843326": 90, "170871": 90, "4860458": 90, "171002": 90, "4877647": 90, "171266": 90, "4894775": 90, "170862": 90, "4911923": 90, "171043": 90, "4929176": 90, "171486": 90, "4946356": 90, "4963515": 90, "171205": 90, "4980923": 90, "172063": 90, "172102": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a00": 93, "1069": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "19mb": 93, "mb": 93, "directori": 93, "inflat": 93, "241": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 239f5b844..bf1e91e57 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1495,7 +1495,7 @@

5. Use cleanlab to find label issues -{"state": {"f6fd30592fee4f22ba0d241c0e2862e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "850228d498cd4b3e87f32f1257313d81": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "93b351e64c634bd99c642a728e59c557": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f6fd30592fee4f22ba0d241c0e2862e2", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_850228d498cd4b3e87f32f1257313d81", "value": 2041.0}}, "a6b20f82cfa9402a8c7fd2cf43db10f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "86951f39c00e4109b4ca60ffcc939b40": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a4ffd871ac9d43fc97f1519c2af296fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a6b20f82cfa9402a8c7fd2cf43db10f8", "placeholder": "\u200b", "style": "IPY_MODEL_86951f39c00e4109b4ca60ffcc939b40", "value": "hyperparams.yaml: 100%"}}, "b970971e982644df933a6fc215f217f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "998226c5bbfd44e3a06638c497e2daa1": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "72aa3b5eca7d46d3a61ae6039af64c8c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b970971e982644df933a6fc215f217f9", "placeholder": "\u200b", "style": "IPY_MODEL_998226c5bbfd44e3a06638c497e2daa1", "value": " 2.04k/2.04k [00:00<00:00, 328kB/s]"}}, "ee59111c59fe4214a106ea7b4d3bd396": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f544c0ca919a47c6a4bfa1f492857422": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a4ffd871ac9d43fc97f1519c2af296fa", "IPY_MODEL_93b351e64c634bd99c642a728e59c557", "IPY_MODEL_72aa3b5eca7d46d3a61ae6039af64c8c"], "layout": "IPY_MODEL_ee59111c59fe4214a106ea7b4d3bd396"}}, "d003c7d9dffe4306a34d02339a448a43": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6960472d0e964654a68f2ad54c93a2b4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5d33a6963baa4b95bba45ab0b9e33c8a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d003c7d9dffe4306a34d02339a448a43", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6960472d0e964654a68f2ad54c93a2b4", "value": 16887676.0}}, "ebe77964da2d45548943f4419f211879": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fdeba1c93e6747be9c5211333d0768bc": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8f7fda0a4e234263a3618a65ccc48db1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ebe77964da2d45548943f4419f211879", "placeholder": "\u200b", "style": "IPY_MODEL_fdeba1c93e6747be9c5211333d0768bc", "value": "embedding_model.ckpt: 100%"}}, "228b6665d63741019e33f90d71f5f3f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd45f60e3ff442c6a9dd8562909119d3": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0834d56d62714c28b3aeb79b3ddc680d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_228b6665d63741019e33f90d71f5f3f9", "placeholder": "\u200b", "style": "IPY_MODEL_cd45f60e3ff442c6a9dd8562909119d3", "value": " 16.9M/16.9M [00:00<00:00, 254MB/s]"}}, "2ca02285df6a43f6900cce3b23ad30aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5133c28de8264b41a420172eca319163": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8f7fda0a4e234263a3618a65ccc48db1", "IPY_MODEL_5d33a6963baa4b95bba45ab0b9e33c8a", "IPY_MODEL_0834d56d62714c28b3aeb79b3ddc680d"], "layout": "IPY_MODEL_2ca02285df6a43f6900cce3b23ad30aa"}}, "557b8d9ac1ca4cf68a90a2259b2a61dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34bc9fad69fc44a9ab325fff185f11f9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fa64a22ea146494ca2914d3484db6765": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_557b8d9ac1ca4cf68a90a2259b2a61dd", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_34bc9fad69fc44a9ab325fff185f11f9", "value": 3201.0}}, "b990bf93a73a48fa96ef81a45ecc7cf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9c3e8763ecb425aa275ed93f80ef66a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ed5b9304939b4878afcb87cc1e060aae": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b990bf93a73a48fa96ef81a45ecc7cf8", "placeholder": "\u200b", "style": "IPY_MODEL_f9c3e8763ecb425aa275ed93f80ef66a", "value": "mean_var_norm_emb.ckpt: 100%"}}, "202693369eef41eeb079e15b2dca6fa5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "111a40f2a0704b5cb8269c337a9d4501": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0fce71ef080443ad95ba0ab7ab1fde8c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_202693369eef41eeb079e15b2dca6fa5", "placeholder": "\u200b", "style": "IPY_MODEL_111a40f2a0704b5cb8269c337a9d4501", "value": " 3.20k/3.20k [00:00<00:00, 537kB/s]"}}, "f99279c3718c4390825bb04cca778044": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4162f5fe77e74a6482908480569b3dd0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ed5b9304939b4878afcb87cc1e060aae", "IPY_MODEL_fa64a22ea146494ca2914d3484db6765", "IPY_MODEL_0fce71ef080443ad95ba0ab7ab1fde8c"], "layout": "IPY_MODEL_f99279c3718c4390825bb04cca778044"}}, "c6e0bbd765f348708cf3b1437c7cb9a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d27aad7fad246ef8d47399f2e4310da": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a4d57cf88a0e4fb6a5afe457b792d93e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c6e0bbd765f348708cf3b1437c7cb9a8", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6d27aad7fad246ef8d47399f2e4310da", "value": 15856877.0}}, "2498f913b927410bb9ae4dcefb918991": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb8670831c2e4347bf8ee34b069cb5ac": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "eeb9be4c886941159edec7fc558e7a5a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2498f913b927410bb9ae4dcefb918991", "placeholder": "\u200b", "style": "IPY_MODEL_bb8670831c2e4347bf8ee34b069cb5ac", "value": "classifier.ckpt: 100%"}}, "60d401f5c6c74a328a80e74f9ba2de83": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "520a1c7807ef42ee92526b78323c1d3b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "dbe436d691f14d889ecb1e75dee91ee6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_60d401f5c6c74a328a80e74f9ba2de83", "placeholder": "\u200b", "style": "IPY_MODEL_520a1c7807ef42ee92526b78323c1d3b", "value": " 15.9M/15.9M [00:00<00:00, 347MB/s]"}}, "e5513548b6dc4815a177c264a29d47eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "990db9ddb0344d739ad0a89adcc4197e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eeb9be4c886941159edec7fc558e7a5a", "IPY_MODEL_a4d57cf88a0e4fb6a5afe457b792d93e", "IPY_MODEL_dbe436d691f14d889ecb1e75dee91ee6"], "layout": "IPY_MODEL_e5513548b6dc4815a177c264a29d47eb"}}, "25c64fccecfb4812882e32cd62028cda": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcee34ed095e4db6a88e4559efaff29f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "28125c9aef0d4dc093ba42b225b7c7ef": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_25c64fccecfb4812882e32cd62028cda", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fcee34ed095e4db6a88e4559efaff29f", "value": 128619.0}}, "e420c8493f574d69aef12450cf0a9a14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c169e87cf101414c8b083a4b20e420ca": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ffa606c5f25748859eb966e69110de72": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e420c8493f574d69aef12450cf0a9a14", "placeholder": "\u200b", "style": "IPY_MODEL_c169e87cf101414c8b083a4b20e420ca", "value": "label_encoder.txt: 100%"}}, "c41a3321793d4d608d8a59946471fbcc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "172b44924b8b475cb3b836b0f901ac71": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "06ab656526714167a212ab573f39a6e8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c41a3321793d4d608d8a59946471fbcc", "placeholder": "\u200b", "style": "IPY_MODEL_172b44924b8b475cb3b836b0f901ac71", "value": " 129k/129k [00:00<00:00, 6.45MB/s]"}}, "531bd00fa5ad4184b070387d6f1fcf62": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3223b85e60f248499b88202f60b03b49": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ffa606c5f25748859eb966e69110de72", "IPY_MODEL_28125c9aef0d4dc093ba42b225b7c7ef", "IPY_MODEL_06ab656526714167a212ab573f39a6e8"], "layout": "IPY_MODEL_531bd00fa5ad4184b070387d6f1fcf62"}}}, "version_major": 2, "version_minor": 0} +{"state": {"df669b30fcd04ee4974fd952553f376e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b2afdf832394f58976ee58105fc9ac4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3c821907cbd14c19a78c25554493358d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_df669b30fcd04ee4974fd952553f376e", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9b2afdf832394f58976ee58105fc9ac4", "value": 2041.0}}, "f3bc5d140a7b4411a598d2ef76421a6a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c44830cf4a14c1bbbf2a49980b485d8": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fb7be2fc3b524b408dacb3a4ba1dfb8f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f3bc5d140a7b4411a598d2ef76421a6a", "placeholder": "\u200b", "style": "IPY_MODEL_8c44830cf4a14c1bbbf2a49980b485d8", "value": "hyperparams.yaml: 100%"}}, "f781d9e0307c483fb140677b5258e2d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "460394fe32074436800a43db6ccac64e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "294a8ffab7f44974b28a07ffbb94882f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f781d9e0307c483fb140677b5258e2d6", "placeholder": "\u200b", "style": "IPY_MODEL_460394fe32074436800a43db6ccac64e", "value": " 2.04k/2.04k [00:00<00:00, 324kB/s]"}}, "920a9387b971454687a4403592f0c76e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c17f3317dc9f4e41b15f0c9f0afcb7f9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fb7be2fc3b524b408dacb3a4ba1dfb8f", "IPY_MODEL_3c821907cbd14c19a78c25554493358d", "IPY_MODEL_294a8ffab7f44974b28a07ffbb94882f"], "layout": "IPY_MODEL_920a9387b971454687a4403592f0c76e"}}, "c5a3fe8fa0d848ec9ec188729948a377": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3454223caf744f1fbf4c19967e38db8f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "284824c022eb47e9a33898e1ecf7dda3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c5a3fe8fa0d848ec9ec188729948a377", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3454223caf744f1fbf4c19967e38db8f", "value": 16887676.0}}, "c2ce8e57fdb04b0798a6c4c16ae3467f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34b1268d4de040f2a5a31699ef1ede5c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "68fc1f991eb44edba2fc5bfe6e6edfd6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c2ce8e57fdb04b0798a6c4c16ae3467f", "placeholder": "\u200b", "style": "IPY_MODEL_34b1268d4de040f2a5a31699ef1ede5c", "value": "embedding_model.ckpt: 100%"}}, "e454c1f736c9495aa3bedadf94b43954": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48fb5229f100484292916171f30a77b5": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "93ffb5dd7879400f9e7f477b93c509d0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e454c1f736c9495aa3bedadf94b43954", "placeholder": "\u200b", "style": "IPY_MODEL_48fb5229f100484292916171f30a77b5", "value": " 16.9M/16.9M [00:00<00:00, 177MB/s]"}}, "d905e22f02584b999d73cc80ffee0110": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6902ffa71e7d475d9583c90ce2b2f911": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68fc1f991eb44edba2fc5bfe6e6edfd6", "IPY_MODEL_284824c022eb47e9a33898e1ecf7dda3", "IPY_MODEL_93ffb5dd7879400f9e7f477b93c509d0"], "layout": "IPY_MODEL_d905e22f02584b999d73cc80ffee0110"}}, "c0dfa3473ed64fa7a0044c0f437a6ff5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2177d9eef2d14179bdab4a9fd9c1b915": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6bbd465e2f4046028edaa5e0082d76af": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c0dfa3473ed64fa7a0044c0f437a6ff5", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2177d9eef2d14179bdab4a9fd9c1b915", "value": 3201.0}}, "a452c26c8935444495eef8eccd537821": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0074814fbf264ac4a04bdeb51abcaab2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "df30265328c142b1849ba3ca47b68fe7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a452c26c8935444495eef8eccd537821", "placeholder": "\u200b", "style": "IPY_MODEL_0074814fbf264ac4a04bdeb51abcaab2", "value": "mean_var_norm_emb.ckpt: 100%"}}, "6c17a0abb12f4f9a9c6a52271fe66768": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb2c0bd27a2c4c5ba243a7e72cb1d8aa": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e2aba32a91bf4f9dabd9e25f75f60e37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6c17a0abb12f4f9a9c6a52271fe66768", "placeholder": "\u200b", "style": "IPY_MODEL_fb2c0bd27a2c4c5ba243a7e72cb1d8aa", "value": " 3.20k/3.20k [00:00<00:00, 575kB/s]"}}, "bdf1d068064c4e37bf3b0a036bd0710a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "02d54a93c71f4717b776780ee1334673": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_df30265328c142b1849ba3ca47b68fe7", "IPY_MODEL_6bbd465e2f4046028edaa5e0082d76af", "IPY_MODEL_e2aba32a91bf4f9dabd9e25f75f60e37"], "layout": "IPY_MODEL_bdf1d068064c4e37bf3b0a036bd0710a"}}, "938e795c39e94f739123942e85645be6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "447ff7ecb3fc411ea934e0d55e5af3d8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f234f92a2ce2467bbaad67f8d5d7ec2b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_938e795c39e94f739123942e85645be6", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_447ff7ecb3fc411ea934e0d55e5af3d8", "value": 15856877.0}}, "9b85abadb14148da809553593daf41d5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a82707d6cf75449fa0bcd2b98e10b3a2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "541e0c9185044d10b9df997de483919d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9b85abadb14148da809553593daf41d5", "placeholder": "\u200b", "style": "IPY_MODEL_a82707d6cf75449fa0bcd2b98e10b3a2", "value": "classifier.ckpt: 100%"}}, "8e622334e195432cbba4e4d65e702507": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41828383ccc742919bc29139a2ba5bd6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5d6a6ab20b864187a3b7662c9dc5a7ff": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8e622334e195432cbba4e4d65e702507", "placeholder": "\u200b", "style": "IPY_MODEL_41828383ccc742919bc29139a2ba5bd6", "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]"}}, "05a419d84fc2472b8d03ecb51099197a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cadb95e2bbdd4166b848cf44e71b2139": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_541e0c9185044d10b9df997de483919d", "IPY_MODEL_f234f92a2ce2467bbaad67f8d5d7ec2b", "IPY_MODEL_5d6a6ab20b864187a3b7662c9dc5a7ff"], "layout": "IPY_MODEL_05a419d84fc2472b8d03ecb51099197a"}}, "4ec51dfd68c34f43aec5b39ee7b3b771": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2059403b3c141c78b7dea525b593b9c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6ea830a76c164f35aa74845442e1a10d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ec51dfd68c34f43aec5b39ee7b3b771", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e2059403b3c141c78b7dea525b593b9c", "value": 128619.0}}, "ab34cc856bad403f9cdba111f873a306": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8626655c6a774bc6a315f1cad23adca2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b7b112df9d2e4aec93edbbc0d3c2d932": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ab34cc856bad403f9cdba111f873a306", "placeholder": "\u200b", "style": "IPY_MODEL_8626655c6a774bc6a315f1cad23adca2", "value": "label_encoder.txt: 100%"}}, "c0f64d3aebb64bf3bb3d4db1e1c95af2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65d244fefe2e4b09a600a1d3a970a2e6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fc5e50b0328147c4ab04b99bb3f04a3b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c0f64d3aebb64bf3bb3d4db1e1c95af2", "placeholder": "\u200b", "style": "IPY_MODEL_65d244fefe2e4b09a600a1d3a970a2e6", "value": " 129k/129k [00:00<00:00, 7.08MB/s]"}}, "1881dfe59f184d4ab3ce997d6b71097d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c5bb790c5544dc296857be6357fbe27": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b7b112df9d2e4aec93edbbc0d3c2d932", "IPY_MODEL_6ea830a76c164f35aa74845442e1a10d", "IPY_MODEL_fc5e50b0328147c4ab04b99bb3f04a3b"], "layout": "IPY_MODEL_1881dfe59f184d4ab3ce997d6b71097d"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 22d86d2d5..26b787814 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:41.259375Z", - "iopub.status.busy": "2024-01-10T06:12:41.259181Z", - "iopub.status.idle": "2024-01-10T06:12:44.627929Z", - "shell.execute_reply": "2024-01-10T06:12:44.627193Z" + "iopub.execute_input": "2024-01-10T14:58:18.668950Z", + "iopub.status.busy": "2024-01-10T14:58:18.668761Z", + "iopub.status.idle": "2024-01-10T14:58:21.901115Z", + "shell.execute_reply": "2024-01-10T14:58:21.900497Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:44.631157Z", - "iopub.status.busy": "2024-01-10T06:12:44.630753Z", - "iopub.status.idle": "2024-01-10T06:12:44.634288Z", - "shell.execute_reply": "2024-01-10T06:12:44.633678Z" + "iopub.execute_input": "2024-01-10T14:58:21.904331Z", + "iopub.status.busy": "2024-01-10T14:58:21.903708Z", + "iopub.status.idle": "2024-01-10T14:58:21.907185Z", + "shell.execute_reply": "2024-01-10T14:58:21.906573Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:44.636787Z", - "iopub.status.busy": "2024-01-10T06:12:44.636307Z", - "iopub.status.idle": "2024-01-10T06:12:44.641333Z", - "shell.execute_reply": "2024-01-10T06:12:44.640736Z" + "iopub.execute_input": "2024-01-10T14:58:21.909522Z", + "iopub.status.busy": "2024-01-10T14:58:21.909178Z", + "iopub.status.idle": "2024-01-10T14:58:21.913887Z", + "shell.execute_reply": "2024-01-10T14:58:21.913417Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T06:12:44.643861Z", - "iopub.status.busy": "2024-01-10T06:12:44.643521Z", - "iopub.status.idle": "2024-01-10T06:12:46.354519Z", - "shell.execute_reply": "2024-01-10T06:12:46.353792Z" + "iopub.execute_input": "2024-01-10T14:58:21.916187Z", + "iopub.status.busy": "2024-01-10T14:58:21.915888Z", + "iopub.status.idle": "2024-01-10T14:58:23.515233Z", + "shell.execute_reply": "2024-01-10T14:58:23.514352Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T06:12:46.357667Z", - "iopub.status.busy": "2024-01-10T06:12:46.357425Z", - "iopub.status.idle": "2024-01-10T06:12:46.370136Z", - "shell.execute_reply": "2024-01-10T06:12:46.369486Z" + "iopub.execute_input": "2024-01-10T14:58:23.518555Z", + "iopub.status.busy": "2024-01-10T14:58:23.518070Z", + "iopub.status.idle": "2024-01-10T14:58:23.530275Z", + "shell.execute_reply": "2024-01-10T14:58:23.529672Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:46.403886Z", - "iopub.status.busy": "2024-01-10T06:12:46.403279Z", - "iopub.status.idle": "2024-01-10T06:12:46.409469Z", - "shell.execute_reply": "2024-01-10T06:12:46.408796Z" + "iopub.execute_input": "2024-01-10T14:58:23.562754Z", + "iopub.status.busy": "2024-01-10T14:58:23.562321Z", + "iopub.status.idle": "2024-01-10T14:58:23.568030Z", + "shell.execute_reply": "2024-01-10T14:58:23.567462Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T06:12:46.412199Z", - "iopub.status.busy": "2024-01-10T06:12:46.411701Z", - "iopub.status.idle": "2024-01-10T06:12:47.129236Z", - "shell.execute_reply": "2024-01-10T06:12:47.128626Z" + "iopub.execute_input": "2024-01-10T14:58:23.570490Z", + "iopub.status.busy": "2024-01-10T14:58:23.570110Z", + "iopub.status.idle": "2024-01-10T14:58:24.284389Z", + "shell.execute_reply": "2024-01-10T14:58:24.283694Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:47.131854Z", - "iopub.status.busy": "2024-01-10T06:12:47.131458Z", - "iopub.status.idle": "2024-01-10T06:12:48.015833Z", - "shell.execute_reply": "2024-01-10T06:12:48.015271Z" + "iopub.execute_input": "2024-01-10T14:58:24.287313Z", + "iopub.status.busy": "2024-01-10T14:58:24.286844Z", + "iopub.status.idle": "2024-01-10T14:58:24.969714Z", + "shell.execute_reply": "2024-01-10T14:58:24.969125Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-10T06:12:48.018530Z", - "iopub.status.busy": "2024-01-10T06:12:48.018300Z", - "iopub.status.idle": "2024-01-10T06:12:48.041148Z", - "shell.execute_reply": "2024-01-10T06:12:48.040614Z" + "iopub.execute_input": "2024-01-10T14:58:24.972731Z", + "iopub.status.busy": "2024-01-10T14:58:24.972359Z", + "iopub.status.idle": "2024-01-10T14:58:24.995317Z", + "shell.execute_reply": "2024-01-10T14:58:24.994716Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:48.043328Z", - "iopub.status.busy": "2024-01-10T06:12:48.043129Z", - "iopub.status.idle": "2024-01-10T06:12:48.046599Z", - "shell.execute_reply": "2024-01-10T06:12:48.046087Z" + "iopub.execute_input": "2024-01-10T14:58:24.997904Z", + "iopub.status.busy": "2024-01-10T14:58:24.997492Z", + "iopub.status.idle": "2024-01-10T14:58:25.000793Z", + "shell.execute_reply": "2024-01-10T14:58:25.000227Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:12:48.048804Z", - "iopub.status.busy": "2024-01-10T06:12:48.048609Z", - "iopub.status.idle": "2024-01-10T06:13:07.565893Z", - "shell.execute_reply": "2024-01-10T06:13:07.565174Z" + "iopub.execute_input": "2024-01-10T14:58:25.003088Z", + "iopub.status.busy": "2024-01-10T14:58:25.002801Z", + "iopub.status.idle": "2024-01-10T14:58:43.774968Z", + "shell.execute_reply": "2024-01-10T14:58:43.774333Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:07.569479Z", - "iopub.status.busy": "2024-01-10T06:13:07.568916Z", - "iopub.status.idle": "2024-01-10T06:13:07.573445Z", - "shell.execute_reply": "2024-01-10T06:13:07.572829Z" + "iopub.execute_input": "2024-01-10T14:58:43.777939Z", + "iopub.status.busy": "2024-01-10T14:58:43.777521Z", + "iopub.status.idle": "2024-01-10T14:58:43.781566Z", + "shell.execute_reply": "2024-01-10T14:58:43.780933Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:07.576084Z", - "iopub.status.busy": "2024-01-10T06:13:07.575635Z", - "iopub.status.idle": "2024-01-10T06:13:13.160325Z", - "shell.execute_reply": "2024-01-10T06:13:13.159580Z" + "iopub.execute_input": "2024-01-10T14:58:43.784229Z", + "iopub.status.busy": "2024-01-10T14:58:43.783774Z", + "iopub.status.idle": "2024-01-10T14:58:49.268183Z", + "shell.execute_reply": "2024-01-10T14:58:49.267513Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.163818Z", - "iopub.status.busy": "2024-01-10T06:13:13.163341Z", - "iopub.status.idle": "2024-01-10T06:13:13.169098Z", - "shell.execute_reply": "2024-01-10T06:13:13.168477Z" + "iopub.execute_input": "2024-01-10T14:58:49.271363Z", + "iopub.status.busy": "2024-01-10T14:58:49.270946Z", + "iopub.status.idle": "2024-01-10T14:58:49.276508Z", + "shell.execute_reply": "2024-01-10T14:58:49.275890Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.173106Z", - "iopub.status.busy": "2024-01-10T06:13:13.171931Z", - "iopub.status.idle": "2024-01-10T06:13:13.286084Z", - "shell.execute_reply": "2024-01-10T06:13:13.285356Z" + "iopub.execute_input": "2024-01-10T14:58:49.279388Z", + "iopub.status.busy": "2024-01-10T14:58:49.278949Z", + "iopub.status.idle": "2024-01-10T14:58:49.393691Z", + "shell.execute_reply": "2024-01-10T14:58:49.392953Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.289090Z", - "iopub.status.busy": "2024-01-10T06:13:13.288656Z", - "iopub.status.idle": "2024-01-10T06:13:13.298785Z", - "shell.execute_reply": "2024-01-10T06:13:13.298212Z" + "iopub.execute_input": "2024-01-10T14:58:49.396661Z", + "iopub.status.busy": "2024-01-10T14:58:49.396256Z", + "iopub.status.idle": "2024-01-10T14:58:49.406585Z", + "shell.execute_reply": "2024-01-10T14:58:49.406016Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.301337Z", - "iopub.status.busy": "2024-01-10T06:13:13.300949Z", - "iopub.status.idle": "2024-01-10T06:13:13.309539Z", - "shell.execute_reply": "2024-01-10T06:13:13.308933Z" + "iopub.execute_input": "2024-01-10T14:58:49.409138Z", + "iopub.status.busy": "2024-01-10T14:58:49.408770Z", + "iopub.status.idle": "2024-01-10T14:58:49.417093Z", + "shell.execute_reply": "2024-01-10T14:58:49.416454Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.312077Z", - "iopub.status.busy": "2024-01-10T06:13:13.311693Z", - "iopub.status.idle": "2024-01-10T06:13:13.316598Z", - "shell.execute_reply": "2024-01-10T06:13:13.316047Z" + "iopub.execute_input": "2024-01-10T14:58:49.419692Z", + "iopub.status.busy": "2024-01-10T14:58:49.419308Z", + "iopub.status.idle": "2024-01-10T14:58:49.423888Z", + "shell.execute_reply": "2024-01-10T14:58:49.423233Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.319161Z", - "iopub.status.busy": "2024-01-10T06:13:13.318787Z", - "iopub.status.idle": "2024-01-10T06:13:13.325198Z", - "shell.execute_reply": "2024-01-10T06:13:13.324553Z" + "iopub.execute_input": "2024-01-10T14:58:49.426320Z", + "iopub.status.busy": "2024-01-10T14:58:49.426003Z", + "iopub.status.idle": "2024-01-10T14:58:49.432389Z", + "shell.execute_reply": "2024-01-10T14:58:49.431778Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.327754Z", - "iopub.status.busy": "2024-01-10T06:13:13.327373Z", - "iopub.status.idle": "2024-01-10T06:13:13.443959Z", - "shell.execute_reply": "2024-01-10T06:13:13.443366Z" + "iopub.execute_input": "2024-01-10T14:58:49.434787Z", + "iopub.status.busy": "2024-01-10T14:58:49.434428Z", + "iopub.status.idle": "2024-01-10T14:58:49.548812Z", + "shell.execute_reply": "2024-01-10T14:58:49.548145Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.446679Z", - "iopub.status.busy": "2024-01-10T06:13:13.446417Z", - "iopub.status.idle": "2024-01-10T06:13:13.557900Z", - "shell.execute_reply": "2024-01-10T06:13:13.557249Z" + "iopub.execute_input": "2024-01-10T14:58:49.551386Z", + "iopub.status.busy": "2024-01-10T14:58:49.551035Z", + "iopub.status.idle": "2024-01-10T14:58:49.660719Z", + "shell.execute_reply": "2024-01-10T14:58:49.660055Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.560589Z", - "iopub.status.busy": "2024-01-10T06:13:13.560140Z", - "iopub.status.idle": "2024-01-10T06:13:13.670534Z", - "shell.execute_reply": "2024-01-10T06:13:13.669855Z" + "iopub.execute_input": "2024-01-10T14:58:49.663182Z", + "iopub.status.busy": "2024-01-10T14:58:49.662969Z", + "iopub.status.idle": "2024-01-10T14:58:49.770975Z", + "shell.execute_reply": "2024-01-10T14:58:49.770314Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.673234Z", - "iopub.status.busy": "2024-01-10T06:13:13.672760Z", - "iopub.status.idle": "2024-01-10T06:13:13.783675Z", - "shell.execute_reply": "2024-01-10T06:13:13.783105Z" + "iopub.execute_input": "2024-01-10T14:58:49.773379Z", + "iopub.status.busy": "2024-01-10T14:58:49.773175Z", + "iopub.status.idle": "2024-01-10T14:58:49.882826Z", + "shell.execute_reply": "2024-01-10T14:58:49.882220Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:13.786289Z", - "iopub.status.busy": "2024-01-10T06:13:13.785901Z", - "iopub.status.idle": "2024-01-10T06:13:13.789366Z", - "shell.execute_reply": "2024-01-10T06:13:13.788812Z" + "iopub.execute_input": "2024-01-10T14:58:49.885292Z", + "iopub.status.busy": "2024-01-10T14:58:49.885088Z", + "iopub.status.idle": "2024-01-10T14:58:49.888620Z", + "shell.execute_reply": "2024-01-10T14:58:49.888080Z" }, "nbsphinx": "hidden" }, @@ -1377,70 +1377,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06ab656526714167a212ab573f39a6e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c41a3321793d4d608d8a59946471fbcc", - "placeholder": "​", - "style": "IPY_MODEL_172b44924b8b475cb3b836b0f901ac71", - "value": " 129k/129k [00:00<00:00, 6.45MB/s]" - } - }, - "0834d56d62714c28b3aeb79b3ddc680d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_228b6665d63741019e33f90d71f5f3f9", - "placeholder": "​", - "style": "IPY_MODEL_cd45f60e3ff442c6a9dd8562909119d3", - "value": " 16.9M/16.9M [00:00<00:00, 254MB/s]" - } - }, - "0fce71ef080443ad95ba0ab7ab1fde8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_202693369eef41eeb079e15b2dca6fa5", - "placeholder": "​", - "style": "IPY_MODEL_111a40f2a0704b5cb8269c337a9d4501", - "value": " 3.20k/3.20k [00:00<00:00, 537kB/s]" - } - }, - "111a40f2a0704b5cb8269c337a9d4501": { + "0074814fbf264ac4a04bdeb51abcaab2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1455,22 +1392,29 @@ "description_width": "" } }, - "172b44924b8b475cb3b836b0f901ac71": { + "02d54a93c71f4717b776780ee1334673": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df30265328c142b1849ba3ca47b68fe7", + "IPY_MODEL_6bbd465e2f4046028edaa5e0082d76af", + "IPY_MODEL_e2aba32a91bf4f9dabd9e25f75f60e37" + ], + "layout": "IPY_MODEL_bdf1d068064c4e37bf3b0a036bd0710a" } }, - "202693369eef41eeb079e15b2dca6fa5": { + "05a419d84fc2472b8d03ecb51099197a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1522,7 +1466,7 @@ "width": null } }, - "228b6665d63741019e33f90d71f5f3f9": { + "1881dfe59f184d4ab3ce997d6b71097d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1574,59 +1518,206 @@ "width": null } }, - "2498f913b927410bb9ae4dcefb918991": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "2177d9eef2d14179bdab4a9fd9c1b915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "284824c022eb47e9a33898e1ecf7dda3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5a3fe8fa0d848ec9ec188729948a377", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3454223caf744f1fbf4c19967e38db8f", + "value": 16887676.0 + } + }, + "294a8ffab7f44974b28a07ffbb94882f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f781d9e0307c483fb140677b5258e2d6", + "placeholder": "​", + "style": "IPY_MODEL_460394fe32074436800a43db6ccac64e", + "value": " 2.04k/2.04k [00:00<00:00, 324kB/s]" + } + }, + "2c5bb790c5544dc296857be6357fbe27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b7b112df9d2e4aec93edbbc0d3c2d932", + "IPY_MODEL_6ea830a76c164f35aa74845442e1a10d", + "IPY_MODEL_fc5e50b0328147c4ab04b99bb3f04a3b" + ], + "layout": "IPY_MODEL_1881dfe59f184d4ab3ce997d6b71097d" } }, - "25c64fccecfb4812882e32cd62028cda": { + "3454223caf744f1fbf4c19967e38db8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "34b1268d4de040f2a5a31699ef1ede5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3c821907cbd14c19a78c25554493358d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df669b30fcd04ee4974fd952553f376e", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b2afdf832394f58976ee58105fc9ac4", + "value": 2041.0 + } + }, + "41828383ccc742919bc29139a2ba5bd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "447ff7ecb3fc411ea934e0d55e5af3d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "460394fe32074436800a43db6ccac64e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "48fb5229f100484292916171f30a77b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ec51dfd68c34f43aec5b39ee7b3b771": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1678,7 +1769,107 @@ "width": null } }, - "28125c9aef0d4dc093ba42b225b7c7ef": { + "541e0c9185044d10b9df997de483919d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9b85abadb14148da809553593daf41d5", + "placeholder": "​", + "style": "IPY_MODEL_a82707d6cf75449fa0bcd2b98e10b3a2", + "value": "classifier.ckpt: 100%" + } + }, + "5d6a6ab20b864187a3b7662c9dc5a7ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8e622334e195432cbba4e4d65e702507", + "placeholder": "​", + "style": "IPY_MODEL_41828383ccc742919bc29139a2ba5bd6", + "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]" + } + }, + "65d244fefe2e4b09a600a1d3a970a2e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "68fc1f991eb44edba2fc5bfe6e6edfd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2ce8e57fdb04b0798a6c4c16ae3467f", + "placeholder": "​", + "style": "IPY_MODEL_34b1268d4de040f2a5a31699ef1ede5c", + "value": "embedding_model.ckpt: 100%" + } + }, + "6902ffa71e7d475d9583c90ce2b2f911": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68fc1f991eb44edba2fc5bfe6e6edfd6", + "IPY_MODEL_284824c022eb47e9a33898e1ecf7dda3", + "IPY_MODEL_93ffb5dd7879400f9e7f477b93c509d0" + ], + "layout": "IPY_MODEL_d905e22f02584b999d73cc80ffee0110" + } + }, + "6bbd465e2f4046028edaa5e0082d76af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1694,15 +1885,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_25c64fccecfb4812882e32cd62028cda", - "max": 128619.0, + "layout": "IPY_MODEL_c0dfa3473ed64fa7a0044c0f437a6ff5", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fcee34ed095e4db6a88e4559efaff29f", - "value": 128619.0 + "style": "IPY_MODEL_2177d9eef2d14179bdab4a9fd9c1b915", + "value": 3201.0 } }, - "2ca02285df6a43f6900cce3b23ad30aa": { + "6c17a0abb12f4f9a9c6a52271fe66768": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1754,89 +1945,46 @@ "width": null } }, - "3223b85e60f248499b88202f60b03b49": { + "6ea830a76c164f35aa74845442e1a10d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffa606c5f25748859eb966e69110de72", - "IPY_MODEL_28125c9aef0d4dc093ba42b225b7c7ef", - "IPY_MODEL_06ab656526714167a212ab573f39a6e8" - ], - "layout": "IPY_MODEL_531bd00fa5ad4184b070387d6f1fcf62" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ec51dfd68c34f43aec5b39ee7b3b771", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e2059403b3c141c78b7dea525b593b9c", + "value": 128619.0 } }, - "34bc9fad69fc44a9ab325fff185f11f9": { + "8626655c6a774bc6a315f1cad23adca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "4162f5fe77e74a6482908480569b3dd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ed5b9304939b4878afcb87cc1e060aae", - "IPY_MODEL_fa64a22ea146494ca2914d3484db6765", - "IPY_MODEL_0fce71ef080443ad95ba0ab7ab1fde8c" - ], - "layout": "IPY_MODEL_f99279c3718c4390825bb04cca778044" - } - }, - "5133c28de8264b41a420172eca319163": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f7fda0a4e234263a3618a65ccc48db1", - "IPY_MODEL_5d33a6963baa4b95bba45ab0b9e33c8a", - "IPY_MODEL_0834d56d62714c28b3aeb79b3ddc680d" - ], - "layout": "IPY_MODEL_2ca02285df6a43f6900cce3b23ad30aa" - } - }, - "520a1c7807ef42ee92526b78323c1d3b": { + "8c44830cf4a14c1bbbf2a49980b485d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1851,7 +1999,7 @@ "description_width": "" } }, - "531bd00fa5ad4184b070387d6f1fcf62": { + "8e622334e195432cbba4e4d65e702507": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1903,7 +2051,7 @@ "width": null } }, - "557b8d9ac1ca4cf68a90a2259b2a61dd": { + "920a9387b971454687a4403592f0c76e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1955,31 +2103,7 @@ "width": null } }, - "5d33a6963baa4b95bba45ab0b9e33c8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d003c7d9dffe4306a34d02339a448a43", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6960472d0e964654a68f2ad54c93a2b4", - "value": 16887676.0 - } - }, - "60d401f5c6c74a328a80e74f9ba2de83": { + "938e795c39e94f739123942e85645be6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2015,234 +2139,60 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6960472d0e964654a68f2ad54c93a2b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6d27aad7fad246ef8d47399f2e4310da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "72aa3b5eca7d46d3a61ae6039af64c8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b970971e982644df933a6fc215f217f9", - "placeholder": "​", - "style": "IPY_MODEL_998226c5bbfd44e3a06638c497e2daa1", - "value": " 2.04k/2.04k [00:00<00:00, 328kB/s]" - } - }, - "850228d498cd4b3e87f32f1257313d81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "86951f39c00e4109b4ca60ffcc939b40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8f7fda0a4e234263a3618a65ccc48db1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ebe77964da2d45548943f4419f211879", - "placeholder": "​", - "style": "IPY_MODEL_fdeba1c93e6747be9c5211333d0768bc", - "value": "embedding_model.ckpt: 100%" - } - }, - "93b351e64c634bd99c642a728e59c557": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f6fd30592fee4f22ba0d241c0e2862e2", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_850228d498cd4b3e87f32f1257313d81", - "value": 2041.0 - } - }, - "990db9ddb0344d739ad0a89adcc4197e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eeb9be4c886941159edec7fc558e7a5a", - "IPY_MODEL_a4d57cf88a0e4fb6a5afe457b792d93e", - "IPY_MODEL_dbe436d691f14d889ecb1e75dee91ee6" - ], - "layout": "IPY_MODEL_e5513548b6dc4815a177c264a29d47eb" - } - }, - "998226c5bbfd44e3a06638c497e2daa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a4d57cf88a0e4fb6a5afe457b792d93e": { + "93ffb5dd7879400f9e7f477b93c509d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c6e0bbd765f348708cf3b1437c7cb9a8", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d27aad7fad246ef8d47399f2e4310da", - "value": 15856877.0 + "layout": "IPY_MODEL_e454c1f736c9495aa3bedadf94b43954", + "placeholder": "​", + "style": "IPY_MODEL_48fb5229f100484292916171f30a77b5", + "value": " 16.9M/16.9M [00:00<00:00, 177MB/s]" } }, - "a4ffd871ac9d43fc97f1519c2af296fa": { + "9b2afdf832394f58976ee58105fc9ac4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a6b20f82cfa9402a8c7fd2cf43db10f8", - "placeholder": "​", - "style": "IPY_MODEL_86951f39c00e4109b4ca60ffcc939b40", - "value": "hyperparams.yaml: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a6b20f82cfa9402a8c7fd2cf43db10f8": { + "9b85abadb14148da809553593daf41d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2294,7 +2244,7 @@ "width": null } }, - "b970971e982644df933a6fc215f217f9": { + "a452c26c8935444495eef8eccd537821": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2346,7 +2296,22 @@ "width": null } }, - "b990bf93a73a48fa96ef81a45ecc7cf8": { + "a82707d6cf75449fa0bcd2b98e10b3a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab34cc856bad403f9cdba111f873a306": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2398,37 +2363,28 @@ "width": null } }, - "bb8670831c2e4347bf8ee34b069cb5ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c169e87cf101414c8b083a4b20e420ca": { + "b7b112df9d2e4aec93edbbc0d3c2d932": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab34cc856bad403f9cdba111f873a306", + "placeholder": "​", + "style": "IPY_MODEL_8626655c6a774bc6a315f1cad23adca2", + "value": "label_encoder.txt: 100%" } }, - "c41a3321793d4d608d8a59946471fbcc": { + "bdf1d068064c4e37bf3b0a036bd0710a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2480,7 +2436,7 @@ "width": null } }, - "c6e0bbd765f348708cf3b1437c7cb9a8": { + "c0dfa3473ed64fa7a0044c0f437a6ff5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2532,22 +2488,7 @@ "width": null } }, - "cd45f60e3ff442c6a9dd8562909119d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d003c7d9dffe4306a34d02339a448a43": { + "c0f64d3aebb64bf3bb3d4db1e1c95af2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2599,28 +2540,29 @@ "width": null } }, - "dbe436d691f14d889ecb1e75dee91ee6": { + "c17f3317dc9f4e41b15f0c9f0afcb7f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_60d401f5c6c74a328a80e74f9ba2de83", - "placeholder": "​", - "style": "IPY_MODEL_520a1c7807ef42ee92526b78323c1d3b", - "value": " 15.9M/15.9M [00:00<00:00, 347MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fb7be2fc3b524b408dacb3a4ba1dfb8f", + "IPY_MODEL_3c821907cbd14c19a78c25554493358d", + "IPY_MODEL_294a8ffab7f44974b28a07ffbb94882f" + ], + "layout": "IPY_MODEL_920a9387b971454687a4403592f0c76e" } }, - "e420c8493f574d69aef12450cf0a9a14": { + "c2ce8e57fdb04b0798a6c4c16ae3467f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2672,7 +2614,7 @@ "width": null } }, - "e5513548b6dc4815a177c264a29d47eb": { + "c5a3fe8fa0d848ec9ec188729948a377": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2724,7 +2666,29 @@ "width": null } }, - "ebe77964da2d45548943f4419f211879": { + "cadb95e2bbdd4166b848cf44e71b2139": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_541e0c9185044d10b9df997de483919d", + "IPY_MODEL_f234f92a2ce2467bbaad67f8d5d7ec2b", + "IPY_MODEL_5d6a6ab20b864187a3b7662c9dc5a7ff" + ], + "layout": "IPY_MODEL_05a419d84fc2472b8d03ecb51099197a" + } + }, + "d905e22f02584b999d73cc80ffee0110": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2776,7 +2740,7 @@ "width": null } }, - "ed5b9304939b4878afcb87cc1e060aae": { + "df30265328c142b1849ba3ca47b68fe7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2791,13 +2755,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b990bf93a73a48fa96ef81a45ecc7cf8", + "layout": "IPY_MODEL_a452c26c8935444495eef8eccd537821", "placeholder": "​", - "style": "IPY_MODEL_f9c3e8763ecb425aa275ed93f80ef66a", + "style": "IPY_MODEL_0074814fbf264ac4a04bdeb51abcaab2", "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ee59111c59fe4214a106ea7b4d3bd396": { + "df669b30fcd04ee4974fd952553f376e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2849,7 +2813,23 @@ "width": null } }, - "eeb9be4c886941159edec7fc558e7a5a": { + "e2059403b3c141c78b7dea525b593b9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2aba32a91bf4f9dabd9e25f75f60e37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2864,35 +2844,89 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2498f913b927410bb9ae4dcefb918991", + "layout": "IPY_MODEL_6c17a0abb12f4f9a9c6a52271fe66768", "placeholder": "​", - "style": "IPY_MODEL_bb8670831c2e4347bf8ee34b069cb5ac", - "value": "classifier.ckpt: 100%" + "style": "IPY_MODEL_fb2c0bd27a2c4c5ba243a7e72cb1d8aa", + "value": " 3.20k/3.20k [00:00<00:00, 575kB/s]" + } + }, + "e454c1f736c9495aa3bedadf94b43954": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f544c0ca919a47c6a4bfa1f492857422": { + "f234f92a2ce2467bbaad67f8d5d7ec2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4ffd871ac9d43fc97f1519c2af296fa", - "IPY_MODEL_93b351e64c634bd99c642a728e59c557", - "IPY_MODEL_72aa3b5eca7d46d3a61ae6039af64c8c" - ], - "layout": "IPY_MODEL_ee59111c59fe4214a106ea7b4d3bd396" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_938e795c39e94f739123942e85645be6", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_447ff7ecb3fc411ea934e0d55e5af3d8", + "value": 15856877.0 } }, - "f6fd30592fee4f22ba0d241c0e2862e2": { + "f3bc5d140a7b4411a598d2ef76421a6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2944,7 +2978,7 @@ "width": null } }, - "f99279c3718c4390825bb04cca778044": { + "f781d9e0307c483fb140677b5258e2d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2996,7 +3030,7 @@ "width": null } }, - "f9c3e8763ecb425aa275ed93f80ef66a": { + "fb2c0bd27a2c4c5ba243a7e72cb1d8aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3011,62 +3045,28 @@ "description_width": "" } }, - "fa64a22ea146494ca2914d3484db6765": { + "fb7be2fc3b524b408dacb3a4ba1dfb8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_557b8d9ac1ca4cf68a90a2259b2a61dd", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_34bc9fad69fc44a9ab325fff185f11f9", - "value": 3201.0 - } - }, - "fcee34ed095e4db6a88e4559efaff29f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fdeba1c93e6747be9c5211333d0768bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_f3bc5d140a7b4411a598d2ef76421a6a", + "placeholder": "​", + "style": "IPY_MODEL_8c44830cf4a14c1bbbf2a49980b485d8", + "value": "hyperparams.yaml: 100%" } }, - "ffa606c5f25748859eb966e69110de72": { + "fc5e50b0328147c4ab04b99bb3f04a3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3081,10 +3081,10 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e420c8493f574d69aef12450cf0a9a14", + "layout": "IPY_MODEL_c0f64d3aebb64bf3bb3d4db1e1c95af2", "placeholder": "​", - "style": "IPY_MODEL_c169e87cf101414c8b083a4b20e420ca", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_65d244fefe2e4b09a600a1d3a970a2e6", + "value": " 129k/129k [00:00<00:00, 7.08MB/s]" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 8aa12fb61..cbd5cc50a 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1444,7 +1444,7 @@

Functionality 3: Save and load Datalab objects
-
+
@@ -1709,7 +1709,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"bfd4faf7258443a39bd2fcd278bc83ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dac1e3e656dd43008dc2870d6342af0e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "822795f0acf14d819bd90d6ea63181ec": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bfd4faf7258443a39bd2fcd278bc83ac", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dac1e3e656dd43008dc2870d6342af0e", "value": 132.0}}, "13d483977eca497389f4722102d836b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4666b6ad60954d5887cfd7eebc497a5e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "777abd15d2bc4f3dbbcd901eb1bfa3d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_13d483977eca497389f4722102d836b9", "placeholder": "\u200b", "style": "IPY_MODEL_4666b6ad60954d5887cfd7eebc497a5e", "value": "Saving the dataset (1/1 shards): 100%"}}, "0fff0021442e4b26a3ef037cd77b53b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c6e36c143374b619efebd1763224d51": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "07ce684158734aa2ad7d27dfdc5022e9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0fff0021442e4b26a3ef037cd77b53b9", "placeholder": "\u200b", "style": "IPY_MODEL_1c6e36c143374b619efebd1763224d51", "value": " 132/132 [00:00<00:00, 10237.77 examples/s]"}}, "e6c108b6484046cdb7acc0ffe213b8ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fea3d5c35ae9493f8a9be8704822e8fd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_777abd15d2bc4f3dbbcd901eb1bfa3d7", "IPY_MODEL_822795f0acf14d819bd90d6ea63181ec", "IPY_MODEL_07ce684158734aa2ad7d27dfdc5022e9"], "layout": "IPY_MODEL_e6c108b6484046cdb7acc0ffe213b8ef"}}}, "version_major": 2, "version_minor": 0} +{"state": {"7bcc3f1d4e8f4561af6fefcdbfa57573": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e69f1518dbd4f5f98b28e61ae5741e7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a4e15f916f304af6a621a3edd208fbde": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7bcc3f1d4e8f4561af6fefcdbfa57573", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6e69f1518dbd4f5f98b28e61ae5741e7", "value": 132.0}}, "cc4cc2f72a704431ba1a4a0b3aefb072": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cb5a201e40a4148abe3078a636afcdd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "eb0687177d3042cf8f0901f75f604e85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cc4cc2f72a704431ba1a4a0b3aefb072", "placeholder": "\u200b", "style": "IPY_MODEL_4cb5a201e40a4148abe3078a636afcdd", "value": "Saving the dataset (1/1 shards): 100%"}}, "8443c9e833384832ac73d9d1c16736c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2cd88230aa32404fa9f821d2f7e73ee1": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1dd56a26d69048f6a3cafad4385d2b8a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8443c9e833384832ac73d9d1c16736c9", "placeholder": "\u200b", "style": "IPY_MODEL_2cd88230aa32404fa9f821d2f7e73ee1", "value": " 132/132 [00:00<00:00, 10218.87 examples/s]"}}, "761d6c7068ef43eab994d1e5d21d994c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72fad40a86864766b299b987b88cfd8a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eb0687177d3042cf8f0901f75f604e85", "IPY_MODEL_a4e15f916f304af6a621a3edd208fbde", "IPY_MODEL_1dd56a26d69048f6a3cafad4385d2b8a"], "layout": "IPY_MODEL_761d6c7068ef43eab994d1e5d21d994c"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 80ed64de9..02c5ba811 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:18.391900Z", - "iopub.status.busy": "2024-01-10T06:13:18.391450Z", - "iopub.status.idle": "2024-01-10T06:13:19.482980Z", - "shell.execute_reply": "2024-01-10T06:13:19.482325Z" + "iopub.execute_input": "2024-01-10T14:58:54.767356Z", + "iopub.status.busy": "2024-01-10T14:58:54.767167Z", + "iopub.status.idle": "2024-01-10T14:58:55.838400Z", + "shell.execute_reply": "2024-01-10T14:58:55.837772Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.486136Z", - "iopub.status.busy": "2024-01-10T06:13:19.485670Z", - "iopub.status.idle": "2024-01-10T06:13:19.488975Z", - "shell.execute_reply": "2024-01-10T06:13:19.488407Z" + "iopub.execute_input": "2024-01-10T14:58:55.841278Z", + "iopub.status.busy": "2024-01-10T14:58:55.840800Z", + "iopub.status.idle": "2024-01-10T14:58:55.843995Z", + "shell.execute_reply": "2024-01-10T14:58:55.843493Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.491624Z", - "iopub.status.busy": "2024-01-10T06:13:19.491166Z", - "iopub.status.idle": "2024-01-10T06:13:19.500559Z", - "shell.execute_reply": "2024-01-10T06:13:19.499968Z" + "iopub.execute_input": "2024-01-10T14:58:55.846449Z", + "iopub.status.busy": "2024-01-10T14:58:55.846072Z", + "iopub.status.idle": "2024-01-10T14:58:55.855516Z", + "shell.execute_reply": "2024-01-10T14:58:55.854990Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.503166Z", - "iopub.status.busy": "2024-01-10T06:13:19.502771Z", - "iopub.status.idle": "2024-01-10T06:13:19.507585Z", - "shell.execute_reply": "2024-01-10T06:13:19.507087Z" + "iopub.execute_input": "2024-01-10T14:58:55.857837Z", + "iopub.status.busy": "2024-01-10T14:58:55.857473Z", + "iopub.status.idle": "2024-01-10T14:58:55.862243Z", + "shell.execute_reply": "2024-01-10T14:58:55.861728Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.510043Z", - "iopub.status.busy": "2024-01-10T06:13:19.509670Z", - "iopub.status.idle": "2024-01-10T06:13:19.797634Z", - "shell.execute_reply": "2024-01-10T06:13:19.797007Z" + "iopub.execute_input": "2024-01-10T14:58:55.864825Z", + "iopub.status.busy": "2024-01-10T14:58:55.864431Z", + "iopub.status.idle": "2024-01-10T14:58:56.142843Z", + "shell.execute_reply": "2024-01-10T14:58:56.142195Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:19.800537Z", - "iopub.status.busy": "2024-01-10T06:13:19.800126Z", - "iopub.status.idle": "2024-01-10T06:13:20.113225Z", - "shell.execute_reply": "2024-01-10T06:13:20.112562Z" + "iopub.execute_input": "2024-01-10T14:58:56.145686Z", + "iopub.status.busy": "2024-01-10T14:58:56.145335Z", + "iopub.status.idle": "2024-01-10T14:58:56.519923Z", + "shell.execute_reply": "2024-01-10T14:58:56.519255Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:20.116093Z", - "iopub.status.busy": "2024-01-10T06:13:20.115570Z", - "iopub.status.idle": "2024-01-10T06:13:20.140762Z", - "shell.execute_reply": "2024-01-10T06:13:20.140077Z" + "iopub.execute_input": "2024-01-10T14:58:56.522457Z", + "iopub.status.busy": "2024-01-10T14:58:56.522228Z", + "iopub.status.idle": "2024-01-10T14:58:56.547157Z", + "shell.execute_reply": "2024-01-10T14:58:56.546599Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:20.143786Z", - "iopub.status.busy": "2024-01-10T06:13:20.143411Z", - "iopub.status.idle": "2024-01-10T06:13:20.155764Z", - "shell.execute_reply": "2024-01-10T06:13:20.155189Z" + "iopub.execute_input": "2024-01-10T14:58:56.549825Z", + "iopub.status.busy": "2024-01-10T14:58:56.549607Z", + "iopub.status.idle": "2024-01-10T14:58:56.561436Z", + "shell.execute_reply": "2024-01-10T14:58:56.560895Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:20.158588Z", - "iopub.status.busy": "2024-01-10T06:13:20.158210Z", - "iopub.status.idle": "2024-01-10T06:13:21.490758Z", - "shell.execute_reply": "2024-01-10T06:13:21.490064Z" + "iopub.execute_input": "2024-01-10T14:58:56.564157Z", + "iopub.status.busy": "2024-01-10T14:58:56.563818Z", + "iopub.status.idle": "2024-01-10T14:58:57.836813Z", + "shell.execute_reply": "2024-01-10T14:58:57.836183Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.493933Z", - "iopub.status.busy": "2024-01-10T06:13:21.493289Z", - "iopub.status.idle": "2024-01-10T06:13:21.516427Z", - "shell.execute_reply": "2024-01-10T06:13:21.515797Z" + "iopub.execute_input": "2024-01-10T14:58:57.839904Z", + "iopub.status.busy": "2024-01-10T14:58:57.839426Z", + "iopub.status.idle": "2024-01-10T14:58:57.861805Z", + "shell.execute_reply": "2024-01-10T14:58:57.861265Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.519110Z", - "iopub.status.busy": "2024-01-10T06:13:21.518726Z", - "iopub.status.idle": "2024-01-10T06:13:21.542421Z", - "shell.execute_reply": "2024-01-10T06:13:21.541682Z" + "iopub.execute_input": "2024-01-10T14:58:57.864465Z", + "iopub.status.busy": "2024-01-10T14:58:57.864101Z", + "iopub.status.idle": "2024-01-10T14:58:57.885138Z", + "shell.execute_reply": "2024-01-10T14:58:57.884495Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.545363Z", - "iopub.status.busy": "2024-01-10T06:13:21.544862Z", - "iopub.status.idle": "2024-01-10T06:13:21.560354Z", - "shell.execute_reply": "2024-01-10T06:13:21.559667Z" + "iopub.execute_input": "2024-01-10T14:58:57.887770Z", + "iopub.status.busy": "2024-01-10T14:58:57.887374Z", + "iopub.status.idle": "2024-01-10T14:58:57.901817Z", + "shell.execute_reply": "2024-01-10T14:58:57.901299Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.563179Z", - "iopub.status.busy": "2024-01-10T06:13:21.562695Z", - "iopub.status.idle": "2024-01-10T06:13:21.585983Z", - "shell.execute_reply": "2024-01-10T06:13:21.585340Z" + "iopub.execute_input": "2024-01-10T14:58:57.904415Z", + "iopub.status.busy": "2024-01-10T14:58:57.904050Z", + "iopub.status.idle": "2024-01-10T14:58:57.926963Z", + "shell.execute_reply": "2024-01-10T14:58:57.926322Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fea3d5c35ae9493f8a9be8704822e8fd", + "model_id": "72fad40a86864766b299b987b88cfd8a", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.588659Z", - "iopub.status.busy": "2024-01-10T06:13:21.588249Z", - "iopub.status.idle": "2024-01-10T06:13:21.604290Z", - "shell.execute_reply": "2024-01-10T06:13:21.603671Z" + "iopub.execute_input": "2024-01-10T14:58:57.931079Z", + "iopub.status.busy": "2024-01-10T14:58:57.930776Z", + "iopub.status.idle": "2024-01-10T14:58:57.945658Z", + "shell.execute_reply": "2024-01-10T14:58:57.945144Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.606904Z", - "iopub.status.busy": "2024-01-10T06:13:21.606491Z", - "iopub.status.idle": "2024-01-10T06:13:21.612922Z", - "shell.execute_reply": "2024-01-10T06:13:21.612309Z" + "iopub.execute_input": "2024-01-10T14:58:57.948048Z", + "iopub.status.busy": "2024-01-10T14:58:57.947845Z", + "iopub.status.idle": "2024-01-10T14:58:57.954175Z", + "shell.execute_reply": "2024-01-10T14:58:57.953612Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:21.615569Z", - "iopub.status.busy": "2024-01-10T06:13:21.615193Z", - "iopub.status.idle": "2024-01-10T06:13:21.634604Z", - "shell.execute_reply": "2024-01-10T06:13:21.634038Z" + "iopub.execute_input": "2024-01-10T14:58:57.956636Z", + "iopub.status.busy": "2024-01-10T14:58:57.956195Z", + "iopub.status.idle": "2024-01-10T14:58:57.975702Z", + "shell.execute_reply": "2024-01-10T14:58:57.975158Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07ce684158734aa2ad7d27dfdc5022e9": { + "1dd56a26d69048f6a3cafad4385d2b8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1445,13 +1445,81 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0fff0021442e4b26a3ef037cd77b53b9", + "layout": "IPY_MODEL_8443c9e833384832ac73d9d1c16736c9", "placeholder": "​", - "style": "IPY_MODEL_1c6e36c143374b619efebd1763224d51", - "value": " 132/132 [00:00<00:00, 10237.77 examples/s]" + "style": "IPY_MODEL_2cd88230aa32404fa9f821d2f7e73ee1", + "value": " 132/132 [00:00<00:00, 10218.87 examples/s]" } }, - "0fff0021442e4b26a3ef037cd77b53b9": { + "2cd88230aa32404fa9f821d2f7e73ee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4cb5a201e40a4148abe3078a636afcdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e69f1518dbd4f5f98b28e61ae5741e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "72fad40a86864766b299b987b88cfd8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eb0687177d3042cf8f0901f75f604e85", + "IPY_MODEL_a4e15f916f304af6a621a3edd208fbde", + "IPY_MODEL_1dd56a26d69048f6a3cafad4385d2b8a" + ], + "layout": "IPY_MODEL_761d6c7068ef43eab994d1e5d21d994c" + } + }, + "761d6c7068ef43eab994d1e5d21d994c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1503,7 +1571,7 @@ "width": null } }, - "13d483977eca497389f4722102d836b9": { + "7bcc3f1d4e8f4561af6fefcdbfa57573": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1555,82 +1623,7 @@ "width": null } }, - "1c6e36c143374b619efebd1763224d51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4666b6ad60954d5887cfd7eebc497a5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "777abd15d2bc4f3dbbcd901eb1bfa3d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_13d483977eca497389f4722102d836b9", - "placeholder": "​", - "style": "IPY_MODEL_4666b6ad60954d5887cfd7eebc497a5e", - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "822795f0acf14d819bd90d6ea63181ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bfd4faf7258443a39bd2fcd278bc83ac", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dac1e3e656dd43008dc2870d6342af0e", - "value": 132.0 - } - }, - "bfd4faf7258443a39bd2fcd278bc83ac": { + "8443c9e833384832ac73d9d1c16736c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1682,23 +1675,31 @@ "width": null } }, - "dac1e3e656dd43008dc2870d6342af0e": { + "a4e15f916f304af6a621a3edd208fbde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7bcc3f1d4e8f4561af6fefcdbfa57573", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6e69f1518dbd4f5f98b28e61ae5741e7", + "value": 132.0 } }, - "e6c108b6484046cdb7acc0ffe213b8ef": { + "cc4cc2f72a704431ba1a4a0b3aefb072": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1750,26 +1751,25 @@ "width": null } }, - "fea3d5c35ae9493f8a9be8704822e8fd": { + "eb0687177d3042cf8f0901f75f604e85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_777abd15d2bc4f3dbbcd901eb1bfa3d7", - "IPY_MODEL_822795f0acf14d819bd90d6ea63181ec", - "IPY_MODEL_07ce684158734aa2ad7d27dfdc5022e9" - ], - "layout": "IPY_MODEL_e6c108b6484046cdb7acc0ffe213b8ef" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc4cc2f72a704431ba1a4a0b3aefb072", + "placeholder": "​", + "style": "IPY_MODEL_4cb5a201e40a4148abe3078a636afcdd", + "value": "Saving the dataset (1/1 shards): 100%" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 286e31e35..a87b1fc5a 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:26.619683Z", - "iopub.status.busy": "2024-01-10T06:13:26.619488Z", - "iopub.status.idle": "2024-01-10T06:13:27.745801Z", - "shell.execute_reply": "2024-01-10T06:13:27.745151Z" + "iopub.execute_input": "2024-01-10T14:59:03.000059Z", + "iopub.status.busy": "2024-01-10T14:59:02.999862Z", + "iopub.status.idle": "2024-01-10T14:59:04.078943Z", + "shell.execute_reply": "2024-01-10T14:59:04.078330Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:27.748654Z", - "iopub.status.busy": "2024-01-10T06:13:27.748325Z", - "iopub.status.idle": "2024-01-10T06:13:27.751770Z", - "shell.execute_reply": "2024-01-10T06:13:27.751229Z" + "iopub.execute_input": "2024-01-10T14:59:04.081752Z", + "iopub.status.busy": "2024-01-10T14:59:04.081300Z", + "iopub.status.idle": "2024-01-10T14:59:04.084518Z", + "shell.execute_reply": "2024-01-10T14:59:04.083930Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:27.754354Z", - "iopub.status.busy": "2024-01-10T06:13:27.753974Z", - "iopub.status.idle": "2024-01-10T06:13:27.763975Z", - "shell.execute_reply": "2024-01-10T06:13:27.763377Z" + "iopub.execute_input": "2024-01-10T14:59:04.087061Z", + "iopub.status.busy": "2024-01-10T14:59:04.086706Z", + "iopub.status.idle": "2024-01-10T14:59:04.096607Z", + "shell.execute_reply": "2024-01-10T14:59:04.096118Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:27.766552Z", - "iopub.status.busy": "2024-01-10T06:13:27.766172Z", - "iopub.status.idle": "2024-01-10T06:13:27.771201Z", - "shell.execute_reply": "2024-01-10T06:13:27.770666Z" + "iopub.execute_input": "2024-01-10T14:59:04.098985Z", + "iopub.status.busy": "2024-01-10T14:59:04.098491Z", + "iopub.status.idle": "2024-01-10T14:59:04.103421Z", + "shell.execute_reply": "2024-01-10T14:59:04.102829Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:27.773953Z", - "iopub.status.busy": "2024-01-10T06:13:27.773555Z", - "iopub.status.idle": "2024-01-10T06:13:28.061463Z", - "shell.execute_reply": "2024-01-10T06:13:28.060825Z" + "iopub.execute_input": "2024-01-10T14:59:04.105879Z", + "iopub.status.busy": "2024-01-10T14:59:04.105439Z", + "iopub.status.idle": "2024-01-10T14:59:04.393020Z", + "shell.execute_reply": "2024-01-10T14:59:04.392350Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:28.064511Z", - "iopub.status.busy": "2024-01-10T06:13:28.064106Z", - "iopub.status.idle": "2024-01-10T06:13:28.444087Z", - "shell.execute_reply": "2024-01-10T06:13:28.443404Z" + "iopub.execute_input": "2024-01-10T14:59:04.395826Z", + "iopub.status.busy": "2024-01-10T14:59:04.395600Z", + "iopub.status.idle": "2024-01-10T14:59:04.765815Z", + "shell.execute_reply": "2024-01-10T14:59:04.765164Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:28.446987Z", - "iopub.status.busy": "2024-01-10T06:13:28.446714Z", - "iopub.status.idle": "2024-01-10T06:13:28.449701Z", - "shell.execute_reply": "2024-01-10T06:13:28.449201Z" + "iopub.execute_input": "2024-01-10T14:59:04.768430Z", + "iopub.status.busy": "2024-01-10T14:59:04.767972Z", + "iopub.status.idle": "2024-01-10T14:59:04.770856Z", + "shell.execute_reply": "2024-01-10T14:59:04.770335Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:28.452290Z", - "iopub.status.busy": "2024-01-10T06:13:28.451933Z", - "iopub.status.idle": "2024-01-10T06:13:28.490839Z", - "shell.execute_reply": "2024-01-10T06:13:28.490127Z" + "iopub.execute_input": "2024-01-10T14:59:04.773132Z", + "iopub.status.busy": "2024-01-10T14:59:04.772933Z", + "iopub.status.idle": "2024-01-10T14:59:04.811324Z", + "shell.execute_reply": "2024-01-10T14:59:04.810695Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:28.493623Z", - "iopub.status.busy": "2024-01-10T06:13:28.493214Z", - "iopub.status.idle": "2024-01-10T06:13:29.876381Z", - "shell.execute_reply": "2024-01-10T06:13:29.875700Z" + "iopub.execute_input": "2024-01-10T14:59:04.813573Z", + "iopub.status.busy": "2024-01-10T14:59:04.813373Z", + "iopub.status.idle": "2024-01-10T14:59:06.133380Z", + "shell.execute_reply": "2024-01-10T14:59:06.132660Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.879396Z", - "iopub.status.busy": "2024-01-10T06:13:29.878867Z", - "iopub.status.idle": "2024-01-10T06:13:29.905840Z", - "shell.execute_reply": "2024-01-10T06:13:29.905222Z" + "iopub.execute_input": "2024-01-10T14:59:06.136341Z", + "iopub.status.busy": "2024-01-10T14:59:06.135744Z", + "iopub.status.idle": "2024-01-10T14:59:06.161385Z", + "shell.execute_reply": "2024-01-10T14:59:06.160754Z" } }, "outputs": [ @@ -878,10 +878,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.908674Z", - "iopub.status.busy": "2024-01-10T06:13:29.908246Z", - "iopub.status.idle": "2024-01-10T06:13:29.915341Z", - "shell.execute_reply": "2024-01-10T06:13:29.914800Z" + "iopub.execute_input": "2024-01-10T14:59:06.164094Z", + "iopub.status.busy": "2024-01-10T14:59:06.163709Z", + "iopub.status.idle": "2024-01-10T14:59:06.170693Z", + "shell.execute_reply": "2024-01-10T14:59:06.170040Z" } }, "outputs": [ @@ -985,10 +985,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.917753Z", - "iopub.status.busy": "2024-01-10T06:13:29.917379Z", - "iopub.status.idle": "2024-01-10T06:13:29.923844Z", - "shell.execute_reply": "2024-01-10T06:13:29.923288Z" + "iopub.execute_input": "2024-01-10T14:59:06.173531Z", + "iopub.status.busy": "2024-01-10T14:59:06.172899Z", + "iopub.status.idle": "2024-01-10T14:59:06.179680Z", + "shell.execute_reply": "2024-01-10T14:59:06.179158Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.926169Z", - "iopub.status.busy": "2024-01-10T06:13:29.925829Z", - "iopub.status.idle": "2024-01-10T06:13:29.936668Z", - "shell.execute_reply": "2024-01-10T06:13:29.936027Z" + "iopub.execute_input": "2024-01-10T14:59:06.182064Z", + "iopub.status.busy": "2024-01-10T14:59:06.181860Z", + "iopub.status.idle": "2024-01-10T14:59:06.192735Z", + "shell.execute_reply": "2024-01-10T14:59:06.192198Z" } }, "outputs": [ @@ -1231,10 +1231,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.939259Z", - "iopub.status.busy": "2024-01-10T06:13:29.938858Z", - "iopub.status.idle": "2024-01-10T06:13:29.949031Z", - "shell.execute_reply": "2024-01-10T06:13:29.948457Z" + "iopub.execute_input": "2024-01-10T14:59:06.195091Z", + "iopub.status.busy": "2024-01-10T14:59:06.194847Z", + "iopub.status.idle": "2024-01-10T14:59:06.205008Z", + "shell.execute_reply": "2024-01-10T14:59:06.204451Z" } }, "outputs": [ @@ -1350,10 +1350,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.951601Z", - "iopub.status.busy": "2024-01-10T06:13:29.951195Z", - "iopub.status.idle": "2024-01-10T06:13:29.959192Z", - "shell.execute_reply": "2024-01-10T06:13:29.958517Z" + "iopub.execute_input": "2024-01-10T14:59:06.207787Z", + "iopub.status.busy": "2024-01-10T14:59:06.207584Z", + "iopub.status.idle": "2024-01-10T14:59:06.215303Z", + "shell.execute_reply": "2024-01-10T14:59:06.214681Z" }, "scrolled": true }, @@ -1478,10 +1478,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:29.961669Z", - "iopub.status.busy": "2024-01-10T06:13:29.961294Z", - "iopub.status.idle": "2024-01-10T06:13:29.971591Z", - "shell.execute_reply": "2024-01-10T06:13:29.970943Z" + "iopub.execute_input": "2024-01-10T14:59:06.217692Z", + "iopub.status.busy": "2024-01-10T14:59:06.217484Z", + "iopub.status.idle": "2024-01-10T14:59:06.227879Z", + "shell.execute_reply": "2024-01-10T14:59:06.227251Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 05c0fc6d0..ababc3071 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:34.642782Z", - "iopub.status.busy": "2024-01-10T06:13:34.642338Z", - "iopub.status.idle": "2024-01-10T06:13:35.711028Z", - "shell.execute_reply": "2024-01-10T06:13:35.710358Z" + "iopub.execute_input": "2024-01-10T14:59:10.981665Z", + "iopub.status.busy": "2024-01-10T14:59:10.981463Z", + "iopub.status.idle": "2024-01-10T14:59:12.008038Z", + "shell.execute_reply": "2024-01-10T14:59:12.007342Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.714280Z", - "iopub.status.busy": "2024-01-10T06:13:35.713776Z", - "iopub.status.idle": "2024-01-10T06:13:35.731031Z", - "shell.execute_reply": "2024-01-10T06:13:35.730464Z" + "iopub.execute_input": "2024-01-10T14:59:12.010994Z", + "iopub.status.busy": "2024-01-10T14:59:12.010677Z", + "iopub.status.idle": "2024-01-10T14:59:12.027240Z", + "shell.execute_reply": "2024-01-10T14:59:12.026590Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.733700Z", - "iopub.status.busy": "2024-01-10T06:13:35.733480Z", - "iopub.status.idle": "2024-01-10T06:13:35.919903Z", - "shell.execute_reply": "2024-01-10T06:13:35.919256Z" + "iopub.execute_input": "2024-01-10T14:59:12.030319Z", + "iopub.status.busy": "2024-01-10T14:59:12.029725Z", + "iopub.status.idle": "2024-01-10T14:59:12.179406Z", + "shell.execute_reply": "2024-01-10T14:59:12.178766Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.922543Z", - "iopub.status.busy": "2024-01-10T06:13:35.922146Z", - "iopub.status.idle": "2024-01-10T06:13:35.926047Z", - "shell.execute_reply": "2024-01-10T06:13:35.925541Z" + "iopub.execute_input": "2024-01-10T14:59:12.182187Z", + "iopub.status.busy": "2024-01-10T14:59:12.181713Z", + "iopub.status.idle": "2024-01-10T14:59:12.185520Z", + "shell.execute_reply": "2024-01-10T14:59:12.184931Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.928442Z", - "iopub.status.busy": "2024-01-10T06:13:35.928230Z", - "iopub.status.idle": "2024-01-10T06:13:35.936664Z", - "shell.execute_reply": "2024-01-10T06:13:35.935983Z" + "iopub.execute_input": "2024-01-10T14:59:12.187959Z", + "iopub.status.busy": "2024-01-10T14:59:12.187588Z", + "iopub.status.idle": "2024-01-10T14:59:12.195249Z", + "shell.execute_reply": "2024-01-10T14:59:12.194761Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.939625Z", - "iopub.status.busy": "2024-01-10T06:13:35.939226Z", - "iopub.status.idle": "2024-01-10T06:13:35.942101Z", - "shell.execute_reply": "2024-01-10T06:13:35.941546Z" + "iopub.execute_input": "2024-01-10T14:59:12.197697Z", + "iopub.status.busy": "2024-01-10T14:59:12.197262Z", + "iopub.status.idle": "2024-01-10T14:59:12.199985Z", + "shell.execute_reply": "2024-01-10T14:59:12.199461Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:35.944554Z", - "iopub.status.busy": "2024-01-10T06:13:35.944192Z", - "iopub.status.idle": "2024-01-10T06:13:39.637594Z", - "shell.execute_reply": "2024-01-10T06:13:39.636942Z" + "iopub.execute_input": "2024-01-10T14:59:12.202218Z", + "iopub.status.busy": "2024-01-10T14:59:12.202019Z", + "iopub.status.idle": "2024-01-10T14:59:15.789515Z", + "shell.execute_reply": "2024-01-10T14:59:15.788880Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:39.640668Z", - "iopub.status.busy": "2024-01-10T06:13:39.640285Z", - "iopub.status.idle": "2024-01-10T06:13:39.650224Z", - "shell.execute_reply": "2024-01-10T06:13:39.649592Z" + "iopub.execute_input": "2024-01-10T14:59:15.792602Z", + "iopub.status.busy": "2024-01-10T14:59:15.792171Z", + "iopub.status.idle": "2024-01-10T14:59:15.802081Z", + "shell.execute_reply": "2024-01-10T14:59:15.801589Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:39.653012Z", - "iopub.status.busy": "2024-01-10T06:13:39.652527Z", - "iopub.status.idle": "2024-01-10T06:13:41.067365Z", - "shell.execute_reply": "2024-01-10T06:13:41.066639Z" + "iopub.execute_input": "2024-01-10T14:59:15.804589Z", + "iopub.status.busy": "2024-01-10T14:59:15.804228Z", + "iopub.status.idle": "2024-01-10T14:59:17.180350Z", + "shell.execute_reply": "2024-01-10T14:59:17.179602Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.070894Z", - "iopub.status.busy": "2024-01-10T06:13:41.070181Z", - "iopub.status.idle": "2024-01-10T06:13:41.096554Z", - "shell.execute_reply": "2024-01-10T06:13:41.095923Z" + "iopub.execute_input": "2024-01-10T14:59:17.184988Z", + "iopub.status.busy": "2024-01-10T14:59:17.183614Z", + "iopub.status.idle": "2024-01-10T14:59:17.212346Z", + "shell.execute_reply": "2024-01-10T14:59:17.211645Z" }, "scrolled": true }, @@ -624,10 +624,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.099706Z", - "iopub.status.busy": "2024-01-10T06:13:41.099250Z", - "iopub.status.idle": "2024-01-10T06:13:41.109639Z", - "shell.execute_reply": "2024-01-10T06:13:41.109017Z" + "iopub.execute_input": "2024-01-10T14:59:17.216992Z", + "iopub.status.busy": "2024-01-10T14:59:17.215793Z", + "iopub.status.idle": "2024-01-10T14:59:17.229530Z", + "shell.execute_reply": "2024-01-10T14:59:17.228867Z" } }, "outputs": [ @@ -731,10 +731,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.113653Z", - "iopub.status.busy": "2024-01-10T06:13:41.112495Z", - "iopub.status.idle": "2024-01-10T06:13:41.128314Z", - "shell.execute_reply": "2024-01-10T06:13:41.127671Z" + "iopub.execute_input": "2024-01-10T14:59:17.234257Z", + "iopub.status.busy": "2024-01-10T14:59:17.233091Z", + "iopub.status.idle": "2024-01-10T14:59:17.248521Z", + "shell.execute_reply": "2024-01-10T14:59:17.247893Z" } }, "outputs": [ @@ -863,10 +863,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.132950Z", - "iopub.status.busy": "2024-01-10T06:13:41.131794Z", - "iopub.status.idle": "2024-01-10T06:13:41.145507Z", - "shell.execute_reply": "2024-01-10T06:13:41.144878Z" + "iopub.execute_input": "2024-01-10T14:59:17.253033Z", + "iopub.status.busy": "2024-01-10T14:59:17.251892Z", + "iopub.status.idle": "2024-01-10T14:59:17.264947Z", + "shell.execute_reply": "2024-01-10T14:59:17.264349Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.150079Z", - "iopub.status.busy": "2024-01-10T06:13:41.148942Z", - "iopub.status.idle": "2024-01-10T06:13:41.163497Z", - "shell.execute_reply": "2024-01-10T06:13:41.162983Z" + "iopub.execute_input": "2024-01-10T14:59:17.269322Z", + "iopub.status.busy": "2024-01-10T14:59:17.268190Z", + "iopub.status.idle": "2024-01-10T14:59:17.279638Z", + "shell.execute_reply": "2024-01-10T14:59:17.279028Z" } }, "outputs": [ @@ -1094,10 +1094,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.166435Z", - "iopub.status.busy": "2024-01-10T06:13:41.166050Z", - "iopub.status.idle": "2024-01-10T06:13:41.173457Z", - "shell.execute_reply": "2024-01-10T06:13:41.172926Z" + "iopub.execute_input": "2024-01-10T14:59:17.282394Z", + "iopub.status.busy": "2024-01-10T14:59:17.281813Z", + "iopub.status.idle": "2024-01-10T14:59:17.288968Z", + "shell.execute_reply": "2024-01-10T14:59:17.288435Z" } }, "outputs": [ @@ -1181,10 +1181,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.175909Z", - "iopub.status.busy": "2024-01-10T06:13:41.175694Z", - "iopub.status.idle": "2024-01-10T06:13:41.183057Z", - "shell.execute_reply": "2024-01-10T06:13:41.182383Z" + "iopub.execute_input": "2024-01-10T14:59:17.291408Z", + "iopub.status.busy": "2024-01-10T14:59:17.291060Z", + "iopub.status.idle": "2024-01-10T14:59:17.297989Z", + "shell.execute_reply": "2024-01-10T14:59:17.297472Z" } }, "outputs": [ @@ -1277,10 +1277,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:41.185507Z", - "iopub.status.busy": "2024-01-10T06:13:41.185293Z", - "iopub.status.idle": "2024-01-10T06:13:41.192997Z", - "shell.execute_reply": "2024-01-10T06:13:41.192302Z" + "iopub.execute_input": "2024-01-10T14:59:17.300419Z", + "iopub.status.busy": "2024-01-10T14:59:17.300054Z", + "iopub.status.idle": "2024-01-10T14:59:17.306917Z", + "shell.execute_reply": "2024-01-10T14:59:17.306349Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 3f01fc8be..6391a9df2 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -943,7 +943,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}
+Classes: {'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}
 

Let’s view the i-th example in the dataset:

@@ -990,43 +990,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1789,7 +1789,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 316bee9cd..ca326d89b 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:45.711059Z", - "iopub.status.busy": "2024-01-10T06:13:45.710475Z", - "iopub.status.idle": "2024-01-10T06:13:48.261537Z", - "shell.execute_reply": "2024-01-10T06:13:48.260841Z" + "iopub.execute_input": "2024-01-10T14:59:22.092445Z", + "iopub.status.busy": "2024-01-10T14:59:22.092236Z", + "iopub.status.idle": "2024-01-10T14:59:24.403879Z", + "shell.execute_reply": "2024-01-10T14:59:24.403193Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ecde268159ad4b6c9238a02d8a130669", + "model_id": "862dcffe2cde478e97ab974c75c6ea32", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.264527Z", - "iopub.status.busy": "2024-01-10T06:13:48.264176Z", - "iopub.status.idle": "2024-01-10T06:13:48.267728Z", - "shell.execute_reply": "2024-01-10T06:13:48.267130Z" + "iopub.execute_input": "2024-01-10T14:59:24.407066Z", + "iopub.status.busy": "2024-01-10T14:59:24.406465Z", + "iopub.status.idle": "2024-01-10T14:59:24.410103Z", + "shell.execute_reply": "2024-01-10T14:59:24.409519Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.270213Z", - "iopub.status.busy": "2024-01-10T06:13:48.269855Z", - "iopub.status.idle": "2024-01-10T06:13:48.273267Z", - "shell.execute_reply": "2024-01-10T06:13:48.272653Z" + "iopub.execute_input": "2024-01-10T14:59:24.412607Z", + "iopub.status.busy": "2024-01-10T14:59:24.412258Z", + "iopub.status.idle": "2024-01-10T14:59:24.415950Z", + "shell.execute_reply": "2024-01-10T14:59:24.415466Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.275463Z", - "iopub.status.busy": "2024-01-10T06:13:48.275268Z", - "iopub.status.idle": "2024-01-10T06:13:48.347672Z", - "shell.execute_reply": "2024-01-10T06:13:48.346991Z" + "iopub.execute_input": "2024-01-10T14:59:24.418446Z", + "iopub.status.busy": "2024-01-10T14:59:24.417979Z", + "iopub.status.idle": "2024-01-10T14:59:24.476477Z", + "shell.execute_reply": "2024-01-10T14:59:24.475884Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.350279Z", - "iopub.status.busy": "2024-01-10T06:13:48.350052Z", - "iopub.status.idle": "2024-01-10T06:13:48.354861Z", - "shell.execute_reply": "2024-01-10T06:13:48.354307Z" + "iopub.execute_input": "2024-01-10T14:59:24.479032Z", + "iopub.status.busy": "2024-01-10T14:59:24.478651Z", + "iopub.status.idle": "2024-01-10T14:59:24.482763Z", + "shell.execute_reply": "2024-01-10T14:59:24.482154Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}\n" + "Classes: {'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.357102Z", - "iopub.status.busy": "2024-01-10T06:13:48.356899Z", - "iopub.status.idle": "2024-01-10T06:13:48.360744Z", - "shell.execute_reply": "2024-01-10T06:13:48.360210Z" + "iopub.execute_input": "2024-01-10T14:59:24.485240Z", + "iopub.status.busy": "2024-01-10T14:59:24.484873Z", + "iopub.status.idle": "2024-01-10T14:59:24.488318Z", + "shell.execute_reply": "2024-01-10T14:59:24.487706Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:48.363321Z", - "iopub.status.busy": "2024-01-10T06:13:48.363090Z", - "iopub.status.idle": "2024-01-10T06:13:57.704452Z", - "shell.execute_reply": "2024-01-10T06:13:57.703719Z" + "iopub.execute_input": "2024-01-10T14:59:24.490800Z", + "iopub.status.busy": "2024-01-10T14:59:24.490451Z", + "iopub.status.idle": "2024-01-10T14:59:33.672418Z", + "shell.execute_reply": "2024-01-10T14:59:33.671786Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8ffa81464b747aabcd524f5b6004746", + "model_id": "f2e849e51c874b17a848ea3fa7185a74", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5216ca84d3a1452cbddcd5994453d513", + "model_id": "94c85eae08a741ef81e270f9647311bf", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3fe28eb102c4226a6521a5c52251366", + "model_id": "f8fc9626652544dba8ec78fd1f4ae9d7", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9205d83347e448338bc7a0902cba4636", + "model_id": "84f0c6c7b270459db0855f5d976763e0", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e1ed050fd3e40b1a25a47dc3dc51056", + "model_id": "8935bc181d264ffc8db415b422beb496", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2f4fdacb911421b921cb9244d7615bb", + "model_id": "bc2109a4e2f84d67bbb8ab6cba21fab9", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a83cf26330f24f4ba5ef6fd1ad5505fe", + "model_id": "9b94f541e59245eda011ea6c11772a07", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:57.707843Z", - "iopub.status.busy": "2024-01-10T06:13:57.707437Z", - "iopub.status.idle": "2024-01-10T06:13:58.886455Z", - "shell.execute_reply": "2024-01-10T06:13:58.885773Z" + "iopub.execute_input": "2024-01-10T14:59:33.675731Z", + "iopub.status.busy": "2024-01-10T14:59:33.675246Z", + "iopub.status.idle": "2024-01-10T14:59:34.841910Z", + "shell.execute_reply": "2024-01-10T14:59:34.841238Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:58.890144Z", - "iopub.status.busy": "2024-01-10T06:13:58.889698Z", - "iopub.status.idle": "2024-01-10T06:13:58.892840Z", - "shell.execute_reply": "2024-01-10T06:13:58.892280Z" + "iopub.execute_input": "2024-01-10T14:59:34.845385Z", + "iopub.status.busy": "2024-01-10T14:59:34.844983Z", + "iopub.status.idle": "2024-01-10T14:59:34.848001Z", + "shell.execute_reply": "2024-01-10T14:59:34.847447Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:13:58.895717Z", - "iopub.status.busy": "2024-01-10T06:13:58.895295Z", - "iopub.status.idle": "2024-01-10T06:14:00.257372Z", - "shell.execute_reply": "2024-01-10T06:14:00.256547Z" + "iopub.execute_input": "2024-01-10T14:59:34.850802Z", + "iopub.status.busy": "2024-01-10T14:59:34.850433Z", + "iopub.status.idle": "2024-01-10T14:59:36.210865Z", + "shell.execute_reply": "2024-01-10T14:59:36.209994Z" }, "scrolled": true }, @@ -640,10 +640,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.261200Z", - "iopub.status.busy": "2024-01-10T06:14:00.260285Z", - "iopub.status.idle": "2024-01-10T06:14:00.295159Z", - "shell.execute_reply": "2024-01-10T06:14:00.294488Z" + "iopub.execute_input": "2024-01-10T14:59:36.214452Z", + "iopub.status.busy": "2024-01-10T14:59:36.213504Z", + "iopub.status.idle": "2024-01-10T14:59:36.247942Z", + "shell.execute_reply": "2024-01-10T14:59:36.247228Z" }, "scrolled": true }, @@ -808,10 +808,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.299424Z", - "iopub.status.busy": "2024-01-10T06:14:00.298094Z", - "iopub.status.idle": "2024-01-10T06:14:00.311396Z", - "shell.execute_reply": "2024-01-10T06:14:00.310797Z" + "iopub.execute_input": "2024-01-10T14:59:36.251096Z", + "iopub.status.busy": "2024-01-10T14:59:36.250420Z", + "iopub.status.idle": "2024-01-10T14:59:36.261728Z", + "shell.execute_reply": "2024-01-10T14:59:36.261092Z" }, "scrolled": true }, @@ -921,10 +921,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.315625Z", - "iopub.status.busy": "2024-01-10T06:14:00.314540Z", - "iopub.status.idle": "2024-01-10T06:14:00.320884Z", - "shell.execute_reply": "2024-01-10T06:14:00.320096Z" + "iopub.execute_input": "2024-01-10T14:59:36.264768Z", + "iopub.status.busy": "2024-01-10T14:59:36.264298Z", + "iopub.status.idle": "2024-01-10T14:59:36.269449Z", + "shell.execute_reply": "2024-01-10T14:59:36.268960Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.323848Z", - "iopub.status.busy": "2024-01-10T06:14:00.323481Z", - "iopub.status.idle": "2024-01-10T06:14:00.332079Z", - "shell.execute_reply": "2024-01-10T06:14:00.331155Z" + "iopub.execute_input": "2024-01-10T14:59:36.272221Z", + "iopub.status.busy": "2024-01-10T14:59:36.271614Z", + "iopub.status.idle": "2024-01-10T14:59:36.279936Z", + "shell.execute_reply": "2024-01-10T14:59:36.279356Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.334887Z", - "iopub.status.busy": "2024-01-10T06:14:00.334512Z", - "iopub.status.idle": "2024-01-10T06:14:00.341819Z", - "shell.execute_reply": "2024-01-10T06:14:00.341196Z" + "iopub.execute_input": "2024-01-10T14:59:36.282599Z", + "iopub.status.busy": "2024-01-10T14:59:36.282081Z", + "iopub.status.idle": "2024-01-10T14:59:36.289576Z", + "shell.execute_reply": "2024-01-10T14:59:36.288966Z" } }, "outputs": [ @@ -1168,10 +1168,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.344333Z", - "iopub.status.busy": "2024-01-10T06:14:00.343964Z", - "iopub.status.idle": "2024-01-10T06:14:00.350787Z", - "shell.execute_reply": "2024-01-10T06:14:00.350197Z" + "iopub.execute_input": "2024-01-10T14:59:36.291990Z", + "iopub.status.busy": "2024-01-10T14:59:36.291624Z", + "iopub.status.idle": "2024-01-10T14:59:36.297899Z", + "shell.execute_reply": "2024-01-10T14:59:36.297301Z" } }, "outputs": [ @@ -1279,10 +1279,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.353100Z", - "iopub.status.busy": "2024-01-10T06:14:00.352897Z", - "iopub.status.idle": "2024-01-10T06:14:00.362475Z", - "shell.execute_reply": "2024-01-10T06:14:00.361847Z" + "iopub.execute_input": "2024-01-10T14:59:36.300330Z", + "iopub.status.busy": "2024-01-10T14:59:36.299984Z", + "iopub.status.idle": "2024-01-10T14:59:36.309346Z", + "shell.execute_reply": "2024-01-10T14:59:36.308790Z" } }, "outputs": [ @@ -1393,10 +1393,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.364896Z", - "iopub.status.busy": "2024-01-10T06:14:00.364520Z", - "iopub.status.idle": "2024-01-10T06:14:00.370683Z", - "shell.execute_reply": "2024-01-10T06:14:00.370027Z" + "iopub.execute_input": "2024-01-10T14:59:36.311803Z", + "iopub.status.busy": "2024-01-10T14:59:36.311415Z", + "iopub.status.idle": "2024-01-10T14:59:36.317270Z", + "shell.execute_reply": "2024-01-10T14:59:36.316743Z" } }, "outputs": [ @@ -1464,10 +1464,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.373237Z", - "iopub.status.busy": "2024-01-10T06:14:00.372863Z", - "iopub.status.idle": "2024-01-10T06:14:00.555773Z", - "shell.execute_reply": "2024-01-10T06:14:00.555089Z" + "iopub.execute_input": "2024-01-10T14:59:36.319529Z", + "iopub.status.busy": "2024-01-10T14:59:36.319327Z", + "iopub.status.idle": "2024-01-10T14:59:36.325099Z", + "shell.execute_reply": "2024-01-10T14:59:36.324498Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.558702Z", - "iopub.status.busy": "2024-01-10T06:14:00.558311Z", - "iopub.status.idle": "2024-01-10T06:14:00.562319Z", - "shell.execute_reply": "2024-01-10T06:14:00.561767Z" + "iopub.execute_input": "2024-01-10T14:59:36.327483Z", + "iopub.status.busy": "2024-01-10T14:59:36.327281Z", + "iopub.status.idle": "2024-01-10T14:59:36.331149Z", + "shell.execute_reply": "2024-01-10T14:59:36.330531Z" } }, "outputs": [ @@ -1597,10 +1597,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:00.564637Z", - "iopub.status.busy": "2024-01-10T06:14:00.564438Z", - "iopub.status.idle": "2024-01-10T06:14:00.570104Z", - "shell.execute_reply": "2024-01-10T06:14:00.569531Z" + "iopub.execute_input": "2024-01-10T14:59:36.333455Z", + "iopub.status.busy": "2024-01-10T14:59:36.333256Z", + "iopub.status.idle": "2024-01-10T14:59:36.517964Z", + "shell.execute_reply": "2024-01-10T14:59:36.517303Z" }, "nbsphinx": "hidden" }, @@ -1650,75 +1650,28 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00aeb2f30e6344248d19643ed798bbc4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "07295e89cb4b472d930107e8be8c3829": { + "00917c17081843f6a5a5d44b91e6acd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd69eddaeade4dfbbc190d9d0f7cef92", + "placeholder": "​", + "style": "IPY_MODEL_fae8a5b5019e44ecad743866c942cf00", + "value": " 54.2M/54.2M [00:00<00:00, 266MB/s]" } }, - "0bcbb8b6b2d4472c93f1b70d408cd3ae": { + "01554e29f7bb4ab3bf4b0b53e7e8f147": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1734,22 +1687,7 @@ "description_width": "" } }, - "0bdd3c5d23d740bcbecf41f59a191232": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0cf1ac3dd226438bb8f2183f94973f95": { + "06c7f99c4f4d4c98b56c80428fe227a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1798,48 +1736,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "0e1ed050fd3e40b1a25a47dc3dc51056": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cc7b20aac74d43c4b6cd6b12d0aac738", - "IPY_MODEL_716710cbdfca4c36ad130987a4499373", - "IPY_MODEL_8ec5def0730d432096e2d85bcfac23b7" - ], - "layout": "IPY_MODEL_548c8271d3b54e1b9f45689a0af4ccba" - } - }, - "107c4fe3b4a3466da18c28dc8cee707d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "width": "20px" } }, - "1470e51bfd5741a397860a52aab1d71d": { + "075c0a2ff8984472a2407cb65c1af308": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1891,23 +1791,7 @@ "width": null } }, - "1712941961e44a459dbba5626cad267a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1aa2f8588c6444898d007a076c585e62": { + "0a601d68ed194795a8e3e30f9636b988": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1959,7 +1843,28 @@ "width": null } }, - "1d7fc981d1054225be5aceac76877fb0": { + "0dd83adc06cc448dbb45c8d5b083b1b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d88203f29b6041b9b084fcbe564b744c", + "placeholder": "​", + "style": "IPY_MODEL_97e3a9449c1045cf96051bf240fb3d86", + "value": " 232k/232k [00:00<00:00, 26.2MB/s]" + } + }, + "0f07dbed86ee4dedb4230e294d563b70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1974,7 +1879,7 @@ "description_width": "" } }, - "22324387e5b743e681be79d036fe31d6": { + "12cb6377a008434fb126f7a20059d295": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2026,59 +1931,165 @@ "width": null } }, - "2288246d5a4d4b4bb1a1f8e73a2b12b0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "1d0bb365cef642bf9aa028dfaf2da8bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_06c7f99c4f4d4c98b56c80428fe227a9", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a321f57989f746d79202da624285ed2c", + "value": 0.0 + } + }, + "2042be878078403c96190c096097d90d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c76748ec8a42450ba7223d8b626ba091", + "placeholder": "​", + "style": "IPY_MODEL_4274375b0fc249138d9065f3d789e378", + "value": " 2.21k/2.21k [00:00<00:00, 298kB/s]" + } + }, + "2459388b6cbd42c2a4d43684c4b9afdf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9eee4112141543a9a4224b8b25ab2e5d", + "placeholder": "​", + "style": "IPY_MODEL_bb4e1551497a4ce4be301f4368f81676", + "value": " 466k/466k [00:00<00:00, 13.9MB/s]" + } + }, + "2886de46d9fd4702ab6e1c5b72e49072": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f7f728bec002499ab7823a03e95a2bf5", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b0612da6bf14497ab00ac2fcd669247", + "value": 665.0 + } + }, + "2b0612da6bf14497ab00ac2fcd669247": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "26520c10c4674e25ad89fb718b9068ce": { + "2c57a2dce6844d669534d4a56c9b289e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31cbafcf7296451f8eafa376459fce42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c3a89d32580e43a5abcb986b0342b26b", + "placeholder": "​", + "style": "IPY_MODEL_5d198168a65943669c64ed11ea145d06", + "value": " 391/391 [00:00<00:00, 51.0kB/s]" + } + }, + "33b12887dbb64274a7777cd6a46751fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3f6a155e08b14f70bd139c25bbfc97ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2093,13 +2104,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_63924927f0884276833e034800f11bb7", + "layout": "IPY_MODEL_54b1991278ba46e2b8bbd15c62221efa", "placeholder": "​", - "style": "IPY_MODEL_96700a76a0d44e99acf09ab0d477e8d4", - "value": " 665/665 [00:00<00:00, 79.8kB/s]" + "style": "IPY_MODEL_469e1113de45470581ebc31ed32169a1", + "value": "tokenizer.json: 100%" } }, - "2689e33ba4f945b7ac5af43480cf3280": { + "4274375b0fc249138d9065f3d789e378": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "43604c5ccc2f48e084d21528eff3c15d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2151,22 +2177,7 @@ "width": null } }, - "29250c8e90c943acb40ea406ff6da5fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "299ed4dc9db74c09a4b3e505aac77bff": { + "469e1113de45470581ebc31ed32169a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2181,49 +2192,31 @@ "description_width": "" } }, - "2b86d2d875af44f2b3a146159c86ec2f": { + "4791eeb7baf64c8d9fac236bf5132592": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5cf0f1b890b0431f9d2784e18231784a", - "placeholder": "​", - "style": "IPY_MODEL_29250c8e90c943acb40ea406ff6da5fa", - "value": " 2.21k/2.21k [00:00<00:00, 271kB/s]" - } - }, - "2d32842e064e40b0a1541bfad497928a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_34c788bf54c24aa5949787bb0eff94b7", - "placeholder": "​", - "style": "IPY_MODEL_1d7fc981d1054225be5aceac76877fb0", - "value": "README.md: 100%" + "layout": "IPY_MODEL_9faaecaae1734c61ae18e834186c1666", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_01554e29f7bb4ab3bf4b0b53e7e8f147", + "value": 2211.0 } }, - "2e093e53552c4e41afeabb5b2a3769ad": { + "4880191d3d0547f39e1ae04216c88b71": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2275,7 +2268,28 @@ "width": null } }, - "2fdc481b5a9c4ec0ad0aaa7fa7cb3307": { + "4abeacb8c56a488785fb5b9d0945caed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52125d88b94b46f69d248404f8994683", + "placeholder": "​", + "style": "IPY_MODEL_6fe3adcc4a4041eabca98b1d60af84fd", + "value": " 665/665 [00:00<00:00, 81.4kB/s]" + } + }, + "52125d88b94b46f69d248404f8994683": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2327,7 +2341,7 @@ "width": null } }, - "34ac7447b3444f598b53edbda4e5eb49": { + "54b1991278ba46e2b8bbd15c62221efa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2379,7 +2393,22 @@ "width": null } }, - "34c788bf54c24aa5949787bb0eff94b7": { + "56636f85cdc9488bbcde50e0f31e8e05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "583b1f186cc546f4a39bdfdd40349e0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2431,7 +2460,28 @@ "width": null } }, - "3f584acf4fc44c58936eed00bb2fbd84": { + "5986e501975345c18931a5f0b9321683": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bad367d7aefa4a2b986452a5deea268f", + "placeholder": "​", + "style": "IPY_MODEL_56636f85cdc9488bbcde50e0f31e8e05", + "value": ".gitattributes: 100%" + } + }, + "5d198168a65943669c64ed11ea145d06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2446,22 +2496,23 @@ "description_width": "" } }, - "3f5be0ecc2ee4433a4c0d5fd1d44050d": { + "5eb8c83858cd483bafc5a9248fad2a68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "448413c257e146d0938329daabce12f7": { + "609217f73fbb420caa14bc522c18b15d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2513,7 +2564,7 @@ "width": null } }, - "45ab12896d8d462491cd97cbbe6e0de9": { + "614552c5e5f3422a9e39ded35cce6f7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2565,28 +2616,86 @@ "width": null } }, - "4bb63de4770d456d913a1961bcf657cb": { + "623fe1d3ad6e46fdb758928ae51160b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "692cd1c543c44d1f9a54e10a308abc35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1aa2f8588c6444898d007a076c585e62", - "placeholder": "​", - "style": "IPY_MODEL_dc10e1dfa7e84e1295522909b4df112e", - "value": "tokenizer_config.json: 100%" + "layout": "IPY_MODEL_ea99b5f99229433c84ef7bc51a9c130f", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fcdce2bba18d4262a99e80746cd7ed8b", + "value": 391.0 + } + }, + "699ecc7a765d443aa11b0205425189a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a601d68ed194795a8e3e30f9636b988", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5eb8c83858cd483bafc5a9248fad2a68", + "value": 29.0 + } + }, + "6a41a8086ed2471099f0596d310b417b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4bba66e3d211422d85ee43a076d810c6": { + "6befdc46f5d241a995ca903cc10cef7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2638,28 +2747,46 @@ "width": null } }, - "4d45f78561ad4e2dab7952457334e52f": { + "6fe3adcc4a4041eabca98b1d60af84fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7a6f92e7c9954a008ddc389e56a80eb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5ea866887ad340808b148446c2959147", - "placeholder": "​", - "style": "IPY_MODEL_611e0881e57549d683be88bce77f5e93", - "value": " 54.2M/54.2M [00:00<00:00, 300MB/s]" + "layout": "IPY_MODEL_7b994861070847fea1d4a823b3a35d09", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_623fe1d3ad6e46fdb758928ae51160b2", + "value": 231508.0 } }, - "4e23b67da06044dba971afb2dd4d1aa0": { + "7b994861070847fea1d4a823b3a35d09": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2711,52 +2838,44 @@ "width": null } }, - "4f56a289968f46b29b61725fc61088a3": { + "81591ea42d154551991b09bc36ec0ace": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0cf1ac3dd226438bb8f2183f94973f95", - "placeholder": "​", - "style": "IPY_MODEL_0bdd3c5d23d740bcbecf41f59a191232", - "value": " 391/391 [00:00<00:00, 50.7kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4f910b3893a04fd9bcdf56fca9550818": { + "84f0c6c7b270459db0855f5d976763e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8091370fb4e0431db0c9c95eb345ad39", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0bcbb8b6b2d4472c93f1b70d408cd3ae", - "value": 0.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f67b595c6d6840bb837ed3c0bac5d0c8", + "IPY_MODEL_ddea88fc65ed4f6dae2c94fb28fe25d2", + "IPY_MODEL_00917c17081843f6a5a5d44b91e6acd9" + ], + "layout": "IPY_MODEL_6befdc46f5d241a995ca903cc10cef7b" } }, - "5216ca84d3a1452cbddcd5994453d513": { + "862dcffe2cde478e97ab974c75c6ea32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2771,102 +2890,60 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2d32842e064e40b0a1541bfad497928a", - "IPY_MODEL_f0f5cf6ee8c24c67aa14f8cf08fe4995", - "IPY_MODEL_2b86d2d875af44f2b3a146159c86ec2f" + "IPY_MODEL_996f676633b94db4ab7ceea5a92391f5", + "IPY_MODEL_1d0bb365cef642bf9aa028dfaf2da8bf", + "IPY_MODEL_d318a49900f244a4acf9106cb605f223" ], - "layout": "IPY_MODEL_9727413214ed4e8f9466aeffdafda413" + "layout": "IPY_MODEL_614552c5e5f3422a9e39ded35cce6f7e" } }, - "548c53d229894551afc50feabf6d6b61": { + "890f4eb716014024a5979fa13eb74d7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "548c8271d3b54e1b9f45689a0af4ccba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6580715c12f4b788ec83b2fb386a5ee", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33b12887dbb64274a7777cd6a46751fd", + "value": 466062.0 } }, - "5490d628713d40f9a89e63379c65fad1": { + "8935bc181d264ffc8db415b422beb496": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed1fe01152fa4642ad138486a2634cc1", - "placeholder": "​", - "style": "IPY_MODEL_5b42a34f8c9842c387f1f19cb3ff7e41", - "value": " 0/0 [00:00<?, ?it/s]" + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3f6a155e08b14f70bd139c25bbfc97ee", + "IPY_MODEL_890f4eb716014024a5979fa13eb74d7c", + "IPY_MODEL_2459388b6cbd42c2a4d43684c4b9afdf" + ], + "layout": "IPY_MODEL_c31984e520ca42ca88ae7a5abd092a51" } }, - "5673c01340384e06bafc786376498d98": { + "926b0337f538498182c5aa19264b1a8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2918,7 +2995,29 @@ "width": null } }, - "5b42a34f8c9842c387f1f19cb3ff7e41": { + "94c85eae08a741ef81e270f9647311bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_be2b666b3d804f36913f6c87815b978c", + "IPY_MODEL_4791eeb7baf64c8d9fac236bf5132592", + "IPY_MODEL_2042be878078403c96190c096097d90d" + ], + "layout": "IPY_MODEL_583b1f186cc546f4a39bdfdd40349e0d" + } + }, + "97e3a9449c1045cf96051bf240fb3d86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2933,7 +3032,50 @@ "description_width": "" } }, - "5b5556e01ebd4822b2fb6d01833df8b3": { + "996f676633b94db4ab7ceea5a92391f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_075c0a2ff8984472a2407cb65c1af308", + "placeholder": "​", + "style": "IPY_MODEL_aa56e96131494666bf4ac89b82a1e4e5", + "value": "" + } + }, + "9b94f541e59245eda011ea6c11772a07": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ffd34fdfbd9448afb84dbd6818b15c8d", + "IPY_MODEL_7a6f92e7c9954a008ddc389e56a80eb1", + "IPY_MODEL_0dd83adc06cc448dbb45c8d5b083b1b3" + ], + "layout": "IPY_MODEL_12cb6377a008434fb126f7a20059d295" + } + }, + "9eee4112141543a9a4224b8b25ab2e5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2985,7 +3127,7 @@ "width": null } }, - "5cf0f1b890b0431f9d2784e18231784a": { + "9faaecaae1734c61ae18e834186c1666": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3037,7 +3179,69 @@ "width": null } }, - "5ea866887ad340808b148446c2959147": { + "a321f57989f746d79202da624285ed2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a6b4b7c9957e4b819305afab73204cf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a956344db7a545cd957824d3ff7a2138": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aa56e96131494666bf4ac89b82a1e4e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b2c45c794eca4d8ea4aab4e4a2858c77": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3089,43 +3293,7 @@ "width": null } }, - "5f836f718e46477f9c5d4c1f0b77124b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bee13efee5384807a5acf80366bb301c", - "placeholder": "​", - "style": "IPY_MODEL_299ed4dc9db74c09a4b3e505aac77bff", - "value": " 232k/232k [00:00<00:00, 22.1MB/s]" - } - }, - "611e0881e57549d683be88bce77f5e93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "63924927f0884276833e034800f11bb7": { + "bad367d7aefa4a2b986452a5deea268f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3177,147 +3345,169 @@ "width": null } }, - "64a2b9e3be0f4e9abe6e46ced115eba4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "65ece1a93a484e9aac2d3dcb5fdc3536": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8a08d94d414a4bcdae4627a725465dbb", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_107c4fe3b4a3466da18c28dc8cee707d", - "value": 54245363.0 - } - }, - "6df5afad53374d6d8ab0eaa9b99fae57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_00aeb2f30e6344248d19643ed798bbc4", - "placeholder": "​", - "style": "IPY_MODEL_75440754a86442628eeaec421c0a38f4", - "value": ".gitattributes: 100%" - } - }, - "713082df2a4347929fd826c21024138e": { + "bb4e1551497a4ce4be301f4368f81676": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "716710cbdfca4c36ad130987a4499373": { + "bc2109a4e2f84d67bbb8ab6cba21fab9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2fdc481b5a9c4ec0ad0aaa7fa7cb3307", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_802d1cbe83234ba281ed3371ace74923", - "value": 466062.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c75aeff00b944db28a3423a3e33e24b4", + "IPY_MODEL_699ecc7a765d443aa11b0205425189a3", + "IPY_MODEL_f7f48121963b4ec7b6aa45f44f292c52" + ], + "layout": "IPY_MODEL_e1baa1f8f2054d8eab2aa13d0120b795" } }, - "75440754a86442628eeaec421c0a38f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "bded0c71aa4d4ae0923501e8367e757e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "79f717794c4a4d7782524bbabf970864": { + "be2b666b3d804f36913f6c87815b978c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_22324387e5b743e681be79d036fe31d6", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07295e89cb4b472d930107e8be8c3829", - "value": 391.0 + "layout": "IPY_MODEL_d83d11da89f7403db61c0c0c22942732", + "placeholder": "​", + "style": "IPY_MODEL_2c57a2dce6844d669534d4a56c9b289e", + "value": "README.md: 100%" + } + }, + "c31984e520ca42ca88ae7a5abd092a51": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7edb79c30d4044b7a47c715c2672cfbc": { + "c3a89d32580e43a5abcb986b0342b26b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3369,23 +3559,28 @@ "width": null } }, - "802d1cbe83234ba281ed3371ace74923": { + "c75aeff00b944db28a3423a3e33e24b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_926b0337f538498182c5aa19264b1a8d", + "placeholder": "​", + "style": "IPY_MODEL_fbb188a1c26343dba4a64537799f492c", + "value": "tokenizer_config.json: 100%" } }, - "8091370fb4e0431db0c9c95eb345ad39": { + "c76748ec8a42450ba7223d8b626ba091": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3434,10 +3629,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "83e38a4d06ee41978d13c8bc0fc7f05b": { + "d318a49900f244a4acf9106cb605f223": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3452,37 +3647,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_34ac7447b3444f598b53edbda4e5eb49", + "layout": "IPY_MODEL_dd4c5afca32949129c9e6f43b9b1413e", "placeholder": "​", - "style": "IPY_MODEL_3f584acf4fc44c58936eed00bb2fbd84", - "value": "config.json: 100%" + "style": "IPY_MODEL_81591ea42d154551991b09bc36ec0ace", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "83f4027e79e14315afd20df28b9abfdf": { + "d4a4587430474d8fb2e2e40550998d40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_84c39cc7a1444d2a9a639d6f61385d0c", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1712941961e44a459dbba5626cad267a", - "value": 231508.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "84c39cc7a1444d2a9a639d6f61385d0c": { + "d83d11da89f7403db61c0c0c22942732": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3534,7 +3720,7 @@ "width": null } }, - "8a08d94d414a4bcdae4627a725465dbb": { + "d88203f29b6041b9b084fcbe564b744c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3586,44 +3772,7 @@ "width": null } }, - "8a93b8a27e874ab58e3e844b2a4af451": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8bf51f93ea06457590d4b3262c7f7f95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a8e84cb8a6a14048bd15044652da2df5", - "placeholder": "​", - "style": "IPY_MODEL_d292cfd1afb542c782847708fc78ffed", - "value": "" - } - }, - "8ec5def0730d432096e2d85bcfac23b7": { + "dc47d97b3b07452a9c03cbe07c75252c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3638,50 +3787,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_448413c257e146d0938329daabce12f7", + "layout": "IPY_MODEL_43604c5ccc2f48e084d21528eff3c15d", "placeholder": "​", - "style": "IPY_MODEL_ae74085e8acf4192a5c6377c3f74f4aa", - "value": " 466k/466k [00:00<00:00, 12.5MB/s]" - } - }, - "9205d83347e448338bc7a0902cba4636": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d7190d315d09402f9308e2aa2d0abebb", - "IPY_MODEL_65ece1a93a484e9aac2d3dcb5fdc3536", - "IPY_MODEL_4d45f78561ad4e2dab7952457334e52f" - ], - "layout": "IPY_MODEL_a1355e0db37f4778b5ec8f1a709f24fa" - } - }, - "96700a76a0d44e99acf09ab0d477e8d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_0f07dbed86ee4dedb4230e294d563b70", + "value": "config.json: 100%" } }, - "9727413214ed4e8f9466aeffdafda413": { + "dd4c5afca32949129c9e6f43b9b1413e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3733,7 +3845,31 @@ "width": null } }, - "a1355e0db37f4778b5ec8f1a709f24fa": { + "ddea88fc65ed4f6dae2c94fb28fe25d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_609217f73fbb420caa14bc522c18b15d", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a956344db7a545cd957824d3ff7a2138", + "value": 54245363.0 + } + }, + "e1baa1f8f2054d8eab2aa13d0120b795": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3785,51 +3921,59 @@ "width": null } }, - "a2f4fdacb911421b921cb9244d7615bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4bb63de4770d456d913a1961bcf657cb", - "IPY_MODEL_bb9d4da501f6429484245a533c3f046b", - "IPY_MODEL_baf7e1b71fe4454d80981120c3297e64" - ], - "layout": "IPY_MODEL_d13975def1d44bfa9f8441616c936a6d" - } - }, - "a83cf26330f24f4ba5ef6fd1ad5505fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "e6580715c12f4b788ec83b2fb386a5ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d6a918d748714014855bbe6352ff3a56", - "IPY_MODEL_83f4027e79e14315afd20df28b9abfdf", - "IPY_MODEL_5f836f718e46477f9c5d4c1f0b77124b" - ], - "layout": "IPY_MODEL_1470e51bfd5741a397860a52aab1d71d" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a8e84cb8a6a14048bd15044652da2df5": { + "ea99b5f99229433c84ef7bc51a9c130f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3881,7 +4025,7 @@ "width": null } }, - "a8ffa81464b747aabcd524f5b6004746": { + "f2e849e51c874b17a848ea3fa7185a74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3896,83 +4040,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6df5afad53374d6d8ab0eaa9b99fae57", - "IPY_MODEL_79f717794c4a4d7782524bbabf970864", - "IPY_MODEL_4f56a289968f46b29b61725fc61088a3" + "IPY_MODEL_5986e501975345c18931a5f0b9321683", + "IPY_MODEL_692cd1c543c44d1f9a54e10a308abc35", + "IPY_MODEL_31cbafcf7296451f8eafa376459fce42" ], - "layout": "IPY_MODEL_2689e33ba4f945b7ac5af43480cf3280" - } - }, - "ae74085e8acf4192a5c6377c3f74f4aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b9e2ca9c7f43440a89be28ce852168f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ba1e2472b2594b9ea818d15f3c3d11bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "baac3a399e3843b58fa1e6dd697a4ef3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_45ab12896d8d462491cd97cbbe6e0de9", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_713082df2a4347929fd826c21024138e", - "value": 665.0 + "layout": "IPY_MODEL_bded0c71aa4d4ae0923501e8367e757e" } }, - "baf7e1b71fe4454d80981120c3297e64": { + "f67b595c6d6840bb837ed3c0bac5d0c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3987,37 +4062,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5673c01340384e06bafc786376498d98", + "layout": "IPY_MODEL_b2c45c794eca4d8ea4aab4e4a2858c77", "placeholder": "​", - "style": "IPY_MODEL_3f5be0ecc2ee4433a4c0d5fd1d44050d", - "value": " 29.0/29.0 [00:00<00:00, 3.62kB/s]" + "style": "IPY_MODEL_6a41a8086ed2471099f0596d310b417b", + "value": "pytorch_model.bin: 100%" } }, - "bb9d4da501f6429484245a533c3f046b": { + "f7f48121963b4ec7b6aa45f44f292c52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4bba66e3d211422d85ee43a076d810c6", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8a93b8a27e874ab58e3e844b2a4af451", - "value": 29.0 + "layout": "IPY_MODEL_f9e7c4cce0aa4b9aaff09fc9b622d605", + "placeholder": "​", + "style": "IPY_MODEL_a6b4b7c9957e4b819305afab73204cf6", + "value": " 29.0/29.0 [00:00<00:00, 3.64kB/s]" } }, - "bee13efee5384807a5acf80366bb301c": { + "f7f728bec002499ab7823a03e95a2bf5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4069,7 +4141,29 @@ "width": null } }, - "c2ee2fac0caf41bcb4e8a14a0536f3bf": { + "f8fc9626652544dba8ec78fd1f4ae9d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc47d97b3b07452a9c03cbe07c75252c", + "IPY_MODEL_2886de46d9fd4702ab6e1c5b72e49072", + "IPY_MODEL_4abeacb8c56a488785fb5b9d0945caed" + ], + "layout": "IPY_MODEL_4880191d3d0547f39e1ae04216c88b71" + } + }, + "f9e7c4cce0aa4b9aaff09fc9b622d605": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4121,28 +4215,37 @@ "width": null } }, - "cc7b20aac74d43c4b6cd6b12d0aac738": { + "fae8a5b5019e44ecad743866c942cf00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7edb79c30d4044b7a47c715c2672cfbc", - "placeholder": "​", - "style": "IPY_MODEL_548c53d229894551afc50feabf6d6b61", - "value": "tokenizer.json: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fbb188a1c26343dba4a64537799f492c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d13975def1d44bfa9f8441616c936a6d": { + "fbd8f018fee147b9a856a836508c2d32": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4194,123 +4297,23 @@ "width": null } }, - "d292cfd1afb542c782847708fc78ffed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d6a918d748714014855bbe6352ff3a56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2e093e53552c4e41afeabb5b2a3769ad", - "placeholder": "​", - "style": "IPY_MODEL_ba1e2472b2594b9ea818d15f3c3d11bb", - "value": "vocab.txt: 100%" - } - }, - "d7190d315d09402f9308e2aa2d0abebb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2288246d5a4d4b4bb1a1f8e73a2b12b0", - "placeholder": "​", - "style": "IPY_MODEL_b9e2ca9c7f43440a89be28ce852168f3", - "value": "pytorch_model.bin: 100%" - } - }, - "dc10e1dfa7e84e1295522909b4df112e": { + "fcdce2bba18d4262a99e80746cd7ed8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "e3fe28eb102c4226a6521a5c52251366": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_83e38a4d06ee41978d13c8bc0fc7f05b", - "IPY_MODEL_baac3a399e3843b58fa1e6dd697a4ef3", - "IPY_MODEL_26520c10c4674e25ad89fb718b9068ce" - ], - "layout": "IPY_MODEL_c2ee2fac0caf41bcb4e8a14a0536f3bf" - } - }, - "ecde268159ad4b6c9238a02d8a130669": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8bf51f93ea06457590d4b3262c7f7f95", - "IPY_MODEL_4f910b3893a04fd9bcdf56fca9550818", - "IPY_MODEL_5490d628713d40f9a89e63379c65fad1" - ], - "layout": "IPY_MODEL_5b5556e01ebd4822b2fb6d01833df8b3" - } - }, - "ed1fe01152fa4642ad138486a2634cc1": { + "fd69eddaeade4dfbbc190d9d0f7cef92": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4362,28 +4365,25 @@ "width": null } }, - "f0f5cf6ee8c24c67aa14f8cf08fe4995": { + "ffd34fdfbd9448afb84dbd6818b15c8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4e23b67da06044dba971afb2dd4d1aa0", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64a2b9e3be0f4e9abe6e46ced115eba4", - "value": 2211.0 + "layout": "IPY_MODEL_fbd8f018fee147b9a856a836508c2d32", + "placeholder": "​", + "style": "IPY_MODEL_d4a4587430474d8fb2e2e40550998d40", + "value": "vocab.txt: 100%" } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 7b01efb69..44bd6d80e 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:06.083796Z", - "iopub.status.busy": "2024-01-10T06:14:06.083596Z", - "iopub.status.idle": "2024-01-10T06:14:07.138995Z", - "shell.execute_reply": "2024-01-10T06:14:07.138339Z" + "iopub.execute_input": "2024-01-10T14:59:41.334420Z", + "iopub.status.busy": "2024-01-10T14:59:41.333949Z", + "iopub.status.idle": "2024-01-10T14:59:42.355922Z", + "shell.execute_reply": "2024-01-10T14:59:42.355241Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:07.141966Z", - "iopub.status.busy": "2024-01-10T06:14:07.141624Z", - "iopub.status.idle": "2024-01-10T06:14:07.144683Z", - "shell.execute_reply": "2024-01-10T06:14:07.144141Z" + "iopub.execute_input": "2024-01-10T14:59:42.359064Z", + "iopub.status.busy": "2024-01-10T14:59:42.358534Z", + "iopub.status.idle": "2024-01-10T14:59:42.361625Z", + "shell.execute_reply": "2024-01-10T14:59:42.361111Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:07.147109Z", - "iopub.status.busy": "2024-01-10T06:14:07.146900Z", - "iopub.status.idle": "2024-01-10T06:14:07.160356Z", - "shell.execute_reply": "2024-01-10T06:14:07.159857Z" + "iopub.execute_input": "2024-01-10T14:59:42.364150Z", + "iopub.status.busy": "2024-01-10T14:59:42.363702Z", + "iopub.status.idle": "2024-01-10T14:59:42.376325Z", + "shell.execute_reply": "2024-01-10T14:59:42.375739Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:07.162918Z", - "iopub.status.busy": "2024-01-10T06:14:07.162487Z", - "iopub.status.idle": "2024-01-10T06:14:12.103424Z", - "shell.execute_reply": "2024-01-10T06:14:12.102793Z" + "iopub.execute_input": "2024-01-10T14:59:42.378959Z", + "iopub.status.busy": "2024-01-10T14:59:42.378603Z", + "iopub.status.idle": "2024-01-10T14:59:46.491752Z", + "shell.execute_reply": "2024-01-10T14:59:46.491163Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index e9d9615a2..630a7f0d3 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -937,13 +937,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1444,7 +1444,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index b59c84e7b..5bfa51262 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:16.607280Z", - "iopub.status.busy": "2024-01-10T06:14:16.607078Z", - "iopub.status.idle": "2024-01-10T06:14:17.657250Z", - "shell.execute_reply": "2024-01-10T06:14:17.656618Z" + "iopub.execute_input": "2024-01-10T14:59:50.893165Z", + "iopub.status.busy": "2024-01-10T14:59:50.892970Z", + "iopub.status.idle": "2024-01-10T14:59:51.939588Z", + "shell.execute_reply": "2024-01-10T14:59:51.938934Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:17.660564Z", - "iopub.status.busy": "2024-01-10T06:14:17.659972Z", - "iopub.status.idle": "2024-01-10T06:14:17.663681Z", - "shell.execute_reply": "2024-01-10T06:14:17.663061Z" + "iopub.execute_input": "2024-01-10T14:59:51.943002Z", + "iopub.status.busy": "2024-01-10T14:59:51.942447Z", + "iopub.status.idle": "2024-01-10T14:59:51.946140Z", + "shell.execute_reply": "2024-01-10T14:59:51.945634Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:17.666105Z", - "iopub.status.busy": "2024-01-10T06:14:17.665680Z", - "iopub.status.idle": "2024-01-10T06:14:19.736489Z", - "shell.execute_reply": "2024-01-10T06:14:19.735788Z" + "iopub.execute_input": "2024-01-10T14:59:51.948844Z", + "iopub.status.busy": "2024-01-10T14:59:51.948364Z", + "iopub.status.idle": "2024-01-10T14:59:53.958972Z", + "shell.execute_reply": "2024-01-10T14:59:53.958235Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.740030Z", - "iopub.status.busy": "2024-01-10T06:14:19.739173Z", - "iopub.status.idle": "2024-01-10T06:14:19.787352Z", - "shell.execute_reply": "2024-01-10T06:14:19.786521Z" + "iopub.execute_input": "2024-01-10T14:59:53.962418Z", + "iopub.status.busy": "2024-01-10T14:59:53.961685Z", + "iopub.status.idle": "2024-01-10T14:59:53.998347Z", + "shell.execute_reply": "2024-01-10T14:59:53.997661Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.790338Z", - "iopub.status.busy": "2024-01-10T06:14:19.790052Z", - "iopub.status.idle": "2024-01-10T06:14:19.829158Z", - "shell.execute_reply": "2024-01-10T06:14:19.828462Z" + "iopub.execute_input": "2024-01-10T14:59:54.001353Z", + "iopub.status.busy": "2024-01-10T14:59:54.000979Z", + "iopub.status.idle": "2024-01-10T14:59:54.037345Z", + "shell.execute_reply": "2024-01-10T14:59:54.036554Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.832420Z", - "iopub.status.busy": "2024-01-10T06:14:19.831982Z", - "iopub.status.idle": "2024-01-10T06:14:19.835284Z", - "shell.execute_reply": "2024-01-10T06:14:19.834658Z" + "iopub.execute_input": "2024-01-10T14:59:54.040406Z", + "iopub.status.busy": "2024-01-10T14:59:54.040062Z", + "iopub.status.idle": "2024-01-10T14:59:54.043268Z", + "shell.execute_reply": "2024-01-10T14:59:54.042728Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.837757Z", - "iopub.status.busy": "2024-01-10T06:14:19.837304Z", - "iopub.status.idle": "2024-01-10T06:14:19.840314Z", - "shell.execute_reply": "2024-01-10T06:14:19.839702Z" + "iopub.execute_input": "2024-01-10T14:59:54.045714Z", + "iopub.status.busy": "2024-01-10T14:59:54.045356Z", + "iopub.status.idle": "2024-01-10T14:59:54.048133Z", + "shell.execute_reply": "2024-01-10T14:59:54.047607Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.843019Z", - "iopub.status.busy": "2024-01-10T06:14:19.842419Z", - "iopub.status.idle": "2024-01-10T06:14:19.870315Z", - "shell.execute_reply": "2024-01-10T06:14:19.869647Z" + "iopub.execute_input": "2024-01-10T14:59:54.050733Z", + "iopub.status.busy": "2024-01-10T14:59:54.050248Z", + "iopub.status.idle": "2024-01-10T14:59:54.078354Z", + "shell.execute_reply": "2024-01-10T14:59:54.077694Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8cfd59fe33214a6cacbf9a0ac8550cc0", + "model_id": "075f00108c9143bb95de45ad3e1b32a1", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9e9c54ccd4dc4b5f967bcea2a3fdb025", + "model_id": "187b0fc246824442903879754666f9fb", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.878259Z", - "iopub.status.busy": "2024-01-10T06:14:19.877780Z", - "iopub.status.idle": "2024-01-10T06:14:19.885221Z", - "shell.execute_reply": "2024-01-10T06:14:19.884563Z" + "iopub.execute_input": "2024-01-10T14:59:54.085049Z", + "iopub.status.busy": "2024-01-10T14:59:54.084695Z", + "iopub.status.idle": "2024-01-10T14:59:54.092109Z", + "shell.execute_reply": "2024-01-10T14:59:54.091490Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.888245Z", - "iopub.status.busy": "2024-01-10T06:14:19.887801Z", - "iopub.status.idle": "2024-01-10T06:14:19.891951Z", - "shell.execute_reply": "2024-01-10T06:14:19.891387Z" + "iopub.execute_input": "2024-01-10T14:59:54.094651Z", + "iopub.status.busy": "2024-01-10T14:59:54.094271Z", + "iopub.status.idle": "2024-01-10T14:59:54.098035Z", + "shell.execute_reply": "2024-01-10T14:59:54.097434Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.894543Z", - "iopub.status.busy": "2024-01-10T06:14:19.894157Z", - "iopub.status.idle": "2024-01-10T06:14:19.901425Z", - "shell.execute_reply": "2024-01-10T06:14:19.900807Z" + "iopub.execute_input": "2024-01-10T14:59:54.100245Z", + "iopub.status.busy": "2024-01-10T14:59:54.099912Z", + "iopub.status.idle": "2024-01-10T14:59:54.106735Z", + "shell.execute_reply": "2024-01-10T14:59:54.106126Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.904233Z", - "iopub.status.busy": "2024-01-10T06:14:19.903763Z", - "iopub.status.idle": "2024-01-10T06:14:19.946997Z", - "shell.execute_reply": "2024-01-10T06:14:19.946238Z" + "iopub.execute_input": "2024-01-10T14:59:54.108937Z", + "iopub.status.busy": "2024-01-10T14:59:54.108729Z", + "iopub.status.idle": "2024-01-10T14:59:54.146363Z", + "shell.execute_reply": "2024-01-10T14:59:54.145668Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:19.950396Z", - "iopub.status.busy": "2024-01-10T06:14:19.949775Z", - "iopub.status.idle": "2024-01-10T06:14:19.997923Z", - "shell.execute_reply": "2024-01-10T06:14:19.997218Z" + "iopub.execute_input": "2024-01-10T14:59:54.149318Z", + "iopub.status.busy": "2024-01-10T14:59:54.148912Z", + "iopub.status.idle": "2024-01-10T14:59:54.185413Z", + "shell.execute_reply": "2024-01-10T14:59:54.184745Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:20.001469Z", - "iopub.status.busy": "2024-01-10T06:14:20.000877Z", - "iopub.status.idle": "2024-01-10T06:14:20.125778Z", - "shell.execute_reply": "2024-01-10T06:14:20.125022Z" + "iopub.execute_input": "2024-01-10T14:59:54.188595Z", + "iopub.status.busy": "2024-01-10T14:59:54.188185Z", + "iopub.status.idle": "2024-01-10T14:59:54.302578Z", + "shell.execute_reply": "2024-01-10T14:59:54.301896Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:20.128815Z", - "iopub.status.busy": "2024-01-10T06:14:20.128382Z", - "iopub.status.idle": "2024-01-10T06:14:22.666460Z", - "shell.execute_reply": "2024-01-10T06:14:22.665723Z" + "iopub.execute_input": "2024-01-10T14:59:54.305610Z", + "iopub.status.busy": "2024-01-10T14:59:54.305065Z", + "iopub.status.idle": "2024-01-10T14:59:56.793121Z", + "shell.execute_reply": "2024-01-10T14:59:56.792360Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.669156Z", - "iopub.status.busy": "2024-01-10T06:14:22.668916Z", - "iopub.status.idle": "2024-01-10T06:14:22.729466Z", - "shell.execute_reply": "2024-01-10T06:14:22.728793Z" + "iopub.execute_input": "2024-01-10T14:59:56.796100Z", + "iopub.status.busy": "2024-01-10T14:59:56.795869Z", + "iopub.status.idle": "2024-01-10T14:59:56.854518Z", + "shell.execute_reply": "2024-01-10T14:59:56.853835Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "55d634cf", + "id": "79abd091", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "94584059", + "id": "6d19c12e", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "b9628b75", + "id": "8e189dcb", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.732231Z", - "iopub.status.busy": "2024-01-10T06:14:22.731955Z", - "iopub.status.idle": "2024-01-10T06:14:22.846588Z", - "shell.execute_reply": "2024-01-10T06:14:22.845700Z" + "iopub.execute_input": "2024-01-10T14:59:56.857079Z", + "iopub.status.busy": "2024-01-10T14:59:56.856723Z", + "iopub.status.idle": "2024-01-10T14:59:56.966714Z", + "shell.execute_reply": "2024-01-10T14:59:56.965883Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "c5fd2f4f", + "id": "96869909", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "cfb1a98d", + "id": "79a16416", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.850451Z", - "iopub.status.busy": "2024-01-10T06:14:22.849579Z", - "iopub.status.idle": "2024-01-10T06:14:22.926903Z", - "shell.execute_reply": "2024-01-10T06:14:22.926034Z" + "iopub.execute_input": "2024-01-10T14:59:56.970421Z", + "iopub.status.busy": "2024-01-10T14:59:56.969410Z", + "iopub.status.idle": "2024-01-10T14:59:57.046615Z", + "shell.execute_reply": "2024-01-10T14:59:57.045885Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "c797b51e", + "id": "3d459566", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "8e4b5314", + "id": "afc2b0b9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.930016Z", - "iopub.status.busy": "2024-01-10T06:14:22.929774Z", - "iopub.status.idle": "2024-01-10T06:14:22.938891Z", - "shell.execute_reply": "2024-01-10T06:14:22.938159Z" + "iopub.execute_input": "2024-01-10T14:59:57.049298Z", + "iopub.status.busy": "2024-01-10T14:59:57.048916Z", + "iopub.status.idle": "2024-01-10T14:59:57.057177Z", + "shell.execute_reply": "2024-01-10T14:59:57.056582Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "f2ecdef4", + "id": "82dbd54f", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "6fd6d9e2", + "id": "4a747a25", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.941671Z", - "iopub.status.busy": "2024-01-10T06:14:22.941170Z", - "iopub.status.idle": "2024-01-10T06:14:22.960867Z", - "shell.execute_reply": "2024-01-10T06:14:22.960198Z" + "iopub.execute_input": "2024-01-10T14:59:57.059676Z", + "iopub.status.busy": "2024-01-10T14:59:57.059243Z", + "iopub.status.idle": "2024-01-10T14:59:57.079299Z", + "shell.execute_reply": "2024-01-10T14:59:57.078739Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "5f4f4b91", + "id": "cc8f3506", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:22.963415Z", - "iopub.status.busy": "2024-01-10T06:14:22.963144Z", - "iopub.status.idle": "2024-01-10T06:14:22.967965Z", - "shell.execute_reply": "2024-01-10T06:14:22.967414Z" + "iopub.execute_input": "2024-01-10T14:59:57.081812Z", + "iopub.status.busy": "2024-01-10T14:59:57.081393Z", + "iopub.status.idle": "2024-01-10T14:59:57.085818Z", + "shell.execute_reply": "2024-01-10T14:59:57.085202Z" } }, "outputs": [ @@ -1205,132 +1205,45 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02873622a71341419941aef0bea6e764": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0fe2c8dcc89d4a6b876606303720da8f": { + "075f00108c9143bb95de45ad3e1b32a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_19c69f8250174c15836a73a9013c308f", + "IPY_MODEL_f2b1f15303b14f7280a65bf9226d7ae6", + "IPY_MODEL_180f325c4b8f41009bec369623aca77c" + ], + "layout": "IPY_MODEL_19738babb8c6474796f43941b0b5da8d" } }, - "1fa28da4022f49c4a420ea8bb4ec2b8a": { + "1557598dc31c495a9d7519e96caf3ae6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "2713f998e4784419837d175595e938da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a763fb86bc604616a2bccb416889f17e", - "placeholder": "​", - "style": "IPY_MODEL_3bf08f79e11044c8ae9e3d01b165f5f4", - "value": " 10000/? [00:00<00:00, 914329.56it/s]" - } - }, - "29567219cce744c894901fc5fc7153d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_78a360b742ee4bfdbe43f36a0804f07c", - "placeholder": "​", - "style": "IPY_MODEL_72e10f0daba942d680242edaf7b639de", - "value": "number of examples processed for estimating thresholds: " - } - }, - "3185b489256446899fe0eb2000abd99c": { + "180f325c4b8f41009bec369623aca77c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1345,52 +1258,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d72fa4dce6994dca8b4d202761dbdea7", + "layout": "IPY_MODEL_18d28aa507ef43beac8a8d3a63d2ea79", "placeholder": "​", - "style": "IPY_MODEL_1fa28da4022f49c4a420ea8bb4ec2b8a", - "value": " 10000/? [00:00<00:00, 1247859.10it/s]" - } - }, - "3bf08f79e11044c8ae9e3d01b165f5f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_2cd086b6d25b4143bc2ae32f4459db0b", + "value": " 10000/? [00:00<00:00, 935894.32it/s]" } }, - "6b53e6a747e74d2e95f8918385b84461": { + "187b0fc246824442903879754666f9fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_71e12b2915714163a8efb7d8d2520038", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_864de33388604a6eb55ee4141e8cc2d4", - "value": 50.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f59299d4afbb4249a61046c3a5e522aa", + "IPY_MODEL_f54e0ed2cc28430f8285ca5079656137", + "IPY_MODEL_c8b1b9260a22401c90b72c62787c2226" + ], + "layout": "IPY_MODEL_31070f1577a7498799ff2eec91b6441d" } }, - "71e12b2915714163a8efb7d8d2520038": { + "18d28aa507ef43beac8a8d3a63d2ea79": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1442,22 +1338,7 @@ "width": null } }, - "72e10f0daba942d680242edaf7b639de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "78a360b742ee4bfdbe43f36a0804f07c": { + "19738babb8c6474796f43941b0b5da8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1509,127 +1390,95 @@ "width": null } }, - "79c3f1111ee84f5193cd4e4f09142b4d": { + "19c69f8250174c15836a73a9013c308f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8248c43ab0a54ea49dace7b985c9d289": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e8af98ac12044b6db8b480e52844de57", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0fe2c8dcc89d4a6b876606303720da8f", - "value": 50.0 + "layout": "IPY_MODEL_637100a896df4d849534b2f362654c96", + "placeholder": "​", + "style": "IPY_MODEL_ec80fece88d644bfa5c589b0ba25b5c0", + "value": "number of examples processed for estimating thresholds: " } }, - "864de33388604a6eb55ee4141e8cc2d4": { + "2cd086b6d25b4143bc2ae32f4459db0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "8cfd59fe33214a6cacbf9a0ac8550cc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_29567219cce744c894901fc5fc7153d6", - "IPY_MODEL_6b53e6a747e74d2e95f8918385b84461", - "IPY_MODEL_2713f998e4784419837d175595e938da" - ], - "layout": "IPY_MODEL_fbe38660da0047debe95399554068fe2" - } - }, - "9e9c54ccd4dc4b5f967bcea2a3fdb025": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a6a5c473500a4e26903882a3f7500cf3", - "IPY_MODEL_8248c43ab0a54ea49dace7b985c9d289", - "IPY_MODEL_3185b489256446899fe0eb2000abd99c" - ], - "layout": "IPY_MODEL_bb2b6a662d9f4040851f3df8c7115e9a" - } - }, - "a6a5c473500a4e26903882a3f7500cf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "31070f1577a7498799ff2eec91b6441d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_02873622a71341419941aef0bea6e764", - "placeholder": "​", - "style": "IPY_MODEL_79c3f1111ee84f5193cd4e4f09142b4d", - "value": "number of examples processed for checking labels: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a763fb86bc604616a2bccb416889f17e": { + "52b366eb36b54b419859bfa0171b9e16": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1681,7 +1530,7 @@ "width": null } }, - "bb2b6a662d9f4040851f3df8c7115e9a": { + "637100a896df4d849534b2f362654c96": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1733,7 +1582,37 @@ "width": null } }, - "d72fa4dce6994dca8b4d202761dbdea7": { + "76f8f56743414c94bc06877a3304fa61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7dafcc1ce8304bc6bce2f0a04f82ebd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a152270654af43649f1664b7ece96dc4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1785,7 +1664,7 @@ "width": null } }, - "e8af98ac12044b6db8b480e52844de57": { + "a45ae2e5caff44cdb39d49840213da69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1837,7 +1716,44 @@ "width": null } }, - "fbe38660da0047debe95399554068fe2": { + "aa30ead3d6c2441584d3767f851fb6f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c8b1b9260a22401c90b72c62787c2226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e28a697de62c4e99a866def110006b3b", + "placeholder": "​", + "style": "IPY_MODEL_76f8f56743414c94bc06877a3304fa61", + "value": " 10000/? [00:00<00:00, 1136729.36it/s]" + } + }, + "e28a697de62c4e99a866def110006b3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1888,6 +1804,90 @@ "visibility": null, "width": null } + }, + "ec80fece88d644bfa5c589b0ba25b5c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f2b1f15303b14f7280a65bf9226d7ae6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a152270654af43649f1664b7ece96dc4", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1557598dc31c495a9d7519e96caf3ae6", + "value": 50.0 + } + }, + "f54e0ed2cc28430f8285ca5079656137": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a45ae2e5caff44cdb39d49840213da69", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa30ead3d6c2441584d3767f851fb6f0", + "value": 50.0 + } + }, + "f59299d4afbb4249a61046c3a5e522aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52b366eb36b54b419859bfa0171b9e16", + "placeholder": "​", + "style": "IPY_MODEL_7dafcc1ce8304bc6bce2f0a04f82ebd9", + "value": "number of examples processed for checking labels: " + } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index e60a72b7a..a7449b7fe 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -879,25 +879,25 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1260,16 +1260,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
5%|▌ | 2/40 [00:00&lt;00:02, 18.60it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 8.84it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 18.60it/s]
+
2%|▎ | 1/40 [00:00<00:04, 8.84it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 18.60it/s]

+

2%|▎ | 1/40 [00:00<00:04, 8.84it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 49.93it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 45.55it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 49.93it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 49.93it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]

-
45%|████▌ | 18/40 [00:00&lt;00:00, 60.30it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 58.60it/s]

</pre>

-
45%|████▌ | 18/40 [00:00<00:00, 60.30it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]

end{sphinxVerbatim}

-

45%|████▌ | 18/40 [00:00<00:00, 60.30it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 63.41it/s]
+
60%|██████ | 24/40 [00:00&lt;00:00, 61.59it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 63.41it/s]
+
60%|██████ | 24/40 [00:00<00:00, 61.59it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 63.41it/s]

+

60%|██████ | 24/40 [00:00<00:00, 61.59it/s]

-
82%|████████▎ | 33/40 [00:00&lt;00:00, 67.49it/s]
+
80%|████████ | 32/40 [00:00&lt;00:00, 65.91it/s]

</pre>

-
82%|████████▎ | 33/40 [00:00<00:00, 67.49it/s]
+
80%|████████ | 32/40 [00:00<00:00, 65.91it/s]

end{sphinxVerbatim}

-

82%|████████▎ | 33/40 [00:00<00:00, 67.49it/s]

+

80%|████████ | 32/40 [00:00<00:00, 65.91it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 63.40it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 61.51it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 63.40it/s]
+
100%|██████████| 40/40 [00:00<00:00, 61.51it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 63.40it/s]

+

100%|██████████| 40/40 [00:00<00:00, 61.51it/s]

-
5%|▌ | 2/40 [00:00&lt;00:02, 18.04it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 17.92it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 18.04it/s]
+
5%|▌ | 2/40 [00:00<00:02, 17.92it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 18.04it/s]

+

5%|▌ | 2/40 [00:00<00:02, 17.92it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 49.32it/s]
+
25%|██▌ | 10/40 [00:00&lt;00:00, 50.75it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 49.32it/s]
+
25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 49.32it/s]

+

25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]

-
45%|████▌ | 18/40 [00:00&lt;00:00, 59.28it/s]
+
45%|████▌ | 18/40 [00:00&lt;00:00, 60.96it/s]

</pre>

-
45%|████▌ | 18/40 [00:00<00:00, 59.28it/s]
+
45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]

end{sphinxVerbatim}

-

45%|████▌ | 18/40 [00:00<00:00, 59.28it/s]

+

45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]

-
65%|██████▌ | 26/40 [00:00&lt;00:00, 65.13it/s]
+
65%|██████▌ | 26/40 [00:00&lt;00:00, 65.98it/s]

</pre>

-
65%|██████▌ | 26/40 [00:00<00:00, 65.13it/s]
+
65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 26/40 [00:00<00:00, 65.13it/s]

+

65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]

-
85%|████████▌ | 34/40 [00:00&lt;00:00, 69.37it/s]
+
85%|████████▌ | 34/40 [00:00&lt;00:00, 69.76it/s]

</pre>

-
85%|████████▌ | 34/40 [00:00<00:00, 69.37it/s]
+
85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 34/40 [00:00<00:00, 69.37it/s]

+

85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 63.82it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 64.52it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 63.82it/s]
+
100%|██████████| 40/40 [00:00<00:00, 64.52it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 63.82it/s]

+

100%|██████████| 40/40 [00:00<00:00, 64.52it/s]

@@ -1656,16 +1656,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
5%|▌ | 2/40 [00:00&lt;00:02, 18.26it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 9.40it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 18.26it/s]
+
2%|▎ | 1/40 [00:00<00:04, 9.40it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 18.26it/s]

+

2%|▎ | 1/40 [00:00<00:04, 9.40it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 50.49it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 47.46it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 50.49it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 50.49it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]

-
45%|████▌ | 18/40 [00:00&lt;00:00, 61.21it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 58.29it/s]

</pre>

-
45%|████▌ | 18/40 [00:00<00:00, 61.21it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]

end{sphinxVerbatim}

-

45%|████▌ | 18/40 [00:00<00:00, 61.21it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]

-
65%|██████▌ | 26/40 [00:00&lt;00:00, 65.51it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 63.62it/s]

</pre>

-
65%|██████▌ | 26/40 [00:00<00:00, 65.51it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 26/40 [00:00<00:00, 65.51it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]

-
85%|████████▌ | 34/40 [00:00&lt;00:00, 69.51it/s]
+
80%|████████ | 32/40 [00:00&lt;00:00, 63.01it/s]

</pre>

-
85%|████████▌ | 34/40 [00:00<00:00, 69.51it/s]
+
80%|████████ | 32/40 [00:00<00:00, 63.01it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 34/40 [00:00<00:00, 69.51it/s]

+

80%|████████ | 32/40 [00:00<00:00, 63.01it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 64.37it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 60.37it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 64.37it/s]
+
100%|██████████| 40/40 [00:00<00:00, 60.37it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 64.37it/s]

+

100%|██████████| 40/40 [00:00<00:00, 60.37it/s]

-
5%|▌ | 2/40 [00:00&lt;00:02, 17.70it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 8.72it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 17.70it/s]
+
2%|▎ | 1/40 [00:00<00:04, 8.72it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 17.70it/s]

+

2%|▎ | 1/40 [00:00<00:04, 8.72it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 46.88it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 46.03it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 46.88it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 46.88it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 59.35it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 59.40it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 59.35it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 59.35it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 65.20it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 66.19it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 65.20it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 65.20it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]

-
82%|████████▎ | 33/40 [00:00&lt;00:00, 69.31it/s]
+
82%|████████▎ | 33/40 [00:00&lt;00:00, 70.35it/s]

</pre>

-
82%|████████▎ | 33/40 [00:00<00:00, 69.31it/s]
+
82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]

end{sphinxVerbatim}

-

82%|████████▎ | 33/40 [00:00<00:00, 69.31it/s]

+

82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 63.89it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 63.14it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 63.89it/s]
+
100%|██████████| 40/40 [00:00<00:00, 63.14it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 63.89it/s]

+

100%|██████████| 40/40 [00:00<00:00, 63.14it/s]

@@ -2052,16 +2052,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 9.29it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 9.06it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.29it/s]
+
2%|▎ | 1/40 [00:00<00:04, 9.06it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.29it/s]

+

2%|▎ | 1/40 [00:00<00:04, 9.06it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 43.17it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 47.03it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 43.17it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 43.17it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 57.22it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 58.50it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 57.22it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 57.22it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]

-
60%|██████ | 24/40 [00:00&lt;00:00, 62.89it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 63.48it/s]

</pre>

-
60%|██████ | 24/40 [00:00<00:00, 62.89it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]

end{sphinxVerbatim}

-

60%|██████ | 24/40 [00:00<00:00, 62.89it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]

-
80%|████████ | 32/40 [00:00&lt;00:00, 66.74it/s]
+
82%|████████▎ | 33/40 [00:00&lt;00:00, 68.14it/s]

</pre>

-
80%|████████ | 32/40 [00:00<00:00, 66.74it/s]
+
82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]

end{sphinxVerbatim}

-

80%|████████ | 32/40 [00:00<00:00, 66.74it/s]

+

82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 62.35it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 62.80it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 62.35it/s]
+
100%|██████████| 40/40 [00:00<00:00, 62.80it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 62.35it/s]

+

100%|██████████| 40/40 [00:00<00:00, 62.80it/s]

-
5%|▌ | 2/40 [00:00&lt;00:01, 19.28it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 18.53it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:01, 19.28it/s]
+
5%|▌ | 2/40 [00:00<00:02, 18.53it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:01, 19.28it/s]

+

5%|▌ | 2/40 [00:00<00:02, 18.53it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 53.09it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 45.64it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 53.09it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 53.09it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]

-
45%|████▌ | 18/40 [00:00&lt;00:00, 63.84it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 53.87it/s]

</pre>

-
45%|████▌ | 18/40 [00:00<00:00, 63.84it/s]
+
40%|████ | 16/40 [00:00<00:00, 53.87it/s]

end{sphinxVerbatim}

-

45%|████▌ | 18/40 [00:00<00:00, 63.84it/s]

+

40%|████ | 16/40 [00:00<00:00, 53.87it/s]

-
65%|██████▌ | 26/40 [00:00&lt;00:00, 68.71it/s]
+
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.73it/s]

</pre>

-
65%|██████▌ | 26/40 [00:00<00:00, 68.71it/s]
+
57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 26/40 [00:00<00:00, 68.71it/s]

+

57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]

-
85%|████████▌ | 34/40 [00:00&lt;00:00, 72.01it/s]
+
78%|███████▊ | 31/40 [00:00&lt;00:00, 65.87it/s]

</pre>

-
85%|████████▌ | 34/40 [00:00<00:00, 72.01it/s]
+
78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 34/40 [00:00<00:00, 72.01it/s]

+

78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 66.60it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 62.44it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 66.60it/s]
+
100%|██████████| 40/40 [00:00<00:00, 62.44it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 66.60it/s]

+

100%|██████████| 40/40 [00:00<00:00, 62.44it/s]

-
+
@@ -3244,35 +3244,35 @@

Dark images - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -3422,7 +3422,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index ac230171a..a7f7a4707 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:27.983735Z", - "iopub.status.busy": "2024-01-10T06:14:27.983198Z", - "iopub.status.idle": "2024-01-10T06:14:30.187037Z", - "shell.execute_reply": "2024-01-10T06:14:30.186416Z" + "iopub.execute_input": "2024-01-10T15:00:02.259860Z", + "iopub.status.busy": "2024-01-10T15:00:02.259344Z", + "iopub.status.idle": "2024-01-10T15:00:04.424050Z", + "shell.execute_reply": "2024-01-10T15:00:04.423416Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:30.189697Z", - "iopub.status.busy": "2024-01-10T06:14:30.189376Z", - "iopub.status.idle": "2024-01-10T06:14:30.193168Z", - "shell.execute_reply": "2024-01-10T06:14:30.192626Z" + "iopub.execute_input": "2024-01-10T15:00:04.427155Z", + "iopub.status.busy": "2024-01-10T15:00:04.426599Z", + "iopub.status.idle": "2024-01-10T15:00:04.430600Z", + "shell.execute_reply": "2024-01-10T15:00:04.430047Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:30.195644Z", - "iopub.status.busy": "2024-01-10T06:14:30.195302Z", - "iopub.status.idle": "2024-01-10T06:14:32.296992Z", - "shell.execute_reply": "2024-01-10T06:14:32.296276Z" + "iopub.execute_input": "2024-01-10T15:00:04.433104Z", + "iopub.status.busy": "2024-01-10T15:00:04.432703Z", + "iopub.status.idle": "2024-01-10T15:00:06.135847Z", + "shell.execute_reply": "2024-01-10T15:00:06.135301Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a3915e0b726a46b79cb5df0f0080b054", + "model_id": "b9f8b67a42cd4066aaa973e62b8ca794", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6b5a69bbd21481db358d145d9702e00", + "model_id": "f290500824dc4995bf9dfe5f9f2b3425", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4aaf228d5dec484e9d76a93af99b330d", + "model_id": "ca3a18d2bf4b4fa68ed448ca06ccc823", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c98028da20994c76be789f56278cced6", + "model_id": "f0d31b197fe7409d990c55b1452c3705", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:32.299905Z", - "iopub.status.busy": "2024-01-10T06:14:32.299545Z", - "iopub.status.idle": "2024-01-10T06:14:32.303682Z", - "shell.execute_reply": "2024-01-10T06:14:32.303114Z" + "iopub.execute_input": "2024-01-10T15:00:06.138494Z", + "iopub.status.busy": "2024-01-10T15:00:06.138100Z", + "iopub.status.idle": "2024-01-10T15:00:06.142256Z", + "shell.execute_reply": "2024-01-10T15:00:06.141635Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:32.306297Z", - "iopub.status.busy": "2024-01-10T06:14:32.305739Z", - "iopub.status.idle": "2024-01-10T06:14:45.017686Z", - "shell.execute_reply": "2024-01-10T06:14:45.017075Z" + "iopub.execute_input": "2024-01-10T15:00:06.144792Z", + "iopub.status.busy": "2024-01-10T15:00:06.144285Z", + "iopub.status.idle": "2024-01-10T15:00:18.301514Z", + "shell.execute_reply": "2024-01-10T15:00:18.300790Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "49e601fd38364edaac3c9d83a3b91d37", + "model_id": "8a7ea3a7486345b3b0576e7ea7232743", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:14:45.020665Z", - "iopub.status.busy": "2024-01-10T06:14:45.020391Z", - "iopub.status.idle": "2024-01-10T06:15:07.261960Z", - "shell.execute_reply": "2024-01-10T06:15:07.261322Z" + "iopub.execute_input": "2024-01-10T15:00:18.305070Z", + "iopub.status.busy": "2024-01-10T15:00:18.304465Z", + "iopub.status.idle": "2024-01-10T15:00:39.413459Z", + "shell.execute_reply": "2024-01-10T15:00:39.412837Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.265138Z", - "iopub.status.busy": "2024-01-10T06:15:07.264694Z", - "iopub.status.idle": "2024-01-10T06:15:07.270905Z", - "shell.execute_reply": "2024-01-10T06:15:07.270259Z" + "iopub.execute_input": "2024-01-10T15:00:39.416560Z", + "iopub.status.busy": "2024-01-10T15:00:39.416130Z", + "iopub.status.idle": "2024-01-10T15:00:39.422080Z", + "shell.execute_reply": "2024-01-10T15:00:39.421556Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.273540Z", - "iopub.status.busy": "2024-01-10T06:15:07.273150Z", - "iopub.status.idle": "2024-01-10T06:15:07.277723Z", - "shell.execute_reply": "2024-01-10T06:15:07.277189Z" + "iopub.execute_input": "2024-01-10T15:00:39.424414Z", + "iopub.status.busy": "2024-01-10T15:00:39.424051Z", + "iopub.status.idle": "2024-01-10T15:00:39.428093Z", + "shell.execute_reply": "2024-01-10T15:00:39.427614Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.280348Z", - "iopub.status.busy": "2024-01-10T06:15:07.279953Z", - "iopub.status.idle": "2024-01-10T06:15:07.292535Z", - "shell.execute_reply": "2024-01-10T06:15:07.291681Z" + "iopub.execute_input": "2024-01-10T15:00:39.430452Z", + "iopub.status.busy": "2024-01-10T15:00:39.430093Z", + "iopub.status.idle": "2024-01-10T15:00:39.439781Z", + "shell.execute_reply": "2024-01-10T15:00:39.439252Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.295504Z", - "iopub.status.busy": "2024-01-10T06:15:07.294946Z", - "iopub.status.idle": "2024-01-10T06:15:07.327125Z", - "shell.execute_reply": "2024-01-10T06:15:07.326463Z" + "iopub.execute_input": "2024-01-10T15:00:39.442271Z", + "iopub.status.busy": "2024-01-10T15:00:39.441782Z", + "iopub.status.idle": "2024-01-10T15:00:39.469753Z", + "shell.execute_reply": "2024-01-10T15:00:39.469234Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:07.330122Z", - "iopub.status.busy": "2024-01-10T06:15:07.329678Z", - "iopub.status.idle": "2024-01-10T06:15:40.131617Z", - "shell.execute_reply": "2024-01-10T06:15:40.130564Z" + "iopub.execute_input": "2024-01-10T15:00:39.472447Z", + "iopub.status.busy": "2024-01-10T15:00:39.472049Z", + "iopub.status.idle": "2024-01-10T15:01:10.318115Z", + "shell.execute_reply": "2024-01-10T15:01:10.317294Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.995\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.674\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.856\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.384\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.60it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.84it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 49.93it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.30it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.41it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 61.59it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 67.49it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 65.91it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.40it/s]" + "100%|██████████| 40/40 [00:00<00:00, 61.51it/s]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.04it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.92it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 49.32it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 59.28it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 65.13it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 69.37it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.82it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.52it/s]" ] }, { @@ -882,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.786\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.606\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.727\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.416\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.26it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.40it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.49it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 61.21it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 65.51it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 69.51it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 63.01it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.37it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.37it/s]" ] }, { @@ -976,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.70it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.72it/s]" ] }, { @@ -984,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.88it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]" ] }, { @@ -992,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.35it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.20it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.31it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.89it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.14it/s]" ] }, { @@ -1038,14 +1038,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 5.020\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.563\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.627\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.317\n", "Computing feature embeddings ...\n" ] }, @@ -1062,7 +1062,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.29it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.06it/s]" ] }, { @@ -1070,7 +1070,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 43.17it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]" ] }, { @@ -1078,7 +1078,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.22it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]" ] }, { @@ -1086,7 +1086,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 62.89it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]" ] }, { @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 66.74it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.35it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.80it/s]" ] }, { @@ -1132,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.28it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.53it/s]" ] }, { @@ -1140,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 53.09it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]" ] }, { @@ -1148,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 63.84it/s]" + " 40%|████ | 16/40 [00:00<00:00, 53.87it/s]" ] }, { @@ -1156,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 68.71it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]" ] }, { @@ -1164,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 72.01it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 66.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.44it/s]" ] }, { @@ -1249,10 +1249,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:40.134484Z", - "iopub.status.busy": "2024-01-10T06:15:40.134046Z", - "iopub.status.idle": "2024-01-10T06:15:40.150308Z", - "shell.execute_reply": "2024-01-10T06:15:40.149745Z" + "iopub.execute_input": "2024-01-10T15:01:10.320887Z", + "iopub.status.busy": "2024-01-10T15:01:10.320635Z", + "iopub.status.idle": "2024-01-10T15:01:10.336127Z", + "shell.execute_reply": "2024-01-10T15:01:10.335651Z" } }, "outputs": [], @@ -1277,10 +1277,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:40.153062Z", - "iopub.status.busy": "2024-01-10T06:15:40.152743Z", - "iopub.status.idle": "2024-01-10T06:15:40.614160Z", - "shell.execute_reply": "2024-01-10T06:15:40.613451Z" + "iopub.execute_input": "2024-01-10T15:01:10.338583Z", + "iopub.status.busy": "2024-01-10T15:01:10.338209Z", + "iopub.status.idle": "2024-01-10T15:01:10.777774Z", + "shell.execute_reply": "2024-01-10T15:01:10.777077Z" } }, "outputs": [], @@ -1300,10 +1300,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:15:40.617172Z", - "iopub.status.busy": "2024-01-10T06:15:40.616955Z", - "iopub.status.idle": "2024-01-10T06:19:01.674604Z", - "shell.execute_reply": "2024-01-10T06:19:01.673956Z" + "iopub.execute_input": "2024-01-10T15:01:10.780594Z", + "iopub.status.busy": "2024-01-10T15:01:10.780378Z", + "iopub.status.idle": "2024-01-10T15:04:30.975742Z", + "shell.execute_reply": "2024-01-10T15:04:30.975036Z" } }, "outputs": [ @@ -1342,7 +1342,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dfe013943ca04be693b072c950762919", + "model_id": "eb174494cec7449c80000967dbef9224", "version_major": 2, "version_minor": 0 }, @@ -1381,10 +1381,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:01.677701Z", - "iopub.status.busy": "2024-01-10T06:19:01.676946Z", - "iopub.status.idle": "2024-01-10T06:19:02.197889Z", - "shell.execute_reply": "2024-01-10T06:19:02.197157Z" + "iopub.execute_input": "2024-01-10T15:04:30.978426Z", + "iopub.status.busy": "2024-01-10T15:04:30.977955Z", + "iopub.status.idle": "2024-01-10T15:04:31.496719Z", + "shell.execute_reply": "2024-01-10T15:04:31.496061Z" } }, "outputs": [ @@ -1596,10 +1596,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.201016Z", - "iopub.status.busy": "2024-01-10T06:19:02.200424Z", - "iopub.status.idle": "2024-01-10T06:19:02.240523Z", - "shell.execute_reply": "2024-01-10T06:19:02.239757Z" + "iopub.execute_input": "2024-01-10T15:04:31.499862Z", + "iopub.status.busy": "2024-01-10T15:04:31.499425Z", + "iopub.status.idle": "2024-01-10T15:04:31.562545Z", + "shell.execute_reply": "2024-01-10T15:04:31.561969Z" } }, "outputs": [ @@ -1703,10 +1703,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.243308Z", - "iopub.status.busy": "2024-01-10T06:19:02.243099Z", - "iopub.status.idle": "2024-01-10T06:19:02.253144Z", - "shell.execute_reply": "2024-01-10T06:19:02.252390Z" + "iopub.execute_input": "2024-01-10T15:04:31.565111Z", + "iopub.status.busy": "2024-01-10T15:04:31.564641Z", + "iopub.status.idle": "2024-01-10T15:04:31.573832Z", + "shell.execute_reply": "2024-01-10T15:04:31.573204Z" } }, "outputs": [ @@ -1836,10 +1836,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.255838Z", - "iopub.status.busy": "2024-01-10T06:19:02.255628Z", - "iopub.status.idle": "2024-01-10T06:19:02.261037Z", - "shell.execute_reply": "2024-01-10T06:19:02.260283Z" + "iopub.execute_input": "2024-01-10T15:04:31.576230Z", + "iopub.status.busy": "2024-01-10T15:04:31.575858Z", + "iopub.status.idle": "2024-01-10T15:04:31.580823Z", + "shell.execute_reply": "2024-01-10T15:04:31.580322Z" }, "nbsphinx": "hidden" }, @@ -1885,10 +1885,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.263582Z", - "iopub.status.busy": "2024-01-10T06:19:02.263372Z", - "iopub.status.idle": "2024-01-10T06:19:02.747505Z", - "shell.execute_reply": "2024-01-10T06:19:02.746806Z" + "iopub.execute_input": "2024-01-10T15:04:31.583353Z", + "iopub.status.busy": "2024-01-10T15:04:31.582863Z", + "iopub.status.idle": "2024-01-10T15:04:32.078729Z", + "shell.execute_reply": "2024-01-10T15:04:32.077999Z" } }, "outputs": [ @@ -1923,10 +1923,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.749994Z", - "iopub.status.busy": "2024-01-10T06:19:02.749785Z", - "iopub.status.idle": "2024-01-10T06:19:02.760052Z", - "shell.execute_reply": "2024-01-10T06:19:02.759451Z" + "iopub.execute_input": "2024-01-10T15:04:32.081461Z", + "iopub.status.busy": "2024-01-10T15:04:32.081063Z", + "iopub.status.idle": "2024-01-10T15:04:32.089988Z", + "shell.execute_reply": "2024-01-10T15:04:32.089379Z" } }, "outputs": [ @@ -2093,10 +2093,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.762581Z", - "iopub.status.busy": "2024-01-10T06:19:02.762116Z", - "iopub.status.idle": "2024-01-10T06:19:02.771043Z", - "shell.execute_reply": "2024-01-10T06:19:02.770414Z" + "iopub.execute_input": "2024-01-10T15:04:32.092549Z", + "iopub.status.busy": "2024-01-10T15:04:32.092192Z", + "iopub.status.idle": "2024-01-10T15:04:32.099974Z", + "shell.execute_reply": "2024-01-10T15:04:32.099484Z" }, "nbsphinx": "hidden" }, @@ -2172,10 +2172,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:02.773686Z", - "iopub.status.busy": "2024-01-10T06:19:02.773202Z", - "iopub.status.idle": "2024-01-10T06:19:03.493718Z", - "shell.execute_reply": "2024-01-10T06:19:03.493061Z" + "iopub.execute_input": "2024-01-10T15:04:32.102387Z", + "iopub.status.busy": "2024-01-10T15:04:32.101960Z", + "iopub.status.idle": "2024-01-10T15:04:32.570065Z", + "shell.execute_reply": "2024-01-10T15:04:32.569399Z" } }, "outputs": [ @@ -2212,10 +2212,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.496501Z", - "iopub.status.busy": "2024-01-10T06:19:03.496107Z", - "iopub.status.idle": "2024-01-10T06:19:03.513465Z", - "shell.execute_reply": "2024-01-10T06:19:03.512805Z" + "iopub.execute_input": "2024-01-10T15:04:32.572742Z", + "iopub.status.busy": "2024-01-10T15:04:32.572268Z", + "iopub.status.idle": "2024-01-10T15:04:32.588234Z", + "shell.execute_reply": "2024-01-10T15:04:32.587703Z" } }, "outputs": [ @@ -2372,10 +2372,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.516337Z", - "iopub.status.busy": "2024-01-10T06:19:03.515917Z", - "iopub.status.idle": "2024-01-10T06:19:03.521933Z", - "shell.execute_reply": "2024-01-10T06:19:03.521410Z" + "iopub.execute_input": "2024-01-10T15:04:32.590676Z", + "iopub.status.busy": "2024-01-10T15:04:32.590298Z", + "iopub.status.idle": "2024-01-10T15:04:32.596305Z", + "shell.execute_reply": "2024-01-10T15:04:32.595803Z" }, "nbsphinx": "hidden" }, @@ -2420,10 +2420,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.524251Z", - "iopub.status.busy": "2024-01-10T06:19:03.523892Z", - "iopub.status.idle": "2024-01-10T06:19:03.912280Z", - "shell.execute_reply": "2024-01-10T06:19:03.911576Z" + "iopub.execute_input": "2024-01-10T15:04:32.598706Z", + "iopub.status.busy": "2024-01-10T15:04:32.598338Z", + "iopub.status.idle": "2024-01-10T15:04:33.262834Z", + "shell.execute_reply": "2024-01-10T15:04:33.262161Z" } }, "outputs": [ @@ -2505,10 +2505,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.915329Z", - "iopub.status.busy": "2024-01-10T06:19:03.915107Z", - "iopub.status.idle": "2024-01-10T06:19:03.925635Z", - "shell.execute_reply": "2024-01-10T06:19:03.925000Z" + "iopub.execute_input": "2024-01-10T15:04:33.265775Z", + "iopub.status.busy": "2024-01-10T15:04:33.265530Z", + "iopub.status.idle": "2024-01-10T15:04:33.276077Z", + "shell.execute_reply": "2024-01-10T15:04:33.275421Z" } }, "outputs": [ @@ -2533,47 +2533,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2636,10 +2636,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.928193Z", - "iopub.status.busy": "2024-01-10T06:19:03.927986Z", - "iopub.status.idle": "2024-01-10T06:19:03.933195Z", - "shell.execute_reply": "2024-01-10T06:19:03.932669Z" + "iopub.execute_input": "2024-01-10T15:04:33.278895Z", + "iopub.status.busy": "2024-01-10T15:04:33.278657Z", + "iopub.status.idle": "2024-01-10T15:04:33.285169Z", + "shell.execute_reply": "2024-01-10T15:04:33.284523Z" }, "nbsphinx": "hidden" }, @@ -2676,10 +2676,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:03.935880Z", - "iopub.status.busy": "2024-01-10T06:19:03.935309Z", - "iopub.status.idle": "2024-01-10T06:19:04.104020Z", - "shell.execute_reply": "2024-01-10T06:19:04.103402Z" + "iopub.execute_input": "2024-01-10T15:04:33.287965Z", + "iopub.status.busy": "2024-01-10T15:04:33.287730Z", + "iopub.status.idle": "2024-01-10T15:04:33.487758Z", + "shell.execute_reply": "2024-01-10T15:04:33.487083Z" } }, "outputs": [ @@ -2721,10 +2721,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:04.106941Z", - "iopub.status.busy": "2024-01-10T06:19:04.106499Z", - "iopub.status.idle": "2024-01-10T06:19:04.115435Z", - "shell.execute_reply": "2024-01-10T06:19:04.114817Z" + "iopub.execute_input": "2024-01-10T15:04:33.490235Z", + "iopub.status.busy": "2024-01-10T15:04:33.490031Z", + "iopub.status.idle": "2024-01-10T15:04:33.498679Z", + "shell.execute_reply": "2024-01-10T15:04:33.498144Z" } }, "outputs": [ @@ -2810,10 +2810,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:04.117761Z", - "iopub.status.busy": "2024-01-10T06:19:04.117385Z", - "iopub.status.idle": "2024-01-10T06:19:04.309531Z", - "shell.execute_reply": "2024-01-10T06:19:04.308840Z" + "iopub.execute_input": "2024-01-10T15:04:33.501115Z", + "iopub.status.busy": "2024-01-10T15:04:33.500732Z", + "iopub.status.idle": "2024-01-10T15:04:33.699560Z", + "shell.execute_reply": "2024-01-10T15:04:33.698929Z" } }, "outputs": [ @@ -2853,10 +2853,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:04.312289Z", - "iopub.status.busy": "2024-01-10T06:19:04.311799Z", - "iopub.status.idle": "2024-01-10T06:19:04.316705Z", - "shell.execute_reply": "2024-01-10T06:19:04.316103Z" + "iopub.execute_input": "2024-01-10T15:04:33.702317Z", + "iopub.status.busy": "2024-01-10T15:04:33.701919Z", + "iopub.status.idle": "2024-01-10T15:04:33.706633Z", + "shell.execute_reply": "2024-01-10T15:04:33.706092Z" }, "nbsphinx": "hidden" }, @@ -2893,7 +2893,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "013214df95b64291a68080a23b498d9c": { + "04e4ae2e9732443b82af37f831ad18a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "112b9edaa54c411fa05ff60e3db9703c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2908,28 +2924,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bcf1b5301fd64b32aaf6b5bc496014ac", + "layout": "IPY_MODEL_4119165ce1a0454396504339dc2936a3", "placeholder": "​", - "style": "IPY_MODEL_0de47076f12f425aaf23ccfbd50f919d", - "value": " 2/2 [00:00<00:00, 310.86it/s]" + "style": "IPY_MODEL_81f0fab4dcf943af9f8f853b13f0b4a4", + "value": " 5.18M/5.18M [00:00<00:00, 15.8MB/s]" } }, - "0a79a261be2c484e94796f9d62c31f87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "1b00bb94c97b48db81ef550d08db758e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0cda3634af9749aa8e66efb500ef558a": { + "20d56237eaae4fc6b1a35901cd2d7a70": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2981,7 +3034,7 @@ "width": null } }, - "0d03cfe2e87e462c9a9b5432ae2d2024": { + "22fd5c8feced44949969236ff8c8f8c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3033,7 +3086,65 @@ "width": null } }, - "0de47076f12f425aaf23ccfbd50f919d": { + "241cbe4a6e3e4d4d9d6e9d22f4f3385b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a3b1109435a4736b03db0b1724a1442": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c86e818f0a9148bd95537441fe27026c", + "placeholder": "​", + "style": "IPY_MODEL_fa46b30146734cf0a97ec7dff997556d", + "value": "Downloading data: 100%" + } + }, + "2f2d629210df44a1954ce512820b9974": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cd5b6a6a0d34bbebe021beb8ff9a555", + "placeholder": "​", + "style": "IPY_MODEL_fbc7b405c321481196b289cba2b9602a", + "value": " 2/2 [00:00<00:00, 326.20it/s]" + } + }, + "30d262d335e4455cb26fa6ae8786ea57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3048,7 +3159,7 @@ "description_width": "" } }, - "0de5c1f9f47b48ec9f04d1bf5d3ad773": { + "31e88f00396f4838aa6fbf279617afea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3100,7 +3211,7 @@ "width": "20px" } }, - "0e160c96ba624dc8b6cea376b8066800": { + "32a4eedc1f8b44299bda1cb0f6abd26d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3152,7 +3263,7 @@ "width": null } }, - "10bb4e9e540347b6adf4e3fedbe1cc0e": { + "3863766608144d4bbae2dc8c00366428": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3168,7 +3279,7 @@ "description_width": "" } }, - "190459aade984ef2aea0d2515ff57cda": { + "3ccfadc694714dd88df84fa423c2c545": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3220,7 +3331,31 @@ "width": null } }, - "1b3b170418ce4c9ab3f8a55b5a6eabc9": { + "40f90b8814ba414e817c21d71281dd99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5f12e66dcc34cd894aa2fb362979871", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b312b11fc08244acb5c89f76e88653ff", + "value": 2.0 + } + }, + "4119165ce1a0454396504339dc2936a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3272,7 +3407,7 @@ "width": null } }, - "1bd85ee9e5b94936a4a0ca8c939715dd": { + "44e342404a6a44a69061b8bb99059003": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3324,28 +3459,7 @@ "width": null } }, - "1d21a5d038eb47648eec87e4e6006fd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0d03cfe2e87e462c9a9b5432ae2d2024", - "placeholder": "​", - "style": "IPY_MODEL_2ed35715096140afab738d789e6ea0ae", - "value": "Map (num_proc=4): 100%" - } - }, - "1f2895dbb9ee4dbeaa2353e1d22f7797": { + "45ab4026e1ff4814b9f2f20c4ffefbdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3397,7 +3511,7 @@ "width": null } }, - "200254c8d04f40b599b27cab58c62c23": { + "4b348afa95f54ad58600dc4f73a66315": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3449,31 +3563,95 @@ "width": null } }, - "2077df6b881c41f397694543602c3b21": { + "4f710dcf1dd545e5b2a12c8b5d0ebb77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "531306c3d4224ff59e7d053b01e9d583": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "53fade93864d442b9cdba0679cd70a5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_190459aade984ef2aea0d2515ff57cda", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ead0d8a08ab4a72a56b1bcf53e7b043", - "value": 30931277.0 + "layout": "IPY_MODEL_c273ef269f6b4139b28b78dd748d40a9", + "placeholder": "​", + "style": "IPY_MODEL_6e64b79aae00417680bd46c4ae245378", + "value": " 60000/0 [00:00<00:00, 908159.42 examples/s]" + } + }, + "55665cf5f5644591876a1ab6b8cf98a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_57cf6506fa2242dc96fcb0b457a2206a", + "placeholder": "​", + "style": "IPY_MODEL_62d37e620d8b4d3d8e23a6f9446c0f30", + "value": " 30.9M/30.9M [00:00<00:00, 84.4MB/s]" + } + }, + "56c95b5861374f539f8547df31e62298": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "22110adf8fbd44dc907195aa03315f8f": { + "57cf6506fa2242dc96fcb0b457a2206a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3525,68 +3703,59 @@ "width": null } }, - "2695bb154afc4c0ca3e73976aa6b1557": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "58b405bc9cc348dc929d12e142bb0650": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cf1ffd0a959c4b1b98e9116cbd853f84", - "placeholder": "​", - "style": "IPY_MODEL_0a79a261be2c484e94796f9d62c31f87", - "value": "Computing checksums: 100%" - } - }, - "26d3dec3ea8a42e78a9a1f322d8be9c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ea0795aea16d4e3ca4a1917ca4866577", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_10bb4e9e540347b6adf4e3fedbe1cc0e", - "value": 2.0 - } - }, - "2cc8abc90f014a1cae1e929a856c504c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2ed35715096140afab738d789e6ea0ae": { + "62d37e620d8b4d3d8e23a6f9446c0f30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3601,7 +3770,7 @@ "description_width": "" } }, - "312e7e414ea44c0cb196a98ae42a3820": { + "642e927f44e546abb691317a37cb9c45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3616,7 +3785,7 @@ "description_width": "" } }, - "38d235ba304a40398a6b2133d5d914d3": { + "6cd5b6a6a0d34bbebe021beb8ff9a555": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3668,71 +3837,22 @@ "width": null } }, - "398eb4cd325f46478a8fa7d7374a5549": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_eb5828f6121341f8b9392cbdc9416b5f", - "placeholder": "​", - "style": "IPY_MODEL_4ec21615f55d49f283bd0e6b2f5440a7", - "value": "Generating test split: " - } - }, - "3a2cf689648147339884bf21e41e0117": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8508ed2c71b941dd88b8226f584dd39f", - "placeholder": "​", - "style": "IPY_MODEL_ffc7d069ba3342649b031d7e4fc2b1e9", - "value": " 60000/60000 [00:12<00:00, 4348.01 examples/s]" - } - }, - "49e601fd38364edaac3c9d83a3b91d37": { + "6e64b79aae00417680bd46c4ae245378": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1d21a5d038eb47648eec87e4e6006fd2", - "IPY_MODEL_7354bbbddf5c490c9aef5c8baf007d83", - "IPY_MODEL_3a2cf689648147339884bf21e41e0117" - ], - "layout": "IPY_MODEL_1f2895dbb9ee4dbeaa2353e1d22f7797" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4aaf228d5dec484e9d76a93af99b330d": { + "6eb966bbd7c140f893c9852a659a12b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3747,50 +3867,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e69939aec370403db4aa8a60e3dd20e3", - "IPY_MODEL_6ec843e6a46940dba4f1613a2e697ff3", - "IPY_MODEL_e8532a073a86434db3784fb380727e9f" + "IPY_MODEL_def7d8c7aa354f3087d6be14e2d005af", + "IPY_MODEL_40f90b8814ba414e817c21d71281dd99", + "IPY_MODEL_2f2d629210df44a1954ce512820b9974" ], - "layout": "IPY_MODEL_ec15ac2ff1a445bd9ca4553a52d53b2f" - } - }, - "4be66381fb204b84afdc2415136fb407": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0e160c96ba624dc8b6cea376b8066800", - "placeholder": "​", - "style": "IPY_MODEL_55739e7c4da544cbb13ae2f33cc14e5c", - "value": "100%" - } - }, - "4ec21615f55d49f283bd0e6b2f5440a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_7fe60cd2bb9944088c770c6054b969f0" } }, - "4f1471abf2d545c7bf0b67cd9327b5b1": { + "73224719d91b43aea20d1947b20b9fae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3842,43 +3926,7 @@ "width": null } }, - "531d284991c7410f8db880db73019fac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1b3b170418ce4c9ab3f8a55b5a6eabc9", - "placeholder": "​", - "style": "IPY_MODEL_bc6ecce06e14491c86ba5776deecab56", - "value": " 60000/60000 [00:34<00:00, 1699.40it/s]" - } - }, - "55739e7c4da544cbb13ae2f33cc14e5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "56284ddcfc6f45b1ab26d5b2d7960182": { + "747917059fd846f3bab65dc46259cdd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3894,82 +3942,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0de5c1f9f47b48ec9f04d1bf5d3ad773", - "max": 1.0, + "layout": "IPY_MODEL_f936491928e643d991be5593f5ce8e2e", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_dda99bdff9404fdfb5828d3010b9f8a1", - "value": 1.0 - } - }, - "5dd680e3231f43718c6308a8e45e1da2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5ead0d8a08ab4a72a56b1bcf53e7b043": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "65858abaeaa64069a1e42170696ed7d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4f1471abf2d545c7bf0b67cd9327b5b1", - "placeholder": "​", - "style": "IPY_MODEL_65d9f41155d24ab983b2225422ae636e", - "value": " 30.9M/30.9M [00:00<00:00, 76.8MB/s]" - } - }, - "65d9f41155d24ab983b2225422ae636e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_3863766608144d4bbae2dc8c00366428", + "value": 60000.0 } }, - "6ec843e6a46940dba4f1613a2e697ff3": { + "7aabea0e51b14aa0a344f519dace41d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3985,76 +3966,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d7e4b9ab15f94205a4b550065dc49563", + "layout": "IPY_MODEL_fc957e7fcc8a4257b589cb24f6c097ed", "max": 1.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2cc8abc90f014a1cae1e929a856c504c", + "style": "IPY_MODEL_241cbe4a6e3e4d4d9d6e9d22f4f3385b", "value": 1.0 } }, - "7354bbbddf5c490c9aef5c8baf007d83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e6d905af2f524d45905c52a4563e3b9f", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c804c3d8105c4289a60d0a1dff6d3cfe", - "value": 60000.0 - } - }, - "78249ca6d2e148269fee22730149bfc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_38d235ba304a40398a6b2133d5d914d3", - "placeholder": "​", - "style": "IPY_MODEL_5dd680e3231f43718c6308a8e45e1da2", - "value": "Downloading data: 100%" - } - }, - "7c26ccdbd7a74a0f83ab2ec3744b92d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8508ed2c71b941dd88b8226f584dd39f": { + "7fe60cd2bb9944088c770c6054b969f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4106,59 +4026,43 @@ "width": null } }, - "899e58d8a40a465297f40aeada991389": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "8166aa3799774caf8b87e0123a21d7a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_32a4eedc1f8b44299bda1cb0f6abd26d", + "placeholder": "​", + "style": "IPY_MODEL_f479288994bb480f93a2890ac8b9689a", + "value": " 60000/60000 [00:12<00:00, 3528.13 examples/s]" + } + }, + "81f0fab4dcf943af9f8f853b13f0b4a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "89e68bddf9384821a6b84d7f2d4e482e": { + "84bcdef9932046f0930340bd8f083f61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4174,15 +4078,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c603b29c641542a68e01cfc8bcc23136", + "layout": "IPY_MODEL_df11331f35ed4acab017a87d9c99f632", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7c26ccdbd7a74a0f83ab2ec3744b92d4", + "style": "IPY_MODEL_04e4ae2e9732443b82af37f831ad18a1", "value": 60000.0 } }, - "9f23a3a591a44348963c1d972f09eea0": { + "8a7ea3a7486345b3b0576e7ea7232743": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f6c40051e8f24228bbec72cf3feba8a2", + "IPY_MODEL_747917059fd846f3bab65dc46259cdd9", + "IPY_MODEL_8166aa3799774caf8b87e0123a21d7a8" + ], + "layout": "IPY_MODEL_94105893d93745368f80f8601af838d5" + } + }, + "8f6b26b7119741c5b0e69e2bb959c0d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4234,29 +4160,23 @@ "width": null } }, - "a3915e0b726a46b79cb5df0f0080b054": { + "8fefc0d74ba54974b442c6b71acfca3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e0717ef2b1f241a585bab71f798c07aa", - "IPY_MODEL_2077df6b881c41f397694543602c3b21", - "IPY_MODEL_65858abaeaa64069a1e42170696ed7d5" - ], - "layout": "IPY_MODEL_200254c8d04f40b599b27cab58c62c23" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a6744175fe1842fe96c1f9105ae47256": { + "94105893d93745368f80f8601af838d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4308,45 +4228,49 @@ "width": null } }, - "a6b5a69bbd21481db358d145d9702e00": { + "975d8ea39a014452958aa146cb2be35e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_78249ca6d2e148269fee22730149bfc7", - "IPY_MODEL_df7c93e26eda4e248394e2244cfded4c", - "IPY_MODEL_d446110cb3c24b66987a4e37de6ccd06" - ], - "layout": "IPY_MODEL_22110adf8fbd44dc907195aa03315f8f" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b348afa95f54ad58600dc4f73a66315", + "placeholder": "​", + "style": "IPY_MODEL_642e927f44e546abb691317a37cb9c45", + "value": " 10000/0 [00:00<00:00, 533266.88 examples/s]" } }, - "afb50312cbe743948bbafaebb013b144": { + "99030e7333314a1aab3d9d361a77c853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f6b26b7119741c5b0e69e2bb959c0d0", + "placeholder": "​", + "style": "IPY_MODEL_f6c6eedc2b8040ef8b8f49905f4d1693", + "value": "100%" } }, - "b2ae5f58b0c44998937c4fd1e2f2054a": { + "9bb84796b7394d3785201ca53696b02a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4361,13 +4285,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e2e288cbd8d54b37921c3c1a587bb313", + "layout": "IPY_MODEL_58b405bc9cc348dc929d12e142bb0650", "placeholder": "​", - "style": "IPY_MODEL_312e7e414ea44c0cb196a98ae42a3820", - "value": " 10000/0 [00:00<00:00, 522062.71 examples/s]" + "style": "IPY_MODEL_56c95b5861374f539f8547df31e62298", + "value": " 60000/60000 [00:34<00:00, 1701.51it/s]" } }, - "bbdfd655d6b2431895de761767dbe4eb": { + "a43ef6625dea4b75a7bd60e2ad355251": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4382,7 +4306,7 @@ "description_width": "" } }, - "bc6ecce06e14491c86ba5776deecab56": { + "af56049c25a04736a48db4358cc9df58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4397,59 +4321,45 @@ "description_width": "" } }, - "bcf1b5301fd64b32aaf6b5bc496014ac": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "b312b11fc08244acb5c89f76e88653ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b9f8b67a42cd4066aaa973e62b8ca794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d92c2abcd7884d97888881358b3cd238", + "IPY_MODEL_db44e5262c4c49de8c97bca5ac255894", + "IPY_MODEL_55665cf5f5644591876a1ab6b8cf98a9" + ], + "layout": "IPY_MODEL_3ccfadc694714dd88df84fa423c2c545" } }, - "c0f6e3e01f79409296a19f5fac62b3aa": { + "bbc89641d4084f42bd9460c0e97e2df2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4501,7 +4411,28 @@ "width": null } }, - "c603b29c641542a68e01cfc8bcc23136": { + "bee57b4377fb4ff8b1a8962934c0ad90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73224719d91b43aea20d1947b20b9fae", + "placeholder": "​", + "style": "IPY_MODEL_af56049c25a04736a48db4358cc9df58", + "value": "Generating train split: " + } + }, + "bf53f28b041a4ed9a94303a3b2af0104": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4553,45 +4484,7 @@ "width": null } }, - "c804c3d8105c4289a60d0a1dff6d3cfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c98028da20994c76be789f56278cced6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_398eb4cd325f46478a8fa7d7374a5549", - "IPY_MODEL_56284ddcfc6f45b1ab26d5b2d7960182", - "IPY_MODEL_b2ae5f58b0c44998937c4fd1e2f2054a" - ], - "layout": "IPY_MODEL_1bd85ee9e5b94936a4a0ca8c939715dd" - } - }, - "cf1ffd0a959c4b1b98e9116cbd853f84": { + "c273ef269f6b4139b28b78dd748d40a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4643,28 +4536,31 @@ "width": null } }, - "d446110cb3c24b66987a4e37de6ccd06": { + "c5d6f7de1ab84a849a8e3bc128b311f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a6744175fe1842fe96c1f9105ae47256", - "placeholder": "​", - "style": "IPY_MODEL_f6100e7965f840b397c807782f4eacd6", - "value": " 5.18M/5.18M [00:00<00:00, 72.4MB/s]" + "layout": "IPY_MODEL_31e88f00396f4838aa6fbf279617afea", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d614f19d9865459793b1f30c2fa79913", + "value": 1.0 } }, - "d7e4b9ab15f94205a4b550065dc49563": { + "c5f12e66dcc34cd894aa2fb362979871": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4709,112 +4605,14 @@ "overflow": null, "overflow_x": null, "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" - } - }, - "d8935bf4844d43b294f1960ef9619de7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dda99bdff9404fdfb5828d3010b9f8a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "df7c93e26eda4e248394e2244cfded4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0f6e3e01f79409296a19f5fac62b3aa", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_afb50312cbe743948bbafaebb013b144", - "value": 5175617.0 - } - }, - "dfe013943ca04be693b072c950762919": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4be66381fb204b84afdc2415136fb407", - "IPY_MODEL_89e68bddf9384821a6b84d7f2d4e482e", - "IPY_MODEL_531d284991c7410f8db880db73019fac" - ], - "layout": "IPY_MODEL_899e58d8a40a465297f40aeada991389" - } - }, - "e0717ef2b1f241a585bab71f798c07aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9f23a3a591a44348963c1d972f09eea0", - "placeholder": "​", - "style": "IPY_MODEL_efb859ce22df4aedb5cd3bffda0adc5f", - "value": "Downloading data: 100%" + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e2e288cbd8d54b37921c3c1a587bb313": { + "c86e818f0a9148bd95537441fe27026c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4866,7 +4664,7 @@ "width": null } }, - "e36aa52b0d1c430cb96f1bdb16e44c82": { + "ca3a18d2bf4b4fa68ed448ca06ccc823": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4881,35 +4679,45 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2695bb154afc4c0ca3e73976aa6b1557", - "IPY_MODEL_26d3dec3ea8a42e78a9a1f322d8be9c3", - "IPY_MODEL_013214df95b64291a68080a23b498d9c" + "IPY_MODEL_bee57b4377fb4ff8b1a8962934c0ad90", + "IPY_MODEL_c5d6f7de1ab84a849a8e3bc128b311f1", + "IPY_MODEL_53fade93864d442b9cdba0679cd70a5b" ], - "layout": "IPY_MODEL_f20a65a9ab814f7e990cc1d89679131a" + "layout": "IPY_MODEL_45ab4026e1ff4814b9f2f20c4ffefbdb" } }, - "e69939aec370403db4aa8a60e3dd20e3": { + "cfe37b5719f04fd29e805d7127de5338": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0cda3634af9749aa8e66efb500ef558a", - "placeholder": "​", - "style": "IPY_MODEL_d8935bf4844d43b294f1960ef9619de7", - "value": "Generating train split: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d614f19d9865459793b1f30c2fa79913": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e6d905af2f524d45905c52a4563e3b9f": { + "d7f3a96589a84783a117d707db05a5d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4961,7 +4769,52 @@ "width": null } }, - "e8532a073a86434db3784fb380727e9f": { + "d92c2abcd7884d97888881358b3cd238": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44e342404a6a44a69061b8bb99059003", + "placeholder": "​", + "style": "IPY_MODEL_30d262d335e4455cb26fa6ae8786ea57", + "value": "Downloading data: 100%" + } + }, + "db44e5262c4c49de8c97bca5ac255894": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22fd5c8feced44949969236ff8c8f8c5", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f710dcf1dd545e5b2a12c8b5d0ebb77", + "value": 30931277.0 + } + }, + "def7d8c7aa354f3087d6be14e2d005af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4976,13 +4829,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eb9ca05ae5c842308439407a0dabc84b", + "layout": "IPY_MODEL_1b00bb94c97b48db81ef550d08db758e", "placeholder": "​", - "style": "IPY_MODEL_bbdfd655d6b2431895de761767dbe4eb", - "value": " 60000/0 [00:00<00:00, 804572.60 examples/s]" + "style": "IPY_MODEL_531306c3d4224ff59e7d053b01e9d583", + "value": "Computing checksums: 100%" } }, - "ea0795aea16d4e3ca4a1917ca4866577": { + "df11331f35ed4acab017a87d9c99f632": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5034,7 +4887,52 @@ "width": null } }, - "eb5828f6121341f8b9392cbdc9416b5f": { + "dfcc60c7ce4d427d9db728d1111175d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf53f28b041a4ed9a94303a3b2af0104", + "placeholder": "​", + "style": "IPY_MODEL_a43ef6625dea4b75a7bd60e2ad355251", + "value": "Generating test split: " + } + }, + "e36ce1e2b4ac46b89919510d19d88e00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20d56237eaae4fc6b1a35901cd2d7a70", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8fefc0d74ba54974b442c6b71acfca3f", + "value": 5175617.0 + } + }, + "e3a451c639764ba4a7e218a0a80bb64f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5086,7 +4984,73 @@ "width": null } }, - "eb9ca05ae5c842308439407a0dabc84b": { + "eb174494cec7449c80000967dbef9224": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99030e7333314a1aab3d9d361a77c853", + "IPY_MODEL_84bcdef9932046f0930340bd8f083f61", + "IPY_MODEL_9bb84796b7394d3785201ca53696b02a" + ], + "layout": "IPY_MODEL_bbc89641d4084f42bd9460c0e97e2df2" + } + }, + "f0d31b197fe7409d990c55b1452c3705": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dfcc60c7ce4d427d9db728d1111175d5", + "IPY_MODEL_7aabea0e51b14aa0a344f519dace41d4", + "IPY_MODEL_975d8ea39a014452958aa146cb2be35e" + ], + "layout": "IPY_MODEL_e3a451c639764ba4a7e218a0a80bb64f" + } + }, + "f290500824dc4995bf9dfe5f9f2b3425": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a3b1109435a4736b03db0b1724a1442", + "IPY_MODEL_e36ce1e2b4ac46b89919510d19d88e00", + "IPY_MODEL_112b9edaa54c411fa05ff60e3db9703c" + ], + "layout": "IPY_MODEL_f46d4bf4f0a14643be3fbdc4e3420fc1" + } + }, + "f46d4bf4f0a14643be3fbdc4e3420fc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5138,7 +5102,58 @@ "width": null } }, - "ec15ac2ff1a445bd9ca4553a52d53b2f": { + "f479288994bb480f93a2890ac8b9689a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f6c40051e8f24228bbec72cf3feba8a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7f3a96589a84783a117d707db05a5d7", + "placeholder": "​", + "style": "IPY_MODEL_cfe37b5719f04fd29e805d7127de5338", + "value": "Map (num_proc=4): 100%" + } + }, + "f6c6eedc2b8040ef8b8f49905f4d1693": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f936491928e643d991be5593f5ce8e2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5190,7 +5205,22 @@ "width": null } }, - "efb859ce22df4aedb5cd3bffda0adc5f": { + "fa46b30146734cf0a97ec7dff997556d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fbc7b405c321481196b289cba2b9602a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5205,7 +5235,7 @@ "description_width": "" } }, - "f20a65a9ab814f7e990cc1d89679131a": { + "fc957e7fcc8a4257b589cb24f6c097ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5254,37 +5284,7 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "f6100e7965f840b397c807782f4eacd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ffc7d069ba3342649b031d7e4fc2b1e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "width": "20px" } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 3fb385f45..e4512dc87 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:10.230756Z", - "iopub.status.busy": "2024-01-10T06:19:10.230131Z", - "iopub.status.idle": "2024-01-10T06:19:11.356341Z", - "shell.execute_reply": "2024-01-10T06:19:11.355670Z" + "iopub.execute_input": "2024-01-10T15:04:39.321427Z", + "iopub.status.busy": "2024-01-10T15:04:39.321210Z", + "iopub.status.idle": "2024-01-10T15:04:40.398173Z", + "shell.execute_reply": "2024-01-10T15:04:40.397563Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.359495Z", - "iopub.status.busy": "2024-01-10T06:19:11.358950Z", - "iopub.status.idle": "2024-01-10T06:19:11.645037Z", - "shell.execute_reply": "2024-01-10T06:19:11.644365Z" + "iopub.execute_input": "2024-01-10T15:04:40.401187Z", + "iopub.status.busy": "2024-01-10T15:04:40.400737Z", + "iopub.status.idle": "2024-01-10T15:04:40.669725Z", + "shell.execute_reply": "2024-01-10T15:04:40.669115Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.648431Z", - "iopub.status.busy": "2024-01-10T06:19:11.647953Z", - "iopub.status.idle": "2024-01-10T06:19:11.660400Z", - "shell.execute_reply": "2024-01-10T06:19:11.659834Z" + "iopub.execute_input": "2024-01-10T15:04:40.672962Z", + "iopub.status.busy": "2024-01-10T15:04:40.672388Z", + "iopub.status.idle": "2024-01-10T15:04:40.684649Z", + "shell.execute_reply": "2024-01-10T15:04:40.684028Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.662953Z", - "iopub.status.busy": "2024-01-10T06:19:11.662542Z", - "iopub.status.idle": "2024-01-10T06:19:11.900160Z", - "shell.execute_reply": "2024-01-10T06:19:11.899470Z" + "iopub.execute_input": "2024-01-10T15:04:40.687271Z", + "iopub.status.busy": "2024-01-10T15:04:40.686818Z", + "iopub.status.idle": "2024-01-10T15:04:40.921516Z", + "shell.execute_reply": "2024-01-10T15:04:40.920869Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.903126Z", - "iopub.status.busy": "2024-01-10T06:19:11.902693Z", - "iopub.status.idle": "2024-01-10T06:19:11.929149Z", - "shell.execute_reply": "2024-01-10T06:19:11.928601Z" + "iopub.execute_input": "2024-01-10T15:04:40.924511Z", + "iopub.status.busy": "2024-01-10T15:04:40.924050Z", + "iopub.status.idle": "2024-01-10T15:04:40.951356Z", + "shell.execute_reply": "2024-01-10T15:04:40.950828Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:11.931771Z", - "iopub.status.busy": "2024-01-10T06:19:11.931369Z", - "iopub.status.idle": "2024-01-10T06:19:13.340850Z", - "shell.execute_reply": "2024-01-10T06:19:13.340122Z" + "iopub.execute_input": "2024-01-10T15:04:40.953852Z", + "iopub.status.busy": "2024-01-10T15:04:40.953477Z", + "iopub.status.idle": "2024-01-10T15:04:42.309859Z", + "shell.execute_reply": "2024-01-10T15:04:42.309107Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:13.343983Z", - "iopub.status.busy": "2024-01-10T06:19:13.343269Z", - "iopub.status.idle": "2024-01-10T06:19:13.368528Z", - "shell.execute_reply": "2024-01-10T06:19:13.367864Z" + "iopub.execute_input": "2024-01-10T15:04:42.312942Z", + "iopub.status.busy": "2024-01-10T15:04:42.312275Z", + "iopub.status.idle": "2024-01-10T15:04:42.337983Z", + "shell.execute_reply": "2024-01-10T15:04:42.337407Z" }, "scrolled": true }, @@ -641,10 +641,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:13.370923Z", - "iopub.status.busy": "2024-01-10T06:19:13.370715Z", - "iopub.status.idle": "2024-01-10T06:19:14.287348Z", - "shell.execute_reply": "2024-01-10T06:19:14.286696Z" + "iopub.execute_input": "2024-01-10T15:04:42.340434Z", + "iopub.status.busy": "2024-01-10T15:04:42.340211Z", + "iopub.status.idle": "2024-01-10T15:04:43.216594Z", + "shell.execute_reply": "2024-01-10T15:04:43.215893Z" }, "id": "AaHC5MRKjruT" }, @@ -763,10 +763,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.290089Z", - "iopub.status.busy": "2024-01-10T06:19:14.289653Z", - "iopub.status.idle": "2024-01-10T06:19:14.304321Z", - "shell.execute_reply": "2024-01-10T06:19:14.303795Z" + "iopub.execute_input": "2024-01-10T15:04:43.219465Z", + "iopub.status.busy": "2024-01-10T15:04:43.219248Z", + "iopub.status.idle": "2024-01-10T15:04:43.234139Z", + "shell.execute_reply": "2024-01-10T15:04:43.233465Z" }, "id": "Wy27rvyhjruU" }, @@ -815,10 +815,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.306556Z", - "iopub.status.busy": "2024-01-10T06:19:14.306353Z", - "iopub.status.idle": "2024-01-10T06:19:14.395464Z", - "shell.execute_reply": "2024-01-10T06:19:14.394757Z" + "iopub.execute_input": "2024-01-10T15:04:43.236729Z", + "iopub.status.busy": "2024-01-10T15:04:43.236367Z", + "iopub.status.idle": "2024-01-10T15:04:43.322460Z", + "shell.execute_reply": "2024-01-10T15:04:43.321810Z" }, "id": "Db8YHnyVjruU" }, @@ -925,10 +925,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.398081Z", - "iopub.status.busy": "2024-01-10T06:19:14.397790Z", - "iopub.status.idle": "2024-01-10T06:19:14.605263Z", - "shell.execute_reply": "2024-01-10T06:19:14.604556Z" + "iopub.execute_input": "2024-01-10T15:04:43.324966Z", + "iopub.status.busy": "2024-01-10T15:04:43.324713Z", + "iopub.status.idle": "2024-01-10T15:04:43.529247Z", + "shell.execute_reply": "2024-01-10T15:04:43.528571Z" }, "id": "iJqAHuS2jruV" }, @@ -965,10 +965,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.608187Z", - "iopub.status.busy": "2024-01-10T06:19:14.607708Z", - "iopub.status.idle": "2024-01-10T06:19:14.625986Z", - "shell.execute_reply": "2024-01-10T06:19:14.625325Z" + "iopub.execute_input": "2024-01-10T15:04:43.532132Z", + "iopub.status.busy": "2024-01-10T15:04:43.531690Z", + "iopub.status.idle": "2024-01-10T15:04:43.549245Z", + "shell.execute_reply": "2024-01-10T15:04:43.548725Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.628765Z", - "iopub.status.busy": "2024-01-10T06:19:14.628360Z", - "iopub.status.idle": "2024-01-10T06:19:14.639216Z", - "shell.execute_reply": "2024-01-10T06:19:14.638680Z" + "iopub.execute_input": "2024-01-10T15:04:43.551560Z", + "iopub.status.busy": "2024-01-10T15:04:43.551356Z", + "iopub.status.idle": "2024-01-10T15:04:43.561686Z", + "shell.execute_reply": "2024-01-10T15:04:43.561157Z" }, "id": "0lonvOYvjruV" }, @@ -1180,10 +1180,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.641682Z", - "iopub.status.busy": "2024-01-10T06:19:14.641288Z", - "iopub.status.idle": "2024-01-10T06:19:14.743511Z", - "shell.execute_reply": "2024-01-10T06:19:14.742754Z" + "iopub.execute_input": "2024-01-10T15:04:43.563888Z", + "iopub.status.busy": "2024-01-10T15:04:43.563685Z", + "iopub.status.idle": "2024-01-10T15:04:43.660140Z", + "shell.execute_reply": "2024-01-10T15:04:43.659441Z" }, "id": "MfqTCa3kjruV" }, @@ -1264,10 +1264,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.747035Z", - "iopub.status.busy": "2024-01-10T06:19:14.746126Z", - "iopub.status.idle": "2024-01-10T06:19:14.909743Z", - "shell.execute_reply": "2024-01-10T06:19:14.909013Z" + "iopub.execute_input": "2024-01-10T15:04:43.662836Z", + "iopub.status.busy": "2024-01-10T15:04:43.662578Z", + "iopub.status.idle": "2024-01-10T15:04:43.805417Z", + "shell.execute_reply": "2024-01-10T15:04:43.804781Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1327,10 +1327,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.912509Z", - "iopub.status.busy": "2024-01-10T06:19:14.912249Z", - "iopub.status.idle": "2024-01-10T06:19:14.916421Z", - "shell.execute_reply": "2024-01-10T06:19:14.915806Z" + "iopub.execute_input": "2024-01-10T15:04:43.808245Z", + "iopub.status.busy": "2024-01-10T15:04:43.807852Z", + "iopub.status.idle": "2024-01-10T15:04:43.812212Z", + "shell.execute_reply": "2024-01-10T15:04:43.811667Z" }, "id": "0rXP3ZPWjruW" }, @@ -1368,10 +1368,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.918795Z", - "iopub.status.busy": "2024-01-10T06:19:14.918435Z", - "iopub.status.idle": "2024-01-10T06:19:14.923066Z", - "shell.execute_reply": "2024-01-10T06:19:14.922436Z" + "iopub.execute_input": "2024-01-10T15:04:43.814450Z", + "iopub.status.busy": "2024-01-10T15:04:43.814232Z", + "iopub.status.idle": "2024-01-10T15:04:43.818838Z", + "shell.execute_reply": "2024-01-10T15:04:43.818307Z" }, "id": "-iRPe8KXjruW" }, @@ -1426,10 +1426,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.925674Z", - "iopub.status.busy": "2024-01-10T06:19:14.925282Z", - "iopub.status.idle": "2024-01-10T06:19:14.965643Z", - "shell.execute_reply": "2024-01-10T06:19:14.964962Z" + "iopub.execute_input": "2024-01-10T15:04:43.821246Z", + "iopub.status.busy": "2024-01-10T15:04:43.820961Z", + "iopub.status.idle": "2024-01-10T15:04:43.860597Z", + "shell.execute_reply": "2024-01-10T15:04:43.860082Z" }, "id": "ZpipUliyjruW" }, @@ -1480,10 +1480,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:14.968405Z", - "iopub.status.busy": "2024-01-10T06:19:14.968011Z", - "iopub.status.idle": "2024-01-10T06:19:15.015701Z", - "shell.execute_reply": "2024-01-10T06:19:15.015056Z" + "iopub.execute_input": "2024-01-10T15:04:43.863024Z", + "iopub.status.busy": "2024-01-10T15:04:43.862665Z", + "iopub.status.idle": "2024-01-10T15:04:43.907937Z", + "shell.execute_reply": "2024-01-10T15:04:43.907422Z" }, "id": "SLq-3q4xjruX" }, @@ -1552,10 +1552,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.018378Z", - "iopub.status.busy": "2024-01-10T06:19:15.017908Z", - "iopub.status.idle": "2024-01-10T06:19:15.125330Z", - "shell.execute_reply": "2024-01-10T06:19:15.124654Z" + "iopub.execute_input": "2024-01-10T15:04:43.910314Z", + "iopub.status.busy": "2024-01-10T15:04:43.910006Z", + "iopub.status.idle": "2024-01-10T15:04:44.013322Z", + "shell.execute_reply": "2024-01-10T15:04:44.012666Z" }, "id": "g5LHhhuqFbXK" }, @@ -1587,10 +1587,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.128752Z", - "iopub.status.busy": "2024-01-10T06:19:15.128227Z", - "iopub.status.idle": "2024-01-10T06:19:15.234835Z", - "shell.execute_reply": "2024-01-10T06:19:15.234115Z" + "iopub.execute_input": "2024-01-10T15:04:44.016380Z", + "iopub.status.busy": "2024-01-10T15:04:44.015987Z", + "iopub.status.idle": "2024-01-10T15:04:44.118865Z", + "shell.execute_reply": "2024-01-10T15:04:44.118170Z" }, "id": "p7w8F8ezBcet" }, @@ -1647,10 +1647,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.237722Z", - "iopub.status.busy": "2024-01-10T06:19:15.237193Z", - "iopub.status.idle": "2024-01-10T06:19:15.449470Z", - "shell.execute_reply": "2024-01-10T06:19:15.448775Z" + "iopub.execute_input": "2024-01-10T15:04:44.121545Z", + "iopub.status.busy": "2024-01-10T15:04:44.121287Z", + "iopub.status.idle": "2024-01-10T15:04:44.325172Z", + "shell.execute_reply": "2024-01-10T15:04:44.324514Z" }, "id": "WETRL74tE_sU" }, @@ -1685,10 +1685,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.452306Z", - "iopub.status.busy": "2024-01-10T06:19:15.451848Z", - "iopub.status.idle": "2024-01-10T06:19:15.710564Z", - "shell.execute_reply": "2024-01-10T06:19:15.709859Z" + "iopub.execute_input": "2024-01-10T15:04:44.327830Z", + "iopub.status.busy": "2024-01-10T15:04:44.327618Z", + "iopub.status.idle": "2024-01-10T15:04:44.538647Z", + "shell.execute_reply": "2024-01-10T15:04:44.537948Z" }, "id": "kCfdx2gOLmXS" }, @@ -1850,10 +1850,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.713390Z", - "iopub.status.busy": "2024-01-10T06:19:15.712976Z", - "iopub.status.idle": "2024-01-10T06:19:15.719738Z", - "shell.execute_reply": "2024-01-10T06:19:15.719219Z" + "iopub.execute_input": "2024-01-10T15:04:44.541174Z", + "iopub.status.busy": "2024-01-10T15:04:44.540920Z", + "iopub.status.idle": "2024-01-10T15:04:44.547632Z", + "shell.execute_reply": "2024-01-10T15:04:44.547125Z" }, "id": "-uogYRWFYnuu" }, @@ -1907,10 +1907,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.722264Z", - "iopub.status.busy": "2024-01-10T06:19:15.721862Z", - "iopub.status.idle": "2024-01-10T06:19:15.932373Z", - "shell.execute_reply": "2024-01-10T06:19:15.931673Z" + "iopub.execute_input": "2024-01-10T15:04:44.550054Z", + "iopub.status.busy": "2024-01-10T15:04:44.549609Z", + "iopub.status.idle": "2024-01-10T15:04:44.759728Z", + "shell.execute_reply": "2024-01-10T15:04:44.759057Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1957,10 +1957,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:15.935084Z", - "iopub.status.busy": "2024-01-10T06:19:15.934687Z", - "iopub.status.idle": "2024-01-10T06:19:17.019541Z", - "shell.execute_reply": "2024-01-10T06:19:17.018918Z" + "iopub.execute_input": "2024-01-10T15:04:44.762443Z", + "iopub.status.busy": "2024-01-10T15:04:44.762199Z", + "iopub.status.idle": "2024-01-10T15:04:45.836039Z", + "shell.execute_reply": "2024-01-10T15:04:45.835321Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 7cb50be92..8180291e1 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:22.603434Z", - "iopub.status.busy": "2024-01-10T06:19:22.602873Z", - "iopub.status.idle": "2024-01-10T06:19:23.665537Z", - "shell.execute_reply": "2024-01-10T06:19:23.664891Z" + "iopub.execute_input": "2024-01-10T15:04:50.783329Z", + "iopub.status.busy": "2024-01-10T15:04:50.783126Z", + "iopub.status.idle": "2024-01-10T15:04:51.826636Z", + "shell.execute_reply": "2024-01-10T15:04:51.825904Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.668685Z", - "iopub.status.busy": "2024-01-10T06:19:23.668141Z", - "iopub.status.idle": "2024-01-10T06:19:23.671557Z", - "shell.execute_reply": "2024-01-10T06:19:23.671020Z" + "iopub.execute_input": "2024-01-10T15:04:51.829702Z", + "iopub.status.busy": "2024-01-10T15:04:51.829194Z", + "iopub.status.idle": "2024-01-10T15:04:51.832552Z", + "shell.execute_reply": "2024-01-10T15:04:51.832031Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.674086Z", - "iopub.status.busy": "2024-01-10T06:19:23.673671Z", - "iopub.status.idle": "2024-01-10T06:19:23.682706Z", - "shell.execute_reply": "2024-01-10T06:19:23.682135Z" + "iopub.execute_input": "2024-01-10T15:04:51.835101Z", + "iopub.status.busy": "2024-01-10T15:04:51.834739Z", + "iopub.status.idle": "2024-01-10T15:04:51.843086Z", + "shell.execute_reply": "2024-01-10T15:04:51.842467Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.685247Z", - "iopub.status.busy": "2024-01-10T06:19:23.684914Z", - "iopub.status.idle": "2024-01-10T06:19:23.734906Z", - "shell.execute_reply": "2024-01-10T06:19:23.734183Z" + "iopub.execute_input": "2024-01-10T15:04:51.845548Z", + "iopub.status.busy": "2024-01-10T15:04:51.845151Z", + "iopub.status.idle": "2024-01-10T15:04:51.893885Z", + "shell.execute_reply": "2024-01-10T15:04:51.893321Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.737938Z", - "iopub.status.busy": "2024-01-10T06:19:23.737532Z", - "iopub.status.idle": "2024-01-10T06:19:23.757560Z", - "shell.execute_reply": "2024-01-10T06:19:23.757012Z" + "iopub.execute_input": "2024-01-10T15:04:51.896881Z", + "iopub.status.busy": "2024-01-10T15:04:51.896499Z", + "iopub.status.idle": "2024-01-10T15:04:51.916606Z", + "shell.execute_reply": "2024-01-10T15:04:51.915938Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.760066Z", - "iopub.status.busy": "2024-01-10T06:19:23.759679Z", - "iopub.status.idle": "2024-01-10T06:19:23.763929Z", - "shell.execute_reply": "2024-01-10T06:19:23.763417Z" + "iopub.execute_input": "2024-01-10T15:04:51.919078Z", + "iopub.status.busy": "2024-01-10T15:04:51.918771Z", + "iopub.status.idle": "2024-01-10T15:04:51.922997Z", + "shell.execute_reply": "2024-01-10T15:04:51.922404Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.766305Z", - "iopub.status.busy": "2024-01-10T06:19:23.766011Z", - "iopub.status.idle": "2024-01-10T06:19:23.794834Z", - "shell.execute_reply": "2024-01-10T06:19:23.794302Z" + "iopub.execute_input": "2024-01-10T15:04:51.925555Z", + "iopub.status.busy": "2024-01-10T15:04:51.925142Z", + "iopub.status.idle": "2024-01-10T15:04:51.952755Z", + "shell.execute_reply": "2024-01-10T15:04:51.952205Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.797382Z", - "iopub.status.busy": "2024-01-10T06:19:23.796952Z", - "iopub.status.idle": "2024-01-10T06:19:23.825002Z", - "shell.execute_reply": "2024-01-10T06:19:23.824392Z" + "iopub.execute_input": "2024-01-10T15:04:51.955378Z", + "iopub.status.busy": "2024-01-10T15:04:51.955021Z", + "iopub.status.idle": "2024-01-10T15:04:51.982908Z", + "shell.execute_reply": "2024-01-10T15:04:51.982212Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:23.827645Z", - "iopub.status.busy": "2024-01-10T06:19:23.827204Z", - "iopub.status.idle": "2024-01-10T06:19:25.187592Z", - "shell.execute_reply": "2024-01-10T06:19:25.186950Z" + "iopub.execute_input": "2024-01-10T15:04:51.985756Z", + "iopub.status.busy": "2024-01-10T15:04:51.985347Z", + "iopub.status.idle": "2024-01-10T15:04:53.313475Z", + "shell.execute_reply": "2024-01-10T15:04:53.312740Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.190794Z", - "iopub.status.busy": "2024-01-10T06:19:25.190198Z", - "iopub.status.idle": "2024-01-10T06:19:25.197978Z", - "shell.execute_reply": "2024-01-10T06:19:25.197424Z" + "iopub.execute_input": "2024-01-10T15:04:53.316625Z", + "iopub.status.busy": "2024-01-10T15:04:53.316007Z", + "iopub.status.idle": "2024-01-10T15:04:53.323561Z", + "shell.execute_reply": "2024-01-10T15:04:53.322982Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.200289Z", - "iopub.status.busy": "2024-01-10T06:19:25.200085Z", - "iopub.status.idle": "2024-01-10T06:19:25.214416Z", - "shell.execute_reply": "2024-01-10T06:19:25.213870Z" + "iopub.execute_input": "2024-01-10T15:04:53.325875Z", + "iopub.status.busy": "2024-01-10T15:04:53.325667Z", + "iopub.status.idle": "2024-01-10T15:04:53.340152Z", + "shell.execute_reply": "2024-01-10T15:04:53.339548Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.216891Z", - "iopub.status.busy": "2024-01-10T06:19:25.216535Z", - "iopub.status.idle": "2024-01-10T06:19:25.223577Z", - "shell.execute_reply": "2024-01-10T06:19:25.223059Z" + "iopub.execute_input": "2024-01-10T15:04:53.342762Z", + "iopub.status.busy": "2024-01-10T15:04:53.342417Z", + "iopub.status.idle": "2024-01-10T15:04:53.349564Z", + "shell.execute_reply": "2024-01-10T15:04:53.349025Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.225967Z", - "iopub.status.busy": "2024-01-10T06:19:25.225725Z", - "iopub.status.idle": "2024-01-10T06:19:25.228713Z", - "shell.execute_reply": "2024-01-10T06:19:25.228156Z" + "iopub.execute_input": "2024-01-10T15:04:53.352271Z", + "iopub.status.busy": "2024-01-10T15:04:53.351762Z", + "iopub.status.idle": "2024-01-10T15:04:53.355076Z", + "shell.execute_reply": "2024-01-10T15:04:53.354457Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.231173Z", - "iopub.status.busy": "2024-01-10T06:19:25.230771Z", - "iopub.status.idle": "2024-01-10T06:19:25.234695Z", - "shell.execute_reply": "2024-01-10T06:19:25.234060Z" + "iopub.execute_input": "2024-01-10T15:04:53.357254Z", + "iopub.status.busy": "2024-01-10T15:04:53.357058Z", + "iopub.status.idle": "2024-01-10T15:04:53.361396Z", + "shell.execute_reply": "2024-01-10T15:04:53.360858Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.237168Z", - "iopub.status.busy": "2024-01-10T06:19:25.236804Z", - "iopub.status.idle": "2024-01-10T06:19:25.239581Z", - "shell.execute_reply": "2024-01-10T06:19:25.239043Z" + "iopub.execute_input": "2024-01-10T15:04:53.363765Z", + "iopub.status.busy": "2024-01-10T15:04:53.363566Z", + "iopub.status.idle": "2024-01-10T15:04:53.366344Z", + "shell.execute_reply": "2024-01-10T15:04:53.365793Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.241971Z", - "iopub.status.busy": "2024-01-10T06:19:25.241612Z", - "iopub.status.idle": "2024-01-10T06:19:25.246328Z", - "shell.execute_reply": "2024-01-10T06:19:25.245820Z" + "iopub.execute_input": "2024-01-10T15:04:53.368515Z", + "iopub.status.busy": "2024-01-10T15:04:53.368321Z", + "iopub.status.idle": "2024-01-10T15:04:53.373186Z", + "shell.execute_reply": "2024-01-10T15:04:53.372649Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.248797Z", - "iopub.status.busy": "2024-01-10T06:19:25.248447Z", - "iopub.status.idle": "2024-01-10T06:19:25.282644Z", - "shell.execute_reply": "2024-01-10T06:19:25.282066Z" + "iopub.execute_input": "2024-01-10T15:04:53.375385Z", + "iopub.status.busy": "2024-01-10T15:04:53.375190Z", + "iopub.status.idle": "2024-01-10T15:04:53.408376Z", + "shell.execute_reply": "2024-01-10T15:04:53.407826Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:25.285678Z", - "iopub.status.busy": "2024-01-10T06:19:25.285230Z", - "iopub.status.idle": "2024-01-10T06:19:25.290437Z", - "shell.execute_reply": "2024-01-10T06:19:25.289851Z" + "iopub.execute_input": "2024-01-10T15:04:53.410874Z", + "iopub.status.busy": "2024-01-10T15:04:53.410653Z", + "iopub.status.idle": "2024-01-10T15:04:53.415959Z", + "shell.execute_reply": "2024-01-10T15:04:53.415316Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 7b346383f..883facccf 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:30.967895Z", - "iopub.status.busy": "2024-01-10T06:19:30.967699Z", - "iopub.status.idle": "2024-01-10T06:19:32.111090Z", - "shell.execute_reply": "2024-01-10T06:19:32.110423Z" + "iopub.execute_input": "2024-01-10T15:04:57.995421Z", + "iopub.status.busy": "2024-01-10T15:04:57.994869Z", + "iopub.status.idle": "2024-01-10T15:04:59.063658Z", + "shell.execute_reply": "2024-01-10T15:04:59.063044Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:32.114057Z", - "iopub.status.busy": "2024-01-10T06:19:32.113591Z", - "iopub.status.idle": "2024-01-10T06:19:32.424380Z", - "shell.execute_reply": "2024-01-10T06:19:32.423712Z" + "iopub.execute_input": "2024-01-10T15:04:59.066519Z", + "iopub.status.busy": "2024-01-10T15:04:59.066032Z", + "iopub.status.idle": "2024-01-10T15:04:59.351331Z", + "shell.execute_reply": "2024-01-10T15:04:59.350714Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:32.427902Z", - "iopub.status.busy": "2024-01-10T06:19:32.427455Z", - "iopub.status.idle": "2024-01-10T06:19:32.442273Z", - "shell.execute_reply": "2024-01-10T06:19:32.441703Z" + "iopub.execute_input": "2024-01-10T15:04:59.354669Z", + "iopub.status.busy": "2024-01-10T15:04:59.353939Z", + "iopub.status.idle": "2024-01-10T15:04:59.368315Z", + "shell.execute_reply": "2024-01-10T15:04:59.367767Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:32.445046Z", - "iopub.status.busy": "2024-01-10T06:19:32.444637Z", - "iopub.status.idle": "2024-01-10T06:19:35.158086Z", - "shell.execute_reply": "2024-01-10T06:19:35.157420Z" + "iopub.execute_input": "2024-01-10T15:04:59.371031Z", + "iopub.status.busy": "2024-01-10T15:04:59.370527Z", + "iopub.status.idle": "2024-01-10T15:05:02.017065Z", + "shell.execute_reply": "2024-01-10T15:05:02.016392Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:35.160758Z", - "iopub.status.busy": "2024-01-10T06:19:35.160383Z", - "iopub.status.idle": "2024-01-10T06:19:36.735870Z", - "shell.execute_reply": "2024-01-10T06:19:36.735258Z" + "iopub.execute_input": "2024-01-10T15:05:02.019842Z", + "iopub.status.busy": "2024-01-10T15:05:02.019353Z", + "iopub.status.idle": "2024-01-10T15:05:03.569470Z", + "shell.execute_reply": "2024-01-10T15:05:03.568744Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:36.738886Z", - "iopub.status.busy": "2024-01-10T06:19:36.738441Z", - "iopub.status.idle": "2024-01-10T06:19:36.743531Z", - "shell.execute_reply": "2024-01-10T06:19:36.742994Z" + "iopub.execute_input": "2024-01-10T15:05:03.572548Z", + "iopub.status.busy": "2024-01-10T15:05:03.572275Z", + "iopub.status.idle": "2024-01-10T15:05:03.577674Z", + "shell.execute_reply": "2024-01-10T15:05:03.577121Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:36.745916Z", - "iopub.status.busy": "2024-01-10T06:19:36.745544Z", - "iopub.status.idle": "2024-01-10T06:19:38.110520Z", - "shell.execute_reply": "2024-01-10T06:19:38.109746Z" + "iopub.execute_input": "2024-01-10T15:05:03.579952Z", + "iopub.status.busy": "2024-01-10T15:05:03.579756Z", + "iopub.status.idle": "2024-01-10T15:05:04.913128Z", + "shell.execute_reply": "2024-01-10T15:05:04.912391Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:38.113635Z", - "iopub.status.busy": "2024-01-10T06:19:38.112981Z", - "iopub.status.idle": "2024-01-10T06:19:40.958055Z", - "shell.execute_reply": "2024-01-10T06:19:40.957384Z" + "iopub.execute_input": "2024-01-10T15:05:04.916164Z", + "iopub.status.busy": "2024-01-10T15:05:04.915585Z", + "iopub.status.idle": "2024-01-10T15:05:07.716474Z", + "shell.execute_reply": "2024-01-10T15:05:07.715777Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:40.960715Z", - "iopub.status.busy": "2024-01-10T06:19:40.960355Z", - "iopub.status.idle": "2024-01-10T06:19:40.965359Z", - "shell.execute_reply": "2024-01-10T06:19:40.964831Z" + "iopub.execute_input": "2024-01-10T15:05:07.719265Z", + "iopub.status.busy": "2024-01-10T15:05:07.718870Z", + "iopub.status.idle": "2024-01-10T15:05:07.723863Z", + "shell.execute_reply": "2024-01-10T15:05:07.723278Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:40.967914Z", - "iopub.status.busy": "2024-01-10T06:19:40.967542Z", - "iopub.status.idle": "2024-01-10T06:19:40.971564Z", - "shell.execute_reply": "2024-01-10T06:19:40.971006Z" + "iopub.execute_input": "2024-01-10T15:05:07.726393Z", + "iopub.status.busy": "2024-01-10T15:05:07.725965Z", + "iopub.status.idle": "2024-01-10T15:05:07.730416Z", + "shell.execute_reply": "2024-01-10T15:05:07.729818Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:40.973986Z", - "iopub.status.busy": "2024-01-10T06:19:40.973628Z", - "iopub.status.idle": "2024-01-10T06:19:40.976974Z", - "shell.execute_reply": "2024-01-10T06:19:40.976437Z" + "iopub.execute_input": "2024-01-10T15:05:07.733070Z", + "iopub.status.busy": "2024-01-10T15:05:07.732646Z", + "iopub.status.idle": "2024-01-10T15:05:07.736463Z", + "shell.execute_reply": "2024-01-10T15:05:07.735937Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index c7c6f8441..0edcfe438 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:45.560642Z", - "iopub.status.busy": "2024-01-10T06:19:45.560184Z", - "iopub.status.idle": "2024-01-10T06:19:46.672378Z", - "shell.execute_reply": "2024-01-10T06:19:46.671781Z" + "iopub.execute_input": "2024-01-10T15:05:12.798585Z", + "iopub.status.busy": "2024-01-10T15:05:12.798073Z", + "iopub.status.idle": "2024-01-10T15:05:13.866039Z", + "shell.execute_reply": "2024-01-10T15:05:13.865443Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:46.675636Z", - "iopub.status.busy": "2024-01-10T06:19:46.674959Z", - "iopub.status.idle": "2024-01-10T06:19:48.039619Z", - "shell.execute_reply": "2024-01-10T06:19:48.038865Z" + "iopub.execute_input": "2024-01-10T15:05:13.868940Z", + "iopub.status.busy": "2024-01-10T15:05:13.868454Z", + "iopub.status.idle": "2024-01-10T15:05:14.949563Z", + "shell.execute_reply": "2024-01-10T15:05:14.948721Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.042749Z", - "iopub.status.busy": "2024-01-10T06:19:48.042298Z", - "iopub.status.idle": "2024-01-10T06:19:48.045718Z", - "shell.execute_reply": "2024-01-10T06:19:48.045190Z" + "iopub.execute_input": "2024-01-10T15:05:14.952677Z", + "iopub.status.busy": "2024-01-10T15:05:14.952191Z", + "iopub.status.idle": "2024-01-10T15:05:14.955616Z", + "shell.execute_reply": "2024-01-10T15:05:14.955008Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.048076Z", - "iopub.status.busy": "2024-01-10T06:19:48.047707Z", - "iopub.status.idle": "2024-01-10T06:19:48.053658Z", - "shell.execute_reply": "2024-01-10T06:19:48.053131Z" + "iopub.execute_input": "2024-01-10T15:05:14.957997Z", + "iopub.status.busy": "2024-01-10T15:05:14.957548Z", + "iopub.status.idle": "2024-01-10T15:05:14.963154Z", + "shell.execute_reply": "2024-01-10T15:05:14.962555Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.056002Z", - "iopub.status.busy": "2024-01-10T06:19:48.055627Z", - "iopub.status.idle": "2024-01-10T06:19:48.667461Z", - "shell.execute_reply": "2024-01-10T06:19:48.666800Z" + "iopub.execute_input": "2024-01-10T15:05:14.965462Z", + "iopub.status.busy": "2024-01-10T15:05:14.965123Z", + "iopub.status.idle": "2024-01-10T15:05:15.556137Z", + "shell.execute_reply": "2024-01-10T15:05:15.555454Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.670652Z", - "iopub.status.busy": "2024-01-10T06:19:48.670174Z", - "iopub.status.idle": "2024-01-10T06:19:48.676467Z", - "shell.execute_reply": "2024-01-10T06:19:48.675874Z" + "iopub.execute_input": "2024-01-10T15:05:15.558867Z", + "iopub.status.busy": "2024-01-10T15:05:15.558399Z", + "iopub.status.idle": "2024-01-10T15:05:15.564398Z", + "shell.execute_reply": "2024-01-10T15:05:15.563798Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.678861Z", - "iopub.status.busy": "2024-01-10T06:19:48.678516Z", - "iopub.status.idle": "2024-01-10T06:19:48.682696Z", - "shell.execute_reply": "2024-01-10T06:19:48.682085Z" + "iopub.execute_input": "2024-01-10T15:05:15.566741Z", + "iopub.status.busy": "2024-01-10T15:05:15.566311Z", + "iopub.status.idle": "2024-01-10T15:05:15.570332Z", + "shell.execute_reply": "2024-01-10T15:05:15.569792Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:48.685095Z", - "iopub.status.busy": "2024-01-10T06:19:48.684751Z", - "iopub.status.idle": "2024-01-10T06:19:49.298576Z", - "shell.execute_reply": "2024-01-10T06:19:49.297851Z" + "iopub.execute_input": "2024-01-10T15:05:15.572792Z", + "iopub.status.busy": "2024-01-10T15:05:15.572353Z", + "iopub.status.idle": "2024-01-10T15:05:16.202060Z", + "shell.execute_reply": "2024-01-10T15:05:16.201337Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:49.301316Z", - "iopub.status.busy": "2024-01-10T06:19:49.301086Z", - "iopub.status.idle": "2024-01-10T06:19:49.403290Z", - "shell.execute_reply": "2024-01-10T06:19:49.402577Z" + "iopub.execute_input": "2024-01-10T15:05:16.204642Z", + "iopub.status.busy": "2024-01-10T15:05:16.204383Z", + "iopub.status.idle": "2024-01-10T15:05:16.306469Z", + "shell.execute_reply": "2024-01-10T15:05:16.305762Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:49.406087Z", - "iopub.status.busy": "2024-01-10T06:19:49.405678Z", - "iopub.status.idle": "2024-01-10T06:19:49.410408Z", - "shell.execute_reply": "2024-01-10T06:19:49.409813Z" + "iopub.execute_input": "2024-01-10T15:05:16.309130Z", + "iopub.status.busy": "2024-01-10T15:05:16.308732Z", + "iopub.status.idle": "2024-01-10T15:05:16.313357Z", + "shell.execute_reply": "2024-01-10T15:05:16.312853Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:49.412718Z", - "iopub.status.busy": "2024-01-10T06:19:49.412513Z", - "iopub.status.idle": "2024-01-10T06:19:49.802789Z", - "shell.execute_reply": "2024-01-10T06:19:49.802086Z" + "iopub.execute_input": "2024-01-10T15:05:16.315806Z", + "iopub.status.busy": "2024-01-10T15:05:16.315435Z", + "iopub.status.idle": "2024-01-10T15:05:16.693878Z", + "shell.execute_reply": "2024-01-10T15:05:16.693255Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:49.805807Z", - "iopub.status.busy": "2024-01-10T06:19:49.805357Z", - "iopub.status.idle": "2024-01-10T06:19:50.143112Z", - "shell.execute_reply": "2024-01-10T06:19:50.142432Z" + "iopub.execute_input": "2024-01-10T15:05:16.696815Z", + "iopub.status.busy": "2024-01-10T15:05:16.696424Z", + "iopub.status.idle": "2024-01-10T15:05:17.035024Z", + "shell.execute_reply": "2024-01-10T15:05:17.034337Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:50.146573Z", - "iopub.status.busy": "2024-01-10T06:19:50.146168Z", - "iopub.status.idle": "2024-01-10T06:19:50.502588Z", - "shell.execute_reply": "2024-01-10T06:19:50.501862Z" + "iopub.execute_input": "2024-01-10T15:05:17.037837Z", + "iopub.status.busy": "2024-01-10T15:05:17.037417Z", + "iopub.status.idle": "2024-01-10T15:05:17.422882Z", + "shell.execute_reply": "2024-01-10T15:05:17.422145Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:50.506244Z", - "iopub.status.busy": "2024-01-10T06:19:50.505804Z", - "iopub.status.idle": "2024-01-10T06:19:50.969893Z", - "shell.execute_reply": "2024-01-10T06:19:50.969270Z" + "iopub.execute_input": "2024-01-10T15:05:17.426253Z", + "iopub.status.busy": "2024-01-10T15:05:17.426038Z", + "iopub.status.idle": "2024-01-10T15:05:17.886876Z", + "shell.execute_reply": "2024-01-10T15:05:17.886152Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:50.974645Z", - "iopub.status.busy": "2024-01-10T06:19:50.974221Z", - "iopub.status.idle": "2024-01-10T06:19:51.430649Z", - "shell.execute_reply": "2024-01-10T06:19:51.429876Z" + "iopub.execute_input": "2024-01-10T15:05:17.891350Z", + "iopub.status.busy": "2024-01-10T15:05:17.890881Z", + "iopub.status.idle": "2024-01-10T15:05:18.343030Z", + "shell.execute_reply": "2024-01-10T15:05:18.342340Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:51.434311Z", - "iopub.status.busy": "2024-01-10T06:19:51.433913Z", - "iopub.status.idle": "2024-01-10T06:19:51.777065Z", - "shell.execute_reply": "2024-01-10T06:19:51.776398Z" + "iopub.execute_input": "2024-01-10T15:05:18.346622Z", + "iopub.status.busy": "2024-01-10T15:05:18.346403Z", + "iopub.status.idle": "2024-01-10T15:05:18.651727Z", + "shell.execute_reply": "2024-01-10T15:05:18.651095Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:51.779898Z", - "iopub.status.busy": "2024-01-10T06:19:51.779494Z", - "iopub.status.idle": "2024-01-10T06:19:51.980612Z", - "shell.execute_reply": "2024-01-10T06:19:51.979893Z" + "iopub.execute_input": "2024-01-10T15:05:18.654753Z", + "iopub.status.busy": "2024-01-10T15:05:18.654541Z", + "iopub.status.idle": "2024-01-10T15:05:18.834710Z", + "shell.execute_reply": "2024-01-10T15:05:18.834079Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:51.983380Z", - "iopub.status.busy": "2024-01-10T06:19:51.982885Z", - "iopub.status.idle": "2024-01-10T06:19:51.986852Z", - "shell.execute_reply": "2024-01-10T06:19:51.986244Z" + "iopub.execute_input": "2024-01-10T15:05:18.837502Z", + "iopub.status.busy": "2024-01-10T15:05:18.837116Z", + "iopub.status.idle": "2024-01-10T15:05:18.840846Z", + "shell.execute_reply": "2024-01-10T15:05:18.840288Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 26fc2cc0a..8d8737607 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -931,7 +931,7 @@

2. Pre-process the Cifar10 dataset

-
+
@@ -1297,7 +1297,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 7da4b0e12..b7951f2ed 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:54.392516Z", - "iopub.status.busy": "2024-01-10T06:19:54.392326Z", - "iopub.status.idle": "2024-01-10T06:19:56.392552Z", - "shell.execute_reply": "2024-01-10T06:19:56.391830Z" + "iopub.execute_input": "2024-01-10T15:05:21.209538Z", + "iopub.status.busy": "2024-01-10T15:05:21.209083Z", + "iopub.status.idle": "2024-01-10T15:05:23.168339Z", + "shell.execute_reply": "2024-01-10T15:05:23.167738Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:56.395661Z", - "iopub.status.busy": "2024-01-10T06:19:56.395318Z", - "iopub.status.idle": "2024-01-10T06:19:56.729764Z", - "shell.execute_reply": "2024-01-10T06:19:56.729033Z" + "iopub.execute_input": "2024-01-10T15:05:23.171269Z", + "iopub.status.busy": "2024-01-10T15:05:23.170786Z", + "iopub.status.idle": "2024-01-10T15:05:23.484028Z", + "shell.execute_reply": "2024-01-10T15:05:23.483358Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:56.732778Z", - "iopub.status.busy": "2024-01-10T06:19:56.732256Z", - "iopub.status.idle": "2024-01-10T06:19:56.736298Z", - "shell.execute_reply": "2024-01-10T06:19:56.735811Z" + "iopub.execute_input": "2024-01-10T15:05:23.486930Z", + "iopub.status.busy": "2024-01-10T15:05:23.486490Z", + "iopub.status.idle": "2024-01-10T15:05:23.490918Z", + "shell.execute_reply": "2024-01-10T15:05:23.490318Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:19:56.738602Z", - "iopub.status.busy": "2024-01-10T06:19:56.738240Z", - "iopub.status.idle": "2024-01-10T06:20:01.246797Z", - "shell.execute_reply": "2024-01-10T06:20:01.246106Z" + "iopub.execute_input": "2024-01-10T15:05:23.493502Z", + "iopub.status.busy": "2024-01-10T15:05:23.493138Z", + "iopub.status.idle": "2024-01-10T15:05:28.442075Z", + "shell.execute_reply": "2024-01-10T15:05:28.441402Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9eb539b8c1f4f97a89e8db15123410e", + "model_id": "12b5dc69acf9453bb2a2322dbaea9e6c", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:01.249671Z", - "iopub.status.busy": "2024-01-10T06:20:01.249198Z", - "iopub.status.idle": "2024-01-10T06:20:01.254431Z", - "shell.execute_reply": "2024-01-10T06:20:01.253797Z" + "iopub.execute_input": "2024-01-10T15:05:28.444744Z", + "iopub.status.busy": "2024-01-10T15:05:28.444438Z", + "iopub.status.idle": "2024-01-10T15:05:28.449732Z", + "shell.execute_reply": "2024-01-10T15:05:28.449104Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:01.256861Z", - "iopub.status.busy": "2024-01-10T06:20:01.256438Z", - "iopub.status.idle": "2024-01-10T06:20:01.804589Z", - "shell.execute_reply": "2024-01-10T06:20:01.803886Z" + "iopub.execute_input": "2024-01-10T15:05:28.451896Z", + "iopub.status.busy": "2024-01-10T15:05:28.451699Z", + "iopub.status.idle": "2024-01-10T15:05:28.992331Z", + "shell.execute_reply": "2024-01-10T15:05:28.991675Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:01.807206Z", - "iopub.status.busy": "2024-01-10T06:20:01.806947Z", - "iopub.status.idle": "2024-01-10T06:20:02.469451Z", - "shell.execute_reply": "2024-01-10T06:20:02.468760Z" + "iopub.execute_input": "2024-01-10T15:05:28.994883Z", + "iopub.status.busy": "2024-01-10T15:05:28.994563Z", + "iopub.status.idle": "2024-01-10T15:05:29.632591Z", + "shell.execute_reply": "2024-01-10T15:05:29.631923Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:02.472091Z", - "iopub.status.busy": "2024-01-10T06:20:02.471875Z", - "iopub.status.idle": "2024-01-10T06:20:02.475815Z", - "shell.execute_reply": "2024-01-10T06:20:02.475238Z" + "iopub.execute_input": "2024-01-10T15:05:29.635020Z", + "iopub.status.busy": "2024-01-10T15:05:29.634812Z", + "iopub.status.idle": "2024-01-10T15:05:29.638498Z", + "shell.execute_reply": "2024-01-10T15:05:29.637971Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:02.478426Z", - "iopub.status.busy": "2024-01-10T06:20:02.478197Z", - "iopub.status.idle": "2024-01-10T06:20:14.823323Z", - "shell.execute_reply": "2024-01-10T06:20:14.822587Z" + "iopub.execute_input": "2024-01-10T15:05:29.640771Z", + "iopub.status.busy": "2024-01-10T15:05:29.640568Z", + "iopub.status.idle": "2024-01-10T15:05:41.708773Z", + "shell.execute_reply": "2024-01-10T15:05:41.708043Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:14.826047Z", - "iopub.status.busy": "2024-01-10T06:20:14.825621Z", - "iopub.status.idle": "2024-01-10T06:20:16.419516Z", - "shell.execute_reply": "2024-01-10T06:20:16.418738Z" + "iopub.execute_input": "2024-01-10T15:05:41.711626Z", + "iopub.status.busy": "2024-01-10T15:05:41.711383Z", + "iopub.status.idle": "2024-01-10T15:05:43.253756Z", + "shell.execute_reply": "2024-01-10T15:05:43.253067Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:16.422525Z", - "iopub.status.busy": "2024-01-10T06:20:16.421993Z", - "iopub.status.idle": "2024-01-10T06:20:16.690358Z", - "shell.execute_reply": "2024-01-10T06:20:16.689659Z" + "iopub.execute_input": "2024-01-10T15:05:43.256773Z", + "iopub.status.busy": "2024-01-10T15:05:43.256277Z", + "iopub.status.idle": "2024-01-10T15:05:43.490070Z", + "shell.execute_reply": "2024-01-10T15:05:43.489306Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:16.694052Z", - "iopub.status.busy": "2024-01-10T06:20:16.693495Z", - "iopub.status.idle": "2024-01-10T06:20:17.376849Z", - "shell.execute_reply": "2024-01-10T06:20:17.376222Z" + "iopub.execute_input": "2024-01-10T15:05:43.492964Z", + "iopub.status.busy": "2024-01-10T15:05:43.492754Z", + "iopub.status.idle": "2024-01-10T15:05:44.153715Z", + "shell.execute_reply": "2024-01-10T15:05:44.153035Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:17.379909Z", - "iopub.status.busy": "2024-01-10T06:20:17.379542Z", - "iopub.status.idle": "2024-01-10T06:20:17.889849Z", - "shell.execute_reply": "2024-01-10T06:20:17.889143Z" + "iopub.execute_input": "2024-01-10T15:05:44.156860Z", + "iopub.status.busy": "2024-01-10T15:05:44.156265Z", + "iopub.status.idle": "2024-01-10T15:05:44.600989Z", + "shell.execute_reply": "2024-01-10T15:05:44.600344Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:17.892718Z", - "iopub.status.busy": "2024-01-10T06:20:17.892281Z", - "iopub.status.idle": "2024-01-10T06:20:18.146698Z", - "shell.execute_reply": "2024-01-10T06:20:18.145918Z" + "iopub.execute_input": "2024-01-10T15:05:44.603532Z", + "iopub.status.busy": "2024-01-10T15:05:44.603285Z", + "iopub.status.idle": "2024-01-10T15:05:44.834017Z", + "shell.execute_reply": "2024-01-10T15:05:44.833363Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:18.150320Z", - "iopub.status.busy": "2024-01-10T06:20:18.149921Z", - "iopub.status.idle": "2024-01-10T06:20:18.235461Z", - "shell.execute_reply": "2024-01-10T06:20:18.234877Z" + "iopub.execute_input": "2024-01-10T15:05:44.836783Z", + "iopub.status.busy": "2024-01-10T15:05:44.836577Z", + "iopub.status.idle": "2024-01-10T15:05:44.906830Z", + "shell.execute_reply": "2024-01-10T15:05:44.906100Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:18.238296Z", - "iopub.status.busy": "2024-01-10T06:20:18.238059Z", - "iopub.status.idle": "2024-01-10T06:20:56.606997Z", - "shell.execute_reply": "2024-01-10T06:20:56.606212Z" + "iopub.execute_input": "2024-01-10T15:05:44.909479Z", + "iopub.status.busy": "2024-01-10T15:05:44.909272Z", + "iopub.status.idle": "2024-01-10T15:06:22.582521Z", + "shell.execute_reply": "2024-01-10T15:06:22.581741Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:56.609877Z", - "iopub.status.busy": "2024-01-10T06:20:56.609373Z", - "iopub.status.idle": "2024-01-10T06:20:57.846657Z", - "shell.execute_reply": "2024-01-10T06:20:57.845936Z" + "iopub.execute_input": "2024-01-10T15:06:22.585549Z", + "iopub.status.busy": "2024-01-10T15:06:22.585031Z", + "iopub.status.idle": "2024-01-10T15:06:23.781983Z", + "shell.execute_reply": "2024-01-10T15:06:23.781235Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:57.850038Z", - "iopub.status.busy": "2024-01-10T06:20:57.849349Z", - "iopub.status.idle": "2024-01-10T06:20:58.037779Z", - "shell.execute_reply": "2024-01-10T06:20:58.037164Z" + "iopub.execute_input": "2024-01-10T15:06:23.785275Z", + "iopub.status.busy": "2024-01-10T15:06:23.784715Z", + "iopub.status.idle": "2024-01-10T15:06:23.971240Z", + "shell.execute_reply": "2024-01-10T15:06:23.970521Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:58.040792Z", - "iopub.status.busy": "2024-01-10T06:20:58.040310Z", - "iopub.status.idle": "2024-01-10T06:20:58.043677Z", - "shell.execute_reply": "2024-01-10T06:20:58.043170Z" + "iopub.execute_input": "2024-01-10T15:06:23.974385Z", + "iopub.status.busy": "2024-01-10T15:06:23.973877Z", + "iopub.status.idle": "2024-01-10T15:06:23.977333Z", + "shell.execute_reply": "2024-01-10T15:06:23.976741Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:20:58.045942Z", - "iopub.status.busy": "2024-01-10T06:20:58.045737Z", - "iopub.status.idle": "2024-01-10T06:20:58.054356Z", - "shell.execute_reply": "2024-01-10T06:20:58.053867Z" + "iopub.execute_input": "2024-01-10T15:06:23.980026Z", + "iopub.status.busy": "2024-01-10T15:06:23.979554Z", + "iopub.status.idle": "2024-01-10T15:06:23.988254Z", + "shell.execute_reply": "2024-01-10T15:06:23.987626Z" }, "nbsphinx": "hidden" }, @@ -1017,38 +1017,29 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "327a08e1d5534ee99c966c84c3365801": { + "12b5dc69acf9453bb2a2322dbaea9e6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "409c38572c3f42069bdd6f978250bae9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63007a6fc93b49709da9d544e853c969", + "IPY_MODEL_d7964db947004dd4847db06986c2782f", + "IPY_MODEL_7c7aa399fdf6477b9c5cd4ed997af3de" + ], + "layout": "IPY_MODEL_4c40bcb3b3dc4ef3b2ae47f5a41e9edb" } }, - "5424c6f35faa4960b53ddef1c4ec0405": { + "3c990076fa7e41c9b75fb0558cd2796a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1100,7 +1091,7 @@ "width": null } }, - "5ba665ca475147dd93b0e931cb42babc": { + "4c40bcb3b3dc4ef3b2ae47f5a41e9edb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1152,7 +1143,7 @@ "width": null } }, - "6c1729328c1842ab8fbe77faf7094fc4": { + "57ce946020574bf0a08e97d7b957ddcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1167,7 +1158,28 @@ "description_width": "" } }, - "831d732aa1314d0fb6bdef874bcd5787": { + "63007a6fc93b49709da9d544e853c969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74345e7936394989952187bbc936b1ea", + "placeholder": "​", + "style": "IPY_MODEL_57ce946020574bf0a08e97d7b957ddcc", + "value": "100%" + } + }, + "74345e7936394989952187bbc936b1ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1219,52 +1231,7 @@ "width": null } }, - "9f7917b60d274c8d9aff9ccbf9989105": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5424c6f35faa4960b53ddef1c4ec0405", - "placeholder": "​", - "style": "IPY_MODEL_409c38572c3f42069bdd6f978250bae9", - "value": " 170498071/170498071 [00:01<00:00, 109601673.05it/s]" - } - }, - "b47353d08b504eda93deb2aba25e51a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_831d732aa1314d0fb6bdef874bcd5787", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_327a08e1d5534ee99c966c84c3365801", - "value": 170498071.0 - } - }, - "ceb5d255b6e1467bbf644bfe84de536e": { + "7c7aa399fdf6477b9c5cd4ed997af3de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1279,35 +1246,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fcb1d9c928d4414fa8045d1040339642", + "layout": "IPY_MODEL_80ec456e29c04104985c3f1eb9345bbb", "placeholder": "​", - "style": "IPY_MODEL_6c1729328c1842ab8fbe77faf7094fc4", - "value": "100%" + "style": "IPY_MODEL_c5920de7f42947c2b7985c7a2976cf6d", + "value": " 170498071/170498071 [00:02<00:00, 77009113.30it/s]" } }, - "d9eb539b8c1f4f97a89e8db15123410e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ceb5d255b6e1467bbf644bfe84de536e", - "IPY_MODEL_b47353d08b504eda93deb2aba25e51a2", - "IPY_MODEL_9f7917b60d274c8d9aff9ccbf9989105" - ], - "layout": "IPY_MODEL_5ba665ca475147dd93b0e931cb42babc" - } - }, - "fcb1d9c928d4414fa8045d1040339642": { + "80ec456e29c04104985c3f1eb9345bbb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,6 +1303,61 @@ "visibility": null, "width": null } + }, + "acf564a6e0f34550a5d77cb082e2e4a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c5920de7f42947c2b7985c7a2976cf6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d7964db947004dd4847db06986c2782f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3c990076fa7e41c9b75fb0558cd2796a", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_acf564a6e0f34550a5d77cb082e2e4a5", + "value": 170498071.0 + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index e4f71e4a3..4a2dadcf3 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:03.429780Z", - "iopub.status.busy": "2024-01-10T06:21:03.429318Z", - "iopub.status.idle": "2024-01-10T06:21:04.536960Z", - "shell.execute_reply": "2024-01-10T06:21:04.536343Z" + "iopub.execute_input": "2024-01-10T15:06:29.103769Z", + "iopub.status.busy": "2024-01-10T15:06:29.103575Z", + "iopub.status.idle": "2024-01-10T15:06:30.201917Z", + "shell.execute_reply": "2024-01-10T15:06:30.201295Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.539950Z", - "iopub.status.busy": "2024-01-10T06:21:04.539416Z", - "iopub.status.idle": "2024-01-10T06:21:04.555703Z", - "shell.execute_reply": "2024-01-10T06:21:04.555171Z" + "iopub.execute_input": "2024-01-10T15:06:30.204907Z", + "iopub.status.busy": "2024-01-10T15:06:30.204366Z", + "iopub.status.idle": "2024-01-10T15:06:30.220770Z", + "shell.execute_reply": "2024-01-10T15:06:30.220132Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.558355Z", - "iopub.status.busy": "2024-01-10T06:21:04.557984Z", - "iopub.status.idle": "2024-01-10T06:21:04.561236Z", - "shell.execute_reply": "2024-01-10T06:21:04.560643Z" + "iopub.execute_input": "2024-01-10T15:06:30.223523Z", + "iopub.status.busy": "2024-01-10T15:06:30.223104Z", + "iopub.status.idle": "2024-01-10T15:06:30.226245Z", + "shell.execute_reply": "2024-01-10T15:06:30.225690Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.563519Z", - "iopub.status.busy": "2024-01-10T06:21:04.563180Z", - "iopub.status.idle": "2024-01-10T06:21:04.709969Z", - "shell.execute_reply": "2024-01-10T06:21:04.709340Z" + "iopub.execute_input": "2024-01-10T15:06:30.228543Z", + "iopub.status.busy": "2024-01-10T15:06:30.228257Z", + "iopub.status.idle": "2024-01-10T15:06:30.317626Z", + "shell.execute_reply": "2024-01-10T15:06:30.316982Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.712608Z", - "iopub.status.busy": "2024-01-10T06:21:04.712301Z", - "iopub.status.idle": "2024-01-10T06:21:04.987624Z", - "shell.execute_reply": "2024-01-10T06:21:04.986929Z" + "iopub.execute_input": "2024-01-10T15:06:30.320512Z", + "iopub.status.busy": "2024-01-10T15:06:30.319930Z", + "iopub.status.idle": "2024-01-10T15:06:30.587833Z", + "shell.execute_reply": "2024-01-10T15:06:30.587097Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:04.990511Z", - "iopub.status.busy": "2024-01-10T06:21:04.990062Z", - "iopub.status.idle": "2024-01-10T06:21:05.250260Z", - "shell.execute_reply": "2024-01-10T06:21:05.249551Z" + "iopub.execute_input": "2024-01-10T15:06:30.590520Z", + "iopub.status.busy": "2024-01-10T15:06:30.590253Z", + "iopub.status.idle": "2024-01-10T15:06:30.846918Z", + "shell.execute_reply": "2024-01-10T15:06:30.846204Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:05.252808Z", - "iopub.status.busy": "2024-01-10T06:21:05.252554Z", - "iopub.status.idle": "2024-01-10T06:21:05.257434Z", - "shell.execute_reply": "2024-01-10T06:21:05.256897Z" + "iopub.execute_input": "2024-01-10T15:06:30.849576Z", + "iopub.status.busy": "2024-01-10T15:06:30.849180Z", + "iopub.status.idle": "2024-01-10T15:06:30.854014Z", + "shell.execute_reply": "2024-01-10T15:06:30.853474Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:05.259727Z", - "iopub.status.busy": "2024-01-10T06:21:05.259513Z", - "iopub.status.idle": "2024-01-10T06:21:05.266109Z", - "shell.execute_reply": "2024-01-10T06:21:05.265624Z" + "iopub.execute_input": "2024-01-10T15:06:30.856453Z", + "iopub.status.busy": "2024-01-10T15:06:30.856086Z", + "iopub.status.idle": "2024-01-10T15:06:30.862321Z", + "shell.execute_reply": "2024-01-10T15:06:30.861851Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:05.268611Z", - "iopub.status.busy": "2024-01-10T06:21:05.268134Z", - "iopub.status.idle": "2024-01-10T06:21:05.271485Z", - "shell.execute_reply": "2024-01-10T06:21:05.270856Z" + "iopub.execute_input": "2024-01-10T15:06:30.864795Z", + "iopub.status.busy": "2024-01-10T15:06:30.864430Z", + "iopub.status.idle": "2024-01-10T15:06:30.867161Z", + "shell.execute_reply": "2024-01-10T15:06:30.866611Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:05.273934Z", - "iopub.status.busy": "2024-01-10T06:21:05.273375Z", - "iopub.status.idle": "2024-01-10T06:21:15.493411Z", - "shell.execute_reply": "2024-01-10T06:21:15.492743Z" + "iopub.execute_input": "2024-01-10T15:06:30.869425Z", + "iopub.status.busy": "2024-01-10T15:06:30.869055Z", + "iopub.status.idle": "2024-01-10T15:06:41.017037Z", + "shell.execute_reply": "2024-01-10T15:06:41.016307Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.496814Z", - "iopub.status.busy": "2024-01-10T06:21:15.496375Z", - "iopub.status.idle": "2024-01-10T06:21:15.504366Z", - "shell.execute_reply": "2024-01-10T06:21:15.503841Z" + "iopub.execute_input": "2024-01-10T15:06:41.020063Z", + "iopub.status.busy": "2024-01-10T15:06:41.019675Z", + "iopub.status.idle": "2024-01-10T15:06:41.027115Z", + "shell.execute_reply": "2024-01-10T15:06:41.026544Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.506693Z", - "iopub.status.busy": "2024-01-10T06:21:15.506461Z", - "iopub.status.idle": "2024-01-10T06:21:15.510803Z", - "shell.execute_reply": "2024-01-10T06:21:15.510172Z" + "iopub.execute_input": "2024-01-10T15:06:41.029405Z", + "iopub.status.busy": "2024-01-10T15:06:41.029205Z", + "iopub.status.idle": "2024-01-10T15:06:41.033215Z", + "shell.execute_reply": "2024-01-10T15:06:41.032594Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.513231Z", - "iopub.status.busy": "2024-01-10T06:21:15.512862Z", - "iopub.status.idle": "2024-01-10T06:21:15.516362Z", - "shell.execute_reply": "2024-01-10T06:21:15.515734Z" + "iopub.execute_input": "2024-01-10T15:06:41.035823Z", + "iopub.status.busy": "2024-01-10T15:06:41.035383Z", + "iopub.status.idle": "2024-01-10T15:06:41.039101Z", + "shell.execute_reply": "2024-01-10T15:06:41.038455Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.518807Z", - "iopub.status.busy": "2024-01-10T06:21:15.518425Z", - "iopub.status.idle": "2024-01-10T06:21:15.521733Z", - "shell.execute_reply": "2024-01-10T06:21:15.521168Z" + "iopub.execute_input": "2024-01-10T15:06:41.041445Z", + "iopub.status.busy": "2024-01-10T15:06:41.041078Z", + "iopub.status.idle": "2024-01-10T15:06:41.044279Z", + "shell.execute_reply": "2024-01-10T15:06:41.043724Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.524184Z", - "iopub.status.busy": "2024-01-10T06:21:15.523785Z", - "iopub.status.idle": "2024-01-10T06:21:15.533773Z", - "shell.execute_reply": "2024-01-10T06:21:15.532950Z" + "iopub.execute_input": "2024-01-10T15:06:41.046671Z", + "iopub.status.busy": "2024-01-10T15:06:41.046309Z", + "iopub.status.idle": "2024-01-10T15:06:41.054894Z", + "shell.execute_reply": "2024-01-10T15:06:41.054326Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.536364Z", - "iopub.status.busy": "2024-01-10T06:21:15.536012Z", - "iopub.status.idle": "2024-01-10T06:21:15.684972Z", - "shell.execute_reply": "2024-01-10T06:21:15.684237Z" + "iopub.execute_input": "2024-01-10T15:06:41.057327Z", + "iopub.status.busy": "2024-01-10T15:06:41.056960Z", + "iopub.status.idle": "2024-01-10T15:06:41.205394Z", + "shell.execute_reply": "2024-01-10T15:06:41.204692Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.688080Z", - "iopub.status.busy": "2024-01-10T06:21:15.687659Z", - "iopub.status.idle": "2024-01-10T06:21:15.819421Z", - "shell.execute_reply": "2024-01-10T06:21:15.818612Z" + "iopub.execute_input": "2024-01-10T15:06:41.208175Z", + "iopub.status.busy": "2024-01-10T15:06:41.207750Z", + "iopub.status.idle": "2024-01-10T15:06:41.341273Z", + "shell.execute_reply": "2024-01-10T15:06:41.340668Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:15.822502Z", - "iopub.status.busy": "2024-01-10T06:21:15.822274Z", - "iopub.status.idle": "2024-01-10T06:21:16.418907Z", - "shell.execute_reply": "2024-01-10T06:21:16.418233Z" + "iopub.execute_input": "2024-01-10T15:06:41.344029Z", + "iopub.status.busy": "2024-01-10T15:06:41.343669Z", + "iopub.status.idle": "2024-01-10T15:06:41.924486Z", + "shell.execute_reply": "2024-01-10T15:06:41.923868Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:16.422520Z", - "iopub.status.busy": "2024-01-10T06:21:16.421868Z", - "iopub.status.idle": "2024-01-10T06:21:16.505313Z", - "shell.execute_reply": "2024-01-10T06:21:16.504636Z" + "iopub.execute_input": "2024-01-10T15:06:41.927461Z", + "iopub.status.busy": "2024-01-10T15:06:41.927030Z", + "iopub.status.idle": "2024-01-10T15:06:42.019961Z", + "shell.execute_reply": "2024-01-10T15:06:42.019298Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:16.508240Z", - "iopub.status.busy": "2024-01-10T06:21:16.507734Z", - "iopub.status.idle": "2024-01-10T06:21:16.517478Z", - "shell.execute_reply": "2024-01-10T06:21:16.517004Z" + "iopub.execute_input": "2024-01-10T15:06:42.023210Z", + "iopub.status.busy": "2024-01-10T15:06:42.022968Z", + "iopub.status.idle": "2024-01-10T15:06:42.033293Z", + "shell.execute_reply": "2024-01-10T15:06:42.032670Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 8261ff5c4..14ba5b417 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -960,13 +960,13 @@

3. Use cleanlab to find label issues

-
+
-
+
-
0%| | 17062/4997817 [00:00&lt;00:29, 170604.30it/s]
+
0%| | 17030/4997817 [00:00&lt;00:29, 170283.11it/s]

</pre>

-
0%| | 17062/4997817 [00:00<00:29, 170604.30it/s]
+
0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]

end{sphinxVerbatim}

-

0%| | 17062/4997817 [00:00<00:29, 170604.30it/s]

+

0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]

-
1%| | 34285/4997817 [00:00&lt;00:28, 171551.99it/s]
+
1%| | 34264/4997817 [00:00&lt;00:28, 171485.88it/s]

</pre>

-
1%| | 34285/4997817 [00:00<00:28, 171551.99it/s]
+
1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]

end{sphinxVerbatim}

-

1%| | 34285/4997817 [00:00<00:28, 171551.99it/s]

+

1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]

-
1%| | 51456/4997817 [00:00&lt;00:28, 171618.24it/s]
+
1%| | 51459/4997817 [00:00&lt;00:28, 171690.77it/s]

</pre>

-
1%| | 51456/4997817 [00:00<00:28, 171618.24it/s]
+
1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]

end{sphinxVerbatim}

-

1%| | 51456/4997817 [00:00<00:28, 171618.24it/s]

+

1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]

-
1%|▏ | 68618/4997817 [00:00&lt;00:28, 170859.63it/s]
+
1%|▏ | 68798/4997817 [00:00&lt;00:28, 172355.31it/s]

</pre>

-
1%|▏ | 68618/4997817 [00:00<00:28, 170859.63it/s]
+
1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]

end{sphinxVerbatim}

-

1%|▏ | 68618/4997817 [00:00<00:28, 170859.63it/s]

+

1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]

-
2%|▏ | 85805/4997817 [00:00&lt;00:28, 171220.50it/s]
+
2%|▏ | 86035/4997817 [00:00&lt;00:28, 172354.29it/s]

</pre>

-
2%|▏ | 85805/4997817 [00:00<00:28, 171220.50it/s]
+
2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]

end{sphinxVerbatim}

-

2%|▏ | 85805/4997817 [00:00<00:28, 171220.50it/s]

+

2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]

-
2%|▏ | 102949/4997817 [00:00&lt;00:28, 171291.99it/s]
+
2%|▏ | 103290/4997817 [00:00&lt;00:28, 172417.11it/s]

</pre>

-
2%|▏ | 102949/4997817 [00:00<00:28, 171291.99it/s]
+
2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]

end{sphinxVerbatim}

-

2%|▏ | 102949/4997817 [00:00<00:28, 171291.99it/s]

+

2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]

-
2%|▏ | 120095/4997817 [00:00&lt;00:28, 171343.43it/s]
+
2%|▏ | 120703/4997817 [00:00&lt;00:28, 172972.80it/s]

</pre>

-
2%|▏ | 120095/4997817 [00:00<00:28, 171343.43it/s]
+
2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]

end{sphinxVerbatim}

-

2%|▏ | 120095/4997817 [00:00<00:28, 171343.43it/s]

+

2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]

-
3%|▎ | 137230/4997817 [00:00&lt;00:28, 170491.36it/s]
+
3%|▎ | 138001/4997817 [00:00&lt;00:28, 172728.16it/s]

</pre>

-
3%|▎ | 137230/4997817 [00:00<00:28, 170491.36it/s]
+
3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]

end{sphinxVerbatim}

-

3%|▎ | 137230/4997817 [00:00<00:28, 170491.36it/s]

+

3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]

-
3%|▎ | 154281/4997817 [00:00&lt;00:28, 169872.65it/s]
+
3%|▎ | 155274/4997817 [00:00&lt;00:28, 172330.12it/s]

</pre>

-
3%|▎ | 154281/4997817 [00:00<00:28, 169872.65it/s]
+
3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]

end{sphinxVerbatim}

-

3%|▎ | 154281/4997817 [00:00<00:28, 169872.65it/s]

+

3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]

-
3%|▎ | 171280/4997817 [00:01&lt;00:28, 169905.50it/s]
+
3%|▎ | 172583/4997817 [00:01&lt;00:27, 172560.55it/s]

</pre>

-
3%|▎ | 171280/4997817 [00:01<00:28, 169905.50it/s]
+
3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]

end{sphinxVerbatim}

-

3%|▎ | 171280/4997817 [00:01<00:28, 169905.50it/s]

+

3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]

-
4%|▍ | 188272/4997817 [00:01&lt;00:28, 169777.04it/s]
+
4%|▍ | 189950/4997817 [00:01&lt;00:27, 172896.33it/s]

</pre>

-
4%|▍ | 188272/4997817 [00:01<00:28, 169777.04it/s]
+
4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]

end{sphinxVerbatim}

-

4%|▍ | 188272/4997817 [00:01<00:28, 169777.04it/s]

+

4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]

-
4%|▍ | 205575/4997817 [00:01&lt;00:28, 170760.61it/s]
+
4%|▍ | 207377/4997817 [00:01&lt;00:27, 173308.14it/s]

</pre>

-
4%|▍ | 205575/4997817 [00:01<00:28, 170760.61it/s]
+
4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]

end{sphinxVerbatim}

-

4%|▍ | 205575/4997817 [00:01<00:28, 170760.61it/s]

+

4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]

-
4%|▍ | 222652/4997817 [00:01&lt;00:27, 170740.73it/s]
+
4%|▍ | 224727/4997817 [00:01&lt;00:27, 173361.26it/s]

</pre>

-
4%|▍ | 222652/4997817 [00:01<00:27, 170740.73it/s]
+
4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]

end{sphinxVerbatim}

-

4%|▍ | 222652/4997817 [00:01<00:27, 170740.73it/s]

+

4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]

-
5%|▍ | 240083/4997817 [00:01&lt;00:27, 171811.81it/s]
+
5%|▍ | 242162/4997817 [00:01&lt;00:27, 173656.66it/s]

</pre>

-
5%|▍ | 240083/4997817 [00:01<00:27, 171811.81it/s]
+
5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]

end{sphinxVerbatim}

-

5%|▍ | 240083/4997817 [00:01<00:27, 171811.81it/s]

+

5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]

-
5%|▌ | 257360/4997817 [00:01&lt;00:27, 172096.03it/s]
+
5%|▌ | 259598/4997817 [00:01&lt;00:27, 173865.50it/s]

</pre>

-
5%|▌ | 257360/4997817 [00:01<00:27, 172096.03it/s]
+
5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]

end{sphinxVerbatim}

-

5%|▌ | 257360/4997817 [00:01<00:27, 172096.03it/s]

+

5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]

-
5%|▌ | 274605/4997817 [00:01&lt;00:27, 172199.32it/s]
+
6%|▌ | 277065/4997817 [00:01&lt;00:27, 174102.51it/s]

</pre>

-
5%|▌ | 274605/4997817 [00:01<00:27, 172199.32it/s]
+
6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]

end{sphinxVerbatim}

-

5%|▌ | 274605/4997817 [00:01<00:27, 172199.32it/s]

+

6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]

-
6%|▌ | 291886/4997817 [00:01&lt;00:27, 172379.81it/s]
+
6%|▌ | 294502/4997817 [00:01&lt;00:27, 174179.23it/s]

</pre>

-
6%|▌ | 291886/4997817 [00:01<00:27, 172379.81it/s]
+
6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]

end{sphinxVerbatim}

-

6%|▌ | 291886/4997817 [00:01<00:27, 172379.81it/s]

+

6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]

-
6%|▌ | 309125/4997817 [00:01&lt;00:27, 172152.38it/s]
+
6%|▌ | 311920/4997817 [00:01&lt;00:27, 173530.42it/s]

</pre>

-
6%|▌ | 309125/4997817 [00:01<00:27, 172152.38it/s]
+
6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]

end{sphinxVerbatim}

-

6%|▌ | 309125/4997817 [00:01<00:27, 172152.38it/s]

+

6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]

-
7%|▋ | 326341/4997817 [00:01&lt;00:27, 171949.71it/s]
+
7%|▋ | 329316/4997817 [00:01&lt;00:26, 173655.30it/s]

</pre>

-
7%|▋ | 326341/4997817 [00:01<00:27, 171949.71it/s]
+
7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]

end{sphinxVerbatim}

-

7%|▋ | 326341/4997817 [00:01<00:27, 171949.71it/s]

+

7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]

-
7%|▋ | 343537/4997817 [00:02&lt;00:27, 171568.72it/s]
+
7%|▋ | 346687/4997817 [00:02&lt;00:26, 173667.15it/s]

</pre>

-
7%|▋ | 343537/4997817 [00:02<00:27, 171568.72it/s]
+
7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]

end{sphinxVerbatim}

-

7%|▋ | 343537/4997817 [00:02<00:27, 171568.72it/s]

+

7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]

-
7%|▋ | 360817/4997817 [00:02&lt;00:26, 171933.30it/s]
+
7%|▋ | 364055/4997817 [00:02&lt;00:26, 173627.62it/s]

</pre>

-
7%|▋ | 360817/4997817 [00:02<00:26, 171933.30it/s]
+
7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]

end{sphinxVerbatim}

-

7%|▋ | 360817/4997817 [00:02<00:26, 171933.30it/s]

+

7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]

-
8%|▊ | 378023/4997817 [00:02&lt;00:26, 171967.12it/s]
+
8%|▊ | 381423/4997817 [00:02&lt;00:26, 173638.78it/s]

</pre>

-
8%|▊ | 378023/4997817 [00:02<00:26, 171967.12it/s]
+
8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]

end{sphinxVerbatim}

-

8%|▊ | 378023/4997817 [00:02<00:26, 171967.12it/s]

+

8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]

-
8%|▊ | 395220/4997817 [00:02&lt;00:26, 171770.69it/s]
+
8%|▊ | 398834/4997817 [00:02&lt;00:26, 173775.03it/s]

</pre>

-
8%|▊ | 395220/4997817 [00:02<00:26, 171770.69it/s]
+
8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]

end{sphinxVerbatim}

-

8%|▊ | 395220/4997817 [00:02<00:26, 171770.69it/s]

+

8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]

-
8%|▊ | 412518/4997817 [00:02&lt;00:26, 172129.64it/s]
+
8%|▊ | 416212/4997817 [00:02&lt;00:26, 173771.72it/s]

</pre>

-
8%|▊ | 412518/4997817 [00:02<00:26, 172129.64it/s]
+
8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]

end{sphinxVerbatim}

-

8%|▊ | 412518/4997817 [00:02<00:26, 172129.64it/s]

+

8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]

-
9%|▊ | 429746/4997817 [00:02&lt;00:26, 172171.06it/s]
+
9%|▊ | 433590/4997817 [00:02&lt;00:26, 173442.63it/s]

</pre>

-
9%|▊ | 429746/4997817 [00:02<00:26, 172171.06it/s]
+
9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]

end{sphinxVerbatim}

-

9%|▊ | 429746/4997817 [00:02<00:26, 172171.06it/s]

+

9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]

-
9%|▉ | 446964/4997817 [00:02&lt;00:26, 171908.29it/s]
+
9%|▉ | 451024/4997817 [00:02&lt;00:26, 173705.52it/s]

</pre>

-
9%|▉ | 446964/4997817 [00:02<00:26, 171908.29it/s]
+
9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]

end{sphinxVerbatim}

-

9%|▉ | 446964/4997817 [00:02<00:26, 171908.29it/s]

+

9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]

-
9%|▉ | 464155/4997817 [00:02&lt;00:26, 171900.62it/s]
+
9%|▉ | 468446/4997817 [00:02&lt;00:26, 173855.02it/s]

</pre>

-
9%|▉ | 464155/4997817 [00:02<00:26, 171900.62it/s]
+
9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]

end{sphinxVerbatim}

-

9%|▉ | 464155/4997817 [00:02<00:26, 171900.62it/s]

+

9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]

-
10%|▉ | 481346/4997817 [00:02&lt;00:26, 171355.90it/s]
+
10%|▉ | 485832/4997817 [00:02&lt;00:25, 173762.18it/s]

</pre>

-
10%|▉ | 481346/4997817 [00:02<00:26, 171355.90it/s]
+
10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]

end{sphinxVerbatim}

-

10%|▉ | 481346/4997817 [00:02<00:26, 171355.90it/s]

+

10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]

-
10%|▉ | 498619/4997817 [00:02&lt;00:26, 171763.37it/s]
+
10%|█ | 503243/4997817 [00:02&lt;00:25, 173861.88it/s]

</pre>

-
10%|▉ | 498619/4997817 [00:02<00:26, 171763.37it/s]
+
10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]

end{sphinxVerbatim}

-

10%|▉ | 498619/4997817 [00:02<00:26, 171763.37it/s]

+

10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]

-
10%|█ | 515796/4997817 [00:03&lt;00:26, 171727.53it/s]
+
10%|█ | 520727/4997817 [00:03&lt;00:25, 174151.56it/s]

</pre>

-
10%|█ | 515796/4997817 [00:03<00:26, 171727.53it/s]
+
10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]

end{sphinxVerbatim}

-

10%|█ | 515796/4997817 [00:03<00:26, 171727.53it/s]

+

10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]

-
11%|█ | 532984/4997817 [00:03&lt;00:25, 171768.71it/s]
+
11%|█ | 538143/4997817 [00:03&lt;00:25, 173998.03it/s]

</pre>

-
11%|█ | 532984/4997817 [00:03<00:25, 171768.71it/s]
+
11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]

end{sphinxVerbatim}

-

11%|█ | 532984/4997817 [00:03<00:25, 171768.71it/s]

+

11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]

-
11%|█ | 550240/4997817 [00:03&lt;00:25, 172001.07it/s]
+
11%|█ | 555543/4997817 [00:03&lt;00:25, 173843.76it/s]

</pre>

-
11%|█ | 550240/4997817 [00:03<00:25, 172001.07it/s]
+
11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]

end{sphinxVerbatim}

-

11%|█ | 550240/4997817 [00:03<00:25, 172001.07it/s]

+

11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]

-
11%|█▏ | 567441/4997817 [00:03&lt;00:25, 171961.52it/s]
+
11%|█▏ | 572928/4997817 [00:03&lt;00:25, 173780.39it/s]

</pre>

-
11%|█▏ | 567441/4997817 [00:03<00:25, 171961.52it/s]
+
11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]

end{sphinxVerbatim}

-

11%|█▏ | 567441/4997817 [00:03<00:25, 171961.52it/s]

+

11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]

-
12%|█▏ | 584638/4997817 [00:03&lt;00:25, 171920.86it/s]
+
12%|█▏ | 590307/4997817 [00:03&lt;00:25, 173705.63it/s]

</pre>

-
12%|█▏ | 584638/4997817 [00:03<00:25, 171920.86it/s]
+
12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]

end{sphinxVerbatim}

-

12%|█▏ | 584638/4997817 [00:03<00:25, 171920.86it/s]

+

12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]

-
12%|█▏ | 601962/4997817 [00:03&lt;00:25, 172313.17it/s]
+
12%|█▏ | 607678/4997817 [00:03&lt;00:25, 173383.06it/s]

</pre>

-
12%|█▏ | 601962/4997817 [00:03<00:25, 172313.17it/s]
+
12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]

end{sphinxVerbatim}

-

12%|█▏ | 601962/4997817 [00:03<00:25, 172313.17it/s]

+

12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]

-
12%|█▏ | 619303/4997817 [00:03&lt;00:25, 172639.01it/s]
+
13%|█▎ | 625113/4997817 [00:03&lt;00:25, 173668.62it/s]

</pre>

-
12%|█▏ | 619303/4997817 [00:03<00:25, 172639.01it/s]
+
13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]

end{sphinxVerbatim}

-

12%|█▏ | 619303/4997817 [00:03<00:25, 172639.01it/s]

+

13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]

-
13%|█▎ | 636567/4997817 [00:03&lt;00:25, 172200.43it/s]
+
13%|█▎ | 642500/4997817 [00:03&lt;00:25, 173724.53it/s]

</pre>

-
13%|█▎ | 636567/4997817 [00:03<00:25, 172200.43it/s]
+
13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]

end{sphinxVerbatim}

-

13%|█▎ | 636567/4997817 [00:03<00:25, 172200.43it/s]

+

13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]

-
13%|█▎ | 653788/4997817 [00:03&lt;00:25, 171788.02it/s]
+
13%|█▎ | 659873/4997817 [00:03&lt;00:25, 173457.40it/s]

</pre>

-
13%|█▎ | 653788/4997817 [00:03<00:25, 171788.02it/s]
+
13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]

end{sphinxVerbatim}

-

13%|█▎ | 653788/4997817 [00:03<00:25, 171788.02it/s]

+

13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]

-
13%|█▎ | 670968/4997817 [00:03&lt;00:25, 171514.66it/s]
+
14%|█▎ | 677219/4997817 [00:03&lt;00:24, 172924.88it/s]

</pre>

-
13%|█▎ | 670968/4997817 [00:03<00:25, 171514.66it/s]
+
14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]

end{sphinxVerbatim}

-

13%|█▎ | 670968/4997817 [00:03<00:25, 171514.66it/s]

+

14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]

-
14%|█▍ | 688120/4997817 [00:04&lt;00:25, 170996.88it/s]
+
14%|█▍ | 694526/4997817 [00:04&lt;00:24, 172965.24it/s]

</pre>

-
14%|█▍ | 688120/4997817 [00:04<00:25, 170996.88it/s]
+
14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]

end{sphinxVerbatim}

-

14%|█▍ | 688120/4997817 [00:04<00:25, 170996.88it/s]

+

14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]

-
14%|█▍ | 705275/4997817 [00:04&lt;00:25, 171158.72it/s]
+
14%|█▍ | 711823/4997817 [00:04&lt;00:24, 172894.79it/s]

</pre>

-
14%|█▍ | 705275/4997817 [00:04<00:25, 171158.72it/s]
+
14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]

end{sphinxVerbatim}

-

14%|█▍ | 705275/4997817 [00:04<00:25, 171158.72it/s]

+

14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]

-
14%|█▍ | 722435/4997817 [00:04&lt;00:24, 171285.85it/s]
+
15%|█▍ | 729176/4997817 [00:04&lt;00:24, 173080.82it/s]

</pre>

-
14%|█▍ | 722435/4997817 [00:04<00:24, 171285.85it/s]
+
15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]

end{sphinxVerbatim}

-

14%|█▍ | 722435/4997817 [00:04<00:24, 171285.85it/s]

+

15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]

-
15%|█▍ | 739806/4997817 [00:04&lt;00:24, 172008.35it/s]
+
15%|█▍ | 746485/4997817 [00:04&lt;00:24, 173034.68it/s]

</pre>

-
15%|█▍ | 739806/4997817 [00:04<00:24, 172008.35it/s]
+
15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]

end{sphinxVerbatim}

-

15%|█▍ | 739806/4997817 [00:04<00:24, 172008.35it/s]

+

15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]

-
15%|█▌ | 757008/4997817 [00:04&lt;00:24, 171692.60it/s]
+
15%|█▌ | 763789/4997817 [00:04&lt;00:24, 172857.88it/s]

</pre>

-
15%|█▌ | 757008/4997817 [00:04<00:24, 171692.60it/s]
+
15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]

end{sphinxVerbatim}

-

15%|█▌ | 757008/4997817 [00:04<00:24, 171692.60it/s]

+

15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]

-
15%|█▌ | 774255/4997817 [00:04&lt;00:24, 171920.65it/s]
+
16%|█▌ | 781271/4997817 [00:04&lt;00:24, 173443.18it/s]

</pre>

-
15%|█▌ | 774255/4997817 [00:04<00:24, 171920.65it/s]
+
16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]

end{sphinxVerbatim}

-

15%|█▌ | 774255/4997817 [00:04<00:24, 171920.65it/s]

+

16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]

-
16%|█▌ | 791671/4997817 [00:04&lt;00:24, 172588.53it/s]
+
16%|█▌ | 798719/4997817 [00:04&lt;00:24, 173750.95it/s]

</pre>

-
16%|█▌ | 791671/4997817 [00:04<00:24, 172588.53it/s]
+
16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]

end{sphinxVerbatim}

-

16%|█▌ | 791671/4997817 [00:04<00:24, 172588.53it/s]

+

16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]

-
16%|█▌ | 809012/4997817 [00:04&lt;00:24, 172830.16it/s]
+
16%|█▋ | 816121/4997817 [00:04&lt;00:24, 173827.43it/s]

</pre>

-
16%|█▌ | 809012/4997817 [00:04<00:24, 172830.16it/s]
+
16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]

end{sphinxVerbatim}

-

16%|█▌ | 809012/4997817 [00:04<00:24, 172830.16it/s]

+

16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]

-
17%|█▋ | 826296/4997817 [00:04&lt;00:24, 171982.40it/s]
+
17%|█▋ | 833504/4997817 [00:04&lt;00:24, 173400.72it/s]

</pre>

-
17%|█▋ | 826296/4997817 [00:04<00:24, 171982.40it/s]
+
17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]

end{sphinxVerbatim}

-

17%|█▋ | 826296/4997817 [00:04<00:24, 171982.40it/s]

+

17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]

-
17%|█▋ | 843496/4997817 [00:04&lt;00:24, 171799.85it/s]
+
17%|█▋ | 850845/4997817 [00:04&lt;00:24, 167499.61it/s]

</pre>

-
17%|█▋ | 843496/4997817 [00:04<00:24, 171799.85it/s]
+
17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]

end{sphinxVerbatim}

-

17%|█▋ | 843496/4997817 [00:04<00:24, 171799.85it/s]

+

17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]

-
17%|█▋ | 860677/4997817 [00:05&lt;00:24, 171324.91it/s]
+
17%|█▋ | 868055/4997817 [00:05&lt;00:24, 168840.64it/s]

</pre>

-
17%|█▋ | 860677/4997817 [00:05<00:24, 171324.91it/s]
+
17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]

end{sphinxVerbatim}

-

17%|█▋ | 860677/4997817 [00:05<00:24, 171324.91it/s]

+

17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]

-
18%|█▊ | 877842/4997817 [00:05&lt;00:24, 171418.27it/s]
+
18%|█▊ | 885319/4997817 [00:05&lt;00:24, 169955.77it/s]

</pre>

-
18%|█▊ | 877842/4997817 [00:05<00:24, 171418.27it/s]
+
18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]

end{sphinxVerbatim}

-

18%|█▊ | 877842/4997817 [00:05<00:24, 171418.27it/s]

+

18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]

-
18%|█▊ | 894985/4997817 [00:05&lt;00:23, 171219.42it/s]
+
18%|█▊ | 902466/4997817 [00:05&lt;00:24, 170400.94it/s]

</pre>

-
18%|█▊ | 894985/4997817 [00:05<00:23, 171219.42it/s]
+
18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]

end{sphinxVerbatim}

-

18%|█▊ | 894985/4997817 [00:05<00:23, 171219.42it/s]

+

18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]

-
18%|█▊ | 912146/4997817 [00:05&lt;00:23, 171332.99it/s]
+
18%|█▊ | 919525/4997817 [00:05&lt;00:24, 169551.46it/s]

</pre>

-
18%|█▊ | 912146/4997817 [00:05<00:23, 171332.99it/s]
+
18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]

end{sphinxVerbatim}

-

18%|█▊ | 912146/4997817 [00:05<00:23, 171332.99it/s]

+

18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]

-
19%|█▊ | 929303/4997817 [00:05&lt;00:23, 171399.71it/s]
+
19%|█▊ | 936548/4997817 [00:05&lt;00:23, 169750.27it/s]

</pre>

-
19%|█▊ | 929303/4997817 [00:05<00:23, 171399.71it/s]
+
19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]

end{sphinxVerbatim}

-

19%|█▊ | 929303/4997817 [00:05<00:23, 171399.71it/s]

+

19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]

-
19%|█▉ | 946444/4997817 [00:05&lt;00:23, 171377.87it/s]
+
19%|█▉ | 953712/4997817 [00:05&lt;00:23, 170310.11it/s]

</pre>

-
19%|█▉ | 946444/4997817 [00:05<00:23, 171377.87it/s]
+
19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]

end{sphinxVerbatim}

-

19%|█▉ | 946444/4997817 [00:05<00:23, 171377.87it/s]

+

19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]

-
19%|█▉ | 963692/4997817 [00:05&lt;00:23, 171703.39it/s]
+
19%|█▉ | 970942/4997817 [00:05&lt;00:23, 170900.53it/s]

</pre>

-
19%|█▉ | 963692/4997817 [00:05<00:23, 171703.39it/s]
+
19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]

end{sphinxVerbatim}

-

19%|█▉ | 963692/4997817 [00:05<00:23, 171703.39it/s]

+

19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]

-
20%|█▉ | 981048/4997817 [00:05&lt;00:23, 172255.53it/s]
+
20%|█▉ | 988152/4997817 [00:05&lt;00:23, 171255.63it/s]

</pre>

-
20%|█▉ | 981048/4997817 [00:05<00:23, 172255.53it/s]
+
20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]

end{sphinxVerbatim}

-

20%|█▉ | 981048/4997817 [00:05<00:23, 172255.53it/s]

+

20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]

-
20%|█▉ | 998359/4997817 [00:05&lt;00:23, 172508.56it/s]
+
20%|██ | 1005330/4997817 [00:05&lt;00:23, 171410.52it/s]

</pre>

-
20%|█▉ | 998359/4997817 [00:05<00:23, 172508.56it/s]
+
20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]

end{sphinxVerbatim}

-

20%|█▉ | 998359/4997817 [00:05<00:23, 172508.56it/s]

+

20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]

-
20%|██ | 1015635/4997817 [00:05&lt;00:23, 172579.19it/s]
+
20%|██ | 1022474/4997817 [00:05&lt;00:23, 171375.10it/s]

</pre>

-
20%|██ | 1015635/4997817 [00:05<00:23, 172579.19it/s]
+
20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]

end{sphinxVerbatim}

-

20%|██ | 1015635/4997817 [00:05<00:23, 172579.19it/s]

+

20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]

-
21%|██ | 1032893/4997817 [00:06&lt;00:23, 171418.64it/s]
+
21%|██ | 1039638/4997817 [00:06&lt;00:23, 171449.37it/s]

</pre>

-
21%|██ | 1032893/4997817 [00:06<00:23, 171418.64it/s]
+
21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]

end{sphinxVerbatim}

-

21%|██ | 1032893/4997817 [00:06<00:23, 171418.64it/s]

+

21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]

-
21%|██ | 1050039/4997817 [00:06&lt;00:23, 171426.89it/s]
+
21%|██ | 1056785/4997817 [00:06&lt;00:23, 170869.67it/s]

</pre>

-
21%|██ | 1050039/4997817 [00:06<00:23, 171426.89it/s]
+
21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]

end{sphinxVerbatim}

-

21%|██ | 1050039/4997817 [00:06<00:23, 171426.89it/s]

+

21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]

-
21%|██▏ | 1067207/4997817 [00:06&lt;00:22, 171496.74it/s]
+
21%|██▏ | 1073989/4997817 [00:06&lt;00:22, 171215.58it/s]

</pre>

-
21%|██▏ | 1067207/4997817 [00:06<00:22, 171496.74it/s]
+
21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]

end{sphinxVerbatim}

-

21%|██▏ | 1067207/4997817 [00:06<00:22, 171496.74it/s]

+

21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]

-
22%|██▏ | 1084358/4997817 [00:06&lt;00:22, 171268.82it/s]
+
22%|██▏ | 1091214/4997817 [00:06&lt;00:22, 171520.75it/s]

</pre>

-
22%|██▏ | 1084358/4997817 [00:06<00:22, 171268.82it/s]
+
22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1084358/4997817 [00:06<00:22, 171268.82it/s]

+

22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]

-
22%|██▏ | 1101486/4997817 [00:06&lt;00:22, 171044.54it/s]
+
22%|██▏ | 1108873/4997817 [00:06&lt;00:22, 173035.02it/s]

</pre>

-
22%|██▏ | 1101486/4997817 [00:06<00:22, 171044.54it/s]
+
22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1101486/4997817 [00:06<00:22, 171044.54it/s]

+

22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]

-
22%|██▏ | 1118591/4997817 [00:06&lt;00:22, 170922.72it/s]
+
23%|██▎ | 1126178/4997817 [00:06&lt;00:22, 173017.19it/s]

</pre>

-
22%|██▏ | 1118591/4997817 [00:06<00:22, 170922.72it/s]
+
23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1118591/4997817 [00:06<00:22, 170922.72it/s]

+

23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]

-
23%|██▎ | 1135684/4997817 [00:06&lt;00:22, 170420.58it/s]
+
23%|██▎ | 1143481/4997817 [00:06&lt;00:22, 172777.34it/s]

</pre>

-
23%|██▎ | 1135684/4997817 [00:06<00:22, 170420.58it/s]
+
23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1135684/4997817 [00:06<00:22, 170420.58it/s]

+

23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]

-
23%|██▎ | 1152727/4997817 [00:06&lt;00:22, 170051.09it/s]
+
23%|██▎ | 1160760/4997817 [00:06&lt;00:22, 172497.49it/s]

</pre>

-
23%|██▎ | 1152727/4997817 [00:06<00:22, 170051.09it/s]
+
23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1152727/4997817 [00:06<00:22, 170051.09it/s]

+

23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]

-
23%|██▎ | 1169733/4997817 [00:06&lt;00:22, 169752.62it/s]
+
24%|██▎ | 1178011/4997817 [00:06&lt;00:22, 172168.93it/s]

</pre>

-
23%|██▎ | 1169733/4997817 [00:06<00:22, 169752.62it/s]
+
24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1169733/4997817 [00:06<00:22, 169752.62it/s]

+

24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]

-
24%|██▎ | 1186709/4997817 [00:06&lt;00:22, 169681.27it/s]
+
24%|██▍ | 1195229/4997817 [00:06&lt;00:22, 171842.38it/s]

</pre>

-
24%|██▎ | 1186709/4997817 [00:06<00:22, 169681.27it/s]
+
24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]

end{sphinxVerbatim}

-

24%|██▎ | 1186709/4997817 [00:06<00:22, 169681.27it/s]

+

24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]

-
24%|██▍ | 1203678/4997817 [00:07&lt;00:22, 168904.33it/s]
+
24%|██▍ | 1212414/4997817 [00:07&lt;00:22, 171680.48it/s]

</pre>

-
24%|██▍ | 1203678/4997817 [00:07<00:22, 168904.33it/s]
+
24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1203678/4997817 [00:07<00:22, 168904.33it/s]

+

24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]

-
24%|██▍ | 1220652/4997817 [00:07&lt;00:22, 169150.94it/s]
+
25%|██▍ | 1229583/4997817 [00:07&lt;00:21, 171672.23it/s]

</pre>

-
24%|██▍ | 1220652/4997817 [00:07<00:22, 169150.94it/s]
+
25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1220652/4997817 [00:07<00:22, 169150.94it/s]

+

25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]

-
25%|██▍ | 1237634/4997817 [00:07&lt;00:22, 169345.74it/s]
+
25%|██▍ | 1246751/4997817 [00:07&lt;00:21, 171577.38it/s]

</pre>

-
25%|██▍ | 1237634/4997817 [00:07<00:22, 169345.74it/s]
+
25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1237634/4997817 [00:07<00:22, 169345.74it/s]

+

25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]

-
25%|██▌ | 1254570/4997817 [00:07&lt;00:22, 168349.15it/s]
+
25%|██▌ | 1263909/4997817 [00:07&lt;00:21, 170978.78it/s]

</pre>

-
25%|██▌ | 1254570/4997817 [00:07<00:22, 168349.15it/s]
+
25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1254570/4997817 [00:07<00:22, 168349.15it/s]

+

25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]

-
25%|██▌ | 1271732/4997817 [00:07&lt;00:22, 169320.67it/s]
+
26%|██▌ | 1281008/4997817 [00:07&lt;00:21, 170704.98it/s]

</pre>

-
25%|██▌ | 1271732/4997817 [00:07<00:22, 169320.67it/s]
+
26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1271732/4997817 [00:07<00:22, 169320.67it/s]

+

26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]

-
26%|██▌ | 1288750/4997817 [00:07&lt;00:21, 169571.98it/s]
+
26%|██▌ | 1298079/4997817 [00:07&lt;00:21, 170500.85it/s]

</pre>

-
26%|██▌ | 1288750/4997817 [00:07<00:21, 169571.98it/s]
+
26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1288750/4997817 [00:07<00:21, 169571.98it/s]

+

26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]

-
26%|██▌ | 1305766/4997817 [00:07&lt;00:21, 169742.82it/s]
+
26%|██▋ | 1315214/4997817 [00:07&lt;00:21, 170750.49it/s]

</pre>

-
26%|██▌ | 1305766/4997817 [00:07<00:21, 169742.82it/s]
+
26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1305766/4997817 [00:07<00:21, 169742.82it/s]

+

26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]

-
26%|██▋ | 1322775/4997817 [00:07&lt;00:21, 169844.98it/s]
+
27%|██▋ | 1332308/4997817 [00:07&lt;00:21, 170803.96it/s]

</pre>

-
26%|██▋ | 1322775/4997817 [00:07<00:21, 169844.98it/s]
+
27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]

end{sphinxVerbatim}

-

26%|██▋ | 1322775/4997817 [00:07<00:21, 169844.98it/s]

+

27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]

-
27%|██▋ | 1339793/4997817 [00:07&lt;00:21, 169941.26it/s]
+
27%|██▋ | 1349517/4997817 [00:07&lt;00:21, 171186.09it/s]

</pre>

-
27%|██▋ | 1339793/4997817 [00:07<00:21, 169941.26it/s]
+
27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1339793/4997817 [00:07<00:21, 169941.26it/s]

+

27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]

-
27%|██▋ | 1356788/4997817 [00:07&lt;00:21, 169935.91it/s]
+
27%|██▋ | 1366636/4997817 [00:07&lt;00:21, 166974.62it/s]

</pre>

-
27%|██▋ | 1356788/4997817 [00:07<00:21, 169935.91it/s]
+
27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1356788/4997817 [00:07<00:21, 169935.91it/s]

+

27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]

-
27%|██▋ | 1373885/4997817 [00:08&lt;00:21, 170242.78it/s]
+
28%|██▊ | 1383357/4997817 [00:08&lt;00:21, 165352.54it/s]

</pre>

-
27%|██▋ | 1373885/4997817 [00:08<00:21, 170242.78it/s]
+
28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1373885/4997817 [00:08<00:21, 170242.78it/s]

+

28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]

-
28%|██▊ | 1390910/4997817 [00:08&lt;00:21, 169776.77it/s]
+
28%|██▊ | 1400601/4997817 [00:08&lt;00:21, 167432.22it/s]

</pre>

-
28%|██▊ | 1390910/4997817 [00:08<00:21, 169776.77it/s]
+
28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1390910/4997817 [00:08<00:21, 169776.77it/s]

+

28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]

-
28%|██▊ | 1407889/4997817 [00:08&lt;00:21, 169776.41it/s]
+
28%|██▊ | 1417755/4997817 [00:08&lt;00:21, 168644.72it/s]

</pre>

-
28%|██▊ | 1407889/4997817 [00:08<00:21, 169776.41it/s]
+
28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1407889/4997817 [00:08<00:21, 169776.41it/s]

+

28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]

-
29%|██▊ | 1424867/4997817 [00:08&lt;00:21, 169328.10it/s]
+
29%|██▊ | 1434981/4997817 [00:08&lt;00:20, 169716.13it/s]

</pre>

-
29%|██▊ | 1424867/4997817 [00:08<00:21, 169328.10it/s]
+
29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]

end{sphinxVerbatim}

-

29%|██▊ | 1424867/4997817 [00:08<00:21, 169328.10it/s]

+

29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]

-
29%|██▉ | 1441920/4997817 [00:08&lt;00:20, 169683.76it/s]
+
29%|██▉ | 1452216/4997817 [00:08&lt;00:20, 170497.47it/s]

</pre>

-
29%|██▉ | 1441920/4997817 [00:08<00:20, 169683.76it/s]
+
29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1441920/4997817 [00:08<00:20, 169683.76it/s]

+

29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]

-
29%|██▉ | 1458889/4997817 [00:08&lt;00:20, 169554.49it/s]
+
29%|██▉ | 1469393/4997817 [00:08&lt;00:20, 170873.77it/s]

</pre>

-
29%|██▉ | 1458889/4997817 [00:08<00:20, 169554.49it/s]
+
29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1458889/4997817 [00:08<00:20, 169554.49it/s]

+

29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]

-
30%|██▉ | 1475845/4997817 [00:08&lt;00:20, 169207.98it/s]
+
30%|██▉ | 1486659/4997817 [00:08&lt;00:20, 171405.04it/s]

</pre>

-
30%|██▉ | 1475845/4997817 [00:08<00:20, 169207.98it/s]
+
30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1475845/4997817 [00:08<00:20, 169207.98it/s]

+

30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]

-
30%|██▉ | 1492767/4997817 [00:08&lt;00:20, 169207.52it/s]
+
30%|███ | 1503878/4997817 [00:08&lt;00:20, 171636.21it/s]

</pre>

-
30%|██▉ | 1492767/4997817 [00:08<00:20, 169207.52it/s]
+
30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1492767/4997817 [00:08<00:20, 169207.52it/s]

+

30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]

-
30%|███ | 1509688/4997817 [00:08&lt;00:20, 169069.76it/s]
+
30%|███ | 1521101/4997817 [00:08&lt;00:20, 171810.78it/s]

</pre>

-
30%|███ | 1509688/4997817 [00:08<00:20, 169069.76it/s]
+
30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]

end{sphinxVerbatim}

-

30%|███ | 1509688/4997817 [00:08<00:20, 169069.76it/s]

+

30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]

-
31%|███ | 1526596/4997817 [00:08&lt;00:20, 168995.55it/s]
+
31%|███ | 1538285/4997817 [00:08&lt;00:20, 171554.86it/s]

</pre>

-
31%|███ | 1526596/4997817 [00:08<00:20, 168995.55it/s]
+
31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]

end{sphinxVerbatim}

-

31%|███ | 1526596/4997817 [00:08<00:20, 168995.55it/s]

+

31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]

-
31%|███ | 1543496/4997817 [00:09&lt;00:20, 168767.01it/s]
+
31%|███ | 1555442/4997817 [00:09&lt;00:20, 171482.32it/s]

</pre>

-
31%|███ | 1543496/4997817 [00:09<00:20, 168767.01it/s]
+
31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]

end{sphinxVerbatim}

-

31%|███ | 1543496/4997817 [00:09<00:20, 168767.01it/s]

+

31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]

-
31%|███ | 1560373/4997817 [00:09&lt;00:20, 168411.56it/s]
+
31%|███▏ | 1572592/4997817 [00:09&lt;00:19, 171358.69it/s]

</pre>

-
31%|███ | 1560373/4997817 [00:09<00:20, 168411.56it/s]
+
31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]

end{sphinxVerbatim}

-

31%|███ | 1560373/4997817 [00:09<00:20, 168411.56it/s]

+

31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]

-
32%|███▏ | 1577215/4997817 [00:09&lt;00:20, 168093.60it/s]
+
32%|███▏ | 1589729/4997817 [00:09&lt;00:19, 171312.10it/s]

</pre>

-
32%|███▏ | 1577215/4997817 [00:09<00:20, 168093.60it/s]
+
32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1577215/4997817 [00:09<00:20, 168093.60it/s]

+

32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]

-
32%|███▏ | 1594025/4997817 [00:09&lt;00:20, 167736.99it/s]
+
32%|███▏ | 1606861/4997817 [00:09&lt;00:19, 171261.67it/s]

</pre>

-
32%|███▏ | 1594025/4997817 [00:09<00:20, 167736.99it/s]
+
32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1594025/4997817 [00:09<00:20, 167736.99it/s]

+

32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]

-
32%|███▏ | 1610799/4997817 [00:09&lt;00:20, 167579.26it/s]
+
32%|███▏ | 1623988/4997817 [00:09&lt;00:19, 170981.92it/s]

</pre>

-
32%|███▏ | 1610799/4997817 [00:09<00:20, 167579.26it/s]
+
32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1610799/4997817 [00:09<00:20, 167579.26it/s]

+

32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]

-
33%|███▎ | 1627581/4997817 [00:09&lt;00:20, 167648.89it/s]
+
33%|███▎ | 1641087/4997817 [00:09&lt;00:19, 170445.03it/s]

</pre>

-
33%|███▎ | 1627581/4997817 [00:09<00:20, 167648.89it/s]
+
33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1627581/4997817 [00:09<00:20, 167648.89it/s]

+

33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]

-
33%|███▎ | 1644346/4997817 [00:09&lt;00:20, 167601.44it/s]
+
33%|███▎ | 1658133/4997817 [00:09&lt;00:19, 170120.99it/s]

</pre>

-
33%|███▎ | 1644346/4997817 [00:09<00:20, 167601.44it/s]
+
33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1644346/4997817 [00:09<00:20, 167601.44it/s]

+

33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]

-
33%|███▎ | 1661107/4997817 [00:09&lt;00:19, 167408.64it/s]
+
34%|███▎ | 1675146/4997817 [00:09&lt;00:19, 170047.88it/s]

</pre>

-
33%|███▎ | 1661107/4997817 [00:09<00:19, 167408.64it/s]
+
34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1661107/4997817 [00:09<00:19, 167408.64it/s]

+

34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]

-
34%|███▎ | 1678158/4997817 [00:09&lt;00:19, 168332.79it/s]
+
34%|███▍ | 1692384/4997817 [00:09&lt;00:19, 170742.41it/s]

</pre>

-
34%|███▎ | 1678158/4997817 [00:09<00:19, 168332.79it/s]
+
34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]

end{sphinxVerbatim}

-

34%|███▎ | 1678158/4997817 [00:09<00:19, 168332.79it/s]

+

34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]

-
34%|███▍ | 1695148/4997817 [00:09&lt;00:19, 168799.16it/s]
+
34%|███▍ | 1709536/4997817 [00:09&lt;00:19, 170970.11it/s]

</pre>

-
34%|███▍ | 1695148/4997817 [00:09<00:19, 168799.16it/s]
+
34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1695148/4997817 [00:09<00:19, 168799.16it/s]

+

34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]

-
34%|███▍ | 1712162/4997817 [00:10&lt;00:19, 169197.65it/s]
+
35%|███▍ | 1726634/4997817 [00:10&lt;00:19, 167250.12it/s]

</pre>

-
34%|███▍ | 1712162/4997817 [00:10<00:19, 169197.65it/s]
+
35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1712162/4997817 [00:10<00:19, 169197.65it/s]

+

35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]

-
35%|███▍ | 1729082/4997817 [00:10&lt;00:19, 169086.37it/s]
+
35%|███▍ | 1743827/4997817 [00:10&lt;00:19, 168626.61it/s]

</pre>

-
35%|███▍ | 1729082/4997817 [00:10<00:19, 169086.37it/s]
+
35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1729082/4997817 [00:10<00:19, 169086.37it/s]

+

35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]

-
35%|███▍ | 1746091/4997817 [00:10&lt;00:19, 169383.58it/s]
+
35%|███▌ | 1761126/4997817 [00:10&lt;00:19, 169916.59it/s]

</pre>

-
35%|███▍ | 1746091/4997817 [00:10<00:19, 169383.58it/s]
+
35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1746091/4997817 [00:10<00:19, 169383.58it/s]

+

35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]

-
35%|███▌ | 1763030/4997817 [00:10&lt;00:19, 169294.56it/s]
+
36%|███▌ | 1778432/4997817 [00:10&lt;00:18, 170847.39it/s]

</pre>

-
35%|███▌ | 1763030/4997817 [00:10<00:19, 169294.56it/s]
+
36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1763030/4997817 [00:10<00:19, 169294.56it/s]

+

36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]

-
36%|███▌ | 1779986/4997817 [00:10&lt;00:18, 169370.78it/s]
+
36%|███▌ | 1795743/4997817 [00:10&lt;00:18, 171517.21it/s]

</pre>

-
36%|███▌ | 1779986/4997817 [00:10<00:18, 169370.78it/s]
+
36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1779986/4997817 [00:10<00:18, 169370.78it/s]

+

36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]

-
36%|███▌ | 1796940/4997817 [00:10&lt;00:18, 169415.99it/s]
+
36%|███▋ | 1813098/4997817 [00:10&lt;00:18, 172119.98it/s]

</pre>

-
36%|███▌ | 1796940/4997817 [00:10<00:18, 169415.99it/s]
+
36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1796940/4997817 [00:10<00:18, 169415.99it/s]

+

36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]

-
36%|███▋ | 1813941/4997817 [00:10&lt;00:18, 169588.95it/s]
+
37%|███▋ | 1830442/4997817 [00:10&lt;00:18, 172511.96it/s]

</pre>

-
36%|███▋ | 1813941/4997817 [00:10<00:18, 169588.95it/s]
+
37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]

end{sphinxVerbatim}

-

36%|███▋ | 1813941/4997817 [00:10<00:18, 169588.95it/s]

+

37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]

-
37%|███▋ | 1830917/4997817 [00:10&lt;00:18, 169635.93it/s]
+
37%|███▋ | 1847697/4997817 [00:10&lt;00:18, 172177.79it/s]

</pre>

-
37%|███▋ | 1830917/4997817 [00:10<00:18, 169635.93it/s]
+
37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1830917/4997817 [00:10<00:18, 169635.93it/s]

+

37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]

-
37%|███▋ | 1847932/4997817 [00:10&lt;00:18, 169786.39it/s]
+
37%|███▋ | 1864918/4997817 [00:10&lt;00:18, 171675.77it/s]

</pre>

-
37%|███▋ | 1847932/4997817 [00:10<00:18, 169786.39it/s]
+
37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1847932/4997817 [00:10<00:18, 169786.39it/s]

+

37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]

-
37%|███▋ | 1864911/4997817 [00:10&lt;00:18, 169662.56it/s]
+
38%|███▊ | 1882375/4997817 [00:10&lt;00:18, 172536.76it/s]

</pre>

-
37%|███▋ | 1864911/4997817 [00:10<00:18, 169662.56it/s]
+
38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1864911/4997817 [00:10<00:18, 169662.56it/s]

+

38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]

-
38%|███▊ | 1881878/4997817 [00:11&lt;00:18, 169612.46it/s]
+
38%|███▊ | 1899650/4997817 [00:11&lt;00:17, 172598.14it/s]

</pre>

-
38%|███▊ | 1881878/4997817 [00:11<00:18, 169612.46it/s]
+
38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1881878/4997817 [00:11<00:18, 169612.46it/s]

+

38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]

-
38%|███▊ | 1898840/4997817 [00:11&lt;00:18, 169466.51it/s]
+
38%|███▊ | 1916965/4997817 [00:11&lt;00:17, 172759.47it/s]

</pre>

-
38%|███▊ | 1898840/4997817 [00:11<00:18, 169466.51it/s]
+
38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1898840/4997817 [00:11<00:18, 169466.51it/s]

+

38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]

-
38%|███▊ | 1915967/4997817 [00:11&lt;00:18, 170001.55it/s]
+
39%|███▊ | 1934403/4997817 [00:11&lt;00:17, 173239.67it/s]

</pre>

-
38%|███▊ | 1915967/4997817 [00:11<00:18, 170001.55it/s]
+
39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1915967/4997817 [00:11<00:18, 170001.55it/s]

+

39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]

-
39%|███▊ | 1932968/4997817 [00:11&lt;00:18, 169939.64it/s]
+
39%|███▉ | 1951857/4997817 [00:11&lt;00:17, 173625.82it/s]

</pre>

-
39%|███▊ | 1932968/4997817 [00:11<00:18, 169939.64it/s]
+
39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]

end{sphinxVerbatim}

-

39%|███▊ | 1932968/4997817 [00:11<00:18, 169939.64it/s]

+

39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]

-
39%|███▉ | 1949963/4997817 [00:11&lt;00:17, 169565.43it/s]
+
39%|███▉ | 1969233/4997817 [00:11&lt;00:17, 173662.00it/s]

</pre>

-
39%|███▉ | 1949963/4997817 [00:11<00:17, 169565.43it/s]
+
39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1949963/4997817 [00:11<00:17, 169565.43it/s]

+

39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]

-
39%|███▉ | 1966920/4997817 [00:11&lt;00:17, 168922.06it/s]
+
40%|███▉ | 1986600/4997817 [00:11&lt;00:17, 173510.89it/s]

</pre>

-
39%|███▉ | 1966920/4997817 [00:11<00:17, 168922.06it/s]
+
40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1966920/4997817 [00:11<00:17, 168922.06it/s]

+

40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]

-
40%|███▉ | 1983850/4997817 [00:11&lt;00:17, 169030.80it/s]
+
40%|████ | 2003989/4997817 [00:11&lt;00:17, 173620.71it/s]

</pre>

-
40%|███▉ | 1983850/4997817 [00:11<00:17, 169030.80it/s]
+
40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1983850/4997817 [00:11<00:17, 169030.80it/s]

+

40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]

-
40%|████ | 2000770/4997817 [00:11&lt;00:17, 169076.88it/s]
+
40%|████ | 2021352/4997817 [00:11&lt;00:17, 172889.28it/s]

</pre>

-
40%|████ | 2000770/4997817 [00:11<00:17, 169076.88it/s]
+
40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]

end{sphinxVerbatim}

-

40%|████ | 2000770/4997817 [00:11<00:17, 169076.88it/s]

+

40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]

-
40%|████ | 2017733/4997817 [00:11&lt;00:17, 169238.17it/s]
+
41%|████ | 2038726/4997817 [00:11&lt;00:17, 173140.08it/s]

</pre>

-
40%|████ | 2017733/4997817 [00:11<00:17, 169238.17it/s]
+
41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]

end{sphinxVerbatim}

-

40%|████ | 2017733/4997817 [00:11<00:17, 169238.17it/s]

+

41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]

-
41%|████ | 2034658/4997817 [00:11&lt;00:17, 168730.09it/s]
+
41%|████ | 2056041/4997817 [00:11&lt;00:16, 173049.75it/s]

</pre>

-
41%|████ | 2034658/4997817 [00:11<00:17, 168730.09it/s]
+
41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]

end{sphinxVerbatim}

-

41%|████ | 2034658/4997817 [00:11<00:17, 168730.09it/s]

+

41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]

-
41%|████ | 2051532/4997817 [00:12&lt;00:17, 168386.60it/s]
+
41%|████▏ | 2073347/4997817 [00:12&lt;00:16, 172756.93it/s]

</pre>

-
41%|████ | 2051532/4997817 [00:12<00:17, 168386.60it/s]
+
41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]

end{sphinxVerbatim}

-

41%|████ | 2051532/4997817 [00:12<00:17, 168386.60it/s]

+

41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]

-
41%|████▏ | 2068372/4997817 [00:12&lt;00:17, 168018.51it/s]
+
42%|████▏ | 2090709/4997817 [00:12&lt;00:16, 173011.88it/s]

</pre>

-
41%|████▏ | 2068372/4997817 [00:12<00:17, 168018.51it/s]
+
42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]

end{sphinxVerbatim}

-

41%|████▏ | 2068372/4997817 [00:12<00:17, 168018.51it/s]

+

42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]

-
42%|████▏ | 2085260/4997817 [00:12&lt;00:17, 168270.79it/s]
+
42%|████▏ | 2108068/4997817 [00:12&lt;00:16, 173181.70it/s]

</pre>

-
42%|████▏ | 2085260/4997817 [00:12<00:17, 168270.79it/s]
+
42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2085260/4997817 [00:12<00:17, 168270.79it/s]

+

42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]

-
42%|████▏ | 2102088/4997817 [00:12&lt;00:17, 168030.44it/s]
+
43%|████▎ | 2125387/4997817 [00:12&lt;00:16, 172719.24it/s]

</pre>

-
42%|████▏ | 2102088/4997817 [00:12<00:17, 168030.44it/s]
+
43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2102088/4997817 [00:12<00:17, 168030.44it/s]

+

43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]

-
42%|████▏ | 2118962/4997817 [00:12&lt;00:17, 168240.31it/s]
+
43%|████▎ | 2142660/4997817 [00:12&lt;00:16, 172428.08it/s]

</pre>

-
42%|████▏ | 2118962/4997817 [00:12<00:17, 168240.31it/s]
+
43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2118962/4997817 [00:12<00:17, 168240.31it/s]

+

43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]

-
43%|████▎ | 2135787/4997817 [00:12&lt;00:17, 168132.74it/s]
+
43%|████▎ | 2159948/4997817 [00:12&lt;00:16, 172559.96it/s]

</pre>

-
43%|████▎ | 2135787/4997817 [00:12<00:17, 168132.74it/s]
+
43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2135787/4997817 [00:12<00:17, 168132.74it/s]

+

43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]

-
43%|████▎ | 2152601/4997817 [00:12&lt;00:16, 167646.09it/s]
+
44%|████▎ | 2177205/4997817 [00:12&lt;00:16, 172309.45it/s]

</pre>

-
43%|████▎ | 2152601/4997817 [00:12<00:16, 167646.09it/s]
+
44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2152601/4997817 [00:12<00:16, 167646.09it/s]

+

44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]

-
43%|████▎ | 2169423/4997817 [00:12&lt;00:16, 167813.54it/s]
+
44%|████▍ | 2194525/4997817 [00:12&lt;00:16, 172572.65it/s]

</pre>

-
43%|████▎ | 2169423/4997817 [00:12<00:16, 167813.54it/s]
+
44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2169423/4997817 [00:12<00:16, 167813.54it/s]

+

44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]

-
44%|████▎ | 2186297/4997817 [00:12&lt;00:16, 168085.58it/s]
+
44%|████▍ | 2211921/4997817 [00:12&lt;00:16, 172984.81it/s]

</pre>

-
44%|████▎ | 2186297/4997817 [00:12<00:16, 168085.58it/s]
+
44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]

end{sphinxVerbatim}

-

44%|████▎ | 2186297/4997817 [00:12<00:16, 168085.58it/s]

+

44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]

-
44%|████▍ | 2203175/4997817 [00:12&lt;00:16, 168289.27it/s]
+
45%|████▍ | 2229384/4997817 [00:12&lt;00:15, 173474.18it/s]

</pre>

-
44%|████▍ | 2203175/4997817 [00:12<00:16, 168289.27it/s]
+
45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2203175/4997817 [00:12<00:16, 168289.27it/s]

+

45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]

-
44%|████▍ | 2220005/4997817 [00:13&lt;00:16, 168276.19it/s]
+
45%|████▍ | 2246736/4997817 [00:13&lt;00:15, 173484.62it/s]

</pre>

-
44%|████▍ | 2220005/4997817 [00:13<00:16, 168276.19it/s]
+
45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2220005/4997817 [00:13<00:16, 168276.19it/s]

+

45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]

-
45%|████▍ | 2236833/4997817 [00:13&lt;00:16, 168121.20it/s]
+
45%|████▌ | 2264085/4997817 [00:13&lt;00:15, 173437.68it/s]

</pre>

-
45%|████▍ | 2236833/4997817 [00:13<00:16, 168121.20it/s]
+
45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2236833/4997817 [00:13<00:16, 168121.20it/s]

+

45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]

-
45%|████▌ | 2253646/4997817 [00:13&lt;00:16, 168054.37it/s]
+
46%|████▌ | 2281429/4997817 [00:13&lt;00:15, 173352.81it/s]

</pre>

-
45%|████▌ | 2253646/4997817 [00:13<00:16, 168054.37it/s]
+
46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2253646/4997817 [00:13<00:16, 168054.37it/s]

+

46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]

-
45%|████▌ | 2270452/4997817 [00:13&lt;00:16, 167426.00it/s]
+
46%|████▌ | 2298765/4997817 [00:13&lt;00:15, 173188.91it/s]

</pre>

-
45%|████▌ | 2270452/4997817 [00:13<00:16, 167426.00it/s]
+
46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2270452/4997817 [00:13<00:16, 167426.00it/s]

+

46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]

-
46%|████▌ | 2287196/4997817 [00:13&lt;00:16, 167340.06it/s]
+
46%|████▋ | 2316084/4997817 [00:13&lt;00:15, 172913.95it/s]

</pre>

-
46%|████▌ | 2287196/4997817 [00:13<00:16, 167340.06it/s]
+
46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2287196/4997817 [00:13<00:16, 167340.06it/s]

+

46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]

-
46%|████▌ | 2303931/4997817 [00:13&lt;00:16, 167280.92it/s]
+
47%|████▋ | 2333554/4997817 [00:13&lt;00:15, 173444.79it/s]

</pre>

-
46%|████▌ | 2303931/4997817 [00:13<00:16, 167280.92it/s]
+
47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2303931/4997817 [00:13<00:16, 167280.92it/s]

+

47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]

-
46%|████▋ | 2320696/4997817 [00:13&lt;00:15, 167387.15it/s]
+
47%|████▋ | 2351018/4997817 [00:13&lt;00:15, 173801.16it/s]

</pre>

-
46%|████▋ | 2320696/4997817 [00:13<00:15, 167387.15it/s]
+
47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]

end{sphinxVerbatim}

-

46%|████▋ | 2320696/4997817 [00:13<00:15, 167387.15it/s]

+

47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]

-
47%|████▋ | 2337572/4997817 [00:13&lt;00:15, 167794.33it/s]
+
47%|████▋ | 2368666/4997817 [00:13&lt;00:15, 174599.08it/s]

</pre>

-
47%|████▋ | 2337572/4997817 [00:13<00:15, 167794.33it/s]
+
47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2337572/4997817 [00:13<00:15, 167794.33it/s]

+

47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]

-
47%|████▋ | 2354510/4997817 [00:13&lt;00:15, 168265.82it/s]
+
48%|████▊ | 2386153/4997817 [00:13&lt;00:14, 174676.73it/s]

</pre>

-
47%|████▋ | 2354510/4997817 [00:13<00:15, 168265.82it/s]
+
48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2354510/4997817 [00:13<00:15, 168265.82it/s]

+

48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]

-
47%|████▋ | 2371337/4997817 [00:13&lt;00:15, 168146.95it/s]
+
48%|████▊ | 2403645/4997817 [00:13&lt;00:14, 174745.85it/s]

</pre>

-
47%|████▋ | 2371337/4997817 [00:13<00:15, 168146.95it/s]
+
48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2371337/4997817 [00:13<00:15, 168146.95it/s]

+

48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]

-
48%|████▊ | 2388246/4997817 [00:14&lt;00:15, 168426.12it/s]
+
48%|████▊ | 2421181/4997817 [00:14&lt;00:14, 174925.70it/s]

</pre>

-
48%|████▊ | 2388246/4997817 [00:14<00:15, 168426.12it/s]
+
48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2388246/4997817 [00:14<00:15, 168426.12it/s]

+

48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]

-
48%|████▊ | 2405089/4997817 [00:14&lt;00:15, 167971.38it/s]
+
49%|████▉ | 2438674/4997817 [00:14&lt;00:14, 174394.81it/s]

</pre>

-
48%|████▊ | 2405089/4997817 [00:14<00:15, 167971.38it/s]
+
49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2405089/4997817 [00:14<00:15, 167971.38it/s]

+

49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]

-
48%|████▊ | 2421887/4997817 [00:14&lt;00:15, 167875.18it/s]
+
49%|████▉ | 2456114/4997817 [00:14&lt;00:14, 174173.81it/s]

</pre>

-
48%|████▊ | 2421887/4997817 [00:14<00:15, 167875.18it/s]
+
49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2421887/4997817 [00:14<00:15, 167875.18it/s]

+

49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]

-
49%|████▉ | 2438756/4997817 [00:14&lt;00:15, 168116.52it/s]
+
49%|████▉ | 2473532/4997817 [00:14&lt;00:14, 174114.97it/s]

</pre>

-
49%|████▉ | 2438756/4997817 [00:14<00:15, 168116.52it/s]
+
49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2438756/4997817 [00:14<00:15, 168116.52it/s]

+

49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]

-
49%|████▉ | 2455622/4997817 [00:14&lt;00:15, 168275.76it/s]
+
50%|████▉ | 2490944/4997817 [00:14&lt;00:14, 173861.74it/s]

</pre>

-
49%|████▉ | 2455622/4997817 [00:14<00:15, 168275.76it/s]
+
50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2455622/4997817 [00:14<00:15, 168275.76it/s]

+

50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]

-
49%|████▉ | 2472450/4997817 [00:14&lt;00:15, 168246.55it/s]
+
50%|█████ | 2508369/4997817 [00:14&lt;00:14, 173973.76it/s]

</pre>

-
49%|████▉ | 2472450/4997817 [00:14<00:15, 168246.55it/s]
+
50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2472450/4997817 [00:14<00:15, 168246.55it/s]

+

50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]

-
50%|████▉ | 2489275/4997817 [00:14&lt;00:14, 168100.11it/s]
+
51%|█████ | 2525845/4997817 [00:14&lt;00:14, 174206.42it/s]

</pre>

-
50%|████▉ | 2489275/4997817 [00:14<00:14, 168100.11it/s]
+
51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2489275/4997817 [00:14<00:14, 168100.11it/s]

+

51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]

-
50%|█████ | 2506165/4997817 [00:14&lt;00:14, 168336.59it/s]
+
51%|█████ | 2543266/4997817 [00:14&lt;00:14, 174161.75it/s]

</pre>

-
50%|█████ | 2506165/4997817 [00:14<00:14, 168336.59it/s]
+
51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]

end{sphinxVerbatim}

-

50%|█████ | 2506165/4997817 [00:14<00:14, 168336.59it/s]

+

51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]

-
50%|█████ | 2523041/4997817 [00:14&lt;00:14, 168459.70it/s]
+
51%|█████ | 2560683/4997817 [00:14&lt;00:14, 174022.77it/s]

</pre>

-
50%|█████ | 2523041/4997817 [00:14<00:14, 168459.70it/s]
+
51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]

end{sphinxVerbatim}

-

50%|█████ | 2523041/4997817 [00:14<00:14, 168459.70it/s]

+

51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]

-
51%|█████ | 2539888/4997817 [00:14&lt;00:14, 168363.19it/s]
+
52%|█████▏ | 2578111/4997817 [00:14&lt;00:13, 174097.16it/s]

</pre>

-
51%|█████ | 2539888/4997817 [00:14<00:14, 168363.19it/s]
+
52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]

end{sphinxVerbatim}

-

51%|█████ | 2539888/4997817 [00:14<00:14, 168363.19it/s]

+

52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]

-
51%|█████ | 2556725/4997817 [00:15&lt;00:14, 168317.16it/s]
+
52%|█████▏ | 2595521/4997817 [00:15&lt;00:13, 173869.07it/s]

</pre>

-
51%|█████ | 2556725/4997817 [00:15<00:14, 168317.16it/s]
+
52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]

end{sphinxVerbatim}

-

51%|█████ | 2556725/4997817 [00:15<00:14, 168317.16it/s]

+

52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]

-
51%|█████▏ | 2573557/4997817 [00:15&lt;00:14, 168314.33it/s]
+
52%|█████▏ | 2612909/4997817 [00:15&lt;00:13, 173294.82it/s]

</pre>

-
51%|█████▏ | 2573557/4997817 [00:15<00:14, 168314.33it/s]
+
52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]

end{sphinxVerbatim}

-

51%|█████▏ | 2573557/4997817 [00:15<00:14, 168314.33it/s]

+

52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]

-
52%|█████▏ | 2590389/4997817 [00:15&lt;00:14, 168159.93it/s]
+
53%|█████▎ | 2630242/4997817 [00:15&lt;00:13, 173299.46it/s]

</pre>

-
52%|█████▏ | 2590389/4997817 [00:15<00:14, 168159.93it/s]
+
53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2590389/4997817 [00:15<00:14, 168159.93it/s]

+

53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]

-
52%|█████▏ | 2607206/4997817 [00:15&lt;00:14, 168024.45it/s]
+
53%|█████▎ | 2647637/4997817 [00:15&lt;00:13, 173488.50it/s]

</pre>

-
52%|█████▏ | 2607206/4997817 [00:15<00:14, 168024.45it/s]
+
53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2607206/4997817 [00:15<00:14, 168024.45it/s]

+

53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]

-
53%|█████▎ | 2624021/4997817 [00:15&lt;00:14, 168057.67it/s]
+
53%|█████▎ | 2664987/4997817 [00:15&lt;00:13, 173398.27it/s]

</pre>

-
53%|█████▎ | 2624021/4997817 [00:15<00:14, 168057.67it/s]
+
53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2624021/4997817 [00:15<00:14, 168057.67it/s]

+

53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]

-
53%|█████▎ | 2640827/4997817 [00:15&lt;00:14, 167450.44it/s]
+
54%|█████▎ | 2682372/4997817 [00:15&lt;00:13, 173528.92it/s]

</pre>

-
53%|█████▎ | 2640827/4997817 [00:15<00:14, 167450.44it/s]
+
54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2640827/4997817 [00:15<00:14, 167450.44it/s]

+

54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]

-
53%|█████▎ | 2657654/4997817 [00:15&lt;00:13, 167690.91it/s]
+
54%|█████▍ | 2699726/4997817 [00:15&lt;00:13, 173257.12it/s]

</pre>

-
53%|█████▎ | 2657654/4997817 [00:15<00:13, 167690.91it/s]
+
54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2657654/4997817 [00:15<00:13, 167690.91it/s]

+

54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]

-
54%|█████▎ | 2674611/4997817 [00:15&lt;00:13, 168247.89it/s]
+
54%|█████▍ | 2717059/4997817 [00:15&lt;00:13, 173274.78it/s]

</pre>

-
54%|█████▎ | 2674611/4997817 [00:15<00:13, 168247.89it/s]
+
54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]

end{sphinxVerbatim}

-

54%|█████▎ | 2674611/4997817 [00:15<00:13, 168247.89it/s]

+

54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]

-
54%|█████▍ | 2691437/4997817 [00:15&lt;00:13, 168060.02it/s]
+
55%|█████▍ | 2734428/4997817 [00:15&lt;00:13, 173396.38it/s]

</pre>

-
54%|█████▍ | 2691437/4997817 [00:15<00:13, 168060.02it/s]
+
55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2691437/4997817 [00:15<00:13, 168060.02it/s]

+

55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]

-
54%|█████▍ | 2708244/4997817 [00:15&lt;00:13, 167385.05it/s]
+
55%|█████▌ | 2751845/4997817 [00:15&lt;00:12, 173625.32it/s]

</pre>

-
54%|█████▍ | 2708244/4997817 [00:15<00:13, 167385.05it/s]
+
55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2708244/4997817 [00:15<00:13, 167385.05it/s]

+

55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]

-
55%|█████▍ | 2725000/4997817 [00:16&lt;00:13, 167432.83it/s]
+
55%|█████▌ | 2769208/4997817 [00:16&lt;00:12, 173567.59it/s]

</pre>

-
55%|█████▍ | 2725000/4997817 [00:16<00:13, 167432.83it/s]
+
55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2725000/4997817 [00:16<00:13, 167432.83it/s]

+

55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]

-
55%|█████▍ | 2741821/4997817 [00:16&lt;00:13, 167661.64it/s]
+
56%|█████▌ | 2786565/4997817 [00:16&lt;00:12, 173300.07it/s]

</pre>

-
55%|█████▍ | 2741821/4997817 [00:16<00:13, 167661.64it/s]
+
56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2741821/4997817 [00:16<00:13, 167661.64it/s]

+

56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]

-
55%|█████▌ | 2758588/4997817 [00:16&lt;00:13, 167266.26it/s]
+
56%|█████▌ | 2803896/4997817 [00:16&lt;00:12, 173040.50it/s]

</pre>

-
55%|█████▌ | 2758588/4997817 [00:16<00:13, 167266.26it/s]
+
56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2758588/4997817 [00:16<00:13, 167266.26it/s]

+

56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]

-
56%|█████▌ | 2775352/4997817 [00:16&lt;00:13, 167374.50it/s]
+
56%|█████▋ | 2821321/4997817 [00:16&lt;00:12, 173399.89it/s]

</pre>

-
56%|█████▌ | 2775352/4997817 [00:16<00:13, 167374.50it/s]
+
56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2775352/4997817 [00:16<00:13, 167374.50it/s]

+

56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]

-
56%|█████▌ | 2792090/4997817 [00:16&lt;00:13, 167063.45it/s]
+
57%|█████▋ | 2838662/4997817 [00:16&lt;00:12, 172859.42it/s]

</pre>

-
56%|█████▌ | 2792090/4997817 [00:16<00:13, 167063.45it/s]
+
57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2792090/4997817 [00:16<00:13, 167063.45it/s]

+

57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]

-
56%|█████▌ | 2808802/4997817 [00:16&lt;00:13, 167076.13it/s]
+
57%|█████▋ | 2855949/4997817 [00:16&lt;00:12, 172569.83it/s]

</pre>

-
56%|█████▌ | 2808802/4997817 [00:16<00:13, 167076.13it/s]
+
57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2808802/4997817 [00:16<00:13, 167076.13it/s]

+

57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]

-
57%|█████▋ | 2825510/4997817 [00:16&lt;00:13, 167042.04it/s]
+
57%|█████▋ | 2873207/4997817 [00:16&lt;00:12, 172224.29it/s]

</pre>

-
57%|█████▋ | 2825510/4997817 [00:16<00:13, 167042.04it/s]
+
57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2825510/4997817 [00:16<00:13, 167042.04it/s]

+

57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]

-
57%|█████▋ | 2842215/4997817 [00:16&lt;00:12, 166910.37it/s]
+
58%|█████▊ | 2890430/4997817 [00:16&lt;00:12, 172181.39it/s]

</pre>

-
57%|█████▋ | 2842215/4997817 [00:16<00:12, 166910.37it/s]
+
58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2842215/4997817 [00:16<00:12, 166910.37it/s]

+

58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]

-
57%|█████▋ | 2858913/4997817 [00:16&lt;00:12, 166926.75it/s]
+
58%|█████▊ | 2907649/4997817 [00:16&lt;00:12, 171902.40it/s]

</pre>

-
57%|█████▋ | 2858913/4997817 [00:16<00:12, 166926.75it/s]
+
58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2858913/4997817 [00:16<00:12, 166926.75it/s]

+

58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]

-
58%|█████▊ | 2875624/4997817 [00:16&lt;00:12, 166976.93it/s]
+
59%|█████▊ | 2924840/4997817 [00:16&lt;00:12, 171671.79it/s]

</pre>

-
58%|█████▊ | 2875624/4997817 [00:16<00:12, 166976.93it/s]
+
59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2875624/4997817 [00:16<00:12, 166976.93it/s]

+

59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]

-
58%|█████▊ | 2892322/4997817 [00:17&lt;00:12, 166542.29it/s]
+
59%|█████▉ | 2942008/4997817 [00:17&lt;00:11, 171384.08it/s]

</pre>

-
58%|█████▊ | 2892322/4997817 [00:17<00:12, 166542.29it/s]
+
59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2892322/4997817 [00:17<00:12, 166542.29it/s]

+

59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]

-
58%|█████▊ | 2909084/4997817 [00:17&lt;00:12, 166860.46it/s]
+
59%|█████▉ | 2959147/4997817 [00:17&lt;00:11, 170767.52it/s]

</pre>

-
58%|█████▊ | 2909084/4997817 [00:17<00:12, 166860.46it/s]
+
59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2909084/4997817 [00:17<00:12, 166860.46it/s]

+

59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]

-
59%|█████▊ | 2925771/4997817 [00:17&lt;00:12, 166846.81it/s]
+
60%|█████▉ | 2976284/4997817 [00:17&lt;00:11, 170944.14it/s]

</pre>

-
59%|█████▊ | 2925771/4997817 [00:17<00:12, 166846.81it/s]
+
60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]

end{sphinxVerbatim}

-

59%|█████▊ | 2925771/4997817 [00:17<00:12, 166846.81it/s]

+

60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]

-
59%|█████▉ | 2942500/4997817 [00:17&lt;00:12, 166975.59it/s]
+
60%|█████▉ | 2993383/4997817 [00:17&lt;00:11, 170955.10it/s]

</pre>

-
59%|█████▉ | 2942500/4997817 [00:17<00:12, 166975.59it/s]
+
60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2942500/4997817 [00:17<00:12, 166975.59it/s]

+

60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]

-
59%|█████▉ | 2959198/4997817 [00:17&lt;00:12, 166708.79it/s]
+
60%|██████ | 3010479/4997817 [00:17&lt;00:11, 170751.69it/s]

</pre>

-
59%|█████▉ | 2959198/4997817 [00:17<00:12, 166708.79it/s]
+
60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2959198/4997817 [00:17<00:12, 166708.79it/s]

+

60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]

-
60%|█████▉ | 2975877/4997817 [00:17&lt;00:12, 166728.16it/s]
+
61%|██████ | 3027555/4997817 [00:17&lt;00:11, 169701.03it/s]

</pre>

-
60%|█████▉ | 2975877/4997817 [00:17<00:12, 166728.16it/s]
+
61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2975877/4997817 [00:17<00:12, 166728.16it/s]

+

61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]

-
60%|█████▉ | 2992600/4997817 [00:17&lt;00:12, 166874.28it/s]
+
61%|██████ | 3044709/4997817 [00:17&lt;00:11, 170245.53it/s]

</pre>

-
60%|█████▉ | 2992600/4997817 [00:17<00:12, 166874.28it/s]
+
61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2992600/4997817 [00:17<00:12, 166874.28it/s]

+

61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]

-
60%|██████ | 3009402/4997817 [00:17&lt;00:11, 167212.72it/s]
+
61%|██████▏ | 3061914/4997817 [00:17&lt;00:11, 170780.70it/s]

</pre>

-
60%|██████ | 3009402/4997817 [00:17<00:11, 167212.72it/s]
+
61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]

end{sphinxVerbatim}

-

60%|██████ | 3009402/4997817 [00:17<00:11, 167212.72it/s]

+

61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]

-
61%|██████ | 3026124/4997817 [00:17&lt;00:11, 166887.50it/s]
+
62%|██████▏ | 3079054/4997817 [00:17&lt;00:11, 170963.30it/s]

</pre>

-
61%|██████ | 3026124/4997817 [00:17<00:11, 166887.50it/s]
+
62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]

end{sphinxVerbatim}

-

61%|██████ | 3026124/4997817 [00:17<00:11, 166887.50it/s]

+

62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]

-
61%|██████ | 3042813/4997817 [00:17&lt;00:11, 166464.96it/s]
+
62%|██████▏ | 3096212/4997817 [00:17&lt;00:11, 171145.64it/s]

</pre>

-
61%|██████ | 3042813/4997817 [00:17<00:11, 166464.96it/s]
+
62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]

end{sphinxVerbatim}

-

61%|██████ | 3042813/4997817 [00:17<00:11, 166464.96it/s]

+

62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]

-
61%|██████ | 3059512/4997817 [00:18&lt;00:11, 166617.29it/s]
+
62%|██████▏ | 3113415/4997817 [00:18&lt;00:10, 171405.70it/s]

</pre>

-
61%|██████ | 3059512/4997817 [00:18<00:11, 166617.29it/s]
+
62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]

end{sphinxVerbatim}

-

61%|██████ | 3059512/4997817 [00:18<00:11, 166617.29it/s]

+

62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]

-
62%|██████▏ | 3076399/4997817 [00:18&lt;00:11, 167287.27it/s]
+
63%|██████▎ | 3130557/4997817 [00:18&lt;00:11, 163730.19it/s]

</pre>

-
62%|██████▏ | 3076399/4997817 [00:18<00:11, 167287.27it/s]
+
63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3076399/4997817 [00:18<00:11, 167287.27it/s]

+

63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]

-
62%|██████▏ | 3093129/4997817 [00:18&lt;00:11, 167242.52it/s]
+
63%|██████▎ | 3147711/4997817 [00:18&lt;00:11, 165993.75it/s]

</pre>

-
62%|██████▏ | 3093129/4997817 [00:18<00:11, 167242.52it/s]
+
63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3093129/4997817 [00:18<00:11, 167242.52it/s]

+

63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]

-
62%|██████▏ | 3109854/4997817 [00:18&lt;00:11, 164570.09it/s]
+
63%|██████▎ | 3164858/4997817 [00:18&lt;00:10, 167595.36it/s]

</pre>

-
62%|██████▏ | 3109854/4997817 [00:18<00:11, 164570.09it/s]
+
63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3109854/4997817 [00:18<00:11, 164570.09it/s]

+

63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]

-
63%|██████▎ | 3127061/4997817 [00:18&lt;00:11, 166789.86it/s]
+
64%|██████▎ | 3182091/4997817 [00:18&lt;00:10, 168989.18it/s]

</pre>

-
63%|██████▎ | 3127061/4997817 [00:18<00:11, 166789.86it/s]
+
64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3127061/4997817 [00:18<00:11, 166789.86it/s]

+

64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]

-
63%|██████▎ | 3144295/4997817 [00:18&lt;00:11, 168437.03it/s]
+
64%|██████▍ | 3199280/4997817 [00:18&lt;00:10, 169848.21it/s]

</pre>

-
63%|██████▎ | 3144295/4997817 [00:18<00:11, 168437.03it/s]
+
64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3144295/4997817 [00:18<00:11, 168437.03it/s]

+

64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]

-
63%|██████▎ | 3161147/4997817 [00:18&lt;00:10, 168085.75it/s]
+
64%|██████▍ | 3216488/4997817 [00:18&lt;00:10, 170509.03it/s]

</pre>

-
63%|██████▎ | 3161147/4997817 [00:18<00:10, 168085.75it/s]
+
64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3161147/4997817 [00:18<00:10, 168085.75it/s]

+

64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]

-
64%|██████▎ | 3178372/4997817 [00:18&lt;00:10, 169324.97it/s]
+
65%|██████▍ | 3233615/4997817 [00:18&lt;00:10, 170733.77it/s]

</pre>

-
64%|██████▎ | 3178372/4997817 [00:18<00:10, 169324.97it/s]
+
65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]

end{sphinxVerbatim}

-

64%|██████▎ | 3178372/4997817 [00:18<00:10, 169324.97it/s]

+

65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]

-
64%|██████▍ | 3195555/4997817 [00:18&lt;00:10, 170071.05it/s]
+
65%|██████▌ | 3250701/4997817 [00:18&lt;00:10, 170719.85it/s]

</pre>

-
64%|██████▍ | 3195555/4997817 [00:18<00:10, 170071.05it/s]
+
65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3195555/4997817 [00:18<00:10, 170071.05it/s]

+

65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]

-
64%|██████▍ | 3212860/4997817 [00:18&lt;00:10, 170957.60it/s]
+
65%|██████▌ | 3267782/4997817 [00:18&lt;00:10, 170590.66it/s]

</pre>

-
64%|██████▍ | 3212860/4997817 [00:18<00:10, 170957.60it/s]
+
65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3212860/4997817 [00:18<00:10, 170957.60it/s]

+

65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]

-
65%|██████▍ | 3230096/4997817 [00:19&lt;00:10, 171374.10it/s]
+
66%|██████▌ | 3284892/4997817 [00:19&lt;00:10, 170740.17it/s]

</pre>

-
65%|██████▍ | 3230096/4997817 [00:19<00:10, 171374.10it/s]
+
66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3230096/4997817 [00:19<00:10, 171374.10it/s]

+

66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]

-
65%|██████▍ | 3247326/4997817 [00:19&lt;00:10, 171646.00it/s]
+
66%|██████▌ | 3301991/4997817 [00:19&lt;00:09, 170812.71it/s]

</pre>

-
65%|██████▍ | 3247326/4997817 [00:19<00:10, 171646.00it/s]
+
66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3247326/4997817 [00:19<00:10, 171646.00it/s]

+

66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]

-
65%|██████▌ | 3264493/4997817 [00:19&lt;00:10, 171542.68it/s]
+
66%|██████▋ | 3319326/4997817 [00:19&lt;00:09, 171568.86it/s]

</pre>

-
65%|██████▌ | 3264493/4997817 [00:19<00:10, 171542.68it/s]
+
66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3264493/4997817 [00:19<00:10, 171542.68it/s]

+

66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]

-
66%|██████▌ | 3281649/4997817 [00:19&lt;00:10, 171525.74it/s]
+
67%|██████▋ | 3336579/4997817 [00:19&lt;00:09, 171854.27it/s]

</pre>

-
66%|██████▌ | 3281649/4997817 [00:19<00:10, 171525.74it/s]
+
67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3281649/4997817 [00:19<00:10, 171525.74it/s]

+

67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]

-
66%|██████▌ | 3298803/4997817 [00:19&lt;00:09, 171132.61it/s]
+
67%|██████▋ | 3353840/4997817 [00:19&lt;00:09, 172075.47it/s]

</pre>

-
66%|██████▌ | 3298803/4997817 [00:19<00:09, 171132.61it/s]
+
67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3298803/4997817 [00:19<00:09, 171132.61it/s]

+

67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]

-
66%|██████▋ | 3315917/4997817 [00:19&lt;00:09, 170861.86it/s]
+
67%|██████▋ | 3371135/4997817 [00:19&lt;00:09, 172332.57it/s]

</pre>

-
66%|██████▋ | 3315917/4997817 [00:19<00:09, 170861.86it/s]
+
67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]

end{sphinxVerbatim}

-

66%|██████▋ | 3315917/4997817 [00:19<00:09, 170861.86it/s]

+

67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]

-
67%|██████▋ | 3333004/4997817 [00:19&lt;00:09, 170374.69it/s]
+
68%|██████▊ | 3388521/4997817 [00:19&lt;00:09, 172784.75it/s]

</pre>

-
67%|██████▋ | 3333004/4997817 [00:19<00:09, 170374.69it/s]
+
68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3333004/4997817 [00:19<00:09, 170374.69it/s]

+

68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]

-
67%|██████▋ | 3350043/4997817 [00:19&lt;00:09, 170335.87it/s]
+
68%|██████▊ | 3405882/4997817 [00:19&lt;00:09, 173027.35it/s]

</pre>

-
67%|██████▋ | 3350043/4997817 [00:19<00:09, 170335.87it/s]
+
68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3350043/4997817 [00:19<00:09, 170335.87it/s]

+

68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]

-
67%|██████▋ | 3367100/4997817 [00:19&lt;00:09, 170400.36it/s]
+
68%|██████▊ | 3423271/4997817 [00:19&lt;00:09, 173281.06it/s]

</pre>

-
67%|██████▋ | 3367100/4997817 [00:19<00:09, 170400.36it/s]
+
68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3367100/4997817 [00:19<00:09, 170400.36it/s]

+

68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]

-
68%|██████▊ | 3384218/4997817 [00:19&lt;00:09, 170631.02it/s]
+
69%|██████▉ | 3440656/4997817 [00:19&lt;00:08, 173448.16it/s]

</pre>

-
68%|██████▊ | 3384218/4997817 [00:19<00:09, 170631.02it/s]
+
69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3384218/4997817 [00:19<00:09, 170631.02it/s]

+

69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]

-
68%|██████▊ | 3401284/4997817 [00:20&lt;00:09, 170636.34it/s]
+
69%|██████▉ | 3458002/4997817 [00:20&lt;00:08, 173131.70it/s]

</pre>

-
68%|██████▊ | 3401284/4997817 [00:20<00:09, 170636.34it/s]
+
69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3401284/4997817 [00:20<00:09, 170636.34it/s]

+

69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]

-
68%|██████▊ | 3418357/4997817 [00:20&lt;00:09, 170658.72it/s]
+
70%|██████▉ | 3475316/4997817 [00:20&lt;00:08, 173016.71it/s]

</pre>

-
68%|██████▊ | 3418357/4997817 [00:20<00:09, 170658.72it/s]
+
70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3418357/4997817 [00:20<00:09, 170658.72it/s]

+

70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]

-
69%|██████▊ | 3435515/4997817 [00:20&lt;00:09, 170931.41it/s]
+
70%|██████▉ | 3492618/4997817 [00:20&lt;00:09, 165765.34it/s]

</pre>

-
69%|██████▊ | 3435515/4997817 [00:20<00:09, 170931.41it/s]
+
70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]

end{sphinxVerbatim}

-

69%|██████▊ | 3435515/4997817 [00:20<00:09, 170931.41it/s]

+

70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]

-
69%|██████▉ | 3452609/4997817 [00:20&lt;00:09, 163949.22it/s]
+
70%|███████ | 3509821/4997817 [00:20&lt;00:08, 167583.58it/s]

</pre>

-
69%|██████▉ | 3452609/4997817 [00:20<00:09, 163949.22it/s]
+
70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3452609/4997817 [00:20<00:09, 163949.22it/s]

+

70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]

-
69%|██████▉ | 3469894/4997817 [00:20&lt;00:09, 166538.18it/s]
+
71%|███████ | 3527050/4997817 [00:20&lt;00:08, 168961.35it/s]

</pre>

-
69%|██████▉ | 3469894/4997817 [00:20<00:09, 166538.18it/s]
+
71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3469894/4997817 [00:20<00:09, 166538.18it/s]

+

71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]

-
70%|██████▉ | 3486928/4997817 [00:20&lt;00:09, 167650.09it/s]
+
71%|███████ | 3544520/4997817 [00:20&lt;00:08, 170652.18it/s]

</pre>

-
70%|██████▉ | 3486928/4997817 [00:20<00:09, 167650.09it/s]
+
71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3486928/4997817 [00:20<00:09, 167650.09it/s]

+

71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]

-
70%|███████ | 3503919/4997817 [00:20&lt;00:08, 168314.40it/s]
+
71%|███████▏ | 3561999/4997817 [00:20&lt;00:08, 171875.08it/s]

</pre>

-
70%|███████ | 3503919/4997817 [00:20<00:08, 168314.40it/s]
+
71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]

end{sphinxVerbatim}

-

70%|███████ | 3503919/4997817 [00:20<00:08, 168314.40it/s]

+

71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]

-
70%|███████ | 3520963/4997817 [00:20&lt;00:08, 168940.54it/s]
+
72%|███████▏ | 3579426/4997817 [00:20&lt;00:08, 172585.21it/s]

</pre>

-
70%|███████ | 3520963/4997817 [00:20<00:08, 168940.54it/s]
+
72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]

end{sphinxVerbatim}

-

70%|███████ | 3520963/4997817 [00:20<00:08, 168940.54it/s]

+

72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]

-
71%|███████ | 3538111/4997817 [00:20&lt;00:08, 169693.53it/s]
+
72%|███████▏ | 3596925/4997817 [00:20&lt;00:08, 173300.62it/s]

</pre>

-
71%|███████ | 3538111/4997817 [00:20<00:08, 169693.53it/s]
+
72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]

end{sphinxVerbatim}

-

71%|███████ | 3538111/4997817 [00:20<00:08, 169693.53it/s]

+

72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]

-
71%|███████ | 3555434/4997817 [00:20&lt;00:08, 170745.59it/s]
+
72%|███████▏ | 3614455/4997817 [00:21&lt;00:07, 173894.52it/s]

</pre>

-
71%|███████ | 3555434/4997817 [00:20<00:08, 170745.59it/s]
+
72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]

end{sphinxVerbatim}

-

71%|███████ | 3555434/4997817 [00:20<00:08, 170745.59it/s]

+

72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]

-
71%|███████▏ | 3572660/4997817 [00:21&lt;00:08, 171192.35it/s]
+
73%|███████▎ | 3632081/4997817 [00:21&lt;00:07, 174596.73it/s]

</pre>

-
71%|███████▏ | 3572660/4997817 [00:21<00:08, 171192.35it/s]
+
73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]

end{sphinxVerbatim}

-

71%|███████▏ | 3572660/4997817 [00:21<00:08, 171192.35it/s]

+

73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]

-
72%|███████▏ | 3590030/4997817 [00:21&lt;00:08, 171938.61it/s]
+
73%|███████▎ | 3649547/4997817 [00:21&lt;00:07, 174498.75it/s]

</pre>

-
72%|███████▏ | 3590030/4997817 [00:21<00:08, 171938.61it/s]
+
73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3590030/4997817 [00:21<00:08, 171938.61it/s]

+

73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]

-
72%|███████▏ | 3607303/4997817 [00:21&lt;00:08, 172172.46it/s]
+
73%|███████▎ | 3667092/4997817 [00:21&lt;00:07, 174781.42it/s]

</pre>

-
72%|███████▏ | 3607303/4997817 [00:21<00:08, 172172.46it/s]
+
73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3607303/4997817 [00:21<00:08, 172172.46it/s]

+

73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]

-
73%|███████▎ | 3624594/4997817 [00:21&lt;00:07, 172387.33it/s]
+
74%|███████▎ | 3684574/4997817 [00:21&lt;00:07, 174323.55it/s]

</pre>

-
73%|███████▎ | 3624594/4997817 [00:21<00:07, 172387.33it/s]
+
74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3624594/4997817 [00:21<00:07, 172387.33it/s]

+

74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]

-
73%|███████▎ | 3641836/4997817 [00:21&lt;00:07, 171859.14it/s]
+
74%|███████▍ | 3702009/4997817 [00:21&lt;00:07, 174312.24it/s]

</pre>

-
73%|███████▎ | 3641836/4997817 [00:21<00:07, 171859.14it/s]
+
74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3641836/4997817 [00:21<00:07, 171859.14it/s]

+

74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]

-
73%|███████▎ | 3659025/4997817 [00:21&lt;00:07, 171633.99it/s]
+
74%|███████▍ | 3719522/4997817 [00:21&lt;00:07, 174553.76it/s]

</pre>

-
73%|███████▎ | 3659025/4997817 [00:21<00:07, 171633.99it/s]
+
74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3659025/4997817 [00:21<00:07, 171633.99it/s]

+

74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]

-
74%|███████▎ | 3676190/4997817 [00:21&lt;00:07, 171400.84it/s]
+
75%|███████▍ | 3736979/4997817 [00:21&lt;00:07, 174483.40it/s]

</pre>

-
74%|███████▎ | 3676190/4997817 [00:21<00:07, 171400.84it/s]
+
75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]

end{sphinxVerbatim}

-

74%|███████▎ | 3676190/4997817 [00:21<00:07, 171400.84it/s]

+

75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]

-
74%|███████▍ | 3693332/4997817 [00:21&lt;00:07, 171243.48it/s]
+
75%|███████▌ | 3754510/4997817 [00:21&lt;00:07, 174726.49it/s]

</pre>

-
74%|███████▍ | 3693332/4997817 [00:21<00:07, 171243.48it/s]
+
75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3693332/4997817 [00:21<00:07, 171243.48it/s]

+

75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]

-
74%|███████▍ | 3710458/4997817 [00:21&lt;00:07, 171013.54it/s]
+
75%|███████▌ | 3772090/4997817 [00:21&lt;00:07, 175044.92it/s]

</pre>

-
74%|███████▍ | 3710458/4997817 [00:21<00:07, 171013.54it/s]
+
75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3710458/4997817 [00:21<00:07, 171013.54it/s]

+

75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]

-
75%|███████▍ | 3727633/4997817 [00:21&lt;00:07, 171229.98it/s]
+
76%|███████▌ | 3789595/4997817 [00:22&lt;00:06, 174949.83it/s]

</pre>

-
75%|███████▍ | 3727633/4997817 [00:21<00:07, 171229.98it/s]
+
76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3727633/4997817 [00:21<00:07, 171229.98it/s]

+

76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]

-
75%|███████▍ | 3744757/4997817 [00:22&lt;00:07, 171012.21it/s]
+
76%|███████▌ | 3807095/4997817 [00:22&lt;00:06, 174961.17it/s]

</pre>

-
75%|███████▍ | 3744757/4997817 [00:22<00:07, 171012.21it/s]
+
76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3744757/4997817 [00:22<00:07, 171012.21it/s]

+

76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]

-
75%|███████▌ | 3761899/4997817 [00:22&lt;00:07, 171129.30it/s]
+
77%|███████▋ | 3824592/4997817 [00:22&lt;00:06, 174435.55it/s]

</pre>

-
75%|███████▌ | 3761899/4997817 [00:22<00:07, 171129.30it/s]
+
77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3761899/4997817 [00:22<00:07, 171129.30it/s]

+

77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]

-
76%|███████▌ | 3779084/4997817 [00:22&lt;00:07, 171340.31it/s]
+
77%|███████▋ | 3842037/4997817 [00:22&lt;00:06, 166864.23it/s]

</pre>

-
76%|███████▌ | 3779084/4997817 [00:22<00:07, 171340.31it/s]
+
77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3779084/4997817 [00:22<00:07, 171340.31it/s]

+

77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]

-
76%|███████▌ | 3796219/4997817 [00:22&lt;00:07, 167422.50it/s]
+
77%|███████▋ | 3859405/4997817 [00:22&lt;00:06, 168839.77it/s]

</pre>

-
76%|███████▌ | 3796219/4997817 [00:22<00:07, 167422.50it/s]
+
77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3796219/4997817 [00:22<00:07, 167422.50it/s]

+

77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]

-
76%|███████▋ | 3813525/4997817 [00:22&lt;00:07, 169081.57it/s]
+
78%|███████▊ | 3876822/4997817 [00:22&lt;00:06, 170399.10it/s]

</pre>

-
76%|███████▋ | 3813525/4997817 [00:22<00:07, 169081.57it/s]
+
78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]

end{sphinxVerbatim}

-

76%|███████▋ | 3813525/4997817 [00:22<00:07, 169081.57it/s]

+

78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]

-
77%|███████▋ | 3830826/4997817 [00:22&lt;00:06, 170242.46it/s]
+
78%|███████▊ | 3894424/4997817 [00:22&lt;00:06, 172056.34it/s]

</pre>

-
77%|███████▋ | 3830826/4997817 [00:22<00:06, 170242.46it/s]
+
78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3830826/4997817 [00:22<00:06, 170242.46it/s]

+

78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]

-
77%|███████▋ | 3847923/4997817 [00:22&lt;00:06, 170454.10it/s]
+
78%|███████▊ | 3911949/4997817 [00:22&lt;00:06, 172999.62it/s]

</pre>

-
77%|███████▋ | 3847923/4997817 [00:22<00:06, 170454.10it/s]
+
78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3847923/4997817 [00:22<00:06, 170454.10it/s]

+

78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]

-
77%|███████▋ | 3865103/4997817 [00:22&lt;00:06, 170852.37it/s]
+
79%|███████▊ | 3929356/4997817 [00:22&lt;00:06, 173315.74it/s]

</pre>

-
77%|███████▋ | 3865103/4997817 [00:22<00:06, 170852.37it/s]
+
79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3865103/4997817 [00:22<00:06, 170852.37it/s]

+

79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]

-
78%|███████▊ | 3882263/4997817 [00:22&lt;00:06, 171072.12it/s]
+
79%|███████▉ | 3946836/4997817 [00:22&lt;00:06, 173753.24it/s]

</pre>

-
78%|███████▊ | 3882263/4997817 [00:22<00:06, 171072.12it/s]
+
79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3882263/4997817 [00:22<00:06, 171072.12it/s]

+

79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]

-
78%|███████▊ | 3899433/4997817 [00:22&lt;00:06, 171255.46it/s]
+
79%|███████▉ | 3964224/4997817 [00:23&lt;00:05, 173621.71it/s]

</pre>

-
78%|███████▊ | 3899433/4997817 [00:22<00:06, 171255.46it/s]
+
79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3899433/4997817 [00:22<00:06, 171255.46it/s]

+

79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]

-
78%|███████▊ | 3916562/4997817 [00:23&lt;00:06, 170928.63it/s]
+
80%|███████▉ | 3981595/4997817 [00:23&lt;00:05, 173277.02it/s]

</pre>

-
78%|███████▊ | 3916562/4997817 [00:23<00:06, 170928.63it/s]
+
80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3916562/4997817 [00:23<00:06, 170928.63it/s]

+

80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]

-
79%|███████▊ | 3933884/4997817 [00:23&lt;00:06, 171610.47it/s]
+
80%|████████ | 3998970/4997817 [00:23&lt;00:05, 173415.32it/s]

</pre>

-
79%|███████▊ | 3933884/4997817 [00:23<00:06, 171610.47it/s]
+
80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]

end{sphinxVerbatim}

-

79%|███████▊ | 3933884/4997817 [00:23<00:06, 171610.47it/s]

+

80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]

-
79%|███████▉ | 3951103/4997817 [00:23&lt;00:06, 171779.99it/s]
+
80%|████████ | 4016316/4997817 [00:23&lt;00:05, 172667.73it/s]

</pre>

-
79%|███████▉ | 3951103/4997817 [00:23<00:06, 171779.99it/s]
+
80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3951103/4997817 [00:23<00:06, 171779.99it/s]

+

80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]

-
79%|███████▉ | 3968283/4997817 [00:23&lt;00:05, 171759.78it/s]
+
81%|████████ | 4033587/4997817 [00:23&lt;00:05, 172523.73it/s]

</pre>

-
79%|███████▉ | 3968283/4997817 [00:23<00:05, 171759.78it/s]
+
81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3968283/4997817 [00:23<00:05, 171759.78it/s]

+

81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]

-
80%|███████▉ | 3985460/4997817 [00:23&lt;00:05, 171748.29it/s]
+
81%|████████ | 4050842/4997817 [00:23&lt;00:05, 172384.77it/s]

</pre>

-
80%|███████▉ | 3985460/4997817 [00:23<00:05, 171748.29it/s]
+
81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3985460/4997817 [00:23<00:05, 171748.29it/s]

+

81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]

-
80%|████████ | 4002799/4997817 [00:23&lt;00:05, 172236.63it/s]
+
81%|████████▏ | 4068083/4997817 [00:23&lt;00:05, 171361.88it/s]

</pre>

-
80%|████████ | 4002799/4997817 [00:23<00:05, 172236.63it/s]
+
81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]

end{sphinxVerbatim}

-

80%|████████ | 4002799/4997817 [00:23<00:05, 172236.63it/s]

+

81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]

-
80%|████████ | 4020024/4997817 [00:23&lt;00:05, 172120.48it/s]
+
82%|████████▏ | 4085389/4997817 [00:23&lt;00:05, 171865.91it/s]

</pre>

-
80%|████████ | 4020024/4997817 [00:23<00:05, 172120.48it/s]
+
82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]

end{sphinxVerbatim}

-

80%|████████ | 4020024/4997817 [00:23<00:05, 172120.48it/s]

+

82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]

-
81%|████████ | 4037255/4997817 [00:23&lt;00:05, 172171.92it/s]
+
82%|████████▏ | 4102681/4997817 [00:23&lt;00:05, 172176.42it/s]

</pre>

-
81%|████████ | 4037255/4997817 [00:23<00:05, 172171.92it/s]
+
82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]

end{sphinxVerbatim}

-

81%|████████ | 4037255/4997817 [00:23<00:05, 172171.92it/s]

+

82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]

-
81%|████████ | 4054562/4997817 [00:23&lt;00:05, 172438.26it/s]
+
82%|████████▏ | 4120022/4997817 [00:23&lt;00:05, 172542.13it/s]

</pre>

-
81%|████████ | 4054562/4997817 [00:23<00:05, 172438.26it/s]
+
82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]

end{sphinxVerbatim}

-

81%|████████ | 4054562/4997817 [00:23<00:05, 172438.26it/s]

+

82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]

-
81%|████████▏ | 4071846/4997817 [00:23&lt;00:05, 172553.59it/s]
+
83%|████████▎ | 4137278/4997817 [00:24&lt;00:04, 172439.36it/s]

</pre>

-
81%|████████▏ | 4071846/4997817 [00:23<00:05, 172553.59it/s]
+
83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]

end{sphinxVerbatim}

-

81%|████████▏ | 4071846/4997817 [00:23<00:05, 172553.59it/s]

+

83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]

-
82%|████████▏ | 4089102/4997817 [00:24&lt;00:05, 172236.48it/s]
+
83%|████████▎ | 4154574/4997817 [00:24&lt;00:04, 172592.57it/s]

</pre>

-
82%|████████▏ | 4089102/4997817 [00:24<00:05, 172236.48it/s]
+
83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4089102/4997817 [00:24<00:05, 172236.48it/s]

+

83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]

-
82%|████████▏ | 4106326/4997817 [00:24&lt;00:05, 172177.95it/s]
+
83%|████████▎ | 4171871/4997817 [00:24&lt;00:04, 172702.85it/s]

</pre>

-
82%|████████▏ | 4106326/4997817 [00:24<00:05, 172177.95it/s]
+
83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4106326/4997817 [00:24<00:05, 172177.95it/s]

+

83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]

-
83%|████████▎ | 4123603/4997817 [00:24&lt;00:05, 172350.70it/s]
+
84%|████████▍ | 4189189/4997817 [00:24&lt;00:04, 172841.82it/s]

</pre>

-
83%|████████▎ | 4123603/4997817 [00:24<00:05, 172350.70it/s]
+
84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4123603/4997817 [00:24<00:05, 172350.70it/s]

+

84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]

-
83%|████████▎ | 4140839/4997817 [00:24&lt;00:04, 171954.68it/s]
+
84%|████████▍ | 4206509/4997817 [00:24&lt;00:04, 172945.78it/s]

</pre>

-
83%|████████▎ | 4140839/4997817 [00:24<00:04, 171954.68it/s]
+
84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4140839/4997817 [00:24<00:04, 171954.68it/s]

+

84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]

-
83%|████████▎ | 4158035/4997817 [00:24&lt;00:04, 168862.02it/s]
+
85%|████████▍ | 4223872/4997817 [00:24&lt;00:04, 173149.38it/s]

</pre>

-
83%|████████▎ | 4158035/4997817 [00:24<00:04, 168862.02it/s]
+
85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4158035/4997817 [00:24<00:04, 168862.02it/s]

+

85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]

-
84%|████████▎ | 4175226/4997817 [00:24&lt;00:04, 169758.76it/s]
+
85%|████████▍ | 4241236/4997817 [00:24&lt;00:04, 173293.34it/s]

</pre>

-
84%|████████▎ | 4175226/4997817 [00:24<00:04, 169758.76it/s]
+
85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]

end{sphinxVerbatim}

-

84%|████████▎ | 4175226/4997817 [00:24<00:04, 169758.76it/s]

+

85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]

-
84%|████████▍ | 4192212/4997817 [00:24&lt;00:04, 168849.98it/s]
+
85%|████████▌ | 4258566/4997817 [00:24&lt;00:04, 172867.69it/s]

</pre>

-
84%|████████▍ | 4192212/4997817 [00:24<00:04, 168849.98it/s]
+
85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4192212/4997817 [00:24<00:04, 168849.98it/s]

+

85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]

-
84%|████████▍ | 4209250/4997817 [00:24&lt;00:04, 169300.67it/s]
+
86%|████████▌ | 4275854/4997817 [00:24&lt;00:04, 172857.11it/s]

</pre>

-
84%|████████▍ | 4209250/4997817 [00:24<00:04, 169300.67it/s]
+
86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4209250/4997817 [00:24<00:04, 169300.67it/s]

+

86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]

-
85%|████████▍ | 4226465/4997817 [00:24&lt;00:04, 170143.89it/s]
+
86%|████████▌ | 4293140/4997817 [00:24&lt;00:04, 172477.24it/s]

</pre>

-
85%|████████▍ | 4226465/4997817 [00:24<00:04, 170143.89it/s]
+
86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4226465/4997817 [00:24<00:04, 170143.89it/s]

+

86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]

-
85%|████████▍ | 4243806/4997817 [00:24&lt;00:04, 171114.46it/s]
+
86%|████████▌ | 4310389/4997817 [00:25&lt;00:03, 172149.13it/s]

</pre>

-
85%|████████▍ | 4243806/4997817 [00:24<00:04, 171114.46it/s]
+
86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4243806/4997817 [00:24<00:04, 171114.46it/s]

+

86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]

-
85%|████████▌ | 4261227/4997817 [00:25&lt;00:04, 172034.61it/s]
+
87%|████████▋ | 4327605/4997817 [00:25&lt;00:03, 172139.17it/s]

</pre>

-
85%|████████▌ | 4261227/4997817 [00:25<00:04, 172034.61it/s]
+
87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4261227/4997817 [00:25<00:04, 172034.61it/s]

+

87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]

-
86%|████████▌ | 4278528/4997817 [00:25&lt;00:04, 172320.83it/s]
+
87%|████████▋ | 4344830/4997817 [00:25&lt;00:03, 172169.08it/s]

</pre>

-
86%|████████▌ | 4278528/4997817 [00:25<00:04, 172320.83it/s]
+
87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4278528/4997817 [00:25<00:04, 172320.83it/s]

+

87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]

-
86%|████████▌ | 4295937/4997817 [00:25&lt;00:04, 172845.19it/s]
+
87%|████████▋ | 4362076/4997817 [00:25&lt;00:03, 172251.35it/s]

</pre>

-
86%|████████▌ | 4295937/4997817 [00:25<00:04, 172845.19it/s]
+
87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4295937/4997817 [00:25<00:04, 172845.19it/s]

+

87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]

-
86%|████████▋ | 4313308/4997817 [00:25&lt;00:03, 173100.25it/s]
+
88%|████████▊ | 4379302/4997817 [00:25&lt;00:03, 171900.04it/s]

</pre>

-
86%|████████▋ | 4313308/4997817 [00:25<00:03, 173100.25it/s]
+
88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]

end{sphinxVerbatim}

-

86%|████████▋ | 4313308/4997817 [00:25<00:03, 173100.25it/s]

+

88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]

-
87%|████████▋ | 4330658/4997817 [00:25&lt;00:03, 173214.54it/s]
+
88%|████████▊ | 4396523/4997817 [00:25&lt;00:03, 171990.54it/s]

</pre>

-
87%|████████▋ | 4330658/4997817 [00:25<00:03, 173214.54it/s]
+
88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4330658/4997817 [00:25<00:03, 173214.54it/s]

+

88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]

-
87%|████████▋ | 4347981/4997817 [00:25&lt;00:03, 173208.95it/s]
+
88%|████████▊ | 4413723/4997817 [00:25&lt;00:03, 171969.84it/s]

</pre>

-
87%|████████▋ | 4347981/4997817 [00:25<00:03, 173208.95it/s]
+
88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4347981/4997817 [00:25<00:03, 173208.95it/s]

+

88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]

-
87%|████████▋ | 4365307/4997817 [00:25&lt;00:03, 173218.73it/s]
+
89%|████████▊ | 4430938/4997817 [00:25&lt;00:03, 172020.80it/s]

</pre>

-
87%|████████▋ | 4365307/4997817 [00:25<00:03, 173218.73it/s]
+
89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4365307/4997817 [00:25<00:03, 173218.73it/s]

+

89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]

-
88%|████████▊ | 4382688/4997817 [00:25&lt;00:03, 173390.64it/s]
+
89%|████████▉ | 4448169/4997817 [00:25&lt;00:03, 172104.71it/s]

</pre>

-
88%|████████▊ | 4382688/4997817 [00:25<00:03, 173390.64it/s]
+
89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4382688/4997817 [00:25<00:03, 173390.64it/s]

+

89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]

-
88%|████████▊ | 4400068/4997817 [00:25&lt;00:03, 173507.38it/s]
+
89%|████████▉ | 4465473/4997817 [00:25&lt;00:03, 172382.22it/s]

</pre>

-
88%|████████▊ | 4400068/4997817 [00:25<00:03, 173507.38it/s]
+
89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4400068/4997817 [00:25<00:03, 173507.38it/s]

+

89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]

-
88%|████████▊ | 4417419/4997817 [00:25&lt;00:03, 173309.43it/s]
+
90%|████████▉ | 4482712/4997817 [00:26&lt;00:02, 172378.44it/s]

</pre>

-
88%|████████▊ | 4417419/4997817 [00:25<00:03, 173309.43it/s]
+
90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4417419/4997817 [00:25<00:03, 173309.43it/s]

+

90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]

-
89%|████████▊ | 4434751/4997817 [00:26&lt;00:03, 172930.69it/s]
+
90%|█████████ | 4499970/4997817 [00:26&lt;00:02, 172434.62it/s]

</pre>

-
89%|████████▊ | 4434751/4997817 [00:26<00:03, 172930.69it/s]
+
90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]

end{sphinxVerbatim}

-

89%|████████▊ | 4434751/4997817 [00:26<00:03, 172930.69it/s]

+

90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]

-
89%|████████▉ | 4452045/4997817 [00:26&lt;00:03, 172511.48it/s]
+
90%|█████████ | 4517217/4997817 [00:26&lt;00:02, 172442.45it/s]

</pre>

-
89%|████████▉ | 4452045/4997817 [00:26<00:03, 172511.48it/s]
+
90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4452045/4997817 [00:26<00:03, 172511.48it/s]

+

90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]

-
89%|████████▉ | 4469335/4997817 [00:26&lt;00:03, 172622.79it/s]
+
91%|█████████ | 4534462/4997817 [00:26&lt;00:02, 172125.34it/s]

</pre>

-
89%|████████▉ | 4469335/4997817 [00:26<00:03, 172622.79it/s]
+
91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4469335/4997817 [00:26<00:03, 172622.79it/s]

+

91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]

-
90%|████████▉ | 4486598/4997817 [00:26&lt;00:02, 171589.70it/s]
+
91%|█████████ | 4551698/4997817 [00:26&lt;00:02, 172191.75it/s]

</pre>

-
90%|████████▉ | 4486598/4997817 [00:26<00:02, 171589.70it/s]
+
91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4486598/4997817 [00:26<00:02, 171589.70it/s]

+

91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]

-
90%|█████████ | 4503759/4997817 [00:26&lt;00:02, 171412.36it/s]
+
91%|█████████▏| 4568918/4997817 [00:26&lt;00:02, 172049.70it/s]

</pre>

-
90%|█████████ | 4503759/4997817 [00:26<00:02, 171412.36it/s]
+
91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4503759/4997817 [00:26<00:02, 171412.36it/s]

+

91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]

-
90%|█████████ | 4520902/4997817 [00:26&lt;00:02, 171343.15it/s]
+
92%|█████████▏| 4586146/4997817 [00:26&lt;00:02, 172115.18it/s]

</pre>

-
90%|█████████ | 4520902/4997817 [00:26<00:02, 171343.15it/s]
+
92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4520902/4997817 [00:26<00:02, 171343.15it/s]

+

92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]

-
91%|█████████ | 4538037/4997817 [00:26&lt;00:02, 171239.33it/s]
+
92%|█████████▏| 4603359/4997817 [00:26&lt;00:02, 172117.83it/s]

</pre>

-
91%|█████████ | 4538037/4997817 [00:26<00:02, 171239.33it/s]
+
92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4538037/4997817 [00:26<00:02, 171239.33it/s]

+

92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]

-
91%|█████████ | 4555162/4997817 [00:26&lt;00:02, 170876.40it/s]
+
92%|█████████▏| 4620571/4997817 [00:26&lt;00:02, 172059.99it/s]

</pre>

-
91%|█████████ | 4555162/4997817 [00:26<00:02, 170876.40it/s]
+
92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4555162/4997817 [00:26<00:02, 170876.40it/s]

+

92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]

-
91%|█████████▏| 4572250/4997817 [00:26&lt;00:02, 170565.73it/s]
+
93%|█████████▎| 4637778/4997817 [00:26&lt;00:02, 171793.76it/s]

</pre>

-
91%|█████████▏| 4572250/4997817 [00:26<00:02, 170565.73it/s]
+
93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]

end{sphinxVerbatim}

-

91%|█████████▏| 4572250/4997817 [00:26<00:02, 170565.73it/s]

+

93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]

-
92%|█████████▏| 4589307/4997817 [00:27&lt;00:02, 170097.89it/s]
+
93%|█████████▎| 4654966/4997817 [00:27&lt;00:01, 171816.57it/s]

</pre>

-
92%|█████████▏| 4589307/4997817 [00:27<00:02, 170097.89it/s]
+
93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4589307/4997817 [00:27<00:02, 170097.89it/s]

+

93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]

-
92%|█████████▏| 4606318/4997817 [00:27&lt;00:02, 169865.84it/s]
+
93%|█████████▎| 4672149/4997817 [00:27&lt;00:01, 171816.10it/s]

</pre>

-
92%|█████████▏| 4606318/4997817 [00:27<00:02, 169865.84it/s]
+
93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4606318/4997817 [00:27<00:02, 169865.84it/s]

+

93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]

-
93%|█████████▎| 4623305/4997817 [00:27&lt;00:02, 169631.05it/s]
+
94%|█████████▍| 4689331/4997817 [00:27&lt;00:01, 171560.20it/s]

</pre>

-
93%|█████████▎| 4623305/4997817 [00:27<00:02, 169631.05it/s]
+
94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4623305/4997817 [00:27<00:02, 169631.05it/s]

+

94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]

-
93%|█████████▎| 4640269/4997817 [00:27&lt;00:02, 168872.65it/s]
+
94%|█████████▍| 4706520/4997817 [00:27&lt;00:01, 171657.19it/s]

</pre>

-
93%|█████████▎| 4640269/4997817 [00:27<00:02, 168872.65it/s]
+
94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4640269/4997817 [00:27<00:02, 168872.65it/s]

+

94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]

-
93%|█████████▎| 4657235/4997817 [00:27&lt;00:02, 169105.83it/s]
+
95%|█████████▍| 4723686/4997817 [00:27&lt;00:01, 167919.96it/s]

</pre>

-
93%|█████████▎| 4657235/4997817 [00:27<00:02, 169105.83it/s]
+
95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4657235/4997817 [00:27<00:02, 169105.83it/s]

+

95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]

-
94%|█████████▎| 4674147/4997817 [00:27&lt;00:01, 168226.74it/s]
+
95%|█████████▍| 4740781/4997817 [00:27&lt;00:01, 168811.86it/s]

</pre>

-
94%|█████████▎| 4674147/4997817 [00:27<00:01, 168226.74it/s]
+
95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]

end{sphinxVerbatim}

-

94%|█████████▎| 4674147/4997817 [00:27<00:01, 168226.74it/s]

+

95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]

-
94%|█████████▍| 4690976/4997817 [00:27&lt;00:01, 168242.05it/s]
+
95%|█████████▌| 4757868/4997817 [00:27&lt;00:01, 169418.38it/s]

</pre>

-
94%|█████████▍| 4690976/4997817 [00:27<00:01, 168242.05it/s]
+
95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4690976/4997817 [00:27<00:01, 168242.05it/s]

+

95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]

-
94%|█████████▍| 4707801/4997817 [00:27&lt;00:01, 168102.89it/s]
+
96%|█████████▌| 4774923/4997817 [00:27&lt;00:01, 169750.75it/s]

</pre>

-
94%|█████████▍| 4707801/4997817 [00:27<00:01, 168102.89it/s]
+
96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4707801/4997817 [00:27<00:01, 168102.89it/s]

+

96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]

-
95%|█████████▍| 4724647/4997817 [00:27&lt;00:01, 168205.59it/s]
+
96%|█████████▌| 4791930/4997817 [00:27&lt;00:01, 169843.37it/s]

</pre>

-
95%|█████████▍| 4724647/4997817 [00:27<00:01, 168205.59it/s]
+
96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4724647/4997817 [00:27<00:01, 168205.59it/s]

+

96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]

-
95%|█████████▍| 4741468/4997817 [00:27&lt;00:01, 167808.58it/s]
+
96%|█████████▌| 4809039/4997817 [00:27&lt;00:01, 170212.17it/s]

</pre>

-
95%|█████████▍| 4741468/4997817 [00:27<00:01, 167808.58it/s]
+
96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4741468/4997817 [00:27<00:01, 167808.58it/s]

+

96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]

-
95%|█████████▌| 4758250/4997817 [00:28&lt;00:01, 167370.08it/s]
+
97%|█████████▋| 4826135/4997817 [00:28&lt;00:01, 170433.15it/s]

</pre>

-
95%|█████████▌| 4758250/4997817 [00:28<00:01, 167370.08it/s]
+
97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4758250/4997817 [00:28<00:01, 167370.08it/s]

+

97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]

-
96%|█████████▌| 4774988/4997817 [00:28&lt;00:01, 167262.31it/s]
+
97%|█████████▋| 4843326/4997817 [00:28&lt;00:00, 170871.60it/s]

</pre>

-
96%|█████████▌| 4774988/4997817 [00:28<00:01, 167262.31it/s]
+
97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4774988/4997817 [00:28<00:01, 167262.31it/s]

+

97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]

-
96%|█████████▌| 4791806/4997817 [00:28&lt;00:01, 167533.12it/s]
+
97%|█████████▋| 4860458/4997817 [00:28&lt;00:00, 171002.81it/s]

</pre>

-
96%|█████████▌| 4791806/4997817 [00:28<00:01, 167533.12it/s]
+
97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4791806/4997817 [00:28<00:01, 167533.12it/s]

+

97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]

-
96%|█████████▌| 4808560/4997817 [00:28&lt;00:01, 167179.89it/s]
+
98%|█████████▊| 4877647/4997817 [00:28&lt;00:00, 171266.30it/s]

</pre>

-
96%|█████████▌| 4808560/4997817 [00:28<00:01, 167179.89it/s]
+
98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4808560/4997817 [00:28<00:01, 167179.89it/s]

+

98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]

-
97%|█████████▋| 4825279/4997817 [00:28&lt;00:01, 167129.34it/s]
+
98%|█████████▊| 4894775/4997817 [00:28&lt;00:00, 170862.07it/s]

</pre>

-
97%|█████████▋| 4825279/4997817 [00:28<00:01, 167129.34it/s]
+
98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4825279/4997817 [00:28<00:01, 167129.34it/s]

+

98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]

-
97%|█████████▋| 4842096/4997817 [00:28&lt;00:00, 167436.03it/s]
+
98%|█████████▊| 4911923/4997817 [00:28&lt;00:00, 171043.44it/s]

</pre>

-
97%|█████████▋| 4842096/4997817 [00:28<00:00, 167436.03it/s]
+
98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4842096/4997817 [00:28<00:00, 167436.03it/s]

+

98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]

-
97%|█████████▋| 4859300/4997817 [00:28&lt;00:00, 168811.84it/s]
+
99%|█████████▊| 4929176/4997817 [00:28&lt;00:00, 171486.81it/s]

</pre>

-
97%|█████████▋| 4859300/4997817 [00:28<00:00, 168811.84it/s]
+
99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4859300/4997817 [00:28<00:00, 168811.84it/s]

+

99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]

-
98%|█████████▊| 4876497/4997817 [00:28&lt;00:00, 169752.70it/s]
+
99%|█████████▉| 4946356/4997817 [00:28&lt;00:00, 171577.53it/s]

</pre>

-
98%|█████████▊| 4876497/4997817 [00:28<00:00, 169752.70it/s]
+
99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4876497/4997817 [00:28<00:00, 169752.70it/s]

+

99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]

-
98%|█████████▊| 4893694/4997817 [00:28&lt;00:00, 170413.45it/s]
+
99%|█████████▉| 4963515/4997817 [00:28&lt;00:00, 171205.67it/s]

</pre>

-
98%|█████████▊| 4893694/4997817 [00:28<00:00, 170413.45it/s]
+
99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4893694/4997817 [00:28<00:00, 170413.45it/s]

- - -
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
98%|█████████▊| 4910769/4997817 [00:28&lt;00:00, 170510.26it/s]
-

</pre>

-
-
-
98%|█████████▊| 4910769/4997817 [00:28<00:00, 170510.26it/s]
-

end{sphinxVerbatim}

-
-
-
-

98%|█████████▊| 4910769/4997817 [00:28<00:00, 170510.26it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
99%|█████████▊| 4927821/4997817 [00:29&lt;00:00, 170169.42it/s]
-

</pre>

-
-
-
99%|█████████▊| 4927821/4997817 [00:29<00:00, 170169.42it/s]
-

end{sphinxVerbatim}

-
-
-
-

99%|█████████▊| 4927821/4997817 [00:29<00:00, 170169.42it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
99%|█████████▉| 4944989/4997817 [00:29&lt;00:00, 170616.62it/s]
-

</pre>

-
-
-
99%|█████████▉| 4944989/4997817 [00:29<00:00, 170616.62it/s]
-

end{sphinxVerbatim}

-
-
-
-

99%|█████████▉| 4944989/4997817 [00:29<00:00, 170616.62it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
99%|█████████▉| 4962051/4997817 [00:29&lt;00:00, 169773.92it/s]
-

</pre>

-
-
-
99%|█████████▉| 4962051/4997817 [00:29<00:00, 169773.92it/s]
-

end{sphinxVerbatim}

-
-
-
-

99%|█████████▉| 4962051/4997817 [00:29<00:00, 169773.92it/s]

+

99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]

-
100%|█████████▉| 4979093/4997817 [00:29&lt;00:00, 169963.20it/s]
+
100%|█████████▉| 4980923/4997817 [00:28&lt;00:00, 172063.53it/s]

</pre>

-
100%|█████████▉| 4979093/4997817 [00:29<00:00, 169963.20it/s]
+
100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4979093/4997817 [00:29<00:00, 169963.20it/s]

+

100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]

-
100%|█████████▉| 4996091/4997817 [00:29&lt;00:00, 169052.24it/s]
+
100%|██████████| 4997817/4997817 [00:29&lt;00:00, 172102.99it/s]

</pre>

-
100%|█████████▉| 4996091/4997817 [00:29<00:00, 169052.24it/s]
+
100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4996091/4997817 [00:29<00:00, 169052.24it/s]

+

100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]

-
+
+
+
-
-
100%|██████████| 4997817/4997817 [00:29&lt;00:00, 169841.26it/s]
-

</pre>

-
-
-
100%|██████████| 4997817/4997817 [00:29<00:00, 169841.26it/s]
-

end{sphinxVerbatim}

-
-
-
-

100%|██████████| 4997817/4997817 [00:29<00:00, 169841.26it/s]

-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -9001,7 +8880,7 @@

Get label quality scores -{"state": {"66b6aaa2007c4b1496649534471df1db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "639ef487ed3b42848922bc4d9bae0928": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0870fef1c46e4952a7824e05fc431a34": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_66b6aaa2007c4b1496649534471df1db", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_639ef487ed3b42848922bc4d9bae0928", "value": 30.0}}, "56cad0e7c51f49fbb45538b279800284": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf748ca37ab847a08123be51451437cc": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0193408c614a4e7ba4873c78a9a9bb6f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_56cad0e7c51f49fbb45538b279800284", "placeholder": "\u200b", "style": "IPY_MODEL_bf748ca37ab847a08123be51451437cc", "value": "number of examples processed for estimating thresholds: 100%"}}, "0fa1181f8e9b40ffb9c9c728c90621b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "43b3b5ba40fa4150ac9fe67bc77e7088": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8e940a4d278d48d5bb2e566940734bee": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0fa1181f8e9b40ffb9c9c728c90621b5", "placeholder": "\u200b", "style": "IPY_MODEL_43b3b5ba40fa4150ac9fe67bc77e7088", "value": " 30/30 [00:00<00:00, 426.95it/s]"}}, "f9ed9bb79eea437e994e4b439e1c1812": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7834e62875da4394bdfc03b1501fa4a9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0193408c614a4e7ba4873c78a9a9bb6f", "IPY_MODEL_0870fef1c46e4952a7824e05fc431a34", "IPY_MODEL_8e940a4d278d48d5bb2e566940734bee"], "layout": "IPY_MODEL_f9ed9bb79eea437e994e4b439e1c1812"}}, "2f0f6f38ef674c39b106ff3aea167574": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e02709833da447092b32b34e9cd7eea": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "11aed75ad6be4af3af712b1b7648058f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2f0f6f38ef674c39b106ff3aea167574", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4e02709833da447092b32b34e9cd7eea", "value": 30.0}}, "7d8733a782dc4953accc99a9a8b481c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "230fb679cc3c47188ee2b769167c7d0b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "29a7642e497c4e9b96745b11371f32ef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7d8733a782dc4953accc99a9a8b481c9", "placeholder": "\u200b", "style": "IPY_MODEL_230fb679cc3c47188ee2b769167c7d0b", "value": "number of examples processed for checking labels: 100%"}}, "4b2548e688284560a51e01b3a7d4b30a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "737617a1f83a4f60aacfbd1431505249": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "512a68cdbfd0462688ff6b886482cf94": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4b2548e688284560a51e01b3a7d4b30a", "placeholder": "\u200b", "style": "IPY_MODEL_737617a1f83a4f60aacfbd1431505249", "value": " 30/30 [00:36<00:00, 1.22s/it]"}}, "228f616c7eff4a4fbdd71be5df385c68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e3415f4577c42cb941753dfe0086640": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_29a7642e497c4e9b96745b11371f32ef", "IPY_MODEL_11aed75ad6be4af3af712b1b7648058f", "IPY_MODEL_512a68cdbfd0462688ff6b886482cf94"], "layout": "IPY_MODEL_228f616c7eff4a4fbdd71be5df385c68"}}, "24f1f455503e4ea1905214c2491c6a8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "edcc710314394fceac64a53876ee634d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "97e851aacf72467a845502595d456b40": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_24f1f455503e4ea1905214c2491c6a8f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_edcc710314394fceac64a53876ee634d", "value": 30.0}}, "bb9aed613f8f4289816e5ab5039366fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ffbaaada2c4e444c92e4121cd1a4d331": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "10f6d3dbf30f4eb9b246516eea1577b6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bb9aed613f8f4289816e5ab5039366fb", "placeholder": "\u200b", "style": "IPY_MODEL_ffbaaada2c4e444c92e4121cd1a4d331", "value": "images processed using softmin: 100%"}}, "c5ba6d8db93145e486d14e332442a993": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06974f46f32c4476932bd765003f434a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "cb6f5dbf185a4cbca65ae3e7c593eede": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c5ba6d8db93145e486d14e332442a993", "placeholder": "\u200b", "style": "IPY_MODEL_06974f46f32c4476932bd765003f434a", "value": " 30/30 [00:01<00:00, 22.49it/s]"}}, "7655e393baf14941a470099ab54010ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df32bb08ce9040a1b285945a0db7765e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_10f6d3dbf30f4eb9b246516eea1577b6", "IPY_MODEL_97e851aacf72467a845502595d456b40", "IPY_MODEL_cb6f5dbf185a4cbca65ae3e7c593eede"], "layout": "IPY_MODEL_7655e393baf14941a470099ab54010ed"}}}, "version_major": 2, "version_minor": 0} +{"state": {"d4f8b63ff55f44d0806b2c2907aefec4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6113d8dbfe84dd9b62fdc3abc1bb77f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5b945b8979b1403c81a800af34b66e03": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d4f8b63ff55f44d0806b2c2907aefec4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c6113d8dbfe84dd9b62fdc3abc1bb77f", "value": 30.0}}, "a63ee572a83d4d56897761721e4b9463": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da1005f0226e4c098b0ba80da39e5dde": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "79d27e5270204d64987b0e80dd9182ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a63ee572a83d4d56897761721e4b9463", "placeholder": "\u200b", "style": "IPY_MODEL_da1005f0226e4c098b0ba80da39e5dde", "value": "number of examples processed for estimating thresholds: 100%"}}, "5ba9455423fc49b9afd09dd55a76d451": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea9c235a65204d95915e6252ce4849a9": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "3b176614773d47b69402c245a311bef1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5ba9455423fc49b9afd09dd55a76d451", "placeholder": "\u200b", "style": "IPY_MODEL_ea9c235a65204d95915e6252ce4849a9", "value": " 30/30 [00:00<00:00, 405.15it/s]"}}, "b9a8cc73eed24f51a6f043294d33fa58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f6f7d2e0db9b4e23bd565eeb1ebe8323": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_79d27e5270204d64987b0e80dd9182ed", "IPY_MODEL_5b945b8979b1403c81a800af34b66e03", "IPY_MODEL_3b176614773d47b69402c245a311bef1"], "layout": "IPY_MODEL_b9a8cc73eed24f51a6f043294d33fa58"}}, "59d122979e00418d9d2b44a0649e9c99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9eaf86d2100845cf89b90fbec4d83ff0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c369934d7c86476eb48d4583e720e228": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_59d122979e00418d9d2b44a0649e9c99", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9eaf86d2100845cf89b90fbec4d83ff0", "value": 30.0}}, "7c23cb9954844791b103ca64e83fc5b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f5aabf00d6c4045899a995a8dbacb97": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c1b440b00f9f47e78b555fe6d71caf22": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7c23cb9954844791b103ca64e83fc5b3", "placeholder": "\u200b", "style": "IPY_MODEL_9f5aabf00d6c4045899a995a8dbacb97", "value": "number of examples processed for checking labels: 100%"}}, "327d4e33d6c34e26aa9b7dc644a5a780": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9ce6ea46e8e4c9fabad8b42c3aeb9f3": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5b31e79b52f449bbb8406036a81145c5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_327d4e33d6c34e26aa9b7dc644a5a780", "placeholder": "\u200b", "style": "IPY_MODEL_e9ce6ea46e8e4c9fabad8b42c3aeb9f3", "value": " 30/30 [00:36<00:00, 1.25s/it]"}}, "41785dfc20e04971b132df33fa7c9385": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea68cf0375d04b00803fe43e815130fb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c1b440b00f9f47e78b555fe6d71caf22", "IPY_MODEL_c369934d7c86476eb48d4583e720e228", "IPY_MODEL_5b31e79b52f449bbb8406036a81145c5"], "layout": "IPY_MODEL_41785dfc20e04971b132df33fa7c9385"}}, "7a602a978fd545f79286c9665c899a5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85e8dd09ec894b74b87290c37be9fa4d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a4ad64cf3b8e42cbbd156ea3ad023cf0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7a602a978fd545f79286c9665c899a5f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_85e8dd09ec894b74b87290c37be9fa4d", "value": 30.0}}, "0cabd023fdf0459dade56fdbdab8a722": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a398413dd01349efb0e6af391f0dd506": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "20604eb91f914901b8cd049fe40aed0c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0cabd023fdf0459dade56fdbdab8a722", "placeholder": "\u200b", "style": "IPY_MODEL_a398413dd01349efb0e6af391f0dd506", "value": "images processed using softmin: 100%"}}, "d805351f37ea4bda8b93d3028d6b823b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8745eabd766a4561977991454dbae104": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c021c3820ba740b698720b87aaae46aa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d805351f37ea4bda8b93d3028d6b823b", "placeholder": "\u200b", "style": "IPY_MODEL_8745eabd766a4561977991454dbae104", "value": " 30/30 [00:01<00:00, 23.52it/s]"}}, "7884f1c305fa4100a3bb6774296775e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10262fae8e7241aaa83534e155136cc8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_20604eb91f914901b8cd049fe40aed0c", "IPY_MODEL_a4ad64cf3b8e42cbbd156ea3ad023cf0", "IPY_MODEL_c021c3820ba740b698720b87aaae46aa"], "layout": "IPY_MODEL_7884f1c305fa4100a3bb6774296775e3"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 0b819b0e6..eece6be9f 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:21.347024Z", - "iopub.status.busy": "2024-01-10T06:21:21.346437Z", - "iopub.status.idle": "2024-01-10T06:21:23.189285Z", - "shell.execute_reply": "2024-01-10T06:21:23.188541Z" + "iopub.execute_input": "2024-01-10T15:06:47.292158Z", + "iopub.status.busy": "2024-01-10T15:06:47.291962Z", + "iopub.status.idle": "2024-01-10T15:06:48.758411Z", + "shell.execute_reply": "2024-01-10T15:06:48.757602Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:21:23.192088Z", - "iopub.status.busy": "2024-01-10T06:21:23.191880Z", - "iopub.status.idle": "2024-01-10T06:22:22.377569Z", - "shell.execute_reply": "2024-01-10T06:22:22.376808Z" + "iopub.execute_input": "2024-01-10T15:06:48.761354Z", + "iopub.status.busy": "2024-01-10T15:06:48.761148Z", + "iopub.status.idle": "2024-01-10T15:07:46.996636Z", + "shell.execute_reply": "2024-01-10T15:07:46.995933Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:22.380517Z", - "iopub.status.busy": "2024-01-10T06:22:22.380259Z", - "iopub.status.idle": "2024-01-10T06:22:23.450564Z", - "shell.execute_reply": "2024-01-10T06:22:23.449819Z" + "iopub.execute_input": "2024-01-10T15:07:46.999673Z", + "iopub.status.busy": "2024-01-10T15:07:46.999269Z", + "iopub.status.idle": "2024-01-10T15:07:48.026262Z", + "shell.execute_reply": "2024-01-10T15:07:48.025653Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.453830Z", - "iopub.status.busy": "2024-01-10T06:22:23.453429Z", - "iopub.status.idle": "2024-01-10T06:22:23.457253Z", - "shell.execute_reply": "2024-01-10T06:22:23.456696Z" + "iopub.execute_input": "2024-01-10T15:07:48.029294Z", + "iopub.status.busy": "2024-01-10T15:07:48.028808Z", + "iopub.status.idle": "2024-01-10T15:07:48.032207Z", + "shell.execute_reply": "2024-01-10T15:07:48.031670Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.459910Z", - "iopub.status.busy": "2024-01-10T06:22:23.459513Z", - "iopub.status.idle": "2024-01-10T06:22:23.463699Z", - "shell.execute_reply": "2024-01-10T06:22:23.463158Z" + "iopub.execute_input": "2024-01-10T15:07:48.034648Z", + "iopub.status.busy": "2024-01-10T15:07:48.034350Z", + "iopub.status.idle": "2024-01-10T15:07:48.038691Z", + "shell.execute_reply": "2024-01-10T15:07:48.038183Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.466289Z", - "iopub.status.busy": "2024-01-10T06:22:23.465906Z", - "iopub.status.idle": "2024-01-10T06:22:23.469976Z", - "shell.execute_reply": "2024-01-10T06:22:23.469453Z" + "iopub.execute_input": "2024-01-10T15:07:48.041106Z", + "iopub.status.busy": "2024-01-10T15:07:48.040752Z", + "iopub.status.idle": "2024-01-10T15:07:48.044635Z", + "shell.execute_reply": "2024-01-10T15:07:48.044122Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.472455Z", - "iopub.status.busy": "2024-01-10T06:22:23.472097Z", - "iopub.status.idle": "2024-01-10T06:22:23.475073Z", - "shell.execute_reply": "2024-01-10T06:22:23.474523Z" + "iopub.execute_input": "2024-01-10T15:07:48.047132Z", + "iopub.status.busy": "2024-01-10T15:07:48.046640Z", + "iopub.status.idle": "2024-01-10T15:07:48.049918Z", + "shell.execute_reply": "2024-01-10T15:07:48.049426Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:22:23.477540Z", - "iopub.status.busy": "2024-01-10T06:22:23.477156Z", - "iopub.status.idle": "2024-01-10T06:23:49.090785Z", - "shell.execute_reply": "2024-01-10T06:23:49.089964Z" + "iopub.execute_input": "2024-01-10T15:07:48.052275Z", + "iopub.status.busy": "2024-01-10T15:07:48.051926Z", + "iopub.status.idle": "2024-01-10T15:09:13.774763Z", + "shell.execute_reply": "2024-01-10T15:09:13.774061Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7834e62875da4394bdfc03b1501fa4a9", + "model_id": "f6f7d2e0db9b4e23bd565eeb1ebe8323", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e3415f4577c42cb941753dfe0086640", + "model_id": "ea68cf0375d04b00803fe43e815130fb", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:23:49.094028Z", - "iopub.status.busy": "2024-01-10T06:23:49.093573Z", - "iopub.status.idle": "2024-01-10T06:23:49.874024Z", - "shell.execute_reply": "2024-01-10T06:23:49.873433Z" + "iopub.execute_input": "2024-01-10T15:09:13.777691Z", + "iopub.status.busy": "2024-01-10T15:09:13.777270Z", + "iopub.status.idle": "2024-01-10T15:09:14.581171Z", + "shell.execute_reply": "2024-01-10T15:09:14.580511Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:23:49.876789Z", - "iopub.status.busy": "2024-01-10T06:23:49.876371Z", - "iopub.status.idle": "2024-01-10T06:23:52.004759Z", - "shell.execute_reply": "2024-01-10T06:23:52.004056Z" + "iopub.execute_input": "2024-01-10T15:09:14.583844Z", + "iopub.status.busy": "2024-01-10T15:09:14.583393Z", + "iopub.status.idle": "2024-01-10T15:09:16.702396Z", + "shell.execute_reply": "2024-01-10T15:09:16.701727Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:23:52.007358Z", - "iopub.status.busy": "2024-01-10T06:23:52.007130Z", - "iopub.status.idle": "2024-01-10T06:24:21.670500Z", - "shell.execute_reply": "2024-01-10T06:24:21.669841Z" + "iopub.execute_input": "2024-01-10T15:09:16.705033Z", + "iopub.status.busy": "2024-01-10T15:09:16.704641Z", + "iopub.status.idle": "2024-01-10T15:09:45.984596Z", + "shell.execute_reply": "2024-01-10T15:09:45.984026Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17062/4997817 [00:00<00:29, 170604.30it/s]" + " 0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34285/4997817 [00:00<00:28, 171551.99it/s]" + " 1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 51456/4997817 [00:00<00:28, 171618.24it/s]" + " 1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 68618/4997817 [00:00<00:28, 170859.63it/s]" + " 1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 85805/4997817 [00:00<00:28, 171220.50it/s]" + " 2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 102949/4997817 [00:00<00:28, 171291.99it/s]" + " 2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 120095/4997817 [00:00<00:28, 171343.43it/s]" + " 2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 137230/4997817 [00:00<00:28, 170491.36it/s]" + " 3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 154281/4997817 [00:00<00:28, 169872.65it/s]" + " 3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 171280/4997817 [00:01<00:28, 169905.50it/s]" + " 3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 188272/4997817 [00:01<00:28, 169777.04it/s]" + " 4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 205575/4997817 [00:01<00:28, 170760.61it/s]" + " 4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 222652/4997817 [00:01<00:27, 170740.73it/s]" + " 4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 240083/4997817 [00:01<00:27, 171811.81it/s]" + " 5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 257360/4997817 [00:01<00:27, 172096.03it/s]" + " 5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 274605/4997817 [00:01<00:27, 172199.32it/s]" + " 6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 291886/4997817 [00:01<00:27, 172379.81it/s]" + " 6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 309125/4997817 [00:01<00:27, 172152.38it/s]" + " 6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 326341/4997817 [00:01<00:27, 171949.71it/s]" + " 7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 343537/4997817 [00:02<00:27, 171568.72it/s]" + " 7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 360817/4997817 [00:02<00:26, 171933.30it/s]" + " 7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 378023/4997817 [00:02<00:26, 171967.12it/s]" + " 8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 395220/4997817 [00:02<00:26, 171770.69it/s]" + " 8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 412518/4997817 [00:02<00:26, 172129.64it/s]" + " 8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 429746/4997817 [00:02<00:26, 172171.06it/s]" + " 9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 446964/4997817 [00:02<00:26, 171908.29it/s]" + " 9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 464155/4997817 [00:02<00:26, 171900.62it/s]" + " 9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 481346/4997817 [00:02<00:26, 171355.90it/s]" + " 10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 498619/4997817 [00:02<00:26, 171763.37it/s]" + " 10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 515796/4997817 [00:03<00:26, 171727.53it/s]" + " 10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 532984/4997817 [00:03<00:25, 171768.71it/s]" + " 11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 550240/4997817 [00:03<00:25, 172001.07it/s]" + " 11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 567441/4997817 [00:03<00:25, 171961.52it/s]" + " 11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 584638/4997817 [00:03<00:25, 171920.86it/s]" + " 12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 601962/4997817 [00:03<00:25, 172313.17it/s]" + " 12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 619303/4997817 [00:03<00:25, 172639.01it/s]" + " 13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 636567/4997817 [00:03<00:25, 172200.43it/s]" + " 13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 653788/4997817 [00:03<00:25, 171788.02it/s]" + " 13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 670968/4997817 [00:03<00:25, 171514.66it/s]" + " 14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 688120/4997817 [00:04<00:25, 170996.88it/s]" + " 14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 705275/4997817 [00:04<00:25, 171158.72it/s]" + " 14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 722435/4997817 [00:04<00:24, 171285.85it/s]" + " 15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739806/4997817 [00:04<00:24, 172008.35it/s]" + " 15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 757008/4997817 [00:04<00:24, 171692.60it/s]" + " 15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 774255/4997817 [00:04<00:24, 171920.65it/s]" + " 16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 791671/4997817 [00:04<00:24, 172588.53it/s]" + " 16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 809012/4997817 [00:04<00:24, 172830.16it/s]" + " 16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 826296/4997817 [00:04<00:24, 171982.40it/s]" + " 17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 843496/4997817 [00:04<00:24, 171799.85it/s]" + " 17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 860677/4997817 [00:05<00:24, 171324.91it/s]" + " 17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 877842/4997817 [00:05<00:24, 171418.27it/s]" + " 18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 894985/4997817 [00:05<00:23, 171219.42it/s]" + " 18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 912146/4997817 [00:05<00:23, 171332.99it/s]" + " 18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 929303/4997817 [00:05<00:23, 171399.71it/s]" + " 19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 946444/4997817 [00:05<00:23, 171377.87it/s]" + " 19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 963692/4997817 [00:05<00:23, 171703.39it/s]" + " 19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 981048/4997817 [00:05<00:23, 172255.53it/s]" + " 20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 998359/4997817 [00:05<00:23, 172508.56it/s]" + " 20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1015635/4997817 [00:05<00:23, 172579.19it/s]" + " 20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1032893/4997817 [00:06<00:23, 171418.64it/s]" + " 21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1050039/4997817 [00:06<00:23, 171426.89it/s]" + " 21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1067207/4997817 [00:06<00:22, 171496.74it/s]" + " 21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1084358/4997817 [00:06<00:22, 171268.82it/s]" + " 22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1101486/4997817 [00:06<00:22, 171044.54it/s]" + " 22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1118591/4997817 [00:06<00:22, 170922.72it/s]" + " 23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1135684/4997817 [00:06<00:22, 170420.58it/s]" + " 23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1152727/4997817 [00:06<00:22, 170051.09it/s]" + " 23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1169733/4997817 [00:06<00:22, 169752.62it/s]" + " 24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1186709/4997817 [00:06<00:22, 169681.27it/s]" + " 24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1203678/4997817 [00:07<00:22, 168904.33it/s]" + " 24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1220652/4997817 [00:07<00:22, 169150.94it/s]" + " 25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1237634/4997817 [00:07<00:22, 169345.74it/s]" + " 25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1254570/4997817 [00:07<00:22, 168349.15it/s]" + " 25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1271732/4997817 [00:07<00:22, 169320.67it/s]" + " 26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288750/4997817 [00:07<00:21, 169571.98it/s]" + " 26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1305766/4997817 [00:07<00:21, 169742.82it/s]" + " 26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1322775/4997817 [00:07<00:21, 169844.98it/s]" + " 27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1339793/4997817 [00:07<00:21, 169941.26it/s]" + " 27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1356788/4997817 [00:07<00:21, 169935.91it/s]" + " 27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1373885/4997817 [00:08<00:21, 170242.78it/s]" + " 28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1390910/4997817 [00:08<00:21, 169776.77it/s]" + " 28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1407889/4997817 [00:08<00:21, 169776.41it/s]" + " 28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1424867/4997817 [00:08<00:21, 169328.10it/s]" + " 29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1441920/4997817 [00:08<00:20, 169683.76it/s]" + " 29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1458889/4997817 [00:08<00:20, 169554.49it/s]" + " 29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1475845/4997817 [00:08<00:20, 169207.98it/s]" + " 30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1492767/4997817 [00:08<00:20, 169207.52it/s]" + " 30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1509688/4997817 [00:08<00:20, 169069.76it/s]" + " 30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1526596/4997817 [00:08<00:20, 168995.55it/s]" + " 31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1543496/4997817 [00:09<00:20, 168767.01it/s]" + " 31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1560373/4997817 [00:09<00:20, 168411.56it/s]" + " 31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1577215/4997817 [00:09<00:20, 168093.60it/s]" + " 32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1594025/4997817 [00:09<00:20, 167736.99it/s]" + " 32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1610799/4997817 [00:09<00:20, 167579.26it/s]" + " 32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1627581/4997817 [00:09<00:20, 167648.89it/s]" + " 33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1644346/4997817 [00:09<00:20, 167601.44it/s]" + " 33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1661107/4997817 [00:09<00:19, 167408.64it/s]" + " 34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1678158/4997817 [00:09<00:19, 168332.79it/s]" + " 34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1695148/4997817 [00:09<00:19, 168799.16it/s]" + " 34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1712162/4997817 [00:10<00:19, 169197.65it/s]" + " 35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1729082/4997817 [00:10<00:19, 169086.37it/s]" + " 35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1746091/4997817 [00:10<00:19, 169383.58it/s]" + " 35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1763030/4997817 [00:10<00:19, 169294.56it/s]" + " 36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1779986/4997817 [00:10<00:18, 169370.78it/s]" + " 36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1796940/4997817 [00:10<00:18, 169415.99it/s]" + " 36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1813941/4997817 [00:10<00:18, 169588.95it/s]" + " 37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1830917/4997817 [00:10<00:18, 169635.93it/s]" + " 37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1847932/4997817 [00:10<00:18, 169786.39it/s]" + " 37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1864911/4997817 [00:10<00:18, 169662.56it/s]" + " 38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1881878/4997817 [00:11<00:18, 169612.46it/s]" + " 38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1898840/4997817 [00:11<00:18, 169466.51it/s]" + " 38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1915967/4997817 [00:11<00:18, 170001.55it/s]" + " 39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1932968/4997817 [00:11<00:18, 169939.64it/s]" + " 39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949963/4997817 [00:11<00:17, 169565.43it/s]" + " 39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1966920/4997817 [00:11<00:17, 168922.06it/s]" + " 40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1983850/4997817 [00:11<00:17, 169030.80it/s]" + " 40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2000770/4997817 [00:11<00:17, 169076.88it/s]" + " 40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2017733/4997817 [00:11<00:17, 169238.17it/s]" + " 41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2034658/4997817 [00:11<00:17, 168730.09it/s]" + " 41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2051532/4997817 [00:12<00:17, 168386.60it/s]" + " 41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068372/4997817 [00:12<00:17, 168018.51it/s]" + " 42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2085260/4997817 [00:12<00:17, 168270.79it/s]" + " 42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2102088/4997817 [00:12<00:17, 168030.44it/s]" + " 43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2118962/4997817 [00:12<00:17, 168240.31it/s]" + " 43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2135787/4997817 [00:12<00:17, 168132.74it/s]" + " 43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2152601/4997817 [00:12<00:16, 167646.09it/s]" + " 44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2169423/4997817 [00:12<00:16, 167813.54it/s]" + " 44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2186297/4997817 [00:12<00:16, 168085.58it/s]" + " 44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2203175/4997817 [00:12<00:16, 168289.27it/s]" + " 45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2220005/4997817 [00:13<00:16, 168276.19it/s]" + " 45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2236833/4997817 [00:13<00:16, 168121.20it/s]" + " 45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2253646/4997817 [00:13<00:16, 168054.37it/s]" + " 46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2270452/4997817 [00:13<00:16, 167426.00it/s]" + " 46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2287196/4997817 [00:13<00:16, 167340.06it/s]" + " 46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2303931/4997817 [00:13<00:16, 167280.92it/s]" + " 47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2320696/4997817 [00:13<00:15, 167387.15it/s]" + " 47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2337572/4997817 [00:13<00:15, 167794.33it/s]" + " 47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2354510/4997817 [00:13<00:15, 168265.82it/s]" + " 48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2371337/4997817 [00:13<00:15, 168146.95it/s]" + " 48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2388246/4997817 [00:14<00:15, 168426.12it/s]" + " 48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2405089/4997817 [00:14<00:15, 167971.38it/s]" + " 49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421887/4997817 [00:14<00:15, 167875.18it/s]" + " 49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2438756/4997817 [00:14<00:15, 168116.52it/s]" + " 49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2455622/4997817 [00:14<00:15, 168275.76it/s]" + " 50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472450/4997817 [00:14<00:15, 168246.55it/s]" + " 50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2489275/4997817 [00:14<00:14, 168100.11it/s]" + " 51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2506165/4997817 [00:14<00:14, 168336.59it/s]" + " 51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2523041/4997817 [00:14<00:14, 168459.70it/s]" + " 51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2539888/4997817 [00:14<00:14, 168363.19it/s]" + " 52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2556725/4997817 [00:15<00:14, 168317.16it/s]" + " 52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2573557/4997817 [00:15<00:14, 168314.33it/s]" + " 52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2590389/4997817 [00:15<00:14, 168159.93it/s]" + " 53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2607206/4997817 [00:15<00:14, 168024.45it/s]" + " 53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2624021/4997817 [00:15<00:14, 168057.67it/s]" + " 53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2640827/4997817 [00:15<00:14, 167450.44it/s]" + " 54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2657654/4997817 [00:15<00:13, 167690.91it/s]" + " 54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674611/4997817 [00:15<00:13, 168247.89it/s]" + " 54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691437/4997817 [00:15<00:13, 168060.02it/s]" + " 55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2708244/4997817 [00:15<00:13, 167385.05it/s]" + " 55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2725000/4997817 [00:16<00:13, 167432.83it/s]" + " 55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2741821/4997817 [00:16<00:13, 167661.64it/s]" + " 56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2758588/4997817 [00:16<00:13, 167266.26it/s]" + " 56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2775352/4997817 [00:16<00:13, 167374.50it/s]" + " 56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2792090/4997817 [00:16<00:13, 167063.45it/s]" + " 57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2808802/4997817 [00:16<00:13, 167076.13it/s]" + " 57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2825510/4997817 [00:16<00:13, 167042.04it/s]" + " 57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2842215/4997817 [00:16<00:12, 166910.37it/s]" + " 58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2858913/4997817 [00:16<00:12, 166926.75it/s]" + " 58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2875624/4997817 [00:16<00:12, 166976.93it/s]" + " 59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2892322/4997817 [00:17<00:12, 166542.29it/s]" + " 59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2909084/4997817 [00:17<00:12, 166860.46it/s]" + " 59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2925771/4997817 [00:17<00:12, 166846.81it/s]" + " 60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2942500/4997817 [00:17<00:12, 166975.59it/s]" + " 60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2959198/4997817 [00:17<00:12, 166708.79it/s]" + " 60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2975877/4997817 [00:17<00:12, 166728.16it/s]" + " 61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2992600/4997817 [00:17<00:12, 166874.28it/s]" + " 61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3009402/4997817 [00:17<00:11, 167212.72it/s]" + " 61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3026124/4997817 [00:17<00:11, 166887.50it/s]" + " 62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3042813/4997817 [00:17<00:11, 166464.96it/s]" + " 62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3059512/4997817 [00:18<00:11, 166617.29it/s]" + " 62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3076399/4997817 [00:18<00:11, 167287.27it/s]" + " 63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3093129/4997817 [00:18<00:11, 167242.52it/s]" + " 63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3109854/4997817 [00:18<00:11, 164570.09it/s]" + " 63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3127061/4997817 [00:18<00:11, 166789.86it/s]" + " 64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3144295/4997817 [00:18<00:11, 168437.03it/s]" + " 64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3161147/4997817 [00:18<00:10, 168085.75it/s]" + " 64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3178372/4997817 [00:18<00:10, 169324.97it/s]" + " 65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3195555/4997817 [00:18<00:10, 170071.05it/s]" + " 65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3212860/4997817 [00:18<00:10, 170957.60it/s]" + " 65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3230096/4997817 [00:19<00:10, 171374.10it/s]" + " 66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3247326/4997817 [00:19<00:10, 171646.00it/s]" + " 66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3264493/4997817 [00:19<00:10, 171542.68it/s]" + " 66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3281649/4997817 [00:19<00:10, 171525.74it/s]" + " 67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3298803/4997817 [00:19<00:09, 171132.61it/s]" + " 67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3315917/4997817 [00:19<00:09, 170861.86it/s]" + " 67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3333004/4997817 [00:19<00:09, 170374.69it/s]" + " 68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3350043/4997817 [00:19<00:09, 170335.87it/s]" + " 68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3367100/4997817 [00:19<00:09, 170400.36it/s]" + " 68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384218/4997817 [00:19<00:09, 170631.02it/s]" + " 69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3401284/4997817 [00:20<00:09, 170636.34it/s]" + " 69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3418357/4997817 [00:20<00:09, 170658.72it/s]" + " 70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3435515/4997817 [00:20<00:09, 170931.41it/s]" + " 70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3452609/4997817 [00:20<00:09, 163949.22it/s]" + " 70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3469894/4997817 [00:20<00:09, 166538.18it/s]" + " 71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3486928/4997817 [00:20<00:09, 167650.09it/s]" + " 71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3503919/4997817 [00:20<00:08, 168314.40it/s]" + " 71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3520963/4997817 [00:20<00:08, 168940.54it/s]" + " 72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3538111/4997817 [00:20<00:08, 169693.53it/s]" + " 72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3555434/4997817 [00:20<00:08, 170745.59it/s]" + " 72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3572660/4997817 [00:21<00:08, 171192.35it/s]" + " 73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3590030/4997817 [00:21<00:08, 171938.61it/s]" + " 73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3607303/4997817 [00:21<00:08, 172172.46it/s]" + " 73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3624594/4997817 [00:21<00:07, 172387.33it/s]" + " 74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3641836/4997817 [00:21<00:07, 171859.14it/s]" + " 74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3659025/4997817 [00:21<00:07, 171633.99it/s]" + " 74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3676190/4997817 [00:21<00:07, 171400.84it/s]" + " 75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3693332/4997817 [00:21<00:07, 171243.48it/s]" + " 75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3710458/4997817 [00:21<00:07, 171013.54it/s]" + " 75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3727633/4997817 [00:21<00:07, 171229.98it/s]" + " 76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3744757/4997817 [00:22<00:07, 171012.21it/s]" + " 76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3761899/4997817 [00:22<00:07, 171129.30it/s]" + " 77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3779084/4997817 [00:22<00:07, 171340.31it/s]" + " 77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3796219/4997817 [00:22<00:07, 167422.50it/s]" + " 77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3813525/4997817 [00:22<00:07, 169081.57it/s]" + " 78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3830826/4997817 [00:22<00:06, 170242.46it/s]" + " 78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3847923/4997817 [00:22<00:06, 170454.10it/s]" + " 78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865103/4997817 [00:22<00:06, 170852.37it/s]" + " 79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3882263/4997817 [00:22<00:06, 171072.12it/s]" + " 79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3899433/4997817 [00:22<00:06, 171255.46it/s]" + " 79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3916562/4997817 [00:23<00:06, 170928.63it/s]" + " 80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3933884/4997817 [00:23<00:06, 171610.47it/s]" + " 80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3951103/4997817 [00:23<00:06, 171779.99it/s]" + " 80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3968283/4997817 [00:23<00:05, 171759.78it/s]" + " 81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3985460/4997817 [00:23<00:05, 171748.29it/s]" + " 81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4002799/4997817 [00:23<00:05, 172236.63it/s]" + " 81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4020024/4997817 [00:23<00:05, 172120.48it/s]" + " 82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4037255/4997817 [00:23<00:05, 172171.92it/s]" + " 82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4054562/4997817 [00:23<00:05, 172438.26it/s]" + " 82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4071846/4997817 [00:23<00:05, 172553.59it/s]" + " 83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4089102/4997817 [00:24<00:05, 172236.48it/s]" + " 83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4106326/4997817 [00:24<00:05, 172177.95it/s]" + " 83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4123603/4997817 [00:24<00:05, 172350.70it/s]" + " 84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4140839/4997817 [00:24<00:04, 171954.68it/s]" + " 84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4158035/4997817 [00:24<00:04, 168862.02it/s]" + " 85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4175226/4997817 [00:24<00:04, 169758.76it/s]" + " 85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4192212/4997817 [00:24<00:04, 168849.98it/s]" + " 85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4209250/4997817 [00:24<00:04, 169300.67it/s]" + " 86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4226465/4997817 [00:24<00:04, 170143.89it/s]" + " 86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4243806/4997817 [00:24<00:04, 171114.46it/s]" + " 86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4261227/4997817 [00:25<00:04, 172034.61it/s]" + " 87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4278528/4997817 [00:25<00:04, 172320.83it/s]" + " 87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4295937/4997817 [00:25<00:04, 172845.19it/s]" + " 87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4313308/4997817 [00:25<00:03, 173100.25it/s]" + " 88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4330658/4997817 [00:25<00:03, 173214.54it/s]" + " 88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4347981/4997817 [00:25<00:03, 173208.95it/s]" + " 88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4365307/4997817 [00:25<00:03, 173218.73it/s]" + " 89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4382688/4997817 [00:25<00:03, 173390.64it/s]" + " 89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4400068/4997817 [00:25<00:03, 173507.38it/s]" + " 89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4417419/4997817 [00:25<00:03, 173309.43it/s]" + " 90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4434751/4997817 [00:26<00:03, 172930.69it/s]" + " 90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4452045/4997817 [00:26<00:03, 172511.48it/s]" + " 90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4469335/4997817 [00:26<00:03, 172622.79it/s]" + " 91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4486598/4997817 [00:26<00:02, 171589.70it/s]" + " 91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4503759/4997817 [00:26<00:02, 171412.36it/s]" + " 91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4520902/4997817 [00:26<00:02, 171343.15it/s]" + " 92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4538037/4997817 [00:26<00:02, 171239.33it/s]" + " 92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4555162/4997817 [00:26<00:02, 170876.40it/s]" + " 92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4572250/4997817 [00:26<00:02, 170565.73it/s]" + " 93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589307/4997817 [00:27<00:02, 170097.89it/s]" + " 93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4606318/4997817 [00:27<00:02, 169865.84it/s]" + " 93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4623305/4997817 [00:27<00:02, 169631.05it/s]" + " 94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4640269/4997817 [00:27<00:02, 168872.65it/s]" + " 94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4657235/4997817 [00:27<00:02, 169105.83it/s]" + " 95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4674147/4997817 [00:27<00:01, 168226.74it/s]" + " 95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4690976/4997817 [00:27<00:01, 168242.05it/s]" + " 95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4707801/4997817 [00:27<00:01, 168102.89it/s]" + " 96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4724647/4997817 [00:27<00:01, 168205.59it/s]" + " 96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4741468/4997817 [00:27<00:01, 167808.58it/s]" + " 96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4758250/4997817 [00:28<00:01, 167370.08it/s]" + " 97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4774988/4997817 [00:28<00:01, 167262.31it/s]" + " 97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4791806/4997817 [00:28<00:01, 167533.12it/s]" + " 97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4808560/4997817 [00:28<00:01, 167179.89it/s]" + " 98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4825279/4997817 [00:28<00:01, 167129.34it/s]" + " 98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4842096/4997817 [00:28<00:00, 167436.03it/s]" + " 98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4859300/4997817 [00:28<00:00, 168811.84it/s]" + " 99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]" ] }, { @@ -2826,7 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4876497/4997817 [00:28<00:00, 169752.70it/s]" + " 99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]" ] }, { @@ -2834,7 +2834,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4893694/4997817 [00:28<00:00, 170413.45it/s]" + " 99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]" ] }, { @@ -2842,7 +2842,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4910769/4997817 [00:28<00:00, 170510.26it/s]" + "100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]" ] }, { @@ -2850,47 +2850,14 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4927821/4997817 [00:29<00:00, 170169.42it/s]" + "100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\r", - " 99%|█████████▉| 4944989/4997817 [00:29<00:00, 170616.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4962051/4997817 [00:29<00:00, 169773.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4979093/4997817 [00:29<00:00, 169963.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4996091/4997817 [00:29<00:00, 169052.24it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997817/4997817 [00:29<00:00, 169841.26it/s]" + "\n" ] }, { @@ -2919,13 +2886,6 @@ "Class 'traffic sign' is potentially mislabeled as class for 'building' 5011 pixels in the dataset\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - }, { "data": { "text/html": [ @@ -3129,10 +3089,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:21.672999Z", - "iopub.status.busy": "2024-01-10T06:24:21.672753Z", - "iopub.status.idle": "2024-01-10T06:24:28.676821Z", - "shell.execute_reply": "2024-01-10T06:24:28.676174Z" + "iopub.execute_input": "2024-01-10T15:09:45.987247Z", + "iopub.status.busy": "2024-01-10T15:09:45.986790Z", + "iopub.status.idle": "2024-01-10T15:09:53.045750Z", + "shell.execute_reply": "2024-01-10T15:09:53.045106Z" } }, "outputs": [], @@ -3146,10 +3106,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:28.679808Z", - "iopub.status.busy": "2024-01-10T06:24:28.679561Z", - "iopub.status.idle": "2024-01-10T06:24:31.714840Z", - "shell.execute_reply": "2024-01-10T06:24:31.714156Z" + "iopub.execute_input": "2024-01-10T15:09:53.048843Z", + "iopub.status.busy": "2024-01-10T15:09:53.048334Z", + "iopub.status.idle": "2024-01-10T15:09:56.152244Z", + "shell.execute_reply": "2024-01-10T15:09:56.151592Z" } }, "outputs": [ @@ -3218,17 +3178,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:31.717634Z", - "iopub.status.busy": "2024-01-10T06:24:31.717196Z", - "iopub.status.idle": "2024-01-10T06:24:33.061235Z", - "shell.execute_reply": "2024-01-10T06:24:33.060598Z" + "iopub.execute_input": "2024-01-10T15:09:56.155042Z", + "iopub.status.busy": "2024-01-10T15:09:56.154624Z", + "iopub.status.idle": "2024-01-10T15:09:57.461482Z", + "shell.execute_reply": "2024-01-10T15:09:57.460863Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "df32bb08ce9040a1b285945a0db7765e", + "model_id": "10262fae8e7241aaa83534e155136cc8", "version_major": 2, "version_minor": 0 }, @@ -3258,10 +3218,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:33.064302Z", - "iopub.status.busy": "2024-01-10T06:24:33.063926Z", - "iopub.status.idle": "2024-01-10T06:24:33.282005Z", - "shell.execute_reply": "2024-01-10T06:24:33.281307Z" + "iopub.execute_input": "2024-01-10T15:09:57.464475Z", + "iopub.status.busy": "2024-01-10T15:09:57.464040Z", + "iopub.status.idle": "2024-01-10T15:09:57.681100Z", + "shell.execute_reply": "2024-01-10T15:09:57.680532Z" } }, "outputs": [], @@ -3275,10 +3235,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:33.285032Z", - "iopub.status.busy": "2024-01-10T06:24:33.284637Z", - "iopub.status.idle": "2024-01-10T06:24:38.039867Z", - "shell.execute_reply": "2024-01-10T06:24:38.039183Z" + "iopub.execute_input": "2024-01-10T15:09:57.684107Z", + "iopub.status.busy": "2024-01-10T15:09:57.683636Z", + "iopub.status.idle": "2024-01-10T15:10:02.403620Z", + "shell.execute_reply": "2024-01-10T15:10:02.403082Z" } }, "outputs": [ @@ -3351,10 +3311,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:38.042406Z", - "iopub.status.busy": "2024-01-10T06:24:38.042157Z", - "iopub.status.idle": "2024-01-10T06:24:38.099615Z", - "shell.execute_reply": "2024-01-10T06:24:38.099002Z" + "iopub.execute_input": "2024-01-10T15:10:02.406244Z", + "iopub.status.busy": "2024-01-10T15:10:02.405893Z", + "iopub.status.idle": "2024-01-10T15:10:02.462753Z", + "shell.execute_reply": "2024-01-10T15:10:02.462023Z" }, "nbsphinx": "hidden" }, @@ -3398,67 +3358,102 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0193408c614a4e7ba4873c78a9a9bb6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "0cabd023fdf0459dade56fdbdab8a722": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56cad0e7c51f49fbb45538b279800284", - "placeholder": "​", - "style": "IPY_MODEL_bf748ca37ab847a08123be51451437cc", - "value": "number of examples processed for estimating thresholds: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "06974f46f32c4476932bd765003f434a": { + "10262fae8e7241aaa83534e155136cc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20604eb91f914901b8cd049fe40aed0c", + "IPY_MODEL_a4ad64cf3b8e42cbbd156ea3ad023cf0", + "IPY_MODEL_c021c3820ba740b698720b87aaae46aa" + ], + "layout": "IPY_MODEL_7884f1c305fa4100a3bb6774296775e3" } }, - "0870fef1c46e4952a7824e05fc431a34": { + "20604eb91f914901b8cd049fe40aed0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_66b6aaa2007c4b1496649534471df1db", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_639ef487ed3b42848922bc4d9bae0928", - "value": 30.0 + "layout": "IPY_MODEL_0cabd023fdf0459dade56fdbdab8a722", + "placeholder": "​", + "style": "IPY_MODEL_a398413dd01349efb0e6af391f0dd506", + "value": "images processed using softmin: 100%" } }, - "0fa1181f8e9b40ffb9c9c728c90621b5": { + "327d4e33d6c34e26aa9b7dc644a5a780": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3510,7 +3505,7 @@ "width": null } }, - "10f6d3dbf30f4eb9b246516eea1577b6": { + "3b176614773d47b69402c245a311bef1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3525,37 +3520,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bb9aed613f8f4289816e5ab5039366fb", + "layout": "IPY_MODEL_5ba9455423fc49b9afd09dd55a76d451", "placeholder": "​", - "style": "IPY_MODEL_ffbaaada2c4e444c92e4121cd1a4d331", - "value": "images processed using softmin: 100%" + "style": "IPY_MODEL_ea9c235a65204d95915e6252ce4849a9", + "value": " 30/30 [00:00<00:00, 405.15it/s]" } }, - "11aed75ad6be4af3af712b1b7648058f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2f0f6f38ef674c39b106ff3aea167574", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e02709833da447092b32b34e9cd7eea", - "value": 30.0 - } - }, - "228f616c7eff4a4fbdd71be5df385c68": { + "41785dfc20e04971b132df33fa7c9385": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3607,22 +3578,7 @@ "width": null } }, - "230fb679cc3c47188ee2b769167c7d0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "24f1f455503e4ea1905214c2491c6a8f": { + "59d122979e00418d9d2b44a0649e9c99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3674,7 +3630,7 @@ "width": null } }, - "29a7642e497c4e9b96745b11371f32ef": { + "5b31e79b52f449bbb8406036a81145c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3689,35 +3645,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7d8733a782dc4953accc99a9a8b481c9", + "layout": "IPY_MODEL_327d4e33d6c34e26aa9b7dc644a5a780", "placeholder": "​", - "style": "IPY_MODEL_230fb679cc3c47188ee2b769167c7d0b", - "value": "number of examples processed for checking labels: 100%" + "style": "IPY_MODEL_e9ce6ea46e8e4c9fabad8b42c3aeb9f3", + "value": " 30/30 [00:36<00:00, 1.25s/it]" } }, - "2e3415f4577c42cb941753dfe0086640": { + "5b945b8979b1403c81a800af34b66e03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_29a7642e497c4e9b96745b11371f32ef", - "IPY_MODEL_11aed75ad6be4af3af712b1b7648058f", - "IPY_MODEL_512a68cdbfd0462688ff6b886482cf94" - ], - "layout": "IPY_MODEL_228f616c7eff4a4fbdd71be5df385c68" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d4f8b63ff55f44d0806b2c2907aefec4", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c6113d8dbfe84dd9b62fdc3abc1bb77f", + "value": 30.0 } }, - "2f0f6f38ef674c39b106ff3aea167574": { + "5ba9455423fc49b9afd09dd55a76d451": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3769,22 +3727,7 @@ "width": null } }, - "43b3b5ba40fa4150ac9fe67bc77e7088": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4b2548e688284560a51e01b3a7d4b30a": { + "7884f1c305fa4100a3bb6774296775e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3836,23 +3779,7 @@ "width": null } }, - "4e02709833da447092b32b34e9cd7eea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "512a68cdbfd0462688ff6b886482cf94": { + "79d27e5270204d64987b0e80dd9182ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3867,13 +3794,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4b2548e688284560a51e01b3a7d4b30a", + "layout": "IPY_MODEL_a63ee572a83d4d56897761721e4b9463", "placeholder": "​", - "style": "IPY_MODEL_737617a1f83a4f60aacfbd1431505249", - "value": " 30/30 [00:36<00:00, 1.22s/it]" + "style": "IPY_MODEL_da1005f0226e4c098b0ba80da39e5dde", + "value": "number of examples processed for estimating thresholds: 100%" } }, - "56cad0e7c51f49fbb45538b279800284": { + "7a602a978fd545f79286c9665c899a5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3925,23 +3852,7 @@ "width": null } }, - "639ef487ed3b42848922bc4d9bae0928": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "66b6aaa2007c4b1496649534471df1db": { + "7c23cb9954844791b103ca64e83fc5b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3993,7 +3904,23 @@ "width": null } }, - "737617a1f83a4f60aacfbd1431505249": { + "85e8dd09ec894b74b87290c37be9fa4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8745eabd766a4561977991454dbae104": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4008,7 +3935,77 @@ "description_width": "" } }, - "7655e393baf14941a470099ab54010ed": { + "9eaf86d2100845cf89b90fbec4d83ff0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9f5aabf00d6c4045899a995a8dbacb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a398413dd01349efb0e6af391f0dd506": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a4ad64cf3b8e42cbbd156ea3ad023cf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a602a978fd545f79286c9665c899a5f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_85e8dd09ec894b74b87290c37be9fa4d", + "value": 30.0 + } + }, + "a63ee572a83d4d56897761721e4b9463": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4060,29 +4057,7 @@ "width": null } }, - "7834e62875da4394bdfc03b1501fa4a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0193408c614a4e7ba4873c78a9a9bb6f", - "IPY_MODEL_0870fef1c46e4952a7824e05fc431a34", - "IPY_MODEL_8e940a4d278d48d5bb2e566940734bee" - ], - "layout": "IPY_MODEL_f9ed9bb79eea437e994e4b439e1c1812" - } - }, - "7d8733a782dc4953accc99a9a8b481c9": { + "b9a8cc73eed24f51a6f043294d33fa58": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4134,7 +4109,28 @@ "width": null } }, - "8e940a4d278d48d5bb2e566940734bee": { + "c021c3820ba740b698720b87aaae46aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d805351f37ea4bda8b93d3028d6b823b", + "placeholder": "​", + "style": "IPY_MODEL_8745eabd766a4561977991454dbae104", + "value": " 30/30 [00:01<00:00, 23.52it/s]" + } + }, + "c1b440b00f9f47e78b555fe6d71caf22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4149,13 +4145,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0fa1181f8e9b40ffb9c9c728c90621b5", + "layout": "IPY_MODEL_7c23cb9954844791b103ca64e83fc5b3", "placeholder": "​", - "style": "IPY_MODEL_43b3b5ba40fa4150ac9fe67bc77e7088", - "value": " 30/30 [00:00<00:00, 426.95it/s]" + "style": "IPY_MODEL_9f5aabf00d6c4045899a995a8dbacb97", + "value": "number of examples processed for checking labels: 100%" } }, - "97e851aacf72467a845502595d456b40": { + "c369934d7c86476eb48d4583e720e228": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4171,15 +4167,31 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_24f1f455503e4ea1905214c2491c6a8f", + "layout": "IPY_MODEL_59d122979e00418d9d2b44a0649e9c99", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_edcc710314394fceac64a53876ee634d", + "style": "IPY_MODEL_9eaf86d2100845cf89b90fbec4d83ff0", "value": 30.0 } }, - "bb9aed613f8f4289816e5ab5039366fb": { + "c6113d8dbfe84dd9b62fdc3abc1bb77f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d4f8b63ff55f44d0806b2c2907aefec4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4231,22 +4243,7 @@ "width": null } }, - "bf748ca37ab847a08123be51451437cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c5ba6d8db93145e486d14e332442a993": { + "d805351f37ea4bda8b93d3028d6b823b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4298,28 +4295,37 @@ "width": null } }, - "cb6f5dbf185a4cbca65ae3e7c593eede": { + "da1005f0226e4c098b0ba80da39e5dde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c5ba6d8db93145e486d14e332442a993", - "placeholder": "​", - "style": "IPY_MODEL_06974f46f32c4476932bd765003f434a", - "value": " 30/30 [00:01<00:00, 22.49it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "df32bb08ce9040a1b285945a0db7765e": { + "e9ce6ea46e8e4c9fabad8b42c3aeb9f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea68cf0375d04b00803fe43e815130fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4334,94 +4340,48 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_10f6d3dbf30f4eb9b246516eea1577b6", - "IPY_MODEL_97e851aacf72467a845502595d456b40", - "IPY_MODEL_cb6f5dbf185a4cbca65ae3e7c593eede" + "IPY_MODEL_c1b440b00f9f47e78b555fe6d71caf22", + "IPY_MODEL_c369934d7c86476eb48d4583e720e228", + "IPY_MODEL_5b31e79b52f449bbb8406036a81145c5" ], - "layout": "IPY_MODEL_7655e393baf14941a470099ab54010ed" + "layout": "IPY_MODEL_41785dfc20e04971b132df33fa7c9385" } }, - "edcc710314394fceac64a53876ee634d": { + "ea9c235a65204d95915e6252ce4849a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f9ed9bb79eea437e994e4b439e1c1812": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ffbaaada2c4e444c92e4121cd1a4d331": { + "f6f7d2e0db9b4e23bd565eeb1ebe8323": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79d27e5270204d64987b0e80dd9182ed", + "IPY_MODEL_5b945b8979b1403c81a800af34b66e03", + "IPY_MODEL_3b176614773d47b69402c245a311bef1" + ], + "layout": "IPY_MODEL_b9a8cc73eed24f51a6f043294d33fa58" } } }, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 14b0c1a72..cc587dc77 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:42.729158Z", - "iopub.status.busy": "2024-01-10T06:24:42.728964Z", - "iopub.status.idle": "2024-01-10T06:24:43.794701Z", - "shell.execute_reply": "2024-01-10T06:24:43.793968Z" + "iopub.execute_input": "2024-01-10T15:10:06.731555Z", + "iopub.status.busy": "2024-01-10T15:10:06.731098Z", + "iopub.status.idle": "2024-01-10T15:10:07.811523Z", + "shell.execute_reply": "2024-01-10T15:10:07.810902Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.797884Z", - "iopub.status.busy": "2024-01-10T06:24:43.797509Z", - "iopub.status.idle": "2024-01-10T06:24:43.814538Z", - "shell.execute_reply": "2024-01-10T06:24:43.814038Z" + "iopub.execute_input": "2024-01-10T15:10:07.814997Z", + "iopub.status.busy": "2024-01-10T15:10:07.814188Z", + "iopub.status.idle": "2024-01-10T15:10:07.833169Z", + "shell.execute_reply": "2024-01-10T15:10:07.832624Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.817105Z", - "iopub.status.busy": "2024-01-10T06:24:43.816655Z", - "iopub.status.idle": "2024-01-10T06:24:43.872030Z", - "shell.execute_reply": "2024-01-10T06:24:43.871363Z" + "iopub.execute_input": "2024-01-10T15:10:07.836050Z", + "iopub.status.busy": "2024-01-10T15:10:07.835668Z", + "iopub.status.idle": "2024-01-10T15:10:07.885520Z", + "shell.execute_reply": "2024-01-10T15:10:07.884971Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.874729Z", - "iopub.status.busy": "2024-01-10T06:24:43.874284Z", - "iopub.status.idle": "2024-01-10T06:24:43.878216Z", - "shell.execute_reply": "2024-01-10T06:24:43.877614Z" + "iopub.execute_input": "2024-01-10T15:10:07.888062Z", + "iopub.status.busy": "2024-01-10T15:10:07.887689Z", + "iopub.status.idle": "2024-01-10T15:10:07.891398Z", + "shell.execute_reply": "2024-01-10T15:10:07.890891Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.880614Z", - "iopub.status.busy": "2024-01-10T06:24:43.880280Z", - "iopub.status.idle": "2024-01-10T06:24:43.889118Z", - "shell.execute_reply": "2024-01-10T06:24:43.888491Z" + "iopub.execute_input": "2024-01-10T15:10:07.893720Z", + "iopub.status.busy": "2024-01-10T15:10:07.893356Z", + "iopub.status.idle": "2024-01-10T15:10:07.902385Z", + "shell.execute_reply": "2024-01-10T15:10:07.901725Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.891570Z", - "iopub.status.busy": "2024-01-10T06:24:43.891224Z", - "iopub.status.idle": "2024-01-10T06:24:43.894040Z", - "shell.execute_reply": "2024-01-10T06:24:43.893453Z" + "iopub.execute_input": "2024-01-10T15:10:07.904892Z", + "iopub.status.busy": "2024-01-10T15:10:07.904653Z", + "iopub.status.idle": "2024-01-10T15:10:07.907458Z", + "shell.execute_reply": "2024-01-10T15:10:07.906901Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:43.896323Z", - "iopub.status.busy": "2024-01-10T06:24:43.895979Z", - "iopub.status.idle": "2024-01-10T06:24:44.485147Z", - "shell.execute_reply": "2024-01-10T06:24:44.484416Z" + "iopub.execute_input": "2024-01-10T15:10:07.909680Z", + "iopub.status.busy": "2024-01-10T15:10:07.909473Z", + "iopub.status.idle": "2024-01-10T15:10:08.495611Z", + "shell.execute_reply": "2024-01-10T15:10:08.494992Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:44.488107Z", - "iopub.status.busy": "2024-01-10T06:24:44.487864Z", - "iopub.status.idle": "2024-01-10T06:24:45.798377Z", - "shell.execute_reply": "2024-01-10T06:24:45.797616Z" + "iopub.execute_input": "2024-01-10T15:10:08.498344Z", + "iopub.status.busy": "2024-01-10T15:10:08.498125Z", + "iopub.status.idle": "2024-01-10T15:10:09.775405Z", + "shell.execute_reply": "2024-01-10T15:10:09.774608Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.801399Z", - "iopub.status.busy": "2024-01-10T06:24:45.800854Z", - "iopub.status.idle": "2024-01-10T06:24:45.811242Z", - "shell.execute_reply": "2024-01-10T06:24:45.810638Z" + "iopub.execute_input": "2024-01-10T15:10:09.778762Z", + "iopub.status.busy": "2024-01-10T15:10:09.778133Z", + "iopub.status.idle": "2024-01-10T15:10:09.788828Z", + "shell.execute_reply": "2024-01-10T15:10:09.788286Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.813764Z", - "iopub.status.busy": "2024-01-10T06:24:45.813278Z", - "iopub.status.idle": "2024-01-10T06:24:45.817782Z", - "shell.execute_reply": "2024-01-10T06:24:45.817299Z" + "iopub.execute_input": "2024-01-10T15:10:09.791421Z", + "iopub.status.busy": "2024-01-10T15:10:09.791212Z", + "iopub.status.idle": "2024-01-10T15:10:09.795823Z", + "shell.execute_reply": "2024-01-10T15:10:09.795276Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.820268Z", - "iopub.status.busy": "2024-01-10T06:24:45.819907Z", - "iopub.status.idle": "2024-01-10T06:24:45.827154Z", - "shell.execute_reply": "2024-01-10T06:24:45.826654Z" + "iopub.execute_input": "2024-01-10T15:10:09.798077Z", + "iopub.status.busy": "2024-01-10T15:10:09.797879Z", + "iopub.status.idle": "2024-01-10T15:10:09.805698Z", + "shell.execute_reply": "2024-01-10T15:10:09.805152Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.829331Z", - "iopub.status.busy": "2024-01-10T06:24:45.829134Z", - "iopub.status.idle": "2024-01-10T06:24:45.955067Z", - "shell.execute_reply": "2024-01-10T06:24:45.954445Z" + "iopub.execute_input": "2024-01-10T15:10:09.808315Z", + "iopub.status.busy": "2024-01-10T15:10:09.807943Z", + "iopub.status.idle": "2024-01-10T15:10:09.933595Z", + "shell.execute_reply": "2024-01-10T15:10:09.932999Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.957778Z", - "iopub.status.busy": "2024-01-10T06:24:45.957338Z", - "iopub.status.idle": "2024-01-10T06:24:45.960533Z", - "shell.execute_reply": "2024-01-10T06:24:45.960010Z" + "iopub.execute_input": "2024-01-10T15:10:09.936259Z", + "iopub.status.busy": "2024-01-10T15:10:09.935880Z", + "iopub.status.idle": "2024-01-10T15:10:09.938920Z", + "shell.execute_reply": "2024-01-10T15:10:09.938378Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:45.962889Z", - "iopub.status.busy": "2024-01-10T06:24:45.962509Z", - "iopub.status.idle": "2024-01-10T06:24:47.449565Z", - "shell.execute_reply": "2024-01-10T06:24:47.448717Z" + "iopub.execute_input": "2024-01-10T15:10:09.941355Z", + "iopub.status.busy": "2024-01-10T15:10:09.940977Z", + "iopub.status.idle": "2024-01-10T15:10:11.374923Z", + "shell.execute_reply": "2024-01-10T15:10:11.374140Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:47.452855Z", - "iopub.status.busy": "2024-01-10T06:24:47.452615Z", - "iopub.status.idle": "2024-01-10T06:24:47.467433Z", - "shell.execute_reply": "2024-01-10T06:24:47.466813Z" + "iopub.execute_input": "2024-01-10T15:10:11.377786Z", + "iopub.status.busy": "2024-01-10T15:10:11.377568Z", + "iopub.status.idle": "2024-01-10T15:10:11.391936Z", + "shell.execute_reply": "2024-01-10T15:10:11.391279Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:47.469992Z", - "iopub.status.busy": "2024-01-10T06:24:47.469772Z", - "iopub.status.idle": "2024-01-10T06:24:47.521859Z", - "shell.execute_reply": "2024-01-10T06:24:47.521269Z" + "iopub.execute_input": "2024-01-10T15:10:11.394770Z", + "iopub.status.busy": "2024-01-10T15:10:11.394348Z", + "iopub.status.idle": "2024-01-10T15:10:11.437897Z", + "shell.execute_reply": "2024-01-10T15:10:11.437359Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 418182f5c..5b33e1b53 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -969,7 +969,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'getting_spare_card', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'card_payment_fee_charged'}
+Classes: {'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}
 

Let’s print the first example in the train set.

diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index dd78280b5..806779347 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:52.618988Z", - "iopub.status.busy": "2024-01-10T06:24:52.618787Z", - "iopub.status.idle": "2024-01-10T06:24:54.768251Z", - "shell.execute_reply": "2024-01-10T06:24:54.767619Z" + "iopub.execute_input": "2024-01-10T15:10:16.790552Z", + "iopub.status.busy": "2024-01-10T15:10:16.790082Z", + "iopub.status.idle": "2024-01-10T15:10:18.889335Z", + "shell.execute_reply": "2024-01-10T15:10:18.888712Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.771423Z", - "iopub.status.busy": "2024-01-10T06:24:54.770954Z", - "iopub.status.idle": "2024-01-10T06:24:54.774574Z", - "shell.execute_reply": "2024-01-10T06:24:54.774036Z" + "iopub.execute_input": "2024-01-10T15:10:18.892121Z", + "iopub.status.busy": "2024-01-10T15:10:18.891795Z", + "iopub.status.idle": "2024-01-10T15:10:18.895297Z", + "shell.execute_reply": "2024-01-10T15:10:18.894789Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.777223Z", - "iopub.status.busy": "2024-01-10T06:24:54.776831Z", - "iopub.status.idle": "2024-01-10T06:24:54.780144Z", - "shell.execute_reply": "2024-01-10T06:24:54.779593Z" + "iopub.execute_input": "2024-01-10T15:10:18.897631Z", + "iopub.status.busy": "2024-01-10T15:10:18.897294Z", + "iopub.status.idle": "2024-01-10T15:10:18.900472Z", + "shell.execute_reply": "2024-01-10T15:10:18.899942Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.782533Z", - "iopub.status.busy": "2024-01-10T06:24:54.782227Z", - "iopub.status.idle": "2024-01-10T06:24:54.838961Z", - "shell.execute_reply": "2024-01-10T06:24:54.838278Z" + "iopub.execute_input": "2024-01-10T15:10:18.902850Z", + "iopub.status.busy": "2024-01-10T15:10:18.902503Z", + "iopub.status.idle": "2024-01-10T15:10:18.950825Z", + "shell.execute_reply": "2024-01-10T15:10:18.950198Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.841750Z", - "iopub.status.busy": "2024-01-10T06:24:54.841341Z", - "iopub.status.idle": "2024-01-10T06:24:54.845275Z", - "shell.execute_reply": "2024-01-10T06:24:54.844697Z" + "iopub.execute_input": "2024-01-10T15:10:18.953409Z", + "iopub.status.busy": "2024-01-10T15:10:18.953034Z", + "iopub.status.idle": "2024-01-10T15:10:18.956975Z", + "shell.execute_reply": "2024-01-10T15:10:18.956461Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.847786Z", - "iopub.status.busy": "2024-01-10T06:24:54.847407Z", - "iopub.status.idle": "2024-01-10T06:24:54.851172Z", - "shell.execute_reply": "2024-01-10T06:24:54.850541Z" + "iopub.execute_input": "2024-01-10T15:10:18.959537Z", + "iopub.status.busy": "2024-01-10T15:10:18.959163Z", + "iopub.status.idle": "2024-01-10T15:10:18.962874Z", + "shell.execute_reply": "2024-01-10T15:10:18.962229Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'card_payment_fee_charged'}\n" + "Classes: {'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.853595Z", - "iopub.status.busy": "2024-01-10T06:24:54.853213Z", - "iopub.status.idle": "2024-01-10T06:24:54.856682Z", - "shell.execute_reply": "2024-01-10T06:24:54.856054Z" + "iopub.execute_input": "2024-01-10T15:10:18.965276Z", + "iopub.status.busy": "2024-01-10T15:10:18.964930Z", + "iopub.status.idle": "2024-01-10T15:10:18.968315Z", + "shell.execute_reply": "2024-01-10T15:10:18.967709Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.858931Z", - "iopub.status.busy": "2024-01-10T06:24:54.858734Z", - "iopub.status.idle": "2024-01-10T06:24:54.862328Z", - "shell.execute_reply": "2024-01-10T06:24:54.861802Z" + "iopub.execute_input": "2024-01-10T15:10:18.970723Z", + "iopub.status.busy": "2024-01-10T15:10:18.970346Z", + "iopub.status.idle": "2024-01-10T15:10:18.973815Z", + "shell.execute_reply": "2024-01-10T15:10:18.973276Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:24:54.864650Z", - "iopub.status.busy": "2024-01-10T06:24:54.864455Z", - "iopub.status.idle": "2024-01-10T06:25:03.694998Z", - "shell.execute_reply": "2024-01-10T06:25:03.694259Z" + "iopub.execute_input": "2024-01-10T15:10:18.976281Z", + "iopub.status.busy": "2024-01-10T15:10:18.975813Z", + "iopub.status.idle": "2024-01-10T15:10:27.589830Z", + "shell.execute_reply": "2024-01-10T15:10:27.589082Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:03.698230Z", - "iopub.status.busy": "2024-01-10T06:25:03.697870Z", - "iopub.status.idle": "2024-01-10T06:25:03.701022Z", - "shell.execute_reply": "2024-01-10T06:25:03.700397Z" + "iopub.execute_input": "2024-01-10T15:10:27.593536Z", + "iopub.status.busy": "2024-01-10T15:10:27.592977Z", + "iopub.status.idle": "2024-01-10T15:10:27.596244Z", + "shell.execute_reply": "2024-01-10T15:10:27.595606Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:03.703600Z", - "iopub.status.busy": "2024-01-10T06:25:03.703134Z", - "iopub.status.idle": "2024-01-10T06:25:03.706162Z", - "shell.execute_reply": "2024-01-10T06:25:03.705544Z" + "iopub.execute_input": "2024-01-10T15:10:27.598714Z", + "iopub.status.busy": "2024-01-10T15:10:27.598260Z", + "iopub.status.idle": "2024-01-10T15:10:27.601298Z", + "shell.execute_reply": "2024-01-10T15:10:27.600678Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:03.708555Z", - "iopub.status.busy": "2024-01-10T06:25:03.708183Z", - "iopub.status.idle": "2024-01-10T06:25:05.979551Z", - "shell.execute_reply": "2024-01-10T06:25:05.978797Z" + "iopub.execute_input": "2024-01-10T15:10:27.603699Z", + "iopub.status.busy": "2024-01-10T15:10:27.603332Z", + "iopub.status.idle": "2024-01-10T15:10:29.839909Z", + "shell.execute_reply": "2024-01-10T15:10:29.839076Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:05.983253Z", - "iopub.status.busy": "2024-01-10T06:25:05.982458Z", - "iopub.status.idle": "2024-01-10T06:25:05.990517Z", - "shell.execute_reply": "2024-01-10T06:25:05.989921Z" + "iopub.execute_input": "2024-01-10T15:10:29.843986Z", + "iopub.status.busy": "2024-01-10T15:10:29.842887Z", + "iopub.status.idle": "2024-01-10T15:10:29.851253Z", + "shell.execute_reply": "2024-01-10T15:10:29.850730Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:05.993149Z", - "iopub.status.busy": "2024-01-10T06:25:05.992845Z", - "iopub.status.idle": "2024-01-10T06:25:05.996822Z", - "shell.execute_reply": "2024-01-10T06:25:05.996286Z" + "iopub.execute_input": "2024-01-10T15:10:29.853752Z", + "iopub.status.busy": "2024-01-10T15:10:29.853315Z", + "iopub.status.idle": "2024-01-10T15:10:29.857532Z", + "shell.execute_reply": "2024-01-10T15:10:29.856980Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:05.999247Z", - "iopub.status.busy": "2024-01-10T06:25:05.998879Z", - "iopub.status.idle": "2024-01-10T06:25:06.002319Z", - "shell.execute_reply": "2024-01-10T06:25:06.001677Z" + "iopub.execute_input": "2024-01-10T15:10:29.859922Z", + "iopub.status.busy": "2024-01-10T15:10:29.859552Z", + "iopub.status.idle": "2024-01-10T15:10:29.862975Z", + "shell.execute_reply": "2024-01-10T15:10:29.862318Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.004793Z", - "iopub.status.busy": "2024-01-10T06:25:06.004424Z", - "iopub.status.idle": "2024-01-10T06:25:06.007616Z", - "shell.execute_reply": "2024-01-10T06:25:06.007047Z" + "iopub.execute_input": "2024-01-10T15:10:29.865590Z", + "iopub.status.busy": "2024-01-10T15:10:29.865060Z", + "iopub.status.idle": "2024-01-10T15:10:29.868486Z", + "shell.execute_reply": "2024-01-10T15:10:29.867944Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.009917Z", - "iopub.status.busy": "2024-01-10T06:25:06.009623Z", - "iopub.status.idle": "2024-01-10T06:25:06.017029Z", - "shell.execute_reply": "2024-01-10T06:25:06.016419Z" + "iopub.execute_input": "2024-01-10T15:10:29.870591Z", + "iopub.status.busy": "2024-01-10T15:10:29.870397Z", + "iopub.status.idle": "2024-01-10T15:10:29.877780Z", + "shell.execute_reply": "2024-01-10T15:10:29.877252Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.019636Z", - "iopub.status.busy": "2024-01-10T06:25:06.019266Z", - "iopub.status.idle": "2024-01-10T06:25:06.263328Z", - "shell.execute_reply": "2024-01-10T06:25:06.262591Z" + "iopub.execute_input": "2024-01-10T15:10:29.880219Z", + "iopub.status.busy": "2024-01-10T15:10:29.880022Z", + "iopub.status.idle": "2024-01-10T15:10:30.144805Z", + "shell.execute_reply": "2024-01-10T15:10:30.144168Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.266421Z", - "iopub.status.busy": "2024-01-10T06:25:06.265949Z", - "iopub.status.idle": "2024-01-10T06:25:06.566167Z", - "shell.execute_reply": "2024-01-10T06:25:06.565453Z" + "iopub.execute_input": "2024-01-10T15:10:30.148970Z", + "iopub.status.busy": "2024-01-10T15:10:30.147638Z", + "iopub.status.idle": "2024-01-10T15:10:30.428192Z", + "shell.execute_reply": "2024-01-10T15:10:30.427509Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T06:25:06.569388Z", - "iopub.status.busy": "2024-01-10T06:25:06.568888Z", - "iopub.status.idle": "2024-01-10T06:25:06.573451Z", - "shell.execute_reply": "2024-01-10T06:25:06.572835Z" + "iopub.execute_input": "2024-01-10T15:10:30.432036Z", + "iopub.status.busy": "2024-01-10T15:10:30.431584Z", + "iopub.status.idle": "2024-01-10T15:10:30.437238Z", + "shell.execute_reply": "2024-01-10T15:10:30.436640Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index d39373b09..d972dab39 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -862,7 +862,7 @@

1. Install required dependencies and download data
---2024-01-10 06:25:11--  https://data.deepai.org/conll2003.zip
+--2024-01-10 15:10:36--  https://data.deepai.org/conll2003.zip
 Resolving data.deepai.org (data.deepai.org)...
 
@@ -871,9 +871,25 @@

1. Install required dependencies and download data
-185.93.1.247, 2400:52e0:1a00::1070:1
-Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.
-HTTP request sent, awaiting response... 200 OK
+185.93.1.247, 2400:52e0:1a00::1069:1
+Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443...
+
+ +
+
+
+
+
+connected.
+HTTP request sent, awaiting response...
+
+
+
+
+
+
+
+200 OK
 Length: 982975 (960K) [application/zip]
 Saving to: ‘conll2003.zip’
@@ -894,25 +910,25 @@

1. Install required dependencies and download data
-

conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.01s

+

conll2003.zip 100%[===================&gt;] 959.94K 6.19MB/s in 0.2s

-

2024-01-10 06:25:12 (93.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists </pre>

-

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.01s

+

conll2003.zip 100%[===================>] 959.94K 6.19MB/s in 0.2s

-

2024-01-10 06:25:12 (93.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

-

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.01s

+

conll2003.zip 100%[===================>] 959.94K 6.19MB/s in 0.2s

-

2024-01-10 06:25:12 (93.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists

@@ -965,46 +982,29 @@

1. Install required dependencies and download data

pred_probs.npz 0%[ ] 0 –.-KB/s

-
-
-
-
-
-
-
-
pred_probs.npz 64%[===========&gt; ] 10.46M 52.3MB/s
-

</pre>

-
-
-
pred_probs.npz 64%[===========> ] 10.46M 52.3MB/s
-

end{sphinxVerbatim}

-
-
-
-

pred_probs.npz 64%[===========> ] 10.46M 52.3MB/s

-

pred_probs.npz 100%[===================&gt;] 16.26M 53.8MB/s in 0.3s

+

pred_probs.npz 100%[===================&gt;] 16.26M –.-KB/s in 0.1s

-

2024-01-10 06:25:13 (53.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

</pre>

-

pred_probs.npz 100%[===================>] 16.26M 53.8MB/s in 0.3s

+

pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s

-

2024-01-10 06:25:13 (53.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

end{sphinxVerbatim}

-

pred_probs.npz 100%[===================>] 16.26M 53.8MB/s in 0.3s

+

pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s

-

2024-01-10 06:25:13 (53.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

[3]:
diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
index 02e4c67c0..c750e759e 100644
--- a/master/tutorials/token_classification.ipynb
+++ b/master/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
    "id": "ae8a08e0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:11.829123Z",
-     "iopub.status.busy": "2024-01-10T06:25:11.828927Z",
-     "iopub.status.idle": "2024-01-10T06:25:13.287001Z",
-     "shell.execute_reply": "2024-01-10T06:25:13.286300Z"
+     "iopub.execute_input": "2024-01-10T15:10:35.984210Z",
+     "iopub.status.busy": "2024-01-10T15:10:35.984011Z",
+     "iopub.status.idle": "2024-01-10T15:10:37.320142Z",
+     "shell.execute_reply": "2024-01-10T15:10:37.319429Z"
     }
    },
    "outputs": [
@@ -86,7 +86,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-01-10 06:25:11--  https://data.deepai.org/conll2003.zip\r\n",
+      "--2024-01-10 15:10:36--  https://data.deepai.org/conll2003.zip\r\n",
       "Resolving data.deepai.org (data.deepai.org)... "
      ]
     },
@@ -94,9 +94,23 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "185.93.1.247, 2400:52e0:1a00::1070:1\r\n",
-      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.\r\n",
-      "HTTP request sent, awaiting response... 200 OK\r\n",
+      "185.93.1.247, 2400:52e0:1a00::1069:1\r\n",
+      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "connected.\r\n",
+      "HTTP request sent, awaiting response... "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "200 OK\r\n",
       "Length: 982975 (960K) [application/zip]\r\n",
       "Saving to: ‘conll2003.zip’\r\n",
       "\r\n",
@@ -109,9 +123,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.01s   \r\n",
+      "conll2003.zip       100%[===================>] 959.94K  6.19MB/s    in 0.2s    \r\n",
       "\r\n",
-      "2024-01-10 06:25:12 (93.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+      "2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
       "\r\n",
       "mkdir: cannot create directory ‘data’: File exists\r\n"
      ]
@@ -123,23 +137,24 @@
       "Archive:  conll2003.zip\r\n",
       "  inflating: data/metadata           \r\n",
       "  inflating: data/test.txt           \r\n",
-      "  inflating: data/train.txt          \r\n",
-      "  inflating: data/valid.txt          \r\n"
+      "  inflating: data/train.txt          "
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-01-10 06:25:12--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
-      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.203.65, 3.5.25.47, 54.231.172.185, ...\r\n",
-      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.203.65|:443... connected.\r\n"
+      "\r\n",
+      "  inflating: data/valid.txt          \r\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      "--2024-01-10 15:10:36--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.241.84, 3.5.25.164, 3.5.25.202, ...\r\n",
+      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.241.84|:443... connected.\r\n",
       "HTTP request sent, awaiting response... "
      ]
     },
@@ -160,17 +175,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz       64%[===========>        ]  10.46M  52.3MB/s               "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "pred_probs.npz      100%[===================>]  16.26M  53.8MB/s    in 0.3s    \r\n",
+      "pred_probs.npz      100%[===================>]  16.26M  --.-KB/s    in 0.1s    \r\n",
       "\r\n",
-      "2024-01-10 06:25:13 (53.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+      "2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
       "\r\n"
      ]
     }
@@ -187,10 +194,10 @@
    "id": "439b0305",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:13.289925Z",
-     "iopub.status.busy": "2024-01-10T06:25:13.289508Z",
-     "iopub.status.idle": "2024-01-10T06:25:14.320211Z",
-     "shell.execute_reply": "2024-01-10T06:25:14.319499Z"
+     "iopub.execute_input": "2024-01-10T15:10:37.323300Z",
+     "iopub.status.busy": "2024-01-10T15:10:37.322818Z",
+     "iopub.status.idle": "2024-01-10T15:10:38.382549Z",
+     "shell.execute_reply": "2024-01-10T15:10:38.381846Z"
     },
     "nbsphinx": "hidden"
    },
@@ -201,7 +208,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -227,10 +234,10 @@
    "id": "a1349304",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:14.323244Z",
-     "iopub.status.busy": "2024-01-10T06:25:14.322862Z",
-     "iopub.status.idle": "2024-01-10T06:25:14.326575Z",
-     "shell.execute_reply": "2024-01-10T06:25:14.326063Z"
+     "iopub.execute_input": "2024-01-10T15:10:38.385611Z",
+     "iopub.status.busy": "2024-01-10T15:10:38.385072Z",
+     "iopub.status.idle": "2024-01-10T15:10:38.388744Z",
+     "shell.execute_reply": "2024-01-10T15:10:38.388204Z"
     }
    },
    "outputs": [],
@@ -280,10 +287,10 @@
    "id": "ab9d59a0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:14.329189Z",
-     "iopub.status.busy": "2024-01-10T06:25:14.328717Z",
-     "iopub.status.idle": "2024-01-10T06:25:14.332104Z",
-     "shell.execute_reply": "2024-01-10T06:25:14.331612Z"
+     "iopub.execute_input": "2024-01-10T15:10:38.391232Z",
+     "iopub.status.busy": "2024-01-10T15:10:38.390763Z",
+     "iopub.status.idle": "2024-01-10T15:10:38.394013Z",
+     "shell.execute_reply": "2024-01-10T15:10:38.393407Z"
     },
     "nbsphinx": "hidden"
    },
@@ -301,10 +308,10 @@
    "id": "519cb80c",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:14.334506Z",
-     "iopub.status.busy": "2024-01-10T06:25:14.334060Z",
-     "iopub.status.idle": "2024-01-10T06:25:22.328376Z",
-     "shell.execute_reply": "2024-01-10T06:25:22.327664Z"
+     "iopub.execute_input": "2024-01-10T15:10:38.396403Z",
+     "iopub.status.busy": "2024-01-10T15:10:38.395914Z",
+     "iopub.status.idle": "2024-01-10T15:10:46.275104Z",
+     "shell.execute_reply": "2024-01-10T15:10:46.274509Z"
     }
    },
    "outputs": [],
@@ -378,10 +385,10 @@
    "id": "202f1526",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:22.331443Z",
-     "iopub.status.busy": "2024-01-10T06:25:22.331210Z",
-     "iopub.status.idle": "2024-01-10T06:25:22.337488Z",
-     "shell.execute_reply": "2024-01-10T06:25:22.336872Z"
+     "iopub.execute_input": "2024-01-10T15:10:46.278341Z",
+     "iopub.status.busy": "2024-01-10T15:10:46.277773Z",
+     "iopub.status.idle": "2024-01-10T15:10:46.283971Z",
+     "shell.execute_reply": "2024-01-10T15:10:46.283371Z"
     },
     "nbsphinx": "hidden"
    },
@@ -421,10 +428,10 @@
    "id": "a4381f03",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:22.339951Z",
-     "iopub.status.busy": "2024-01-10T06:25:22.339480Z",
-     "iopub.status.idle": "2024-01-10T06:25:22.800732Z",
-     "shell.execute_reply": "2024-01-10T06:25:22.799973Z"
+     "iopub.execute_input": "2024-01-10T15:10:46.286389Z",
+     "iopub.status.busy": "2024-01-10T15:10:46.286016Z",
+     "iopub.status.idle": "2024-01-10T15:10:46.716858Z",
+     "shell.execute_reply": "2024-01-10T15:10:46.716253Z"
     }
    },
    "outputs": [],
@@ -461,10 +468,10 @@
    "id": "7842e4a3",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:22.803694Z",
-     "iopub.status.busy": "2024-01-10T06:25:22.803441Z",
-     "iopub.status.idle": "2024-01-10T06:25:22.809754Z",
-     "shell.execute_reply": "2024-01-10T06:25:22.809121Z"
+     "iopub.execute_input": "2024-01-10T15:10:46.719903Z",
+     "iopub.status.busy": "2024-01-10T15:10:46.719490Z",
+     "iopub.status.idle": "2024-01-10T15:10:46.725601Z",
+     "shell.execute_reply": "2024-01-10T15:10:46.724970Z"
     }
    },
    "outputs": [
@@ -536,10 +543,10 @@
    "id": "2c2ad9ad",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:22.812247Z",
-     "iopub.status.busy": "2024-01-10T06:25:22.811889Z",
-     "iopub.status.idle": "2024-01-10T06:25:24.829457Z",
-     "shell.execute_reply": "2024-01-10T06:25:24.828653Z"
+     "iopub.execute_input": "2024-01-10T15:10:46.728384Z",
+     "iopub.status.busy": "2024-01-10T15:10:46.727907Z",
+     "iopub.status.idle": "2024-01-10T15:10:48.714011Z",
+     "shell.execute_reply": "2024-01-10T15:10:48.713188Z"
     }
    },
    "outputs": [],
@@ -561,10 +568,10 @@
    "id": "95dc7268",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:24.833068Z",
-     "iopub.status.busy": "2024-01-10T06:25:24.832222Z",
-     "iopub.status.idle": "2024-01-10T06:25:24.839537Z",
-     "shell.execute_reply": "2024-01-10T06:25:24.838871Z"
+     "iopub.execute_input": "2024-01-10T15:10:48.717702Z",
+     "iopub.status.busy": "2024-01-10T15:10:48.716931Z",
+     "iopub.status.idle": "2024-01-10T15:10:48.724053Z",
+     "shell.execute_reply": "2024-01-10T15:10:48.723390Z"
     }
    },
    "outputs": [
@@ -600,10 +607,10 @@
    "id": "e13de188",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:24.842146Z",
-     "iopub.status.busy": "2024-01-10T06:25:24.841643Z",
-     "iopub.status.idle": "2024-01-10T06:25:24.866755Z",
-     "shell.execute_reply": "2024-01-10T06:25:24.866053Z"
+     "iopub.execute_input": "2024-01-10T15:10:48.726479Z",
+     "iopub.status.busy": "2024-01-10T15:10:48.726260Z",
+     "iopub.status.idle": "2024-01-10T15:10:48.744195Z",
+     "shell.execute_reply": "2024-01-10T15:10:48.743625Z"
     }
    },
    "outputs": [
@@ -781,10 +788,10 @@
    "id": "e4a006bd",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:24.869362Z",
-     "iopub.status.busy": "2024-01-10T06:25:24.869006Z",
-     "iopub.status.idle": "2024-01-10T06:25:24.901803Z",
-     "shell.execute_reply": "2024-01-10T06:25:24.901116Z"
+     "iopub.execute_input": "2024-01-10T15:10:48.746569Z",
+     "iopub.status.busy": "2024-01-10T15:10:48.746363Z",
+     "iopub.status.idle": "2024-01-10T15:10:48.779493Z",
+     "shell.execute_reply": "2024-01-10T15:10:48.778801Z"
     }
    },
    "outputs": [
@@ -886,10 +893,10 @@
    "id": "c8f4e163",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:24.904601Z",
-     "iopub.status.busy": "2024-01-10T06:25:24.904369Z",
-     "iopub.status.idle": "2024-01-10T06:25:24.912699Z",
-     "shell.execute_reply": "2024-01-10T06:25:24.912132Z"
+     "iopub.execute_input": "2024-01-10T15:10:48.782066Z",
+     "iopub.status.busy": "2024-01-10T15:10:48.781813Z",
+     "iopub.status.idle": "2024-01-10T15:10:48.790722Z",
+     "shell.execute_reply": "2024-01-10T15:10:48.790178Z"
     }
    },
    "outputs": [
@@ -963,10 +970,10 @@
    "id": "db0b5179",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:24.915153Z",
-     "iopub.status.busy": "2024-01-10T06:25:24.914932Z",
-     "iopub.status.idle": "2024-01-10T06:25:26.819403Z",
-     "shell.execute_reply": "2024-01-10T06:25:26.818778Z"
+     "iopub.execute_input": "2024-01-10T15:10:48.793202Z",
+     "iopub.status.busy": "2024-01-10T15:10:48.792863Z",
+     "iopub.status.idle": "2024-01-10T15:10:50.628648Z",
+     "shell.execute_reply": "2024-01-10T15:10:50.628005Z"
     }
    },
    "outputs": [
@@ -1138,10 +1145,10 @@
    "id": "a18795eb",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-10T06:25:26.821955Z",
-     "iopub.status.busy": "2024-01-10T06:25:26.821736Z",
-     "iopub.status.idle": "2024-01-10T06:25:26.826080Z",
-     "shell.execute_reply": "2024-01-10T06:25:26.825582Z"
+     "iopub.execute_input": "2024-01-10T15:10:50.631396Z",
+     "iopub.status.busy": "2024-01-10T15:10:50.630923Z",
+     "iopub.status.idle": "2024-01-10T15:10:50.635324Z",
+     "shell.execute_reply": "2024-01-10T15:10:50.634741Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/versioning.js b/versioning.js
index c7b323a30..29cc0a268 100644
--- a/versioning.js
+++ b/versioning.js
@@ -1,4 +1,4 @@
 var Version = {
   version_number: "v2.5.0",
-  commit_hash: "ae085b45b538e73a059d6a9ef10d747e590ce755",
+  commit_hash: "b2de6bbefb660b6545cc1ec5020d5b910c25ad73",
 };
\ No newline at end of file