diff --git a/master/.buildinfo b/master/.buildinfo index edb0c42a6..058513ca7 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 288be3d1f97ad378e0b64702f7f06ae2 +config: e53cc0bef305022986dbf869967df687 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index cf15aa3d7..b03739e72 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 1ddf79667..70f464dfd 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 49253ff5b..a8fe65f0e 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index d78b9796c..196cf55de 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 89e508c59..363278dd4 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 5115787db..0f46f6614 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 947204481..5802cf83c 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 20e5b5062..df9d59ffe 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index a9bd80398..e66cb78cc 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index b62bf53a8..f1d4021da 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 0e1fc1469..09e2f273d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index cc3344279..a43077c94 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 04528b32b..c34e2c831 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 6dd2ecf68..f517daabf 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 83a8b1940..6aa70b5d1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index a8b693764..c2cec2070 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 94b724b19..876c45f32 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index ae8e89ac0..7f3e2bf5b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 50834e0a6..0b434e961 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index d31472e0b..b4c4b72f2 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 4b92c5ff5..fc280ac1c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index dadbcf7a0..bc5a5f1f9 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 650b30ea1..8c90a3394 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 1f7180094..dfe348048 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index fe32be8cf..967db3b4e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 5d3d456a6..ecb810169 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 2d8994b16..fe5700e3c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index e0ef33ab7..083a3d60e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 6345c1c60..899cf81e4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 2d92ef7c0..3a45a2069 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index bb413a7b4..6d4cd9f29 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 0b2064009..52c0357a0 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index aa196d79c..cd9412f9b 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 10029604e..ecd8b244b 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 10a3ca193..8810b60e7 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 7c5f3cdc3..ac5d71b60 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 303fd3d92..47966c187 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 82b0e2ecb..5b3fc2ead 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 79fd4ebf4..e3a5b4fc7 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index aaa1f9b66..e4116637a 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 29eb6854c..918734abd 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index be8072dd1..12b18f0ba 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 6a36afd66..3b7fbc282 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 5ebc49bef..158300658 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 72e7b0979..20d46f69b 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index f2d3a5c18..905d17b18 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index b1482e5dc..189685159 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 7d4bce68a..e0f8e29b1 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 5aaad4c68..f131ec786 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 579712f48..023952630 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 32eb026f3..15746cdad 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index f77b21e39..cba953bac 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index cb114aa8b..80be0a0c7 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index f43232886..eeeded2f1 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 3423a0dae..093605e1f 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 3e2f61911..ebdf9f7c6 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index dc85021b8..7994bcc54 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 81d71fc3b..7f4598eec 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index e64140e3a..d16bb1d09 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 1bcc1ed75..72f6467e7 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 523b993dd..a9ff06910 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 2b429b103..f8fd15566 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 45b731942..c4014c79d 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index bfa143951..fc59c9240 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 8106fd3fc..7fb1e2070 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 3d906e47f..92edf2bf9 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 957eebe9a..4532b2441 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index eca705079..14f874cc0 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index e5bfeae7b..5b0d6fa58 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 50440affb..73bb6570a 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 1c9d75ba3..432557061 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index adb91323d..c5c737eeb 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index ac60678c1..c2b3744dd 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index e906c29f6..78e7d332c 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 3220b9b64..cea9251d3 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index 6f50fce62..292e02cfe 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:18.361812Z", - "iopub.status.busy": "2024-02-07T22:09:18.361636Z", - "iopub.status.idle": "2024-02-07T22:09:23.711531Z", - "shell.execute_reply": "2024-02-07T22:09:23.710898Z" + "iopub.execute_input": "2024-02-07T23:50:00.107221Z", + "iopub.status.busy": "2024-02-07T23:50:00.107063Z", + "iopub.status.idle": "2024-02-07T23:50:04.972205Z", + "shell.execute_reply": "2024-02-07T23:50:04.971588Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.714287Z", - "iopub.status.busy": "2024-02-07T22:09:23.713904Z", - "iopub.status.idle": "2024-02-07T22:09:23.717701Z", - "shell.execute_reply": "2024-02-07T22:09:23.717275Z" + "iopub.execute_input": "2024-02-07T23:50:04.974847Z", + "iopub.status.busy": "2024-02-07T23:50:04.974485Z", + "iopub.status.idle": "2024-02-07T23:50:04.977602Z", + "shell.execute_reply": "2024-02-07T23:50:04.977185Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.719659Z", - "iopub.status.busy": "2024-02-07T22:09:23.719476Z", - "iopub.status.idle": "2024-02-07T22:09:23.723985Z", - "shell.execute_reply": "2024-02-07T22:09:23.723572Z" + "iopub.execute_input": "2024-02-07T23:50:04.979500Z", + "iopub.status.busy": "2024-02-07T23:50:04.979321Z", + "iopub.status.idle": "2024-02-07T23:50:04.983925Z", + "shell.execute_reply": "2024-02-07T23:50:04.983480Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.725972Z", - "iopub.status.busy": "2024-02-07T22:09:23.725707Z", - "iopub.status.idle": "2024-02-07T22:09:25.249850Z", - "shell.execute_reply": "2024-02-07T22:09:25.249225Z" + "iopub.execute_input": "2024-02-07T23:50:04.986003Z", + "iopub.status.busy": "2024-02-07T23:50:04.985618Z", + "iopub.status.idle": "2024-02-07T23:50:06.549578Z", + "shell.execute_reply": "2024-02-07T23:50:06.548944Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.252557Z", - "iopub.status.busy": "2024-02-07T22:09:25.252169Z", - "iopub.status.idle": "2024-02-07T22:09:25.263474Z", - "shell.execute_reply": "2024-02-07T22:09:25.262738Z" + "iopub.execute_input": "2024-02-07T23:50:06.552344Z", + "iopub.status.busy": "2024-02-07T23:50:06.551958Z", + "iopub.status.idle": "2024-02-07T23:50:06.562444Z", + "shell.execute_reply": "2024-02-07T23:50:06.561881Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.296003Z", - "iopub.status.busy": "2024-02-07T22:09:25.295584Z", - "iopub.status.idle": "2024-02-07T22:09:25.301465Z", - "shell.execute_reply": "2024-02-07T22:09:25.300981Z" + "iopub.execute_input": "2024-02-07T23:50:06.593982Z", + "iopub.status.busy": "2024-02-07T23:50:06.593548Z", + "iopub.status.idle": "2024-02-07T23:50:06.599022Z", + "shell.execute_reply": "2024-02-07T23:50:06.598581Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.303281Z", - "iopub.status.busy": "2024-02-07T22:09:25.303109Z", - "iopub.status.idle": "2024-02-07T22:09:25.749448Z", - "shell.execute_reply": "2024-02-07T22:09:25.748880Z" + "iopub.execute_input": "2024-02-07T23:50:06.600905Z", + "iopub.status.busy": "2024-02-07T23:50:06.600729Z", + "iopub.status.idle": "2024-02-07T23:50:07.080952Z", + "shell.execute_reply": "2024-02-07T23:50:07.080367Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.751700Z", - "iopub.status.busy": "2024-02-07T22:09:25.751373Z", - "iopub.status.idle": "2024-02-07T22:09:26.514501Z", - "shell.execute_reply": "2024-02-07T22:09:26.513900Z" + "iopub.execute_input": "2024-02-07T23:50:07.083112Z", + "iopub.status.busy": "2024-02-07T23:50:07.082774Z", + "iopub.status.idle": "2024-02-07T23:50:07.698361Z", + "shell.execute_reply": "2024-02-07T23:50:07.697874Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.516952Z", - "iopub.status.busy": "2024-02-07T22:09:26.516772Z", - "iopub.status.idle": "2024-02-07T22:09:26.536940Z", - "shell.execute_reply": "2024-02-07T22:09:26.536500Z" + "iopub.execute_input": "2024-02-07T23:50:07.700875Z", + "iopub.status.busy": "2024-02-07T23:50:07.700453Z", + "iopub.status.idle": "2024-02-07T23:50:07.720767Z", + "shell.execute_reply": "2024-02-07T23:50:07.720213Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.538937Z", - "iopub.status.busy": "2024-02-07T22:09:26.538682Z", - "iopub.status.idle": "2024-02-07T22:09:26.541623Z", - "shell.execute_reply": "2024-02-07T22:09:26.541204Z" + "iopub.execute_input": "2024-02-07T23:50:07.722821Z", + "iopub.status.busy": "2024-02-07T23:50:07.722441Z", + "iopub.status.idle": "2024-02-07T23:50:07.725646Z", + "shell.execute_reply": "2024-02-07T23:50:07.725101Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.543564Z", - "iopub.status.busy": "2024-02-07T22:09:26.543237Z", - "iopub.status.idle": "2024-02-07T22:09:41.167409Z", - "shell.execute_reply": "2024-02-07T22:09:41.166804Z" + "iopub.execute_input": "2024-02-07T23:50:07.727549Z", + "iopub.status.busy": "2024-02-07T23:50:07.727193Z", + "iopub.status.idle": "2024-02-07T23:50:21.686992Z", + "shell.execute_reply": "2024-02-07T23:50:21.686381Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.170099Z", - "iopub.status.busy": "2024-02-07T22:09:41.169730Z", - "iopub.status.idle": "2024-02-07T22:09:41.173537Z", - "shell.execute_reply": "2024-02-07T22:09:41.173080Z" + "iopub.execute_input": "2024-02-07T23:50:21.689932Z", + "iopub.status.busy": "2024-02-07T23:50:21.689619Z", + "iopub.status.idle": "2024-02-07T23:50:21.693998Z", + "shell.execute_reply": "2024-02-07T23:50:21.693471Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -689,10 +689,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.175544Z", - "iopub.status.busy": "2024-02-07T22:09:41.175252Z", - "iopub.status.idle": "2024-02-07T22:09:41.882562Z", - "shell.execute_reply": "2024-02-07T22:09:41.881983Z" + "iopub.execute_input": "2024-02-07T23:50:21.696250Z", + "iopub.status.busy": "2024-02-07T23:50:21.695894Z", + "iopub.status.idle": "2024-02-07T23:50:22.394154Z", + "shell.execute_reply": "2024-02-07T23:50:22.393570Z" }, "id": "i_drkY9YOcw4" }, @@ -726,10 +726,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.886194Z", - "iopub.status.busy": "2024-02-07T22:09:41.885276Z", - "iopub.status.idle": "2024-02-07T22:09:41.891871Z", - "shell.execute_reply": "2024-02-07T22:09:41.891394Z" + "iopub.execute_input": "2024-02-07T23:50:22.397720Z", + "iopub.status.busy": "2024-02-07T23:50:22.396797Z", + "iopub.status.idle": "2024-02-07T23:50:22.403356Z", + "shell.execute_reply": "2024-02-07T23:50:22.402877Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -776,10 +776,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.895266Z", - "iopub.status.busy": "2024-02-07T22:09:41.894373Z", - "iopub.status.idle": "2024-02-07T22:09:42.014766Z", - "shell.execute_reply": "2024-02-07T22:09:42.014141Z" + "iopub.execute_input": "2024-02-07T23:50:22.406771Z", + "iopub.status.busy": "2024-02-07T23:50:22.405875Z", + "iopub.status.idle": "2024-02-07T23:50:22.531248Z", + "shell.execute_reply": "2024-02-07T23:50:22.530652Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.017421Z", - "iopub.status.busy": "2024-02-07T22:09:42.017053Z", - "iopub.status.idle": "2024-02-07T22:09:42.026022Z", - "shell.execute_reply": "2024-02-07T22:09:42.025558Z" + "iopub.execute_input": "2024-02-07T23:50:22.533546Z", + "iopub.status.busy": "2024-02-07T23:50:22.533179Z", + "iopub.status.idle": "2024-02-07T23:50:22.542292Z", + "shell.execute_reply": "2024-02-07T23:50:22.541760Z" }, "scrolled": true }, @@ -874,10 +874,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.028007Z", - "iopub.status.busy": "2024-02-07T22:09:42.027689Z", - "iopub.status.idle": "2024-02-07T22:09:42.035320Z", - "shell.execute_reply": "2024-02-07T22:09:42.034866Z" + "iopub.execute_input": "2024-02-07T23:50:22.544390Z", + "iopub.status.busy": "2024-02-07T23:50:22.544079Z", + "iopub.status.idle": "2024-02-07T23:50:22.551630Z", + "shell.execute_reply": "2024-02-07T23:50:22.551177Z" } }, "outputs": [ @@ -981,10 +981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.037273Z", - "iopub.status.busy": "2024-02-07T22:09:42.036949Z", - "iopub.status.idle": "2024-02-07T22:09:42.041027Z", - "shell.execute_reply": "2024-02-07T22:09:42.040574Z" + "iopub.execute_input": "2024-02-07T23:50:22.553693Z", + "iopub.status.busy": "2024-02-07T23:50:22.553372Z", + "iopub.status.idle": "2024-02-07T23:50:22.557201Z", + "shell.execute_reply": "2024-02-07T23:50:22.556671Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.043089Z", - "iopub.status.busy": "2024-02-07T22:09:42.042704Z", - "iopub.status.idle": "2024-02-07T22:09:42.048359Z", - "shell.execute_reply": "2024-02-07T22:09:42.047911Z" + "iopub.execute_input": "2024-02-07T23:50:22.559234Z", + "iopub.status.busy": "2024-02-07T23:50:22.558929Z", + "iopub.status.idle": "2024-02-07T23:50:22.564278Z", + "shell.execute_reply": "2024-02-07T23:50:22.563751Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1152,10 +1152,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.050308Z", - "iopub.status.busy": "2024-02-07T22:09:42.049989Z", - "iopub.status.idle": "2024-02-07T22:09:42.161793Z", - "shell.execute_reply": "2024-02-07T22:09:42.161209Z" + "iopub.execute_input": "2024-02-07T23:50:22.566348Z", + "iopub.status.busy": "2024-02-07T23:50:22.566033Z", + "iopub.status.idle": "2024-02-07T23:50:22.680300Z", + "shell.execute_reply": "2024-02-07T23:50:22.679806Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1209,10 +1209,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.164076Z", - "iopub.status.busy": "2024-02-07T22:09:42.163750Z", - "iopub.status.idle": "2024-02-07T22:09:42.270803Z", - "shell.execute_reply": "2024-02-07T22:09:42.270219Z" + "iopub.execute_input": "2024-02-07T23:50:22.682360Z", + "iopub.status.busy": "2024-02-07T23:50:22.682086Z", + "iopub.status.idle": "2024-02-07T23:50:22.787241Z", + "shell.execute_reply": "2024-02-07T23:50:22.786768Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1257,10 +1257,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.273107Z", - "iopub.status.busy": "2024-02-07T22:09:42.272726Z", - "iopub.status.idle": "2024-02-07T22:09:42.377361Z", - "shell.execute_reply": "2024-02-07T22:09:42.376788Z" + "iopub.execute_input": "2024-02-07T23:50:22.789319Z", + "iopub.status.busy": "2024-02-07T23:50:22.788985Z", + "iopub.status.idle": "2024-02-07T23:50:22.889567Z", + "shell.execute_reply": "2024-02-07T23:50:22.889085Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1301,10 +1301,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.379634Z", - "iopub.status.busy": "2024-02-07T22:09:42.379175Z", - "iopub.status.idle": "2024-02-07T22:09:42.483476Z", - "shell.execute_reply": "2024-02-07T22:09:42.482909Z" + "iopub.execute_input": "2024-02-07T23:50:22.891545Z", + "iopub.status.busy": "2024-02-07T23:50:22.891171Z", + "iopub.status.idle": "2024-02-07T23:50:22.990254Z", + "shell.execute_reply": "2024-02-07T23:50:22.989797Z" } }, "outputs": [ @@ -1352,10 +1352,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.485522Z", - "iopub.status.busy": "2024-02-07T22:09:42.485311Z", - "iopub.status.idle": "2024-02-07T22:09:42.488885Z", - "shell.execute_reply": "2024-02-07T22:09:42.488370Z" + "iopub.execute_input": "2024-02-07T23:50:22.992236Z", + "iopub.status.busy": "2024-02-07T23:50:22.991963Z", + "iopub.status.idle": "2024-02-07T23:50:22.995630Z", + "shell.execute_reply": "2024-02-07T23:50:22.995182Z" }, "nbsphinx": "hidden" }, @@ -1396,7 +1396,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "018c961243dc4a2ab609ecd13bf21b1c": { + "04300f6af0e2499abc98d7c0019ae68c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1412,43 +1412,135 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ea45f78382040ef970a525ca19405dc", - "max": 3201.0, + "layout": "IPY_MODEL_e0528fbb6b84426681be3552bcfa5be7", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e8bb345f6d81459fa75f4555635255d2", + "style": "IPY_MODEL_3130c2baa2ca43b8866db622c29120fc", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 2041.0 } }, - "02b46780ae3f483399e08d2e6ff8eab2": { + "049baf23826b4af093eff7678dd9f29d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb5894e2b38c45c194efd20f8c3cbe66", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60b527de43034970b1308b099653ea53", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aefceca0700b4c62b24820c53e63d7f9", + "IPY_MODEL_04300f6af0e2499abc98d7c0019ae68c", + "IPY_MODEL_d982ece3b4e14443adc855de84443142" + ], + "layout": "IPY_MODEL_99d97c19f0dc458bbece97f7d70aff29", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null + } + }, + "0595d525f4e448ab899ecc84c2c97ac6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b39dbdd24a234f3982e2b78d6a3a6ca4", + "IPY_MODEL_c8da71bd884e46109202edc2ee6ab409", + "IPY_MODEL_f620b009650b49f69c70d93caed3431b" + ], + "layout": "IPY_MODEL_d48b4a1fa40646a3bec001eabc934939", + "tabbable": null, + "tooltip": null + } + }, + "06290fbe33a34692b6a4159ab260ce9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b5d2f843fa24204af224bc21fdaf056": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0df3f598e42449c692311ec643f0d43d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b247055147c47c2a71d10020cd84176": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "05fbe93d9d004d09b7a9891b7f6adbe2": { + "293f95aa421a4889bf08ad2176227a3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1501,23 +1593,7 @@ "width": null } }, - "06630781720c42d199dca36dbc67bb87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "11c7035432e343fb93816c86129b8adf": { + "2a411ecde9e54d31b05f5cc5733557f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1570,7 +1646,30 @@ "width": null } }, - "1366b1442bcd477f91d3b1f2c79ccf71": { + "2c996374e678491788c459e1dbc99a01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a411ecde9e54d31b05f5cc5733557f7", + "placeholder": "​", + "style": "IPY_MODEL_9ef834011f39489aafc203ff4a85829a", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 227MB/s]" + } + }, + "2d4fdb5e6e5b487387c870752b01cd9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1623,7 +1722,41 @@ "width": null } }, - "1602afb154024a839e7eb2baeadf14c9": { + "3130c2baa2ca43b8866db622c29120fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d8bf5983d3844eb8ff2f91414a189f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3de28429f250445fa8516dbacd9be6b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1676,7 +1809,7 @@ "width": null } }, - "1797a298ca2148919567beaa49cc33d7": { + "481f68c008f94fc598a9ef7c2cce6da0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1729,48 +1862,7 @@ "width": null } }, - "1ba1608cb15441918fffbdb0112aa1f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1602afb154024a839e7eb2baeadf14c9", - "placeholder": "​", - "style": "IPY_MODEL_db3add3863d748748c253c014e2faf03", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "2ceda72b1d5049b5a8049ad58afd02d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2ea45f78382040ef970a525ca19405dc": { + "58eb5f1bb6f543b9b6d320bd4dc8a583": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1823,7 +1915,23 @@ "width": null } }, - "3095c367a4c74a08854abcd7622d7a72": { + "59c2bdf1dad14b51966cb22a618f131d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61d8c620b2004dcbbf7642355fae0c8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1876,33 +1984,7 @@ "width": null } }, - "314fd2a192634790b5db62a3957f85ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11c7035432e343fb93816c86129b8adf", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79351f8482fe4216b6609e0f2c2f5d0f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "3a569a86618c42dc86af61139d6acadf": { + "62bd4894905e4e87a345db49d46d4165": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1955,109 +2037,60 @@ "width": null } }, - "3f358d8bedbb43768725d491407bfce8": { - "model_module": "@jupyter-widgets/controls", + "654f7806575d45a9a93e8a5c0d6424c0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f248fc8f51004a06b30e02a83397236b", - "placeholder": "​", - "style": "IPY_MODEL_ff8cf12f43ca4d13a1017fbff08fe9f6", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 445kB/s]" - } - }, - "47d60ecdbe0a4f409818f97dffc6439c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6372cda2727c44baa0af02192d868905", - "placeholder": "​", - "style": "IPY_MODEL_2ceda72b1d5049b5a8049ad58afd02d9", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 198MB/s]" - } - }, - "578b918f0b334af9a2793c197fe9a32c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_99d0bf7b85e74ac2a356f2a9fff98e37", - "IPY_MODEL_92bc2ade5f1a4d98b4659c1d3a64feed", - "IPY_MODEL_6a87e23c3c664f00ab0368cbb61ca901" - ], - "layout": "IPY_MODEL_1366b1442bcd477f91d3b1f2c79ccf71", - "tabbable": null, - "tooltip": null - } - }, - "5d84cb363c6b490cb8afa2ab45a2daee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "60b527de43034970b1308b099653ea53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6372cda2727c44baa0af02192d868905": { + "666271d492134ef0b03b8ec9578b7998": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2110,7 +2143,7 @@ "width": null } }, - "6a87e23c3c664f00ab0368cbb61ca901": { + "668783404483450b8f426724d2f89cd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2125,15 +2158,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9340c56a375c49e89e8e3b127db43593", + "layout": "IPY_MODEL_481f68c008f94fc598a9ef7c2cce6da0", "placeholder": "​", - "style": "IPY_MODEL_ea839efc9eda4c81be312c0e78c8f734", + "style": "IPY_MODEL_7e6e92ecdf7e4d9eafaba693dc09a3c5", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]" + "value": "classifier.ckpt: 100%" + } + }, + "68ffad4d65d54523b62a4a5eccb50913": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f01ef992cbbf4ff19aa1fcca3a0d11ed", + "IPY_MODEL_cad92de12db6453a8c477718a7af5c66", + "IPY_MODEL_dd0085e26ee6480aa6a013494fb70534" + ], + "layout": "IPY_MODEL_58eb5f1bb6f543b9b6d320bd4dc8a583", + "tabbable": null, + "tooltip": null } }, - "6ee9b3701a494b97a2c8644af1e520cb": { + "69fd182a930c4068837b29ef749fc1bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2243,7 @@ "width": null } }, - "707ef7472aa046e0af876676bdeb0e1a": { + "6c5385e8b4cf43428bb9acc7bf7b1b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2204,7 +2261,7 @@ "text_color": null } }, - "79351f8482fe4216b6609e0f2c2f5d0f": { + "73bf2556b81f44f2b96275a8445d1cf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2220,7 +2277,31 @@ "description_width": "" } }, - "87af3d337e4c4f56b8de8653ffbcf2fa": { + "79d69ad0f5d64b55b2c38c5a74f7b121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_668783404483450b8f426724d2f89cd3", + "IPY_MODEL_efad4ad3f4a54a6994d42d4a6b5132d8", + "IPY_MODEL_2c996374e678491788c459e1dbc99a01" + ], + "layout": "IPY_MODEL_2d4fdb5e6e5b487387c870752b01cd9f", + "tabbable": null, + "tooltip": null + } + }, + "7e072d86b5c74dcb93b0e3f2038cc23d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2273,56 +2354,7 @@ "width": null } }, - "88e025fac457476e857a0ed0172c8ebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_05fbe93d9d004d09b7a9891b7f6adbe2", - "placeholder": "​", - "style": "IPY_MODEL_707ef7472aa046e0af876676bdeb0e1a", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "8fc50970ec7644c6825dbf8f10bcced8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1797a298ca2148919567beaa49cc33d7", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06630781720c42d199dca36dbc67bb87", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "918ea5972c8a43b4b372a06b881f8d52": { + "7e6e92ecdf7e4d9eafaba693dc09a3c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2340,7 +2372,7 @@ "text_color": null } }, - "92bc2ade5f1a4d98b4659c1d3a64feed": { + "857398c0b7f442608c58fc97f1061a9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2356,17 +2388,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e831980da61448918a716f1d888c714a", - "max": 15856877.0, + "layout": "IPY_MODEL_62bd4894905e4e87a345db49d46d4165", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5d84cb363c6b490cb8afa2ab45a2daee", + "style": "IPY_MODEL_59c2bdf1dad14b51966cb22a618f131d", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": 3201.0 } }, - "9340c56a375c49e89e8e3b127db43593": { + "99d97c19f0dc458bbece97f7d70aff29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2419,30 +2451,49 @@ "width": null } }, - "99d0bf7b85e74ac2a356f2a9fff98e37": { + "9ae177114d464deba94c0d078154bdf4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d916d408a2f44a8992d77870d9ae75bf", - "placeholder": "​", - "style": "IPY_MODEL_f0aa84448e3f405b9aeee1a3005ca7a2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f816adc0ed2b4d56be8bf200373ef9aa", + "IPY_MODEL_857398c0b7f442608c58fc97f1061a9f", + "IPY_MODEL_fc8d050fc3f448ee9399813ed8e667f4" + ], + "layout": "IPY_MODEL_69fd182a930c4068837b29ef749fc1bf", "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "tooltip": null + } + }, + "9ef834011f39489aafc203ff4a85829a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d41a343cf504fc2878761980bd12889": { + "abe7c4e2a2194914a09f1d5bd6432fec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2495,7 +2546,30 @@ "width": null } }, - "b69d30f9f6bd496e950e0a7253129c59": { + "aefceca0700b4c62b24820c53e63d7f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_293f95aa421a4889bf08ad2176227a3a", + "placeholder": "​", + "style": "IPY_MODEL_d6c9f629d18240d7a6b98ac06c78293a", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "b39dbdd24a234f3982e2b78d6a3a6ca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2510,15 +2584,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3095c367a4c74a08854abcd7622d7a72", + "layout": "IPY_MODEL_bac330bbb6a4449a8fbf7ad2fb9720e7", "placeholder": "​", - "style": "IPY_MODEL_d60c4c9975014fc6918fb9394f823e45", + "style": "IPY_MODEL_cf487e1807424afba2b22b5f777c96a2", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 769kB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "bb5894e2b38c45c194efd20f8c3cbe66": { + "baae0b1fb874444ebed0ca5b86534711": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2571,102 +2645,8 @@ "width": null } }, - "bba729c19a594f33892a4024225287f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_88e025fac457476e857a0ed0172c8ebf", - "IPY_MODEL_314fd2a192634790b5db62a3957f85ac", - "IPY_MODEL_47d60ecdbe0a4f409818f97dffc6439c" - ], - "layout": "IPY_MODEL_eaa3e635e6d845149a49424039f11a4a", - "tabbable": null, - "tooltip": null - } - }, - "bf3f0473f1a24d82986d6c703fdff8de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c96f0f9cb7694a33982acab6e5ac22c1", - "IPY_MODEL_018c961243dc4a2ab609ecd13bf21b1c", - "IPY_MODEL_b69d30f9f6bd496e950e0a7253129c59" - ], - "layout": "IPY_MODEL_87af3d337e4c4f56b8de8653ffbcf2fa", - "tabbable": null, - "tooltip": null - } - }, - "c7316533a256479abb53524380df0dd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a569a86618c42dc86af61139d6acadf", - "placeholder": "​", - "style": "IPY_MODEL_f853c6490ccf49c18f81d8894a4fd3d4", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 9.21MB/s]" - } - }, - "c96f0f9cb7694a33982acab6e5ac22c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4ac54bb95434214887e6908f7417cc4", - "placeholder": "​", - "style": "IPY_MODEL_918ea5972c8a43b4b372a06b881f8d52", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "d4ac54bb95434214887e6908f7417cc4": { - "model_module": "@jupyter-widgets/base", + "bac330bbb6a4449a8fbf7ad2fb9720e7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -2718,7 +2698,59 @@ "width": null } }, - "d60c4c9975014fc6918fb9394f823e45": { + "c8da71bd884e46109202edc2ee6ab409": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_654f7806575d45a9a93e8a5c0d6424c0", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4c65529fdc840279cfc12be44b62fb9", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "cad92de12db6453a8c477718a7af5c66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e072d86b5c74dcb93b0e3f2038cc23d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b5d2f843fa24204af224bc21fdaf056", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "cf487e1807424afba2b22b5f777c96a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2736,7 +2768,7 @@ "text_color": null } }, - "d916d408a2f44a8992d77870d9ae75bf": { + "d48b4a1fa40646a3bec001eabc934939": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2789,7 +2821,23 @@ "width": null } }, - "db3add3863d748748c253c014e2faf03": { + "d4c65529fdc840279cfc12be44b62fb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d65f6dbb468c45f5833700dc76ef4722": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2807,60 +2855,71 @@ "text_color": null } }, - "e617431224a74447b3168997dee691d1": { - "model_module": "@jupyter-widgets/base", + "d6c9f629d18240d7a6b98ac06c78293a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d982ece3b4e14443adc855de84443142": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3de28429f250445fa8516dbacd9be6b4", + "placeholder": "​", + "style": "IPY_MODEL_1b247055147c47c2a71d10020cd84176", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 499kB/s]" + } + }, + "dd0085e26ee6480aa6a013494fb70534": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_baae0b1fb874444ebed0ca5b86534711", + "placeholder": "​", + "style": "IPY_MODEL_d65f6dbb468c45f5833700dc76ef4722", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 15.9MB/s]" } }, - "e831980da61448918a716f1d888c714a": { + "e0528fbb6b84426681be3552bcfa5be7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2913,41 +2972,7 @@ "width": null } }, - "e8bb345f6d81459fa75f4555635255d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ea839efc9eda4c81be312c0e78c8f734": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eaa3e635e6d845149a49424039f11a4a": { + "e872326b222549548e420a960ab1959d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3000,43 +3025,7 @@ "width": null } }, - "f0aa84448e3f405b9aeee1a3005ca7a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f0e4ebf8d49e4f038e5a57a3736f1527": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f248fc8f51004a06b30e02a83397236b": { + "ede528c5216046cfba4a067472e5124d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3089,49 +3078,56 @@ "width": null } }, - "f853c6490ccf49c18f81d8894a4fd3d4": { + "efad4ad3f4a54a6994d42d4a6b5132d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e872326b222549548e420a960ab1959d", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73bf2556b81f44f2b96275a8445d1cf0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "f8ffabec7ae64c16bd74b38130d34b65": { + "f01ef992cbbf4ff19aa1fcca3a0d11ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1ba1608cb15441918fffbdb0112aa1f8", - "IPY_MODEL_8fc50970ec7644c6825dbf8f10bcced8", - "IPY_MODEL_c7316533a256479abb53524380df0dd4" - ], - "layout": "IPY_MODEL_6ee9b3701a494b97a2c8644af1e520cb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61d8c620b2004dcbbf7642355fae0c8d", + "placeholder": "​", + "style": "IPY_MODEL_0df3f598e42449c692311ec643f0d43d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "fe3bcc7d9bf948039e3be396079d45a5": { + "f620b009650b49f69c70d93caed3431b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3146,54 +3142,58 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e617431224a74447b3168997dee691d1", + "layout": "IPY_MODEL_abe7c4e2a2194914a09f1d5bd6432fec", "placeholder": "​", - "style": "IPY_MODEL_f0e4ebf8d49e4f038e5a57a3736f1527", + "style": "IPY_MODEL_6c5385e8b4cf43428bb9acc7bf7b1b4f", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 192MB/s]" } }, - "ff1fa9c053ff44b6819529a9bf6f509a": { + "f816adc0ed2b4d56be8bf200373ef9aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fe3bcc7d9bf948039e3be396079d45a5", - "IPY_MODEL_02b46780ae3f483399e08d2e6ff8eab2", - "IPY_MODEL_3f358d8bedbb43768725d491407bfce8" - ], - "layout": "IPY_MODEL_9d41a343cf504fc2878761980bd12889", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ede528c5216046cfba4a067472e5124d", + "placeholder": "​", + "style": "IPY_MODEL_3d8bf5983d3844eb8ff2f91414a189f4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ff8cf12f43ca4d13a1017fbff08fe9f6": { + "fc8d050fc3f448ee9399813ed8e667f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_666271d492134ef0b03b8ec9578b7998", + "placeholder": "​", + "style": "IPY_MODEL_06290fbe33a34692b6a4159ab260ce9c", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 841kB/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index eb98a395e..2aa010cbc 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:45.766597Z", - "iopub.status.busy": "2024-02-07T22:09:45.766116Z", - "iopub.status.idle": "2024-02-07T22:09:46.894614Z", - "shell.execute_reply": "2024-02-07T22:09:46.893994Z" + "iopub.execute_input": "2024-02-07T23:50:26.079478Z", + "iopub.status.busy": "2024-02-07T23:50:26.079305Z", + "iopub.status.idle": "2024-02-07T23:50:27.150586Z", + "shell.execute_reply": "2024-02-07T23:50:27.149991Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.897320Z", - "iopub.status.busy": "2024-02-07T22:09:46.897025Z", - "iopub.status.idle": "2024-02-07T22:09:46.900128Z", - "shell.execute_reply": "2024-02-07T22:09:46.899610Z" + "iopub.execute_input": "2024-02-07T23:50:27.153138Z", + "iopub.status.busy": "2024-02-07T23:50:27.152874Z", + "iopub.status.idle": "2024-02-07T23:50:27.156022Z", + "shell.execute_reply": "2024-02-07T23:50:27.155466Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.902250Z", - "iopub.status.busy": "2024-02-07T22:09:46.902067Z", - "iopub.status.idle": "2024-02-07T22:09:46.910749Z", - "shell.execute_reply": "2024-02-07T22:09:46.910239Z" + "iopub.execute_input": "2024-02-07T23:50:27.158108Z", + "iopub.status.busy": "2024-02-07T23:50:27.157782Z", + "iopub.status.idle": "2024-02-07T23:50:27.166233Z", + "shell.execute_reply": "2024-02-07T23:50:27.165798Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.912794Z", - "iopub.status.busy": "2024-02-07T22:09:46.912478Z", - "iopub.status.idle": "2024-02-07T22:09:46.917349Z", - "shell.execute_reply": "2024-02-07T22:09:46.916928Z" + "iopub.execute_input": "2024-02-07T23:50:27.168113Z", + "iopub.status.busy": "2024-02-07T23:50:27.167802Z", + "iopub.status.idle": "2024-02-07T23:50:27.172764Z", + "shell.execute_reply": "2024-02-07T23:50:27.172228Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.919340Z", - "iopub.status.busy": "2024-02-07T22:09:46.919163Z", - "iopub.status.idle": "2024-02-07T22:09:47.102840Z", - "shell.execute_reply": "2024-02-07T22:09:47.102218Z" + "iopub.execute_input": "2024-02-07T23:50:27.174817Z", + "iopub.status.busy": "2024-02-07T23:50:27.174498Z", + "iopub.status.idle": "2024-02-07T23:50:27.354014Z", + "shell.execute_reply": "2024-02-07T23:50:27.353508Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.105419Z", - "iopub.status.busy": "2024-02-07T22:09:47.105218Z", - "iopub.status.idle": "2024-02-07T22:09:47.478382Z", - "shell.execute_reply": "2024-02-07T22:09:47.477797Z" + "iopub.execute_input": "2024-02-07T23:50:27.356243Z", + "iopub.status.busy": "2024-02-07T23:50:27.355969Z", + "iopub.status.idle": "2024-02-07T23:50:27.726314Z", + "shell.execute_reply": "2024-02-07T23:50:27.725725Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.480753Z", - "iopub.status.busy": "2024-02-07T22:09:47.480556Z", - "iopub.status.idle": "2024-02-07T22:09:47.504355Z", - "shell.execute_reply": "2024-02-07T22:09:47.503906Z" + "iopub.execute_input": "2024-02-07T23:50:27.728588Z", + "iopub.status.busy": "2024-02-07T23:50:27.728237Z", + "iopub.status.idle": "2024-02-07T23:50:27.751646Z", + "shell.execute_reply": "2024-02-07T23:50:27.751190Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.506265Z", - "iopub.status.busy": "2024-02-07T22:09:47.506078Z", - "iopub.status.idle": "2024-02-07T22:09:47.520161Z", - "shell.execute_reply": "2024-02-07T22:09:47.519724Z" + "iopub.execute_input": "2024-02-07T23:50:27.753586Z", + "iopub.status.busy": "2024-02-07T23:50:27.753257Z", + "iopub.status.idle": "2024-02-07T23:50:27.767865Z", + "shell.execute_reply": "2024-02-07T23:50:27.767424Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.522067Z", - "iopub.status.busy": "2024-02-07T22:09:47.521889Z", - "iopub.status.idle": "2024-02-07T22:09:49.194798Z", - "shell.execute_reply": "2024-02-07T22:09:49.194164Z" + "iopub.execute_input": "2024-02-07T23:50:27.769928Z", + "iopub.status.busy": "2024-02-07T23:50:27.769614Z", + "iopub.status.idle": "2024-02-07T23:50:29.339727Z", + "shell.execute_reply": "2024-02-07T23:50:29.339121Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.197488Z", - "iopub.status.busy": "2024-02-07T22:09:49.196806Z", - "iopub.status.idle": "2024-02-07T22:09:49.221374Z", - "shell.execute_reply": "2024-02-07T22:09:49.220928Z" + "iopub.execute_input": "2024-02-07T23:50:29.342327Z", + "iopub.status.busy": "2024-02-07T23:50:29.341776Z", + "iopub.status.idle": "2024-02-07T23:50:29.363862Z", + "shell.execute_reply": "2024-02-07T23:50:29.363291Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.223702Z", - "iopub.status.busy": "2024-02-07T22:09:49.223201Z", - "iopub.status.idle": "2024-02-07T22:09:49.241727Z", - "shell.execute_reply": "2024-02-07T22:09:49.241144Z" + "iopub.execute_input": "2024-02-07T23:50:29.365917Z", + "iopub.status.busy": "2024-02-07T23:50:29.365594Z", + "iopub.status.idle": "2024-02-07T23:50:29.383708Z", + "shell.execute_reply": "2024-02-07T23:50:29.383160Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.243746Z", - "iopub.status.busy": "2024-02-07T22:09:49.243416Z", - "iopub.status.idle": "2024-02-07T22:09:49.256057Z", - "shell.execute_reply": "2024-02-07T22:09:49.255592Z" + "iopub.execute_input": "2024-02-07T23:50:29.385827Z", + "iopub.status.busy": "2024-02-07T23:50:29.385426Z", + "iopub.status.idle": "2024-02-07T23:50:29.397799Z", + "shell.execute_reply": "2024-02-07T23:50:29.397365Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.258061Z", - "iopub.status.busy": "2024-02-07T22:09:49.257720Z", - "iopub.status.idle": "2024-02-07T22:09:49.279982Z", - "shell.execute_reply": "2024-02-07T22:09:49.279381Z" + "iopub.execute_input": "2024-02-07T23:50:29.399711Z", + "iopub.status.busy": "2024-02-07T23:50:29.399540Z", + "iopub.status.idle": "2024-02-07T23:50:29.420343Z", + "shell.execute_reply": "2024-02-07T23:50:29.419747Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fde4d4047cc04f52b05c97287dfdab6f", + "model_id": "fc591f1bc33243c09e4539d5f7f93d6e", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.282086Z", - "iopub.status.busy": "2024-02-07T22:09:49.281743Z", - "iopub.status.idle": "2024-02-07T22:09:49.295746Z", - "shell.execute_reply": "2024-02-07T22:09:49.295286Z" + "iopub.execute_input": "2024-02-07T23:50:29.422227Z", + "iopub.status.busy": "2024-02-07T23:50:29.421911Z", + "iopub.status.idle": "2024-02-07T23:50:29.434983Z", + "shell.execute_reply": "2024-02-07T23:50:29.434447Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.297847Z", - "iopub.status.busy": "2024-02-07T22:09:49.297623Z", - "iopub.status.idle": "2024-02-07T22:09:49.303905Z", - "shell.execute_reply": "2024-02-07T22:09:49.303324Z" + "iopub.execute_input": "2024-02-07T23:50:29.437032Z", + "iopub.status.busy": "2024-02-07T23:50:29.436723Z", + "iopub.status.idle": "2024-02-07T23:50:29.442271Z", + "shell.execute_reply": "2024-02-07T23:50:29.441861Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.306143Z", - "iopub.status.busy": "2024-02-07T22:09:49.305836Z", - "iopub.status.idle": "2024-02-07T22:09:49.323660Z", - "shell.execute_reply": "2024-02-07T22:09:49.323089Z" + "iopub.execute_input": "2024-02-07T23:50:29.444286Z", + "iopub.status.busy": "2024-02-07T23:50:29.443974Z", + "iopub.status.idle": "2024-02-07T23:50:29.460426Z", + "shell.execute_reply": "2024-02-07T23:50:29.459872Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2796c1b17ef34cd2924b19c570f1ba19": { + "112602ddf49c4bf785b9bad0c12fe160": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1445,15 +1445,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9fa597efa5d48e59d7f343f74918d9e", + "layout": "IPY_MODEL_6aa4b5d7697a4ed0bc096aa15d54b031", "placeholder": "​", - "style": "IPY_MODEL_bb4f3fe3fa91465da8d8e7461df5ba6e", + "style": "IPY_MODEL_6fa4e74a8cff48f9a59390c7cf9bdc68", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%" } }, - "2821f5f639ba4ffd9334637e6f72a8f6": { + "5a809642ae1c44d1bcb4435dfeba74f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9553827654b745bf83b8b620248421b0", + "placeholder": "​", + "style": "IPY_MODEL_fc883be33a264afa82c5f8909066a0cf", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 11705.53 examples/s]" + } + }, + "6aa4b5d7697a4ed0bc096aa15d54b031": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,56 +1529,41 @@ "width": null } }, - "49bb714cc50743d4ba856e9f230e86d4": { + "6fa4e74a8cff48f9a59390c7cf9bdc68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2821f5f639ba4ffd9334637e6f72a8f6", - "placeholder": "​", - "style": "IPY_MODEL_d96baeb2794b4526b8c5e3e90431ba55", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 10686.54 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8e20c89702ef461daecccbb5da8848ab": { + "8340d103f0ae4a1c9c28c150537d321a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f27d8d03bb7a4b9c80ec66879eba1d42", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_af54435c28a94ad3a9d70db593b5a3e5", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a9fa597efa5d48e59d7f343f74918d9e": { + "8dccc6dba8764969a34bcdd2d2695a48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1608,59 +1616,33 @@ "width": null } }, - "af54435c28a94ad3a9d70db593b5a3e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb4f3fe3fa91465da8d8e7461df5ba6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d96baeb2794b4526b8c5e3e90431ba55": { + "923d794e2ac04e25b34fa7031a457daf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba00a80584da4e25999bd64658097477", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8340d103f0ae4a1c9c28c150537d321a", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "ecad1f34aefc443ca975a3be167d184c": { + "9553827654b745bf83b8b620248421b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1713,7 +1695,7 @@ "width": null } }, - "f27d8d03bb7a4b9c80ec66879eba1d42": { + "ba00a80584da4e25999bd64658097477": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,7 +1748,7 @@ "width": null } }, - "fde4d4047cc04f52b05c97287dfdab6f": { + "fc591f1bc33243c09e4539d5f7f93d6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1781,14 +1763,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2796c1b17ef34cd2924b19c570f1ba19", - "IPY_MODEL_8e20c89702ef461daecccbb5da8848ab", - "IPY_MODEL_49bb714cc50743d4ba856e9f230e86d4" + "IPY_MODEL_112602ddf49c4bf785b9bad0c12fe160", + "IPY_MODEL_923d794e2ac04e25b34fa7031a457daf", + "IPY_MODEL_5a809642ae1c44d1bcb4435dfeba74f1" ], - "layout": "IPY_MODEL_ecad1f34aefc443ca975a3be167d184c", + "layout": "IPY_MODEL_8dccc6dba8764969a34bcdd2d2695a48", "tabbable": null, "tooltip": null } + }, + "fc883be33a264afa82c5f8909066a0cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 27e694d83..38a0df9fa 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:51.944305Z", - "iopub.status.busy": "2024-02-07T22:09:51.943895Z", - "iopub.status.idle": "2024-02-07T22:09:53.035775Z", - "shell.execute_reply": "2024-02-07T22:09:53.035210Z" + "iopub.execute_input": "2024-02-07T23:50:32.050037Z", + "iopub.status.busy": "2024-02-07T23:50:32.049655Z", + "iopub.status.idle": "2024-02-07T23:50:33.121241Z", + "shell.execute_reply": "2024-02-07T23:50:33.120710Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.038346Z", - "iopub.status.busy": "2024-02-07T22:09:53.037927Z", - "iopub.status.idle": "2024-02-07T22:09:53.040885Z", - "shell.execute_reply": "2024-02-07T22:09:53.040446Z" + "iopub.execute_input": "2024-02-07T23:50:33.123591Z", + "iopub.status.busy": "2024-02-07T23:50:33.123252Z", + "iopub.status.idle": "2024-02-07T23:50:33.126067Z", + "shell.execute_reply": "2024-02-07T23:50:33.125643Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.043051Z", - "iopub.status.busy": "2024-02-07T22:09:53.042662Z", - "iopub.status.idle": "2024-02-07T22:09:53.051658Z", - "shell.execute_reply": "2024-02-07T22:09:53.051179Z" + "iopub.execute_input": "2024-02-07T23:50:33.128077Z", + "iopub.status.busy": "2024-02-07T23:50:33.127739Z", + "iopub.status.idle": "2024-02-07T23:50:33.136454Z", + "shell.execute_reply": "2024-02-07T23:50:33.136019Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.053597Z", - "iopub.status.busy": "2024-02-07T22:09:53.053299Z", - "iopub.status.idle": "2024-02-07T22:09:53.058208Z", - "shell.execute_reply": "2024-02-07T22:09:53.057763Z" + "iopub.execute_input": "2024-02-07T23:50:33.138407Z", + "iopub.status.busy": "2024-02-07T23:50:33.138099Z", + "iopub.status.idle": "2024-02-07T23:50:33.142931Z", + "shell.execute_reply": "2024-02-07T23:50:33.142378Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.060288Z", - "iopub.status.busy": "2024-02-07T22:09:53.059980Z", - "iopub.status.idle": "2024-02-07T22:09:53.243898Z", - "shell.execute_reply": "2024-02-07T22:09:53.243265Z" + "iopub.execute_input": "2024-02-07T23:50:33.145229Z", + "iopub.status.busy": "2024-02-07T23:50:33.144779Z", + "iopub.status.idle": "2024-02-07T23:50:33.324549Z", + "shell.execute_reply": "2024-02-07T23:50:33.324005Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.246458Z", - "iopub.status.busy": "2024-02-07T22:09:53.246117Z", - "iopub.status.idle": "2024-02-07T22:09:53.569144Z", - "shell.execute_reply": "2024-02-07T22:09:53.568560Z" + "iopub.execute_input": "2024-02-07T23:50:33.326802Z", + "iopub.status.busy": "2024-02-07T23:50:33.326501Z", + "iopub.status.idle": "2024-02-07T23:50:33.691854Z", + "shell.execute_reply": "2024-02-07T23:50:33.691275Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.571195Z", - "iopub.status.busy": "2024-02-07T22:09:53.571004Z", - "iopub.status.idle": "2024-02-07T22:09:53.573886Z", - "shell.execute_reply": "2024-02-07T22:09:53.573439Z" + "iopub.execute_input": "2024-02-07T23:50:33.693985Z", + "iopub.status.busy": "2024-02-07T23:50:33.693672Z", + "iopub.status.idle": "2024-02-07T23:50:33.696518Z", + "shell.execute_reply": "2024-02-07T23:50:33.695930Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.575899Z", - "iopub.status.busy": "2024-02-07T22:09:53.575585Z", - "iopub.status.idle": "2024-02-07T22:09:53.610611Z", - "shell.execute_reply": "2024-02-07T22:09:53.610139Z" + "iopub.execute_input": "2024-02-07T23:50:33.698376Z", + "iopub.status.busy": "2024-02-07T23:50:33.698197Z", + "iopub.status.idle": "2024-02-07T23:50:33.734067Z", + "shell.execute_reply": "2024-02-07T23:50:33.733496Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.612587Z", - "iopub.status.busy": "2024-02-07T22:09:53.612283Z", - "iopub.status.idle": "2024-02-07T22:09:55.294395Z", - "shell.execute_reply": "2024-02-07T22:09:55.293723Z" + "iopub.execute_input": "2024-02-07T23:50:33.736250Z", + "iopub.status.busy": "2024-02-07T23:50:33.735898Z", + "iopub.status.idle": "2024-02-07T23:50:35.324293Z", + "shell.execute_reply": "2024-02-07T23:50:35.323707Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.297112Z", - "iopub.status.busy": "2024-02-07T22:09:55.296398Z", - "iopub.status.idle": "2024-02-07T22:09:55.312678Z", - "shell.execute_reply": "2024-02-07T22:09:55.312224Z" + "iopub.execute_input": "2024-02-07T23:50:35.326786Z", + "iopub.status.busy": "2024-02-07T23:50:35.326145Z", + "iopub.status.idle": "2024-02-07T23:50:35.342690Z", + "shell.execute_reply": "2024-02-07T23:50:35.342116Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.314716Z", - "iopub.status.busy": "2024-02-07T22:09:55.314404Z", - "iopub.status.idle": "2024-02-07T22:09:55.320693Z", - "shell.execute_reply": "2024-02-07T22:09:55.320168Z" + "iopub.execute_input": "2024-02-07T23:50:35.344850Z", + "iopub.status.busy": "2024-02-07T23:50:35.344539Z", + "iopub.status.idle": "2024-02-07T23:50:35.351268Z", + "shell.execute_reply": "2024-02-07T23:50:35.350723Z" } }, "outputs": [ @@ -941,10 +941,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.322682Z", - "iopub.status.busy": "2024-02-07T22:09:55.322374Z", - "iopub.status.idle": "2024-02-07T22:09:55.327895Z", - "shell.execute_reply": "2024-02-07T22:09:55.327376Z" + "iopub.execute_input": "2024-02-07T23:50:35.353405Z", + "iopub.status.busy": "2024-02-07T23:50:35.353065Z", + "iopub.status.idle": "2024-02-07T23:50:35.358733Z", + "shell.execute_reply": "2024-02-07T23:50:35.358315Z" } }, "outputs": [ @@ -1011,10 +1011,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.329882Z", - "iopub.status.busy": "2024-02-07T22:09:55.329574Z", - "iopub.status.idle": "2024-02-07T22:09:55.338962Z", - "shell.execute_reply": "2024-02-07T22:09:55.338443Z" + "iopub.execute_input": "2024-02-07T23:50:35.360561Z", + "iopub.status.busy": "2024-02-07T23:50:35.360391Z", + "iopub.status.idle": "2024-02-07T23:50:35.370073Z", + "shell.execute_reply": "2024-02-07T23:50:35.369622Z" } }, "outputs": [ @@ -1187,10 +1187,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.341062Z", - "iopub.status.busy": "2024-02-07T22:09:55.340748Z", - "iopub.status.idle": "2024-02-07T22:09:55.349834Z", - "shell.execute_reply": "2024-02-07T22:09:55.349389Z" + "iopub.execute_input": "2024-02-07T23:50:35.372076Z", + "iopub.status.busy": "2024-02-07T23:50:35.371747Z", + "iopub.status.idle": "2024-02-07T23:50:35.380435Z", + "shell.execute_reply": "2024-02-07T23:50:35.380030Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.351812Z", - "iopub.status.busy": "2024-02-07T22:09:55.351492Z", - "iopub.status.idle": "2024-02-07T22:09:55.358215Z", - "shell.execute_reply": "2024-02-07T22:09:55.357777Z" + "iopub.execute_input": "2024-02-07T23:50:35.382354Z", + "iopub.status.busy": "2024-02-07T23:50:35.382064Z", + "iopub.status.idle": "2024-02-07T23:50:35.388711Z", + "shell.execute_reply": "2024-02-07T23:50:35.388189Z" }, "scrolled": true }, @@ -1434,10 +1434,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.360252Z", - "iopub.status.busy": "2024-02-07T22:09:55.359862Z", - "iopub.status.idle": "2024-02-07T22:09:55.368697Z", - "shell.execute_reply": "2024-02-07T22:09:55.368160Z" + "iopub.execute_input": "2024-02-07T23:50:35.390572Z", + "iopub.status.busy": "2024-02-07T23:50:35.390398Z", + "iopub.status.idle": "2024-02-07T23:50:35.399536Z", + "shell.execute_reply": "2024-02-07T23:50:35.399098Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 69da62e85..89256cb69 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:58.185193Z", - "iopub.status.busy": "2024-02-07T22:09:58.185035Z", - "iopub.status.idle": "2024-02-07T22:09:59.240954Z", - "shell.execute_reply": "2024-02-07T22:09:59.240396Z" + "iopub.execute_input": "2024-02-07T23:50:37.883084Z", + "iopub.status.busy": "2024-02-07T23:50:37.882910Z", + "iopub.status.idle": "2024-02-07T23:50:38.892679Z", + "shell.execute_reply": "2024-02-07T23:50:38.892131Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.243686Z", - "iopub.status.busy": "2024-02-07T22:09:59.243159Z", - "iopub.status.idle": "2024-02-07T22:09:59.278797Z", - "shell.execute_reply": "2024-02-07T22:09:59.278254Z" + "iopub.execute_input": "2024-02-07T23:50:38.894943Z", + "iopub.status.busy": "2024-02-07T23:50:38.894684Z", + "iopub.status.idle": "2024-02-07T23:50:38.929710Z", + "shell.execute_reply": "2024-02-07T23:50:38.929146Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.281190Z", - "iopub.status.busy": "2024-02-07T22:09:59.280903Z", - "iopub.status.idle": "2024-02-07T22:09:59.401377Z", - "shell.execute_reply": "2024-02-07T22:09:59.400748Z" + "iopub.execute_input": "2024-02-07T23:50:38.931765Z", + "iopub.status.busy": "2024-02-07T23:50:38.931526Z", + "iopub.status.idle": "2024-02-07T23:50:39.058331Z", + "shell.execute_reply": "2024-02-07T23:50:39.057887Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.403384Z", - "iopub.status.busy": "2024-02-07T22:09:59.403180Z", - "iopub.status.idle": "2024-02-07T22:09:59.407799Z", - "shell.execute_reply": "2024-02-07T22:09:59.407346Z" + "iopub.execute_input": "2024-02-07T23:50:39.060129Z", + "iopub.status.busy": "2024-02-07T23:50:39.059952Z", + "iopub.status.idle": "2024-02-07T23:50:39.064178Z", + "shell.execute_reply": "2024-02-07T23:50:39.063670Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.409634Z", - "iopub.status.busy": "2024-02-07T22:09:59.409460Z", - "iopub.status.idle": "2024-02-07T22:09:59.417606Z", - "shell.execute_reply": "2024-02-07T22:09:59.417193Z" + "iopub.execute_input": "2024-02-07T23:50:39.066362Z", + "iopub.status.busy": "2024-02-07T23:50:39.065950Z", + "iopub.status.idle": "2024-02-07T23:50:39.076608Z", + "shell.execute_reply": "2024-02-07T23:50:39.076042Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.419486Z", - "iopub.status.busy": "2024-02-07T22:09:59.419287Z", - "iopub.status.idle": "2024-02-07T22:09:59.421813Z", - "shell.execute_reply": "2024-02-07T22:09:59.421375Z" + "iopub.execute_input": "2024-02-07T23:50:39.078928Z", + "iopub.status.busy": "2024-02-07T23:50:39.078751Z", + "iopub.status.idle": "2024-02-07T23:50:39.083266Z", + "shell.execute_reply": "2024-02-07T23:50:39.082562Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.423749Z", - "iopub.status.busy": "2024-02-07T22:09:59.423432Z", - "iopub.status.idle": "2024-02-07T22:10:02.368926Z", - "shell.execute_reply": "2024-02-07T22:10:02.368252Z" + "iopub.execute_input": "2024-02-07T23:50:39.086189Z", + "iopub.status.busy": "2024-02-07T23:50:39.085768Z", + "iopub.status.idle": "2024-02-07T23:50:42.065051Z", + "shell.execute_reply": "2024-02-07T23:50:42.064424Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:02.371956Z", - "iopub.status.busy": "2024-02-07T22:10:02.371532Z", - "iopub.status.idle": "2024-02-07T22:10:02.381528Z", - "shell.execute_reply": "2024-02-07T22:10:02.380946Z" + "iopub.execute_input": "2024-02-07T23:50:42.067604Z", + "iopub.status.busy": "2024-02-07T23:50:42.067419Z", + "iopub.status.idle": "2024-02-07T23:50:42.077021Z", + "shell.execute_reply": "2024-02-07T23:50:42.076618Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:02.383882Z", - "iopub.status.busy": "2024-02-07T22:10:02.383431Z", - "iopub.status.idle": "2024-02-07T22:10:04.216983Z", - "shell.execute_reply": "2024-02-07T22:10:04.216362Z" + "iopub.execute_input": "2024-02-07T23:50:42.078892Z", + "iopub.status.busy": "2024-02-07T23:50:42.078719Z", + "iopub.status.idle": "2024-02-07T23:50:43.738703Z", + "shell.execute_reply": "2024-02-07T23:50:43.738023Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.220917Z", - "iopub.status.busy": "2024-02-07T22:10:04.219625Z", - "iopub.status.idle": "2024-02-07T22:10:04.241581Z", - "shell.execute_reply": "2024-02-07T22:10:04.241080Z" + "iopub.execute_input": "2024-02-07T23:50:43.741956Z", + "iopub.status.busy": "2024-02-07T23:50:43.741196Z", + "iopub.status.idle": "2024-02-07T23:50:43.761486Z", + "shell.execute_reply": "2024-02-07T23:50:43.760971Z" }, "scrolled": true }, @@ -604,10 +604,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.245130Z", - "iopub.status.busy": "2024-02-07T22:10:04.244225Z", - "iopub.status.idle": "2024-02-07T22:10:04.255345Z", - "shell.execute_reply": "2024-02-07T22:10:04.254854Z" + "iopub.execute_input": "2024-02-07T23:50:43.764641Z", + "iopub.status.busy": "2024-02-07T23:50:43.763724Z", + "iopub.status.idle": "2024-02-07T23:50:43.774658Z", + "shell.execute_reply": "2024-02-07T23:50:43.774184Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.258823Z", - "iopub.status.busy": "2024-02-07T22:10:04.257919Z", - "iopub.status.idle": "2024-02-07T22:10:04.270597Z", - "shell.execute_reply": "2024-02-07T22:10:04.270094Z" + "iopub.execute_input": "2024-02-07T23:50:43.778049Z", + "iopub.status.busy": "2024-02-07T23:50:43.777135Z", + "iopub.status.idle": "2024-02-07T23:50:43.789631Z", + "shell.execute_reply": "2024-02-07T23:50:43.789124Z" } }, "outputs": [ @@ -843,10 +843,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.274181Z", - "iopub.status.busy": "2024-02-07T22:10:04.273266Z", - "iopub.status.idle": "2024-02-07T22:10:04.284928Z", - "shell.execute_reply": "2024-02-07T22:10:04.284408Z" + "iopub.execute_input": "2024-02-07T23:50:43.793061Z", + "iopub.status.busy": "2024-02-07T23:50:43.792169Z", + "iopub.status.idle": "2024-02-07T23:50:43.803071Z", + "shell.execute_reply": "2024-02-07T23:50:43.802586Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.288692Z", - "iopub.status.busy": "2024-02-07T22:10:04.287752Z", - "iopub.status.idle": "2024-02-07T22:10:04.301331Z", - "shell.execute_reply": "2024-02-07T22:10:04.300828Z" + "iopub.execute_input": "2024-02-07T23:50:43.806458Z", + "iopub.status.busy": "2024-02-07T23:50:43.805573Z", + "iopub.status.idle": "2024-02-07T23:50:43.817839Z", + "shell.execute_reply": "2024-02-07T23:50:43.817365Z" } }, "outputs": [ @@ -1074,10 +1074,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.304987Z", - "iopub.status.busy": "2024-02-07T22:10:04.304078Z", - "iopub.status.idle": "2024-02-07T22:10:04.312203Z", - "shell.execute_reply": "2024-02-07T22:10:04.311804Z" + "iopub.execute_input": "2024-02-07T23:50:43.821198Z", + "iopub.status.busy": "2024-02-07T23:50:43.820286Z", + "iopub.status.idle": "2024-02-07T23:50:43.829526Z", + "shell.execute_reply": "2024-02-07T23:50:43.828987Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.315003Z", - "iopub.status.busy": "2024-02-07T22:10:04.314273Z", - "iopub.status.idle": "2024-02-07T22:10:04.321246Z", - "shell.execute_reply": "2024-02-07T22:10:04.320693Z" + "iopub.execute_input": "2024-02-07T23:50:43.831641Z", + "iopub.status.busy": "2024-02-07T23:50:43.831471Z", + "iopub.status.idle": "2024-02-07T23:50:43.837592Z", + "shell.execute_reply": "2024-02-07T23:50:43.837146Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.323382Z", - "iopub.status.busy": "2024-02-07T22:10:04.323031Z", - "iopub.status.idle": "2024-02-07T22:10:04.329588Z", - "shell.execute_reply": "2024-02-07T22:10:04.328964Z" + "iopub.execute_input": "2024-02-07T23:50:43.839485Z", + "iopub.status.busy": "2024-02-07T23:50:43.839314Z", + "iopub.status.idle": "2024-02-07T23:50:43.845958Z", + "shell.execute_reply": "2024-02-07T23:50:43.845400Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 18dadf034..d297bd27d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:06.947323Z", - "iopub.status.busy": "2024-02-07T22:10:06.947148Z", - "iopub.status.idle": "2024-02-07T22:10:09.939027Z", - "shell.execute_reply": "2024-02-07T22:10:09.938409Z" + "iopub.execute_input": "2024-02-07T23:50:46.233862Z", + "iopub.status.busy": "2024-02-07T23:50:46.233691Z", + "iopub.status.idle": "2024-02-07T23:50:49.479909Z", + "shell.execute_reply": "2024-02-07T23:50:49.479357Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.941621Z", - "iopub.status.busy": "2024-02-07T22:10:09.941215Z", - "iopub.status.idle": "2024-02-07T22:10:09.944579Z", - "shell.execute_reply": "2024-02-07T22:10:09.944140Z" + "iopub.execute_input": "2024-02-07T23:50:49.482307Z", + "iopub.status.busy": "2024-02-07T23:50:49.482016Z", + "iopub.status.idle": "2024-02-07T23:50:49.485135Z", + "shell.execute_reply": "2024-02-07T23:50:49.484703Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.946445Z", - "iopub.status.busy": "2024-02-07T22:10:09.946183Z", - "iopub.status.idle": "2024-02-07T22:10:09.949100Z", - "shell.execute_reply": "2024-02-07T22:10:09.948667Z" + "iopub.execute_input": "2024-02-07T23:50:49.487098Z", + "iopub.status.busy": "2024-02-07T23:50:49.486785Z", + "iopub.status.idle": "2024-02-07T23:50:49.489812Z", + "shell.execute_reply": "2024-02-07T23:50:49.489306Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.951000Z", - "iopub.status.busy": "2024-02-07T22:10:09.950733Z", - "iopub.status.idle": "2024-02-07T22:10:09.991047Z", - "shell.execute_reply": "2024-02-07T22:10:09.990478Z" + "iopub.execute_input": "2024-02-07T23:50:49.491745Z", + "iopub.status.busy": "2024-02-07T23:50:49.491425Z", + "iopub.status.idle": "2024-02-07T23:50:49.528987Z", + "shell.execute_reply": "2024-02-07T23:50:49.528551Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.993279Z", - "iopub.status.busy": "2024-02-07T22:10:09.992913Z", - "iopub.status.idle": "2024-02-07T22:10:09.996608Z", - "shell.execute_reply": "2024-02-07T22:10:09.996099Z" + "iopub.execute_input": "2024-02-07T23:50:49.530871Z", + "iopub.status.busy": "2024-02-07T23:50:49.530546Z", + "iopub.status.idle": "2024-02-07T23:50:49.533966Z", + "shell.execute_reply": "2024-02-07T23:50:49.533472Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.998677Z", - "iopub.status.busy": "2024-02-07T22:10:09.998368Z", - "iopub.status.idle": "2024-02-07T22:10:10.001537Z", - "shell.execute_reply": "2024-02-07T22:10:10.000982Z" + "iopub.execute_input": "2024-02-07T23:50:49.535879Z", + "iopub.status.busy": "2024-02-07T23:50:49.535606Z", + "iopub.status.idle": "2024-02-07T23:50:49.538753Z", + "shell.execute_reply": "2024-02-07T23:50:49.538216Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:10.003570Z", - "iopub.status.busy": "2024-02-07T22:10:10.003251Z", - "iopub.status.idle": "2024-02-07T22:10:14.583265Z", - "shell.execute_reply": "2024-02-07T22:10:14.582629Z" + "iopub.execute_input": "2024-02-07T23:50:49.540840Z", + "iopub.status.busy": "2024-02-07T23:50:49.540442Z", + "iopub.status.idle": "2024-02-07T23:50:53.722382Z", + "shell.execute_reply": "2024-02-07T23:50:53.721737Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0d885c1a34b04b04a65e76462bc7f8ae", + "model_id": "c122193addbf4629b7ada89af7819966", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70b899115926475ab4ca6289cac6f98d", + "model_id": "49733f926f10403491687cd4d40d244f", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "455cdf2910fc4c79acb1d3b1b36f013d", + "model_id": "e83d2ad65dac4e88a3f2ccde21d67f7f", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "617ccbb8f42e4c1da705cc6973aae912", + "model_id": "294346972e994e1c991aae390ff08179", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a965f31be8c34295846ad4a509228998", + "model_id": "9a65587ca1b94945af7dcc0cfc29a026", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c48d71673f824ce380d94b6bc999083a", + "model_id": "8e9d9888450346db8e3954d17cef036f", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4eef59cd705841408e36d8db6510b5db", + "model_id": "2dd173e0deec4bd6bc92ad03b5a7656c", "version_major": 2, "version_minor": 0 }, @@ -521,10 +521,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:14.586075Z", - "iopub.status.busy": "2024-02-07T22:10:14.585631Z", - "iopub.status.idle": "2024-02-07T22:10:15.504919Z", - "shell.execute_reply": "2024-02-07T22:10:15.504346Z" + "iopub.execute_input": "2024-02-07T23:50:53.724982Z", + "iopub.status.busy": "2024-02-07T23:50:53.724780Z", + "iopub.status.idle": "2024-02-07T23:50:54.607508Z", + "shell.execute_reply": "2024-02-07T23:50:54.606933Z" }, "scrolled": true }, @@ -556,10 +556,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:15.507830Z", - "iopub.status.busy": "2024-02-07T22:10:15.507434Z", - "iopub.status.idle": "2024-02-07T22:10:15.510302Z", - "shell.execute_reply": "2024-02-07T22:10:15.509822Z" + "iopub.execute_input": "2024-02-07T23:50:54.610305Z", + "iopub.status.busy": "2024-02-07T23:50:54.609824Z", + "iopub.status.idle": "2024-02-07T23:50:54.612703Z", + "shell.execute_reply": "2024-02-07T23:50:54.612237Z" } }, "outputs": [], @@ -579,10 +579,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:15.513318Z", - "iopub.status.busy": "2024-02-07T22:10:15.512296Z", - "iopub.status.idle": "2024-02-07T22:10:17.066860Z", - "shell.execute_reply": "2024-02-07T22:10:17.066217Z" + "iopub.execute_input": "2024-02-07T23:50:54.614977Z", + "iopub.status.busy": "2024-02-07T23:50:54.614633Z", + "iopub.status.idle": "2024-02-07T23:50:56.087451Z", + "shell.execute_reply": "2024-02-07T23:50:56.086626Z" }, "scrolled": true }, @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.071173Z", - "iopub.status.busy": "2024-02-07T22:10:17.069847Z", - "iopub.status.idle": "2024-02-07T22:10:17.092618Z", - "shell.execute_reply": "2024-02-07T22:10:17.092122Z" + "iopub.execute_input": "2024-02-07T23:50:56.091488Z", + "iopub.status.busy": "2024-02-07T23:50:56.090197Z", + "iopub.status.idle": "2024-02-07T23:50:56.112835Z", + "shell.execute_reply": "2024-02-07T23:50:56.112316Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.096131Z", - "iopub.status.busy": "2024-02-07T22:10:17.095219Z", - "iopub.status.idle": "2024-02-07T22:10:17.106575Z", - "shell.execute_reply": "2024-02-07T22:10:17.106103Z" + "iopub.execute_input": "2024-02-07T23:50:56.116330Z", + "iopub.status.busy": "2024-02-07T23:50:56.115399Z", + "iopub.status.idle": "2024-02-07T23:50:56.126920Z", + "shell.execute_reply": "2024-02-07T23:50:56.126444Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.109988Z", - "iopub.status.busy": "2024-02-07T22:10:17.109076Z", - "iopub.status.idle": "2024-02-07T22:10:17.115450Z", - "shell.execute_reply": "2024-02-07T22:10:17.114951Z" + "iopub.execute_input": "2024-02-07T23:50:56.130383Z", + "iopub.status.busy": "2024-02-07T23:50:56.129483Z", + "iopub.status.idle": "2024-02-07T23:50:56.135890Z", + "shell.execute_reply": "2024-02-07T23:50:56.135397Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.118760Z", - "iopub.status.busy": "2024-02-07T22:10:17.117868Z", - "iopub.status.idle": "2024-02-07T22:10:17.126824Z", - "shell.execute_reply": "2024-02-07T22:10:17.126445Z" + "iopub.execute_input": "2024-02-07T23:50:56.139224Z", + "iopub.status.busy": "2024-02-07T23:50:56.138329Z", + "iopub.status.idle": "2024-02-07T23:50:56.147473Z", + "shell.execute_reply": "2024-02-07T23:50:56.147004Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.128914Z", - "iopub.status.busy": "2024-02-07T22:10:17.128742Z", - "iopub.status.idle": "2024-02-07T22:10:17.136240Z", - "shell.execute_reply": "2024-02-07T22:10:17.135712Z" + "iopub.execute_input": "2024-02-07T23:50:56.149798Z", + "iopub.status.busy": "2024-02-07T23:50:56.149623Z", + "iopub.status.idle": "2024-02-07T23:50:56.156444Z", + "shell.execute_reply": "2024-02-07T23:50:56.155823Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.138165Z", - "iopub.status.busy": "2024-02-07T22:10:17.137995Z", - "iopub.status.idle": "2024-02-07T22:10:17.144520Z", - "shell.execute_reply": "2024-02-07T22:10:17.143902Z" + "iopub.execute_input": "2024-02-07T23:50:56.158506Z", + "iopub.status.busy": "2024-02-07T23:50:56.158330Z", + "iopub.status.idle": "2024-02-07T23:50:56.164895Z", + "shell.execute_reply": "2024-02-07T23:50:56.164300Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.146533Z", - "iopub.status.busy": "2024-02-07T22:10:17.146359Z", - "iopub.status.idle": "2024-02-07T22:10:17.155364Z", - "shell.execute_reply": "2024-02-07T22:10:17.154731Z" + "iopub.execute_input": "2024-02-07T23:50:56.166958Z", + "iopub.status.busy": "2024-02-07T23:50:56.166784Z", + "iopub.status.idle": "2024-02-07T23:50:56.175982Z", + "shell.execute_reply": "2024-02-07T23:50:56.175361Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.157360Z", - "iopub.status.busy": "2024-02-07T22:10:17.157188Z", - "iopub.status.idle": "2024-02-07T22:10:17.162733Z", - "shell.execute_reply": "2024-02-07T22:10:17.162088Z" + "iopub.execute_input": "2024-02-07T23:50:56.178038Z", + "iopub.status.busy": "2024-02-07T23:50:56.177865Z", + "iopub.status.idle": "2024-02-07T23:50:56.183444Z", + "shell.execute_reply": "2024-02-07T23:50:56.182795Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.165077Z", - "iopub.status.busy": "2024-02-07T22:10:17.164903Z", - "iopub.status.idle": "2024-02-07T22:10:17.170197Z", - "shell.execute_reply": "2024-02-07T22:10:17.169559Z" + "iopub.execute_input": "2024-02-07T23:50:56.185842Z", + "iopub.status.busy": "2024-02-07T23:50:56.185452Z", + "iopub.status.idle": "2024-02-07T23:50:56.190683Z", + "shell.execute_reply": "2024-02-07T23:50:56.190168Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.172679Z", - "iopub.status.busy": "2024-02-07T22:10:17.172506Z", - "iopub.status.idle": "2024-02-07T22:10:17.176201Z", - "shell.execute_reply": "2024-02-07T22:10:17.175552Z" + "iopub.execute_input": "2024-02-07T23:50:56.192661Z", + "iopub.status.busy": "2024-02-07T23:50:56.192345Z", + "iopub.status.idle": "2024-02-07T23:50:56.195806Z", + "shell.execute_reply": "2024-02-07T23:50:56.195258Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.178606Z", - "iopub.status.busy": "2024-02-07T22:10:17.178436Z", - "iopub.status.idle": "2024-02-07T22:10:17.183817Z", - "shell.execute_reply": "2024-02-07T22:10:17.183182Z" + "iopub.execute_input": "2024-02-07T23:50:56.197832Z", + "iopub.status.busy": "2024-02-07T23:50:56.197471Z", + "iopub.status.idle": "2024-02-07T23:50:56.202662Z", + "shell.execute_reply": "2024-02-07T23:50:56.202128Z" }, "nbsphinx": "hidden" }, @@ -1598,33 +1598,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06844a7db8a6422892d1acb1093405d3": { + "01a106c335cd4ec5a6a8b14ff1d5ba8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_974ed300109b4bed98388334741d7e20", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74bffb84a6eb4480a26355932844fbf5", + "layout": "IPY_MODEL_96544fa91ef044518cca58cdc8b7e90e", + "placeholder": "​", + "style": "IPY_MODEL_a9f88197d6d3487599e3bcf4cc14437f", "tabbable": null, "tooltip": null, - "value": 29.0 + "value": " 29.0/29.0 [00:00<00:00, 5.39kB/s]" } }, - "0935d34e934d4f82955d4a9dd06e95e1": { + "05ac06cc7d34426a9f564a521b6f5875": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1642,7 +1639,7 @@ "text_color": null } }, - "0a7f8e7552794e84871dff2662ca68c6": { + "081174bba3534f74bb5ef231d4b3fc4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1695,75 +1692,7 @@ "width": null } }, - "0d885c1a34b04b04a65e76462bc7f8ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e0526787ea344759f493ff3f7048f30", - "IPY_MODEL_94ba3436c83b4db9ba81e2bec475edd4", - "IPY_MODEL_e6f2f27575614660a8dd13e1ce1592ed" - ], - "layout": "IPY_MODEL_b830d17a17194985802b41acfc283bc5", - "tabbable": null, - "tooltip": null - } - }, - "0f436aaa0eda485f8feabba1220a17e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12eca47a10834c6395838a954baa15a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9fe06d39c12248debba0ce4f131d1b0c", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3e83a7c1d3504ca0ac014f3ddb23fa79", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "1daa511c5f96480a898ea35b444b1eca": { + "133eddeef7544847977f9757ebacf52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1816,7 +1745,23 @@ "width": null } }, - "22413209abe846cdbe1e339fca65b5d5": { + "1629e90242ff4712bf0774c4d7943ed9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1781eb1973d74e20986b1ac2f47913b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1831,31 +1776,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a7f8e7552794e84871dff2662ca68c6", + "layout": "IPY_MODEL_1972a9b3359a4b1abc2438b34e72ac35", "placeholder": "​", - "style": "IPY_MODEL_dfb7fa9cce6240e6be17ce35ae03b6a2", + "style": "IPY_MODEL_05ac06cc7d34426a9f564a521b6f5875", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "26bf4567f23a4ecdbbb4391039e47a1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "config.json: 100%" } }, - "294f544e4fbc4e68a974452deb9b095e": { + "1972a9b3359a4b1abc2438b34e72ac35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1908,7 +1837,7 @@ "width": null } }, - "2f4f8123d8ba4a888ed11e05b0c87d16": { + "1ac440e00f2e4511bc1a64dc9215f5fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1961,60 +1890,112 @@ "width": null } }, - "2ff3313f83984a09b2354f35ba8b7f57": { - "model_module": "@jupyter-widgets/base", + "283c8b33977b456ebc5a25d251743c83": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55d53572e1964c34bda15161a71f7592", + "placeholder": "​", + "style": "IPY_MODEL_d1ac4d9b3095413592ea9015d4a58175", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 433kB/s]" + } + }, + "294346972e994e1c991aae390ff08179": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a440225dab48494daf0d867e0a062c60", + "IPY_MODEL_533a2a80ff99434fbad2ef63edf9b216", + "IPY_MODEL_5af1c1a5fa7e4b0e87198be81c8c806c" + ], + "layout": "IPY_MODEL_f017d2f580b040638630015c72d627b2", + "tabbable": null, + "tooltip": null + } + }, + "2d4d74efbd824425870cbaf45c10f938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2dd173e0deec4bd6bc92ad03b5a7656c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_664ea7a324e443bbb27801624a919c05", + "IPY_MODEL_7df77100f86c42f59a817321411eb210", + "IPY_MODEL_42e820ce57d64326b13eb2eba7da616e" + ], + "layout": "IPY_MODEL_38d9a775cbf2416481cf86be42b1b571", + "tabbable": null, + "tooltip": null + } + }, + "2dded20223ec437d9b4f0724d519c76b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "340fe62c803045229af00190ee214ca8": { + "2f50043f1a0d4aada1f2ea15e26779a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2032,33 +2013,30 @@ "text_color": null } }, - "34c8f48cf7b3429383912dffe61081f1": { + "365ba1b09e7341489be8464655a555cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e12d0db22792490c99b19e69618087c0", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_828e8f4e5a684ae88f51ea6ae972b36a", + "layout": "IPY_MODEL_133eddeef7544847977f9757ebacf52b", + "placeholder": "​", + "style": "IPY_MODEL_53ae31ba2c0f4559a6bbe11311fa21c8", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 466k/466k [00:00<00:00, 28.7MB/s]" } }, - "36d01d15d38e4c90afc3997820731f1d": { + "36bf4419cfb34b2fb65dc8ca66ddeb57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,33 +2089,60 @@ "width": null } }, - "383aaede23d042d58e21efdc6823b5a8": { - "model_module": "@jupyter-widgets/controls", + "38d9a775cbf2416481cf86be42b1b571": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d4d46c545514392aa8b9666188c2c2f", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44be34defa9b4e3a8116c9c64f985d0f", - "tabbable": null, - "tooltip": null, - "value": 231508.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3e83a7c1d3504ca0ac014f3ddb23fa79": { + "4026be558dc041d182c88249f880078e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2153,7 +2158,7 @@ "description_width": "" } }, - "42466c5944084b1e9b24e6e9a2f21f0e": { + "4033e28a96fa4a59bb9a423171ca614b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2169,57 +2174,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b089b7ff67904e859e08f74eb4462cc5", - "max": 665.0, + "layout": "IPY_MODEL_43918fb3e44743d19d92614011500cf2", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_26bf4567f23a4ecdbbb4391039e47a1f", + "style": "IPY_MODEL_7288265f2e2a4b99ab54e05e23f5f0ae", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 2211.0 } }, - "44be34defa9b4e3a8116c9c64f985d0f": { - "model_module": "@jupyter-widgets/controls", + "40c2452148e54b80ad05abfeb95dab29": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "455cdf2910fc4c79acb1d3b1b36f013d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9cae2bb475d64e8ea6440578d75f46df", - "IPY_MODEL_42466c5944084b1e9b24e6e9a2f21f0e", - "IPY_MODEL_e38d5a36366d4cb4892d529cf4e51cfb" - ], - "layout": "IPY_MODEL_a265a663c76a43e1b927ff469bc5d2b5", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "486557d720934439a49a6e048ca63142": { + "42e820ce57d64326b13eb2eba7da616e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2234,15 +2252,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_294f544e4fbc4e68a974452deb9b095e", + "layout": "IPY_MODEL_bb8fa5d63e7f401ba6dd282294a14d51", "placeholder": "​", - "style": "IPY_MODEL_c105e79c89b848c98c79ea2425e07146", + "style": "IPY_MODEL_2f50043f1a0d4aada1f2ea15e26779a6", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 132MB/s]" + "value": " 232k/232k [00:00<00:00, 37.4MB/s]" } }, - "49d1dca865a4406f9fd081d76b25120f": { + "43918fb3e44743d19d92614011500cf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2295,7 +2313,31 @@ "width": null } }, - "4a73f1657df6418192b8e88b26bfea54": { + "49733f926f10403491687cd4d40d244f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_738a58ca6f7b4db7a157166614a2d23d", + "IPY_MODEL_4033e28a96fa4a59bb9a423171ca614b", + "IPY_MODEL_283c8b33977b456ebc5a25d251743c83" + ], + "layout": "IPY_MODEL_f48d4fa2009642d08bc01e8fe3f7baa2", + "tabbable": null, + "tooltip": null + } + }, + "4c1bc089fe3a44f99d3e97c6aa907ed2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,78 +2390,74 @@ "width": null } }, - "4eef59cd705841408e36d8db6510b5db": { + "4c6d24e1b8e140589b3f7206e752a847": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b56c9e208a93471cafa984931cfab2d1", - "IPY_MODEL_383aaede23d042d58e21efdc6823b5a8", - "IPY_MODEL_6dcc0a68a8624bf5b340aa9c48917f41" - ], - "layout": "IPY_MODEL_1daa511c5f96480a898ea35b444b1eca", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_deef1f9c7c854b4787e1291d7676ccfa", + "placeholder": "​", + "style": "IPY_MODEL_4d174d86825a4659a535d3f67ddd8f91", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "tokenizer.json: 100%" } }, - "5e0526787ea344759f493ff3f7048f30": { + "4d174d86825a4659a535d3f67ddd8f91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f4f8123d8ba4a888ed11e05b0c87d16", - "placeholder": "​", - "style": "IPY_MODEL_7ee455eacbd742bdb254f16dc1e68910", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "617ccbb8f42e4c1da705cc6973aae912": { + "533a2a80ff99434fbad2ef63edf9b216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fb88ef6b95a5461989853ce1b5f754ca", - "IPY_MODEL_8c226dcc1f7e4700bb2b27f77e40f8ac", - "IPY_MODEL_486557d720934439a49a6e048ca63142" - ], - "layout": "IPY_MODEL_bb249cbd8534453ba55520e924c7b81d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60796f28cf154144a6bacad76d5ff446", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1629e90242ff4712bf0774c4d7943ed9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 54245363.0 } }, - "6386e67f246a46c2a8167db4fbd4f50f": { + "5355024e5df14205a7c989138994be48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2472,7 +2510,7 @@ "width": null } }, - "68191e9841cf4fc3ad5084c453808bf6": { + "53ae31ba2c0f4559a6bbe11311fa21c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2490,7 +2528,7 @@ "text_color": null } }, - "6952ddc411c24d5a9250ef2f3f8fc46b": { + "54c548b22f99437abf98203ae4a700a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2506,7 +2544,7 @@ "description_width": "" } }, - "69e2a0e88f5b4789aca076d1397eeef0": { + "55d53572e1964c34bda15161a71f7592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2559,7 +2597,30 @@ "width": null } }, - "6d4d46c545514392aa8b9666188c2c2f": { + "5af1c1a5fa7e4b0e87198be81c8c806c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ac440e00f2e4511bc1a64dc9215f5fc", + "placeholder": "​", + "style": "IPY_MODEL_65e3df94b7524d67b789725d4178ebfa", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 162MB/s]" + } + }, + "5c42af812e744e9b81b5a6a33e0ce2ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2612,189 +2673,7 @@ "width": null } }, - "6dcc0a68a8624bf5b340aa9c48917f41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49d1dca865a4406f9fd081d76b25120f", - "placeholder": "​", - "style": "IPY_MODEL_b1a67674d9034ceea803f59c0cc261a3", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 4.29MB/s]" - } - }, - "70b899115926475ab4ca6289cac6f98d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b70a3bde8ab44d1a383656136a63d06", - "IPY_MODEL_34c8f48cf7b3429383912dffe61081f1", - "IPY_MODEL_c0f2fcd597464233b9df7c82e9338208" - ], - "layout": "IPY_MODEL_f4fb247100d34699900ba0b2436078d6", - "tabbable": null, - "tooltip": null - } - }, - "730e39295f384d38a7809341193721b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "74bffb84a6eb4480a26355932844fbf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b70a3bde8ab44d1a383656136a63d06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f39b17bf56d44a99a5c3bed40eb29a2d", - "placeholder": "​", - "style": "IPY_MODEL_0935d34e934d4f82955d4a9dd06e95e1", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "7ee455eacbd742bdb254f16dc1e68910": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "828e8f4e5a684ae88f51ea6ae972b36a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "858df27692a24f74844cc2329eb49af6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8c226dcc1f7e4700bb2b27f77e40f8ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69e2a0e88f5b4789aca076d1397eeef0", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6952ddc411c24d5a9250ef2f3f8fc46b", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "9021471f58ab4bfd9bbe4dc26b025b17": { + "60796f28cf154144a6bacad76d5ff446": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2847,33 +2726,64 @@ "width": null } }, - "94ba3436c83b4db9ba81e2bec475edd4": { + "65e3df94b7524d67b789725d4178ebfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "663e96ddeae4405e8915682214e5f41c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "664ea7a324e443bbb27801624a919c05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf2ac6ab2e79499ca90d11cfe4224527", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d0d3c86b2cbc491aaa5eb6ab71d264a7", + "layout": "IPY_MODEL_40c2452148e54b80ad05abfeb95dab29", + "placeholder": "​", + "style": "IPY_MODEL_af88cbafd956443186aabd0ff6d2b158", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": "vocab.txt: 100%" } }, - "974ed300109b4bed98388334741d7e20": { + "6f651b05536a4cd9805b0594ac0233a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2926,76 +2836,39 @@ "width": null } }, - "97925e46e7544803bfa9bbd35f277a0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab4a58de1d1647f496edad461715aaa9", - "placeholder": "​", - "style": "IPY_MODEL_858df27692a24f74844cc2329eb49af6", - "tabbable": null, - "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.34kB/s]" - } - }, - "9a60224542464545b7c54c09f1ed9262": { + "708e85be24f2472c9002b8fd7d8ab151": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4a73f1657df6418192b8e88b26bfea54", - "placeholder": "​", - "style": "IPY_MODEL_b311be58b5184dfeb6b02e5beec356df", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9cae2bb475d64e8ea6440578d75f46df": { + "7288265f2e2a4b99ab54e05e23f5f0ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d752ef40d854b17bb45f92da198d00d", - "placeholder": "​", - "style": "IPY_MODEL_68191e9841cf4fc3ad5084c453808bf6", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9d752ef40d854b17bb45f92da198d00d": { + "729140e943504b57ace99650651ea1d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3048,7 +2921,30 @@ "width": null } }, - "9fe06d39c12248debba0ce4f131d1b0c": { + "738a58ca6f7b4db7a157166614a2d23d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f651b05536a4cd9805b0594ac0233a1", + "placeholder": "​", + "style": "IPY_MODEL_ac027eeeec8d46bbb3f5d08bc844df94", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "739c66018de446f48db6b585f8936d11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3101,7 +2997,98 @@ "width": null } }, - "a265a663c76a43e1b927ff469bc5d2b5": { + "78e9ebb162834213bfce2fea8e8fd18d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36bf4419cfb34b2fb65dc8ca66ddeb57", + "placeholder": "​", + "style": "IPY_MODEL_2d4d74efbd824425870cbaf45c10f938", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "7df77100f86c42f59a817321411eb210": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c1bc089fe3a44f99d3e97c6aa907ed2", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_663e96ddeae4405e8915682214e5f41c", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "8e289bbbfd1e4a2b8be1b6c58b2a5b86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e9d9888450346db8e3954d17cef036f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78e9ebb162834213bfce2fea8e8fd18d", + "IPY_MODEL_ffda121f1cd44363b9efc3901ed1f0fa", + "IPY_MODEL_01a106c335cd4ec5a6a8b14ff1d5ba8d" + ], + "layout": "IPY_MODEL_a612dc860dc94c72bb4ab4487f91d8de", + "tabbable": null, + "tooltip": null + } + }, + "96544fa91ef044518cca58cdc8b7e90e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3154,7 +3141,7 @@ "width": null } }, - "a499d7f12838442180a4cbdb3920f920": { + "96b3841f46794027a4931069701de656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3169,15 +3156,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dd7233a7504d445fbd282ff1343a6fe0", + "layout": "IPY_MODEL_739c66018de446f48db6b585f8936d11", "placeholder": "​", - "style": "IPY_MODEL_730e39295f384d38a7809341193721b7", + "style": "IPY_MODEL_8e289bbbfd1e4a2b8be1b6c58b2a5b86", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 12.3MB/s]" + "value": ".gitattributes: 100%" } }, - "a965f31be8c34295846ad4a509228998": { + "9a65587ca1b94945af7dcc0cfc29a026": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3192,16 +3179,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9a60224542464545b7c54c09f1ed9262", - "IPY_MODEL_12eca47a10834c6395838a954baa15a0", - "IPY_MODEL_a499d7f12838442180a4cbdb3920f920" + "IPY_MODEL_4c6d24e1b8e140589b3f7206e752a847", + "IPY_MODEL_a562153720f0466ca6468834694f3b95", + "IPY_MODEL_365ba1b09e7341489be8464655a555cd" ], - "layout": "IPY_MODEL_b9dd625238174ebab9b1a516894b5590", + "layout": "IPY_MODEL_cfea3cab90dc4d4b8e5c12a36c64326f", "tabbable": null, "tooltip": null } }, - "ab4a58de1d1647f496edad461715aaa9": { + "9becc04773b84d3c8fa6a24cadf6f29c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3254,7 +3241,105 @@ "width": null } }, - "aef64cc2ded04950a68d8fe166bf68d5": { + "a1dc17837a20424680ae0627499e3789": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_081174bba3534f74bb5ef231d4b3fc4c", + "placeholder": "​", + "style": "IPY_MODEL_df0b59c454bd43bcadc10fd7b46c1617", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 71.7kB/s]" + } + }, + "a440225dab48494daf0d867e0a062c60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_729140e943504b57ace99650651ea1d9", + "placeholder": "​", + "style": "IPY_MODEL_a71782ebbaae423285c7e0c7cc938aa0", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "a562153720f0466ca6468834694f3b95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eff42f4744924c029089618d6ff32d26", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_708e85be24f2472c9002b8fd7d8ab151", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "a5fe42ca82c4420c820ad748a75d4efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9becc04773b84d3c8fa6a24cadf6f29c", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54c548b22f99437abf98203ae4a700a1", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "a612dc860dc94c72bb4ab4487f91d8de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3307,7 +3392,25 @@ "width": null } }, - "b0431ac60b4b4851a994c3f65b39fe27": { + "a71782ebbaae423285c7e0c7cc938aa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a9f88197d6d3487599e3bcf4cc14437f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3325,7 +3428,7 @@ "text_color": null } }, - "b089b7ff67904e859e08f74eb4462cc5": { + "ab60f70d2fef418893f80a8008c92281": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3378,25 +3481,7 @@ "width": null } }, - "b15b2120b9a64253ad75edebadfd55c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b1a67674d9034ceea803f59c0cc261a3": { + "ac027eeeec8d46bbb3f5d08bc844df94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3414,7 +3499,7 @@ "text_color": null } }, - "b311be58b5184dfeb6b02e5beec356df": { + "af88cbafd956443186aabd0ff6d2b158": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3432,30 +3517,7 @@ "text_color": null } }, - "b56c9e208a93471cafa984931cfab2d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6386e67f246a46c2a8167db4fbd4f50f", - "placeholder": "​", - "style": "IPY_MODEL_0f436aaa0eda485f8feabba1220a17e7", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "b830d17a17194985802b41acfc283bc5": { + "bb8fa5d63e7f401ba6dd282294a14d51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3508,7 +3570,31 @@ "width": null } }, - "b9dd625238174ebab9b1a516894b5590": { + "c122193addbf4629b7ada89af7819966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_96b3841f46794027a4931069701de656", + "IPY_MODEL_a5fe42ca82c4420c820ad748a75d4efd", + "IPY_MODEL_a1dc17837a20424680ae0627499e3789" + ], + "layout": "IPY_MODEL_cb2cf5748533424cba70d5177df7e7bc", + "tabbable": null, + "tooltip": null + } + }, + "cb2cf5748533424cba70d5177df7e7bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3561,7 +3647,7 @@ "width": null } }, - "bb249cbd8534453ba55520e924c7b81d": { + "cfea3cab90dc4d4b8e5c12a36c64326f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3614,30 +3700,25 @@ "width": null } }, - "c0f2fcd597464233b9df7c82e9338208": { + "d160a62e311e44c2a614b54fba944911": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9021471f58ab4bfd9bbe4dc26b025b17", - "placeholder": "​", - "style": "IPY_MODEL_c9f79242d5f9499285306c8816267e3d", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 408kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c105e79c89b848c98c79ea2425e07146": { + "d1ac4d9b3095413592ea9015d4a58175": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3655,49 +3736,56 @@ "text_color": null } }, - "c48d71673f824ce380d94b6bc999083a": { + "d3b4ea42869f406bb1415d13761b16c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_22413209abe846cdbe1e339fca65b5d5", - "IPY_MODEL_06844a7db8a6422892d1acb1093405d3", - "IPY_MODEL_97925e46e7544803bfa9bbd35f277a0f" - ], - "layout": "IPY_MODEL_2ff3313f83984a09b2354f35ba8b7f57", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab60f70d2fef418893f80a8008c92281", + "placeholder": "​", + "style": "IPY_MODEL_d160a62e311e44c2a614b54fba944911", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 665/665 [00:00<00:00, 82.9kB/s]" } }, - "c9f79242d5f9499285306c8816267e3d": { + "dab660c06f0646dfa8fd919ad168088c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c42af812e744e9b81b5a6a33e0ce2ee", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2dded20223ec437d9b4f0724d519c76b", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "cbc42ac422f34e828447b08b2c8086e8": { + "deef1f9c7c854b4787e1291d7676ccfa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3750,76 +3838,49 @@ "width": null } }, - "cf2ac6ab2e79499ca90d11cfe4224527": { - "model_module": "@jupyter-widgets/base", + "df0b59c454bd43bcadc10fd7b46c1617": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0d3c86b2cbc491aaa5eb6ab71d264a7": { + "e83d2ad65dac4e88a3f2ccde21d67f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1781eb1973d74e20986b1ac2f47913b7", + "IPY_MODEL_dab660c06f0646dfa8fd919ad168088c", + "IPY_MODEL_d3b4ea42869f406bb1415d13761b16c6" + ], + "layout": "IPY_MODEL_fe6c1ad7ef28465084828be32acd21c5", + "tabbable": null, + "tooltip": null } }, - "dd7233a7504d445fbd282ff1343a6fe0": { + "eff42f4744924c029089618d6ff32d26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3872,25 +3933,7 @@ "width": null } }, - "dfb7fa9cce6240e6be17ce35ae03b6a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e12d0db22792490c99b19e69618087c0": { + "f017d2f580b040638630015c72d627b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3943,53 +3986,7 @@ "width": null } }, - "e38d5a36366d4cb4892d529cf4e51cfb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aef64cc2ded04950a68d8fe166bf68d5", - "placeholder": "​", - "style": "IPY_MODEL_340fe62c803045229af00190ee214ca8", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" - } - }, - "e6f2f27575614660a8dd13e1ce1592ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_36d01d15d38e4c90afc3997820731f1d", - "placeholder": "​", - "style": "IPY_MODEL_b15b2120b9a64253ad75edebadfd55c6", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.3kB/s]" - } - }, - "f39b17bf56d44a99a5c3bed40eb29a2d": { + "f48d4fa2009642d08bc01e8fe3f7baa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4042,7 +4039,7 @@ "width": null } }, - "f4fb247100d34699900ba0b2436078d6": { + "fe6c1ad7ef28465084828be32acd21c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4095,27 +4092,30 @@ "width": null } }, - "fb88ef6b95a5461989853ce1b5f754ca": { + "ffda121f1cd44363b9efc3901ed1f0fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cbc42ac422f34e828447b08b2c8086e8", - "placeholder": "​", - "style": "IPY_MODEL_b0431ac60b4b4851a994c3f65b39fe27", + "layout": "IPY_MODEL_5355024e5df14205a7c989138994be48", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4026be558dc041d182c88249f880078e", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 29.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 4d4c8909b..a656e6dee 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:20.445577Z", - "iopub.status.busy": "2024-02-07T22:10:20.445400Z", - "iopub.status.idle": "2024-02-07T22:10:21.481005Z", - "shell.execute_reply": "2024-02-07T22:10:21.480362Z" + "iopub.execute_input": "2024-02-07T23:50:59.127525Z", + "iopub.status.busy": "2024-02-07T23:50:59.127102Z", + "iopub.status.idle": "2024-02-07T23:51:00.150396Z", + "shell.execute_reply": "2024-02-07T23:51:00.149892Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:21.483771Z", - "iopub.status.busy": "2024-02-07T22:10:21.483236Z", - "iopub.status.idle": "2024-02-07T22:10:21.486136Z", - "shell.execute_reply": "2024-02-07T22:10:21.485591Z" + "iopub.execute_input": "2024-02-07T23:51:00.153121Z", + "iopub.status.busy": "2024-02-07T23:51:00.152624Z", + "iopub.status.idle": "2024-02-07T23:51:00.155459Z", + "shell.execute_reply": "2024-02-07T23:51:00.154942Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:21.488244Z", - "iopub.status.busy": "2024-02-07T22:10:21.487938Z", - "iopub.status.idle": "2024-02-07T22:10:21.499556Z", - "shell.execute_reply": "2024-02-07T22:10:21.499007Z" + "iopub.execute_input": "2024-02-07T23:51:00.157665Z", + "iopub.status.busy": "2024-02-07T23:51:00.157286Z", + "iopub.status.idle": "2024-02-07T23:51:00.168842Z", + "shell.execute_reply": "2024-02-07T23:51:00.168305Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:21.501697Z", - "iopub.status.busy": "2024-02-07T22:10:21.501285Z", - "iopub.status.idle": "2024-02-07T22:10:25.286494Z", - "shell.execute_reply": "2024-02-07T22:10:25.286003Z" + "iopub.execute_input": "2024-02-07T23:51:00.170850Z", + "iopub.status.busy": "2024-02-07T23:51:00.170540Z", + "iopub.status.idle": "2024-02-07T23:51:03.496922Z", + "shell.execute_reply": "2024-02-07T23:51:03.496339Z" }, "id": "dhTHOg8Pyv5G" }, @@ -692,13 +692,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index a7665e67c..2827a0233 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:27.452546Z", - "iopub.status.busy": "2024-02-07T22:10:27.452375Z", - "iopub.status.idle": "2024-02-07T22:10:28.497741Z", - "shell.execute_reply": "2024-02-07T22:10:28.497182Z" + "iopub.execute_input": "2024-02-07T23:51:05.455012Z", + "iopub.status.busy": "2024-02-07T23:51:05.454838Z", + "iopub.status.idle": "2024-02-07T23:51:06.473290Z", + "shell.execute_reply": "2024-02-07T23:51:06.472687Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:28.500549Z", - "iopub.status.busy": "2024-02-07T22:10:28.500102Z", - "iopub.status.idle": "2024-02-07T22:10:28.503908Z", - "shell.execute_reply": "2024-02-07T22:10:28.503487Z" + "iopub.execute_input": "2024-02-07T23:51:06.476374Z", + "iopub.status.busy": "2024-02-07T23:51:06.476069Z", + "iopub.status.idle": "2024-02-07T23:51:06.480293Z", + "shell.execute_reply": "2024-02-07T23:51:06.479735Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:28.505941Z", - "iopub.status.busy": "2024-02-07T22:10:28.505673Z", - "iopub.status.idle": "2024-02-07T22:10:31.465345Z", - "shell.execute_reply": "2024-02-07T22:10:31.464742Z" + "iopub.execute_input": "2024-02-07T23:51:06.482920Z", + "iopub.status.busy": "2024-02-07T23:51:06.482459Z", + "iopub.status.idle": "2024-02-07T23:51:09.338068Z", + "shell.execute_reply": "2024-02-07T23:51:09.337471Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.468561Z", - "iopub.status.busy": "2024-02-07T22:10:31.467758Z", - "iopub.status.idle": "2024-02-07T22:10:31.504646Z", - "shell.execute_reply": "2024-02-07T22:10:31.504063Z" + "iopub.execute_input": "2024-02-07T23:51:09.340898Z", + "iopub.status.busy": "2024-02-07T23:51:09.340331Z", + "iopub.status.idle": "2024-02-07T23:51:09.370728Z", + "shell.execute_reply": "2024-02-07T23:51:09.370021Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.507191Z", - "iopub.status.busy": "2024-02-07T22:10:31.506891Z", - "iopub.status.idle": "2024-02-07T22:10:31.538074Z", - "shell.execute_reply": "2024-02-07T22:10:31.537474Z" + "iopub.execute_input": "2024-02-07T23:51:09.373389Z", + "iopub.status.busy": "2024-02-07T23:51:09.373025Z", + "iopub.status.idle": "2024-02-07T23:51:09.401579Z", + "shell.execute_reply": "2024-02-07T23:51:09.400876Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.540560Z", - "iopub.status.busy": "2024-02-07T22:10:31.540268Z", - "iopub.status.idle": "2024-02-07T22:10:31.543180Z", - "shell.execute_reply": "2024-02-07T22:10:31.542750Z" + "iopub.execute_input": "2024-02-07T23:51:09.404372Z", + "iopub.status.busy": "2024-02-07T23:51:09.403951Z", + "iopub.status.idle": "2024-02-07T23:51:09.407421Z", + "shell.execute_reply": "2024-02-07T23:51:09.407008Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.545134Z", - "iopub.status.busy": "2024-02-07T22:10:31.544882Z", - "iopub.status.idle": "2024-02-07T22:10:31.547427Z", - "shell.execute_reply": "2024-02-07T22:10:31.546973Z" + "iopub.execute_input": "2024-02-07T23:51:09.409324Z", + "iopub.status.busy": "2024-02-07T23:51:09.409015Z", + "iopub.status.idle": "2024-02-07T23:51:09.411602Z", + "shell.execute_reply": "2024-02-07T23:51:09.411146Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.549452Z", - "iopub.status.busy": "2024-02-07T22:10:31.549197Z", - "iopub.status.idle": "2024-02-07T22:10:31.571926Z", - "shell.execute_reply": "2024-02-07T22:10:31.571367Z" + "iopub.execute_input": "2024-02-07T23:51:09.413787Z", + "iopub.status.busy": "2024-02-07T23:51:09.413391Z", + "iopub.status.idle": "2024-02-07T23:51:09.438151Z", + "shell.execute_reply": "2024-02-07T23:51:09.437621Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c25091c0e304b75a635d082e4c6a8ae", + "model_id": "1f0a59e748704a83935f5135d15c1d2b", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "05cb13f0b3d24b2c80ccb203c55bfb3a", + "model_id": "13ee7841383649f8b84f5a090929a0f2", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.579230Z", - "iopub.status.busy": "2024-02-07T22:10:31.578965Z", - "iopub.status.idle": "2024-02-07T22:10:31.585408Z", - "shell.execute_reply": "2024-02-07T22:10:31.584997Z" + "iopub.execute_input": "2024-02-07T23:51:09.443984Z", + "iopub.status.busy": "2024-02-07T23:51:09.443652Z", + "iopub.status.idle": "2024-02-07T23:51:09.449921Z", + "shell.execute_reply": "2024-02-07T23:51:09.449510Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.587392Z", - "iopub.status.busy": "2024-02-07T22:10:31.587038Z", - "iopub.status.idle": "2024-02-07T22:10:31.590434Z", - "shell.execute_reply": "2024-02-07T22:10:31.589989Z" + "iopub.execute_input": "2024-02-07T23:51:09.451774Z", + "iopub.status.busy": "2024-02-07T23:51:09.451528Z", + "iopub.status.idle": "2024-02-07T23:51:09.454944Z", + "shell.execute_reply": "2024-02-07T23:51:09.454496Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.592502Z", - "iopub.status.busy": "2024-02-07T22:10:31.592174Z", - "iopub.status.idle": "2024-02-07T22:10:31.598237Z", - "shell.execute_reply": "2024-02-07T22:10:31.597809Z" + "iopub.execute_input": "2024-02-07T23:51:09.456868Z", + "iopub.status.busy": "2024-02-07T23:51:09.456584Z", + "iopub.status.idle": "2024-02-07T23:51:09.462775Z", + "shell.execute_reply": "2024-02-07T23:51:09.462226Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.600071Z", - "iopub.status.busy": "2024-02-07T22:10:31.599903Z", - "iopub.status.idle": "2024-02-07T22:10:31.635926Z", - "shell.execute_reply": "2024-02-07T22:10:31.635199Z" + "iopub.execute_input": "2024-02-07T23:51:09.464784Z", + "iopub.status.busy": "2024-02-07T23:51:09.464418Z", + "iopub.status.idle": "2024-02-07T23:51:09.496417Z", + "shell.execute_reply": "2024-02-07T23:51:09.495700Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.638662Z", - "iopub.status.busy": "2024-02-07T22:10:31.638298Z", - "iopub.status.idle": "2024-02-07T22:10:31.672896Z", - "shell.execute_reply": "2024-02-07T22:10:31.672308Z" + "iopub.execute_input": "2024-02-07T23:51:09.498767Z", + "iopub.status.busy": "2024-02-07T23:51:09.498552Z", + "iopub.status.idle": "2024-02-07T23:51:09.526519Z", + "shell.execute_reply": "2024-02-07T23:51:09.525829Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.675572Z", - "iopub.status.busy": "2024-02-07T22:10:31.675187Z", - "iopub.status.idle": "2024-02-07T22:10:31.803427Z", - "shell.execute_reply": "2024-02-07T22:10:31.802840Z" + "iopub.execute_input": "2024-02-07T23:51:09.529394Z", + "iopub.status.busy": "2024-02-07T23:51:09.528909Z", + "iopub.status.idle": "2024-02-07T23:51:09.651328Z", + "shell.execute_reply": "2024-02-07T23:51:09.650790Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.806059Z", - "iopub.status.busy": "2024-02-07T22:10:31.805418Z", - "iopub.status.idle": "2024-02-07T22:10:34.901493Z", - "shell.execute_reply": "2024-02-07T22:10:34.900838Z" + "iopub.execute_input": "2024-02-07T23:51:09.654079Z", + "iopub.status.busy": "2024-02-07T23:51:09.653293Z", + "iopub.status.idle": "2024-02-07T23:51:12.638133Z", + "shell.execute_reply": "2024-02-07T23:51:12.637512Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:34.903881Z", - "iopub.status.busy": "2024-02-07T22:10:34.903524Z", - "iopub.status.idle": "2024-02-07T22:10:34.961241Z", - "shell.execute_reply": "2024-02-07T22:10:34.960728Z" + "iopub.execute_input": "2024-02-07T23:51:12.640414Z", + "iopub.status.busy": "2024-02-07T23:51:12.640232Z", + "iopub.status.idle": "2024-02-07T23:51:12.700289Z", + "shell.execute_reply": "2024-02-07T23:51:12.699728Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "fc603ddf", + "id": "ce26211e", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "3eef2541", + "id": "b06d92f4", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "bee6fe2a", + "id": "ea762ae8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:34.963472Z", - "iopub.status.busy": "2024-02-07T22:10:34.963133Z", - "iopub.status.idle": "2024-02-07T22:10:35.059654Z", - "shell.execute_reply": "2024-02-07T22:10:35.059063Z" + "iopub.execute_input": "2024-02-07T23:51:12.702418Z", + "iopub.status.busy": "2024-02-07T23:51:12.702105Z", + "iopub.status.idle": "2024-02-07T23:51:12.780616Z", + "shell.execute_reply": "2024-02-07T23:51:12.780126Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "bb0353d1", + "id": "ef415656", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "40fe9448", + "id": "01a67f53", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.062203Z", - "iopub.status.busy": "2024-02-07T22:10:35.061944Z", - "iopub.status.idle": "2024-02-07T22:10:35.130321Z", - "shell.execute_reply": "2024-02-07T22:10:35.129748Z" + "iopub.execute_input": "2024-02-07T23:51:12.783162Z", + "iopub.status.busy": "2024-02-07T23:51:12.782885Z", + "iopub.status.idle": "2024-02-07T23:51:12.844744Z", + "shell.execute_reply": "2024-02-07T23:51:12.844293Z" } }, "outputs": [ @@ -1297,7 +1297,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1325,7 +1332,7 @@ }, { "cell_type": "markdown", - "id": "f3c05afd", + "id": "01300d0b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1343,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "f74e26fd", + "id": "cc35bf44", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.132892Z", - "iopub.status.busy": "2024-02-07T22:10:35.132688Z", - "iopub.status.idle": "2024-02-07T22:10:35.142277Z", - "shell.execute_reply": "2024-02-07T22:10:35.141716Z" + "iopub.execute_input": "2024-02-07T23:51:12.847304Z", + "iopub.status.busy": "2024-02-07T23:51:12.847003Z", + "iopub.status.idle": "2024-02-07T23:51:12.864134Z", + "shell.execute_reply": "2024-02-07T23:51:12.863661Z" } }, "outputs": [], @@ -1444,7 +1451,7 @@ }, { "cell_type": "markdown", - "id": "1909cd9a", + "id": "3e6233f1", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1466,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "f4adae44", + "id": "dfdf91ae", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.144450Z", - "iopub.status.busy": "2024-02-07T22:10:35.144137Z", - "iopub.status.idle": "2024-02-07T22:10:35.163091Z", - "shell.execute_reply": "2024-02-07T22:10:35.162505Z" + "iopub.execute_input": "2024-02-07T23:51:12.866623Z", + "iopub.status.busy": "2024-02-07T23:51:12.866327Z", + "iopub.status.idle": "2024-02-07T23:51:12.886313Z", + "shell.execute_reply": "2024-02-07T23:51:12.885931Z" } }, "outputs": [ @@ -1482,7 +1489,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6061/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_5828/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1523,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "27025c00", + "id": "ec960a88", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.165075Z", - "iopub.status.busy": "2024-02-07T22:10:35.164775Z", - "iopub.status.idle": "2024-02-07T22:10:35.167916Z", - "shell.execute_reply": "2024-02-07T22:10:35.167398Z" + "iopub.execute_input": "2024-02-07T23:51:12.888153Z", + "iopub.status.busy": "2024-02-07T23:51:12.887892Z", + "iopub.status.idle": "2024-02-07T23:51:12.890674Z", + "shell.execute_reply": "2024-02-07T23:51:12.890305Z" } }, "outputs": [ @@ -1617,7 +1624,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05cb13f0b3d24b2c80ccb203c55bfb3a": { + "109440f4ecdb45e48bd5dfb4e921937f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "13ee7841383649f8b84f5a090929a0f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1632,16 +1655,93 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d25a1b4311564103b234c326b27f756d", - "IPY_MODEL_359df53dc8a745b0b4af77e7d5baa3d6", - "IPY_MODEL_2122bb3f9c314e79921caaf0ec520ced" + "IPY_MODEL_be264bec58f14b0baef628c118c9cb1c", + "IPY_MODEL_6bca8cbd5c784882be9b9ba1fb9ff9e8", + "IPY_MODEL_f7c08bebb30b4363b6071b0a91d776b5" ], - "layout": "IPY_MODEL_7a95ca857d02446596ff4b15e78f5474", + "layout": "IPY_MODEL_bc75ced40cce43a4a6c803441a092a23", "tabbable": null, "tooltip": null } }, - "07ad650e025e41db8a3a7f9d4903f4ab": { + "1f0a59e748704a83935f5135d15c1d2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e22079120aae4d4fbc3f623f7733332a", + "IPY_MODEL_7b3ab139d2d44ce09eacb3aed869a342", + "IPY_MODEL_f5b644426ae0412cbd5e3e574cbd2d2a" + ], + "layout": "IPY_MODEL_c104b9ca8f874df9b5176bc9dedbe1f2", + "tabbable": null, + "tooltip": null + } + }, + "26508857376d41e9a2a595519cc0e230": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "272500523da24571b2cba2f8ee1e5d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1694,7 +1794,7 @@ "width": null } }, - "0c1387d046e4406c9665c4bd481ca0bd": { + "3e2781d1b9ac498482800cefb6007621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1712,7 +1812,7 @@ "text_color": null } }, - "1de8c5ce9b044defa2fb6bba7b845f1d": { + "439705e7fbd747aa945a4286336cfeb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1765,54 +1865,33 @@ "width": null } }, - "2122bb3f9c314e79921caaf0ec520ced": { + "6bca8cbd5c784882be9b9ba1fb9ff9e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6e74a6135da64a6da9bff7774b1a3023", - "placeholder": "​", - "style": "IPY_MODEL_30857eeb9f4f4a9d9a4b6703ef52f007", + "layout": "IPY_MODEL_e14323e673094de292c5bcd867946d3e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9aad290993434b079a25a5cfae233e5a", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1904510.74it/s]" - } - }, - "2c25091c0e304b75a635d082e4c6a8ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_383d59cddf1044128cd6c9a36ef421b6", - "IPY_MODEL_4368ff0861b64772b1c876ce3677f85f", - "IPY_MODEL_44ce408123ef4dfa9f0ccb0b61d47dff" - ], - "layout": "IPY_MODEL_2f6d1355674b4154958d3f9fdc5c65d0", - "tabbable": null, - "tooltip": null + "value": 50.0 } }, - "2f6d1355674b4154958d3f9fdc5c65d0": { + "712d2f7be4a74b05a8620096c3529e53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1865,25 +1944,7 @@ "width": null } }, - "30857eeb9f4f4a9d9a4b6703ef52f007": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "359df53dc8a745b0b4af77e7d5baa3d6": { + "7b3ab139d2d44ce09eacb3aed869a342": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1899,40 +1960,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fde2b7ca73b8420dade7126a99c0db5b", + "layout": "IPY_MODEL_272500523da24571b2cba2f8ee1e5d82", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7348613891c541cdbedd0e8a595dfd07", + "style": "IPY_MODEL_109440f4ecdb45e48bd5dfb4e921937f", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "383d59cddf1044128cd6c9a36ef421b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07ad650e025e41db8a3a7f9d4903f4ab", - "placeholder": "​", - "style": "IPY_MODEL_bb33dbfe81ad4ab2838ae1c597cc118b", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "3e5b1ebb362940059efebecf082eab76": { + "7fb415c1e4af4299ae1ec87c915c9c4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1950,56 +1988,41 @@ "text_color": null } }, - "4368ff0861b64772b1c876ce3677f85f": { + "8f017318a7174e83bde2637e28023b69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1de8c5ce9b044defa2fb6bba7b845f1d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a7e694329b5941728726ce57f56210a9", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "44ce408123ef4dfa9f0ccb0b61d47dff": { + "9aad290993434b079a25a5cfae233e5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a78e0b16929d430bacf6a958a9660d4b", - "placeholder": "​", - "style": "IPY_MODEL_3e5b1ebb362940059efebecf082eab76", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1087339.66it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6e74a6135da64a6da9bff7774b1a3023": { + "a46f0c56a05b46db92524f027cd1a3f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2052,23 +2075,7 @@ "width": null } }, - "7348613891c541cdbedd0e8a595dfd07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a95ca857d02446596ff4b15e78f5474": { + "bc75ced40cce43a4a6c803441a092a23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2121,7 +2128,30 @@ "width": null } }, - "85cc0795390d430dba7bd02f2fc01dd2": { + "be264bec58f14b0baef628c118c9cb1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_26508857376d41e9a2a595519cc0e230", + "placeholder": "​", + "style": "IPY_MODEL_7fb415c1e4af4299ae1ec87c915c9c4a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "c104b9ca8f874df9b5176bc9dedbe1f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2174,7 +2204,7 @@ "width": null } }, - "a78e0b16929d430bacf6a958a9660d4b": { + "e14323e673094de292c5bcd867946d3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2227,23 +2257,53 @@ "width": null } }, - "a7e694329b5941728726ce57f56210a9": { + "e22079120aae4d4fbc3f623f7733332a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_712d2f7be4a74b05a8620096c3529e53", + "placeholder": "​", + "style": "IPY_MODEL_8f017318a7174e83bde2637e28023b69", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "bb33dbfe81ad4ab2838ae1c597cc118b": { + "f5b644426ae0412cbd5e3e574cbd2d2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a46f0c56a05b46db92524f027cd1a3f4", + "placeholder": "​", + "style": "IPY_MODEL_f62417094f504253a9df11954097f238", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1096550.07it/s]" + } + }, + "f62417094f504253a9df11954097f238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2261,7 +2321,7 @@ "text_color": null } }, - "d25a1b4311564103b234c326b27f756d": { + "f7c08bebb30b4363b6071b0a91d776b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2276,65 +2336,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_85cc0795390d430dba7bd02f2fc01dd2", + "layout": "IPY_MODEL_439705e7fbd747aa945a4286336cfeb9", "placeholder": "​", - "style": "IPY_MODEL_0c1387d046e4406c9665c4bd481ca0bd", + "style": "IPY_MODEL_3e2781d1b9ac498482800cefb6007621", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "fde2b7ca73b8420dade7126a99c0db5b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 10000/? [00:00<00:00, 1373335.52it/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index 1ddbcfb2b..b5eaf0560 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:38.419113Z", - "iopub.status.busy": "2024-02-07T22:10:38.418945Z", - "iopub.status.idle": "2024-02-07T22:10:41.179916Z", - "shell.execute_reply": "2024-02-07T22:10:41.179338Z" + "iopub.execute_input": "2024-02-07T23:51:15.881810Z", + "iopub.status.busy": "2024-02-07T23:51:15.881636Z", + "iopub.status.idle": "2024-02-07T23:51:18.606850Z", + "shell.execute_reply": "2024-02-07T23:51:18.606230Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:41.182330Z", - "iopub.status.busy": "2024-02-07T22:10:41.182041Z", - "iopub.status.idle": "2024-02-07T22:10:41.185719Z", - "shell.execute_reply": "2024-02-07T22:10:41.185287Z" + "iopub.execute_input": "2024-02-07T23:51:18.609445Z", + "iopub.status.busy": "2024-02-07T23:51:18.609155Z", + "iopub.status.idle": "2024-02-07T23:51:18.612709Z", + "shell.execute_reply": "2024-02-07T23:51:18.612173Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:41.187549Z", - "iopub.status.busy": "2024-02-07T22:10:41.187370Z", - "iopub.status.idle": "2024-02-07T22:10:43.573339Z", - "shell.execute_reply": "2024-02-07T22:10:43.572876Z" + "iopub.execute_input": "2024-02-07T23:51:18.614784Z", + "iopub.status.busy": "2024-02-07T23:51:18.614359Z", + "iopub.status.idle": "2024-02-07T23:51:20.434279Z", + "shell.execute_reply": "2024-02-07T23:51:20.433763Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "150b7b9c86184b3a81ec2e9d2c4862a1", + "model_id": "7fc3c32bcf1148368c0a1dd69f0726fc", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1075a3bfa6094847a1f22a2a826545d8", + "model_id": "33e6bf1a962241b9965f57093ccfbea2", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "67691e10a0ac4a259f3747a827b350d5", + "model_id": "8488030d7afb4e4c95288794d76c2b48", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f297df970eaa40368e0d02896d28f3b8", + "model_id": "75399c16f9a9462ab14c8fc2e9c2b817", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:43.575644Z", - "iopub.status.busy": "2024-02-07T22:10:43.575289Z", - "iopub.status.idle": "2024-02-07T22:10:43.579073Z", - "shell.execute_reply": "2024-02-07T22:10:43.578518Z" + "iopub.execute_input": "2024-02-07T23:51:20.436485Z", + "iopub.status.busy": "2024-02-07T23:51:20.436157Z", + "iopub.status.idle": "2024-02-07T23:51:20.440017Z", + "shell.execute_reply": "2024-02-07T23:51:20.439436Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:43.581168Z", - "iopub.status.busy": "2024-02-07T22:10:43.580868Z", - "iopub.status.idle": "2024-02-07T22:10:54.969790Z", - "shell.execute_reply": "2024-02-07T22:10:54.969260Z" + "iopub.execute_input": "2024-02-07T23:51:20.442272Z", + "iopub.status.busy": "2024-02-07T23:51:20.441887Z", + "iopub.status.idle": "2024-02-07T23:51:31.626856Z", + "shell.execute_reply": "2024-02-07T23:51:31.626349Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5b393b5be18c4614bbbe5748904485e6", + "model_id": "def052e51c5d4bc1b365fb7a46f00d5e", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:54.972318Z", - "iopub.status.busy": "2024-02-07T22:10:54.972030Z", - "iopub.status.idle": "2024-02-07T22:11:13.025094Z", - "shell.execute_reply": "2024-02-07T22:11:13.024547Z" + "iopub.execute_input": "2024-02-07T23:51:31.629265Z", + "iopub.status.busy": "2024-02-07T23:51:31.628926Z", + "iopub.status.idle": "2024-02-07T23:51:49.868014Z", + "shell.execute_reply": "2024-02-07T23:51:49.867458Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.027702Z", - "iopub.status.busy": "2024-02-07T22:11:13.027309Z", - "iopub.status.idle": "2024-02-07T22:11:13.033230Z", - "shell.execute_reply": "2024-02-07T22:11:13.032780Z" + "iopub.execute_input": "2024-02-07T23:51:49.870696Z", + "iopub.status.busy": "2024-02-07T23:51:49.870322Z", + "iopub.status.idle": "2024-02-07T23:51:49.876254Z", + "shell.execute_reply": "2024-02-07T23:51:49.875791Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.035125Z", - "iopub.status.busy": "2024-02-07T22:11:13.034795Z", - "iopub.status.idle": "2024-02-07T22:11:13.038441Z", - "shell.execute_reply": "2024-02-07T22:11:13.038047Z" + "iopub.execute_input": "2024-02-07T23:51:49.878157Z", + "iopub.status.busy": "2024-02-07T23:51:49.877790Z", + "iopub.status.idle": "2024-02-07T23:51:49.881768Z", + "shell.execute_reply": "2024-02-07T23:51:49.881250Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.040408Z", - "iopub.status.busy": "2024-02-07T22:11:13.040096Z", - "iopub.status.idle": "2024-02-07T22:11:13.048723Z", - "shell.execute_reply": "2024-02-07T22:11:13.048299Z" + "iopub.execute_input": "2024-02-07T23:51:49.883955Z", + "iopub.status.busy": "2024-02-07T23:51:49.883621Z", + "iopub.status.idle": "2024-02-07T23:51:49.892194Z", + "shell.execute_reply": "2024-02-07T23:51:49.891730Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.050685Z", - "iopub.status.busy": "2024-02-07T22:11:13.050442Z", - "iopub.status.idle": "2024-02-07T22:11:13.077420Z", - "shell.execute_reply": "2024-02-07T22:11:13.076808Z" + "iopub.execute_input": "2024-02-07T23:51:49.894038Z", + "iopub.status.busy": "2024-02-07T23:51:49.893778Z", + "iopub.status.idle": "2024-02-07T23:51:49.921230Z", + "shell.execute_reply": "2024-02-07T23:51:49.920805Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.079978Z", - "iopub.status.busy": "2024-02-07T22:11:13.079643Z", - "iopub.status.idle": "2024-02-07T22:11:45.583620Z", - "shell.execute_reply": "2024-02-07T22:11:45.582818Z" + "iopub.execute_input": "2024-02-07T23:51:49.923139Z", + "iopub.status.busy": "2024-02-07T23:51:49.922820Z", + "iopub.status.idle": "2024-02-07T23:52:21.122766Z", + "shell.execute_reply": "2024-02-07T23:52:21.122031Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.872\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.643\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.584\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.435\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:03, 9.78it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.80it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 43.59it/s]" + " 20%|██ | 8/40 [00:00<00:00, 43.66it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 50.24it/s]" + " 40%|████ | 16/40 [00:00<00:00, 56.74it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 57.40it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.69it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 62.55it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 60.95it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 67.66it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 66.20it/s]" ] }, { @@ -798,7 +798,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 58.42it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.00it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.32it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.73it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.31it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.56it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 50.04it/s]" + " 40%|████ | 16/40 [00:00<00:00, 54.76it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 56.70it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.82it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 59.22it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 63.79it/s]" ] }, { @@ -868,7 +868,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 64.79it/s]" + "100%|██████████| 40/40 [00:00<00:00, 72.02it/s]" ] }, { @@ -876,7 +876,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 57.42it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.94it/s]" ] }, { @@ -898,14 +898,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.878\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.627\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.623\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.443\n", "Computing feature embeddings ...\n" ] }, @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.28it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.30it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 44.67it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.01it/s]" + " 40%|████ | 16/40 [00:00<00:00, 55.44it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 57.99it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.58it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 62.69it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 62.31it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 68.86it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.83it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.41it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.72it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.65it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.61it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.54it/s]" + " 40%|████ | 16/40 [00:00<00:00, 56.92it/s]" ] }, { @@ -1024,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 60.86it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.96it/s]" ] }, { @@ -1032,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 63.94it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 63.65it/s]" ] }, { @@ -1040,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 71.59it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 68.19it/s]" ] }, { @@ -1048,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.49it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.54it/s]" ] }, { @@ -1070,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.760\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.622\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.601\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.436\n", "Computing feature embeddings ...\n" ] }, @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.61it/s]" + " 5%|▌ | 2/40 [00:00<00:01, 19.37it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.78it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.94it/s]" ] }, { @@ -1110,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 49.03it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.02it/s]" ] }, { @@ -1118,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 56.57it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.18it/s]" ] }, { @@ -1126,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 57.37it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 64.86it/s]" ] }, { @@ -1134,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 63.22it/s]" + "100%|██████████| 40/40 [00:00<00:00, 72.97it/s]" ] }, { @@ -1142,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 56.87it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.50it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.04it/s]" ] }, { @@ -1180,7 +1180,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.39it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 46.80it/s]" ] }, { @@ -1188,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 52.21it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 55.65it/s]" ] }, { @@ -1196,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 52.17it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 60.53it/s]" ] }, { @@ -1204,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 28/40 [00:00<00:00, 58.08it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 64.95it/s]" ] }, { @@ -1212,15 +1212,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 60.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 54.75it/s]" + "100%|██████████| 40/40 [00:00<00:00, 61.46it/s]" ] }, { @@ -1297,10 +1289,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:45.585975Z", - "iopub.status.busy": "2024-02-07T22:11:45.585741Z", - "iopub.status.idle": "2024-02-07T22:11:45.600179Z", - "shell.execute_reply": "2024-02-07T22:11:45.599732Z" + "iopub.execute_input": "2024-02-07T23:52:21.125104Z", + "iopub.status.busy": "2024-02-07T23:52:21.124865Z", + "iopub.status.idle": "2024-02-07T23:52:21.140126Z", + "shell.execute_reply": "2024-02-07T23:52:21.139559Z" } }, "outputs": [], @@ -1325,10 +1317,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:45.602241Z", - "iopub.status.busy": "2024-02-07T22:11:45.601991Z", - "iopub.status.idle": "2024-02-07T22:11:46.071339Z", - "shell.execute_reply": "2024-02-07T22:11:46.070732Z" + "iopub.execute_input": "2024-02-07T23:52:21.142411Z", + "iopub.status.busy": "2024-02-07T23:52:21.142029Z", + "iopub.status.idle": "2024-02-07T23:52:21.586244Z", + "shell.execute_reply": "2024-02-07T23:52:21.585702Z" } }, "outputs": [], @@ -1348,10 +1340,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:46.073789Z", - "iopub.status.busy": "2024-02-07T22:11:46.073607Z", - "iopub.status.idle": "2024-02-07T22:15:13.726179Z", - "shell.execute_reply": "2024-02-07T22:15:13.725548Z" + "iopub.execute_input": "2024-02-07T23:52:21.588565Z", + "iopub.status.busy": "2024-02-07T23:52:21.588385Z", + "iopub.status.idle": "2024-02-07T23:55:46.523357Z", + "shell.execute_reply": "2024-02-07T23:55:46.522791Z" } }, "outputs": [ @@ -1390,7 +1382,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "06bcff0001014bfb950d1828761c0eaa", + "model_id": "15a700e2959f45d9bc818012a4ac35cf", "version_major": 2, "version_minor": 0 }, @@ -1429,10 +1421,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:13.728842Z", - "iopub.status.busy": "2024-02-07T22:15:13.728169Z", - "iopub.status.idle": "2024-02-07T22:15:14.183497Z", - "shell.execute_reply": "2024-02-07T22:15:14.182926Z" + "iopub.execute_input": "2024-02-07T23:55:46.525817Z", + "iopub.status.busy": "2024-02-07T23:55:46.525191Z", + "iopub.status.idle": "2024-02-07T23:55:46.967520Z", + "shell.execute_reply": "2024-02-07T23:55:46.966995Z" } }, "outputs": [ @@ -1580,10 +1572,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.186298Z", - "iopub.status.busy": "2024-02-07T22:15:14.185789Z", - "iopub.status.idle": "2024-02-07T22:15:14.247703Z", - "shell.execute_reply": "2024-02-07T22:15:14.247163Z" + "iopub.execute_input": "2024-02-07T23:55:46.970176Z", + "iopub.status.busy": "2024-02-07T23:55:46.969807Z", + "iopub.status.idle": "2024-02-07T23:55:47.030546Z", + "shell.execute_reply": "2024-02-07T23:55:47.029858Z" } }, "outputs": [ @@ -1687,10 +1679,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.249928Z", - "iopub.status.busy": "2024-02-07T22:15:14.249599Z", - "iopub.status.idle": "2024-02-07T22:15:14.258029Z", - "shell.execute_reply": "2024-02-07T22:15:14.257501Z" + "iopub.execute_input": "2024-02-07T23:55:47.032998Z", + "iopub.status.busy": "2024-02-07T23:55:47.032735Z", + "iopub.status.idle": "2024-02-07T23:55:47.040993Z", + "shell.execute_reply": "2024-02-07T23:55:47.040535Z" } }, "outputs": [ @@ -1820,10 +1812,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.259872Z", - "iopub.status.busy": "2024-02-07T22:15:14.259698Z", - "iopub.status.idle": "2024-02-07T22:15:14.264612Z", - "shell.execute_reply": "2024-02-07T22:15:14.264180Z" + "iopub.execute_input": "2024-02-07T23:55:47.043175Z", + "iopub.status.busy": "2024-02-07T23:55:47.042830Z", + "iopub.status.idle": "2024-02-07T23:55:47.048286Z", + "shell.execute_reply": "2024-02-07T23:55:47.047803Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1861,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.266402Z", - "iopub.status.busy": "2024-02-07T22:15:14.266233Z", - "iopub.status.idle": "2024-02-07T22:15:14.771851Z", - "shell.execute_reply": "2024-02-07T22:15:14.771240Z" + "iopub.execute_input": "2024-02-07T23:55:47.050377Z", + "iopub.status.busy": "2024-02-07T23:55:47.050009Z", + "iopub.status.idle": "2024-02-07T23:55:47.563713Z", + "shell.execute_reply": "2024-02-07T23:55:47.563239Z" } }, "outputs": [ @@ -1907,10 +1899,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.774093Z", - "iopub.status.busy": "2024-02-07T22:15:14.773749Z", - "iopub.status.idle": "2024-02-07T22:15:14.782399Z", - "shell.execute_reply": "2024-02-07T22:15:14.781863Z" + "iopub.execute_input": "2024-02-07T23:55:47.565638Z", + "iopub.status.busy": "2024-02-07T23:55:47.565459Z", + "iopub.status.idle": "2024-02-07T23:55:47.573691Z", + "shell.execute_reply": "2024-02-07T23:55:47.573256Z" } }, "outputs": [ @@ -2077,10 +2069,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.784695Z", - "iopub.status.busy": "2024-02-07T22:15:14.784378Z", - "iopub.status.idle": "2024-02-07T22:15:14.792575Z", - "shell.execute_reply": "2024-02-07T22:15:14.792106Z" + "iopub.execute_input": "2024-02-07T23:55:47.575826Z", + "iopub.status.busy": "2024-02-07T23:55:47.575405Z", + "iopub.status.idle": "2024-02-07T23:55:47.582426Z", + "shell.execute_reply": "2024-02-07T23:55:47.581985Z" }, "nbsphinx": "hidden" }, @@ -2156,10 +2148,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.794419Z", - "iopub.status.busy": "2024-02-07T22:15:14.794248Z", - "iopub.status.idle": "2024-02-07T22:15:15.266167Z", - "shell.execute_reply": "2024-02-07T22:15:15.265586Z" + "iopub.execute_input": "2024-02-07T23:55:47.584184Z", + "iopub.status.busy": "2024-02-07T23:55:47.584014Z", + "iopub.status.idle": "2024-02-07T23:55:48.046048Z", + "shell.execute_reply": "2024-02-07T23:55:48.045495Z" } }, "outputs": [ @@ -2196,10 +2188,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.268447Z", - "iopub.status.busy": "2024-02-07T22:15:15.268135Z", - "iopub.status.idle": "2024-02-07T22:15:15.284704Z", - "shell.execute_reply": "2024-02-07T22:15:15.284211Z" + "iopub.execute_input": "2024-02-07T23:55:48.048037Z", + "iopub.status.busy": "2024-02-07T23:55:48.047862Z", + "iopub.status.idle": "2024-02-07T23:55:48.062692Z", + "shell.execute_reply": "2024-02-07T23:55:48.062251Z" } }, "outputs": [ @@ -2356,10 +2348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.287144Z", - "iopub.status.busy": "2024-02-07T22:15:15.286677Z", - "iopub.status.idle": "2024-02-07T22:15:15.293454Z", - "shell.execute_reply": "2024-02-07T22:15:15.292999Z" + "iopub.execute_input": "2024-02-07T23:55:48.064581Z", + "iopub.status.busy": "2024-02-07T23:55:48.064412Z", + "iopub.status.idle": "2024-02-07T23:55:48.069814Z", + "shell.execute_reply": "2024-02-07T23:55:48.069388Z" }, "nbsphinx": "hidden" }, @@ -2404,10 +2396,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.295629Z", - "iopub.status.busy": "2024-02-07T22:15:15.295278Z", - "iopub.status.idle": "2024-02-07T22:15:15.767384Z", - "shell.execute_reply": "2024-02-07T22:15:15.766576Z" + "iopub.execute_input": "2024-02-07T23:55:48.071509Z", + "iopub.status.busy": "2024-02-07T23:55:48.071343Z", + "iopub.status.idle": "2024-02-07T23:55:48.539232Z", + "shell.execute_reply": "2024-02-07T23:55:48.538712Z" } }, "outputs": [ @@ -2489,10 +2481,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.770046Z", - "iopub.status.busy": "2024-02-07T22:15:15.769833Z", - "iopub.status.idle": "2024-02-07T22:15:15.780284Z", - "shell.execute_reply": "2024-02-07T22:15:15.779737Z" + "iopub.execute_input": "2024-02-07T23:55:48.542136Z", + "iopub.status.busy": "2024-02-07T23:55:48.541942Z", + "iopub.status.idle": "2024-02-07T23:55:48.551478Z", + "shell.execute_reply": "2024-02-07T23:55:48.550999Z" } }, "outputs": [ @@ -2620,10 +2612,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.782972Z", - "iopub.status.busy": "2024-02-07T22:15:15.782761Z", - "iopub.status.idle": "2024-02-07T22:15:15.789772Z", - "shell.execute_reply": "2024-02-07T22:15:15.789237Z" + "iopub.execute_input": "2024-02-07T23:55:48.553910Z", + "iopub.status.busy": "2024-02-07T23:55:48.553723Z", + "iopub.status.idle": "2024-02-07T23:55:48.560475Z", + "shell.execute_reply": "2024-02-07T23:55:48.559985Z" }, "nbsphinx": "hidden" }, @@ -2660,10 +2652,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.792545Z", - "iopub.status.busy": "2024-02-07T22:15:15.792004Z", - "iopub.status.idle": "2024-02-07T22:15:15.996072Z", - "shell.execute_reply": "2024-02-07T22:15:15.995539Z" + "iopub.execute_input": "2024-02-07T23:55:48.562594Z", + "iopub.status.busy": "2024-02-07T23:55:48.562409Z", + "iopub.status.idle": "2024-02-07T23:55:48.763788Z", + "shell.execute_reply": "2024-02-07T23:55:48.763368Z" } }, "outputs": [ @@ -2705,10 +2697,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.998260Z", - "iopub.status.busy": "2024-02-07T22:15:15.998067Z", - "iopub.status.idle": "2024-02-07T22:15:16.006248Z", - "shell.execute_reply": "2024-02-07T22:15:16.005671Z" + "iopub.execute_input": "2024-02-07T23:55:48.765744Z", + "iopub.status.busy": "2024-02-07T23:55:48.765594Z", + "iopub.status.idle": "2024-02-07T23:55:48.772950Z", + "shell.execute_reply": "2024-02-07T23:55:48.772568Z" } }, "outputs": [ @@ -2733,47 +2725,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2794,10 +2786,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:16.008244Z", - "iopub.status.busy": "2024-02-07T22:15:16.008065Z", - "iopub.status.idle": "2024-02-07T22:15:16.207600Z", - "shell.execute_reply": "2024-02-07T22:15:16.206983Z" + "iopub.execute_input": "2024-02-07T23:55:48.774610Z", + "iopub.status.busy": "2024-02-07T23:55:48.774465Z", + "iopub.status.idle": "2024-02-07T23:55:48.966740Z", + "shell.execute_reply": "2024-02-07T23:55:48.966273Z" } }, "outputs": [ @@ -2837,10 +2829,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:16.209828Z", - "iopub.status.busy": "2024-02-07T22:15:16.209640Z", - "iopub.status.idle": "2024-02-07T22:15:16.214037Z", - "shell.execute_reply": "2024-02-07T22:15:16.213595Z" + "iopub.execute_input": "2024-02-07T23:55:48.968846Z", + "iopub.status.busy": "2024-02-07T23:55:48.968688Z", + "iopub.status.idle": "2024-02-07T23:55:48.972895Z", + "shell.execute_reply": "2024-02-07T23:55:48.972438Z" }, "nbsphinx": "hidden" }, @@ -2877,7 +2869,70 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "007cca45272b4a15865ee386417fca56": { + "096734e131e7446789cb828a670c4d33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "15a700e2959f45d9bc818012a4ac35cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e25684bca4d04cc586c2ae9653e92baf", + "IPY_MODEL_64976c7cec274e2cb599f9864d9d2b3e", + "IPY_MODEL_94bc8870033b400c828c994a4697989a" + ], + "layout": "IPY_MODEL_4bee7ed00ac6488f9434077c2e5ffff2", + "tabbable": null, + "tooltip": null + } + }, + "183ec1a8cefe4e868b0f39386c2db1e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2711254680224029b57c4b746e722522", + "placeholder": "​", + "style": "IPY_MODEL_dca81aa852a141c0b18590a7f7cf263c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "1ce7003827024b28a7d772ffcf95c3a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2930,7 +2985,7 @@ "width": null } }, - "00a8666c63fe45f283b11685743a81b6": { + "1ee143b057ae4463bf1a6f310045fe94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2983,65 +3038,7 @@ "width": null } }, - "06bcff0001014bfb950d1828761c0eaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b5b76bb51dd24c3386ccaa609dc70842", - "IPY_MODEL_423bc17c3a044d53a5de362b4d36e27b", - "IPY_MODEL_8347afc027284ba1863d50faee7fb11f" - ], - "layout": "IPY_MODEL_a51bf779db9d469c8cc33a8b24c8e7ca", - "tabbable": null, - "tooltip": null - } - }, - "07ce8ed7891c4ebeb9fefd6949c7b180": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0986b1a6d95d485cbe39462131805d4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0c988c95890b4f69b74f89e0c81d7828": { + "234cdeb4c2ad4b40b8c4cbd3cac01772": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3094,31 +3091,33 @@ "width": null } }, - "1075a3bfa6094847a1f22a2a826545d8": { + "26ad29a0928d4632b2a0122ed75fcba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e4965fe8a11c45b89b19f160a93c542b", - "IPY_MODEL_166baabd90ae4a70974b4d2f3b164fc9", - "IPY_MODEL_2aeff5887c2744658ab43b4d60c1fa69" - ], - "layout": "IPY_MODEL_a745f815281f456fbc80f4bdc464b2a4", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6de8542b53114be68c4e71576a77d58d", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f782ebbbd274491fa6c680f42c1bf160", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 5175617.0 } }, - "10f5705a3e4e4a5489fdffb09b3ae22d": { + "2711254680224029b57c4b746e722522": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,7 +3170,7 @@ "width": null } }, - "150b7b9c86184b3a81ec2e9d2c4862a1": { + "33e6bf1a962241b9965f57093ccfbea2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3186,42 +3185,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8e6ad75a2b144274bcc9ff9239778002", - "IPY_MODEL_b6cd68308d5e4a28b4407d8ee3829be1", - "IPY_MODEL_6ba0aea08e8643b78fb9dd4fadbd8604" + "IPY_MODEL_6cf83a63cad34d77a53d085e937274b7", + "IPY_MODEL_26ad29a0928d4632b2a0122ed75fcba0", + "IPY_MODEL_6fcdf7eb188047ea8070940e35a2c311" ], - "layout": "IPY_MODEL_6ffbbae9cb954f6a82f68b536f065ab8", + "layout": "IPY_MODEL_9b4cac2ed2814e8b9e247efc679c9223", "tabbable": null, "tooltip": null } }, - "166baabd90ae4a70974b4d2f3b164fc9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_38c29ede099f486ead043fd5488a0759", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07ce8ed7891c4ebeb9fefd6949c7b180", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "18293d50d4484b0393bfae1f7b74f293": { + "34b9ed23fedc419c93f8e11b3bba77d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3274,7 +3247,7 @@ "width": null } }, - "197fca20a4434a20984b059e49d64036": { + "3f16949cc8934b0ab3befc7da6f162af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3327,69 +3300,23 @@ "width": null } }, - "19b04ce129ed43bea80c3763311498a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fcc301f31d19462b97bdc821e4e82fef", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_be13cc6a5b264e5c998f323c75cc7bb5", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "1c7be1df6c5e4d32a0559e03971d081a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "26746b6b76004ae59adf81188c1fdd1a": { + "45819af2ac5246748f97bf8d73a8f283": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "29ac47e5ca144d298560f408c853cf1e": { + "45a1b9299e1845aab1844559b266af3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3442,7 +3369,48 @@ "width": null } }, - "2ac6b1ce136d47ef8d4c7d14c22c7116": { + "4a4f8f6ed26f4e04ade21e5c4c413553": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b56c0a3af7b4854bcaa5e65e32570a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_234cdeb4c2ad4b40b8c4cbd3cac01772", + "placeholder": "​", + "style": "IPY_MODEL_d78d044a913243d8bf9346c6281d126a", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 71.9MB/s]" + } + }, + "4bee7ed00ac6488f9434077c2e5ffff2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3495,46 +3463,77 @@ "width": null } }, - "2aeff5887c2744658ab43b4d60c1fa69": { + "4c5bb1bea32c4cf4b4e27b2f03b4cd45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5156825dd8984f5390c32a26ec67aac1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_18293d50d4484b0393bfae1f7b74f293", - "placeholder": "​", - "style": "IPY_MODEL_7faa2feb4f15433b9d040ffbf537d6b5", + "layout": "IPY_MODEL_9d3ce37c18da435f9c36109f68013b0f", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45819af2ac5246748f97bf8d73a8f283", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 94.9MB/s]" + "value": 2.0 } }, - "2d482bad9ee041b79ba26875c7d1a80e": { + "578929fb3a044fb8b98da73290b779d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b98f676249946058d5415d4909e05b9", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_096734e131e7446789cb828a670c4d33", + "tabbable": null, + "tooltip": null, + "value": 1.0 } }, - "2ef38576452d4a8ca2641b46f9f35c14": { + "57bef00c454b4e879a865a60febb6b60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3552,7 +3551,7 @@ "text_color": null } }, - "2f2a551a941645a78fe4691c1f20b53f": { + "5b3a5d15a27842e893e424fbca85b9e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3605,7 +3604,49 @@ "width": null } }, - "38c29ede099f486ead043fd5488a0759": { + "64976c7cec274e2cb599f9864d9d2b3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d66b7bebee1c4c5a9bfb23d862bd89e4", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c83eb5b6161d4f85aa318bfa7112095f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "673d6eed56f44ff6ae4e58f52e19133c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "686948274691459e859ec29d1d6727ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3658,7 +3699,48 @@ "width": null } }, - "39470974b22044fcabdf343041f46c3e": { + "6c6fe37f727d4b6e8f95c49cb618852d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6cf83a63cad34d77a53d085e937274b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f16949cc8934b0ab3befc7da6f162af", + "placeholder": "​", + "style": "IPY_MODEL_80e4373e9d5d4f5083c3e92a61a83408", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "6de8542b53114be68c4e71576a77d58d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3711,7 +3793,7 @@ "width": null } }, - "3c5a1561976c4ff1ad4db4058a8c0127": { + "6fcdf7eb188047ea8070940e35a2c311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3726,64 +3808,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_197fca20a4434a20984b059e49d64036", + "layout": "IPY_MODEL_e072741128074994b5fba0025ee966de", "placeholder": "​", - "style": "IPY_MODEL_2ef38576452d4a8ca2641b46f9f35c14", + "style": "IPY_MODEL_fc7aae1e798a48039208372e86ec973b", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 5.18M/5.18M [00:00<00:00, 69.5MB/s]" } }, - "3cb4a82173174d78a59af75f16489b2c": { + "70cc77e667df49dab4bde4d8dea9c5fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_10f5705a3e4e4a5489fdffb09b3ae22d", - "placeholder": "​", - "style": "IPY_MODEL_0986b1a6d95d485cbe39462131805d4a", + "layout": "IPY_MODEL_e04ff729cd6248debe23ad79acebf4bc", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_673d6eed56f44ff6ae4e58f52e19133c", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 641.77it/s]" + "value": 30931277.0 } }, - "423bc17c3a044d53a5de362b4d36e27b": { - "model_module": "@jupyter-widgets/controls", + "71185cb9b6c8422094d1c0f6d1d0147f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f4443875618434da0e9c191e0ace738", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d482bad9ee041b79ba26875c7d1a80e", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" } }, - "47f5060567b54568b0bcee09f764ad27": { + "713efc8818df493895a188556513706a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3836,7 +3948,7 @@ "width": null } }, - "4e64526cc3ce44e292359000779eb539": { + "73635cd35f554107ad27ff09c5a3deaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3854,25 +3966,31 @@ "text_color": null } }, - "515f681f9dab4dd392d167d2ea28a430": { + "75399c16f9a9462ab14c8fc2e9c2b817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a265c03419fb47d78575b3c0a5c8ecae", + "IPY_MODEL_578929fb3a044fb8b98da73290b779d0", + "IPY_MODEL_8141d17ba66a4fa79738072a90f4bd9e" + ], + "layout": "IPY_MODEL_9727eec2512c4933a9d698603b04afa7", + "tabbable": null, + "tooltip": null } }, - "5487841021704122bdfd383f3ecc760a": { + "7b617e68684d4328b814adff85313cd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3887,15 +4005,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f2a551a941645a78fe4691c1f20b53f", + "layout": "IPY_MODEL_1ce7003827024b28a7d772ffcf95c3a0", "placeholder": "​", - "style": "IPY_MODEL_bf49a26db85d4c928bd1f112e88d04ae", + "style": "IPY_MODEL_57bef00c454b4e879a865a60febb6b60", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": "Generating train split: " + } + }, + "7fb92d346357470cb4e334e9867b871a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b393b5be18c4614bbbe5748904485e6": { + "7fc3c32bcf1148368c0a1dd69f0726fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3910,56 +4046,107 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3c5a1561976c4ff1ad4db4058a8c0127", - "IPY_MODEL_19b04ce129ed43bea80c3763311498a1", - "IPY_MODEL_7bdda0e0e9af4e329762cac848c7afeb" + "IPY_MODEL_bdd9181360ef47cdb60a4d3587334477", + "IPY_MODEL_70cc77e667df49dab4bde4d8dea9c5fc", + "IPY_MODEL_4b56c0a3af7b4854bcaa5e65e32570a4" ], - "layout": "IPY_MODEL_47f5060567b54568b0bcee09f764ad27", + "layout": "IPY_MODEL_686948274691459e859ec29d1d6727ad", "tabbable": null, "tooltip": null } }, - "675dd88192524e39b8b2c590edca71dc": { + "80e4373e9d5d4f5083c3e92a61a83408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "67691e10a0ac4a259f3747a827b350d5": { + "8141d17ba66a4fa79738072a90f4bd9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da707b4db6684c0fa1f42dfbbfa15ec2", - "IPY_MODEL_e57ae3a3bbb847ecae1ef7ae2ed00f25", - "IPY_MODEL_cd2955ed357d49f78df0e62fe52334a0" - ], - "layout": "IPY_MODEL_80b35b7c4593476685445ef3025428eb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b66eff66d81e4438b9228605517b1593", + "placeholder": "​", + "style": "IPY_MODEL_f8a5a07864954ff99b69195ff03014bc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/0 [00:00<00:00, 628068.46 examples/s]" } }, - "6853885176e7477cb8135d6bfe80ff02": { + "8488030d7afb4e4c95288794d76c2b48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b617e68684d4328b814adff85313cd5", + "IPY_MODEL_a2eae19faf36409f8181eef097b68a54", + "IPY_MODEL_cab835ba7133491985672d5adf685b51" + ], + "layout": "IPY_MODEL_f643dd39622741d4a35fcf7a2d438eb7", + "tabbable": null, + "tooltip": null + } + }, + "8762f99816334281badb51b354443160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ac2c8c227bba40a594ee42bcdfd88417", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cac02aaea187408aae5a8c6677012f49", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "89515e7f66a14b7f958928ae0c7e4729": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4012,7 +4199,7 @@ "width": null } }, - "6ba0aea08e8643b78fb9dd4fadbd8604": { + "8ec2228212b74dae9b1d6b947be22df7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4027,15 +4214,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_00a8666c63fe45f283b11685743a81b6", + "layout": "IPY_MODEL_da231bdfa36744078ae247859bcb9b02", "placeholder": "​", - "style": "IPY_MODEL_1c7be1df6c5e4d32a0559e03971d081a", + "style": "IPY_MODEL_d5dac1c26a794eceb5b33cdac38e91e1", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 70.7MB/s]" + "value": " 2/2 [00:00<00:00, 629.07it/s]" + } + }, + "8eec55efd8174ae9b1880eb091282f8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3e1582141cd4032a0ff25cedc977203", + "IPY_MODEL_5156825dd8984f5390c32a26ec67aac1", + "IPY_MODEL_8ec2228212b74dae9b1d6b947be22df7" + ], + "layout": "IPY_MODEL_713efc8818df493895a188556513706a", + "tabbable": null, + "tooltip": null } }, - "6f4443875618434da0e9c191e0ace738": { + "9431d2713aad4a79b208a039fbb37fab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4088,7 +4299,30 @@ "width": null } }, - "6ffbbae9cb954f6a82f68b536f065ab8": { + "94bc8870033b400c828c994a4697989a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c5b2ed298d3c4fbda43a63faac09ec97", + "placeholder": "​", + "style": "IPY_MODEL_6c6fe37f727d4b6e8f95c49cb618852d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1562.36it/s]" + } + }, + "9727eec2512c4933a9d698603b04afa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4141,7 +4375,7 @@ "width": null } }, - "7b37caa92b634a88b72e54c5f100899e": { + "9b4cac2ed2814e8b9e247efc679c9223": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4194,7 +4428,7 @@ "width": null } }, - "7ba1ac52122646b58c5b9a4f176153ef": { + "9b98f676249946058d5415d4909e05b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4244,51 +4478,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "7bdda0e0e9af4e329762cac848c7afeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_007cca45272b4a15865ee386417fca56", - "placeholder": "​", - "style": "IPY_MODEL_26746b6b76004ae59adf81188c1fdd1a", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6531.80 examples/s]" - } - }, - "7faa2feb4f15433b9d040ffbf537d6b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": "20px" } }, - "80b35b7c4593476685445ef3025428eb": { + "9d3ce37c18da435f9c36109f68013b0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4341,7 +4534,7 @@ "width": null } }, - "8347afc027284ba1863d50faee7fb11f": { + "a265c03419fb47d78575b3c0a5c8ecae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4356,38 +4549,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e0d10aecc1b8464c94fddbea98f240d7", + "layout": "IPY_MODEL_9431d2713aad4a79b208a039fbb37fab", "placeholder": "​", - "style": "IPY_MODEL_4e64526cc3ce44e292359000779eb539", + "style": "IPY_MODEL_4a4f8f6ed26f4e04ade21e5c4c413553", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:38<00:00, 1627.63it/s]" + "value": "Generating test split: " } }, - "866395f01978484db997ca8002c94500": { + "a2eae19faf36409f8181eef097b68a54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0d2d9d153814469a1c5f837c963a987", - "placeholder": "​", - "style": "IPY_MODEL_c02b56ba484f4b5bb2383da56ef2baf2", + "layout": "IPY_MODEL_71185cb9b6c8422094d1c0f6d1d0147f", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a825e0188dbe47a195347df2c50c35d0", "tabbable": null, "tooltip": null, - "value": " 10000/0 [00:00<00:00, 576037.80 examples/s]" + "value": 1.0 + } + }, + "a4e2cd3cbcc1439b92a8f2e5001a07a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a825e0188dbe47a195347df2c50c35d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8cb1e055ca064cd6b11318325702ebf2": { + "ac2c8c227bba40a594ee42bcdfd88417": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4440,88 +4670,7 @@ "width": null } }, - "8e6ad75a2b144274bcc9ff9239778002": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df492ac34dc243af97c31bd624502099", - "placeholder": "​", - "style": "IPY_MODEL_973abcd851334a23a1270519eccaa3c5", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "911987d56e934f189bd14bb79602c280": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5487841021704122bdfd383f3ecc760a", - "IPY_MODEL_c855fae6b03a49cb953be1c8f51d44f9", - "IPY_MODEL_3cb4a82173174d78a59af75f16489b2c" - ], - "layout": "IPY_MODEL_6853885176e7477cb8135d6bfe80ff02", - "tabbable": null, - "tooltip": null - } - }, - "973abcd851334a23a1270519eccaa3c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9f2a28910749459bb33e5ad7e62ad01e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a51bf779db9d469c8cc33a8b24c8e7ca": { + "b66eff66d81e4438b9228605517b1593": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4574,33 +4723,30 @@ "width": null } }, - "a6c96a8ee9564d51a056291e1e184f49": { + "bdd9181360ef47cdb60a4d3587334477": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d85cd0edb5d6484b93791a949f5eb677", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8738a0fd0a9491db1151ef381d35254", + "layout": "IPY_MODEL_1ee143b057ae4463bf1a6f310045fe94", + "placeholder": "​", + "style": "IPY_MODEL_7fb92d346357470cb4e334e9867b871a", "tabbable": null, "tooltip": null, - "value": 1.0 + "value": "Downloading data: 100%" } }, - "a745f815281f456fbc80f4bdc464b2a4": { + "c5b2ed298d3c4fbda43a63faac09ec97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4653,7 +4799,7 @@ "width": null } }, - "b0d2d9d153814469a1c5f837c963a987": { + "c5cb71c61f3d4544ace25a3110062e2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4706,108 +4852,46 @@ "width": null } }, - "b5b76bb51dd24c3386ccaa609dc70842": { + "c83eb5b6161d4f85aa318bfa7112095f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ba1ac52122646b58c5b9a4f176153ef", - "placeholder": "​", - "style": "IPY_MODEL_515f681f9dab4dd392d167d2ea28a430", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b6cd68308d5e4a28b4407d8ee3829be1": { + "cab835ba7133491985672d5adf685b51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ac6b1ce136d47ef8d4c7d14c22c7116", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_675dd88192524e39b8b2c590edca71dc", + "layout": "IPY_MODEL_34b9ed23fedc419c93f8e11b3bba77d3", + "placeholder": "​", + "style": "IPY_MODEL_a4e2cd3cbcc1439b92a8f2e5001a07a0", "tabbable": null, "tooltip": null, - "value": 30931277.0 - } - }, - "be13cc6a5b264e5c998f323c75cc7bb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bf49a26db85d4c928bd1f112e88d04ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c02b56ba484f4b5bb2383da56ef2baf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/0 [00:00<00:00, 963377.32 examples/s]" } }, - "c44a23970a994528bfdc06bfcb012be7": { + "cac02aaea187408aae5a8c6677012f49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4823,33 +4907,7 @@ "description_width": "" } }, - "c855fae6b03a49cb953be1c8f51d44f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b37caa92b634a88b72e54c5f100899e", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c44a23970a994528bfdc06bfcb012be7", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "cc76dce215d548d892e41d3a7229508c": { + "d5dac1c26a794eceb5b33cdac38e91e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4867,30 +4925,7 @@ "text_color": null } }, - "cd2955ed357d49f78df0e62fe52334a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc1ff02cf5c94c70b74423fece694376", - "placeholder": "​", - "style": "IPY_MODEL_f4a04192e971448aaecf424bc4f41bda", - "tabbable": null, - "tooltip": null, - "value": " 60000/0 [00:00<00:00, 846818.07 examples/s]" - } - }, - "d85cd0edb5d6484b93791a949f5eb677": { + "d66b7bebee1c4c5a9bfb23d862bd89e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4940,49 +4975,28 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "d8738a0fd0a9491db1151ef381d35254": { + "d78d044a913243d8bf9346c6281d126a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "da707b4db6684c0fa1f42dfbbfa15ec2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8cb1e055ca064cd6b11318325702ebf2", - "placeholder": "​", - "style": "IPY_MODEL_e18168fd3de74d7ea007bfdb3a814603", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: " + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "df492ac34dc243af97c31bd624502099": { + "da231bdfa36744078ae247859bcb9b02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5035,7 +5049,72 @@ "width": null } }, - "e0d10aecc1b8464c94fddbea98f240d7": { + "db4d65560ff04257ad1532c0bf200fa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_45a1b9299e1845aab1844559b266af3b", + "placeholder": "​", + "style": "IPY_MODEL_4c5bb1bea32c4cf4b4e27b2f03b4cd45", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7408.76 examples/s]" + } + }, + "dca81aa852a141c0b18590a7f7cf263c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "def052e51c5d4bc1b365fb7a46f00d5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_183ec1a8cefe4e868b0f39386c2db1e5", + "IPY_MODEL_8762f99816334281badb51b354443160", + "IPY_MODEL_db4d65560ff04257ad1532c0bf200fa9" + ], + "layout": "IPY_MODEL_89515e7f66a14b7f958928ae0c7e4729", + "tabbable": null, + "tooltip": null + } + }, + "e04ff729cd6248debe23ad79acebf4bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5088,25 +5167,7 @@ "width": null } }, - "e18168fd3de74d7ea007bfdb3a814603": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e47d1549488742599209ede60f9bad03": { + "e072741128074994b5fba0025ee966de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5156,10 +5217,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "e4965fe8a11c45b89b19f160a93c542b": { + "e25684bca4d04cc586c2ae9653e92baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5174,65 +5235,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0c988c95890b4f69b74f89e0c81d7828", + "layout": "IPY_MODEL_c5cb71c61f3d4544ace25a3110062e2f", "placeholder": "​", - "style": "IPY_MODEL_cc76dce215d548d892e41d3a7229508c", + "style": "IPY_MODEL_73635cd35f554107ad27ff09c5a3deaf", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "e57ae3a3bbb847ecae1ef7ae2ed00f25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e47d1549488742599209ede60f9bad03", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9f2a28910749459bb33e5ad7e62ad01e", - "tabbable": null, - "tooltip": null, - "value": 1.0 - } - }, - "f297df970eaa40368e0d02896d28f3b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f37dedb7f52e45adb6f1791f0875f640", - "IPY_MODEL_a6c96a8ee9564d51a056291e1e184f49", - "IPY_MODEL_866395f01978484db997ca8002c94500" - ], - "layout": "IPY_MODEL_39470974b22044fcabdf343041f46c3e", - "tabbable": null, - "tooltip": null + "value": "100%" } }, - "f37dedb7f52e45adb6f1791f0875f640": { + "e3e1582141cd4032a0ff25cedc977203": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5247,33 +5258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ac47e5ca144d298560f408c853cf1e", + "layout": "IPY_MODEL_5b3a5d15a27842e893e424fbca85b9e3", "placeholder": "​", - "style": "IPY_MODEL_f8cf10ba3a9341a3aac3ac337cbf990e", + "style": "IPY_MODEL_ef5a2cf277c64341b028581a65c8220c", "tabbable": null, "tooltip": null, - "value": "Generating test split: " - } - }, - "f4a04192e971448aaecf424bc4f41bda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Computing checksums: 100%" } }, - "f8cf10ba3a9341a3aac3ac337cbf990e": { + "ef5a2cf277c64341b028581a65c8220c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5291,7 +5284,7 @@ "text_color": null } }, - "fc1ff02cf5c94c70b74423fece694376": { + "f643dd39622741d4a35fcf7a2d438eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5344,57 +5337,56 @@ "width": null } }, - "fcc301f31d19462b97bdc821e4e82fef": { - "model_module": "@jupyter-widgets/base", + "f782ebbbd274491fa6c680f42c1bf160": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f8a5a07864954ff99b69195ff03014bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fc7aae1e798a48039208372e86ec973b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index eedb2b4a0..fcbca0822 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:21.351866Z", - "iopub.status.busy": "2024-02-07T22:15:21.351677Z", - "iopub.status.idle": "2024-02-07T22:15:22.453306Z", - "shell.execute_reply": "2024-02-07T22:15:22.452757Z" + "iopub.execute_input": "2024-02-07T23:55:52.793906Z", + "iopub.status.busy": "2024-02-07T23:55:52.793563Z", + "iopub.status.idle": "2024-02-07T23:55:53.871456Z", + "shell.execute_reply": "2024-02-07T23:55:53.870917Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.455742Z", - "iopub.status.busy": "2024-02-07T22:15:22.455483Z", - "iopub.status.idle": "2024-02-07T22:15:22.634154Z", - "shell.execute_reply": "2024-02-07T22:15:22.633543Z" + "iopub.execute_input": "2024-02-07T23:55:53.873895Z", + "iopub.status.busy": "2024-02-07T23:55:53.873500Z", + "iopub.status.idle": "2024-02-07T23:55:54.047760Z", + "shell.execute_reply": "2024-02-07T23:55:54.047227Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.636920Z", - "iopub.status.busy": "2024-02-07T22:15:22.636572Z", - "iopub.status.idle": "2024-02-07T22:15:22.648321Z", - "shell.execute_reply": "2024-02-07T22:15:22.647894Z" + "iopub.execute_input": "2024-02-07T23:55:54.050158Z", + "iopub.status.busy": "2024-02-07T23:55:54.049974Z", + "iopub.status.idle": "2024-02-07T23:55:54.061117Z", + "shell.execute_reply": "2024-02-07T23:55:54.060658Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.650316Z", - "iopub.status.busy": "2024-02-07T22:15:22.649989Z", - "iopub.status.idle": "2024-02-07T22:15:22.883619Z", - "shell.execute_reply": "2024-02-07T22:15:22.883022Z" + "iopub.execute_input": "2024-02-07T23:55:54.062919Z", + "iopub.status.busy": "2024-02-07T23:55:54.062746Z", + "iopub.status.idle": "2024-02-07T23:55:54.297436Z", + "shell.execute_reply": "2024-02-07T23:55:54.296880Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.885905Z", - "iopub.status.busy": "2024-02-07T22:15:22.885576Z", - "iopub.status.idle": "2024-02-07T22:15:22.911960Z", - "shell.execute_reply": "2024-02-07T22:15:22.911384Z" + "iopub.execute_input": "2024-02-07T23:55:54.299486Z", + "iopub.status.busy": "2024-02-07T23:55:54.299307Z", + "iopub.status.idle": "2024-02-07T23:55:54.325624Z", + "shell.execute_reply": "2024-02-07T23:55:54.325176Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.914485Z", - "iopub.status.busy": "2024-02-07T22:15:22.913996Z", - "iopub.status.idle": "2024-02-07T22:15:24.619121Z", - "shell.execute_reply": "2024-02-07T22:15:24.618526Z" + "iopub.execute_input": "2024-02-07T23:55:54.327440Z", + "iopub.status.busy": "2024-02-07T23:55:54.327261Z", + "iopub.status.idle": "2024-02-07T23:55:55.923609Z", + "shell.execute_reply": "2024-02-07T23:55:55.922962Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:24.621699Z", - "iopub.status.busy": "2024-02-07T22:15:24.621099Z", - "iopub.status.idle": "2024-02-07T22:15:24.637180Z", - "shell.execute_reply": "2024-02-07T22:15:24.636739Z" + "iopub.execute_input": "2024-02-07T23:55:55.926111Z", + "iopub.status.busy": "2024-02-07T23:55:55.925634Z", + "iopub.status.idle": "2024-02-07T23:55:55.942989Z", + "shell.execute_reply": "2024-02-07T23:55:55.942452Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:24.639293Z", - "iopub.status.busy": "2024-02-07T22:15:24.639017Z", - "iopub.status.idle": "2024-02-07T22:15:26.071028Z", - "shell.execute_reply": "2024-02-07T22:15:26.070435Z" + "iopub.execute_input": "2024-02-07T23:55:55.944841Z", + "iopub.status.busy": "2024-02-07T23:55:55.944659Z", + "iopub.status.idle": "2024-02-07T23:55:57.319622Z", + "shell.execute_reply": "2024-02-07T23:55:57.319078Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.073837Z", - "iopub.status.busy": "2024-02-07T22:15:26.073006Z", - "iopub.status.idle": "2024-02-07T22:15:26.086788Z", - "shell.execute_reply": "2024-02-07T22:15:26.086329Z" + "iopub.execute_input": "2024-02-07T23:55:57.322169Z", + "iopub.status.busy": "2024-02-07T23:55:57.321580Z", + "iopub.status.idle": "2024-02-07T23:55:57.335184Z", + "shell.execute_reply": "2024-02-07T23:55:57.334645Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.089018Z", - "iopub.status.busy": "2024-02-07T22:15:26.088676Z", - "iopub.status.idle": "2024-02-07T22:15:26.166965Z", - "shell.execute_reply": "2024-02-07T22:15:26.166362Z" + "iopub.execute_input": "2024-02-07T23:55:57.337271Z", + "iopub.status.busy": "2024-02-07T23:55:57.336902Z", + "iopub.status.idle": "2024-02-07T23:55:57.408692Z", + "shell.execute_reply": "2024-02-07T23:55:57.408157Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.169567Z", - "iopub.status.busy": "2024-02-07T22:15:26.169069Z", - "iopub.status.idle": "2024-02-07T22:15:26.381855Z", - "shell.execute_reply": "2024-02-07T22:15:26.381243Z" + "iopub.execute_input": "2024-02-07T23:55:57.410865Z", + "iopub.status.busy": "2024-02-07T23:55:57.410584Z", + "iopub.status.idle": "2024-02-07T23:55:57.618710Z", + "shell.execute_reply": "2024-02-07T23:55:57.618185Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.383995Z", - "iopub.status.busy": "2024-02-07T22:15:26.383801Z", - "iopub.status.idle": "2024-02-07T22:15:26.401001Z", - "shell.execute_reply": "2024-02-07T22:15:26.400532Z" + "iopub.execute_input": "2024-02-07T23:55:57.620862Z", + "iopub.status.busy": "2024-02-07T23:55:57.620521Z", + "iopub.status.idle": "2024-02-07T23:55:57.636978Z", + "shell.execute_reply": "2024-02-07T23:55:57.636540Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.403060Z", - "iopub.status.busy": "2024-02-07T22:15:26.402733Z", - "iopub.status.idle": "2024-02-07T22:15:26.412648Z", - "shell.execute_reply": "2024-02-07T22:15:26.412212Z" + "iopub.execute_input": "2024-02-07T23:55:57.638931Z", + "iopub.status.busy": "2024-02-07T23:55:57.638611Z", + "iopub.status.idle": "2024-02-07T23:55:57.648032Z", + "shell.execute_reply": "2024-02-07T23:55:57.647545Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.414515Z", - "iopub.status.busy": "2024-02-07T22:15:26.414337Z", - "iopub.status.idle": "2024-02-07T22:15:26.507527Z", - "shell.execute_reply": "2024-02-07T22:15:26.506872Z" + "iopub.execute_input": "2024-02-07T23:55:57.650008Z", + "iopub.status.busy": "2024-02-07T23:55:57.649677Z", + "iopub.status.idle": "2024-02-07T23:55:57.735094Z", + "shell.execute_reply": "2024-02-07T23:55:57.734511Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.510067Z", - "iopub.status.busy": "2024-02-07T22:15:26.509583Z", - "iopub.status.idle": "2024-02-07T22:15:26.645559Z", - "shell.execute_reply": "2024-02-07T22:15:26.645002Z" + "iopub.execute_input": "2024-02-07T23:55:57.737432Z", + "iopub.status.busy": "2024-02-07T23:55:57.737237Z", + "iopub.status.idle": "2024-02-07T23:55:57.855160Z", + "shell.execute_reply": "2024-02-07T23:55:57.854608Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.647901Z", - "iopub.status.busy": "2024-02-07T22:15:26.647610Z", - "iopub.status.idle": "2024-02-07T22:15:26.651464Z", - "shell.execute_reply": "2024-02-07T22:15:26.650960Z" + "iopub.execute_input": "2024-02-07T23:55:57.857572Z", + "iopub.status.busy": "2024-02-07T23:55:57.857138Z", + "iopub.status.idle": "2024-02-07T23:55:57.861016Z", + "shell.execute_reply": "2024-02-07T23:55:57.860464Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.653401Z", - "iopub.status.busy": "2024-02-07T22:15:26.653143Z", - "iopub.status.idle": "2024-02-07T22:15:26.656733Z", - "shell.execute_reply": "2024-02-07T22:15:26.656187Z" + "iopub.execute_input": "2024-02-07T23:55:57.863057Z", + "iopub.status.busy": "2024-02-07T23:55:57.862660Z", + "iopub.status.idle": "2024-02-07T23:55:57.866556Z", + "shell.execute_reply": "2024-02-07T23:55:57.865984Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.658643Z", - "iopub.status.busy": "2024-02-07T22:15:26.658386Z", - "iopub.status.idle": "2024-02-07T22:15:26.695310Z", - "shell.execute_reply": "2024-02-07T22:15:26.694804Z" + "iopub.execute_input": "2024-02-07T23:55:57.868833Z", + "iopub.status.busy": "2024-02-07T23:55:57.868415Z", + "iopub.status.idle": "2024-02-07T23:55:57.905529Z", + "shell.execute_reply": "2024-02-07T23:55:57.905083Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.697492Z", - "iopub.status.busy": "2024-02-07T22:15:26.697153Z", - "iopub.status.idle": "2024-02-07T22:15:26.740554Z", - "shell.execute_reply": "2024-02-07T22:15:26.739987Z" + "iopub.execute_input": "2024-02-07T23:55:57.907438Z", + "iopub.status.busy": "2024-02-07T23:55:57.907262Z", + "iopub.status.idle": "2024-02-07T23:55:57.950758Z", + "shell.execute_reply": "2024-02-07T23:55:57.950272Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.742713Z", - "iopub.status.busy": "2024-02-07T22:15:26.742403Z", - "iopub.status.idle": "2024-02-07T22:15:26.841701Z", - "shell.execute_reply": "2024-02-07T22:15:26.840988Z" + "iopub.execute_input": "2024-02-07T23:55:57.952847Z", + "iopub.status.busy": "2024-02-07T23:55:57.952459Z", + "iopub.status.idle": "2024-02-07T23:55:58.044023Z", + "shell.execute_reply": "2024-02-07T23:55:58.043409Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.844347Z", - "iopub.status.busy": "2024-02-07T22:15:26.844156Z", - "iopub.status.idle": "2024-02-07T22:15:26.944490Z", - "shell.execute_reply": "2024-02-07T22:15:26.943909Z" + "iopub.execute_input": "2024-02-07T23:55:58.046632Z", + "iopub.status.busy": "2024-02-07T23:55:58.046286Z", + "iopub.status.idle": "2024-02-07T23:55:58.131106Z", + "shell.execute_reply": "2024-02-07T23:55:58.130530Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.946747Z", - "iopub.status.busy": "2024-02-07T22:15:26.946443Z", - "iopub.status.idle": "2024-02-07T22:15:27.154696Z", - "shell.execute_reply": "2024-02-07T22:15:27.154138Z" + "iopub.execute_input": "2024-02-07T23:55:58.133293Z", + "iopub.status.busy": "2024-02-07T23:55:58.133056Z", + "iopub.status.idle": "2024-02-07T23:55:58.344933Z", + "shell.execute_reply": "2024-02-07T23:55:58.344357Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.156796Z", - "iopub.status.busy": "2024-02-07T22:15:27.156608Z", - "iopub.status.idle": "2024-02-07T22:15:27.353494Z", - "shell.execute_reply": "2024-02-07T22:15:27.352882Z" + "iopub.execute_input": "2024-02-07T23:55:58.347184Z", + "iopub.status.busy": "2024-02-07T23:55:58.346751Z", + "iopub.status.idle": "2024-02-07T23:55:58.510583Z", + "shell.execute_reply": "2024-02-07T23:55:58.509985Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.355739Z", - "iopub.status.busy": "2024-02-07T22:15:27.355551Z", - "iopub.status.idle": "2024-02-07T22:15:27.361595Z", - "shell.execute_reply": "2024-02-07T22:15:27.361143Z" + "iopub.execute_input": "2024-02-07T23:55:58.512995Z", + "iopub.status.busy": "2024-02-07T23:55:58.512569Z", + "iopub.status.idle": "2024-02-07T23:55:58.518373Z", + "shell.execute_reply": "2024-02-07T23:55:58.517831Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.363428Z", - "iopub.status.busy": "2024-02-07T22:15:27.363240Z", - "iopub.status.idle": "2024-02-07T22:15:27.581468Z", - "shell.execute_reply": "2024-02-07T22:15:27.580881Z" + "iopub.execute_input": "2024-02-07T23:55:58.520271Z", + "iopub.status.busy": "2024-02-07T23:55:58.520096Z", + "iopub.status.idle": "2024-02-07T23:55:58.734987Z", + "shell.execute_reply": "2024-02-07T23:55:58.734456Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.583753Z", - "iopub.status.busy": "2024-02-07T22:15:27.583416Z", - "iopub.status.idle": "2024-02-07T22:15:28.654066Z", - "shell.execute_reply": "2024-02-07T22:15:28.653455Z" + "iopub.execute_input": "2024-02-07T23:55:58.737174Z", + "iopub.status.busy": "2024-02-07T23:55:58.736837Z", + "iopub.status.idle": "2024-02-07T23:55:59.819273Z", + "shell.execute_reply": "2024-02-07T23:55:59.818745Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index c986eebc5..faeef8745 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:32.145853Z", - "iopub.status.busy": "2024-02-07T22:15:32.145685Z", - "iopub.status.idle": "2024-02-07T22:15:33.233957Z", - "shell.execute_reply": "2024-02-07T22:15:33.233337Z" + "iopub.execute_input": "2024-02-07T23:56:03.103506Z", + "iopub.status.busy": "2024-02-07T23:56:03.103340Z", + "iopub.status.idle": "2024-02-07T23:56:04.118950Z", + "shell.execute_reply": "2024-02-07T23:56:04.118459Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.236597Z", - "iopub.status.busy": "2024-02-07T22:15:33.236316Z", - "iopub.status.idle": "2024-02-07T22:15:33.239477Z", - "shell.execute_reply": "2024-02-07T22:15:33.238940Z" + "iopub.execute_input": "2024-02-07T23:56:04.121683Z", + "iopub.status.busy": "2024-02-07T23:56:04.121265Z", + "iopub.status.idle": "2024-02-07T23:56:04.124434Z", + "shell.execute_reply": "2024-02-07T23:56:04.123985Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.241447Z", - "iopub.status.busy": "2024-02-07T22:15:33.241135Z", - "iopub.status.idle": "2024-02-07T22:15:33.248930Z", - "shell.execute_reply": "2024-02-07T22:15:33.248387Z" + "iopub.execute_input": "2024-02-07T23:56:04.126463Z", + "iopub.status.busy": "2024-02-07T23:56:04.126136Z", + "iopub.status.idle": "2024-02-07T23:56:04.133993Z", + "shell.execute_reply": "2024-02-07T23:56:04.133459Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.250950Z", - "iopub.status.busy": "2024-02-07T22:15:33.250645Z", - "iopub.status.idle": "2024-02-07T22:15:33.298657Z", - "shell.execute_reply": "2024-02-07T22:15:33.298050Z" + "iopub.execute_input": "2024-02-07T23:56:04.136023Z", + "iopub.status.busy": "2024-02-07T23:56:04.135616Z", + "iopub.status.idle": "2024-02-07T23:56:04.188425Z", + "shell.execute_reply": "2024-02-07T23:56:04.187883Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.300978Z", - "iopub.status.busy": "2024-02-07T22:15:33.300771Z", - "iopub.status.idle": "2024-02-07T22:15:33.318345Z", - "shell.execute_reply": "2024-02-07T22:15:33.317890Z" + "iopub.execute_input": "2024-02-07T23:56:04.190556Z", + "iopub.status.busy": "2024-02-07T23:56:04.190390Z", + "iopub.status.idle": "2024-02-07T23:56:04.206810Z", + "shell.execute_reply": "2024-02-07T23:56:04.206304Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.320328Z", - "iopub.status.busy": "2024-02-07T22:15:33.320023Z", - "iopub.status.idle": "2024-02-07T22:15:33.323869Z", - "shell.execute_reply": "2024-02-07T22:15:33.323430Z" + "iopub.execute_input": "2024-02-07T23:56:04.208783Z", + "iopub.status.busy": "2024-02-07T23:56:04.208482Z", + "iopub.status.idle": "2024-02-07T23:56:04.212185Z", + "shell.execute_reply": "2024-02-07T23:56:04.211662Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.325943Z", - "iopub.status.busy": "2024-02-07T22:15:33.325647Z", - "iopub.status.idle": "2024-02-07T22:15:33.356671Z", - "shell.execute_reply": "2024-02-07T22:15:33.356095Z" + "iopub.execute_input": "2024-02-07T23:56:04.214215Z", + "iopub.status.busy": "2024-02-07T23:56:04.213913Z", + "iopub.status.idle": "2024-02-07T23:56:04.240502Z", + "shell.execute_reply": "2024-02-07T23:56:04.240094Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.358903Z", - "iopub.status.busy": "2024-02-07T22:15:33.358588Z", - "iopub.status.idle": "2024-02-07T22:15:33.385755Z", - "shell.execute_reply": "2024-02-07T22:15:33.385132Z" + "iopub.execute_input": "2024-02-07T23:56:04.242411Z", + "iopub.status.busy": "2024-02-07T23:56:04.242089Z", + "iopub.status.idle": "2024-02-07T23:56:04.268227Z", + "shell.execute_reply": "2024-02-07T23:56:04.267681Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.388411Z", - "iopub.status.busy": "2024-02-07T22:15:33.388028Z", - "iopub.status.idle": "2024-02-07T22:15:35.180954Z", - "shell.execute_reply": "2024-02-07T22:15:35.180351Z" + "iopub.execute_input": "2024-02-07T23:56:04.270386Z", + "iopub.status.busy": "2024-02-07T23:56:04.270015Z", + "iopub.status.idle": "2024-02-07T23:56:05.942630Z", + "shell.execute_reply": "2024-02-07T23:56:05.942094Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.183842Z", - "iopub.status.busy": "2024-02-07T22:15:35.183215Z", - "iopub.status.idle": "2024-02-07T22:15:35.190451Z", - "shell.execute_reply": "2024-02-07T22:15:35.190006Z" + "iopub.execute_input": "2024-02-07T23:56:05.945098Z", + "iopub.status.busy": "2024-02-07T23:56:05.944826Z", + "iopub.status.idle": "2024-02-07T23:56:05.951226Z", + "shell.execute_reply": "2024-02-07T23:56:05.950773Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.192648Z", - "iopub.status.busy": "2024-02-07T22:15:35.192320Z", - "iopub.status.idle": "2024-02-07T22:15:35.204677Z", - "shell.execute_reply": "2024-02-07T22:15:35.204232Z" + "iopub.execute_input": "2024-02-07T23:56:05.953087Z", + "iopub.status.busy": "2024-02-07T23:56:05.952918Z", + "iopub.status.idle": "2024-02-07T23:56:05.965050Z", + "shell.execute_reply": "2024-02-07T23:56:05.964629Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.206669Z", - "iopub.status.busy": "2024-02-07T22:15:35.206301Z", - "iopub.status.idle": "2024-02-07T22:15:35.212711Z", - "shell.execute_reply": "2024-02-07T22:15:35.212172Z" + "iopub.execute_input": "2024-02-07T23:56:05.966796Z", + "iopub.status.busy": "2024-02-07T23:56:05.966628Z", + "iopub.status.idle": "2024-02-07T23:56:05.972874Z", + "shell.execute_reply": "2024-02-07T23:56:05.972451Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.214832Z", - "iopub.status.busy": "2024-02-07T22:15:35.214512Z", - "iopub.status.idle": "2024-02-07T22:15:35.217164Z", - "shell.execute_reply": "2024-02-07T22:15:35.216725Z" + "iopub.execute_input": "2024-02-07T23:56:05.974787Z", + "iopub.status.busy": "2024-02-07T23:56:05.974479Z", + "iopub.status.idle": "2024-02-07T23:56:05.977066Z", + "shell.execute_reply": "2024-02-07T23:56:05.976629Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.219050Z", - "iopub.status.busy": "2024-02-07T22:15:35.218733Z", - "iopub.status.idle": "2024-02-07T22:15:35.222281Z", - "shell.execute_reply": "2024-02-07T22:15:35.221820Z" + "iopub.execute_input": "2024-02-07T23:56:05.978834Z", + "iopub.status.busy": "2024-02-07T23:56:05.978668Z", + "iopub.status.idle": "2024-02-07T23:56:05.982198Z", + "shell.execute_reply": "2024-02-07T23:56:05.981653Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.224316Z", - "iopub.status.busy": "2024-02-07T22:15:35.224013Z", - "iopub.status.idle": "2024-02-07T22:15:35.226604Z", - "shell.execute_reply": "2024-02-07T22:15:35.226158Z" + "iopub.execute_input": "2024-02-07T23:56:05.984156Z", + "iopub.status.busy": "2024-02-07T23:56:05.983985Z", + "iopub.status.idle": "2024-02-07T23:56:05.986977Z", + "shell.execute_reply": "2024-02-07T23:56:05.986575Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.228645Z", - "iopub.status.busy": "2024-02-07T22:15:35.228343Z", - "iopub.status.idle": "2024-02-07T22:15:35.232335Z", - "shell.execute_reply": "2024-02-07T22:15:35.231904Z" + "iopub.execute_input": "2024-02-07T23:56:05.988801Z", + "iopub.status.busy": "2024-02-07T23:56:05.988634Z", + "iopub.status.idle": "2024-02-07T23:56:05.992758Z", + "shell.execute_reply": "2024-02-07T23:56:05.992305Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.234323Z", - "iopub.status.busy": "2024-02-07T22:15:35.234016Z", - "iopub.status.idle": "2024-02-07T22:15:35.263094Z", - "shell.execute_reply": "2024-02-07T22:15:35.262539Z" + "iopub.execute_input": "2024-02-07T23:56:05.994760Z", + "iopub.status.busy": "2024-02-07T23:56:05.994455Z", + "iopub.status.idle": "2024-02-07T23:56:06.022507Z", + "shell.execute_reply": "2024-02-07T23:56:06.022052Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.265344Z", - "iopub.status.busy": "2024-02-07T22:15:35.264967Z", - "iopub.status.idle": "2024-02-07T22:15:35.269602Z", - "shell.execute_reply": "2024-02-07T22:15:35.269145Z" + "iopub.execute_input": "2024-02-07T23:56:06.024458Z", + "iopub.status.busy": "2024-02-07T23:56:06.024139Z", + "iopub.status.idle": "2024-02-07T23:56:06.028445Z", + "shell.execute_reply": "2024-02-07T23:56:06.028024Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index c6ef453c4..5e9a4d29e 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -19,7 +19,7 @@ "Quickstart\n", "
\n", " \n", - "cleanlab finds label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find label issues in your multi-label dataset:\n", + "cleanlab finds data/label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find issues in your multi-label dataset:\n", "\n", "
\n", " \n", @@ -28,10 +28,10 @@ "\n", "# Assuming your dataset has a label column named 'label'\n", "lab = Datalab(dataset, label_name='label', task='multilabel')\n", + "# To detect more issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", "\n", - "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}})\n", - "\n", - "ranked_label_issues = lab.get_issues(\"label\").sort_values(\"label_score\")\n", + "lab.report()\n", "```\n", "\n", " \n", @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:38.074145Z", - "iopub.status.busy": "2024-02-07T22:15:38.073970Z", - "iopub.status.idle": "2024-02-07T22:15:39.203313Z", - "shell.execute_reply": "2024-02-07T22:15:39.202712Z" + "iopub.execute_input": "2024-02-07T23:56:08.687266Z", + "iopub.status.busy": "2024-02-07T23:56:08.687100Z", + "iopub.status.idle": "2024-02-07T23:56:09.754564Z", + "shell.execute_reply": "2024-02-07T23:56:09.754027Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.205859Z", - "iopub.status.busy": "2024-02-07T22:15:39.205596Z", - "iopub.status.idle": "2024-02-07T22:15:39.414109Z", - "shell.execute_reply": "2024-02-07T22:15:39.413479Z" + "iopub.execute_input": "2024-02-07T23:56:09.757160Z", + "iopub.status.busy": "2024-02-07T23:56:09.756746Z", + "iopub.status.idle": "2024-02-07T23:56:09.946615Z", + "shell.execute_reply": "2024-02-07T23:56:09.946097Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.416970Z", - "iopub.status.busy": "2024-02-07T22:15:39.416561Z", - "iopub.status.idle": "2024-02-07T22:15:39.429574Z", - "shell.execute_reply": "2024-02-07T22:15:39.429157Z" + "iopub.execute_input": "2024-02-07T23:56:09.949158Z", + "iopub.status.busy": "2024-02-07T23:56:09.948714Z", + "iopub.status.idle": "2024-02-07T23:56:09.961413Z", + "shell.execute_reply": "2024-02-07T23:56:09.960973Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.431695Z", - "iopub.status.busy": "2024-02-07T22:15:39.431290Z", - "iopub.status.idle": "2024-02-07T22:15:42.066450Z", - "shell.execute_reply": "2024-02-07T22:15:42.065835Z" + "iopub.execute_input": "2024-02-07T23:56:09.963377Z", + "iopub.status.busy": "2024-02-07T23:56:09.963052Z", + "iopub.status.idle": "2024-02-07T23:56:12.619380Z", + "shell.execute_reply": "2024-02-07T23:56:12.618822Z" } }, "outputs": [ @@ -452,10 +452,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:42.068923Z", - "iopub.status.busy": "2024-02-07T22:15:42.068564Z", - "iopub.status.idle": "2024-02-07T22:15:43.411615Z", - "shell.execute_reply": "2024-02-07T22:15:43.411041Z" + "iopub.execute_input": "2024-02-07T23:56:12.621613Z", + "iopub.status.busy": "2024-02-07T23:56:12.621277Z", + "iopub.status.idle": "2024-02-07T23:56:13.971194Z", + "shell.execute_reply": "2024-02-07T23:56:13.970652Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:43.414000Z", - "iopub.status.busy": "2024-02-07T22:15:43.413818Z", - "iopub.status.idle": "2024-02-07T22:15:43.417446Z", - "shell.execute_reply": "2024-02-07T22:15:43.416934Z" + "iopub.execute_input": "2024-02-07T23:56:13.973499Z", + "iopub.status.busy": "2024-02-07T23:56:13.973162Z", + "iopub.status.idle": "2024-02-07T23:56:13.977165Z", + "shell.execute_reply": "2024-02-07T23:56:13.976701Z" } }, "outputs": [ @@ -542,10 +542,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:43.419309Z", - "iopub.status.busy": "2024-02-07T22:15:43.419135Z", - "iopub.status.idle": "2024-02-07T22:15:45.207494Z", - "shell.execute_reply": "2024-02-07T22:15:45.206816Z" + "iopub.execute_input": "2024-02-07T23:56:13.979194Z", + "iopub.status.busy": "2024-02-07T23:56:13.978885Z", + "iopub.status.idle": "2024-02-07T23:56:15.657571Z", + "shell.execute_reply": "2024-02-07T23:56:15.657005Z" } }, "outputs": [ @@ -592,10 +592,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:45.210051Z", - "iopub.status.busy": "2024-02-07T22:15:45.209488Z", - "iopub.status.idle": "2024-02-07T22:15:45.217636Z", - "shell.execute_reply": "2024-02-07T22:15:45.217158Z" + "iopub.execute_input": "2024-02-07T23:56:15.660326Z", + "iopub.status.busy": "2024-02-07T23:56:15.659641Z", + "iopub.status.idle": "2024-02-07T23:56:15.667026Z", + "shell.execute_reply": "2024-02-07T23:56:15.666496Z" } }, "outputs": [ @@ -631,10 +631,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:45.219651Z", - "iopub.status.busy": "2024-02-07T22:15:45.219310Z", - "iopub.status.idle": "2024-02-07T22:15:47.808437Z", - "shell.execute_reply": "2024-02-07T22:15:47.807942Z" + "iopub.execute_input": "2024-02-07T23:56:15.669181Z", + "iopub.status.busy": "2024-02-07T23:56:15.668872Z", + "iopub.status.idle": "2024-02-07T23:56:18.270814Z", + "shell.execute_reply": "2024-02-07T23:56:18.270242Z" } }, "outputs": [ @@ -669,10 +669,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.810738Z", - "iopub.status.busy": "2024-02-07T22:15:47.810301Z", - "iopub.status.idle": "2024-02-07T22:15:47.813993Z", - "shell.execute_reply": "2024-02-07T22:15:47.813455Z" + "iopub.execute_input": "2024-02-07T23:56:18.273199Z", + "iopub.status.busy": "2024-02-07T23:56:18.272850Z", + "iopub.status.idle": "2024-02-07T23:56:18.276268Z", + "shell.execute_reply": "2024-02-07T23:56:18.275699Z" } }, "outputs": [ @@ -691,6 +691,16 @@ "print(f\"Label quality scores of the first 10 examples in dataset:\\n{scores[:10]}\")" ] }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d6", + "metadata": {}, + "source": [ + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset.\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks)." + ] + }, { "cell_type": "markdown", "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d5", @@ -707,10 +717,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.815974Z", - "iopub.status.busy": "2024-02-07T22:15:47.815684Z", - "iopub.status.idle": "2024-02-07T22:15:47.819808Z", - "shell.execute_reply": "2024-02-07T22:15:47.819250Z" + "iopub.execute_input": "2024-02-07T23:56:18.278300Z", + "iopub.status.busy": "2024-02-07T23:56:18.277998Z", + "iopub.status.idle": "2024-02-07T23:56:18.282388Z", + "shell.execute_reply": "2024-02-07T23:56:18.281980Z" } }, "outputs": [], @@ -733,10 +743,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.821661Z", - "iopub.status.busy": "2024-02-07T22:15:47.821392Z", - "iopub.status.idle": "2024-02-07T22:15:47.824553Z", - "shell.execute_reply": "2024-02-07T22:15:47.824004Z" + "iopub.execute_input": "2024-02-07T23:56:18.284367Z", + "iopub.status.busy": "2024-02-07T23:56:18.284047Z", + "iopub.status.idle": "2024-02-07T23:56:18.286987Z", + "shell.execute_reply": "2024-02-07T23:56:18.286563Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index bd98ee443..74d92a714 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:50.447928Z", - "iopub.status.busy": "2024-02-07T22:15:50.447758Z", - "iopub.status.idle": "2024-02-07T22:15:51.564104Z", - "shell.execute_reply": "2024-02-07T22:15:51.563498Z" + "iopub.execute_input": "2024-02-07T23:56:20.562684Z", + "iopub.status.busy": "2024-02-07T23:56:20.562520Z", + "iopub.status.idle": "2024-02-07T23:56:21.638239Z", + "shell.execute_reply": "2024-02-07T23:56:21.637675Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:51.566518Z", - "iopub.status.busy": "2024-02-07T22:15:51.566240Z", - "iopub.status.idle": "2024-02-07T22:15:52.801961Z", - "shell.execute_reply": "2024-02-07T22:15:52.801317Z" + "iopub.execute_input": "2024-02-07T23:56:21.640925Z", + "iopub.status.busy": "2024-02-07T23:56:21.640505Z", + "iopub.status.idle": "2024-02-07T23:56:22.688443Z", + "shell.execute_reply": "2024-02-07T23:56:22.687829Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.804419Z", - "iopub.status.busy": "2024-02-07T22:15:52.804219Z", - "iopub.status.idle": "2024-02-07T22:15:52.807410Z", - "shell.execute_reply": "2024-02-07T22:15:52.806937Z" + "iopub.execute_input": "2024-02-07T23:56:22.690921Z", + "iopub.status.busy": "2024-02-07T23:56:22.690540Z", + "iopub.status.idle": "2024-02-07T23:56:22.693716Z", + "shell.execute_reply": "2024-02-07T23:56:22.693271Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.809336Z", - "iopub.status.busy": "2024-02-07T22:15:52.809039Z", - "iopub.status.idle": "2024-02-07T22:15:52.815182Z", - "shell.execute_reply": "2024-02-07T22:15:52.814647Z" + "iopub.execute_input": "2024-02-07T23:56:22.695625Z", + "iopub.status.busy": "2024-02-07T23:56:22.695302Z", + "iopub.status.idle": "2024-02-07T23:56:22.701268Z", + "shell.execute_reply": "2024-02-07T23:56:22.700863Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.817367Z", - "iopub.status.busy": "2024-02-07T22:15:52.816989Z", - "iopub.status.idle": "2024-02-07T22:15:53.308064Z", - "shell.execute_reply": "2024-02-07T22:15:53.307480Z" + "iopub.execute_input": "2024-02-07T23:56:22.703196Z", + "iopub.status.busy": "2024-02-07T23:56:22.702938Z", + "iopub.status.idle": "2024-02-07T23:56:23.186186Z", + "shell.execute_reply": "2024-02-07T23:56:23.185652Z" }, "scrolled": true }, @@ -238,10 +238,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.310939Z", - "iopub.status.busy": "2024-02-07T22:15:53.310566Z", - "iopub.status.idle": "2024-02-07T22:15:53.315939Z", - "shell.execute_reply": "2024-02-07T22:15:53.315394Z" + "iopub.execute_input": "2024-02-07T23:56:23.188813Z", + "iopub.status.busy": "2024-02-07T23:56:23.188488Z", + "iopub.status.idle": "2024-02-07T23:56:23.193539Z", + "shell.execute_reply": "2024-02-07T23:56:23.193126Z" } }, "outputs": [ @@ -493,10 +493,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.317995Z", - "iopub.status.busy": "2024-02-07T22:15:53.317689Z", - "iopub.status.idle": "2024-02-07T22:15:53.321394Z", - "shell.execute_reply": "2024-02-07T22:15:53.320912Z" + "iopub.execute_input": "2024-02-07T23:56:23.195528Z", + "iopub.status.busy": "2024-02-07T23:56:23.195222Z", + "iopub.status.idle": "2024-02-07T23:56:23.199084Z", + "shell.execute_reply": "2024-02-07T23:56:23.198542Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.323449Z", - "iopub.status.busy": "2024-02-07T22:15:53.323111Z", - "iopub.status.idle": "2024-02-07T22:15:54.015545Z", - "shell.execute_reply": "2024-02-07T22:15:54.014869Z" + "iopub.execute_input": "2024-02-07T23:56:23.201119Z", + "iopub.status.busy": "2024-02-07T23:56:23.200823Z", + "iopub.status.idle": "2024-02-07T23:56:23.836419Z", + "shell.execute_reply": "2024-02-07T23:56:23.835758Z" } }, "outputs": [ @@ -612,10 +612,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.018097Z", - "iopub.status.busy": "2024-02-07T22:15:54.017708Z", - "iopub.status.idle": "2024-02-07T22:15:54.187878Z", - "shell.execute_reply": "2024-02-07T22:15:54.187411Z" + "iopub.execute_input": "2024-02-07T23:56:23.838728Z", + "iopub.status.busy": "2024-02-07T23:56:23.838526Z", + "iopub.status.idle": "2024-02-07T23:56:23.988464Z", + "shell.execute_reply": "2024-02-07T23:56:23.988047Z" } }, "outputs": [ @@ -656,10 +656,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.189935Z", - "iopub.status.busy": "2024-02-07T22:15:54.189745Z", - "iopub.status.idle": "2024-02-07T22:15:54.194222Z", - "shell.execute_reply": "2024-02-07T22:15:54.193779Z" + "iopub.execute_input": "2024-02-07T23:56:23.990471Z", + "iopub.status.busy": "2024-02-07T23:56:23.990165Z", + "iopub.status.idle": "2024-02-07T23:56:23.994186Z", + "shell.execute_reply": "2024-02-07T23:56:23.993763Z" } }, "outputs": [ @@ -696,10 +696,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.196260Z", - "iopub.status.busy": "2024-02-07T22:15:54.195894Z", - "iopub.status.idle": "2024-02-07T22:15:54.649689Z", - "shell.execute_reply": "2024-02-07T22:15:54.649109Z" + "iopub.execute_input": "2024-02-07T23:56:23.996117Z", + "iopub.status.busy": "2024-02-07T23:56:23.995822Z", + "iopub.status.idle": "2024-02-07T23:56:24.434799Z", + "shell.execute_reply": "2024-02-07T23:56:24.434220Z" } }, "outputs": [ @@ -758,10 +758,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.652534Z", - "iopub.status.busy": "2024-02-07T22:15:54.652158Z", - "iopub.status.idle": "2024-02-07T22:15:54.984855Z", - "shell.execute_reply": "2024-02-07T22:15:54.984298Z" + "iopub.execute_input": "2024-02-07T23:56:24.437281Z", + "iopub.status.busy": "2024-02-07T23:56:24.436886Z", + "iopub.status.idle": "2024-02-07T23:56:24.768783Z", + "shell.execute_reply": "2024-02-07T23:56:24.768200Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.987521Z", - "iopub.status.busy": "2024-02-07T22:15:54.987189Z", - "iopub.status.idle": "2024-02-07T22:15:55.470495Z", - "shell.execute_reply": "2024-02-07T22:15:55.469879Z" + "iopub.execute_input": "2024-02-07T23:56:24.771064Z", + "iopub.status.busy": "2024-02-07T23:56:24.770889Z", + "iopub.status.idle": "2024-02-07T23:56:25.250367Z", + "shell.execute_reply": "2024-02-07T23:56:25.249843Z" } }, "outputs": [ @@ -858,10 +858,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:55.475223Z", - "iopub.status.busy": "2024-02-07T22:15:55.474845Z", - "iopub.status.idle": "2024-02-07T22:15:55.916362Z", - "shell.execute_reply": "2024-02-07T22:15:55.915780Z" + "iopub.execute_input": "2024-02-07T23:56:25.254651Z", + "iopub.status.busy": "2024-02-07T23:56:25.254288Z", + "iopub.status.idle": "2024-02-07T23:56:25.662812Z", + "shell.execute_reply": "2024-02-07T23:56:25.662264Z" } }, "outputs": [ @@ -921,10 +921,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:55.920172Z", - "iopub.status.busy": "2024-02-07T22:15:55.919985Z", - "iopub.status.idle": "2024-02-07T22:15:56.369242Z", - "shell.execute_reply": "2024-02-07T22:15:56.368651Z" + "iopub.execute_input": "2024-02-07T23:56:25.666313Z", + "iopub.status.busy": "2024-02-07T23:56:25.665961Z", + "iopub.status.idle": "2024-02-07T23:56:26.090422Z", + "shell.execute_reply": "2024-02-07T23:56:26.089821Z" } }, "outputs": [ @@ -967,10 +967,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.372426Z", - "iopub.status.busy": "2024-02-07T22:15:56.372048Z", - "iopub.status.idle": "2024-02-07T22:15:56.587116Z", - "shell.execute_reply": "2024-02-07T22:15:56.586546Z" + "iopub.execute_input": "2024-02-07T23:56:26.093719Z", + "iopub.status.busy": "2024-02-07T23:56:26.093346Z", + "iopub.status.idle": "2024-02-07T23:56:26.281170Z", + "shell.execute_reply": "2024-02-07T23:56:26.280571Z" } }, "outputs": [ @@ -1013,10 +1013,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.589448Z", - "iopub.status.busy": "2024-02-07T22:15:56.589113Z", - "iopub.status.idle": "2024-02-07T22:15:56.788433Z", - "shell.execute_reply": "2024-02-07T22:15:56.787907Z" + "iopub.execute_input": "2024-02-07T23:56:26.283283Z", + "iopub.status.busy": "2024-02-07T23:56:26.283103Z", + "iopub.status.idle": "2024-02-07T23:56:26.463218Z", + "shell.execute_reply": "2024-02-07T23:56:26.462690Z" } }, "outputs": [ @@ -1051,10 +1051,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.790786Z", - "iopub.status.busy": "2024-02-07T22:15:56.790442Z", - "iopub.status.idle": "2024-02-07T22:15:56.793953Z", - "shell.execute_reply": "2024-02-07T22:15:56.793508Z" + "iopub.execute_input": "2024-02-07T23:56:26.465892Z", + "iopub.status.busy": "2024-02-07T23:56:26.465487Z", + "iopub.status.idle": "2024-02-07T23:56:26.468734Z", + "shell.execute_reply": "2024-02-07T23:56:26.468320Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index a17f8d98c..216232f6b 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:59.020657Z", - "iopub.status.busy": "2024-02-07T22:15:59.020490Z", - "iopub.status.idle": "2024-02-07T22:16:01.758945Z", - "shell.execute_reply": "2024-02-07T22:16:01.758382Z" + "iopub.execute_input": "2024-02-07T23:56:28.439526Z", + "iopub.status.busy": "2024-02-07T23:56:28.439052Z", + "iopub.status.idle": "2024-02-07T23:56:31.054002Z", + "shell.execute_reply": "2024-02-07T23:56:31.053462Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:01.761638Z", - "iopub.status.busy": "2024-02-07T22:16:01.761143Z", - "iopub.status.idle": "2024-02-07T22:16:02.096462Z", - "shell.execute_reply": "2024-02-07T22:16:02.095807Z" + "iopub.execute_input": "2024-02-07T23:56:31.056612Z", + "iopub.status.busy": "2024-02-07T23:56:31.056130Z", + "iopub.status.idle": "2024-02-07T23:56:31.365716Z", + "shell.execute_reply": "2024-02-07T23:56:31.365105Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:02.099057Z", - "iopub.status.busy": "2024-02-07T22:16:02.098634Z", - "iopub.status.idle": "2024-02-07T22:16:02.102883Z", - "shell.execute_reply": "2024-02-07T22:16:02.102346Z" + "iopub.execute_input": "2024-02-07T23:56:31.368552Z", + "iopub.status.busy": "2024-02-07T23:56:31.368013Z", + "iopub.status.idle": "2024-02-07T23:56:31.372079Z", + "shell.execute_reply": "2024-02-07T23:56:31.371533Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:02.105213Z", - "iopub.status.busy": "2024-02-07T22:16:02.104839Z", - "iopub.status.idle": "2024-02-07T22:16:07.269555Z", - "shell.execute_reply": "2024-02-07T22:16:07.268968Z" + "iopub.execute_input": "2024-02-07T23:56:31.374309Z", + "iopub.status.busy": "2024-02-07T23:56:31.373857Z", + "iopub.status.idle": "2024-02-07T23:56:35.799516Z", + "shell.execute_reply": "2024-02-07T23:56:35.798918Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 458752/170498071 [00:00<00:37, 4545271.76it/s]" + " 1%| | 1802240/170498071 [00:00<00:09, 17679640.48it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3309568/170498071 [00:00<00:08, 18583304.64it/s]" + " 7%|▋ | 12124160/170498071 [00:00<00:02, 67499577.03it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 6193152/170498071 [00:00<00:07, 23121327.17it/s]" + " 13%|█▎ | 23003136/170498071 [00:00<00:01, 86235389.73it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 9076736/170498071 [00:00<00:06, 25243096.18it/s]" + " 19%|█▉ | 32899072/170498071 [00:00<00:01, 91230976.11it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11960320/170498071 [00:00<00:05, 26449931.31it/s]" + " 25%|██▌ | 43384832/170498071 [00:00<00:01, 96066497.78it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 14843904/170498071 [00:00<00:05, 27180695.70it/s]" + " 32%|███▏ | 53739520/170498071 [00:00<00:01, 98584790.93it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17727488/170498071 [00:00<00:05, 27645215.87it/s]" + " 38%|███▊ | 64028672/170498071 [00:00<00:01, 99955094.01it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20611072/170498071 [00:00<00:05, 27960133.49it/s]" + " 44%|████▍ | 74874880/170498071 [00:00<00:00, 102643580.09it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 23494656/170498071 [00:00<00:05, 28127845.66it/s]" + " 50%|████▉ | 85164032/170498071 [00:00<00:00, 101368779.28it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 26378240/170498071 [00:01<00:05, 28294948.20it/s]" + " 57%|█████▋ | 96403456/170498071 [00:01<00:00, 104721663.01it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29261824/170498071 [00:01<00:04, 28399986.90it/s]" + " 63%|██████▎ | 106889216/170498071 [00:01<00:00, 102308446.63it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32407552/170498071 [00:01<00:04, 29288533.69it/s]" + " 69%|██████▉ | 118259712/170498071 [00:01<00:00, 105670851.32it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37421056/170498071 [00:01<00:03, 35559850.79it/s]" + " 76%|███████▌ | 128876544/170498071 [00:01<00:00, 102956737.54it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43909120/170498071 [00:01<00:02, 44377286.88it/s]" + " 82%|████████▏ | 140181504/170498071 [00:01<00:00, 105850590.83it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52068352/170498071 [00:01<00:02, 55525436.53it/s]" + " 88%|████████▊ | 150798336/170498071 [00:01<00:00, 103312662.70it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61669376/170498071 [00:01<00:01, 67657342.80it/s]" + " 95%|█████████▍| 161841152/170498071 [00:01<00:00, 105282046.90it/s]" ] }, { @@ -380,79 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73203712/170498071 [00:01<00:01, 81953829.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 84672512/170498071 [00:01<00:00, 91732954.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 96272384/170498071 [00:01<00:00, 98948948.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107741184/170498071 [00:02<00:00, 103611942.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 119275520/170498071 [00:02<00:00, 107040423.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 130777088/170498071 [00:02<00:00, 109403134.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 142311424/170498071 [00:02<00:00, 111129043.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 153812992/170498071 [00:02<00:00, 112217547.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165412864/170498071 [00:02<00:00, 113296111.93it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 66708420.75it/s] " + "100%|██████████| 170498071/170498071 [00:01<00:00, 99133860.68it/s] " ] }, { @@ -570,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.271763Z", - "iopub.status.busy": "2024-02-07T22:16:07.271561Z", - "iopub.status.idle": "2024-02-07T22:16:07.276376Z", - "shell.execute_reply": "2024-02-07T22:16:07.275905Z" + "iopub.execute_input": "2024-02-07T23:56:35.802008Z", + "iopub.status.busy": "2024-02-07T23:56:35.801591Z", + "iopub.status.idle": "2024-02-07T23:56:35.806302Z", + "shell.execute_reply": "2024-02-07T23:56:35.805886Z" }, "nbsphinx": "hidden" }, @@ -624,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.278274Z", - "iopub.status.busy": "2024-02-07T22:16:07.277964Z", - "iopub.status.idle": "2024-02-07T22:16:07.830552Z", - "shell.execute_reply": "2024-02-07T22:16:07.829958Z" + "iopub.execute_input": "2024-02-07T23:56:35.808410Z", + "iopub.status.busy": "2024-02-07T23:56:35.808083Z", + "iopub.status.idle": "2024-02-07T23:56:36.353076Z", + "shell.execute_reply": "2024-02-07T23:56:36.352508Z" } }, "outputs": [ @@ -660,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.832750Z", - "iopub.status.busy": "2024-02-07T22:16:07.832421Z", - "iopub.status.idle": "2024-02-07T22:16:08.355543Z", - "shell.execute_reply": "2024-02-07T22:16:08.354936Z" + "iopub.execute_input": "2024-02-07T23:56:36.355346Z", + "iopub.status.busy": "2024-02-07T23:56:36.354914Z", + "iopub.status.idle": "2024-02-07T23:56:36.873202Z", + "shell.execute_reply": "2024-02-07T23:56:36.872720Z" } }, "outputs": [ @@ -701,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:08.357548Z", - "iopub.status.busy": "2024-02-07T22:16:08.357358Z", - "iopub.status.idle": "2024-02-07T22:16:08.361026Z", - "shell.execute_reply": "2024-02-07T22:16:08.360580Z" + "iopub.execute_input": "2024-02-07T23:56:36.875189Z", + "iopub.status.busy": "2024-02-07T23:56:36.875002Z", + "iopub.status.idle": "2024-02-07T23:56:36.878463Z", + "shell.execute_reply": "2024-02-07T23:56:36.878026Z" } }, "outputs": [], @@ -727,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:08.362757Z", - "iopub.status.busy": "2024-02-07T22:16:08.362583Z", - "iopub.status.idle": "2024-02-07T22:16:20.966537Z", - "shell.execute_reply": "2024-02-07T22:16:20.965959Z" + "iopub.execute_input": "2024-02-07T23:56:36.880489Z", + "iopub.status.busy": "2024-02-07T23:56:36.880123Z", + "iopub.status.idle": "2024-02-07T23:56:49.380652Z", + "shell.execute_reply": "2024-02-07T23:56:49.380045Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "066739a4f86b491c983744119357f90a", + "model_id": "104aeedd0a604fe19bdfe63c8894bf8c", "version_major": 2, "version_minor": 0 }, @@ -796,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:20.968884Z", - "iopub.status.busy": "2024-02-07T22:16:20.968576Z", - "iopub.status.idle": "2024-02-07T22:16:22.543906Z", - "shell.execute_reply": "2024-02-07T22:16:22.543395Z" + "iopub.execute_input": "2024-02-07T23:56:49.383110Z", + "iopub.status.busy": "2024-02-07T23:56:49.382718Z", + "iopub.status.idle": "2024-02-07T23:56:50.973179Z", + "shell.execute_reply": "2024-02-07T23:56:50.972522Z" } }, "outputs": [ @@ -843,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:22.546319Z", - "iopub.status.busy": "2024-02-07T22:16:22.545932Z", - "iopub.status.idle": "2024-02-07T22:16:22.972593Z", - "shell.execute_reply": "2024-02-07T22:16:22.971973Z" + "iopub.execute_input": "2024-02-07T23:56:50.975995Z", + "iopub.status.busy": "2024-02-07T23:56:50.975507Z", + "iopub.status.idle": "2024-02-07T23:56:51.398007Z", + "shell.execute_reply": "2024-02-07T23:56:51.397417Z" } }, "outputs": [ @@ -882,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:22.974994Z", - "iopub.status.busy": "2024-02-07T22:16:22.974798Z", - "iopub.status.idle": "2024-02-07T22:16:23.625666Z", - "shell.execute_reply": "2024-02-07T22:16:23.625005Z" + "iopub.execute_input": "2024-02-07T23:56:51.400644Z", + "iopub.status.busy": "2024-02-07T23:56:51.400427Z", + "iopub.status.idle": "2024-02-07T23:56:52.063578Z", + "shell.execute_reply": "2024-02-07T23:56:52.063073Z" } }, "outputs": [ @@ -935,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:23.628615Z", - "iopub.status.busy": "2024-02-07T22:16:23.628134Z", - "iopub.status.idle": "2024-02-07T22:16:23.967563Z", - "shell.execute_reply": "2024-02-07T22:16:23.967044Z" + "iopub.execute_input": "2024-02-07T23:56:52.066513Z", + "iopub.status.busy": "2024-02-07T23:56:52.066076Z", + "iopub.status.idle": "2024-02-07T23:56:52.406672Z", + "shell.execute_reply": "2024-02-07T23:56:52.406143Z" } }, "outputs": [ @@ -986,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:23.969758Z", - "iopub.status.busy": "2024-02-07T22:16:23.969409Z", - "iopub.status.idle": "2024-02-07T22:16:24.216721Z", - "shell.execute_reply": "2024-02-07T22:16:24.216100Z" + "iopub.execute_input": "2024-02-07T23:56:52.408986Z", + "iopub.status.busy": "2024-02-07T23:56:52.408584Z", + "iopub.status.idle": "2024-02-07T23:56:52.649620Z", + "shell.execute_reply": "2024-02-07T23:56:52.649039Z" } }, "outputs": [ @@ -1045,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:24.219590Z", - "iopub.status.busy": "2024-02-07T22:16:24.219135Z", - "iopub.status.idle": "2024-02-07T22:16:24.306780Z", - "shell.execute_reply": "2024-02-07T22:16:24.306300Z" + "iopub.execute_input": "2024-02-07T23:56:52.652114Z", + "iopub.status.busy": "2024-02-07T23:56:52.651671Z", + "iopub.status.idle": "2024-02-07T23:56:52.738340Z", + "shell.execute_reply": "2024-02-07T23:56:52.737865Z" } }, "outputs": [], @@ -1069,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:24.309196Z", - "iopub.status.busy": "2024-02-07T22:16:24.308835Z", - "iopub.status.idle": "2024-02-07T22:16:34.736929Z", - "shell.execute_reply": "2024-02-07T22:16:34.736344Z" + "iopub.execute_input": "2024-02-07T23:56:52.740933Z", + "iopub.status.busy": "2024-02-07T23:56:52.740576Z", + "iopub.status.idle": "2024-02-07T23:57:02.887449Z", + "shell.execute_reply": "2024-02-07T23:57:02.886809Z" } }, "outputs": [ @@ -1109,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:34.739237Z", - "iopub.status.busy": "2024-02-07T22:16:34.738874Z", - "iopub.status.idle": "2024-02-07T22:16:36.458553Z", - "shell.execute_reply": "2024-02-07T22:16:36.458057Z" + "iopub.execute_input": "2024-02-07T23:57:02.889811Z", + "iopub.status.busy": "2024-02-07T23:57:02.889604Z", + "iopub.status.idle": "2024-02-07T23:57:04.558953Z", + "shell.execute_reply": "2024-02-07T23:57:04.558434Z" } }, "outputs": [ @@ -1143,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.461205Z", - "iopub.status.busy": "2024-02-07T22:16:36.460735Z", - "iopub.status.idle": "2024-02-07T22:16:36.666276Z", - "shell.execute_reply": "2024-02-07T22:16:36.665777Z" + "iopub.execute_input": "2024-02-07T23:57:04.561779Z", + "iopub.status.busy": "2024-02-07T23:57:04.561169Z", + "iopub.status.idle": "2024-02-07T23:57:04.762684Z", + "shell.execute_reply": "2024-02-07T23:57:04.762087Z" } }, "outputs": [], @@ -1160,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.668659Z", - "iopub.status.busy": "2024-02-07T22:16:36.668383Z", - "iopub.status.idle": "2024-02-07T22:16:36.671525Z", - "shell.execute_reply": "2024-02-07T22:16:36.671082Z" + "iopub.execute_input": "2024-02-07T23:57:04.765111Z", + "iopub.status.busy": "2024-02-07T23:57:04.764820Z", + "iopub.status.idle": "2024-02-07T23:57:04.768733Z", + "shell.execute_reply": "2024-02-07T23:57:04.768164Z" } }, "outputs": [], @@ -1185,10 +1113,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.673575Z", - "iopub.status.busy": "2024-02-07T22:16:36.673247Z", - "iopub.status.idle": "2024-02-07T22:16:36.681282Z", - "shell.execute_reply": "2024-02-07T22:16:36.680824Z" + "iopub.execute_input": "2024-02-07T23:57:04.770734Z", + "iopub.status.busy": "2024-02-07T23:57:04.770350Z", + "iopub.status.idle": "2024-02-07T23:57:04.778478Z", + "shell.execute_reply": "2024-02-07T23:57:04.777929Z" }, "nbsphinx": "hidden" }, @@ -1233,7 +1161,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "066739a4f86b491c983744119357f90a": { + "104aeedd0a604fe19bdfe63c8894bf8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1248,16 +1176,117 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ac761b251bf94ac9b0515c7eb6ee1128", - "IPY_MODEL_a1e5d5eb3b654519bf26e1ee9e662af1", - "IPY_MODEL_ca3c262c376348b19cf1a806479ad0db" + "IPY_MODEL_37c709610cb741598ce0fdabdd829a1f", + "IPY_MODEL_3c821a5c04e64080a5c2d282f35cf242", + "IPY_MODEL_b7cdd7b611234dd7b53f21dd82a37bff" ], - "layout": "IPY_MODEL_7e888ca97822424f9f86d33f0a92b841", + "layout": "IPY_MODEL_be9dd8679029459f89b7c573872bbc61", "tabbable": null, "tooltip": null } }, - "202ea01d0cff416598f8d3b0d2955b06": { + "321e616c64df4e09a970b3f7ec6cdbe6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "37c709610cb741598ce0fdabdd829a1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_78f759523bc5438db78dcf67a29e7173", + "placeholder": "​", + "style": "IPY_MODEL_696e209101d0447183117bc6c5127dfa", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "3c821a5c04e64080a5c2d282f35cf242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69b8a3af8a8046a3a365aa1b96478a70", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_321e616c64df4e09a970b3f7ec6cdbe6", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "47cbbee3f2fb454db90d7a7c5417178e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "696e209101d0447183117bc6c5127dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69b8a3af8a8046a3a365aa1b96478a70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1310,23 +1339,7 @@ "width": null } }, - "5cce777711da484bb13b928829116979": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7e888ca97822424f9f86d33f0a92b841": { + "78f759523bc5438db78dcf67a29e7173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1379,92 +1392,7 @@ "width": null } }, - "7e950bd1f02e4e56940be6dd48802232": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1e5d5eb3b654519bf26e1ee9e662af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_202ea01d0cff416598f8d3b0d2955b06", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5cce777711da484bb13b928829116979", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "aba4b388c9074a3db4555b9eec74dbed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ac761b251bf94ac9b0515c7eb6ee1128": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0ffc152011e4313bb22edae8168843e", - "placeholder": "​", - "style": "IPY_MODEL_7e950bd1f02e4e56940be6dd48802232", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "c0ffc152011e4313bb22edae8168843e": { + "8135528dc3304bc5887731c6b6773be0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1517,7 +1445,7 @@ "width": null } }, - "ca3c262c376348b19cf1a806479ad0db": { + "b7cdd7b611234dd7b53f21dd82a37bff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1532,15 +1460,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc78c8afb40d44d585718c7ac9cacbe8", + "layout": "IPY_MODEL_8135528dc3304bc5887731c6b6773be0", "placeholder": "​", - "style": "IPY_MODEL_aba4b388c9074a3db4555b9eec74dbed", + "style": "IPY_MODEL_47cbbee3f2fb454db90d7a7c5417178e", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 300MB/s]" + "value": " 102M/102M [00:00<00:00, 208MB/s]" } }, - "fc78c8afb40d44d585718c7ac9cacbe8": { + "be9dd8679029459f89b7c573872bbc61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 6460b1da7..f14378353 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:41.001585Z", - "iopub.status.busy": "2024-02-07T22:16:41.001035Z", - "iopub.status.idle": "2024-02-07T22:16:42.113233Z", - "shell.execute_reply": "2024-02-07T22:16:42.112677Z" + "iopub.execute_input": "2024-02-07T23:57:09.007821Z", + "iopub.status.busy": "2024-02-07T23:57:09.007615Z", + "iopub.status.idle": "2024-02-07T23:57:10.072485Z", + "shell.execute_reply": "2024-02-07T23:57:10.071948Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.115952Z", - "iopub.status.busy": "2024-02-07T22:16:42.115427Z", - "iopub.status.idle": "2024-02-07T22:16:42.133567Z", - "shell.execute_reply": "2024-02-07T22:16:42.133124Z" + "iopub.execute_input": "2024-02-07T23:57:10.074834Z", + "iopub.status.busy": "2024-02-07T23:57:10.074594Z", + "iopub.status.idle": "2024-02-07T23:57:10.092876Z", + "shell.execute_reply": "2024-02-07T23:57:10.092428Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.135930Z", - "iopub.status.busy": "2024-02-07T22:16:42.135528Z", - "iopub.status.idle": "2024-02-07T22:16:42.138579Z", - "shell.execute_reply": "2024-02-07T22:16:42.138043Z" + "iopub.execute_input": "2024-02-07T23:57:10.095294Z", + "iopub.status.busy": "2024-02-07T23:57:10.094881Z", + "iopub.status.idle": "2024-02-07T23:57:10.097914Z", + "shell.execute_reply": "2024-02-07T23:57:10.097396Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.140671Z", - "iopub.status.busy": "2024-02-07T22:16:42.140370Z", - "iopub.status.idle": "2024-02-07T22:16:42.204946Z", - "shell.execute_reply": "2024-02-07T22:16:42.204403Z" + "iopub.execute_input": "2024-02-07T23:57:10.099990Z", + "iopub.status.busy": "2024-02-07T23:57:10.099668Z", + "iopub.status.idle": "2024-02-07T23:57:10.155253Z", + "shell.execute_reply": "2024-02-07T23:57:10.154741Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.207190Z", - "iopub.status.busy": "2024-02-07T22:16:42.206799Z", - "iopub.status.idle": "2024-02-07T22:16:42.385929Z", - "shell.execute_reply": "2024-02-07T22:16:42.385435Z" + "iopub.execute_input": "2024-02-07T23:57:10.157365Z", + "iopub.status.busy": "2024-02-07T23:57:10.156978Z", + "iopub.status.idle": "2024-02-07T23:57:10.331972Z", + "shell.execute_reply": "2024-02-07T23:57:10.331386Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.388432Z", - "iopub.status.busy": "2024-02-07T22:16:42.388089Z", - "iopub.status.idle": "2024-02-07T22:16:42.607298Z", - "shell.execute_reply": "2024-02-07T22:16:42.606720Z" + "iopub.execute_input": "2024-02-07T23:57:10.334267Z", + "iopub.status.busy": "2024-02-07T23:57:10.334002Z", + "iopub.status.idle": "2024-02-07T23:57:10.541166Z", + "shell.execute_reply": "2024-02-07T23:57:10.540646Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.609580Z", - "iopub.status.busy": "2024-02-07T22:16:42.609148Z", - "iopub.status.idle": "2024-02-07T22:16:42.613684Z", - "shell.execute_reply": "2024-02-07T22:16:42.613262Z" + "iopub.execute_input": "2024-02-07T23:57:10.543123Z", + "iopub.status.busy": "2024-02-07T23:57:10.542912Z", + "iopub.status.idle": "2024-02-07T23:57:10.547063Z", + "shell.execute_reply": "2024-02-07T23:57:10.546643Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.615732Z", - "iopub.status.busy": "2024-02-07T22:16:42.615409Z", - "iopub.status.idle": "2024-02-07T22:16:42.621064Z", - "shell.execute_reply": "2024-02-07T22:16:42.620649Z" + "iopub.execute_input": "2024-02-07T23:57:10.549116Z", + "iopub.status.busy": "2024-02-07T23:57:10.548782Z", + "iopub.status.idle": "2024-02-07T23:57:10.554644Z", + "shell.execute_reply": "2024-02-07T23:57:10.554206Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.623161Z", - "iopub.status.busy": "2024-02-07T22:16:42.622751Z", - "iopub.status.idle": "2024-02-07T22:16:42.625299Z", - "shell.execute_reply": "2024-02-07T22:16:42.624875Z" + "iopub.execute_input": "2024-02-07T23:57:10.556665Z", + "iopub.status.busy": "2024-02-07T23:57:10.556409Z", + "iopub.status.idle": "2024-02-07T23:57:10.558873Z", + "shell.execute_reply": "2024-02-07T23:57:10.558458Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.627236Z", - "iopub.status.busy": "2024-02-07T22:16:42.626928Z", - "iopub.status.idle": "2024-02-07T22:16:50.819298Z", - "shell.execute_reply": "2024-02-07T22:16:50.818629Z" + "iopub.execute_input": "2024-02-07T23:57:10.560767Z", + "iopub.status.busy": "2024-02-07T23:57:10.560447Z", + "iopub.status.idle": "2024-02-07T23:57:18.597883Z", + "shell.execute_reply": "2024-02-07T23:57:18.597245Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.822227Z", - "iopub.status.busy": "2024-02-07T22:16:50.821588Z", - "iopub.status.idle": "2024-02-07T22:16:50.828619Z", - "shell.execute_reply": "2024-02-07T22:16:50.828176Z" + "iopub.execute_input": "2024-02-07T23:57:18.600502Z", + "iopub.status.busy": "2024-02-07T23:57:18.600144Z", + "iopub.status.idle": "2024-02-07T23:57:18.607142Z", + "shell.execute_reply": "2024-02-07T23:57:18.606625Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.830508Z", - "iopub.status.busy": "2024-02-07T22:16:50.830326Z", - "iopub.status.idle": "2024-02-07T22:16:50.834051Z", - "shell.execute_reply": "2024-02-07T22:16:50.833572Z" + "iopub.execute_input": "2024-02-07T23:57:18.609010Z", + "iopub.status.busy": "2024-02-07T23:57:18.608834Z", + "iopub.status.idle": "2024-02-07T23:57:18.612483Z", + "shell.execute_reply": "2024-02-07T23:57:18.611944Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.836017Z", - "iopub.status.busy": "2024-02-07T22:16:50.835693Z", - "iopub.status.idle": "2024-02-07T22:16:50.838791Z", - "shell.execute_reply": "2024-02-07T22:16:50.838260Z" + "iopub.execute_input": "2024-02-07T23:57:18.614300Z", + "iopub.status.busy": "2024-02-07T23:57:18.614127Z", + "iopub.status.idle": "2024-02-07T23:57:18.617088Z", + "shell.execute_reply": "2024-02-07T23:57:18.616563Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.840784Z", - "iopub.status.busy": "2024-02-07T22:16:50.840458Z", - "iopub.status.idle": "2024-02-07T22:16:50.843463Z", - "shell.execute_reply": "2024-02-07T22:16:50.843001Z" + "iopub.execute_input": "2024-02-07T23:57:18.618875Z", + "iopub.status.busy": "2024-02-07T23:57:18.618705Z", + "iopub.status.idle": "2024-02-07T23:57:18.621573Z", + "shell.execute_reply": "2024-02-07T23:57:18.621156Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.845383Z", - "iopub.status.busy": "2024-02-07T22:16:50.845063Z", - "iopub.status.idle": "2024-02-07T22:16:50.852852Z", - "shell.execute_reply": "2024-02-07T22:16:50.852402Z" + "iopub.execute_input": "2024-02-07T23:57:18.623300Z", + "iopub.status.busy": "2024-02-07T23:57:18.623130Z", + "iopub.status.idle": "2024-02-07T23:57:18.631019Z", + "shell.execute_reply": "2024-02-07T23:57:18.630588Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.854861Z", - "iopub.status.busy": "2024-02-07T22:16:50.854539Z", - "iopub.status.idle": "2024-02-07T22:16:50.974215Z", - "shell.execute_reply": "2024-02-07T22:16:50.973641Z" + "iopub.execute_input": "2024-02-07T23:57:18.632839Z", + "iopub.status.busy": "2024-02-07T23:57:18.632669Z", + "iopub.status.idle": "2024-02-07T23:57:18.751110Z", + "shell.execute_reply": "2024-02-07T23:57:18.750652Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.976792Z", - "iopub.status.busy": "2024-02-07T22:16:50.976387Z", - "iopub.status.idle": "2024-02-07T22:16:51.083738Z", - "shell.execute_reply": "2024-02-07T22:16:51.083123Z" + "iopub.execute_input": "2024-02-07T23:57:18.753135Z", + "iopub.status.busy": "2024-02-07T23:57:18.752961Z", + "iopub.status.idle": "2024-02-07T23:57:18.854301Z", + "shell.execute_reply": "2024-02-07T23:57:18.853737Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.086417Z", - "iopub.status.busy": "2024-02-07T22:16:51.085958Z", - "iopub.status.idle": "2024-02-07T22:16:51.565882Z", - "shell.execute_reply": "2024-02-07T22:16:51.565259Z" + "iopub.execute_input": "2024-02-07T23:57:18.856714Z", + "iopub.status.busy": "2024-02-07T23:57:18.856277Z", + "iopub.status.idle": "2024-02-07T23:57:19.344066Z", + "shell.execute_reply": "2024-02-07T23:57:19.343446Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.568859Z", - "iopub.status.busy": "2024-02-07T22:16:51.568362Z", - "iopub.status.idle": "2024-02-07T22:16:51.646362Z", - "shell.execute_reply": "2024-02-07T22:16:51.645818Z" + "iopub.execute_input": "2024-02-07T23:57:19.346737Z", + "iopub.status.busy": "2024-02-07T23:57:19.346338Z", + "iopub.status.idle": "2024-02-07T23:57:19.423350Z", + "shell.execute_reply": "2024-02-07T23:57:19.422787Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.648680Z", - "iopub.status.busy": "2024-02-07T22:16:51.648305Z", - "iopub.status.idle": "2024-02-07T22:16:51.658253Z", - "shell.execute_reply": "2024-02-07T22:16:51.657843Z" + "iopub.execute_input": "2024-02-07T23:57:19.425650Z", + "iopub.status.busy": "2024-02-07T23:57:19.425311Z", + "iopub.status.idle": "2024-02-07T23:57:19.434732Z", + "shell.execute_reply": "2024-02-07T23:57:19.434279Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 2278816b2..979c7e3be 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:54.759216Z", - "iopub.status.busy": "2024-02-07T22:16:54.759059Z", - "iopub.status.idle": "2024-02-07T22:16:56.709104Z", - "shell.execute_reply": "2024-02-07T22:16:56.708365Z" + "iopub.execute_input": "2024-02-07T23:57:22.267015Z", + "iopub.status.busy": "2024-02-07T23:57:22.266847Z", + "iopub.status.idle": "2024-02-07T23:57:23.557742Z", + "shell.execute_reply": "2024-02-07T23:57:23.557100Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:56.711689Z", - "iopub.status.busy": "2024-02-07T22:16:56.711492Z", - "iopub.status.idle": "2024-02-07T22:17:51.576173Z", - "shell.execute_reply": "2024-02-07T22:17:51.575514Z" + "iopub.execute_input": "2024-02-07T23:57:23.560412Z", + "iopub.status.busy": "2024-02-07T23:57:23.560029Z", + "iopub.status.idle": "2024-02-07T23:58:14.095094Z", + "shell.execute_reply": "2024-02-07T23:58:14.094451Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:51.578880Z", - "iopub.status.busy": "2024-02-07T22:17:51.578435Z", - "iopub.status.idle": "2024-02-07T22:17:52.624888Z", - "shell.execute_reply": "2024-02-07T22:17:52.624282Z" + "iopub.execute_input": "2024-02-07T23:58:14.097742Z", + "iopub.status.busy": "2024-02-07T23:58:14.097332Z", + "iopub.status.idle": "2024-02-07T23:58:15.117655Z", + "shell.execute_reply": "2024-02-07T23:58:15.117170Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.627442Z", - "iopub.status.busy": "2024-02-07T22:17:52.627135Z", - "iopub.status.idle": "2024-02-07T22:17:52.630302Z", - "shell.execute_reply": "2024-02-07T22:17:52.629875Z" + "iopub.execute_input": "2024-02-07T23:58:15.120117Z", + "iopub.status.busy": "2024-02-07T23:58:15.119697Z", + "iopub.status.idle": "2024-02-07T23:58:15.122830Z", + "shell.execute_reply": "2024-02-07T23:58:15.122391Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.632362Z", - "iopub.status.busy": "2024-02-07T22:17:52.632061Z", - "iopub.status.idle": "2024-02-07T22:17:52.635961Z", - "shell.execute_reply": "2024-02-07T22:17:52.635445Z" + "iopub.execute_input": "2024-02-07T23:58:15.125002Z", + "iopub.status.busy": "2024-02-07T23:58:15.124688Z", + "iopub.status.idle": "2024-02-07T23:58:15.128438Z", + "shell.execute_reply": "2024-02-07T23:58:15.127995Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.637990Z", - "iopub.status.busy": "2024-02-07T22:17:52.637625Z", - "iopub.status.idle": "2024-02-07T22:17:52.641010Z", - "shell.execute_reply": "2024-02-07T22:17:52.640595Z" + "iopub.execute_input": "2024-02-07T23:58:15.130385Z", + "iopub.status.busy": "2024-02-07T23:58:15.130025Z", + "iopub.status.idle": "2024-02-07T23:58:15.133555Z", + "shell.execute_reply": "2024-02-07T23:58:15.133040Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.642975Z", - "iopub.status.busy": "2024-02-07T22:17:52.642693Z", - "iopub.status.idle": "2024-02-07T22:17:52.645515Z", - "shell.execute_reply": "2024-02-07T22:17:52.645069Z" + "iopub.execute_input": "2024-02-07T23:58:15.135489Z", + "iopub.status.busy": "2024-02-07T23:58:15.135128Z", + "iopub.status.idle": "2024-02-07T23:58:15.137853Z", + "shell.execute_reply": "2024-02-07T23:58:15.137431Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.647312Z", - "iopub.status.busy": "2024-02-07T22:17:52.647133Z", - "iopub.status.idle": "2024-02-07T22:19:07.736286Z", - "shell.execute_reply": "2024-02-07T22:19:07.735682Z" + "iopub.execute_input": "2024-02-07T23:58:15.139805Z", + "iopub.status.busy": "2024-02-07T23:58:15.139476Z", + "iopub.status.idle": "2024-02-07T23:59:30.237567Z", + "shell.execute_reply": "2024-02-07T23:59:30.236895Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f8e42fb70e364942b5126777ae7364b8", + "model_id": "516f602a1da94152b495bff09963ecc2", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be506591e8ac431dabddd430053816e2", + "model_id": "04cf97e28dc54e9e8ad9b5cad5a1f640", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:07.738877Z", - "iopub.status.busy": "2024-02-07T22:19:07.738502Z", - "iopub.status.idle": "2024-02-07T22:19:08.410129Z", - "shell.execute_reply": "2024-02-07T22:19:08.409587Z" + "iopub.execute_input": "2024-02-07T23:59:30.240593Z", + "iopub.status.busy": "2024-02-07T23:59:30.240063Z", + "iopub.status.idle": "2024-02-07T23:59:30.904928Z", + "shell.execute_reply": "2024-02-07T23:59:30.904345Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:08.412426Z", - "iopub.status.busy": "2024-02-07T22:19:08.411976Z", - "iopub.status.idle": "2024-02-07T22:19:11.136068Z", - "shell.execute_reply": "2024-02-07T22:19:11.135474Z" + "iopub.execute_input": "2024-02-07T23:59:30.907247Z", + "iopub.status.busy": "2024-02-07T23:59:30.906730Z", + "iopub.status.idle": "2024-02-07T23:59:33.588948Z", + "shell.execute_reply": "2024-02-07T23:59:33.588459Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:11.138343Z", - "iopub.status.busy": "2024-02-07T22:19:11.138010Z", - "iopub.status.idle": "2024-02-07T22:19:43.883956Z", - "shell.execute_reply": "2024-02-07T22:19:43.883330Z" + "iopub.execute_input": "2024-02-07T23:59:33.591098Z", + "iopub.status.busy": "2024-02-07T23:59:33.590759Z", + "iopub.status.idle": "2024-02-08T00:00:06.382957Z", + "shell.execute_reply": "2024-02-08T00:00:06.382396Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15347/4997817 [00:00<00:32, 153458.07it/s]" + " 0%| | 15387/4997817 [00:00<00:32, 153859.88it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30769/4997817 [00:00<00:32, 153898.57it/s]" + " 1%| | 30953/4997817 [00:00<00:32, 154916.01it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46197/4997817 [00:00<00:32, 154067.93it/s]" + " 1%| | 46445/4997817 [00:00<00:31, 154862.43it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 61604/4997817 [00:00<00:32, 153518.87it/s]" + " 1%| | 61949/4997817 [00:00<00:31, 154930.24it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 76957/4997817 [00:00<00:32, 153377.81it/s]" + " 2%|▏ | 77467/4997817 [00:00<00:31, 155019.01it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 92295/4997817 [00:00<00:32, 153281.65it/s]" + " 2%|▏ | 92969/4997817 [00:00<00:31, 154441.07it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 107770/4997817 [00:00<00:31, 153758.56it/s]" + " 2%|▏ | 108414/4997817 [00:00<00:31, 154378.14it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 123147/4997817 [00:00<00:31, 153622.15it/s]" + " 2%|▏ | 123962/4997817 [00:00<00:31, 154726.37it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 138510/4997817 [00:00<00:31, 153513.94it/s]" + " 3%|▎ | 139435/4997817 [00:00<00:31, 154613.74it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 153862/4997817 [00:01<00:31, 153440.87it/s]" + " 3%|▎ | 154933/4997817 [00:01<00:31, 154724.64it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 169207/4997817 [00:01<00:31, 153375.31it/s]" + " 3%|▎ | 170450/4997817 [00:01<00:31, 154858.82it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 184566/4997817 [00:01<00:31, 153437.24it/s]" + " 4%|▎ | 185960/4997817 [00:01<00:31, 154931.05it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 200027/4997817 [00:01<00:31, 153789.46it/s]" + " 4%|▍ | 201595/4997817 [00:01<00:30, 155359.04it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 215446/4997817 [00:01<00:31, 153907.31it/s]" + " 4%|▍ | 217166/4997817 [00:01<00:30, 155463.26it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 230924/4997817 [00:01<00:30, 154166.08it/s]" + " 5%|▍ | 232796/4997817 [00:01<00:30, 155713.22it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 246392/4997817 [00:01<00:30, 154317.10it/s]" + " 5%|▍ | 248368/4997817 [00:01<00:30, 155024.90it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 261824/4997817 [00:01<00:30, 153630.47it/s]" + " 5%|▌ | 263872/4997817 [00:01<00:30, 154707.21it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 277224/4997817 [00:01<00:30, 153736.80it/s]" + " 6%|▌ | 279344/4997817 [00:01<00:30, 154411.85it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 292639/4997817 [00:01<00:30, 153857.25it/s]" + " 6%|▌ | 294786/4997817 [00:01<00:30, 153675.58it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 308121/4997817 [00:02<00:30, 154142.35it/s]" + " 6%|▌ | 310155/4997817 [00:02<00:30, 153084.29it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 323536/4997817 [00:02<00:30, 154021.27it/s]" + " 7%|▋ | 325465/4997817 [00:02<00:30, 152924.81it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 338991/4997817 [00:02<00:30, 154177.79it/s]" + " 7%|▋ | 340815/4997817 [00:02<00:30, 153092.91it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 354437/4997817 [00:02<00:30, 154259.57it/s]" + " 7%|▋ | 356125/4997817 [00:02<00:30, 152796.73it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369864/4997817 [00:02<00:30, 154160.91it/s]" + " 7%|▋ | 371405/4997817 [00:02<00:30, 152624.10it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 385349/4997817 [00:02<00:29, 154364.42it/s]" + " 8%|▊ | 386668/4997817 [00:02<00:30, 152387.84it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 400786/4997817 [00:02<00:29, 154238.35it/s]" + " 8%|▊ | 401907/4997817 [00:02<00:30, 151622.18it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 416218/4997817 [00:02<00:29, 154259.56it/s]" + " 8%|▊ | 417070/4997817 [00:02<00:30, 151606.88it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 431732/4997817 [00:02<00:29, 154520.13it/s]" + " 9%|▊ | 432286/4997817 [00:02<00:30, 151770.09it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 447185/4997817 [00:02<00:29, 153245.62it/s]" + " 9%|▉ | 447464/4997817 [00:02<00:29, 151738.90it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 462512/4997817 [00:03<00:30, 146732.31it/s]" + " 9%|▉ | 462721/4997817 [00:03<00:29, 151984.24it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 477889/4997817 [00:03<00:30, 148766.90it/s]" + " 10%|▉ | 477975/4997817 [00:03<00:29, 152147.15it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 493335/4997817 [00:03<00:29, 150430.33it/s]" + " 10%|▉ | 493202/4997817 [00:03<00:29, 152182.16it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 508611/4997817 [00:03<00:29, 151113.76it/s]" + " 10%|█ | 508476/4997817 [00:03<00:29, 152345.94it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 523989/4997817 [00:03<00:29, 151901.84it/s]" + " 10%|█ | 523738/4997817 [00:03<00:29, 152425.10it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 539401/4997817 [00:03<00:29, 152559.93it/s]" + " 11%|█ | 539030/4997817 [00:03<00:29, 152572.90it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 554825/4997817 [00:03<00:29, 153058.80it/s]" + " 11%|█ | 554288/4997817 [00:03<00:29, 152516.18it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 570237/4997817 [00:03<00:28, 153371.61it/s]" + " 11%|█▏ | 569540/4997817 [00:03<00:29, 152488.37it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 585614/4997817 [00:03<00:28, 153487.20it/s]" + " 12%|█▏ | 584949/4997817 [00:03<00:28, 152966.60it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 601012/4997817 [00:03<00:28, 153632.69it/s]" + " 12%|█▏ | 600453/4997817 [00:03<00:28, 153586.15it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 616379/4997817 [00:04<00:28, 153190.63it/s]" + " 12%|█▏ | 615876/4997817 [00:04<00:28, 153775.67it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 631701/4997817 [00:04<00:28, 153034.14it/s]" + " 13%|█▎ | 631317/4997817 [00:04<00:28, 153964.11it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 647041/4997817 [00:04<00:28, 153139.80it/s]" + " 13%|█▎ | 646849/4997817 [00:04<00:28, 154369.76it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 662439/4997817 [00:04<00:28, 153387.00it/s]" + " 13%|█▎ | 662330/4997817 [00:04<00:28, 154500.98it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 677783/4997817 [00:04<00:28, 153400.95it/s]" + " 14%|█▎ | 677819/4997817 [00:04<00:27, 154616.28it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 693146/4997817 [00:04<00:28, 153465.36it/s]" + " 14%|█▍ | 693283/4997817 [00:04<00:27, 154620.90it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 708494/4997817 [00:04<00:27, 153436.13it/s]" + " 14%|█▍ | 708746/4997817 [00:04<00:27, 154483.57it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723849/4997817 [00:04<00:27, 153466.14it/s]" + " 14%|█▍ | 724195/4997817 [00:04<00:28, 149330.22it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739196/4997817 [00:04<00:27, 153373.26it/s]" + " 15%|█▍ | 739415/4997817 [00:04<00:28, 150169.33it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754593/4997817 [00:04<00:27, 153549.34it/s]" + " 15%|█▌ | 754739/4997817 [00:04<00:28, 151072.92it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 769949/4997817 [00:05<00:28, 150908.16it/s]" + " 15%|█▌ | 770174/4997817 [00:05<00:27, 152041.12it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 785470/4997817 [00:05<00:27, 152179.07it/s]" + " 16%|█▌ | 785615/4997817 [00:05<00:27, 152744.99it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 801022/4997817 [00:05<00:27, 153170.62it/s]" + " 16%|█▌ | 801159/4997817 [00:05<00:27, 153547.67it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 816526/4997817 [00:05<00:27, 153726.26it/s]" + " 16%|█▋ | 816774/4997817 [00:05<00:27, 154323.42it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 832085/4997817 [00:05<00:27, 154281.24it/s]" + " 17%|█▋ | 832233/4997817 [00:05<00:26, 154401.44it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 847655/4997817 [00:05<00:26, 154701.31it/s]" + " 17%|█▋ | 847796/4997817 [00:05<00:26, 154767.42it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 863128/4997817 [00:05<00:26, 154543.39it/s]" + " 17%|█▋ | 863276/4997817 [00:05<00:26, 154708.16it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 878688/4997817 [00:05<00:26, 154857.05it/s]" + " 18%|█▊ | 878750/4997817 [00:05<00:26, 154184.03it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 894280/4997817 [00:05<00:26, 155173.03it/s]" + " 18%|█▊ | 894171/4997817 [00:05<00:26, 153911.40it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 909799/4997817 [00:05<00:26, 153932.45it/s]" + " 18%|█▊ | 909620/4997817 [00:05<00:26, 154081.10it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 925196/4997817 [00:06<00:26, 153134.34it/s]" + " 19%|█▊ | 925183/4997817 [00:06<00:26, 154541.55it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 940720/4997817 [00:06<00:26, 153757.32it/s]" + " 19%|█▉ | 940724/4997817 [00:06<00:26, 154798.01it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 956290/4997817 [00:06<00:26, 154335.16it/s]" + " 19%|█▉ | 956285/4997817 [00:06<00:26, 155038.35it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 971837/4997817 [00:06<00:26, 154670.43it/s]" + " 19%|█▉ | 971790/4997817 [00:06<00:25, 154956.07it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 987409/4997817 [00:06<00:25, 154980.24it/s]" + " 20%|█▉ | 987286/4997817 [00:06<00:25, 154826.09it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1003021/4997817 [00:06<00:25, 155319.53it/s]" + " 20%|██ | 1002769/4997817 [00:06<00:25, 154658.28it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1018554/4997817 [00:06<00:25, 155043.65it/s]" + " 20%|██ | 1018250/4997817 [00:06<00:25, 154701.77it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1034111/4997817 [00:06<00:25, 155190.83it/s]" + " 21%|██ | 1033721/4997817 [00:06<00:25, 154399.73it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1049635/4997817 [00:06<00:25, 155203.50it/s]" + " 21%|██ | 1049162/4997817 [00:06<00:25, 154388.08it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1065196/4997817 [00:06<00:25, 155323.02it/s]" + " 21%|██▏ | 1064700/4997817 [00:06<00:25, 154682.90it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1080813/4997817 [00:07<00:25, 155572.06it/s]" + " 22%|██▏ | 1080169/4997817 [00:07<00:25, 154502.61it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1096371/4997817 [00:07<00:25, 155143.85it/s]" + " 22%|██▏ | 1095620/4997817 [00:07<00:25, 153934.36it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1111933/4997817 [00:07<00:25, 155283.41it/s]" + " 22%|██▏ | 1111014/4997817 [00:07<00:25, 153453.97it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1127467/4997817 [00:07<00:24, 155297.30it/s]" + " 23%|██▎ | 1126460/4997817 [00:07<00:25, 153751.09it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1143078/4997817 [00:07<00:24, 155537.53it/s]" + " 23%|██▎ | 1141915/4997817 [00:07<00:25, 153987.80it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1158632/4997817 [00:07<00:24, 155524.20it/s]" + " 23%|██▎ | 1157315/4997817 [00:07<00:24, 153646.26it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1174185/4997817 [00:07<00:24, 155271.94it/s]" + " 23%|██▎ | 1172782/4997817 [00:07<00:24, 153950.34it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1189714/4997817 [00:07<00:24, 155275.28it/s]" + " 24%|██▍ | 1188178/4997817 [00:07<00:24, 153569.49it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1205250/4997817 [00:07<00:24, 155297.83it/s]" + " 24%|██▍ | 1203670/4997817 [00:07<00:24, 153971.80it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1220788/4997817 [00:07<00:24, 155319.29it/s]" + " 24%|██▍ | 1219312/4997817 [00:07<00:24, 154701.16it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1236320/4997817 [00:08<00:24, 155297.01it/s]" + " 25%|██▍ | 1234865/4997817 [00:08<00:24, 154946.23it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1251850/4997817 [00:08<00:24, 154837.80it/s]" + " 25%|██▌ | 1250438/4997817 [00:08<00:24, 155179.69it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1267335/4997817 [00:08<00:24, 154514.28it/s]" + " 25%|██▌ | 1266015/4997817 [00:08<00:24, 155354.02it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1282844/4997817 [00:08<00:24, 154680.42it/s]" + " 26%|██▌ | 1281583/4997817 [00:08<00:23, 155450.35it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1298407/4997817 [00:08<00:23, 154960.16it/s]" + " 26%|██▌ | 1297301/4997817 [00:08<00:23, 155966.62it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1313976/4997817 [00:08<00:23, 155176.70it/s]" + " 26%|██▋ | 1312991/4997817 [00:08<00:23, 156242.91it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1329577/4997817 [00:08<00:23, 155424.12it/s]" + " 27%|██▋ | 1328616/4997817 [00:08<00:23, 155989.64it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1345162/4997817 [00:08<00:23, 155550.05it/s]" + " 27%|██▋ | 1344327/4997817 [00:08<00:23, 156323.68it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1360737/4997817 [00:08<00:23, 155607.38it/s]" + " 27%|██▋ | 1359960/4997817 [00:08<00:24, 148351.64it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1376313/4997817 [00:08<00:23, 155649.40it/s]" + " 28%|██▊ | 1375464/4997817 [00:08<00:24, 150281.68it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1391965/4997817 [00:09<00:23, 155908.88it/s]" + " 28%|██▊ | 1391084/4997817 [00:09<00:23, 152008.93it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1407556/4997817 [00:09<00:23, 155321.25it/s]" + " 28%|██▊ | 1406706/4997817 [00:09<00:23, 153246.84it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1423155/4997817 [00:09<00:22, 155479.77it/s]" + " 28%|██▊ | 1422423/4997817 [00:09<00:23, 154405.82it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1438785/4997817 [00:09<00:22, 155724.14it/s]" + " 29%|██▉ | 1438109/4997817 [00:09<00:22, 155134.29it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1454384/4997817 [00:09<00:22, 155801.48it/s]" + " 29%|██▉ | 1453665/4997817 [00:09<00:22, 155257.81it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1470014/4997817 [00:09<00:22, 155947.13it/s]" + " 29%|██▉ | 1469349/4997817 [00:09<00:22, 155727.92it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1485609/4997817 [00:09<00:22, 155913.61it/s]" + " 30%|██▉ | 1485018/4997817 [00:09<00:22, 156012.89it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1501201/4997817 [00:09<00:22, 155784.73it/s]" + " 30%|███ | 1500627/4997817 [00:09<00:22, 155976.47it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1516780/4997817 [00:09<00:22, 155559.73it/s]" + " 30%|███ | 1516230/4997817 [00:09<00:22, 153762.84it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1532380/4997817 [00:09<00:22, 155687.40it/s]" + " 31%|███ | 1531868/4997817 [00:09<00:22, 154536.52it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1547949/4997817 [00:10<00:22, 155528.12it/s]" + " 31%|███ | 1547362/4997817 [00:10<00:22, 154655.76it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1563502/4997817 [00:10<00:23, 147324.84it/s]" + " 31%|███▏ | 1562834/4997817 [00:10<00:22, 154496.08it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1579008/4997817 [00:10<00:22, 149552.84it/s]" + " 32%|███▏ | 1578361/4997817 [00:10<00:22, 154724.34it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1594563/4997817 [00:10<00:22, 151300.39it/s]" + " 32%|███▏ | 1593837/4997817 [00:10<00:22, 154526.62it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1610073/4997817 [00:10<00:22, 152415.30it/s]" + " 32%|███▏ | 1609292/4997817 [00:10<00:21, 154082.95it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1625549/4997817 [00:10<00:22, 153107.12it/s]" + " 33%|███▎ | 1624709/4997817 [00:10<00:21, 154108.12it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1640959/4997817 [00:10<00:21, 153398.91it/s]" + " 33%|███▎ | 1640152/4997817 [00:10<00:21, 154202.78it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1656429/4997817 [00:10<00:21, 153784.58it/s]" + " 33%|███▎ | 1655574/4997817 [00:10<00:21, 153955.25it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1671823/4997817 [00:10<00:22, 147620.43it/s]" + " 33%|███▎ | 1670971/4997817 [00:10<00:21, 153956.41it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1687245/4997817 [00:10<00:22, 149534.13it/s]" + " 34%|███▎ | 1686509/4997817 [00:10<00:21, 154381.52it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1702248/4997817 [00:11<00:22, 145716.03it/s]" + " 34%|███▍ | 1701951/4997817 [00:11<00:21, 154392.21it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1717722/4997817 [00:11<00:22, 148327.18it/s]" + " 34%|███▍ | 1717391/4997817 [00:11<00:21, 154191.74it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1733212/4997817 [00:11<00:21, 150249.60it/s]" + " 35%|███▍ | 1732903/4997817 [00:11<00:21, 154468.06it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1748683/4997817 [00:11<00:21, 151562.76it/s]" + " 35%|███▍ | 1748426/4997817 [00:11<00:21, 154695.22it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1764179/4997817 [00:11<00:21, 152568.57it/s]" + " 35%|███▌ | 1763908/4997817 [00:11<00:20, 154731.01it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1779561/4997817 [00:11<00:21, 152939.77it/s]" + " 36%|███▌ | 1779465/4997817 [00:11<00:20, 154980.84it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1794870/4997817 [00:11<00:20, 152948.40it/s]" + " 36%|███▌ | 1794973/4997817 [00:11<00:20, 155008.18it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1810300/4997817 [00:11<00:20, 153350.41it/s]" + " 36%|███▌ | 1810474/4997817 [00:11<00:20, 154706.88it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1825723/4997817 [00:11<00:20, 153610.68it/s]" + " 37%|███▋ | 1825945/4997817 [00:11<00:21, 150553.76it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1841251/4997817 [00:11<00:20, 154108.13it/s]" + " 37%|███▋ | 1841366/4997817 [00:11<00:20, 151623.92it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1856784/4997817 [00:12<00:20, 154470.98it/s]" + " 37%|███▋ | 1856852/4997817 [00:12<00:20, 152579.57it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1872234/4997817 [00:12<00:20, 154379.68it/s]" + " 37%|███▋ | 1872563/4997817 [00:12<00:20, 153923.92it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1887674/4997817 [00:12<00:20, 154351.08it/s]" + " 38%|███▊ | 1888219/4997817 [00:12<00:20, 154708.39it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1903137/4997817 [00:12<00:20, 154430.74it/s]" + " 38%|███▊ | 1903953/4997817 [00:12<00:19, 155491.61it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1918581/4997817 [00:12<00:19, 154231.39it/s]" + " 38%|███▊ | 1919523/4997817 [00:12<00:19, 155552.74it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1934021/4997817 [00:12<00:19, 154278.42it/s]" + " 39%|███▊ | 1935132/4997817 [00:12<00:19, 155711.90it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949544/4997817 [00:12<00:19, 154560.34it/s]" + " 39%|███▉ | 1950707/4997817 [00:12<00:19, 155602.81it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1965001/4997817 [00:12<00:19, 154544.17it/s]" + " 39%|███▉ | 1966388/4997817 [00:12<00:19, 155963.60it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1980514/4997817 [00:12<00:19, 154717.76it/s]" + " 40%|███▉ | 1982054/4997817 [00:12<00:19, 156169.63it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1995986/4997817 [00:12<00:19, 154624.51it/s]" + " 40%|███▉ | 1997673/4997817 [00:12<00:19, 155736.39it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2011449/4997817 [00:13<00:19, 154571.51it/s]" + " 40%|████ | 2013248/4997817 [00:13<00:19, 155496.01it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2026907/4997817 [00:13<00:19, 154431.61it/s]" + " 41%|████ | 2028804/4997817 [00:13<00:19, 155511.76it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2042351/4997817 [00:13<00:19, 150939.06it/s]" + " 41%|████ | 2044356/4997817 [00:13<00:19, 155257.61it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2057814/4997817 [00:13<00:19, 152025.47it/s]" + " 41%|████ | 2059960/4997817 [00:13<00:18, 155488.99it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2073170/4997817 [00:13<00:19, 152476.99it/s]" + " 42%|████▏ | 2075625/4997817 [00:13<00:18, 155833.92it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2088594/4997817 [00:13<00:19, 152999.26it/s]" + " 42%|████▏ | 2091209/4997817 [00:13<00:18, 155266.92it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2104043/4997817 [00:13<00:18, 153442.72it/s]" + " 42%|████▏ | 2106737/4997817 [00:13<00:18, 154717.60it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2119443/4997817 [00:13<00:18, 153606.85it/s]" + " 42%|████▏ | 2122210/4997817 [00:13<00:18, 154334.91it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2134833/4997817 [00:13<00:18, 153691.74it/s]" + " 43%|████▎ | 2137645/4997817 [00:13<00:18, 154040.89it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2150260/4997817 [00:13<00:18, 153861.39it/s]" + " 43%|████▎ | 2153050/4997817 [00:13<00:18, 153792.02it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2165649/4997817 [00:14<00:18, 153505.35it/s]" + " 43%|████▎ | 2168430/4997817 [00:14<00:18, 153254.04it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2181031/4997817 [00:14<00:18, 153598.33it/s]" + " 44%|████▎ | 2183756/4997817 [00:14<00:18, 153011.24it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2196392/4997817 [00:14<00:18, 153515.18it/s]" + " 44%|████▍ | 2199058/4997817 [00:14<00:18, 152771.69it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211745/4997817 [00:14<00:18, 153359.24it/s]" + " 44%|████▍ | 2214336/4997817 [00:14<00:18, 152533.15it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2227087/4997817 [00:14<00:18, 153376.49it/s]" + " 45%|████▍ | 2229590/4997817 [00:14<00:18, 152216.34it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2242478/4997817 [00:14<00:17, 153534.73it/s]" + " 45%|████▍ | 2244822/4997817 [00:14<00:18, 152246.04it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2257832/4997817 [00:14<00:17, 153331.02it/s]" + " 45%|████▌ | 2260129/4997817 [00:14<00:17, 152489.87it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2273166/4997817 [00:14<00:17, 153125.99it/s]" + " 46%|████▌ | 2275379/4997817 [00:14<00:17, 152457.91it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2288479/4997817 [00:14<00:17, 153046.84it/s]" + " 46%|████▌ | 2290625/4997817 [00:14<00:17, 152236.51it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2303800/4997817 [00:14<00:17, 153094.76it/s]" + " 46%|████▌ | 2305849/4997817 [00:14<00:17, 151840.02it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2319193/4997817 [00:15<00:17, 153342.97it/s]" + " 46%|████▋ | 2321245/4997817 [00:15<00:17, 152471.18it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2334528/4997817 [00:15<00:17, 152346.58it/s]" + " 47%|████▋ | 2336585/4997817 [00:15<00:17, 152746.15it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2349765/4997817 [00:15<00:17, 151169.35it/s]" + " 47%|████▋ | 2351960/4997817 [00:15<00:17, 153045.31it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2364972/4997817 [00:15<00:17, 151434.66it/s]" + " 47%|████▋ | 2367326/4997817 [00:15<00:17, 153228.56it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2380298/4997817 [00:15<00:17, 151975.78it/s]" + " 48%|████▊ | 2382719/4997817 [00:15<00:17, 153435.46it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2395754/4997817 [00:15<00:17, 152744.78it/s]" + " 48%|████▊ | 2398063/4997817 [00:15<00:16, 153381.39it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2411076/4997817 [00:15<00:16, 152884.98it/s]" + " 48%|████▊ | 2413402/4997817 [00:15<00:16, 153357.05it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2426567/4997817 [00:15<00:16, 153489.20it/s]" + " 49%|████▊ | 2428752/4997817 [00:15<00:16, 153397.32it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2441950/4997817 [00:15<00:16, 153587.93it/s]" + " 49%|████▉ | 2444150/4997817 [00:15<00:16, 153571.32it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2457394/4997817 [00:16<00:16, 153839.68it/s]" + " 49%|████▉ | 2459562/4997817 [00:15<00:16, 153732.62it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472901/4997817 [00:16<00:16, 154205.77it/s]" + " 50%|████▉ | 2475015/4997817 [00:16<00:16, 153968.52it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488322/4997817 [00:16<00:16, 154163.11it/s]" + " 50%|████▉ | 2490438/4997817 [00:16<00:16, 154046.12it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2503739/4997817 [00:16<00:16, 153004.46it/s]" + " 50%|█████ | 2505843/4997817 [00:16<00:16, 154040.82it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2519042/4997817 [00:16<00:16, 147381.07it/s]" + " 50%|█████ | 2521248/4997817 [00:16<00:16, 153702.86it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2534620/4997817 [00:16<00:16, 149823.79it/s]" + " 51%|█████ | 2536619/4997817 [00:16<00:16, 153488.02it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2550145/4997817 [00:16<00:16, 151413.71it/s]" + " 51%|█████ | 2551968/4997817 [00:16<00:15, 153045.28it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2565630/4997817 [00:16<00:15, 152427.20it/s]" + " 51%|█████▏ | 2567273/4997817 [00:16<00:15, 152959.52it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2581060/4997817 [00:16<00:15, 152981.66it/s]" + " 52%|█████▏ | 2582570/4997817 [00:16<00:15, 152668.38it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2596553/4997817 [00:16<00:15, 153559.70it/s]" + " 52%|█████▏ | 2597897/4997817 [00:16<00:15, 152844.82it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2612027/4997817 [00:17<00:15, 153910.24it/s]" + " 52%|█████▏ | 2613182/4997817 [00:16<00:15, 150670.35it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2627562/4997817 [00:17<00:15, 154337.56it/s]" + " 53%|█████▎ | 2628256/4997817 [00:17<00:15, 149400.44it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2643066/4997817 [00:17<00:15, 154544.82it/s]" + " 53%|█████▎ | 2643612/4997817 [00:17<00:15, 150628.22it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658563/4997817 [00:17<00:15, 154668.65it/s]" + " 53%|█████▎ | 2659103/4997817 [00:17<00:15, 151899.02it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674058/4997817 [00:17<00:15, 154750.12it/s]" + " 54%|█████▎ | 2674484/4997817 [00:17<00:15, 152464.99it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2689580/4997817 [00:17<00:14, 154890.00it/s]" + " 54%|█████▍ | 2689840/4997817 [00:17<00:15, 152791.05it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2705071/4997817 [00:17<00:14, 154543.10it/s]" + " 54%|█████▍ | 2705248/4997817 [00:17<00:14, 153173.60it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2720555/4997817 [00:17<00:14, 154630.16it/s]" + " 54%|█████▍ | 2720642/4997817 [00:17<00:14, 153400.27it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2736166/4997817 [00:17<00:14, 155070.41it/s]" + " 55%|█████▍ | 2736057/4997817 [00:17<00:14, 153621.44it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2751724/4997817 [00:17<00:14, 155222.18it/s]" + " 55%|█████▌ | 2751444/4997817 [00:17<00:14, 153694.21it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2767247/4997817 [00:18<00:14, 155078.59it/s]" + " 55%|█████▌ | 2766815/4997817 [00:17<00:14, 153676.47it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2782756/4997817 [00:18<00:14, 154978.09it/s]" + " 56%|█████▌ | 2782184/4997817 [00:18<00:15, 146027.40it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2798255/4997817 [00:18<00:14, 154977.38it/s]" + " 56%|█████▌ | 2797535/4997817 [00:18<00:14, 148188.94it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2813789/4997817 [00:18<00:14, 155083.56it/s]" + " 56%|█████▋ | 2812891/4997817 [00:18<00:14, 149756.66it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2829298/4997817 [00:18<00:14, 152520.30it/s]" + " 57%|█████▋ | 2828262/4997817 [00:18<00:14, 150920.17it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2844801/4997817 [00:18<00:14, 153263.29it/s]" + " 57%|█████▋ | 2843674/4997817 [00:18<00:14, 151866.33it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2860237/4997817 [00:18<00:13, 153586.93it/s]" + " 57%|█████▋ | 2858942/4997817 [00:18<00:14, 152106.04it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2875673/4997817 [00:18<00:13, 153813.68it/s]" + " 58%|█████▊ | 2874363/4997817 [00:18<00:13, 152731.27it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2891059/4997817 [00:18<00:13, 153744.34it/s]" + " 58%|█████▊ | 2889650/4997817 [00:18<00:13, 152715.44it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2906451/4997817 [00:18<00:13, 153793.40it/s]" + " 58%|█████▊ | 2905031/4997817 [00:18<00:13, 153042.21it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2921833/4997817 [00:19<00:13, 153778.25it/s]" + " 58%|█████▊ | 2920342/4997817 [00:19<00:13, 153004.24it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2937213/4997817 [00:19<00:13, 153645.48it/s]" + " 59%|█████▊ | 2935648/4997817 [00:19<00:13, 152907.67it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2952579/4997817 [00:19<00:13, 153613.36it/s]" + " 59%|█████▉ | 2950943/4997817 [00:19<00:13, 152850.99it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2967942/4997817 [00:19<00:13, 153281.42it/s]" + " 59%|█████▉ | 2966231/4997817 [00:19<00:13, 152725.36it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2983271/4997817 [00:19<00:13, 150146.86it/s]" + " 60%|█████▉ | 2981549/4997817 [00:19<00:13, 152858.39it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2998477/4997817 [00:19<00:13, 150708.16it/s]" + " 60%|█████▉ | 2996997/4997817 [00:19<00:13, 153340.92it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3014011/4997817 [00:19<00:13, 152080.61it/s]" + " 60%|██████ | 3012371/4997817 [00:19<00:12, 153458.61it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3029518/4997817 [00:19<00:12, 152969.20it/s]" + " 61%|██████ | 3027820/4997817 [00:19<00:12, 153766.56it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3045037/4997817 [00:19<00:12, 153629.76it/s]" + " 61%|██████ | 3043238/4997817 [00:19<00:12, 153889.92it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3060406/4997817 [00:19<00:12, 153331.78it/s]" + " 61%|██████ | 3058663/4997817 [00:19<00:12, 153995.86it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3075743/4997817 [00:20<00:12, 152764.94it/s]" + " 62%|██████▏ | 3074096/4997817 [00:20<00:12, 154092.71it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3091023/4997817 [00:20<00:12, 152634.64it/s]" + " 62%|██████▏ | 3089506/4997817 [00:20<00:12, 153922.23it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3106414/4997817 [00:20<00:12, 153013.91it/s]" + " 62%|██████▏ | 3104899/4997817 [00:20<00:12, 153769.23it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3121808/4997817 [00:20<00:12, 153288.59it/s]" + " 62%|██████▏ | 3120344/4997817 [00:20<00:12, 153969.82it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3137276/4997817 [00:20<00:12, 153703.80it/s]" + " 63%|██████▎ | 3135742/4997817 [00:20<00:12, 153534.18it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3152648/4997817 [00:20<00:12, 153568.00it/s]" + " 63%|██████▎ | 3151096/4997817 [00:20<00:12, 153404.32it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3168071/4997817 [00:20<00:11, 153762.45it/s]" + " 63%|██████▎ | 3166437/4997817 [00:20<00:11, 153363.50it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3183450/4997817 [00:20<00:11, 153768.33it/s]" + " 64%|██████▎ | 3181930/4997817 [00:20<00:11, 153829.95it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3198898/4997817 [00:20<00:11, 153979.27it/s]" + " 64%|██████▍ | 3197314/4997817 [00:20<00:11, 153423.59it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3214297/4997817 [00:20<00:11, 153771.27it/s]" + " 64%|██████▍ | 3212657/4997817 [00:20<00:11, 153324.94it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3229715/4997817 [00:21<00:11, 153892.00it/s]" + " 65%|██████▍ | 3228003/4997817 [00:21<00:11, 153363.54it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3245105/4997817 [00:21<00:11, 153859.37it/s]" + " 65%|██████▍ | 3243340/4997817 [00:21<00:11, 151587.92it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3260519/4997817 [00:21<00:11, 153941.22it/s]" + " 65%|██████▌ | 3258504/4997817 [00:21<00:11, 148147.58it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3275914/4997817 [00:21<00:11, 153716.78it/s]" + " 66%|██████▌ | 3273956/4997817 [00:21<00:11, 150013.39it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3291386/4997817 [00:21<00:11, 154014.60it/s]" + " 66%|██████▌ | 3289544/4997817 [00:21<00:11, 151741.78it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3306788/4997817 [00:21<00:11, 153609.50it/s]" + " 66%|██████▌ | 3305094/4997817 [00:21<00:11, 152854.93it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3322285/4997817 [00:21<00:10, 153972.38it/s]" + " 66%|██████▋ | 3320616/4997817 [00:21<00:10, 153555.41it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3337683/4997817 [00:21<00:10, 153858.51it/s]" + " 67%|██████▋ | 3336160/4997817 [00:21<00:10, 154115.62it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3353124/4997817 [00:21<00:10, 154022.14it/s]" + " 67%|██████▋ | 3351730/4997817 [00:21<00:10, 154587.03it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3368625/4997817 [00:21<00:10, 154316.93it/s]" + " 67%|██████▋ | 3367278/4997817 [00:21<00:10, 154851.47it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384057/4997817 [00:22<00:10, 154300.14it/s]" + " 68%|██████▊ | 3382904/4997817 [00:22<00:10, 155270.93it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3399488/4997817 [00:22<00:10, 154131.51it/s]" + " 68%|██████▊ | 3398434/4997817 [00:22<00:10, 155112.16it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3414954/4997817 [00:22<00:10, 154286.04it/s]" + " 68%|██████▊ | 3413947/4997817 [00:22<00:10, 151516.41it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3430466/4997817 [00:22<00:10, 154534.16it/s]" + " 69%|██████▊ | 3429264/4997817 [00:22<00:10, 152002.54it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3445934/4997817 [00:22<00:10, 154576.71it/s]" + " 69%|██████▉ | 3444687/4997817 [00:22<00:10, 152661.60it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3461392/4997817 [00:22<00:09, 154214.46it/s]" + " 69%|██████▉ | 3459988/4997817 [00:22<00:10, 152762.54it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3476836/4997817 [00:22<00:09, 154280.38it/s]" + " 70%|██████▉ | 3475342/4997817 [00:22<00:09, 152992.88it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492331/4997817 [00:22<00:09, 154479.71it/s]" + " 70%|██████▉ | 3490806/4997817 [00:22<00:09, 153484.06it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3507875/4997817 [00:22<00:09, 154766.34it/s]" + " 70%|███████ | 3506159/4997817 [00:22<00:09, 153394.70it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3523352/4997817 [00:22<00:09, 154673.95it/s]" + " 70%|███████ | 3521538/4997817 [00:22<00:09, 153511.49it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3538822/4997817 [00:23<00:09, 154679.04it/s]" + " 71%|███████ | 3537056/4997817 [00:23<00:09, 154008.32it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3554370/4997817 [00:23<00:09, 154917.78it/s]" + " 71%|███████ | 3552632/4997817 [00:23<00:09, 154530.44it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3569906/4997817 [00:23<00:09, 155047.44it/s]" + " 71%|███████▏ | 3568087/4997817 [00:23<00:09, 146968.50it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3585430/4997817 [00:23<00:09, 155102.12it/s]" + " 72%|███████▏ | 3583451/4997817 [00:23<00:09, 148896.74it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3600951/4997817 [00:23<00:09, 155132.30it/s]" + " 72%|███████▏ | 3598891/4997817 [00:23<00:09, 150504.59it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3616465/4997817 [00:23<00:09, 150887.26it/s]" + " 72%|███████▏ | 3614435/4997817 [00:23<00:09, 151958.53it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3632029/4997817 [00:23<00:08, 152284.22it/s]" + " 73%|███████▎ | 3629881/4997817 [00:23<00:08, 152697.73it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3647567/4997817 [00:23<00:08, 153198.65it/s]" + " 73%|███████▎ | 3645255/4997817 [00:23<00:08, 153005.77it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3663094/4997817 [00:23<00:08, 153810.84it/s]" + " 73%|███████▎ | 3660584/4997817 [00:23<00:08, 153088.81it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3678598/4997817 [00:23<00:08, 154174.29it/s]" + " 74%|███████▎ | 3675916/4997817 [00:23<00:08, 153156.17it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3694138/4997817 [00:24<00:08, 154536.99it/s]" + " 74%|███████▍ | 3691295/4997817 [00:24<00:08, 153344.25it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3709658/4997817 [00:24<00:08, 154732.73it/s]" + " 74%|███████▍ | 3706697/4997817 [00:24<00:08, 153545.60it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3725206/4997817 [00:24<00:08, 154954.44it/s]" + " 74%|███████▍ | 3722057/4997817 [00:24<00:08, 147836.83it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3740779/4997817 [00:24<00:08, 155183.88it/s]" + " 75%|███████▍ | 3736974/4997817 [00:24<00:08, 148222.56it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3756300/4997817 [00:24<00:08, 155152.62it/s]" + " 75%|███████▌ | 3752284/4997817 [00:24<00:08, 149654.65it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3771876/4997817 [00:24<00:07, 155332.15it/s]" + " 75%|███████▌ | 3767574/4997817 [00:24<00:08, 150612.24it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3787433/4997817 [00:24<00:07, 155401.94it/s]" + " 76%|███████▌ | 3782880/4997817 [00:24<00:08, 151337.73it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3802974/4997817 [00:24<00:07, 154579.57it/s]" + " 76%|███████▌ | 3798151/4997817 [00:24<00:07, 151743.76it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3818510/4997817 [00:24<00:07, 154809.04it/s]" + " 76%|███████▋ | 3813408/4997817 [00:24<00:07, 151987.69it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3834118/4997817 [00:24<00:07, 155187.73it/s]" + " 77%|███████▋ | 3828722/4997817 [00:24<00:07, 152329.77it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3849726/4997817 [00:25<00:07, 155451.03it/s]" + " 77%|███████▋ | 3844014/4997817 [00:25<00:07, 152505.38it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865281/4997817 [00:25<00:07, 155478.17it/s]" + " 77%|███████▋ | 3859286/4997817 [00:25<00:07, 152568.18it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3880873/4997817 [00:25<00:07, 155607.51it/s]" + " 78%|███████▊ | 3874625/4997817 [00:25<00:07, 152812.08it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3896482/4997817 [00:25<00:07, 155748.19it/s]" + " 78%|███████▊ | 3890029/4997817 [00:25<00:07, 153178.11it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3912058/4997817 [00:25<00:06, 155484.01it/s]" + " 78%|███████▊ | 3905349/4997817 [00:25<00:07, 152911.02it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3927607/4997817 [00:25<00:06, 155333.66it/s]" + " 78%|███████▊ | 3920784/4997817 [00:25<00:07, 153341.49it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3943141/4997817 [00:25<00:06, 154982.06it/s]" + " 79%|███████▉ | 3936119/4997817 [00:25<00:06, 152961.72it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958655/4997817 [00:25<00:06, 155026.48it/s]" + " 79%|███████▉ | 3951508/4997817 [00:25<00:06, 153228.71it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3974166/4997817 [00:25<00:06, 155048.76it/s]" + " 79%|███████▉ | 3966960/4997817 [00:25<00:06, 153613.34it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989742/4997817 [00:25<00:06, 155258.99it/s]" + " 80%|███████▉ | 3982322/4997817 [00:25<00:06, 153448.22it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005269/4997817 [00:26<00:06, 155095.77it/s]" + " 80%|███████▉ | 3997668/4997817 [00:26<00:06, 153357.40it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4020928/4997817 [00:26<00:06, 155541.32it/s]" + " 80%|████████ | 4013004/4997817 [00:26<00:06, 153315.74it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4036483/4997817 [00:26<00:06, 155356.37it/s]" + " 81%|████████ | 4028336/4997817 [00:26<00:06, 153114.29it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052019/4997817 [00:26<00:06, 155307.81it/s]" + " 81%|████████ | 4043648/4997817 [00:26<00:06, 150591.11it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4067550/4997817 [00:26<00:05, 155236.21it/s]" + " 81%|████████ | 4059148/4997817 [00:26<00:06, 151895.49it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4083074/4997817 [00:26<00:05, 154917.67it/s]" + " 82%|████████▏ | 4074741/4997817 [00:26<00:06, 153091.67it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4098566/4997817 [00:26<00:06, 146375.09it/s]" + " 82%|████████▏ | 4090233/4997817 [00:26<00:05, 153635.51it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4113914/4997817 [00:26<00:05, 148417.52it/s]" + " 82%|████████▏ | 4105801/4997817 [00:26<00:05, 154243.63it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4129242/4997817 [00:26<00:05, 149832.62it/s]" + " 82%|████████▏ | 4121409/4997817 [00:26<00:05, 154791.86it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4144613/4997817 [00:26<00:05, 150968.60it/s]" + " 83%|████████▎ | 4136946/4997817 [00:26<00:05, 154962.42it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4160035/4997817 [00:27<00:05, 151927.64it/s]" + " 83%|████████▎ | 4152492/4997817 [00:27<00:05, 155109.62it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4175344/4997817 [00:27<00:05, 152271.67it/s]" + " 83%|████████▎ | 4168015/4997817 [00:27<00:05, 155143.19it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4190658/4997817 [00:27<00:05, 152526.24it/s]" + " 84%|████████▎ | 4183654/4997817 [00:27<00:05, 155513.87it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4205984/4997817 [00:27<00:05, 152743.35it/s]" + " 84%|████████▍ | 4199207/4997817 [00:27<00:05, 152050.97it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4221286/4997817 [00:27<00:05, 152822.28it/s]" + " 84%|████████▍ | 4214599/4997817 [00:27<00:05, 152599.26it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4236607/4997817 [00:27<00:04, 152936.93it/s]" + " 85%|████████▍ | 4230003/4997817 [00:27<00:05, 153024.35it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4251907/4997817 [00:27<00:05, 145817.28it/s]" + " 85%|████████▍ | 4245402/4997817 [00:27<00:04, 153309.38it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4267342/4997817 [00:27<00:04, 148286.68it/s]" + " 85%|████████▌ | 4260774/4997817 [00:27<00:04, 153430.83it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4282888/4997817 [00:27<00:04, 150383.39it/s]" + " 86%|████████▌ | 4276259/4997817 [00:27<00:04, 153852.65it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4298490/4997817 [00:27<00:04, 152044.25it/s]" + " 86%|████████▌ | 4291697/4997817 [00:27<00:04, 154008.59it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4314035/4997817 [00:28<00:04, 153050.11it/s]" + " 86%|████████▌ | 4307133/4997817 [00:28<00:04, 154111.76it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4329574/4997817 [00:28<00:04, 153744.85it/s]" + " 86%|████████▋ | 4322547/4997817 [00:28<00:04, 154109.59it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4345105/4997817 [00:28<00:04, 154209.34it/s]" + " 87%|████████▋ | 4337986/4997817 [00:28<00:04, 154192.24it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4360685/4997817 [00:28<00:04, 154683.14it/s]" + " 87%|████████▋ | 4353407/4997817 [00:28<00:04, 153783.33it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4376194/4997817 [00:28<00:04, 154801.46it/s]" + " 87%|████████▋ | 4368869/4997817 [00:28<00:04, 154032.24it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4391740/4997817 [00:28<00:03, 154996.89it/s]" + " 88%|████████▊ | 4384273/4997817 [00:28<00:03, 153880.56it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4407302/4997817 [00:28<00:03, 155180.16it/s]" + " 88%|████████▊ | 4399689/4997817 [00:28<00:03, 153960.54it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4422871/4997817 [00:28<00:03, 155331.88it/s]" + " 88%|████████▊ | 4415086/4997817 [00:28<00:03, 153819.81it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4438421/4997817 [00:28<00:03, 155381.33it/s]" + " 89%|████████▊ | 4430560/4997817 [00:28<00:03, 154092.28it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4453995/4997817 [00:28<00:03, 155487.70it/s]" + " 89%|████████▉ | 4445994/4997817 [00:28<00:03, 154164.58it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4469545/4997817 [00:29<00:03, 155411.76it/s]" + " 89%|████████▉ | 4461435/4997817 [00:29<00:03, 154235.10it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4485088/4997817 [00:29<00:03, 155401.16it/s]" + " 90%|████████▉ | 4476872/4997817 [00:29<00:03, 154271.84it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4500632/4997817 [00:29<00:03, 155411.74it/s]" + " 90%|████████▉ | 4492300/4997817 [00:29<00:03, 154190.22it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4516174/4997817 [00:29<00:03, 155209.29it/s]" + " 90%|█████████ | 4507750/4997817 [00:29<00:03, 154279.94it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4531702/4997817 [00:29<00:03, 155229.08it/s]" + " 91%|█████████ | 4523179/4997817 [00:29<00:03, 153985.77it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4547306/4997817 [00:29<00:02, 155470.53it/s]" + " 91%|█████████ | 4538578/4997817 [00:29<00:02, 153723.53it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4562854/4997817 [00:29<00:02, 155331.40it/s]" + " 91%|█████████ | 4554001/4997817 [00:29<00:02, 153873.29it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4578388/4997817 [00:29<00:02, 147448.98it/s]" + " 91%|█████████▏| 4569399/4997817 [00:29<00:02, 153901.77it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4593898/4997817 [00:29<00:02, 149657.49it/s]" + " 92%|█████████▏| 4584887/4997817 [00:29<00:02, 154192.18it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4609368/4997817 [00:30<00:02, 151129.17it/s]" + " 92%|█████████▏| 4600307/4997817 [00:29<00:02, 154017.58it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4624875/4997817 [00:30<00:02, 152288.33it/s]" + " 92%|█████████▏| 4615743/4997817 [00:30<00:02, 154119.11it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4640314/4997817 [00:30<00:02, 152906.93it/s]" + " 93%|█████████▎| 4631156/4997817 [00:30<00:02, 153933.78it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4655803/4997817 [00:30<00:02, 153494.62it/s]" + " 93%|█████████▎| 4646550/4997817 [00:30<00:02, 153794.33it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4671257/4997817 [00:30<00:02, 153802.55it/s]" + " 93%|█████████▎| 4661930/4997817 [00:30<00:02, 153604.14it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4686669/4997817 [00:30<00:02, 153895.43it/s]" + " 94%|█████████▎| 4677291/4997817 [00:30<00:02, 153189.45it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4702162/4997817 [00:30<00:01, 154201.34it/s]" + " 94%|█████████▍| 4692776/4997817 [00:30<00:01, 153678.87it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4717639/4997817 [00:30<00:01, 154368.96it/s]" + " 94%|█████████▍| 4708145/4997817 [00:30<00:01, 153652.86it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4733081/4997817 [00:30<00:01, 154162.68it/s]" + " 95%|█████████▍| 4723512/4997817 [00:30<00:01, 153657.16it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4748501/4997817 [00:30<00:01, 154009.56it/s]" + " 95%|█████████▍| 4738893/4997817 [00:30<00:01, 153701.57it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4763970/4997817 [00:31<00:01, 154210.31it/s]" + " 95%|█████████▌| 4754264/4997817 [00:30<00:01, 153504.60it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4779393/4997817 [00:31<00:01, 154123.36it/s]" + " 95%|█████████▌| 4769615/4997817 [00:31<00:01, 153247.32it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4794807/4997817 [00:31<00:01, 154105.05it/s]" + " 96%|█████████▌| 4784940/4997817 [00:31<00:01, 153081.02it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4810237/4997817 [00:31<00:01, 154162.41it/s]" + " 96%|█████████▌| 4800270/4997817 [00:31<00:01, 153145.18it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4825680/4997817 [00:31<00:01, 154241.45it/s]" + " 96%|█████████▋| 4815618/4997817 [00:31<00:01, 153244.30it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4841107/4997817 [00:31<00:01, 154246.31it/s]" + " 97%|█████████▋| 4830943/4997817 [00:31<00:01, 152781.07it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4856552/4997817 [00:31<00:00, 154305.23it/s]" + " 97%|█████████▋| 4846264/4997817 [00:31<00:00, 152895.24it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4871983/4997817 [00:31<00:00, 153994.32it/s]" + " 97%|█████████▋| 4861611/4997817 [00:31<00:00, 153064.51it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4887443/4997817 [00:31<00:00, 154172.58it/s]" + " 98%|█████████▊| 4877009/4997817 [00:31<00:00, 153337.36it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4902918/4997817 [00:31<00:00, 154342.78it/s]" + " 98%|█████████▊| 4892368/4997817 [00:31<00:00, 153409.94it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4918444/4997817 [00:32<00:00, 154616.11it/s]" + " 98%|█████████▊| 4907726/4997817 [00:31<00:00, 153457.78it/s]" ] }, { @@ -3083,7 +3083,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4933928/4997817 [00:32<00:00, 154681.62it/s]" + " 99%|█████████▊| 4923182/4997817 [00:32<00:00, 153785.56it/s]" ] }, { @@ -3091,7 +3091,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4949465/4997817 [00:32<00:00, 154885.99it/s]" + " 99%|█████████▉| 4938561/4997817 [00:32<00:00, 153783.97it/s]" ] }, { @@ -3099,7 +3099,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4964994/4997817 [00:32<00:00, 155003.99it/s]" + " 99%|█████████▉| 4953978/4997817 [00:32<00:00, 153897.59it/s]" ] }, { @@ -3107,7 +3107,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4980530/4997817 [00:32<00:00, 155107.15it/s]" + " 99%|█████████▉| 4969368/4997817 [00:32<00:00, 153894.61it/s]" ] }, { @@ -3115,7 +3115,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4996041/4997817 [00:32<00:00, 154803.83it/s]" + "100%|█████████▉| 4984758/4997817 [00:32<00:00, 153605.50it/s]" ] }, { @@ -3123,7 +3123,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 153673.72it/s]" + "100%|██████████| 4997817/4997817 [00:32<00:00, 153435.77it/s]" ] }, { @@ -3362,10 +3362,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:43.886161Z", - "iopub.status.busy": "2024-02-07T22:19:43.885903Z", - "iopub.status.idle": "2024-02-07T22:19:58.548875Z", - "shell.execute_reply": "2024-02-07T22:19:58.548259Z" + "iopub.execute_input": "2024-02-08T00:00:06.385092Z", + "iopub.status.busy": "2024-02-08T00:00:06.384772Z", + "iopub.status.idle": "2024-02-08T00:00:20.964006Z", + "shell.execute_reply": "2024-02-08T00:00:20.963327Z" } }, "outputs": [], @@ -3379,10 +3379,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:58.551285Z", - "iopub.status.busy": "2024-02-07T22:19:58.551078Z", - "iopub.status.idle": "2024-02-07T22:20:02.354281Z", - "shell.execute_reply": "2024-02-07T22:20:02.353681Z" + "iopub.execute_input": "2024-02-08T00:00:20.966344Z", + "iopub.status.busy": "2024-02-08T00:00:20.966137Z", + "iopub.status.idle": "2024-02-08T00:00:24.772469Z", + "shell.execute_reply": "2024-02-08T00:00:24.772011Z" } }, "outputs": [ @@ -3451,17 +3451,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:02.356481Z", - "iopub.status.busy": "2024-02-07T22:20:02.356293Z", - "iopub.status.idle": "2024-02-07T22:20:03.761295Z", - "shell.execute_reply": "2024-02-07T22:20:03.760735Z" + "iopub.execute_input": "2024-02-08T00:00:24.774618Z", + "iopub.status.busy": "2024-02-08T00:00:24.774283Z", + "iopub.status.idle": "2024-02-08T00:00:26.116018Z", + "shell.execute_reply": "2024-02-08T00:00:26.115366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abf433ee486a49889c3915e424953a34", + "model_id": "70498ba46dda4093ba603778995e76b6", "version_major": 2, "version_minor": 0 }, @@ -3491,10 +3491,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:03.763597Z", - "iopub.status.busy": "2024-02-07T22:20:03.763413Z", - "iopub.status.idle": "2024-02-07T22:20:04.335755Z", - "shell.execute_reply": "2024-02-07T22:20:04.335196Z" + "iopub.execute_input": "2024-02-08T00:00:26.118532Z", + "iopub.status.busy": "2024-02-08T00:00:26.118335Z", + "iopub.status.idle": "2024-02-08T00:00:26.677134Z", + "shell.execute_reply": "2024-02-08T00:00:26.676500Z" } }, "outputs": [], @@ -3508,10 +3508,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:04.338171Z", - "iopub.status.busy": "2024-02-07T22:20:04.337853Z", - "iopub.status.idle": "2024-02-07T22:20:10.510631Z", - "shell.execute_reply": "2024-02-07T22:20:10.510083Z" + "iopub.execute_input": "2024-02-08T00:00:26.679373Z", + "iopub.status.busy": "2024-02-08T00:00:26.679192Z", + "iopub.status.idle": "2024-02-08T00:00:32.802449Z", + "shell.execute_reply": "2024-02-08T00:00:32.801973Z" } }, "outputs": [ @@ -3584,10 +3584,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:10.513006Z", - "iopub.status.busy": "2024-02-07T22:20:10.512502Z", - "iopub.status.idle": "2024-02-07T22:20:10.569613Z", - "shell.execute_reply": "2024-02-07T22:20:10.568972Z" + "iopub.execute_input": "2024-02-08T00:00:32.804452Z", + "iopub.status.busy": "2024-02-08T00:00:32.804276Z", + "iopub.status.idle": "2024-02-08T00:00:32.860364Z", + "shell.execute_reply": "2024-02-08T00:00:32.859839Z" }, "nbsphinx": "hidden" }, @@ -3631,25 +3631,47 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c5fc60a011f478ebb70ebe314c2c57e": { + "04cf97e28dc54e9e8ad9b5cad5a1f640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e88b7cbd81ec4799be04b90b0f573df2", + "IPY_MODEL_f74b883c262a452dbe93b2d5f75d2310", + "IPY_MODEL_604b254022624d5fa1f0d5ce00717a7a" + ], + "layout": "IPY_MODEL_3fd0a98738d9423197f5aa0943aefb02", + "tabbable": null, + "tooltip": null + } + }, + "103bbc3ca3ac4dcfba34d609ab3401f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "22d942bf7a87444da02c7c20bd4910c8": { + "2043eeeca4644a31b8f49647f6a2c502": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3702,7 +3724,48 @@ "width": null } }, - "2b22ce7632384103bfb532a95a042ce4": { + "2c23cdff36d443ceb4a978630497cab2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "346d07b85b38438389fe133e9a418479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42320f8ec99345a8a1d7b3743692570c", + "placeholder": "​", + "style": "IPY_MODEL_b918e3f2902845c992e2ad99e1bd5c7a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "3a07ea846e4e4da4b9e3d078bf06d668": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3755,53 +3818,60 @@ "width": null } }, - "359a0c7c06574cd79a1df91fca1753fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_95c37d202f1b4e74b31a3b6ea23b57ee", - "placeholder": "​", - "style": "IPY_MODEL_9553a7077d62470e942998ee95b9c71b", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "37e3e49c8c874ce5875e52a48a409eab": { - "model_module": "@jupyter-widgets/controls", + "3e80361896654b9fbb2d3cdda124e6bf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5310f63af03c448bafde34420ad575dc", - "placeholder": "​", - "style": "IPY_MODEL_8129239368ed4dc9b5b1f61d4c690601", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:02<00:00, 22.06it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5310f63af03c448bafde34420ad575dc": { + "3fd0a98738d9423197f5aa0943aefb02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3854,7 +3924,7 @@ "width": null } }, - "5fd6745edeb14f4ab19844d3fe8866d3": { + "42320f8ec99345a8a1d7b3743692570c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3907,92 +3977,88 @@ "width": null } }, - "651dd97d88794c158ac403cb3c7735e9": { + "5059974e71574e4498b7c49142eac459": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1af3509b6d1462eb403501270f043e1", - "placeholder": "​", - "style": "IPY_MODEL_7df2290308494535889d78cc19f6f628", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 443.65it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7366aa89459c4323941d0f375f98ee15": { + "516f602a1da94152b495bff09963ecc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f94881c5ed114484a8718388dbf7f8d4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d1795d50fcc748b790e1deefd918106a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_346d07b85b38438389fe133e9a418479", + "IPY_MODEL_6c8638463fca49d5ac7672e74d4ac28f", + "IPY_MODEL_c0353adc3e9e4c0c90c48a657b747da6" + ], + "layout": "IPY_MODEL_ac8230aa76d6480e86bf2f6603b01482", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "7df2290308494535889d78cc19f6f628": { + "5345a96c9cae4e928a6e1a1c125e7ce8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "8129239368ed4dc9b5b1f61d4c690601": { + "568eaefdf60e4e258e477a3b0cf2674c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e80361896654b9fbb2d3cdda124e6bf", + "placeholder": "​", + "style": "IPY_MODEL_6e4eeba27ffb44cf9cc05b55fddd701f", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "8271ac55c2564cf7b8afdee5bf7bd183": { + "57e56153287f4b06ad3a7b451296be74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4045,7 +4111,30 @@ "width": null } }, - "924f64d2fdbf458ea8d923ef45ab99c7": { + "604b254022624d5fa1f0d5ce00717a7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2043eeeca4644a31b8f49647f6a2c502", + "placeholder": "​", + "style": "IPY_MODEL_2c23cdff36d443ceb4a978630497cab2", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00, 1.46it/s]" + } + }, + "67bcc31fd41b4667ad691485ff610fad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4061,7 +4150,33 @@ "description_width": "" } }, - "9553a7077d62470e942998ee95b9c71b": { + "6c8638463fca49d5ac7672e74d4ac28f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7755b2634e14aafbccebb4f6e64de73", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5345a96c9cae4e928a6e1a1c125e7ce8", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6e4eeba27ffb44cf9cc05b55fddd701f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4079,13 +4194,63 @@ "text_color": null } }, - "95c37d202f1b4e74b31a3b6ea23b57ee": { - "model_module": "@jupyter-widgets/base", + "70498ba46dda4093ba603778995e76b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_568eaefdf60e4e258e477a3b0cf2674c", + "IPY_MODEL_86232ca075be441790e1f542ddfb5a71", + "IPY_MODEL_a9599f5237b44a3db3f3e53cdf188800" + ], + "layout": "IPY_MODEL_b1e04cba90404290baabf2dcb33d0f58", + "tabbable": null, + "tooltip": null + } + }, + "86232ca075be441790e1f542ddfb5a71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e3bb7c90f954f5989152c60322ea693", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67bcc31fd41b4667ad691485ff610fad", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "8e3bb7c90f954f5989152c60322ea693": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", @@ -4132,7 +4297,30 @@ "width": null } }, - "9db709e8796d4663b3ab4076e3a7abe9": { + "a9599f5237b44a3db3f3e53cdf188800": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57e56153287f4b06ad3a7b451296be74", + "placeholder": "​", + "style": "IPY_MODEL_e007fc188f6545bc8c178075c8e5371f", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 22.74it/s]" + } + }, + "ac8230aa76d6480e86bf2f6603b01482": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4185,33 +4373,7 @@ "width": null } }, - "a0a6acb581394b1ea4c7f7aac9f16e56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8271ac55c2564cf7b8afdee5bf7bd183", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_924f64d2fdbf458ea8d923ef45ab99c7", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ab870be927044154a9d2c007c5f1ac74": { + "b1e04cba90404290baabf2dcb33d0f58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4264,31 +4426,25 @@ "width": null } }, - "abf433ee486a49889c3915e424953a34": { + "b918e3f2902845c992e2ad99e1bd5c7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_359a0c7c06574cd79a1df91fca1753fe", - "IPY_MODEL_a0a6acb581394b1ea4c7f7aac9f16e56", - "IPY_MODEL_37e3e49c8c874ce5875e52a48a409eab" - ], - "layout": "IPY_MODEL_5fd6745edeb14f4ab19844d3fe8866d3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aef4eb7fc2264bf7ba91be0aa175ec26": { + "c0353adc3e9e4c0c90c48a657b747da6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4303,15 +4459,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2b22ce7632384103bfb532a95a042ce4", + "layout": "IPY_MODEL_3a07ea846e4e4da4b9e3d078bf06d668", "placeholder": "​", - "style": "IPY_MODEL_0c5fc60a011f478ebb70ebe314c2c57e", + "style": "IPY_MODEL_5059974e71574e4498b7c49142eac459", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:20<00:00, 1.44it/s]" + "value": " 30/30 [00:00<00:00, 442.51it/s]" } }, - "b2fc35848fc74364ac28195032d870ea": { + "c395077a208e4a06a79fbb862d6ddcc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4329,31 +4485,7 @@ "text_color": null } }, - "be506591e8ac431dabddd430053816e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e76f660cdb0f4fb18531762f6b7a3a29", - "IPY_MODEL_7366aa89459c4323941d0f375f98ee15", - "IPY_MODEL_aef4eb7fc2264bf7ba91be0aa175ec26" - ], - "layout": "IPY_MODEL_e95f4c3e917b4f5fbba46be5f7f6f31d", - "tabbable": null, - "tooltip": null - } - }, - "c17ddc75e18d4da39b0de12e5b18a200": { + "e007fc188f6545bc8c178075c8e5371f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4371,111 +4503,7 @@ "text_color": null } }, - "d07ca6a86c524696bf2f66ee1603b173": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1795d50fcc748b790e1deefd918106a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d33a86d6efe94493b4b31f045603d488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f41092a7d59842b9ad606a8f302d363f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d07ca6a86c524696bf2f66ee1603b173", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "d79c9ddd7877446ab1df1603b14668ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22d942bf7a87444da02c7c20bd4910c8", - "placeholder": "​", - "style": "IPY_MODEL_b2fc35848fc74364ac28195032d870ea", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "e76f660cdb0f4fb18531762f6b7a3a29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9db709e8796d4663b3ab4076e3a7abe9", - "placeholder": "​", - "style": "IPY_MODEL_c17ddc75e18d4da39b0de12e5b18a200", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "e95f4c3e917b4f5fbba46be5f7f6f31d": { + "e615a970c954413db367b2d9fef60135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4528,7 +4556,7 @@ "width": null } }, - "f1af3509b6d1462eb403501270f043e1": { + "e7755b2634e14aafbccebb4f6e64de73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4581,84 +4609,30 @@ "width": null } }, - "f41092a7d59842b9ad606a8f302d363f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f8e42fb70e364942b5126777ae7364b8": { + "e88b7cbd81ec4799be04b90b0f573df2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d79c9ddd7877446ab1df1603b14668ea", - "IPY_MODEL_d33a86d6efe94493b4b31f045603d488", - "IPY_MODEL_651dd97d88794c158ac403cb3c7735e9" - ], - "layout": "IPY_MODEL_ab870be927044154a9d2c007c5f1ac74", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed35e6eff2d34dc99d89e28b6b2db842", + "placeholder": "​", + "style": "IPY_MODEL_c395077a208e4a06a79fbb862d6ddcc9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "f94881c5ed114484a8718388dbf7f8d4": { + "ed35e6eff2d34dc99d89e28b6b2db842": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4710,6 +4684,32 @@ "visibility": null, "width": null } + }, + "f74b883c262a452dbe93b2d5f75d2310": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e615a970c954413db367b2d9fef60135", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_103bbc3ca3ac4dcfba34d609ab3401f1", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 12339b227..76a108569 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:14.552650Z", - "iopub.status.busy": "2024-02-07T22:20:14.552302Z", - "iopub.status.idle": "2024-02-07T22:20:15.660995Z", - "shell.execute_reply": "2024-02-07T22:20:15.660436Z" + "iopub.execute_input": "2024-02-08T00:00:36.774281Z", + "iopub.status.busy": "2024-02-08T00:00:36.773817Z", + "iopub.status.idle": "2024-02-08T00:00:37.788765Z", + "shell.execute_reply": "2024-02-08T00:00:37.788231Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.663590Z", - "iopub.status.busy": "2024-02-07T22:20:15.663114Z", - "iopub.status.idle": "2024-02-07T22:20:15.681900Z", - "shell.execute_reply": "2024-02-07T22:20:15.681417Z" + "iopub.execute_input": "2024-02-08T00:00:37.791351Z", + "iopub.status.busy": "2024-02-08T00:00:37.790846Z", + "iopub.status.idle": "2024-02-08T00:00:37.808738Z", + "shell.execute_reply": "2024-02-08T00:00:37.808220Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.684620Z", - "iopub.status.busy": "2024-02-07T22:20:15.684012Z", - "iopub.status.idle": "2024-02-07T22:20:15.726274Z", - "shell.execute_reply": "2024-02-07T22:20:15.725730Z" + "iopub.execute_input": "2024-02-08T00:00:37.811101Z", + "iopub.status.busy": "2024-02-08T00:00:37.810591Z", + "iopub.status.idle": "2024-02-08T00:00:37.832882Z", + "shell.execute_reply": "2024-02-08T00:00:37.832424Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.728677Z", - "iopub.status.busy": "2024-02-07T22:20:15.728247Z", - "iopub.status.idle": "2024-02-07T22:20:15.731824Z", - "shell.execute_reply": "2024-02-07T22:20:15.731348Z" + "iopub.execute_input": "2024-02-08T00:00:37.834758Z", + "iopub.status.busy": "2024-02-08T00:00:37.834499Z", + "iopub.status.idle": "2024-02-08T00:00:37.838471Z", + "shell.execute_reply": "2024-02-08T00:00:37.838045Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.733742Z", - "iopub.status.busy": "2024-02-07T22:20:15.733561Z", - "iopub.status.idle": "2024-02-07T22:20:15.742811Z", - "shell.execute_reply": "2024-02-07T22:20:15.742380Z" + "iopub.execute_input": "2024-02-08T00:00:37.840544Z", + "iopub.status.busy": "2024-02-08T00:00:37.840142Z", + "iopub.status.idle": "2024-02-08T00:00:37.848401Z", + "shell.execute_reply": "2024-02-08T00:00:37.847982Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.744804Z", - "iopub.status.busy": "2024-02-07T22:20:15.744628Z", - "iopub.status.idle": "2024-02-07T22:20:15.747139Z", - "shell.execute_reply": "2024-02-07T22:20:15.746697Z" + "iopub.execute_input": "2024-02-08T00:00:37.850450Z", + "iopub.status.busy": "2024-02-08T00:00:37.850150Z", + "iopub.status.idle": "2024-02-08T00:00:37.852760Z", + "shell.execute_reply": "2024-02-08T00:00:37.852223Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.748959Z", - "iopub.status.busy": "2024-02-07T22:20:15.748786Z", - "iopub.status.idle": "2024-02-07T22:20:16.268470Z", - "shell.execute_reply": "2024-02-07T22:20:16.267865Z" + "iopub.execute_input": "2024-02-08T00:00:37.854671Z", + "iopub.status.busy": "2024-02-08T00:00:37.854370Z", + "iopub.status.idle": "2024-02-08T00:00:38.366943Z", + "shell.execute_reply": "2024-02-08T00:00:38.366411Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:16.270985Z", - "iopub.status.busy": "2024-02-07T22:20:16.270796Z", - "iopub.status.idle": "2024-02-07T22:20:17.950965Z", - "shell.execute_reply": "2024-02-07T22:20:17.950223Z" + "iopub.execute_input": "2024-02-08T00:00:38.369355Z", + "iopub.status.busy": "2024-02-08T00:00:38.369010Z", + "iopub.status.idle": "2024-02-08T00:00:39.953418Z", + "shell.execute_reply": "2024-02-08T00:00:39.952805Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.953912Z", - "iopub.status.busy": "2024-02-07T22:20:17.953172Z", - "iopub.status.idle": "2024-02-07T22:20:17.963171Z", - "shell.execute_reply": "2024-02-07T22:20:17.962746Z" + "iopub.execute_input": "2024-02-08T00:00:39.956230Z", + "iopub.status.busy": "2024-02-08T00:00:39.955488Z", + "iopub.status.idle": "2024-02-08T00:00:39.965485Z", + "shell.execute_reply": "2024-02-08T00:00:39.965052Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.965362Z", - "iopub.status.busy": "2024-02-07T22:20:17.965053Z", - "iopub.status.idle": "2024-02-07T22:20:17.968689Z", - "shell.execute_reply": "2024-02-07T22:20:17.968259Z" + "iopub.execute_input": "2024-02-08T00:00:39.967556Z", + "iopub.status.busy": "2024-02-08T00:00:39.967205Z", + "iopub.status.idle": "2024-02-08T00:00:39.970941Z", + "shell.execute_reply": "2024-02-08T00:00:39.970507Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.970666Z", - "iopub.status.busy": "2024-02-07T22:20:17.970397Z", - "iopub.status.idle": "2024-02-07T22:20:17.977942Z", - "shell.execute_reply": "2024-02-07T22:20:17.977363Z" + "iopub.execute_input": "2024-02-08T00:00:39.972919Z", + "iopub.status.busy": "2024-02-08T00:00:39.972669Z", + "iopub.status.idle": "2024-02-08T00:00:39.979374Z", + "shell.execute_reply": "2024-02-08T00:00:39.978962Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.979985Z", - "iopub.status.busy": "2024-02-07T22:20:17.979656Z", - "iopub.status.idle": "2024-02-07T22:20:18.091893Z", - "shell.execute_reply": "2024-02-07T22:20:18.091396Z" + "iopub.execute_input": "2024-02-08T00:00:39.981265Z", + "iopub.status.busy": "2024-02-08T00:00:39.980978Z", + "iopub.status.idle": "2024-02-08T00:00:40.092266Z", + "shell.execute_reply": "2024-02-08T00:00:40.091698Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:18.094062Z", - "iopub.status.busy": "2024-02-07T22:20:18.093720Z", - "iopub.status.idle": "2024-02-07T22:20:18.096596Z", - "shell.execute_reply": "2024-02-07T22:20:18.096144Z" + "iopub.execute_input": "2024-02-08T00:00:40.094466Z", + "iopub.status.busy": "2024-02-08T00:00:40.094078Z", + "iopub.status.idle": "2024-02-08T00:00:40.096691Z", + "shell.execute_reply": "2024-02-08T00:00:40.096261Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:18.098529Z", - "iopub.status.busy": "2024-02-07T22:20:18.098202Z", - "iopub.status.idle": "2024-02-07T22:20:20.077737Z", - "shell.execute_reply": "2024-02-07T22:20:20.077090Z" + "iopub.execute_input": "2024-02-08T00:00:40.098593Z", + "iopub.status.busy": "2024-02-08T00:00:40.098420Z", + "iopub.status.idle": "2024-02-08T00:00:42.020458Z", + "shell.execute_reply": "2024-02-08T00:00:42.019691Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:20.080833Z", - "iopub.status.busy": "2024-02-07T22:20:20.080047Z", - "iopub.status.idle": "2024-02-07T22:20:20.091704Z", - "shell.execute_reply": "2024-02-07T22:20:20.091118Z" + "iopub.execute_input": "2024-02-08T00:00:42.023533Z", + "iopub.status.busy": "2024-02-08T00:00:42.022782Z", + "iopub.status.idle": "2024-02-08T00:00:42.033585Z", + "shell.execute_reply": "2024-02-08T00:00:42.033121Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:20.093925Z", - "iopub.status.busy": "2024-02-07T22:20:20.093490Z", - "iopub.status.idle": "2024-02-07T22:20:20.122307Z", - "shell.execute_reply": "2024-02-07T22:20:20.121770Z" + "iopub.execute_input": "2024-02-08T00:00:42.035536Z", + "iopub.status.busy": "2024-02-08T00:00:42.035222Z", + "iopub.status.idle": "2024-02-08T00:00:42.066169Z", + "shell.execute_reply": "2024-02-08T00:00:42.065646Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index 14b0188fb..a33793a5f 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:23.034108Z", - "iopub.status.busy": "2024-02-07T22:20:23.033949Z", - "iopub.status.idle": "2024-02-07T22:20:25.644096Z", - "shell.execute_reply": "2024-02-07T22:20:25.643492Z" + "iopub.execute_input": "2024-02-08T00:00:44.559964Z", + "iopub.status.busy": "2024-02-08T00:00:44.559768Z", + "iopub.status.idle": "2024-02-08T00:00:47.083313Z", + "shell.execute_reply": "2024-02-08T00:00:47.082784Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.646761Z", - "iopub.status.busy": "2024-02-07T22:20:25.646232Z", - "iopub.status.idle": "2024-02-07T22:20:25.649662Z", - "shell.execute_reply": "2024-02-07T22:20:25.649125Z" + "iopub.execute_input": "2024-02-08T00:00:47.085963Z", + "iopub.status.busy": "2024-02-08T00:00:47.085456Z", + "iopub.status.idle": "2024-02-08T00:00:47.088646Z", + "shell.execute_reply": "2024-02-08T00:00:47.088220Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.651772Z", - "iopub.status.busy": "2024-02-07T22:20:25.651399Z", - "iopub.status.idle": "2024-02-07T22:20:25.654323Z", - "shell.execute_reply": "2024-02-07T22:20:25.653903Z" + "iopub.execute_input": "2024-02-08T00:00:47.090601Z", + "iopub.status.busy": "2024-02-08T00:00:47.090279Z", + "iopub.status.idle": "2024-02-08T00:00:47.093338Z", + "shell.execute_reply": "2024-02-08T00:00:47.092797Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.656427Z", - "iopub.status.busy": "2024-02-07T22:20:25.656112Z", - "iopub.status.idle": "2024-02-07T22:20:25.696715Z", - "shell.execute_reply": "2024-02-07T22:20:25.696251Z" + "iopub.execute_input": "2024-02-08T00:00:47.095320Z", + "iopub.status.busy": "2024-02-08T00:00:47.095018Z", + "iopub.status.idle": "2024-02-08T00:00:47.117162Z", + "shell.execute_reply": "2024-02-08T00:00:47.116660Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.698892Z", - "iopub.status.busy": "2024-02-07T22:20:25.698436Z", - "iopub.status.idle": "2024-02-07T22:20:25.701940Z", - "shell.execute_reply": "2024-02-07T22:20:25.701520Z" + "iopub.execute_input": "2024-02-08T00:00:47.119103Z", + "iopub.status.busy": "2024-02-08T00:00:47.118781Z", + "iopub.status.idle": "2024-02-08T00:00:47.122228Z", + "shell.execute_reply": "2024-02-08T00:00:47.121782Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.703894Z", - "iopub.status.busy": "2024-02-07T22:20:25.703566Z", - "iopub.status.idle": "2024-02-07T22:20:25.706909Z", - "shell.execute_reply": "2024-02-07T22:20:25.706467Z" + "iopub.execute_input": "2024-02-08T00:00:47.124229Z", + "iopub.status.busy": "2024-02-08T00:00:47.123895Z", + "iopub.status.idle": "2024-02-08T00:00:47.127280Z", + "shell.execute_reply": "2024-02-08T00:00:47.126831Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed', 'getting_spare_card'}\n" + "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.708983Z", - "iopub.status.busy": "2024-02-07T22:20:25.708666Z", - "iopub.status.idle": "2024-02-07T22:20:25.711641Z", - "shell.execute_reply": "2024-02-07T22:20:25.711082Z" + "iopub.execute_input": "2024-02-08T00:00:47.129237Z", + "iopub.status.busy": "2024-02-08T00:00:47.128922Z", + "iopub.status.idle": "2024-02-08T00:00:47.132004Z", + "shell.execute_reply": "2024-02-08T00:00:47.131534Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.713626Z", - "iopub.status.busy": "2024-02-07T22:20:25.713301Z", - "iopub.status.idle": "2024-02-07T22:20:25.716436Z", - "shell.execute_reply": "2024-02-07T22:20:25.716011Z" + "iopub.execute_input": "2024-02-08T00:00:47.133964Z", + "iopub.status.busy": "2024-02-08T00:00:47.133652Z", + "iopub.status.idle": "2024-02-08T00:00:47.136698Z", + "shell.execute_reply": "2024-02-08T00:00:47.136289Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.718429Z", - "iopub.status.busy": "2024-02-07T22:20:25.718116Z", - "iopub.status.idle": "2024-02-07T22:20:29.429090Z", - "shell.execute_reply": "2024-02-07T22:20:29.428554Z" + "iopub.execute_input": "2024-02-08T00:00:47.138634Z", + "iopub.status.busy": "2024-02-08T00:00:47.138333Z", + "iopub.status.idle": "2024-02-08T00:00:50.729967Z", + "shell.execute_reply": "2024-02-08T00:00:50.729315Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.431649Z", - "iopub.status.busy": "2024-02-07T22:20:29.431416Z", - "iopub.status.idle": "2024-02-07T22:20:29.434206Z", - "shell.execute_reply": "2024-02-07T22:20:29.433681Z" + "iopub.execute_input": "2024-02-08T00:00:50.732784Z", + "iopub.status.busy": "2024-02-08T00:00:50.732432Z", + "iopub.status.idle": "2024-02-08T00:00:50.735259Z", + "shell.execute_reply": "2024-02-08T00:00:50.734700Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.436191Z", - "iopub.status.busy": "2024-02-07T22:20:29.435874Z", - "iopub.status.idle": "2024-02-07T22:20:29.438880Z", - "shell.execute_reply": "2024-02-07T22:20:29.438478Z" + "iopub.execute_input": "2024-02-08T00:00:50.737214Z", + "iopub.status.busy": "2024-02-08T00:00:50.736909Z", + "iopub.status.idle": "2024-02-08T00:00:50.739581Z", + "shell.execute_reply": "2024-02-08T00:00:50.739056Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.440688Z", - "iopub.status.busy": "2024-02-07T22:20:29.440515Z", - "iopub.status.idle": "2024-02-07T22:20:31.731024Z", - "shell.execute_reply": "2024-02-07T22:20:31.730409Z" + "iopub.execute_input": "2024-02-08T00:00:50.741554Z", + "iopub.status.busy": "2024-02-08T00:00:50.741265Z", + "iopub.status.idle": "2024-02-08T00:00:52.955848Z", + "shell.execute_reply": "2024-02-08T00:00:52.955096Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.733921Z", - "iopub.status.busy": "2024-02-07T22:20:31.733231Z", - "iopub.status.idle": "2024-02-07T22:20:31.740520Z", - "shell.execute_reply": "2024-02-07T22:20:31.740077Z" + "iopub.execute_input": "2024-02-08T00:00:52.958573Z", + "iopub.status.busy": "2024-02-08T00:00:52.958020Z", + "iopub.status.idle": "2024-02-08T00:00:52.965371Z", + "shell.execute_reply": "2024-02-08T00:00:52.964862Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.742564Z", - "iopub.status.busy": "2024-02-07T22:20:31.742256Z", - "iopub.status.idle": "2024-02-07T22:20:31.745803Z", - "shell.execute_reply": "2024-02-07T22:20:31.745375Z" + "iopub.execute_input": "2024-02-08T00:00:52.967398Z", + "iopub.status.busy": "2024-02-08T00:00:52.967027Z", + "iopub.status.idle": "2024-02-08T00:00:52.970968Z", + "shell.execute_reply": "2024-02-08T00:00:52.970539Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.747786Z", - "iopub.status.busy": "2024-02-07T22:20:31.747469Z", - "iopub.status.idle": "2024-02-07T22:20:31.750335Z", - "shell.execute_reply": "2024-02-07T22:20:31.749834Z" + "iopub.execute_input": "2024-02-08T00:00:52.972799Z", + "iopub.status.busy": "2024-02-08T00:00:52.972623Z", + "iopub.status.idle": "2024-02-08T00:00:52.975944Z", + "shell.execute_reply": "2024-02-08T00:00:52.975459Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.752406Z", - "iopub.status.busy": "2024-02-07T22:20:31.752088Z", - "iopub.status.idle": "2024-02-07T22:20:31.754796Z", - "shell.execute_reply": "2024-02-07T22:20:31.754356Z" + "iopub.execute_input": "2024-02-08T00:00:52.978048Z", + "iopub.status.busy": "2024-02-08T00:00:52.977628Z", + "iopub.status.idle": "2024-02-08T00:00:52.980927Z", + "shell.execute_reply": "2024-02-08T00:00:52.980389Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.756820Z", - "iopub.status.busy": "2024-02-07T22:20:31.756510Z", - "iopub.status.idle": "2024-02-07T22:20:31.763078Z", - "shell.execute_reply": "2024-02-07T22:20:31.762532Z" + "iopub.execute_input": "2024-02-08T00:00:52.983081Z", + "iopub.status.busy": "2024-02-08T00:00:52.982752Z", + "iopub.status.idle": "2024-02-08T00:00:52.989594Z", + "shell.execute_reply": "2024-02-08T00:00:52.989175Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.765349Z", - "iopub.status.busy": "2024-02-07T22:20:31.764941Z", - "iopub.status.idle": "2024-02-07T22:20:31.990470Z", - "shell.execute_reply": "2024-02-07T22:20:31.989930Z" + "iopub.execute_input": "2024-02-08T00:00:52.991604Z", + "iopub.status.busy": "2024-02-08T00:00:52.991288Z", + "iopub.status.idle": "2024-02-08T00:00:53.215514Z", + "shell.execute_reply": "2024-02-08T00:00:53.214999Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.993806Z", - "iopub.status.busy": "2024-02-07T22:20:31.992872Z", - "iopub.status.idle": "2024-02-07T22:20:32.169989Z", - "shell.execute_reply": "2024-02-07T22:20:32.169440Z" + "iopub.execute_input": "2024-02-08T00:00:53.217866Z", + "iopub.status.busy": "2024-02-08T00:00:53.217475Z", + "iopub.status.idle": "2024-02-08T00:00:53.396736Z", + "shell.execute_reply": "2024-02-08T00:00:53.396217Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:32.173948Z", - "iopub.status.busy": "2024-02-07T22:20:32.172981Z", - "iopub.status.idle": "2024-02-07T22:20:32.177939Z", - "shell.execute_reply": "2024-02-07T22:20:32.177455Z" + "iopub.execute_input": "2024-02-08T00:00:53.399160Z", + "iopub.status.busy": "2024-02-08T00:00:53.398767Z", + "iopub.status.idle": "2024-02-08T00:00:53.402668Z", + "shell.execute_reply": "2024-02-08T00:00:53.402187Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 408427f4d..552855170 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:35.313990Z", - "iopub.status.busy": "2024-02-07T22:20:35.313816Z", - "iopub.status.idle": "2024-02-07T22:20:36.922275Z", - "shell.execute_reply": "2024-02-07T22:20:36.921658Z" + "iopub.execute_input": "2024-02-08T00:00:56.196767Z", + "iopub.status.busy": "2024-02-08T00:00:56.196596Z", + "iopub.status.idle": "2024-02-08T00:00:57.333399Z", + "shell.execute_reply": "2024-02-08T00:00:57.332829Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-07 22:20:35-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-02-08 00:00:56-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.249, 2400:52e0:1a00::845:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... connected.\r\n" + "169.150.236.100, 2400:52e0:1a00::1069:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" ] }, { @@ -122,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -136,14 +136,7 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", + " inflating: data/train.txt \r\n", " inflating: data/valid.txt \r\n" ] }, @@ -151,9 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-07 22:20:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.33, 52.216.44.121, 3.5.9.100, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.33|:443... connected.\r\n", + "--2024-02-08 00:00:56-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.65, 52.216.34.89, 52.217.194.57, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.65|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,18 +167,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 32%[=====> ] 5.32M 26.6MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 96%[==================> ] 15.71M 39.0MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 40.1MB/s in 0.4s \r\n", + "pred_probs.npz 96%[==================> ] 15.71M 73.8MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 75.2MB/s in 0.2s \r\n", "\r\n", - "2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -202,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:36.924800Z", - "iopub.status.busy": "2024-02-07T22:20:36.924609Z", - "iopub.status.idle": "2024-02-07T22:20:37.975651Z", - "shell.execute_reply": "2024-02-07T22:20:37.975124Z" + "iopub.execute_input": "2024-02-08T00:00:57.335654Z", + "iopub.status.busy": "2024-02-08T00:00:57.335468Z", + "iopub.status.idle": "2024-02-08T00:00:58.349948Z", + "shell.execute_reply": "2024-02-08T00:00:58.349412Z" }, "nbsphinx": "hidden" }, @@ -216,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -242,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:37.978094Z", - "iopub.status.busy": "2024-02-07T22:20:37.977720Z", - "iopub.status.idle": "2024-02-07T22:20:37.981475Z", - "shell.execute_reply": "2024-02-07T22:20:37.981015Z" + "iopub.execute_input": "2024-02-08T00:00:58.352415Z", + "iopub.status.busy": "2024-02-08T00:00:58.352000Z", + "iopub.status.idle": "2024-02-08T00:00:58.355349Z", + "shell.execute_reply": "2024-02-08T00:00:58.354896Z" } }, "outputs": [], @@ -295,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:37.983434Z", - "iopub.status.busy": "2024-02-07T22:20:37.983151Z", - "iopub.status.idle": "2024-02-07T22:20:37.986159Z", - "shell.execute_reply": "2024-02-07T22:20:37.985712Z" + "iopub.execute_input": "2024-02-08T00:00:58.357557Z", + "iopub.status.busy": "2024-02-08T00:00:58.357166Z", + "iopub.status.idle": "2024-02-08T00:00:58.360004Z", + "shell.execute_reply": "2024-02-08T00:00:58.359557Z" }, "nbsphinx": "hidden" }, @@ -316,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:37.988170Z", - "iopub.status.busy": "2024-02-07T22:20:37.987840Z", - "iopub.status.idle": "2024-02-07T22:20:47.095100Z", - "shell.execute_reply": "2024-02-07T22:20:47.094496Z" + "iopub.execute_input": "2024-02-08T00:00:58.362059Z", + "iopub.status.busy": "2024-02-08T00:00:58.361747Z", + "iopub.status.idle": "2024-02-08T00:01:07.375886Z", + "shell.execute_reply": "2024-02-08T00:01:07.375279Z" } }, "outputs": [], @@ -393,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:47.097690Z", - "iopub.status.busy": "2024-02-07T22:20:47.097345Z", - "iopub.status.idle": "2024-02-07T22:20:47.103018Z", - "shell.execute_reply": "2024-02-07T22:20:47.102553Z" + "iopub.execute_input": "2024-02-08T00:01:07.378420Z", + "iopub.status.busy": "2024-02-08T00:01:07.378100Z", + "iopub.status.idle": "2024-02-08T00:01:07.384174Z", + "shell.execute_reply": "2024-02-08T00:01:07.383731Z" }, "nbsphinx": "hidden" }, @@ -436,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:47.104811Z", - "iopub.status.busy": "2024-02-07T22:20:47.104636Z", - "iopub.status.idle": "2024-02-07T22:20:47.452942Z", - "shell.execute_reply": "2024-02-07T22:20:47.452409Z" + "iopub.execute_input": "2024-02-08T00:01:07.386092Z", + "iopub.status.busy": "2024-02-08T00:01:07.385770Z", + "iopub.status.idle": "2024-02-08T00:01:07.712835Z", + "shell.execute_reply": "2024-02-08T00:01:07.712280Z" } }, "outputs": [], @@ -476,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:47.455228Z", - "iopub.status.busy": "2024-02-07T22:20:47.455038Z", - "iopub.status.idle": "2024-02-07T22:20:47.459456Z", - "shell.execute_reply": "2024-02-07T22:20:47.458974Z" + "iopub.execute_input": "2024-02-08T00:01:07.715171Z", + "iopub.status.busy": "2024-02-08T00:01:07.714983Z", + "iopub.status.idle": "2024-02-08T00:01:07.719127Z", + "shell.execute_reply": "2024-02-08T00:01:07.718612Z" } }, "outputs": [ @@ -551,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:47.461295Z", - "iopub.status.busy": "2024-02-07T22:20:47.461140Z", - "iopub.status.idle": "2024-02-07T22:20:49.817383Z", - "shell.execute_reply": "2024-02-07T22:20:49.816736Z" + "iopub.execute_input": "2024-02-08T00:01:07.721205Z", + "iopub.status.busy": "2024-02-08T00:01:07.720894Z", + "iopub.status.idle": "2024-02-08T00:01:09.991203Z", + "shell.execute_reply": "2024-02-08T00:01:09.990397Z" } }, "outputs": [], @@ -576,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.820516Z", - "iopub.status.busy": "2024-02-07T22:20:49.819779Z", - "iopub.status.idle": "2024-02-07T22:20:49.823692Z", - "shell.execute_reply": "2024-02-07T22:20:49.823151Z" + "iopub.execute_input": "2024-02-08T00:01:09.994297Z", + "iopub.status.busy": "2024-02-08T00:01:09.993597Z", + "iopub.status.idle": "2024-02-08T00:01:09.997604Z", + "shell.execute_reply": "2024-02-08T00:01:09.997062Z" } }, "outputs": [ @@ -615,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.825615Z", - "iopub.status.busy": "2024-02-07T22:20:49.825439Z", - "iopub.status.idle": "2024-02-07T22:20:49.830967Z", - "shell.execute_reply": "2024-02-07T22:20:49.830515Z" + "iopub.execute_input": "2024-02-08T00:01:09.999626Z", + "iopub.status.busy": "2024-02-08T00:01:09.999251Z", + "iopub.status.idle": "2024-02-08T00:01:10.004932Z", + "shell.execute_reply": "2024-02-08T00:01:10.004388Z" } }, "outputs": [ @@ -796,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.833007Z", - "iopub.status.busy": "2024-02-07T22:20:49.832708Z", - "iopub.status.idle": "2024-02-07T22:20:49.858073Z", - "shell.execute_reply": "2024-02-07T22:20:49.857632Z" + "iopub.execute_input": "2024-02-08T00:01:10.007156Z", + "iopub.status.busy": "2024-02-08T00:01:10.006650Z", + "iopub.status.idle": "2024-02-08T00:01:10.031991Z", + "shell.execute_reply": "2024-02-08T00:01:10.031546Z" } }, "outputs": [ @@ -901,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.859992Z", - "iopub.status.busy": "2024-02-07T22:20:49.859817Z", - "iopub.status.idle": "2024-02-07T22:20:49.863878Z", - "shell.execute_reply": "2024-02-07T22:20:49.863329Z" + "iopub.execute_input": "2024-02-08T00:01:10.034012Z", + "iopub.status.busy": "2024-02-08T00:01:10.033696Z", + "iopub.status.idle": "2024-02-08T00:01:10.037460Z", + "shell.execute_reply": "2024-02-08T00:01:10.036924Z" } }, "outputs": [ @@ -978,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.865694Z", - "iopub.status.busy": "2024-02-07T22:20:49.865524Z", - "iopub.status.idle": "2024-02-07T22:20:51.295184Z", - "shell.execute_reply": "2024-02-07T22:20:51.294642Z" + "iopub.execute_input": "2024-02-08T00:01:10.039392Z", + "iopub.status.busy": "2024-02-08T00:01:10.039074Z", + "iopub.status.idle": "2024-02-08T00:01:11.408481Z", + "shell.execute_reply": "2024-02-08T00:01:11.407944Z" } }, "outputs": [ @@ -1153,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:51.297251Z", - "iopub.status.busy": "2024-02-07T22:20:51.297061Z", - "iopub.status.idle": "2024-02-07T22:20:51.301790Z", - "shell.execute_reply": "2024-02-07T22:20:51.301246Z" + "iopub.execute_input": "2024-02-08T00:01:11.410630Z", + "iopub.status.busy": "2024-02-08T00:01:11.410275Z", + "iopub.status.idle": "2024-02-08T00:01:11.414236Z", + "shell.execute_reply": "2024-02-08T00:01:11.413795Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index f7b5c0e67..81c1adab7 100644 Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 22b5577ab..1449de6b0 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index d447039ed..d394fd152 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index b8ba3c9d0..cc83d8d1b 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 5fb0ebb01..c0747b2b1 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 468becfb1..25b6f75ac 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index b80c9d15c..fb687834d 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index c4f3517ff..d33a32bff 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index e099ab08d..c7af032d0 100644 Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 4ef0b1f08..4ae06111e 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 386c6440c..e2192bf3b 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 5acd1cdfa..87e9eeebb 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index f7af43f93..acb5f218b 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index 725e738a4..767c4450d 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 138868692..8b4925deb 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 42faebda6..a884bbc40 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index e17d6bce8..2082b306c 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 5461b94d3..468214b53 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index 9f171f425..ffb7a6aec 100644 Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index 853fa8f9f..dd4cea2a6 100644 Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 339f73c03..90d01e1ab 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index e1e7b3580..7df3c5f84 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index d84dc1be3..de35e30ef 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 6939de730..caf107126 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index ec836b743..c4931019a 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index b78fee999..4f154be30 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 5b779141e..5701497fd 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index a1bb4c374..c98db501c 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 2931c3f3b..a5da30c44 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 496ff82ba..374b56832 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -19,7 +19,7 @@ "Quickstart\n", "
\n", " \n", - "cleanlab finds label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find label issues in your multi-label dataset:\n", + "cleanlab finds data/label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find issues in your multi-label dataset:\n", "\n", "
\n", " \n", @@ -28,10 +28,10 @@ "\n", "# Assuming your dataset has a label column named 'label'\n", "lab = Datalab(dataset, label_name='label', task='multilabel')\n", + "# To detect more issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", "\n", - "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}})\n", - "\n", - "ranked_label_issues = lab.get_issues(\"label\").sort_values(\"label_score\")\n", + "lab.report()\n", "```\n", "\n", " \n", @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -553,6 +553,16 @@ "print(f\"Label quality scores of the first 10 examples in dataset:\\n{scores[:10]}\")" ] }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d6", + "metadata": {}, + "source": [ + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset.\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks)." + ] + }, { "cell_type": "markdown", "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d5", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 18e5c833d..1fed0cdaa 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 206ce0d9c..cd3edb0ed 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 5e6ecaaa9..e2ffc2a97 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 928c700d4..0bf8faadf 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index 0e04ce609..382d08d62 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 11a5c643d..b8651e3af 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 2cb39ad6b..2328cbcda 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 5b7f7c3eb..07cbc934a 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 75, 76, 83, 85, 86], "generate_noise_matrix_from_trac": [0, 1, 75, 76, 83, 85, 86], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 31, 33, 35, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 78, 79, 82, 83, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 41, 43, 45, 48, 50, 55, 58, 59, 60, 72, 81, 82], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 55, 57, 58, 59, 60, 78, 87, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 74, 75, 76, 79, 81, 83, 85, 86, 93], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 78, 79, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 86, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 74, 75, 76, 79, 80, 88, 93], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 88, 91], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 33, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 41, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 46, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 61, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 92, 93], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 55, 58, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 74, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 33, 35, 48, 49, 59, 61, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 33, 35, 41, 48, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 55, 58, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 62, 72, 81, 82, 83, 85, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 33, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 74, 75, 81, 83, 85, 86, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 55, 58, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 55, 58, 62, 72, 81, 87], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 93, 94], "made": [2, 4, 14, 31, 35, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 79, 80, 82, 86, 91, 92, 93, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 79, 81, 82, 83, 86, 89, 93], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 81, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 31, 34, 35, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 37, 41, 50, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 70, 73, 83, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 33, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 86, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 55, 58, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 74, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 81, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 33, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 78, 79, 80, 81, 82, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 33, 34, 61, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 81, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 86, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 74, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 31, 35, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 37, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 79, 82, 86, 93], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62, 81], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 33, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 61, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62], "longer": [2, 40, 41, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 86, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 81, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 41, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 31, 35, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 33, 35, 61, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 55, 58, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 33, 35, 61, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 33, 35, 48, 49, 61, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 33, 35, 61, 62], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 74, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 33, 35, 48, 49, 61, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 46, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 61, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 10, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "union": [3, 4, 10, 41, 45, 46, 52, 58, 62, 66, 70, 81], "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 88, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 79, 80, 81, 82, 83, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 44, 54, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 88, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33, 34], "amongst": [3, 8], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 86, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 35], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83, 86], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 34, 36, 64, 66], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 41, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 19, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 48, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 86, 88, 90, 92, 93, 94], "With": [4, 34, 79, 83, 85, 90, 91, 93, 94], "usag": [4, 34, 49], "issue_summari": [4, 8, 11, 75], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84], "someth": [4, 5, 31, 35, 60], "123": [4, 75, 76], "456": [4, 74, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82, 86], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 74, 75, 79, 81, 93], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 83], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 86, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 78, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51, 79, 93], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 78, 79, 83], "violat": [8, 78, 79, 83], "assumpt": [8, 78, 79, 83], "changepoint": [8, 78, 79, 83], "shift": [8, 78, 79, 83], "drift": [8, 76, 78, 83], "autocorrel": [8, 78, 79, 83], "almost": [8, 78, 79, 83], "adjac": [8, 78, 79, 83], "tend": [8, 30, 39, 78, 79, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 83, 88, 89, 90, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 88], "subpar": 8, "special": [8, 44], "techniqu": 8, "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 78, 81, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 19, 24, 75], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18, 19], "underperforminggroupissuemanag": [8, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16, 19], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 75, 80, 85, 87, 91, 94], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 82, 85, 86, 87, 91, 94], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 31, 35, 49, 60, 75, 76, 82, 85], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "map_to_int": 10, "is_multilabel": 10, "hold": 10, "abc": [10, 20], "is_avail": [10, 82], "multilabel": [10, 13, 42, 86], "multiclass": [10, 13, 41, 45, 50, 86], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58, 81], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 83], "ab": [16, 83], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 19, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "get_health_summari": [19, 21], "ood": [19, 24, 59, 60, 75, 76, 79, 82, 83, 88], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "regressionlabelissuemanag": [19, 25, 26], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 91], "priori": [20, 83], "global": [20, 31, 35], "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 44, 54, 57, 58], "scalartyp": 21, "covari": [21, 62, 90], "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83, 86], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 83], "null_track": 23, "extend": [23, 42, 82, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 82, 83, 85, 87, 88, 91], "keepdim": [27, 81], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 74, 85], "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 81, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 41, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 33, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 33, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": [31, 33], "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 33, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 33, 35], "__call__": [31, 33, 35, 37, 41], "add_modul": [31, 33, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 33, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 79, 82, 88, 93], "requires_grad": [31, 35], "bfloat16": [31, 33, 35], "cast": [31, 35, 74], "buffer": [31, 33, 35], "datatyp": [31, 35], "member": [31, 35, 41, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "call_super_init": [31, 33, 35], "immedi": [31, 35, 88], "compil": [31, 33, 35, 49], "cpu": [31, 33, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 33, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 33, 35], "dump_patch": [31, 33, 35], "eval": [31, 33, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 33, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 33, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 33, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 33, 35], "state_dict": [31, 33, 35], "set_extra_st": [31, 33, 35], "build": [31, 35, 82, 91], "picklabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82], "pickl": [31, 35, 87], "get_paramet": [31, 33, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 87, 91, 94], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82, 86], "named_modul": [31, 33, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 33, 35], "load_state_dict": [31, 33, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "inplac": [31, 35, 85], "preserv": [31, 35, 45], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 33, 35], "prefix": [31, 35, 74, 94], "remove_dupl": [31, 35], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 33, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "named_paramet": [31, 33, 35], "register_backward_hook": [31, 33, 35], "deprec": [31, 35, 38, 74, 79, 81, 93], "favor": [31, 35], "register_full_backward_hook": [31, 33, 35], "removablehandl": [31, 35], "register_buff": [31, 33, 35], "running_mean": [31, 35], "register_forward_hook": [31, 33, 35], "with_kwarg": [31, 35], "always_cal": [31, 35], "won": [31, 35, 75, 76, 81, 86], "possibli": [31, 35, 78, 92], "fire": [31, 35, 80], "register_module_forward_hook": [31, 35], "regardless": [31, 35, 75, 76], "register_forward_pre_hook": [31, 33, 35], "And": [31, 35], "forward_pr": [31, 35], "register_module_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 55, 58, 83, 87], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_module_full_backward_hook": [31, 35], "register_full_backward_pre_hook": [31, 33, 35], "backward_pr": [31, 35], "register_module_full_backward_pre_hook": [31, 35], "register_load_state_dict_post_hook": [31, 33, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "register_modul": [31, 33, 35], "register_paramet": [31, 33, 35], "register_state_dict_pre_hook": [31, 33, 35], "keep_var": [31, 35], "requires_grad_": [31, 33, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 33, 35], "share_memory_": [31, 35], "destin": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 74, 81], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35, 74], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 33, 35], "storag": [31, 35, 79, 93], "dst_type": [31, 35], "xpu": [31, 33, 35], "zero_grad": [31, 33, 35, 82], "set_to_non": [31, 35], "reset": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": [32, 33], "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 33, 35, 81, 82], "initialize_lr_schedul": [32, 33], "lr": [32, 33, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87], "epoch_decay_start": 32, "80": [32, 78, 86, 90, 91, 92, 94], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": [32, 33], "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": [32, 33], "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "adj_confident_thresholds_shar": [33, 34], "labels_shar": [33, 34], "pred_probs_shar": [33, 34], "labelinspector": [33, 34, 81], "get_num_issu": [33, 34], "get_quality_scor": [33, 34], "update_confident_threshold": [33, 34], "score_label_qu": [33, 34], "split_arr": [33, 34], "mnist_pytorch": 33, "get_mnist_dataset": [33, 35], "get_sklearn_digits_dataset": [33, 35], "simplenet": [33, 35], "batch_siz": [33, 34, 35, 64, 66, 81, 82, 88, 91], "log_interv": [33, 35], "momentum": [33, 35], "no_cuda": [33, 35], "test_batch_s": [33, 35, 82], "loader": [33, 35, 82], "set_predict_proba_request": [33, 35], "set_predict_request": [33, 35], "coteach": [33, 73], "mini": [34, 64, 66, 81], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 37, 41, 52, 54, 60, 68, 70, 81, 83, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87], "psutil": [34, 36, 64, 66], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "batch_result": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 88], "aggreg": [34, 37, 41, 50, 54, 57, 60, 70, 81, 83, 85], "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 37, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 87, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "64": [35, 78, 82, 83, 87, 91, 92], "01": [35, 60, 62, 74, 82, 83, 86, 87, 88, 91], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 37, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 74, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "remove_noise_from_class": [37, 45], "clip_noise_r": [37, 45], "clip_valu": [37, 45], "value_count": [37, 45, 81], "value_counts_fill_missing_class": [37, 45], "get_missing_class": [37, 45], "round_preserving_sum": [37, 45], "round_preserving_row_tot": [37, 45], "estimate_pu_f1": [37, 45], "confusion_matrix": [37, 45], "print_square_matrix": [37, 45], "print_noise_matrix": [37, 45, 83], "print_inverse_noise_matrix": [37, 45], "print_joint_matrix": [37, 45, 83], "compress_int_arrai": [37, 45], "train_val_split": [37, 45], "subset_x_i": [37, 45], "subset_label": [37, 45], "subset_data": [37, 45], "extract_indices_tf": [37, 45], "unshuffle_tensorflow_dataset": [37, 45], "is_torch_dataset": [37, 45], "is_tensorflow_dataset": [37, 45], "csr_vstack": [37, 45], "append_extra_datapoint": [37, 45], "get_num_class": [37, 45], "num_unique_class": [37, 45], "get_unique_class": [37, 45], "format_label": [37, 45], "smart_display_datafram": [37, 45], "force_two_dimens": [37, 45], "latent_algebra": [37, 73], "compute_ps_py_inv_noise_matrix": [37, 39], "compute_py_inv_noise_matrix": [37, 39], "compute_inv_noise_matrix": [37, 39], "compute_noise_matrix_from_invers": [37, 39], "compute_pi": [37, 39], "compute_pyx": [37, 39], "label_quality_util": 37, "get_normalized_entropi": [37, 38], "multilabel_util": [37, 86], "stack_compl": [37, 42], "get_onehot_num_class": [37, 42], "int2onehot": [37, 42, 86], "onehot2int": [37, 42, 86], "multilabel_scor": [37, 54], "classlabelscor": [37, 41], "from_str": [37, 41], "__contains__": [37, 41], "__getitem__": [37, 41], "__iter__": [37, 41], "__len__": [37, 41], "exponential_moving_averag": [37, 41, 54], "softmin": [37, 41, 54, 57, 66, 70], "possible_method": [37, 41], "multilabelscor": [37, 41], "get_class_label_quality_scor": [37, 41], "multilabel_pi": [37, 41], "get_cross_validated_multilabel_pred_prob": [37, 41], "transform_distances_to_scor": [37, 43], "token_classification_util": [37, 94], "get_sent": [37, 44, 94], "filter_sent": [37, 44, 94], "process_token": [37, 44], "merge_prob": [37, 44], "color_sent": [37, 44], "assert_valid_input": [37, 46], "assert_valid_class_label": [37, 46], "assert_nonempty_input": [37, 46], "assert_indexing_work": [37, 46], "labels_to_arrai": [37, 46], "labels_to_list_multilabel": [37, 46], "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "true_labels_class_count": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 74, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "qualnam": 41, "boundari": [41, 75, 76], "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 82, 85, 86, 87, 90, 91, 94], "scorer": 41, "typeerror": 41, "12": [41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "alias": 41, "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 82, 83, 87], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "aggregated_scor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "42": [41, 79, 80, 82, 87, 91, 94], "452": 41, "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 53, 54], "ml_scorer": 41, "binar": [41, 42], "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "pred_prob_slic": 42, "onehot": 42, "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot_matrix": 42, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "nbitbas": [44, 54], "probs_merg": 44, "55": [44, 80, 82, 87, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "new_sum": 45, "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 88, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "obviou": 45, "cgdeboer": 45, "iteround": 45, "reach": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "BE": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "joint_matrix": 45, "num_possible_valu": 45, "holdout_idx": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "allow_shuffl": 45, "turn": [45, 72, 87], "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 88, 94], "bottom": [45, 55, 58, 87], "to_data": 45, "from_data": 45, "taken": 45, "label_matrix": 45, "canon": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "html": [45, 55, 58, 59, 78, 81, 83], "allow_missing_class": 46, "allow_one_class": 46, "length_x": 46, "labellik": 46, "labels_list": [46, 52], "keraswrappermodel": [48, 49, 72], "keraswrappersequenti": [48, 49], "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76, 81], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": [51, 53], "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": [51, 53], "overall_multilabel_health_scor": [51, 53], "multilabel_health_summari": [51, 53], "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": [52, 53], "per_class_label_issu": 52, "label_issues_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "corner": [55, 58, 87], "xyxi": [55, 58, 87], "io": [55, 58, 74, 80], "keras_cv": [55, 58], "bounding_box": [55, 58], "detectron": [55, 58, 87], "detectron2": [55, 58, 87], "readthedoc": [55, 58], "en": [55, 58], "latest": [55, 58], "visual": [55, 56, 58, 75, 76, 82, 90, 92, 94], "draw_box": [55, 58], "mmdetect": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "issues_from_scor": [56, 57, 65, 66, 67, 69, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": [56, 57], "compute_badloc_box_scor": [56, 57], "compute_swap_box_scor": [56, 57], "pool_box_scores_per_imag": [56, 57], "object_counts_per_imag": [56, 58], "bounding_box_size_distribut": [56, 58], "class_label_distribut": [56, 58], "get_sorted_bbox_count_idx": [56, 58], "plot_class_size_distribut": [56, 58], "plot_class_distribut": [56, 58], "get_average_per_class_confusion_matrix": [56, 58], "calculate_per_class_metr": [56, 58], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "low_probability_threshold": 57, "scores_badloc": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "box_scor": 57, "image_scor": [57, 66, 91], "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "down": 58, "bbox_siz": 58, "class_distribut": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 78, 80, 82, 83, 90, 91], "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": 60, "AND": [60, 79], "get_epistemic_uncertainti": [61, 62], "get_aleatoric_uncertainti": [61, 62], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "display_issu": [65, 66, 67, 68, 69, 70, 71, 91, 94], "common_label_issu": [65, 67, 69, 71, 91, 94], "filter_by_class": [65, 67, 91], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "highlight": [67, 71, 75, 76, 78, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "class_index": 67, "issues_subset": [67, 71], "filter_by_token": [69, 71, 94], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 82, 88, 91], "02": [70, 75, 76, 82, 83, 87, 88, 91, 94], "03": [70, 78, 80, 82, 83, 87, 88, 91, 94], "04": [70, 78, 82, 87, 88, 91], "08": [70, 83, 87, 88, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "link": [72, 74, 80, 87], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "huggingface_hub": 74, "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "ffmpeg": 74, "system": [74, 78, 79, 82, 91], "backend": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "opt": [74, 76, 79, 93], "hostedtoolcach": [74, 76, 79, 93], "x64": [74, 76, 79, 93], "lib": [74, 76, 79, 93], "python3": [74, 76, 79, 93], "site": [74, 76, 79, 93], "650": 74, "userwarn": [74, 75, 76, 79, 93], "stft": 74, "return_complex": 74, "view_as_r": 74, "recov": 74, "trigger": 74, "aten": 74, "src": 74, "nativ": 74, "spectralop": 74, "cpp": 74, "863": [74, 93], "_vf": 74, "n_fft": 74, "hop_length": 74, "win_length": 74, "attr": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196311": 74, "319459": 74, "478975": 74, "2890875": 74, "8170238": 74, "89265": 74, "24": [74, 80, 83, 85, 87, 91], "898056": 74, "256195": 74, "559641": 74, "559721": 74, "62067": 74, "285245": 74, "21": [74, 75, 80, 81, 82, 83, 87, 91, 94], "709627": 74, "5033693": 74, "913803": 74, "819831": 74, "1831515": 74, "208763": 74, "084257": 74, "3210397": 74, "005453": 74, "216152": 74, "478235": 74, "6821785": 74, "053807": 74, "242471": 74, "091424": 74, "78334856": 74, "03954": 74, "23": [74, 80, 82, 83, 87, 91], "569176": 74, "19": [74, 79, 80, 81, 82, 83, 88, 90, 91, 93], "761097": 74, "1258295": 74, "753237": 74, "3508866": 74, "598274": 74, "23712": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9708": 74, "probabilit": [74, 93], "9976": 74, "986": 74, "002161": 74, "176": [74, 80, 83, 86], "002483": 74, "2318": 74, "004411": 74, "1005": 74, "004857": 74, "1871": 74, "007494": 74, "investig": 74, "040587": 74, "999207": 74, "999377": 74, "975220": 74, "999367": 74, "18": [74, 79, 80, 81, 83, 87, 88, 90, 91, 93], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85, 86], "516": 74, "1946": 74, "469": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_25": 74, "7_nicolas_43": 74, "6_theo_27": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_yweweler_35": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 88, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 83, 87, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 88, 91, 92], "006940": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91, 94], "014828": 75, "107": [75, 76, 83, 86], "021241": 75, "120": [75, 76, 92], "026407": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 88, 91, 92], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 88, 91, 94], "51": [75, 76, 78, 80, 83, 87, 91], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 93], "runner": [75, 76, 79, 93], "329": [75, 82, 87], "359": 75, "338": 75, "34": [75, 80, 83, 85, 87, 91, 94], "54": [75, 80, 82, 83, 87, 91], "039122": 75, "53": [75, 76, 78, 80, 86, 87, 91, 92], "044598": 75, "105": 75, "105196": 75, "133654": 75, "43": [75, 80, 82, 83, 87, 88, 91], "168033": 75, "125": 75, "101107": 75, "37": [75, 80, 82, 88, 91], "183382": 75, "109": [75, 80, 87], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 82, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 93], "92": [75, 82, 83, 87, 91, 92], "259024": 75, "583757e": 75, "91": [75, 87, 91], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 82, 83, 87, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "26": [75, 80, 82, 83, 85, 87, 88, 91, 94], "047581": 75, "090635": 75, "129591": 75, "65": [75, 87, 91, 92], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001908": 76, "58": [76, 78, 80, 82, 83, 87, 91, 92], "003564": 76, "007331": 76, "008963": 76, "009664": 76, "0227": 76, "is_class_imbalance_issu": 76, "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 90, 91, 93], "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "is_null_issu": 76, "is_non_iid_issu": [76, 78, 79, 83], "859131": 76, "417707": 76, "664083": 76, "970324": 76, "816953": 76, "375317": 76, "641516": 76, "890575": 76, "531021": 76, "460593": 76, "601188": 76, "826147": 76, "752808": 76, "321635": 76, "562539": 76, "948362": 76, "090243": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013445": 76, "025184": 76, "026376": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 83, 87, 90, 91, 92], "94": [78, 80, 83, 87, 90, 91, 92], "78": [78, 80, 82, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 83, 87, 91, 92], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 82, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87, 94], "187": [78, 80], "27": [78, 80, 82, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 86, 87, 90, 91], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 88, 90, 91], "96": [78, 80, 83, 86, 87, 90, 91, 94], "lt": [78, 79, 80, 82, 85, 88, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 82, 87, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "visa_or_mastercard": [79, 93], "getting_spare_card": [79, 93], "apple_pay_or_google_pai": [79, 93], "beneficiary_not_allow": [79, 93], "change_pin": [79, 93], "card_about_to_expir": [79, 93], "lost_or_stolen_phon": [79, 93], "supported_cards_and_curr": [79, 93], "card_payment_fee_charg": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "_util": [79, 93], "831": [79, 93], "typedstorag": [79, 93], "untypedstorag": [79, 93], "untyped_storag": [79, 93], "fget": [79, 93], "__get__": [79, 93], "owner": [79, 93], "400": [79, 93], "data_dict": [79, 83, 85], "85": [79, 87, 91], "38": [79, 80, 82, 87, 91], "9710": 79, "981": 79, "974": 79, "000146": 79, "982": [79, 80], "000224": 79, "971": 79, "000507": 79, "980": [79, 80], "000960": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 90], "095724": 79, "148": 79, "006237": 79, "546": 79, "099341": 79, "514": 79, "006485": 79, "481": 79, "123418": 79, "008165": 79, "0000": [79, 80, 83], "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 91, 94], "574915": 79, "31": [79, 80, 82, 83, 85, 87, 88, 91], "575507": 79, "575874": 79, "792090": 79, "257611": 79, "698710": 79, "182121": 79, "771619": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 82, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 91], "88": [80, 81, 82, 83, 86, 87, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 91, 92], "32635": 80, "32636": 80, "47": [80, 82, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "93": [80, 87, 90, 91, 92, 94], "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 88, 91, 94], "41": [80, 82, 87, 90, 91], "44": [80, 86, 87, 91, 93, 94], "71": [80, 82, 83, 87, 90, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": 80, "035": 80, "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87], "98": [80, 81, 90, 91], "452381": 80, "459770": 80, "72": [80, 82, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 91], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 88, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 83, 87, 90, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "nbsp": [81, 83], "cleanlearninginot": [81, 83], "fittedcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "tmp": 81, "ipykernel_6061": 81, "1995098996": 81, "deprecationwarn": 81, "dataframegroupbi": 81, "include_group": 81, "silenc": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "482": 82, "720": 82, "872": 82, "195": 82, "584": 82, "stderr": [82, 88, 91], "sphinxverbatim": [82, 88, 91, 94], "78it": [82, 91], "59it": [82, 91], "24it": [82, 91], "40it": [82, 91], "62": [82, 83, 87, 90, 91], "55it": [82, 91], "66it": [82, 88, 91], "42it": [82, 91], "32it": [82, 91], "31it": [82, 88, 91], "04it": [82, 91], "70it": [82, 88, 91], "22it": [82, 91], "79it": [82, 88, 91], "493": 82, "060": 82, "878": 82, "330": [82, 87], "505": 82, "623": 82, "28it": [82, 91], "46it": [82, 91], "01it": [82, 91], "99it": [82, 91], "69it": [82, 88, 91], "45it": [82, 91], "60it": [82, 91], "41it": [82, 91], "65it": [82, 91], "54it": 82, "86it": [82, 91], "63": [82, 83, 87, 88, 90, 91], "94it": [82, 91], "49it": [82, 88, 91], "476": 82, "340": 82, "760": 82, "328": [82, 87], "310": 82, "601": 82, "61it": [82, 91], "03it": [82, 91], "57it": [82, 91], "37it": [82, 91], "87it": [82, 88, 91], "50it": [82, 91], "39it": [82, 91], "21it": [82, 91], "17it": [82, 88, 91], "08it": [82, 91], "19it": [82, 91], "75it": [82, 88], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7714": 82, "3772": 82, "3585": 82, "166": 82, "3651": 82, "27080": 82, "873833e": 82, "40378": 82, "915575e": 82, "25316": 82, "390277e": 82, "06": [82, 83, 87, 88, 91, 94], "2090": 82, "751164e": 82, "14999": 82, "881301e": 82, "9569": 82, "11262": 82, "000003": 82, "19228": 82, "000010": 82, "dress": 82, "32657": 82, "000013": 82, "21282": 82, "000016": 82, "53564": 82, "000018": 82, "pullov": 82, "6321": 82, "30968": 82, "001267": 82, "30659": 82, "000022": [82, 94], "47824": 82, "001454": 82, "3370": 82, "000026": 82, "54565": 82, "001854": 82, "9762": 82, "258": 82, "47139": 82, "000033": 82, "166980": 82, "986195": 82, "997205": 82, "948781": 82, "999358": 82, "54078": 82, "17371": 82, "000025": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "637318e": 83, "896262e": 83, "548391e": 83, "923417e": 83, "375075e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87, 94], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "695223": 83, "323529": 83, "523015": 83, "013720": 83, "675727": 83, "646521": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 88, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "69": [83, 90, 91], "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "196": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "121": [83, 93, 94], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": 83, "194": 83, "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87], "169": 83, "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "156": 83, "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "300": [85, 94], "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "na": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736118": 85, "757751": 85, "782232": 85, "715565": 85, "824256": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070564": 85, "216078": 85, "119188": 85, "alongisd": 85, "244981": 85, "208333": 85, "295979": 85, "294118": 85, "324197": 85, "310345": 85, "355316": 85, "346154": 85, "439732": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "606999": 85, "a0015": 85, "609526": 85, "678571": 85, "a0011": 85, "621103": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "ranked_label_issu": [86, 92, 93], "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 91], "275": 86, "267": 86, "225": 86, "171": 86, "234": 86, "165": 86, "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87], "216": [86, 87, 94], "265": 86, "159": [86, 87], "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "begin": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "290": 87, "286": 87, "285": 87, "224": 87, "231": 87, "293": 87, "235": 87, "289": 87, "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": 87, "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "219": 87, "239": 87, "240": 87, "209": 87, "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": 87, "237": 87, "207": 87, "204": 87, "84": [87, 90, 91], "205": 87, "223": 87, "153": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": 87, "173": 87, "297": 87, "317": 87, "192": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "138": 87, "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "suppli": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000242946": 87, "3300460146483339": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "170498071": 88, "458752": 88, "4545271": 88, "76it": [88, 91], "3309568": 88, "18583304": 88, "64it": [88, 91], "6193152": 88, "23121327": 88, "9076736": 88, "25243096": 88, "18it": [88, 91], "11960320": 88, "26449931": 88, "14843904": 88, "27180695": 88, "17727488": 88, "27645215": 88, "20611072": 88, "27960133": 88, "23494656": 88, "28127845": 88, "26378240": 88, "28294948": 88, "20it": [88, 91], "29261824": 88, "28399986": 88, "90it": [88, 91], "32407552": 88, "29288533": 88, "37421056": 88, "35559850": 88, "43909120": 88, "44377286": 88, "88it": [88, 91], "52068352": 88, "55525436": 88, "53it": [88, 91], "61669376": 88, "67657342": 88, "80it": [88, 91], "73203712": 88, "81953829": 88, "84672512": 88, "91732954": 88, "67it": [88, 91], "96272384": 88, "98948948": 88, "10it": [88, 91], "107741184": 88, "103611942": 88, "25it": [88, 91], "119275520": 88, "107040423": 88, "130777088": 88, "109403134": 88, "82it": [88, 91], "142311424": 88, "111129043": 88, "58it": [88, 91], "153812992": 88, "112217547": 88, "05it": [88, 91], "165412864": 88, "113296111": 88, "93it": [88, 91], "66708420": 88, "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "unusu": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "636197": 90, "499503": 90, "843478": 90, "776647": 90, "350358": 90, "170547": 90, "706969": 90, "984759": 90, "812515": 90, "795928": 90, "identified_issu": [90, 93], "141": 90, "659": 90, "367": 90, "318": 90, "305": 90, "560": 90, "657": 90, "688": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "926": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "area": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "15347": 91, "153458": 91, "07it": 91, "30769": 91, "153898": 91, "46197": 91, "154067": 91, "61604": 91, "153518": 91, "76957": 91, "153377": 91, "81it": 91, "92295": 91, "153281": 91, "107770": 91, "153758": 91, "56it": 91, "123147": 91, "153622": 91, "15it": 91, "138510": 91, "153513": 91, "153862": 91, "153440": 91, "169207": 91, "153375": 91, "184566": 91, "153437": 91, "200027": 91, "153789": 91, "215446": 91, "153907": 91, "230924": 91, "154166": 91, "246392": 91, "154317": 91, "261824": 91, "153630": 91, "47it": 91, "277224": 91, "153736": 91, "292639": 91, "153857": 91, "308121": 91, "154142": 91, "35it": 91, "323536": 91, "154021": 91, "27it": 91, "338991": 91, "154177": 91, "354437": 91, "154259": 91, "369864": 91, "154160": 91, "91it": 91, "385349": 91, "154364": 91, "400786": 91, "154238": 91, "416218": 91, "431732": 91, "154520": 91, "13it": 91, "447185": 91, "153245": 91, "62it": 91, "462512": 91, "146732": 91, "477889": 91, "148766": 91, "493335": 91, "150430": 91, "33it": 91, "508611": 91, "151113": 91, "523989": 91, "151901": 91, "84it": 91, "539401": 91, "152559": 91, "554825": 91, "153058": 91, "570237": 91, "153371": 91, "585614": 91, "153487": 91, "601012": 91, "153632": 91, "616379": 91, "153190": 91, "63it": 91, "631701": 91, "153034": 91, "14it": 91, "647041": 91, "153139": 91, "662439": 91, "153387": 91, "00it": 91, "677783": 91, "153400": 91, "95it": 91, "693146": 91, "153465": 91, "36it": 91, "708494": 91, "153436": 91, "723849": 91, "153466": 91, "739196": 91, "153373": 91, "26it": 91, "754593": 91, "153549": 91, "34it": 91, "769949": 91, "150908": 91, "16it": 91, "785470": 91, "152179": 91, "801022": 91, "153170": 91, "816526": 91, "153726": 91, "832085": 91, "154281": 91, "847655": 91, "154701": 91, "863128": 91, "154543": 91, "878688": 91, "154857": 91, "894280": 91, "155173": 91, "909799": 91, "153932": 91, "925196": 91, "153134": 91, "940720": 91, "153757": 91, "956290": 91, "154335": 91, "971837": 91, "154670": 91, "43it": 91, "987409": 91, "154980": 91, "1003021": 91, "155319": 91, "1018554": 91, "155043": 91, "1034111": 91, "155190": 91, "83it": 91, "1049635": 91, "155203": 91, "1065196": 91, "155323": 91, "02it": 91, "1080813": 91, "155572": 91, "06it": 91, "1096371": 91, "155143": 91, "85it": 91, "1111933": 91, "155283": 91, "1127467": 91, "155297": 91, "30it": 91, "1143078": 91, "155537": 91, "1158632": 91, "155524": 91, "1174185": 91, "155271": 91, "1189714": 91, "155275": 91, "1205250": 91, "1220788": 91, "29it": 91, "1236320": 91, "1251850": 91, "154837": 91, "1267335": 91, "154514": 91, "1282844": 91, "154680": 91, "1298407": 91, "154960": 91, "1313976": 91, "155176": 91, "1329577": 91, "155424": 91, "12it": 91, "1345162": 91, "155550": 91, "1360737": 91, "155607": 91, "38it": 91, "1376313": 91, "155649": 91, "1391965": 91, "155908": 91, "1407556": 91, "155321": 91, "1423155": 91, "155479": 91, "77it": 91, "1438785": 91, "155724": 91, "1454384": 91, "155801": 91, "48it": 91, "1470014": 91, "155947": 91, "1485609": 91, "155913": 91, "1501201": 91, "155784": 91, "73it": 91, "1516780": 91, "155559": 91, "1532380": 91, "155687": 91, "1547949": 91, "155528": 91, "1563502": 91, "147324": 91, "1579008": 91, "149552": 91, "1594563": 91, "151300": 91, "1610073": 91, "152415": 91, "1625549": 91, "153107": 91, "1640959": 91, "153398": 91, "1656429": 91, "153784": 91, "1671823": 91, "147620": 91, "1687245": 91, "149534": 91, "1702248": 91, "145716": 91, "1717722": 91, "148327": 91, "1733212": 91, "150249": 91, "1748683": 91, "151562": 91, "1764179": 91, "152568": 91, "1779561": 91, "152939": 91, "1794870": 91, "152948": 91, "1810300": 91, "153350": 91, "1825723": 91, "153610": 91, "68it": 91, "1841251": 91, "154108": 91, "1856784": 91, "154470": 91, "98it": 91, "1872234": 91, "154379": 91, "1887674": 91, "154351": 91, "1903137": 91, "154430": 91, "74it": 91, "1918581": 91, "154231": 91, "1934021": 91, "154278": 91, "1949544": 91, "154560": 91, "1965001": 91, "154544": 91, "1980514": 91, "154717": 91, "1995986": 91, "154624": 91, "51it": 91, "2011449": 91, "154571": 91, "2026907": 91, "154431": 91, "2042351": 91, "150939": 91, "2057814": 91, "152025": 91, "2073170": 91, "152476": 91, "2088594": 91, "152999": 91, "2104043": 91, "153442": 91, "72it": 91, "2119443": 91, "153606": 91, "2134833": 91, "153691": 91, "2150260": 91, "153861": 91, "2165649": 91, "153505": 91, "2181031": 91, "153598": 91, "2196392": 91, "153515": 91, "2211745": 91, "153359": 91, "2227087": 91, "153376": 91, "2242478": 91, "153534": 91, "2257832": 91, "153331": 91, "2273166": 91, "153125": 91, "2288479": 91, "153046": 91, "2303800": 91, "153094": 91, "2319193": 91, "153342": 91, "97it": 91, "2334528": 91, "152346": 91, "2349765": 91, "151169": 91, "2364972": 91, "151434": 91, "2380298": 91, "151975": 91, "2395754": 91, "152744": 91, "2411076": 91, "152884": 91, "2426567": 91, "153489": 91, "2441950": 91, "153587": 91, "2457394": 91, "153839": 91, "2472901": 91, "154205": 91, "2488322": 91, "154163": 91, "11it": 91, "2503739": 91, "153004": 91, "2519042": 91, "147381": 91, "2534620": 91, "149823": 91, "2550145": 91, "151413": 91, "71it": 91, "2565630": 91, "152427": 91, "2581060": 91, "152981": 91, "2596553": 91, "153559": 91, "2612027": 91, "153910": 91, "2627562": 91, "154337": 91, "2643066": 91, "2658563": 91, "154668": 91, "2674058": 91, "154750": 91, "2689580": 91, "154890": 91, "2705071": 91, "2720555": 91, "154630": 91, "2736166": 91, "155070": 91, "2751724": 91, "155222": 91, "2767247": 91, "155078": 91, "2782756": 91, "154978": 91, "09it": 91, "2798255": 91, "154977": 91, "2813789": 91, "155083": 91, "2829298": 91, "152520": 91, "2844801": 91, "153263": 91, "2860237": 91, "153586": 91, "2875673": 91, "153813": 91, "2891059": 91, "153744": 91, "2906451": 91, "153793": 91, "2921833": 91, "153778": 91, "2937213": 91, "153645": 91, "2952579": 91, "153613": 91, "2967942": 91, "2983271": 91, "150146": 91, "2998477": 91, "150708": 91, "3014011": 91, "152080": 91, "3029518": 91, "152969": 91, "3045037": 91, "153629": 91, "3060406": 91, "3075743": 91, "152764": 91, "3091023": 91, "152634": 91, "3106414": 91, "153013": 91, "3121808": 91, "153288": 91, "3137276": 91, "153703": 91, "3152648": 91, "153568": 91, "3168071": 91, "153762": 91, "3183450": 91, "153768": 91, "3198898": 91, "153979": 91, "3214297": 91, "153771": 91, "3229715": 91, "153892": 91, "3245105": 91, "153859": 91, "3260519": 91, "153941": 91, "3275914": 91, "153716": 91, "3291386": 91, "154014": 91, "3306788": 91, "153609": 91, "3322285": 91, "153972": 91, "3337683": 91, "153858": 91, "3353124": 91, "154022": 91, "3368625": 91, "154316": 91, "3384057": 91, "154300": 91, "3399488": 91, "154131": 91, "3414954": 91, "154286": 91, "3430466": 91, "154534": 91, "3445934": 91, "154576": 91, "3461392": 91, "154214": 91, "3476836": 91, "154280": 91, "3492331": 91, "154479": 91, "3507875": 91, "154766": 91, "3523352": 91, "154673": 91, "3538822": 91, "154679": 91, "3554370": 91, "154917": 91, "3569906": 91, "155047": 91, "44it": 91, "3585430": 91, "155102": 91, "3600951": 91, "155132": 91, "3616465": 91, "150887": 91, "3632029": 91, "152284": 91, "3647567": 91, "153198": 91, "3663094": 91, "153810": 91, "3678598": 91, "154174": 91, "3694138": 91, "154536": 91, "3709658": 91, "154732": 91, "3725206": 91, "154954": 91, "3740779": 91, "155183": 91, "3756300": 91, "155152": 91, "3771876": 91, "155332": 91, "3787433": 91, "155401": 91, "3802974": 91, "154579": 91, "3818510": 91, "154809": 91, "3834118": 91, "155187": 91, "3849726": 91, "155451": 91, "3865281": 91, "155478": 91, "3880873": 91, "3896482": 91, "155748": 91, "3912058": 91, "155484": 91, "3927607": 91, "155333": 91, "3943141": 91, "154982": 91, "3958655": 91, "155026": 91, "3974166": 91, "155048": 91, "3989742": 91, "155258": 91, "4005269": 91, "155095": 91, "4020928": 91, "155541": 91, "4036483": 91, "155356": 91, "4052019": 91, "155307": 91, "4067550": 91, "155236": 91, "4083074": 91, "4098566": 91, "146375": 91, "4113914": 91, "148417": 91, "52it": 91, "4129242": 91, "149832": 91, "4144613": 91, "150968": 91, "4160035": 91, "151927": 91, "4175344": 91, "152271": 91, "4190658": 91, "152526": 91, "4205984": 91, "152743": 91, "4221286": 91, "152822": 91, "4236607": 91, "152936": 91, "4251907": 91, "145817": 91, "4267342": 91, "148286": 91, "4282888": 91, "150383": 91, "4298490": 91, "152044": 91, "4314035": 91, "153050": 91, "4329574": 91, "4345105": 91, "154209": 91, "4360685": 91, "154683": 91, "4376194": 91, "154801": 91, "4391740": 91, "154996": 91, "89it": 91, "4407302": 91, "155180": 91, "4422871": 91, "155331": 91, "4438421": 91, "155381": 91, "4453995": 91, "155487": 91, "4469545": 91, "155411": 91, "4485088": 91, "4500632": 91, "4516174": 91, "155209": 91, "4531702": 91, "155229": 91, "4547306": 91, "155470": 91, "4562854": 91, "4578388": 91, "147448": 91, "4593898": 91, "149657": 91, "4609368": 91, "151129": 91, "4624875": 91, "152288": 91, "4640314": 91, "152906": 91, "4655803": 91, "153494": 91, "4671257": 91, "153802": 91, "4686669": 91, "153895": 91, "4702162": 91, "154201": 91, "4717639": 91, "154368": 91, "96it": 91, "4733081": 91, "154162": 91, "4748501": 91, "154009": 91, "4763970": 91, "154210": 91, "4779393": 91, "154123": 91, "4794807": 91, "154105": 91, "4810237": 91, "4825680": 91, "154241": 91, "4841107": 91, "154246": 91, "4856552": 91, "154305": 91, "23it": 91, "4871983": 91, "153994": 91, "4887443": 91, "154172": 91, "4902918": 91, "154342": 91, "4918444": 91, "154616": 91, "4933928": 91, "154681": 91, "4949465": 91, "154885": 91, "4964994": 91, "155003": 91, "4980530": 91, "155107": 91, "4996041": 91, "154803": 91, "153673": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "aim": [91, 94], "domin": 91, "extratreesclassifi": 92, "extratre": 92, "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858371": 93, "547274": 93, "826228": 93, "966008": 93, "792449": 93, "646": 93, "390": 93, "628": 93, "702": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a00": 94, "845": 94, "connect": 94, "443": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "80mb": 94, "mb": 94, "directori": 94, "inflat": 94, "17045998": 94, "16m": 94, "octet": 94, "32m": 94, "6mb": 94, "71m": 94, "0mb": 94, "26m": 94, "1mb": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 6, 1, "", "call_super_init"], [31, 3, 1, "", "children"], [31, 3, 1, "", "compile"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_full_backward_pre_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "register_state_dict_pre_hook"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 6, 1, "", "call_super_init"], [35, 3, 1, "", "children"], [35, 3, 1, "", "compile"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_full_backward_pre_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "register_state_dict_pre_hook"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "__contains__"], [41, 3, 1, "", "__getitem__"], [41, 3, 1, "", "__iter__"], [41, 3, 1, "", "__len__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"], [46, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [37, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [43, "module-cleanlab.internal.outlier"], [59, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [61, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "dataset": [[30, "module-cleanlab.dataset"], [51, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "experimental": [[33, "experimental"]], "label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[36, "module-cleanlab.filter"], [52, "module-cleanlab.multilabel_classification.filter"], [55, "filter"], [64, "filter"], [68, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "util": [[45, "module-cleanlab.internal.util"]], "validation": [[46, "module-cleanlab.internal.validation"]], "fasttext": [[47, "fasttext"]], "models": [[48, "models"]], "keras": [[49, "module-cleanlab.models.keras"]], "multiannotator": [[50, "module-cleanlab.multiannotator"]], "multilabel_classification": [[53, "multilabel-classification"]], "rank": [[54, "module-cleanlab.multilabel_classification.rank"], [57, "module-cleanlab.object_detection.rank"], [60, "module-cleanlab.rank"], [66, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.token_classification.rank"]], "object_detection": [[56, "object-detection"]], "summary": [[58, "summary"], [67, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.summary"]], "regression.learn": [[62, "module-cleanlab.regression.learn"]], "regression.rank": [[63, "module-cleanlab.regression.rank"]], "segmentation": [[65, "segmentation"]], "token_classification": [[69, "token-classification"]], "cleanlab open-source documentation": [[72, "cleanlab-open-source-documentation"]], "Quickstart": [[72, "quickstart"]], "1. Install cleanlab": [[72, "install-cleanlab"]], "2. Find common issues in your data": [[72, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[72, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[72, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[72, "improve-your-data-via-many-other-techniques"]], "Contributing": [[72, "contributing"]], "Easy Mode": [[72, "easy-mode"], [78, "Easy-Mode"], [79, "Easy-Mode"], [82, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[73, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[73, "function-and-class-name-changes"]], "Module name changes": [[73, "module-name-changes"]], "New modules": [[73, "new-modules"]], "Removed modules": [[73, "removed-modules"]], "Common argument and variable name changes": [[73, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[74, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[74, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[74, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[74, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[74, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[74, "5.-Use-cleanlab-to-find-label-issues"], [78, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[75, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[75, "Install-and-import-required-dependencies"]], "Create and load the data": [[75, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[75, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[75, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[75, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[75, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[75, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[75, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[76, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[76, "1.-Install-and-import-required-dependencies"], [82, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[76, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[76, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[76, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[76, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[76, "Get-additional-information"]], "Near duplicate issues": [[76, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Datalab Tutorials": [[77, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[78, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[78, "1.-Install-required-dependencies"], [79, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [92, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"]], "2. Load and process the data": [[78, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [92, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[78, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [92, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[78, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[78, "Label-issues"], [79, "Label-issues"], [82, "Label-issues"]], "Outlier issues": [[78, "Outlier-issues"], [79, "Outlier-issues"], [82, "Outlier-issues"]], "Near-duplicate issues": [[78, "Near-duplicate-issues"], [79, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[79, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[79, "2.-Load-and-format-the-text-dataset"], [93, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[79, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[79, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[80, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[80, "Install-dependencies-and-import-them"], [83, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[80, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[80, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[81, "FAQ"]], "What data can cleanlab detect issues in?": [[81, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[81, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[81, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[81, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[81, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[81, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[81, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[81, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[81, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[81, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[81, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[81, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[81, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[81, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[82, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[82, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[82, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[82, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[82, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[82, "7.-Use-cleanlab-to-find-issues"]], "View report": [[82, "View-report"]], "View most likely examples with label errors": [[82, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[82, "View-most-severe-outliers"]], "View sets of near duplicate images": [[82, "View-sets-of-near-duplicate-images"]], "Dark images": [[82, "Dark-images"]], "View top examples of dark images": [[82, "View-top-examples-of-dark-images"]], "Low information images": [[82, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[83, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[83, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[83, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[83, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[83, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[83, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[83, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[83, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[83, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[83, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[83, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[83, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[83, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[83, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[83, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[83, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[83, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[83, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[83, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[84, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[85, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[85, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[85, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[85, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[85, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[85, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[85, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[85, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[85, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[86, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[86, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[86, "2.-Format-data,-labels,-and-model-predictions"], [87, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[86, "3.-Use-cleanlab-to-find-label-issues"], [87, "3.-Use-cleanlab-to-find-label-issues"], [91, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[86, "Label-quality-scores"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[86, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Finding Label Errors in Object Detection Datasets": [[87, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[87, "1.-Install-required-dependencies-and-download-data"], [91, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[87, "Get-label-quality-scores"], [91, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[87, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[87, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[87, "Other-uses-of-visualize"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[88, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[88, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[88, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[88, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[88, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[88, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[89, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[89, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[89, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[90, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[90, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[90, "4.-Train-a-more-robust-model-from-noisy-labels"], [93, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[90, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[91, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[91, "2.-Get-data,-labels,-and-pred_probs"], [94, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[91, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[91, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[91, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[92, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[92, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[92, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[93, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[93, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[94, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[94, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[94, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[94, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[94, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [30, "module-cleanlab.dataset"], [31, "module-cleanlab.experimental.cifar_cnn"], [32, "module-cleanlab.experimental.coteaching"], [33, "module-cleanlab.experimental"], [34, "module-cleanlab.experimental.label_issues_batched"], [35, "module-cleanlab.experimental.mnist_pytorch"], [36, "module-cleanlab.filter"], [37, "module-cleanlab.internal"], [38, "module-cleanlab.internal.label_quality_utils"], [39, "module-cleanlab.internal.latent_algebra"], [40, "module-cleanlab.internal.multiannotator_utils"], [41, "module-cleanlab.internal.multilabel_scorer"], [42, "module-cleanlab.internal.multilabel_utils"], [43, "module-cleanlab.internal.outlier"], [44, "module-cleanlab.internal.token_classification_utils"], [45, "module-cleanlab.internal.util"], [46, "module-cleanlab.internal.validation"], [48, "module-cleanlab.models"], [49, "module-cleanlab.models.keras"], [50, "module-cleanlab.multiannotator"], [51, "module-cleanlab.multilabel_classification.dataset"], [52, "module-cleanlab.multilabel_classification.filter"], [53, "module-cleanlab.multilabel_classification"], [54, "module-cleanlab.multilabel_classification.rank"], [55, "module-cleanlab.object_detection.filter"], [56, "module-cleanlab.object_detection"], [57, "module-cleanlab.object_detection.rank"], [58, "module-cleanlab.object_detection.summary"], [59, "module-cleanlab.outlier"], [60, "module-cleanlab.rank"], [61, "module-cleanlab.regression"], [62, "module-cleanlab.regression.learn"], [63, "module-cleanlab.regression.rank"], [64, "module-cleanlab.segmentation.filter"], [65, "module-cleanlab.segmentation"], [66, "module-cleanlab.segmentation.rank"], [67, "module-cleanlab.segmentation.summary"], [68, "module-cleanlab.token_classification.filter"], [69, "module-cleanlab.token_classification"], [70, "module-cleanlab.token_classification.rank"], [71, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "cleanlab.dataset": [[30, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.forward"], [31, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[33, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [35, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [35, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [35, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[36, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[36, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[36, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[37, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[38, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[43, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[43, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[45, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[46, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[48, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[49, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[50, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[51, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[53, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[54, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[55, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[55, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[56, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[57, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[58, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[59, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[59, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[60, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[61, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[62, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[62, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[62, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[63, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[63, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[64, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[64, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[65, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[66, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[67, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[68, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[68, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[69, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[70, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[71, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 75, 76, 83, 85, 86], "generate_noise_matrix_from_trac": [0, 1, 75, 76, 83, 85, 86], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 31, 33, 35, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 78, 79, 82, 83, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 41, 43, 45, 48, 50, 55, 58, 59, 60, 72, 81, 82], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 86, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 55, 57, 58, 59, 60, 78, 87, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 74, 75, 76, 79, 81, 83, 85, 86, 93], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 78, 79, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 86, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 86, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 74, 75, 76, 79, 80, 88, 93], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 91], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 33, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 86, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 41, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 46, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 86, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 61, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 92, 93], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 55, 58, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 74, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 33, 35, 48, 49, 59, 61, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 33, 35, 41, 48, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 55, 58, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 86, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 86, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 62, 72, 81, 82, 83, 85, 86, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 33, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 74, 75, 81, 83, 85, 86, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 55, 58, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 86, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 55, 58, 62, 72, 81, 87], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 93, 94], "made": [2, 4, 14, 31, 35, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 79, 80, 82, 86, 91, 92, 93, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 86, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 79, 81, 82, 83, 86, 89, 93], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 81, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 86, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 31, 34, 35, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 37, 41, 50, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 70, 73, 83, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 33, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 86, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 86, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 55, 58, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 86, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 74, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 81, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 33, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 78, 79, 80, 81, 82, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 33, 34, 61, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 81, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 86, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 74, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 31, 35, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 37, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 79, 82, 86, 93], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62, 81], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 86, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 33, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 86, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 61, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62, 86], "longer": [2, 40, 41, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 86, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 81, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 41, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 31, 35, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 33, 35, 61, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 55, 58, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 33, 35, 61, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 33, 35, 48, 49, 61, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 33, 35, 61, 62], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 74, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 33, 35, 48, 49, 61, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 46, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 61, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 10, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "union": [3, 4, 10, 41, 45, 46, 52, 58, 62, 66, 70, 81], "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 88, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 86, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 79, 80, 81, 82, 83, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 44, 54, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 88, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33, 34], "amongst": [3, 8], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 86, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 35], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83, 86], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 86, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 34, 36, 64, 66], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 41, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83, 86], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82, 86], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 19, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 86, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 48, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 86, 88, 90, 92, 93, 94], "With": [4, 34, 79, 83, 85, 90, 91, 93, 94], "usag": [4, 34, 49], "issue_summari": [4, 8, 11, 75], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84, 86], "someth": [4, 5, 31, 35, 60], "123": [4, 75, 76], "456": [4, 74, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82, 86], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 74, 75, 79, 81, 93], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 83, 86], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 86, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 78, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51, 79, 93], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 78, 79, 83], "violat": [8, 78, 79, 83], "assumpt": [8, 78, 79, 83], "changepoint": [8, 78, 79, 83], "shift": [8, 78, 79, 83], "drift": [8, 76, 78, 83], "autocorrel": [8, 78, 79, 83], "almost": [8, 78, 79, 83], "adjac": [8, 78, 79, 83], "tend": [8, 30, 39, 78, 79, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 83, 89, 90, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 88], "subpar": 8, "special": [8, 44], "techniqu": 8, "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 78, 81, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 19, 24, 75], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18, 19], "underperforminggroupissuemanag": [8, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16, 19], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 75, 80, 82, 85, 87, 88, 91], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 85, 86, 87, 91], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 31, 35, 49, 60, 75, 76, 82, 85], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "map_to_int": 10, "is_multilabel": 10, "hold": 10, "abc": [10, 20], "is_avail": [10, 82], "multilabel": [10, 13, 42, 86], "multiclass": [10, 13, 41, 45, 50, 86], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58, 81], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 88, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 83], "ab": [16, 83], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 19, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "get_health_summari": [19, 21], "ood": [19, 24, 59, 60, 75, 76, 79, 82, 83, 88], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "regressionlabelissuemanag": [19, 25, 26], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 91], "priori": [20, 83], "global": [20, 31, 35], "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 44, 54, 57, 58], "scalartyp": 21, "covari": [21, 62, 90], "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83, 86], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 83], "null_track": 23, "extend": [23, 42, 82, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 83, 85, 87, 88, 91], "keepdim": [27, 81], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 74, 85], "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 81, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 41, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 33, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 33, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": [31, 33], "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 33, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 33, 35], "__call__": [31, 33, 35, 37, 41], "add_modul": [31, 33, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 33, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 79, 82, 88, 93], "requires_grad": [31, 35], "bfloat16": [31, 33, 35], "cast": [31, 35, 74], "buffer": [31, 33, 35], "datatyp": [31, 35], "member": [31, 35, 41, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "call_super_init": [31, 33, 35], "immedi": [31, 35, 88], "compil": [31, 33, 35, 49], "cpu": [31, 33, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 33, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 33, 35], "dump_patch": [31, 33, 35], "eval": [31, 33, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 33, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 33, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 33, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 33, 35], "state_dict": [31, 33, 35], "set_extra_st": [31, 33, 35], "build": [31, 35, 82, 91], "picklabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82], "pickl": [31, 35, 87], "get_paramet": [31, 33, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 87, 91], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82, 86], "named_modul": [31, 33, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 33, 35], "load_state_dict": [31, 33, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "inplac": [31, 35, 85], "preserv": [31, 35, 45], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 33, 35], "prefix": [31, 35, 74, 94], "remove_dupl": [31, 35], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 33, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "named_paramet": [31, 33, 35], "register_backward_hook": [31, 33, 35], "deprec": [31, 35, 38, 74, 79, 81, 93], "favor": [31, 35], "register_full_backward_hook": [31, 33, 35], "removablehandl": [31, 35], "register_buff": [31, 33, 35], "running_mean": [31, 35], "register_forward_hook": [31, 33, 35], "with_kwarg": [31, 35], "always_cal": [31, 35], "won": [31, 35, 75, 76, 81, 86], "possibli": [31, 35, 78, 92], "fire": [31, 35, 80], "register_module_forward_hook": [31, 35], "regardless": [31, 35, 75, 76], "register_forward_pre_hook": [31, 33, 35], "And": [31, 35], "forward_pr": [31, 35], "register_module_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 55, 58, 83, 87], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_module_full_backward_hook": [31, 35], "register_full_backward_pre_hook": [31, 33, 35], "backward_pr": [31, 35], "register_module_full_backward_pre_hook": [31, 35], "register_load_state_dict_post_hook": [31, 33, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "register_modul": [31, 33, 35], "register_paramet": [31, 33, 35], "register_state_dict_pre_hook": [31, 33, 35], "keep_var": [31, 35], "requires_grad_": [31, 33, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 33, 35], "share_memory_": [31, 35], "destin": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 74, 81], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35, 74], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 33, 35], "storag": [31, 35, 79, 93], "dst_type": [31, 35], "xpu": [31, 33, 35], "zero_grad": [31, 33, 35, 82], "set_to_non": [31, 35], "reset": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": [32, 33], "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 33, 35, 81, 82], "initialize_lr_schedul": [32, 33], "lr": [32, 33, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87], "epoch_decay_start": 32, "80": [32, 78, 82, 86, 90, 91, 92], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": [32, 33], "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": [32, 33], "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "adj_confident_thresholds_shar": [33, 34], "labels_shar": [33, 34], "pred_probs_shar": [33, 34], "labelinspector": [33, 34, 81], "get_num_issu": [33, 34], "get_quality_scor": [33, 34], "update_confident_threshold": [33, 34], "score_label_qu": [33, 34], "split_arr": [33, 34], "mnist_pytorch": 33, "get_mnist_dataset": [33, 35], "get_sklearn_digits_dataset": [33, 35], "simplenet": [33, 35], "batch_siz": [33, 34, 35, 64, 66, 81, 82, 88, 91], "log_interv": [33, 35], "momentum": [33, 35], "no_cuda": [33, 35], "test_batch_s": [33, 35, 82], "loader": [33, 35, 82], "set_predict_proba_request": [33, 35], "set_predict_request": [33, 35], "coteach": [33, 73], "mini": [34, 64, 66, 81], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 37, 41, 52, 54, 60, 68, 70, 81, 83, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87], "psutil": [34, 36, 64, 66], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "batch_result": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 88], "aggreg": [34, 37, 41, 50, 54, 57, 60, 70, 81, 83, 85], "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 37, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 87, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "64": [35, 78, 82, 83, 87, 91, 92], "01": [35, 60, 62, 74, 82, 83, 86, 87, 88, 91], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 37, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 74, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "remove_noise_from_class": [37, 45], "clip_noise_r": [37, 45], "clip_valu": [37, 45], "value_count": [37, 45, 81], "value_counts_fill_missing_class": [37, 45], "get_missing_class": [37, 45], "round_preserving_sum": [37, 45], "round_preserving_row_tot": [37, 45], "estimate_pu_f1": [37, 45], "confusion_matrix": [37, 45], "print_square_matrix": [37, 45], "print_noise_matrix": [37, 45, 83], "print_inverse_noise_matrix": [37, 45], "print_joint_matrix": [37, 45, 83], "compress_int_arrai": [37, 45], "train_val_split": [37, 45], "subset_x_i": [37, 45], "subset_label": [37, 45], "subset_data": [37, 45], "extract_indices_tf": [37, 45], "unshuffle_tensorflow_dataset": [37, 45], "is_torch_dataset": [37, 45], "is_tensorflow_dataset": [37, 45], "csr_vstack": [37, 45], "append_extra_datapoint": [37, 45], "get_num_class": [37, 45], "num_unique_class": [37, 45], "get_unique_class": [37, 45], "format_label": [37, 45], "smart_display_datafram": [37, 45], "force_two_dimens": [37, 45], "latent_algebra": [37, 73], "compute_ps_py_inv_noise_matrix": [37, 39], "compute_py_inv_noise_matrix": [37, 39], "compute_inv_noise_matrix": [37, 39], "compute_noise_matrix_from_invers": [37, 39], "compute_pi": [37, 39], "compute_pyx": [37, 39], "label_quality_util": 37, "get_normalized_entropi": [37, 38], "multilabel_util": [37, 86], "stack_compl": [37, 42], "get_onehot_num_class": [37, 42], "int2onehot": [37, 42, 86], "onehot2int": [37, 42, 86], "multilabel_scor": [37, 54], "classlabelscor": [37, 41], "from_str": [37, 41], "__contains__": [37, 41], "__getitem__": [37, 41], "__iter__": [37, 41], "__len__": [37, 41], "exponential_moving_averag": [37, 41, 54], "softmin": [37, 41, 54, 57, 66, 70], "possible_method": [37, 41], "multilabelscor": [37, 41], "get_class_label_quality_scor": [37, 41], "multilabel_pi": [37, 41], "get_cross_validated_multilabel_pred_prob": [37, 41], "transform_distances_to_scor": [37, 43], "token_classification_util": [37, 94], "get_sent": [37, 44, 94], "filter_sent": [37, 44, 94], "process_token": [37, 44], "merge_prob": [37, 44], "color_sent": [37, 44], "assert_valid_input": [37, 46], "assert_valid_class_label": [37, 46], "assert_nonempty_input": [37, 46], "assert_indexing_work": [37, 46], "labels_to_arrai": [37, 46], "labels_to_list_multilabel": [37, 46], "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "true_labels_class_count": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 74, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "qualnam": 41, "boundari": [41, 75, 76], "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 82, 85, 86, 87, 90, 91, 94], "scorer": 41, "typeerror": 41, "12": [41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "alias": 41, "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 82, 83, 87], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "aggregated_scor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "42": [41, 79, 80, 82, 87, 91, 94], "452": 41, "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 53, 54], "ml_scorer": 41, "binar": [41, 42], "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "pred_prob_slic": 42, "onehot": 42, "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot_matrix": 42, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "nbitbas": [44, 54], "probs_merg": 44, "55": [44, 80, 82, 87, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "new_sum": 45, "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 88, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "obviou": 45, "cgdeboer": 45, "iteround": 45, "reach": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "BE": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "joint_matrix": 45, "num_possible_valu": 45, "holdout_idx": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "allow_shuffl": 45, "turn": [45, 72, 87], "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 88, 94], "bottom": [45, 55, 58, 87], "to_data": 45, "from_data": 45, "taken": 45, "label_matrix": 45, "canon": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "html": [45, 55, 58, 59, 78, 81, 83], "allow_missing_class": 46, "allow_one_class": 46, "length_x": 46, "labellik": 46, "labels_list": [46, 52], "keraswrappermodel": [48, 49, 72], "keraswrappersequenti": [48, 49], "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76, 81], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": [51, 53], "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": [51, 53], "overall_multilabel_health_scor": [51, 53], "multilabel_health_summari": [51, 53], "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": [52, 53], "per_class_label_issu": 52, "label_issues_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "corner": [55, 58, 87], "xyxi": [55, 58, 87], "io": [55, 58, 74, 80], "keras_cv": [55, 58], "bounding_box": [55, 58], "detectron": [55, 58, 87], "detectron2": [55, 58, 87], "readthedoc": [55, 58], "en": [55, 58], "latest": [55, 58], "visual": [55, 56, 58, 75, 76, 82, 90, 92, 94], "draw_box": [55, 58], "mmdetect": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "issues_from_scor": [56, 57, 65, 66, 67, 69, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": [56, 57], "compute_badloc_box_scor": [56, 57], "compute_swap_box_scor": [56, 57], "pool_box_scores_per_imag": [56, 57], "object_counts_per_imag": [56, 58], "bounding_box_size_distribut": [56, 58], "class_label_distribut": [56, 58], "get_sorted_bbox_count_idx": [56, 58], "plot_class_size_distribut": [56, 58], "plot_class_distribut": [56, 58], "get_average_per_class_confusion_matrix": [56, 58], "calculate_per_class_metr": [56, 58], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "low_probability_threshold": 57, "scores_badloc": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "box_scor": 57, "image_scor": [57, 66, 91], "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "down": 58, "bbox_siz": 58, "class_distribut": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 78, 80, 82, 83, 88, 90, 91], "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": 60, "AND": [60, 79], "get_epistemic_uncertainti": [61, 62], "get_aleatoric_uncertainti": [61, 62], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "display_issu": [65, 66, 67, 68, 69, 70, 71, 91, 94], "common_label_issu": [65, 67, 69, 71, 91, 94], "filter_by_class": [65, 67, 91], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "highlight": [67, 71, 75, 76, 78, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "class_index": 67, "issues_subset": [67, 71], "filter_by_token": [69, 71, 94], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 91], "02": [70, 75, 76, 82, 83, 87, 88, 91, 94], "03": [70, 78, 80, 82, 83, 87, 91, 94], "04": [70, 78, 87, 91], "08": [70, 83, 87, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "link": [72, 74, 80, 87], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "huggingface_hub": 74, "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "ffmpeg": 74, "system": [74, 78, 79, 82, 91], "backend": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "opt": [74, 76, 79, 93], "hostedtoolcach": [74, 76, 79, 93], "x64": [74, 76, 79, 93], "lib": [74, 76, 79, 93], "python3": [74, 76, 79, 93], "site": [74, 76, 79, 93], "650": 74, "userwarn": [74, 75, 76, 79, 93], "stft": 74, "return_complex": 74, "view_as_r": 74, "recov": 74, "trigger": 74, "aten": 74, "src": 74, "nativ": 74, "spectralop": 74, "cpp": 74, "863": [74, 93], "_vf": 74, "n_fft": 74, "hop_length": 74, "win_length": 74, "attr": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196311": 74, "319459": 74, "478975": 74, "2890875": 74, "8170238": 74, "89265": 74, "24": [74, 80, 82, 83, 85, 87, 91], "898056": 74, "256195": 74, "559641": 74, "559721": 74, "62067": 74, "285245": 74, "21": [74, 75, 80, 81, 83, 87, 91, 94], "709627": 74, "5033693": 74, "913803": 74, "819831": 74, "1831515": 74, "208763": 74, "084257": 74, "3210397": 74, "005453": 74, "216152": 74, "478235": 74, "6821785": 74, "053807": 74, "242471": 74, "091424": 74, "78334856": 74, "03954": 74, "23": [74, 80, 82, 83, 87, 91], "569176": 74, "19": [74, 79, 80, 81, 82, 83, 88, 90, 91, 93], "761097": 74, "1258295": 74, "753237": 74, "3508866": 74, "598274": 74, "23712": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9708": 74, "probabilit": [74, 93], "9976": 74, "986": 74, "002161": 74, "176": [74, 80, 83, 86], "002483": 74, "2318": 74, "004411": 74, "1005": 74, "004857": 74, "1871": 74, "007494": 74, "investig": 74, "040587": 74, "999207": 74, "999377": 74, "975220": 74, "999367": 74, "18": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85, 86], "516": 74, "1946": 74, "469": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_25": 74, "7_nicolas_43": 74, "6_theo_27": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_yweweler_35": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 83, 87, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 91, 92], "006940": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91], "014828": 75, "107": [75, 76, 83, 86], "021241": 75, "120": [75, 76, 92], "026407": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 88, 91, 92, 94], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 91], "51": [75, 76, 78, 80, 83, 87, 91], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 93], "runner": [75, 76, 79, 93], "329": [75, 82, 87], "359": 75, "338": 75, "34": [75, 80, 83, 85, 87, 91, 94], "54": [75, 80, 82, 83, 87, 91, 94], "039122": 75, "53": [75, 76, 78, 80, 86, 87, 91, 92], "044598": 75, "105": 75, "105196": 75, "133654": 75, "43": [75, 80, 82, 83, 87, 91], "168033": 75, "125": 75, "101107": 75, "37": [75, 80, 91], "183382": 75, "109": [75, 80, 87], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 93, 94], "92": [75, 83, 87, 91, 92], "259024": 75, "583757e": 75, "91": [75, 87, 91], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 83, 87, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "26": [75, 80, 82, 83, 85, 87, 91], "047581": 75, "090635": 75, "129591": 75, "65": [75, 87, 91, 92, 94], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001908": 76, "58": [76, 78, 80, 83, 87, 91, 92], "003564": 76, "007331": 76, "008963": 76, "009664": 76, "0227": 76, "is_class_imbalance_issu": 76, "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 90, 91, 93], "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "is_null_issu": 76, "is_non_iid_issu": [76, 78, 79, 83], "859131": 76, "417707": 76, "664083": 76, "970324": 76, "816953": 76, "375317": 76, "641516": 76, "890575": 76, "531021": 76, "460593": 76, "601188": 76, "826147": 76, "752808": 76, "321635": 76, "562539": 76, "948362": 76, "090243": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013445": 76, "025184": 76, "026376": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 82, 83, 87, 90, 91, 92], "94": [78, 80, 83, 87, 90, 91, 92], "78": [78, 80, 82, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 83, 87, 91, 92], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 82, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87], "187": [78, 80], "27": [78, 80, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 86, 87, 90, 91, 94], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 90, 91, 94], "96": [78, 80, 83, 86, 87, 90, 91, 94], "lt": [78, 79, 80, 82, 85, 88, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 87, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "beneficiary_not_allow": [79, 93], "card_payment_fee_charg": [79, 93], "getting_spare_card": [79, 93], "card_about_to_expir": [79, 93], "supported_cards_and_curr": [79, 93], "apple_pay_or_google_pai": [79, 93], "lost_or_stolen_phon": [79, 93], "visa_or_mastercard": [79, 93], "change_pin": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "_util": [79, 93], "831": [79, 93], "typedstorag": [79, 93], "untypedstorag": [79, 93], "untyped_storag": [79, 93], "fget": [79, 93], "__get__": [79, 93], "owner": [79, 93], "400": [79, 93], "data_dict": [79, 83, 85], "85": [79, 87, 91], "38": [79, 80, 82, 87, 88, 91], "9710": 79, "981": 79, "974": 79, "000146": 79, "982": [79, 80], "000224": 79, "971": 79, "000507": 79, "980": [79, 80], "000960": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 90], "095724": 79, "148": 79, "006237": 79, "546": 79, "099341": 79, "514": 79, "006485": 79, "481": 79, "123418": 79, "008165": 79, "0000": [79, 80, 83], "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 91, 94], "574915": 79, "31": [79, 80, 82, 83, 85, 87, 91], "575507": 79, "575874": 79, "792090": 79, "257611": 79, "698710": 79, "182121": 79, "771619": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83, 86], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 82, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 91], "88": [80, 81, 82, 83, 86, 87, 88, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 91, 92], "32635": 80, "32636": 80, "47": [80, 82, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "93": [80, 87, 90, 91, 92], "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 91, 94], "41": [80, 87, 90, 91], "44": [80, 82, 86, 87, 88, 91, 93], "71": [80, 83, 87, 90, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": 80, "035": 80, "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87], "98": [80, 81, 82, 90, 91], "452381": 80, "459770": 80, "72": [80, 82, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 88, 91, 94], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 83, 87, 88, 90, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "nbsp": [81, 83], "cleanlearninginot": [81, 83], "fittedcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "tmp": 81, "ipykernel_5828": 81, "1995098996": 81, "deprecationwarn": 81, "dataframegroupbi": 81, "include_group": 81, "silenc": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "482": 82, "720": 82, "643": 82, "195": [82, 94], "435": 82, "stderr": [82, 88, 91], "sphinxverbatim": [82, 88, 91, 94], "80it": [82, 91], "66it": [82, 91], "74it": [82, 91], "69it": [82, 91], "95it": [82, 91], "20it": 82, "00it": 82, "73it": [82, 88, 91], "56it": [82, 91], "76it": [82, 91], "82it": [82, 91], "63": [82, 83, 87, 88, 90, 91], "79it": 82, "02it": [82, 91], "94it": [82, 91], "493": 82, "060": 82, "627": 82, "330": [82, 87], "505": 82, "443": [82, 94], "30it": [82, 91], "67it": [82, 91], "44it": [82, 91], "58it": [82, 91], "62": [82, 83, 87, 90, 91], "31it": [82, 91], "86it": [82, 91], "83it": [82, 88, 91], "72it": [82, 91], "61it": [82, 91], "92it": [82, 91], "96it": 82, "65it": [82, 91], "19it": [82, 91], "54it": [82, 88, 91], "476": 82, "340": 82, "622": 82, "328": [82, 87], "310": 82, "436": 82, "37it": [82, 91], "18it": [82, 91], "97it": [82, 91], "09it": [82, 88, 91], "04it": [82, 91], "53it": [82, 91], "46it": [82, 91], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7714": 82, "3772": 82, "3585": 82, "166": 82, "3651": 82, "27080": 82, "873833e": 82, "40378": 82, "915575e": 82, "25316": 82, "390277e": 82, "06": [82, 83, 87, 91, 94], "2090": 82, "751164e": 82, "14999": 82, "881301e": 82, "9569": 82, "11262": 82, "000003": 82, "19228": 82, "000010": 82, "dress": 82, "32657": 82, "000013": 82, "21282": 82, "000016": 82, "53564": 82, "000018": 82, "pullov": 82, "6321": 82, "30968": 82, "001267": 82, "30659": 82, "000022": [82, 94], "47824": 82, "001454": 82, "3370": 82, "000026": 82, "54565": 82, "001854": 82, "9762": 82, "258": 82, "47139": 82, "000033": 82, "166980": 82, "986195": 82, "997205": 82, "948781": 82, "999358": 82, "54078": 82, "17371": 82, "000025": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85, 86], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "637318e": 83, "896262e": 83, "548391e": 83, "923417e": 83, "375075e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87, 94], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "695223": 83, "323529": 83, "523015": 83, "013720": 83, "675727": 83, "646521": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "69": [83, 88, 90, 91], "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 88, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "196": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "121": [83, 93], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": 83, "194": [83, 94], "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87, 94], "169": [83, 94], "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "156": 83, "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "300": [85, 94], "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "na": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736118": 85, "757751": 85, "782232": 85, "715565": 85, "824256": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070564": 85, "216078": 85, "119188": 85, "alongisd": 85, "244981": 85, "208333": 85, "295979": 85, "294118": 85, "324197": 85, "310345": 85, "355316": 85, "346154": 85, "439732": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "606999": 85, "a0015": 85, "609526": 85, "678571": 85, "a0011": 85, "621103": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "suppli": [86, 87], "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 88, 91], "275": 86, "267": 86, "225": 86, "171": 86, "234": 86, "165": 86, "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87], "216": [86, 87, 94], "265": 86, "159": [86, 87], "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "begin": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "290": 87, "286": 87, "285": 87, "224": 87, "231": [87, 94], "293": 87, "235": 87, "289": 87, "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": 87, "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "219": 87, "239": 87, "240": 87, "209": 87, "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": [87, 94], "237": 87, "207": 87, "204": 87, "84": [87, 90, 91], "205": 87, "223": 87, "153": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": 87, "173": 87, "297": 87, "317": 87, "192": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "138": 87, "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000242946": 87, "3300460146483339": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "170498071": 88, "1802240": 88, "17679640": 88, "48it": 88, "12124160": 88, "67499577": 88, "03it": [88, 91], "23003136": 88, "86235389": 88, "32899072": 88, "91230976": 88, "11it": [88, 91], "43384832": 88, "96066497": 88, "78it": [88, 91], "53739520": 88, "98584790": 88, "93it": [88, 91], "64028672": 88, "99955094": 88, "01it": [88, 91], "74874880": 88, "102643580": 88, "85164032": 88, "101368779": 88, "28it": [88, 91], "96403456": 88, "104721663": 88, "106889216": 88, "102308446": 88, "63it": [88, 91], "118259712": 88, "105670851": 88, "32it": [88, 91], "128876544": 88, "102956737": 88, "140181504": 88, "105850590": 88, "150798336": 88, "103312662": 88, "70it": [88, 91], "161841152": 88, "105282046": 88, "90it": [88, 91], "99133860": 88, "68it": [88, 91], "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "unusu": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "636197": 90, "499503": 90, "843478": 90, "776647": 90, "350358": 90, "170547": 90, "706969": 90, "984759": 90, "812515": 90, "795928": 90, "identified_issu": [90, 93], "141": 90, "659": 90, "367": 90, "318": 90, "305": 90, "560": 90, "657": 90, "688": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "926": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "area": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "15387": 91, "153859": 91, "88it": 91, "30953": 91, "154916": 91, "46445": 91, "154862": 91, "43it": 91, "61949": 91, "154930": 91, "24it": 91, "77467": 91, "155019": 91, "92969": 91, "154441": 91, "07it": 91, "108414": 91, "154378": 91, "14it": 91, "123962": 91, "154726": 91, "139435": 91, "154613": 91, "154933": 91, "154724": 91, "64it": 91, "170450": 91, "154858": 91, "185960": 91, "154931": 91, "05it": 91, "201595": 91, "155359": 91, "217166": 91, "155463": 91, "26it": 91, "232796": 91, "155713": 91, "22it": 91, "248368": 91, "155024": 91, "263872": 91, "154707": 91, "21it": 91, "279344": 91, "154411": 91, "85it": 91, "294786": 91, "153675": 91, "310155": 91, "153084": 91, "29it": 91, "325465": 91, "152924": 91, "81it": 91, "340815": 91, "153092": 91, "91it": 91, "356125": 91, "152796": 91, "371405": 91, "152624": 91, "10it": 91, "386668": 91, "152387": 91, "84it": 91, "401907": 91, "151622": 91, "417070": 91, "151606": 91, "432286": 91, "151770": 91, "447464": 91, "151738": 91, "462721": 91, "151984": 91, "477975": 91, "152147": 91, "15it": 91, "493202": 91, "152182": 91, "16it": 91, "508476": 91, "152345": 91, "523738": 91, "152425": 91, "539030": 91, "152572": 91, "554288": 91, "152516": 91, "569540": 91, "152488": 91, "584949": 91, "152966": 91, "60it": 91, "600453": 91, "153586": 91, "615876": 91, "153775": 91, "631317": 91, "153964": 91, "646849": 91, "154369": 91, "662330": 91, "154500": 91, "98it": 91, "677819": 91, "154616": 91, "693283": 91, "154620": 91, "708746": 91, "154483": 91, "57it": 91, "724195": 91, "149330": 91, "739415": 91, "150169": 91, "33it": 91, "754739": 91, "151072": 91, "770174": 91, "152041": 91, "12it": 91, "785615": 91, "152744": 91, "99it": 91, "801159": 91, "153547": 91, "816774": 91, "154323": 91, "42it": 91, "832233": 91, "154401": 91, "847796": 91, "154767": 91, "863276": 91, "154708": 91, "878750": 91, "154184": 91, "894171": 91, "153911": 91, "40it": 91, "909620": 91, "154081": 91, "925183": 91, "154541": 91, "55it": 91, "940724": 91, "154798": 91, "956285": 91, "155038": 91, "35it": 91, "971790": 91, "154956": 91, "987286": 91, "154826": 91, "1002769": 91, "154658": 91, "1018250": 91, "154701": 91, "77it": 91, "1033721": 91, "154399": 91, "1049162": 91, "154388": 91, "08it": 91, "1064700": 91, "154682": 91, "1080169": 91, "154502": 91, "1095620": 91, "153934": 91, "36it": 91, "1111014": 91, "153453": 91, "1126460": 91, "153751": 91, "1141915": 91, "153987": 91, "1157315": 91, "153646": 91, "1172782": 91, "153950": 91, "34it": 91, "1188178": 91, "153569": 91, "49it": 91, "1203670": 91, "153971": 91, "1219312": 91, "1234865": 91, "154946": 91, "23it": 91, "1250438": 91, "155179": 91, "1266015": 91, "155354": 91, "1281583": 91, "155450": 91, "1297301": 91, "155966": 91, "62it": 91, "1312991": 91, "156242": 91, "1328616": 91, "155989": 91, "1344327": 91, "156323": 91, "1359960": 91, "148351": 91, "1375464": 91, "150281": 91, "1391084": 91, "152008": 91, "1406706": 91, "153246": 91, "1422423": 91, "154405": 91, "1438109": 91, "155134": 91, "1453665": 91, "155257": 91, "1469349": 91, "155727": 91, "1485018": 91, "156012": 91, "89it": 91, "1500627": 91, "155976": 91, "47it": 91, "1516230": 91, "153762": 91, "1531868": 91, "154536": 91, "52it": 91, "1547362": 91, "154655": 91, "1562834": 91, "154496": 91, "1578361": 91, "1593837": 91, "154526": 91, "1609292": 91, "154082": 91, "1624709": 91, "154108": 91, "1640152": 91, "154202": 91, "1655574": 91, "153955": 91, "25it": 91, "1670971": 91, "153956": 91, "41it": 91, "1686509": 91, "154381": 91, "1701951": 91, "154392": 91, "1717391": 91, "154191": 91, "1732903": 91, "154468": 91, "06it": 91, "1748426": 91, "154695": 91, "1763908": 91, "154731": 91, "1779465": 91, "154980": 91, "1794973": 91, "155008": 91, "1810474": 91, "154706": 91, "1825945": 91, "150553": 91, "1841366": 91, "151623": 91, "1856852": 91, "152579": 91, "1872563": 91, "153923": 91, "1888219": 91, "39it": 91, "1903953": 91, "155491": 91, "1919523": 91, "155552": 91, "1935132": 91, "155711": 91, "1950707": 91, "155602": 91, "1966388": 91, "155963": 91, "1982054": 91, "156169": 91, "1997673": 91, "155736": 91, "2013248": 91, "155496": 91, "2028804": 91, "155511": 91, "2044356": 91, "2059960": 91, "155488": 91, "2075625": 91, "155833": 91, "2091209": 91, "155266": 91, "2106737": 91, "154717": 91, "2122210": 91, "154334": 91, "2137645": 91, "154040": 91, "2153050": 91, "153792": 91, "2168430": 91, "153254": 91, "2183756": 91, "153011": 91, "2199058": 91, "152771": 91, "2214336": 91, "152533": 91, "2229590": 91, "152216": 91, "2244822": 91, "152246": 91, "2260129": 91, "152489": 91, "87it": 91, "2275379": 91, "152457": 91, "2290625": 91, "152236": 91, "51it": 91, "2305849": 91, "151840": 91, "2321245": 91, "152471": 91, "2336585": 91, "152746": 91, "2351960": 91, "153045": 91, "2367326": 91, "153228": 91, "2382719": 91, "153435": 91, "2398063": 91, "153381": 91, "2413402": 91, "153357": 91, "2428752": 91, "153397": 91, "2444150": 91, "153571": 91, "2459562": 91, "153732": 91, "2475015": 91, "153968": 91, "2490438": 91, "154046": 91, "2505843": 91, "2521248": 91, "153702": 91, "2536619": 91, "153488": 91, "2551968": 91, "2567273": 91, "152959": 91, "2582570": 91, "152668": 91, "38it": 91, "2597897": 91, "152844": 91, "2613182": 91, "150670": 91, "2628256": 91, "149400": 91, "2643612": 91, "150628": 91, "2659103": 91, "151899": 91, "2674484": 91, "152464": 91, "2689840": 91, "152791": 91, "2705248": 91, "153173": 91, "2720642": 91, "153400": 91, "27it": 91, "2736057": 91, "153621": 91, "2751444": 91, "153694": 91, "2766815": 91, "153676": 91, "2782184": 91, "146027": 91, "2797535": 91, "148188": 91, "2812891": 91, "149756": 91, "2828262": 91, "150920": 91, "17it": 91, "2843674": 91, "151866": 91, "2858942": 91, "152106": 91, "2874363": 91, "152731": 91, "2889650": 91, "152715": 91, "2905031": 91, "153042": 91, "2920342": 91, "153004": 91, "2935648": 91, "152907": 91, "2950943": 91, "152850": 91, "2966231": 91, "152725": 91, "2981549": 91, "152858": 91, "2996997": 91, "153340": 91, "3012371": 91, "153458": 91, "3027820": 91, "153766": 91, "3043238": 91, "153889": 91, "3058663": 91, "153995": 91, "3074096": 91, "154092": 91, "71it": 91, "3089506": 91, "153922": 91, "3104899": 91, "153769": 91, "3120344": 91, "153969": 91, "3135742": 91, "153534": 91, "3151096": 91, "153404": 91, "3166437": 91, "153363": 91, "50it": 91, "3181930": 91, "153829": 91, "3197314": 91, "153423": 91, "59it": 91, "3212657": 91, "153324": 91, "3228003": 91, "3243340": 91, "151587": 91, "3258504": 91, "148147": 91, "3273956": 91, "150013": 91, "3289544": 91, "151741": 91, "3305094": 91, "152854": 91, "3320616": 91, "153555": 91, "3336160": 91, "154115": 91, "3351730": 91, "154587": 91, "3367278": 91, "154851": 91, "3382904": 91, "155270": 91, "3398434": 91, "155112": 91, "3413947": 91, "151516": 91, "3429264": 91, "152002": 91, "3444687": 91, "152661": 91, "3459988": 91, "152762": 91, "3475342": 91, "152992": 91, "3490806": 91, "153484": 91, "3506159": 91, "153394": 91, "3521538": 91, "153511": 91, "3537056": 91, "154008": 91, "3552632": 91, "154530": 91, "3568087": 91, "146968": 91, "3583451": 91, "148896": 91, "3598891": 91, "150504": 91, "3614435": 91, "151958": 91, "3629881": 91, "152697": 91, "3645255": 91, "153005": 91, "3660584": 91, "153088": 91, "3675916": 91, "153156": 91, "3691295": 91, "153344": 91, "3706697": 91, "153545": 91, "3722057": 91, "147836": 91, "3736974": 91, "148222": 91, "3752284": 91, "149654": 91, "3767574": 91, "150612": 91, "3782880": 91, "151337": 91, "3798151": 91, "151743": 91, "3813408": 91, "151987": 91, "3828722": 91, "152329": 91, "3844014": 91, "152505": 91, "3859286": 91, "152568": 91, "3874625": 91, "152812": 91, "3890029": 91, "153178": 91, "3905349": 91, "152911": 91, "3920784": 91, "153341": 91, "3936119": 91, "152961": 91, "3951508": 91, "3966960": 91, "153613": 91, "3982322": 91, "153448": 91, "3997668": 91, "4013004": 91, "153315": 91, "4028336": 91, "153114": 91, "4043648": 91, "150591": 91, "4059148": 91, "151895": 91, "4074741": 91, "153091": 91, "4090233": 91, "153635": 91, "4105801": 91, "154243": 91, "4121409": 91, "154791": 91, "4136946": 91, "154962": 91, "4152492": 91, "155109": 91, "4168015": 91, "155143": 91, "4183654": 91, "155513": 91, "4199207": 91, "152050": 91, "4214599": 91, "152599": 91, "4230003": 91, "153024": 91, "4245402": 91, "153309": 91, "4260774": 91, "153430": 91, "4276259": 91, "153852": 91, "4291697": 91, "4307133": 91, "154111": 91, "4322547": 91, "154109": 91, "4337986": 91, "154192": 91, "4353407": 91, "153783": 91, "4368869": 91, "154032": 91, "4384273": 91, "153880": 91, "4399689": 91, "153960": 91, "4415086": 91, "153819": 91, "4430560": 91, "4445994": 91, "154164": 91, "4461435": 91, "154235": 91, "4476872": 91, "154271": 91, "4492300": 91, "154190": 91, "4507750": 91, "154279": 91, "4523179": 91, "153985": 91, "4538578": 91, "153723": 91, "4554001": 91, "153873": 91, "4569399": 91, "153901": 91, "4584887": 91, "4600307": 91, "154017": 91, "4615743": 91, "154119": 91, "4631156": 91, "153933": 91, "4646550": 91, "153794": 91, "4661930": 91, "153604": 91, "4677291": 91, "153189": 91, "45it": 91, "4692776": 91, "153678": 91, "4708145": 91, "153652": 91, "4723512": 91, "153657": 91, "4738893": 91, "153701": 91, "4754264": 91, "153504": 91, "4769615": 91, "153247": 91, "4784940": 91, "153081": 91, "4800270": 91, "153145": 91, "4815618": 91, "153244": 91, "4830943": 91, "152781": 91, "4846264": 91, "152895": 91, "4861611": 91, "153064": 91, "4877009": 91, "153337": 91, "4892368": 91, "153409": 91, "4907726": 91, "153457": 91, "4923182": 91, "153785": 91, "4938561": 91, "4953978": 91, "153897": 91, "4969368": 91, "153894": 91, "4984758": 91, "153605": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "aim": [91, 94], "domin": 91, "extratreesclassifi": 92, "extratre": 92, "ranked_label_issu": [92, 93], "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858371": 93, "547274": 93, "826228": 93, "966008": 93, "792449": 93, "646": 93, "390": 93, "628": 93, "702": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a00": 94, "1069": 94, "connect": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "mb": 94, "directori": 94, "inflat": 94, "17045998": 94, "16m": 94, "octet": 94, "71m": 94, "8mb": 94, "26m": 94, "2mb": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 6, 1, "", "call_super_init"], [31, 3, 1, "", "children"], [31, 3, 1, "", "compile"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_full_backward_pre_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "register_state_dict_pre_hook"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 6, 1, "", "call_super_init"], [35, 3, 1, "", "children"], [35, 3, 1, "", "compile"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_full_backward_pre_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "register_state_dict_pre_hook"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "__contains__"], [41, 3, 1, "", "__getitem__"], [41, 3, 1, "", "__iter__"], [41, 3, 1, "", "__len__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"], [46, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [37, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [43, "module-cleanlab.internal.outlier"], [59, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [61, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "dataset": [[30, "module-cleanlab.dataset"], [51, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "experimental": [[33, "experimental"]], "label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[36, "module-cleanlab.filter"], [52, "module-cleanlab.multilabel_classification.filter"], [55, "filter"], [64, "filter"], [68, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "util": [[45, "module-cleanlab.internal.util"]], "validation": [[46, "module-cleanlab.internal.validation"]], "fasttext": [[47, "fasttext"]], "models": [[48, "models"]], "keras": [[49, "module-cleanlab.models.keras"]], "multiannotator": [[50, "module-cleanlab.multiannotator"]], "multilabel_classification": [[53, "multilabel-classification"]], "rank": [[54, "module-cleanlab.multilabel_classification.rank"], [57, "module-cleanlab.object_detection.rank"], [60, "module-cleanlab.rank"], [66, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.token_classification.rank"]], "object_detection": [[56, "object-detection"]], "summary": [[58, "summary"], [67, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.summary"]], "regression.learn": [[62, "module-cleanlab.regression.learn"]], "regression.rank": [[63, "module-cleanlab.regression.rank"]], "segmentation": [[65, "segmentation"]], "token_classification": [[69, "token-classification"]], "cleanlab open-source documentation": [[72, "cleanlab-open-source-documentation"]], "Quickstart": [[72, "quickstart"]], "1. Install cleanlab": [[72, "install-cleanlab"]], "2. Find common issues in your data": [[72, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[72, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[72, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[72, "improve-your-data-via-many-other-techniques"]], "Contributing": [[72, "contributing"]], "Easy Mode": [[72, "easy-mode"], [78, "Easy-Mode"], [79, "Easy-Mode"], [82, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[73, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[73, "function-and-class-name-changes"]], "Module name changes": [[73, "module-name-changes"]], "New modules": [[73, "new-modules"]], "Removed modules": [[73, "removed-modules"]], "Common argument and variable name changes": [[73, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[74, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[74, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[74, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[74, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[74, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[74, "5.-Use-cleanlab-to-find-label-issues"], [78, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[75, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[75, "Install-and-import-required-dependencies"]], "Create and load the data": [[75, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[75, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[75, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[75, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[75, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[75, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[75, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[76, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[76, "1.-Install-and-import-required-dependencies"], [82, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[76, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[76, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[76, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[76, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[76, "Get-additional-information"]], "Near duplicate issues": [[76, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Datalab Tutorials": [[77, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[78, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[78, "1.-Install-required-dependencies"], [79, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [92, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"]], "2. Load and process the data": [[78, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [92, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[78, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [92, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[78, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[78, "Label-issues"], [79, "Label-issues"], [82, "Label-issues"]], "Outlier issues": [[78, "Outlier-issues"], [79, "Outlier-issues"], [82, "Outlier-issues"]], "Near-duplicate issues": [[78, "Near-duplicate-issues"], [79, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[79, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[79, "2.-Load-and-format-the-text-dataset"], [93, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[79, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[79, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[80, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[80, "Install-dependencies-and-import-them"], [83, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[80, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[80, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[81, "FAQ"]], "What data can cleanlab detect issues in?": [[81, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[81, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[81, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[81, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[81, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[81, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[81, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[81, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[81, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[81, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[81, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[81, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[81, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[81, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[82, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[82, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[82, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[82, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[82, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[82, "7.-Use-cleanlab-to-find-issues"]], "View report": [[82, "View-report"]], "View most likely examples with label errors": [[82, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[82, "View-most-severe-outliers"]], "View sets of near duplicate images": [[82, "View-sets-of-near-duplicate-images"]], "Dark images": [[82, "Dark-images"]], "View top examples of dark images": [[82, "View-top-examples-of-dark-images"]], "Low information images": [[82, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[83, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[83, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[83, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[83, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[83, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[83, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[83, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[83, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[83, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[83, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[83, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[83, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[83, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[83, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[83, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[83, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[83, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[83, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[83, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[84, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[85, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[85, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[85, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[85, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[85, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[85, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[85, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[85, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[85, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[86, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[86, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[86, "2.-Format-data,-labels,-and-model-predictions"], [87, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[86, "3.-Use-cleanlab-to-find-label-issues"], [87, "3.-Use-cleanlab-to-find-label-issues"], [91, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[86, "Label-quality-scores"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[86, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Finding Label Errors in Object Detection Datasets": [[87, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[87, "1.-Install-required-dependencies-and-download-data"], [91, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[87, "Get-label-quality-scores"], [91, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[87, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[87, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[87, "Other-uses-of-visualize"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[88, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[88, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[88, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[88, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[88, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[88, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[89, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[89, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[89, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[90, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[90, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[90, "4.-Train-a-more-robust-model-from-noisy-labels"], [93, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[90, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[91, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[91, "2.-Get-data,-labels,-and-pred_probs"], [94, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[91, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[91, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[91, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[92, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[92, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[92, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[93, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[93, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[94, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[94, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[94, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[94, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[94, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [30, "module-cleanlab.dataset"], [31, "module-cleanlab.experimental.cifar_cnn"], [32, "module-cleanlab.experimental.coteaching"], [33, "module-cleanlab.experimental"], [34, "module-cleanlab.experimental.label_issues_batched"], [35, "module-cleanlab.experimental.mnist_pytorch"], [36, "module-cleanlab.filter"], [37, "module-cleanlab.internal"], [38, "module-cleanlab.internal.label_quality_utils"], [39, "module-cleanlab.internal.latent_algebra"], [40, "module-cleanlab.internal.multiannotator_utils"], [41, "module-cleanlab.internal.multilabel_scorer"], [42, "module-cleanlab.internal.multilabel_utils"], [43, "module-cleanlab.internal.outlier"], [44, "module-cleanlab.internal.token_classification_utils"], [45, "module-cleanlab.internal.util"], [46, "module-cleanlab.internal.validation"], [48, "module-cleanlab.models"], [49, "module-cleanlab.models.keras"], [50, "module-cleanlab.multiannotator"], [51, "module-cleanlab.multilabel_classification.dataset"], [52, "module-cleanlab.multilabel_classification.filter"], [53, "module-cleanlab.multilabel_classification"], [54, "module-cleanlab.multilabel_classification.rank"], [55, "module-cleanlab.object_detection.filter"], [56, "module-cleanlab.object_detection"], [57, "module-cleanlab.object_detection.rank"], [58, "module-cleanlab.object_detection.summary"], [59, "module-cleanlab.outlier"], [60, "module-cleanlab.rank"], [61, "module-cleanlab.regression"], [62, "module-cleanlab.regression.learn"], [63, "module-cleanlab.regression.rank"], [64, "module-cleanlab.segmentation.filter"], [65, "module-cleanlab.segmentation"], [66, "module-cleanlab.segmentation.rank"], [67, "module-cleanlab.segmentation.summary"], [68, "module-cleanlab.token_classification.filter"], [69, "module-cleanlab.token_classification"], [70, "module-cleanlab.token_classification.rank"], [71, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "cleanlab.dataset": [[30, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.forward"], [31, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[33, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [35, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [35, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [35, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[36, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[36, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[36, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[37, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[38, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[43, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[43, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[45, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[46, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[48, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[49, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[50, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[51, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[53, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[54, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[55, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[55, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[56, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[57, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[58, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[59, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[59, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[60, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[61, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[62, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[62, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[62, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[63, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[63, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[64, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[64, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[65, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[66, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[67, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[68, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[68, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[69, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[70, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[71, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index bf1bb0225..41c5d0795 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1274,7 +1274,7 @@

5. Use cleanlab to find label issues -{"state": {"bb5894e2b38c45c194efd20f8c3cbe66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60b527de43034970b1308b099653ea53": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "02b46780ae3f483399e08d2e6ff8eab2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb5894e2b38c45c194efd20f8c3cbe66", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_60b527de43034970b1308b099653ea53", "tabbable": null, "tooltip": null, "value": 2041.0}}, "e617431224a74447b3168997dee691d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0e4ebf8d49e4f038e5a57a3736f1527": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe3bcc7d9bf948039e3be396079d45a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e617431224a74447b3168997dee691d1", "placeholder": "\u200b", "style": "IPY_MODEL_f0e4ebf8d49e4f038e5a57a3736f1527", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%"}}, "f248fc8f51004a06b30e02a83397236b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff8cf12f43ca4d13a1017fbff08fe9f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f358d8bedbb43768725d491407bfce8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f248fc8f51004a06b30e02a83397236b", "placeholder": "\u200b", "style": "IPY_MODEL_ff8cf12f43ca4d13a1017fbff08fe9f6", "tabbable": null, "tooltip": null, "value": " 2.04k/2.04k [00:00<00:00, 445kB/s]"}}, "9d41a343cf504fc2878761980bd12889": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff1fa9c053ff44b6819529a9bf6f509a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fe3bcc7d9bf948039e3be396079d45a5", "IPY_MODEL_02b46780ae3f483399e08d2e6ff8eab2", "IPY_MODEL_3f358d8bedbb43768725d491407bfce8"], "layout": "IPY_MODEL_9d41a343cf504fc2878761980bd12889", "tabbable": null, "tooltip": null}}, "11c7035432e343fb93816c86129b8adf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79351f8482fe4216b6609e0f2c2f5d0f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "314fd2a192634790b5db62a3957f85ac": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_11c7035432e343fb93816c86129b8adf", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_79351f8482fe4216b6609e0f2c2f5d0f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "05fbe93d9d004d09b7a9891b7f6adbe2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "707ef7472aa046e0af876676bdeb0e1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "88e025fac457476e857a0ed0172c8ebf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_05fbe93d9d004d09b7a9891b7f6adbe2", "placeholder": "\u200b", "style": "IPY_MODEL_707ef7472aa046e0af876676bdeb0e1a", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%"}}, "6372cda2727c44baa0af02192d868905": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ceda72b1d5049b5a8049ad58afd02d9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "47d60ecdbe0a4f409818f97dffc6439c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6372cda2727c44baa0af02192d868905", "placeholder": "\u200b", "style": "IPY_MODEL_2ceda72b1d5049b5a8049ad58afd02d9", "tabbable": null, "tooltip": null, "value": " 16.9M/16.9M [00:00<00:00, 198MB/s]"}}, "eaa3e635e6d845149a49424039f11a4a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bba729c19a594f33892a4024225287f9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_88e025fac457476e857a0ed0172c8ebf", "IPY_MODEL_314fd2a192634790b5db62a3957f85ac", "IPY_MODEL_47d60ecdbe0a4f409818f97dffc6439c"], "layout": "IPY_MODEL_eaa3e635e6d845149a49424039f11a4a", "tabbable": null, "tooltip": null}}, "2ea45f78382040ef970a525ca19405dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8bb345f6d81459fa75f4555635255d2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "018c961243dc4a2ab609ecd13bf21b1c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ea45f78382040ef970a525ca19405dc", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e8bb345f6d81459fa75f4555635255d2", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d4ac54bb95434214887e6908f7417cc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "918ea5972c8a43b4b372a06b881f8d52": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c96f0f9cb7694a33982acab6e5ac22c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4ac54bb95434214887e6908f7417cc4", "placeholder": "\u200b", "style": "IPY_MODEL_918ea5972c8a43b4b372a06b881f8d52", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%"}}, "3095c367a4c74a08854abcd7622d7a72": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d60c4c9975014fc6918fb9394f823e45": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b69d30f9f6bd496e950e0a7253129c59": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3095c367a4c74a08854abcd7622d7a72", "placeholder": "\u200b", "style": "IPY_MODEL_d60c4c9975014fc6918fb9394f823e45", "tabbable": null, "tooltip": null, "value": " 3.20k/3.20k [00:00<00:00, 769kB/s]"}}, "87af3d337e4c4f56b8de8653ffbcf2fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf3f0473f1a24d82986d6c703fdff8de": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c96f0f9cb7694a33982acab6e5ac22c1", "IPY_MODEL_018c961243dc4a2ab609ecd13bf21b1c", "IPY_MODEL_b69d30f9f6bd496e950e0a7253129c59"], "layout": "IPY_MODEL_87af3d337e4c4f56b8de8653ffbcf2fa", "tabbable": null, "tooltip": null}}, "e831980da61448918a716f1d888c714a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d84cb363c6b490cb8afa2ab45a2daee": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "92bc2ade5f1a4d98b4659c1d3a64feed": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e831980da61448918a716f1d888c714a", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5d84cb363c6b490cb8afa2ab45a2daee", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "d916d408a2f44a8992d77870d9ae75bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0aa84448e3f405b9aeee1a3005ca7a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "99d0bf7b85e74ac2a356f2a9fff98e37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d916d408a2f44a8992d77870d9ae75bf", "placeholder": "\u200b", "style": "IPY_MODEL_f0aa84448e3f405b9aeee1a3005ca7a2", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%"}}, "9340c56a375c49e89e8e3b127db43593": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea839efc9eda4c81be312c0e78c8f734": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6a87e23c3c664f00ab0368cbb61ca901": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9340c56a375c49e89e8e3b127db43593", "placeholder": "\u200b", "style": "IPY_MODEL_ea839efc9eda4c81be312c0e78c8f734", "tabbable": null, "tooltip": null, "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]"}}, "1366b1442bcd477f91d3b1f2c79ccf71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "578b918f0b334af9a2793c197fe9a32c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_99d0bf7b85e74ac2a356f2a9fff98e37", "IPY_MODEL_92bc2ade5f1a4d98b4659c1d3a64feed", "IPY_MODEL_6a87e23c3c664f00ab0368cbb61ca901"], "layout": "IPY_MODEL_1366b1442bcd477f91d3b1f2c79ccf71", "tabbable": null, "tooltip": null}}, "1797a298ca2148919567beaa49cc33d7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06630781720c42d199dca36dbc67bb87": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8fc50970ec7644c6825dbf8f10bcced8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1797a298ca2148919567beaa49cc33d7", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_06630781720c42d199dca36dbc67bb87", "tabbable": null, "tooltip": null, "value": 128619.0}}, "1602afb154024a839e7eb2baeadf14c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db3add3863d748748c253c014e2faf03": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ba1608cb15441918fffbdb0112aa1f8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1602afb154024a839e7eb2baeadf14c9", "placeholder": "\u200b", "style": "IPY_MODEL_db3add3863d748748c253c014e2faf03", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%"}}, "3a569a86618c42dc86af61139d6acadf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f853c6490ccf49c18f81d8894a4fd3d4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c7316533a256479abb53524380df0dd4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a569a86618c42dc86af61139d6acadf", "placeholder": "\u200b", "style": "IPY_MODEL_f853c6490ccf49c18f81d8894a4fd3d4", "tabbable": null, "tooltip": null, "value": " 129k/129k [00:00<00:00, 9.21MB/s]"}}, "6ee9b3701a494b97a2c8644af1e520cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8ffabec7ae64c16bd74b38130d34b65": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1ba1608cb15441918fffbdb0112aa1f8", "IPY_MODEL_8fc50970ec7644c6825dbf8f10bcced8", "IPY_MODEL_c7316533a256479abb53524380df0dd4"], "layout": "IPY_MODEL_6ee9b3701a494b97a2c8644af1e520cb", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e0528fbb6b84426681be3552bcfa5be7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3130c2baa2ca43b8866db622c29120fc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "04300f6af0e2499abc98d7c0019ae68c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0528fbb6b84426681be3552bcfa5be7", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3130c2baa2ca43b8866db622c29120fc", "tabbable": null, "tooltip": null, "value": 2041.0}}, "293f95aa421a4889bf08ad2176227a3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6c9f629d18240d7a6b98ac06c78293a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aefceca0700b4c62b24820c53e63d7f9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_293f95aa421a4889bf08ad2176227a3a", "placeholder": "\u200b", "style": "IPY_MODEL_d6c9f629d18240d7a6b98ac06c78293a", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%"}}, "3de28429f250445fa8516dbacd9be6b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b247055147c47c2a71d10020cd84176": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d982ece3b4e14443adc855de84443142": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3de28429f250445fa8516dbacd9be6b4", "placeholder": "\u200b", "style": "IPY_MODEL_1b247055147c47c2a71d10020cd84176", "tabbable": null, "tooltip": null, "value": " 2.04k/2.04k [00:00<00:00, 499kB/s]"}}, "99d97c19f0dc458bbece97f7d70aff29": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "049baf23826b4af093eff7678dd9f29d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_aefceca0700b4c62b24820c53e63d7f9", "IPY_MODEL_04300f6af0e2499abc98d7c0019ae68c", "IPY_MODEL_d982ece3b4e14443adc855de84443142"], "layout": "IPY_MODEL_99d97c19f0dc458bbece97f7d70aff29", "tabbable": null, "tooltip": null}}, "654f7806575d45a9a93e8a5c0d6424c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4c65529fdc840279cfc12be44b62fb9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c8da71bd884e46109202edc2ee6ab409": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_654f7806575d45a9a93e8a5c0d6424c0", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d4c65529fdc840279cfc12be44b62fb9", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "bac330bbb6a4449a8fbf7ad2fb9720e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf487e1807424afba2b22b5f777c96a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b39dbdd24a234f3982e2b78d6a3a6ca4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bac330bbb6a4449a8fbf7ad2fb9720e7", "placeholder": "\u200b", "style": "IPY_MODEL_cf487e1807424afba2b22b5f777c96a2", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%"}}, "abe7c4e2a2194914a09f1d5bd6432fec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c5385e8b4cf43428bb9acc7bf7b1b4f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f620b009650b49f69c70d93caed3431b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_abe7c4e2a2194914a09f1d5bd6432fec", "placeholder": "\u200b", "style": "IPY_MODEL_6c5385e8b4cf43428bb9acc7bf7b1b4f", "tabbable": null, "tooltip": null, "value": " 16.9M/16.9M [00:00<00:00, 192MB/s]"}}, "d48b4a1fa40646a3bec001eabc934939": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0595d525f4e448ab899ecc84c2c97ac6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b39dbdd24a234f3982e2b78d6a3a6ca4", "IPY_MODEL_c8da71bd884e46109202edc2ee6ab409", "IPY_MODEL_f620b009650b49f69c70d93caed3431b"], "layout": "IPY_MODEL_d48b4a1fa40646a3bec001eabc934939", "tabbable": null, "tooltip": null}}, "62bd4894905e4e87a345db49d46d4165": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "59c2bdf1dad14b51966cb22a618f131d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "857398c0b7f442608c58fc97f1061a9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_62bd4894905e4e87a345db49d46d4165", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_59c2bdf1dad14b51966cb22a618f131d", "tabbable": null, "tooltip": null, "value": 3201.0}}, "ede528c5216046cfba4a067472e5124d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d8bf5983d3844eb8ff2f91414a189f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f816adc0ed2b4d56be8bf200373ef9aa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ede528c5216046cfba4a067472e5124d", "placeholder": "\u200b", "style": "IPY_MODEL_3d8bf5983d3844eb8ff2f91414a189f4", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%"}}, "666271d492134ef0b03b8ec9578b7998": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06290fbe33a34692b6a4159ab260ce9c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fc8d050fc3f448ee9399813ed8e667f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_666271d492134ef0b03b8ec9578b7998", "placeholder": "\u200b", "style": "IPY_MODEL_06290fbe33a34692b6a4159ab260ce9c", "tabbable": null, "tooltip": null, "value": " 3.20k/3.20k [00:00<00:00, 841kB/s]"}}, "69fd182a930c4068837b29ef749fc1bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ae177114d464deba94c0d078154bdf4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f816adc0ed2b4d56be8bf200373ef9aa", "IPY_MODEL_857398c0b7f442608c58fc97f1061a9f", "IPY_MODEL_fc8d050fc3f448ee9399813ed8e667f4"], "layout": "IPY_MODEL_69fd182a930c4068837b29ef749fc1bf", "tabbable": null, "tooltip": null}}, "e872326b222549548e420a960ab1959d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73bf2556b81f44f2b96275a8445d1cf0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "efad4ad3f4a54a6994d42d4a6b5132d8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e872326b222549548e420a960ab1959d", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_73bf2556b81f44f2b96275a8445d1cf0", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "481f68c008f94fc598a9ef7c2cce6da0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e6e92ecdf7e4d9eafaba693dc09a3c5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "668783404483450b8f426724d2f89cd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_481f68c008f94fc598a9ef7c2cce6da0", "placeholder": "\u200b", "style": "IPY_MODEL_7e6e92ecdf7e4d9eafaba693dc09a3c5", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%"}}, "2a411ecde9e54d31b05f5cc5733557f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ef834011f39489aafc203ff4a85829a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2c996374e678491788c459e1dbc99a01": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a411ecde9e54d31b05f5cc5733557f7", "placeholder": "\u200b", "style": "IPY_MODEL_9ef834011f39489aafc203ff4a85829a", "tabbable": null, "tooltip": null, "value": " 15.9M/15.9M [00:00<00:00, 227MB/s]"}}, "2d4fdb5e6e5b487387c870752b01cd9f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79d69ad0f5d64b55b2c38c5a74f7b121": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_668783404483450b8f426724d2f89cd3", "IPY_MODEL_efad4ad3f4a54a6994d42d4a6b5132d8", "IPY_MODEL_2c996374e678491788c459e1dbc99a01"], "layout": "IPY_MODEL_2d4fdb5e6e5b487387c870752b01cd9f", "tabbable": null, "tooltip": null}}, "7e072d86b5c74dcb93b0e3f2038cc23d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b5d2f843fa24204af224bc21fdaf056": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cad92de12db6453a8c477718a7af5c66": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e072d86b5c74dcb93b0e3f2038cc23d", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0b5d2f843fa24204af224bc21fdaf056", "tabbable": null, "tooltip": null, "value": 128619.0}}, "61d8c620b2004dcbbf7642355fae0c8d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0df3f598e42449c692311ec643f0d43d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f01ef992cbbf4ff19aa1fcca3a0d11ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_61d8c620b2004dcbbf7642355fae0c8d", "placeholder": "\u200b", "style": "IPY_MODEL_0df3f598e42449c692311ec643f0d43d", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%"}}, "baae0b1fb874444ebed0ca5b86534711": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d65f6dbb468c45f5833700dc76ef4722": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dd0085e26ee6480aa6a013494fb70534": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_baae0b1fb874444ebed0ca5b86534711", "placeholder": "\u200b", "style": "IPY_MODEL_d65f6dbb468c45f5833700dc76ef4722", "tabbable": null, "tooltip": null, "value": " 129k/129k [00:00<00:00, 15.9MB/s]"}}, "58eb5f1bb6f543b9b6d320bd4dc8a583": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68ffad4d65d54523b62a4a5eccb50913": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f01ef992cbbf4ff19aa1fcca3a0d11ed", "IPY_MODEL_cad92de12db6453a8c477718a7af5c66", "IPY_MODEL_dd0085e26ee6480aa6a013494fb70534"], "layout": "IPY_MODEL_58eb5f1bb6f543b9b6d320bd4dc8a583", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 6f50fce62..292e02cfe 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:18.361812Z", - "iopub.status.busy": "2024-02-07T22:09:18.361636Z", - "iopub.status.idle": "2024-02-07T22:09:23.711531Z", - "shell.execute_reply": "2024-02-07T22:09:23.710898Z" + "iopub.execute_input": "2024-02-07T23:50:00.107221Z", + "iopub.status.busy": "2024-02-07T23:50:00.107063Z", + "iopub.status.idle": "2024-02-07T23:50:04.972205Z", + "shell.execute_reply": "2024-02-07T23:50:04.971588Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.714287Z", - "iopub.status.busy": "2024-02-07T22:09:23.713904Z", - "iopub.status.idle": "2024-02-07T22:09:23.717701Z", - "shell.execute_reply": "2024-02-07T22:09:23.717275Z" + "iopub.execute_input": "2024-02-07T23:50:04.974847Z", + "iopub.status.busy": "2024-02-07T23:50:04.974485Z", + "iopub.status.idle": "2024-02-07T23:50:04.977602Z", + "shell.execute_reply": "2024-02-07T23:50:04.977185Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.719659Z", - "iopub.status.busy": "2024-02-07T22:09:23.719476Z", - "iopub.status.idle": "2024-02-07T22:09:23.723985Z", - "shell.execute_reply": "2024-02-07T22:09:23.723572Z" + "iopub.execute_input": "2024-02-07T23:50:04.979500Z", + "iopub.status.busy": "2024-02-07T23:50:04.979321Z", + "iopub.status.idle": "2024-02-07T23:50:04.983925Z", + "shell.execute_reply": "2024-02-07T23:50:04.983480Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.725972Z", - "iopub.status.busy": "2024-02-07T22:09:23.725707Z", - "iopub.status.idle": "2024-02-07T22:09:25.249850Z", - "shell.execute_reply": "2024-02-07T22:09:25.249225Z" + "iopub.execute_input": "2024-02-07T23:50:04.986003Z", + "iopub.status.busy": "2024-02-07T23:50:04.985618Z", + "iopub.status.idle": "2024-02-07T23:50:06.549578Z", + "shell.execute_reply": "2024-02-07T23:50:06.548944Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.252557Z", - "iopub.status.busy": "2024-02-07T22:09:25.252169Z", - "iopub.status.idle": "2024-02-07T22:09:25.263474Z", - "shell.execute_reply": "2024-02-07T22:09:25.262738Z" + "iopub.execute_input": "2024-02-07T23:50:06.552344Z", + "iopub.status.busy": "2024-02-07T23:50:06.551958Z", + "iopub.status.idle": "2024-02-07T23:50:06.562444Z", + "shell.execute_reply": "2024-02-07T23:50:06.561881Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.296003Z", - "iopub.status.busy": "2024-02-07T22:09:25.295584Z", - "iopub.status.idle": "2024-02-07T22:09:25.301465Z", - "shell.execute_reply": "2024-02-07T22:09:25.300981Z" + "iopub.execute_input": "2024-02-07T23:50:06.593982Z", + "iopub.status.busy": "2024-02-07T23:50:06.593548Z", + "iopub.status.idle": "2024-02-07T23:50:06.599022Z", + "shell.execute_reply": "2024-02-07T23:50:06.598581Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.303281Z", - "iopub.status.busy": "2024-02-07T22:09:25.303109Z", - "iopub.status.idle": "2024-02-07T22:09:25.749448Z", - "shell.execute_reply": "2024-02-07T22:09:25.748880Z" + "iopub.execute_input": "2024-02-07T23:50:06.600905Z", + "iopub.status.busy": "2024-02-07T23:50:06.600729Z", + "iopub.status.idle": "2024-02-07T23:50:07.080952Z", + "shell.execute_reply": "2024-02-07T23:50:07.080367Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.751700Z", - "iopub.status.busy": "2024-02-07T22:09:25.751373Z", - "iopub.status.idle": "2024-02-07T22:09:26.514501Z", - "shell.execute_reply": "2024-02-07T22:09:26.513900Z" + "iopub.execute_input": "2024-02-07T23:50:07.083112Z", + "iopub.status.busy": "2024-02-07T23:50:07.082774Z", + "iopub.status.idle": "2024-02-07T23:50:07.698361Z", + "shell.execute_reply": "2024-02-07T23:50:07.697874Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.516952Z", - "iopub.status.busy": "2024-02-07T22:09:26.516772Z", - "iopub.status.idle": "2024-02-07T22:09:26.536940Z", - "shell.execute_reply": "2024-02-07T22:09:26.536500Z" + "iopub.execute_input": "2024-02-07T23:50:07.700875Z", + "iopub.status.busy": "2024-02-07T23:50:07.700453Z", + "iopub.status.idle": "2024-02-07T23:50:07.720767Z", + "shell.execute_reply": "2024-02-07T23:50:07.720213Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.538937Z", - "iopub.status.busy": "2024-02-07T22:09:26.538682Z", - "iopub.status.idle": "2024-02-07T22:09:26.541623Z", - "shell.execute_reply": "2024-02-07T22:09:26.541204Z" + "iopub.execute_input": "2024-02-07T23:50:07.722821Z", + "iopub.status.busy": "2024-02-07T23:50:07.722441Z", + "iopub.status.idle": "2024-02-07T23:50:07.725646Z", + "shell.execute_reply": "2024-02-07T23:50:07.725101Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.543564Z", - "iopub.status.busy": "2024-02-07T22:09:26.543237Z", - "iopub.status.idle": "2024-02-07T22:09:41.167409Z", - "shell.execute_reply": "2024-02-07T22:09:41.166804Z" + "iopub.execute_input": "2024-02-07T23:50:07.727549Z", + "iopub.status.busy": "2024-02-07T23:50:07.727193Z", + "iopub.status.idle": "2024-02-07T23:50:21.686992Z", + "shell.execute_reply": "2024-02-07T23:50:21.686381Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.170099Z", - "iopub.status.busy": "2024-02-07T22:09:41.169730Z", - "iopub.status.idle": "2024-02-07T22:09:41.173537Z", - "shell.execute_reply": "2024-02-07T22:09:41.173080Z" + "iopub.execute_input": "2024-02-07T23:50:21.689932Z", + "iopub.status.busy": "2024-02-07T23:50:21.689619Z", + "iopub.status.idle": "2024-02-07T23:50:21.693998Z", + "shell.execute_reply": "2024-02-07T23:50:21.693471Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -689,10 +689,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.175544Z", - "iopub.status.busy": "2024-02-07T22:09:41.175252Z", - "iopub.status.idle": "2024-02-07T22:09:41.882562Z", - "shell.execute_reply": "2024-02-07T22:09:41.881983Z" + "iopub.execute_input": "2024-02-07T23:50:21.696250Z", + "iopub.status.busy": "2024-02-07T23:50:21.695894Z", + "iopub.status.idle": "2024-02-07T23:50:22.394154Z", + "shell.execute_reply": "2024-02-07T23:50:22.393570Z" }, "id": "i_drkY9YOcw4" }, @@ -726,10 +726,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.886194Z", - "iopub.status.busy": "2024-02-07T22:09:41.885276Z", - "iopub.status.idle": "2024-02-07T22:09:41.891871Z", - "shell.execute_reply": "2024-02-07T22:09:41.891394Z" + "iopub.execute_input": "2024-02-07T23:50:22.397720Z", + "iopub.status.busy": "2024-02-07T23:50:22.396797Z", + "iopub.status.idle": "2024-02-07T23:50:22.403356Z", + "shell.execute_reply": "2024-02-07T23:50:22.402877Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -776,10 +776,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.895266Z", - "iopub.status.busy": "2024-02-07T22:09:41.894373Z", - "iopub.status.idle": "2024-02-07T22:09:42.014766Z", - "shell.execute_reply": "2024-02-07T22:09:42.014141Z" + "iopub.execute_input": "2024-02-07T23:50:22.406771Z", + "iopub.status.busy": "2024-02-07T23:50:22.405875Z", + "iopub.status.idle": "2024-02-07T23:50:22.531248Z", + "shell.execute_reply": "2024-02-07T23:50:22.530652Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.017421Z", - "iopub.status.busy": "2024-02-07T22:09:42.017053Z", - "iopub.status.idle": "2024-02-07T22:09:42.026022Z", - "shell.execute_reply": "2024-02-07T22:09:42.025558Z" + "iopub.execute_input": "2024-02-07T23:50:22.533546Z", + "iopub.status.busy": "2024-02-07T23:50:22.533179Z", + "iopub.status.idle": "2024-02-07T23:50:22.542292Z", + "shell.execute_reply": "2024-02-07T23:50:22.541760Z" }, "scrolled": true }, @@ -874,10 +874,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.028007Z", - "iopub.status.busy": "2024-02-07T22:09:42.027689Z", - "iopub.status.idle": "2024-02-07T22:09:42.035320Z", - "shell.execute_reply": "2024-02-07T22:09:42.034866Z" + "iopub.execute_input": "2024-02-07T23:50:22.544390Z", + "iopub.status.busy": "2024-02-07T23:50:22.544079Z", + "iopub.status.idle": "2024-02-07T23:50:22.551630Z", + "shell.execute_reply": "2024-02-07T23:50:22.551177Z" } }, "outputs": [ @@ -981,10 +981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.037273Z", - "iopub.status.busy": "2024-02-07T22:09:42.036949Z", - "iopub.status.idle": "2024-02-07T22:09:42.041027Z", - "shell.execute_reply": "2024-02-07T22:09:42.040574Z" + "iopub.execute_input": "2024-02-07T23:50:22.553693Z", + "iopub.status.busy": "2024-02-07T23:50:22.553372Z", + "iopub.status.idle": "2024-02-07T23:50:22.557201Z", + "shell.execute_reply": "2024-02-07T23:50:22.556671Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.043089Z", - "iopub.status.busy": "2024-02-07T22:09:42.042704Z", - "iopub.status.idle": "2024-02-07T22:09:42.048359Z", - "shell.execute_reply": "2024-02-07T22:09:42.047911Z" + "iopub.execute_input": "2024-02-07T23:50:22.559234Z", + "iopub.status.busy": "2024-02-07T23:50:22.558929Z", + "iopub.status.idle": "2024-02-07T23:50:22.564278Z", + "shell.execute_reply": "2024-02-07T23:50:22.563751Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1152,10 +1152,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.050308Z", - "iopub.status.busy": "2024-02-07T22:09:42.049989Z", - "iopub.status.idle": "2024-02-07T22:09:42.161793Z", - "shell.execute_reply": "2024-02-07T22:09:42.161209Z" + "iopub.execute_input": "2024-02-07T23:50:22.566348Z", + "iopub.status.busy": "2024-02-07T23:50:22.566033Z", + "iopub.status.idle": "2024-02-07T23:50:22.680300Z", + "shell.execute_reply": "2024-02-07T23:50:22.679806Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1209,10 +1209,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.164076Z", - "iopub.status.busy": "2024-02-07T22:09:42.163750Z", - "iopub.status.idle": "2024-02-07T22:09:42.270803Z", - "shell.execute_reply": "2024-02-07T22:09:42.270219Z" + "iopub.execute_input": "2024-02-07T23:50:22.682360Z", + "iopub.status.busy": "2024-02-07T23:50:22.682086Z", + "iopub.status.idle": "2024-02-07T23:50:22.787241Z", + "shell.execute_reply": "2024-02-07T23:50:22.786768Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1257,10 +1257,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.273107Z", - "iopub.status.busy": "2024-02-07T22:09:42.272726Z", - "iopub.status.idle": "2024-02-07T22:09:42.377361Z", - "shell.execute_reply": "2024-02-07T22:09:42.376788Z" + "iopub.execute_input": "2024-02-07T23:50:22.789319Z", + "iopub.status.busy": "2024-02-07T23:50:22.788985Z", + "iopub.status.idle": "2024-02-07T23:50:22.889567Z", + "shell.execute_reply": "2024-02-07T23:50:22.889085Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1301,10 +1301,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.379634Z", - "iopub.status.busy": "2024-02-07T22:09:42.379175Z", - "iopub.status.idle": "2024-02-07T22:09:42.483476Z", - "shell.execute_reply": "2024-02-07T22:09:42.482909Z" + "iopub.execute_input": "2024-02-07T23:50:22.891545Z", + "iopub.status.busy": "2024-02-07T23:50:22.891171Z", + "iopub.status.idle": "2024-02-07T23:50:22.990254Z", + "shell.execute_reply": "2024-02-07T23:50:22.989797Z" } }, "outputs": [ @@ -1352,10 +1352,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.485522Z", - "iopub.status.busy": "2024-02-07T22:09:42.485311Z", - "iopub.status.idle": "2024-02-07T22:09:42.488885Z", - "shell.execute_reply": "2024-02-07T22:09:42.488370Z" + "iopub.execute_input": "2024-02-07T23:50:22.992236Z", + "iopub.status.busy": "2024-02-07T23:50:22.991963Z", + "iopub.status.idle": "2024-02-07T23:50:22.995630Z", + "shell.execute_reply": "2024-02-07T23:50:22.995182Z" }, "nbsphinx": "hidden" }, @@ -1396,7 +1396,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "018c961243dc4a2ab609ecd13bf21b1c": { + "04300f6af0e2499abc98d7c0019ae68c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1412,43 +1412,135 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ea45f78382040ef970a525ca19405dc", - "max": 3201.0, + "layout": "IPY_MODEL_e0528fbb6b84426681be3552bcfa5be7", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e8bb345f6d81459fa75f4555635255d2", + "style": "IPY_MODEL_3130c2baa2ca43b8866db622c29120fc", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 2041.0 } }, - "02b46780ae3f483399e08d2e6ff8eab2": { + "049baf23826b4af093eff7678dd9f29d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb5894e2b38c45c194efd20f8c3cbe66", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60b527de43034970b1308b099653ea53", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aefceca0700b4c62b24820c53e63d7f9", + "IPY_MODEL_04300f6af0e2499abc98d7c0019ae68c", + "IPY_MODEL_d982ece3b4e14443adc855de84443142" + ], + "layout": "IPY_MODEL_99d97c19f0dc458bbece97f7d70aff29", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null + } + }, + "0595d525f4e448ab899ecc84c2c97ac6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b39dbdd24a234f3982e2b78d6a3a6ca4", + "IPY_MODEL_c8da71bd884e46109202edc2ee6ab409", + "IPY_MODEL_f620b009650b49f69c70d93caed3431b" + ], + "layout": "IPY_MODEL_d48b4a1fa40646a3bec001eabc934939", + "tabbable": null, + "tooltip": null + } + }, + "06290fbe33a34692b6a4159ab260ce9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b5d2f843fa24204af224bc21fdaf056": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0df3f598e42449c692311ec643f0d43d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b247055147c47c2a71d10020cd84176": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "05fbe93d9d004d09b7a9891b7f6adbe2": { + "293f95aa421a4889bf08ad2176227a3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1501,23 +1593,7 @@ "width": null } }, - "06630781720c42d199dca36dbc67bb87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "11c7035432e343fb93816c86129b8adf": { + "2a411ecde9e54d31b05f5cc5733557f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1570,7 +1646,30 @@ "width": null } }, - "1366b1442bcd477f91d3b1f2c79ccf71": { + "2c996374e678491788c459e1dbc99a01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a411ecde9e54d31b05f5cc5733557f7", + "placeholder": "​", + "style": "IPY_MODEL_9ef834011f39489aafc203ff4a85829a", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 227MB/s]" + } + }, + "2d4fdb5e6e5b487387c870752b01cd9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1623,7 +1722,41 @@ "width": null } }, - "1602afb154024a839e7eb2baeadf14c9": { + "3130c2baa2ca43b8866db622c29120fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d8bf5983d3844eb8ff2f91414a189f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3de28429f250445fa8516dbacd9be6b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1676,7 +1809,7 @@ "width": null } }, - "1797a298ca2148919567beaa49cc33d7": { + "481f68c008f94fc598a9ef7c2cce6da0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1729,48 +1862,7 @@ "width": null } }, - "1ba1608cb15441918fffbdb0112aa1f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1602afb154024a839e7eb2baeadf14c9", - "placeholder": "​", - "style": "IPY_MODEL_db3add3863d748748c253c014e2faf03", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "2ceda72b1d5049b5a8049ad58afd02d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2ea45f78382040ef970a525ca19405dc": { + "58eb5f1bb6f543b9b6d320bd4dc8a583": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1823,7 +1915,23 @@ "width": null } }, - "3095c367a4c74a08854abcd7622d7a72": { + "59c2bdf1dad14b51966cb22a618f131d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61d8c620b2004dcbbf7642355fae0c8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1876,33 +1984,7 @@ "width": null } }, - "314fd2a192634790b5db62a3957f85ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11c7035432e343fb93816c86129b8adf", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79351f8482fe4216b6609e0f2c2f5d0f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "3a569a86618c42dc86af61139d6acadf": { + "62bd4894905e4e87a345db49d46d4165": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1955,109 +2037,60 @@ "width": null } }, - "3f358d8bedbb43768725d491407bfce8": { - "model_module": "@jupyter-widgets/controls", + "654f7806575d45a9a93e8a5c0d6424c0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f248fc8f51004a06b30e02a83397236b", - "placeholder": "​", - "style": "IPY_MODEL_ff8cf12f43ca4d13a1017fbff08fe9f6", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 445kB/s]" - } - }, - "47d60ecdbe0a4f409818f97dffc6439c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6372cda2727c44baa0af02192d868905", - "placeholder": "​", - "style": "IPY_MODEL_2ceda72b1d5049b5a8049ad58afd02d9", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 198MB/s]" - } - }, - "578b918f0b334af9a2793c197fe9a32c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_99d0bf7b85e74ac2a356f2a9fff98e37", - "IPY_MODEL_92bc2ade5f1a4d98b4659c1d3a64feed", - "IPY_MODEL_6a87e23c3c664f00ab0368cbb61ca901" - ], - "layout": "IPY_MODEL_1366b1442bcd477f91d3b1f2c79ccf71", - "tabbable": null, - "tooltip": null - } - }, - "5d84cb363c6b490cb8afa2ab45a2daee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "60b527de43034970b1308b099653ea53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6372cda2727c44baa0af02192d868905": { + "666271d492134ef0b03b8ec9578b7998": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2110,7 +2143,7 @@ "width": null } }, - "6a87e23c3c664f00ab0368cbb61ca901": { + "668783404483450b8f426724d2f89cd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2125,15 +2158,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9340c56a375c49e89e8e3b127db43593", + "layout": "IPY_MODEL_481f68c008f94fc598a9ef7c2cce6da0", "placeholder": "​", - "style": "IPY_MODEL_ea839efc9eda4c81be312c0e78c8f734", + "style": "IPY_MODEL_7e6e92ecdf7e4d9eafaba693dc09a3c5", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]" + "value": "classifier.ckpt: 100%" + } + }, + "68ffad4d65d54523b62a4a5eccb50913": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f01ef992cbbf4ff19aa1fcca3a0d11ed", + "IPY_MODEL_cad92de12db6453a8c477718a7af5c66", + "IPY_MODEL_dd0085e26ee6480aa6a013494fb70534" + ], + "layout": "IPY_MODEL_58eb5f1bb6f543b9b6d320bd4dc8a583", + "tabbable": null, + "tooltip": null } }, - "6ee9b3701a494b97a2c8644af1e520cb": { + "69fd182a930c4068837b29ef749fc1bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2243,7 @@ "width": null } }, - "707ef7472aa046e0af876676bdeb0e1a": { + "6c5385e8b4cf43428bb9acc7bf7b1b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2204,7 +2261,7 @@ "text_color": null } }, - "79351f8482fe4216b6609e0f2c2f5d0f": { + "73bf2556b81f44f2b96275a8445d1cf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2220,7 +2277,31 @@ "description_width": "" } }, - "87af3d337e4c4f56b8de8653ffbcf2fa": { + "79d69ad0f5d64b55b2c38c5a74f7b121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_668783404483450b8f426724d2f89cd3", + "IPY_MODEL_efad4ad3f4a54a6994d42d4a6b5132d8", + "IPY_MODEL_2c996374e678491788c459e1dbc99a01" + ], + "layout": "IPY_MODEL_2d4fdb5e6e5b487387c870752b01cd9f", + "tabbable": null, + "tooltip": null + } + }, + "7e072d86b5c74dcb93b0e3f2038cc23d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2273,56 +2354,7 @@ "width": null } }, - "88e025fac457476e857a0ed0172c8ebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_05fbe93d9d004d09b7a9891b7f6adbe2", - "placeholder": "​", - "style": "IPY_MODEL_707ef7472aa046e0af876676bdeb0e1a", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "8fc50970ec7644c6825dbf8f10bcced8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1797a298ca2148919567beaa49cc33d7", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06630781720c42d199dca36dbc67bb87", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "918ea5972c8a43b4b372a06b881f8d52": { + "7e6e92ecdf7e4d9eafaba693dc09a3c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2340,7 +2372,7 @@ "text_color": null } }, - "92bc2ade5f1a4d98b4659c1d3a64feed": { + "857398c0b7f442608c58fc97f1061a9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2356,17 +2388,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e831980da61448918a716f1d888c714a", - "max": 15856877.0, + "layout": "IPY_MODEL_62bd4894905e4e87a345db49d46d4165", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5d84cb363c6b490cb8afa2ab45a2daee", + "style": "IPY_MODEL_59c2bdf1dad14b51966cb22a618f131d", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": 3201.0 } }, - "9340c56a375c49e89e8e3b127db43593": { + "99d97c19f0dc458bbece97f7d70aff29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2419,30 +2451,49 @@ "width": null } }, - "99d0bf7b85e74ac2a356f2a9fff98e37": { + "9ae177114d464deba94c0d078154bdf4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d916d408a2f44a8992d77870d9ae75bf", - "placeholder": "​", - "style": "IPY_MODEL_f0aa84448e3f405b9aeee1a3005ca7a2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f816adc0ed2b4d56be8bf200373ef9aa", + "IPY_MODEL_857398c0b7f442608c58fc97f1061a9f", + "IPY_MODEL_fc8d050fc3f448ee9399813ed8e667f4" + ], + "layout": "IPY_MODEL_69fd182a930c4068837b29ef749fc1bf", "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "tooltip": null + } + }, + "9ef834011f39489aafc203ff4a85829a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d41a343cf504fc2878761980bd12889": { + "abe7c4e2a2194914a09f1d5bd6432fec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2495,7 +2546,30 @@ "width": null } }, - "b69d30f9f6bd496e950e0a7253129c59": { + "aefceca0700b4c62b24820c53e63d7f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_293f95aa421a4889bf08ad2176227a3a", + "placeholder": "​", + "style": "IPY_MODEL_d6c9f629d18240d7a6b98ac06c78293a", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "b39dbdd24a234f3982e2b78d6a3a6ca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2510,15 +2584,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3095c367a4c74a08854abcd7622d7a72", + "layout": "IPY_MODEL_bac330bbb6a4449a8fbf7ad2fb9720e7", "placeholder": "​", - "style": "IPY_MODEL_d60c4c9975014fc6918fb9394f823e45", + "style": "IPY_MODEL_cf487e1807424afba2b22b5f777c96a2", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 769kB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "bb5894e2b38c45c194efd20f8c3cbe66": { + "baae0b1fb874444ebed0ca5b86534711": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2571,102 +2645,8 @@ "width": null } }, - "bba729c19a594f33892a4024225287f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_88e025fac457476e857a0ed0172c8ebf", - "IPY_MODEL_314fd2a192634790b5db62a3957f85ac", - "IPY_MODEL_47d60ecdbe0a4f409818f97dffc6439c" - ], - "layout": "IPY_MODEL_eaa3e635e6d845149a49424039f11a4a", - "tabbable": null, - "tooltip": null - } - }, - "bf3f0473f1a24d82986d6c703fdff8de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c96f0f9cb7694a33982acab6e5ac22c1", - "IPY_MODEL_018c961243dc4a2ab609ecd13bf21b1c", - "IPY_MODEL_b69d30f9f6bd496e950e0a7253129c59" - ], - "layout": "IPY_MODEL_87af3d337e4c4f56b8de8653ffbcf2fa", - "tabbable": null, - "tooltip": null - } - }, - "c7316533a256479abb53524380df0dd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a569a86618c42dc86af61139d6acadf", - "placeholder": "​", - "style": "IPY_MODEL_f853c6490ccf49c18f81d8894a4fd3d4", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 9.21MB/s]" - } - }, - "c96f0f9cb7694a33982acab6e5ac22c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4ac54bb95434214887e6908f7417cc4", - "placeholder": "​", - "style": "IPY_MODEL_918ea5972c8a43b4b372a06b881f8d52", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "d4ac54bb95434214887e6908f7417cc4": { - "model_module": "@jupyter-widgets/base", + "bac330bbb6a4449a8fbf7ad2fb9720e7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -2718,7 +2698,59 @@ "width": null } }, - "d60c4c9975014fc6918fb9394f823e45": { + "c8da71bd884e46109202edc2ee6ab409": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_654f7806575d45a9a93e8a5c0d6424c0", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4c65529fdc840279cfc12be44b62fb9", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "cad92de12db6453a8c477718a7af5c66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e072d86b5c74dcb93b0e3f2038cc23d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b5d2f843fa24204af224bc21fdaf056", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "cf487e1807424afba2b22b5f777c96a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2736,7 +2768,7 @@ "text_color": null } }, - "d916d408a2f44a8992d77870d9ae75bf": { + "d48b4a1fa40646a3bec001eabc934939": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2789,7 +2821,23 @@ "width": null } }, - "db3add3863d748748c253c014e2faf03": { + "d4c65529fdc840279cfc12be44b62fb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d65f6dbb468c45f5833700dc76ef4722": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2807,60 +2855,71 @@ "text_color": null } }, - "e617431224a74447b3168997dee691d1": { - "model_module": "@jupyter-widgets/base", + "d6c9f629d18240d7a6b98ac06c78293a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d982ece3b4e14443adc855de84443142": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3de28429f250445fa8516dbacd9be6b4", + "placeholder": "​", + "style": "IPY_MODEL_1b247055147c47c2a71d10020cd84176", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 499kB/s]" + } + }, + "dd0085e26ee6480aa6a013494fb70534": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_baae0b1fb874444ebed0ca5b86534711", + "placeholder": "​", + "style": "IPY_MODEL_d65f6dbb468c45f5833700dc76ef4722", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 15.9MB/s]" } }, - "e831980da61448918a716f1d888c714a": { + "e0528fbb6b84426681be3552bcfa5be7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2913,41 +2972,7 @@ "width": null } }, - "e8bb345f6d81459fa75f4555635255d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ea839efc9eda4c81be312c0e78c8f734": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eaa3e635e6d845149a49424039f11a4a": { + "e872326b222549548e420a960ab1959d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3000,43 +3025,7 @@ "width": null } }, - "f0aa84448e3f405b9aeee1a3005ca7a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f0e4ebf8d49e4f038e5a57a3736f1527": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f248fc8f51004a06b30e02a83397236b": { + "ede528c5216046cfba4a067472e5124d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3089,49 +3078,56 @@ "width": null } }, - "f853c6490ccf49c18f81d8894a4fd3d4": { + "efad4ad3f4a54a6994d42d4a6b5132d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e872326b222549548e420a960ab1959d", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73bf2556b81f44f2b96275a8445d1cf0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "f8ffabec7ae64c16bd74b38130d34b65": { + "f01ef992cbbf4ff19aa1fcca3a0d11ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1ba1608cb15441918fffbdb0112aa1f8", - "IPY_MODEL_8fc50970ec7644c6825dbf8f10bcced8", - "IPY_MODEL_c7316533a256479abb53524380df0dd4" - ], - "layout": "IPY_MODEL_6ee9b3701a494b97a2c8644af1e520cb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61d8c620b2004dcbbf7642355fae0c8d", + "placeholder": "​", + "style": "IPY_MODEL_0df3f598e42449c692311ec643f0d43d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "fe3bcc7d9bf948039e3be396079d45a5": { + "f620b009650b49f69c70d93caed3431b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3146,54 +3142,58 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e617431224a74447b3168997dee691d1", + "layout": "IPY_MODEL_abe7c4e2a2194914a09f1d5bd6432fec", "placeholder": "​", - "style": "IPY_MODEL_f0e4ebf8d49e4f038e5a57a3736f1527", + "style": "IPY_MODEL_6c5385e8b4cf43428bb9acc7bf7b1b4f", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 192MB/s]" } }, - "ff1fa9c053ff44b6819529a9bf6f509a": { + "f816adc0ed2b4d56be8bf200373ef9aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fe3bcc7d9bf948039e3be396079d45a5", - "IPY_MODEL_02b46780ae3f483399e08d2e6ff8eab2", - "IPY_MODEL_3f358d8bedbb43768725d491407bfce8" - ], - "layout": "IPY_MODEL_9d41a343cf504fc2878761980bd12889", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ede528c5216046cfba4a067472e5124d", + "placeholder": "​", + "style": "IPY_MODEL_3d8bf5983d3844eb8ff2f91414a189f4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ff8cf12f43ca4d13a1017fbff08fe9f6": { + "fc8d050fc3f448ee9399813ed8e667f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_666271d492134ef0b03b8ec9578b7998", + "placeholder": "​", + "style": "IPY_MODEL_06290fbe33a34692b6a4159ab260ce9c", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 841kB/s]" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 7adc6f4f1..54048929a 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1076,7 +1076,7 @@

Functionality 2: Specifying nondefault arguments
-
+

@@ -1472,7 +1472,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"f27d8d03bb7a4b9c80ec66879eba1d42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af54435c28a94ad3a9d70db593b5a3e5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8e20c89702ef461daecccbb5da8848ab": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f27d8d03bb7a4b9c80ec66879eba1d42", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_af54435c28a94ad3a9d70db593b5a3e5", "tabbable": null, "tooltip": null, "value": 132.0}}, "a9fa597efa5d48e59d7f343f74918d9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb4f3fe3fa91465da8d8e7461df5ba6e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2796c1b17ef34cd2924b19c570f1ba19": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9fa597efa5d48e59d7f343f74918d9e", "placeholder": "\u200b", "style": "IPY_MODEL_bb4f3fe3fa91465da8d8e7461df5ba6e", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%"}}, "2821f5f639ba4ffd9334637e6f72a8f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d96baeb2794b4526b8c5e3e90431ba55": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "49bb714cc50743d4ba856e9f230e86d4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2821f5f639ba4ffd9334637e6f72a8f6", "placeholder": "\u200b", "style": "IPY_MODEL_d96baeb2794b4526b8c5e3e90431ba55", "tabbable": null, "tooltip": null, "value": " 132/132 [00:00<00:00, 10686.54 examples/s]"}}, "ecad1f34aefc443ca975a3be167d184c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fde4d4047cc04f52b05c97287dfdab6f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2796c1b17ef34cd2924b19c570f1ba19", "IPY_MODEL_8e20c89702ef461daecccbb5da8848ab", "IPY_MODEL_49bb714cc50743d4ba856e9f230e86d4"], "layout": "IPY_MODEL_ecad1f34aefc443ca975a3be167d184c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"ba00a80584da4e25999bd64658097477": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8340d103f0ae4a1c9c28c150537d321a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "923d794e2ac04e25b34fa7031a457daf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ba00a80584da4e25999bd64658097477", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8340d103f0ae4a1c9c28c150537d321a", "tabbable": null, "tooltip": null, "value": 132.0}}, "6aa4b5d7697a4ed0bc096aa15d54b031": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6fa4e74a8cff48f9a59390c7cf9bdc68": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "112602ddf49c4bf785b9bad0c12fe160": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6aa4b5d7697a4ed0bc096aa15d54b031", "placeholder": "\u200b", "style": "IPY_MODEL_6fa4e74a8cff48f9a59390c7cf9bdc68", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%"}}, "9553827654b745bf83b8b620248421b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc883be33a264afa82c5f8909066a0cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a809642ae1c44d1bcb4435dfeba74f1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9553827654b745bf83b8b620248421b0", "placeholder": "\u200b", "style": "IPY_MODEL_fc883be33a264afa82c5f8909066a0cf", "tabbable": null, "tooltip": null, "value": " 132/132 [00:00<00:00, 11705.53 examples/s]"}}, "8dccc6dba8764969a34bcdd2d2695a48": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc591f1bc33243c09e4539d5f7f93d6e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_112602ddf49c4bf785b9bad0c12fe160", "IPY_MODEL_923d794e2ac04e25b34fa7031a457daf", "IPY_MODEL_5a809642ae1c44d1bcb4435dfeba74f1"], "layout": "IPY_MODEL_8dccc6dba8764969a34bcdd2d2695a48", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index eb98a395e..2aa010cbc 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:45.766597Z", - "iopub.status.busy": "2024-02-07T22:09:45.766116Z", - "iopub.status.idle": "2024-02-07T22:09:46.894614Z", - "shell.execute_reply": "2024-02-07T22:09:46.893994Z" + "iopub.execute_input": "2024-02-07T23:50:26.079478Z", + "iopub.status.busy": "2024-02-07T23:50:26.079305Z", + "iopub.status.idle": "2024-02-07T23:50:27.150586Z", + "shell.execute_reply": "2024-02-07T23:50:27.149991Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.897320Z", - "iopub.status.busy": "2024-02-07T22:09:46.897025Z", - "iopub.status.idle": "2024-02-07T22:09:46.900128Z", - "shell.execute_reply": "2024-02-07T22:09:46.899610Z" + "iopub.execute_input": "2024-02-07T23:50:27.153138Z", + "iopub.status.busy": "2024-02-07T23:50:27.152874Z", + "iopub.status.idle": "2024-02-07T23:50:27.156022Z", + "shell.execute_reply": "2024-02-07T23:50:27.155466Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.902250Z", - "iopub.status.busy": "2024-02-07T22:09:46.902067Z", - "iopub.status.idle": "2024-02-07T22:09:46.910749Z", - "shell.execute_reply": "2024-02-07T22:09:46.910239Z" + "iopub.execute_input": "2024-02-07T23:50:27.158108Z", + "iopub.status.busy": "2024-02-07T23:50:27.157782Z", + "iopub.status.idle": "2024-02-07T23:50:27.166233Z", + "shell.execute_reply": "2024-02-07T23:50:27.165798Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.912794Z", - "iopub.status.busy": "2024-02-07T22:09:46.912478Z", - "iopub.status.idle": "2024-02-07T22:09:46.917349Z", - "shell.execute_reply": "2024-02-07T22:09:46.916928Z" + "iopub.execute_input": "2024-02-07T23:50:27.168113Z", + "iopub.status.busy": "2024-02-07T23:50:27.167802Z", + "iopub.status.idle": "2024-02-07T23:50:27.172764Z", + "shell.execute_reply": "2024-02-07T23:50:27.172228Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.919340Z", - "iopub.status.busy": "2024-02-07T22:09:46.919163Z", - "iopub.status.idle": "2024-02-07T22:09:47.102840Z", - "shell.execute_reply": "2024-02-07T22:09:47.102218Z" + "iopub.execute_input": "2024-02-07T23:50:27.174817Z", + "iopub.status.busy": "2024-02-07T23:50:27.174498Z", + "iopub.status.idle": "2024-02-07T23:50:27.354014Z", + "shell.execute_reply": "2024-02-07T23:50:27.353508Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.105419Z", - "iopub.status.busy": "2024-02-07T22:09:47.105218Z", - "iopub.status.idle": "2024-02-07T22:09:47.478382Z", - "shell.execute_reply": "2024-02-07T22:09:47.477797Z" + "iopub.execute_input": "2024-02-07T23:50:27.356243Z", + "iopub.status.busy": "2024-02-07T23:50:27.355969Z", + "iopub.status.idle": "2024-02-07T23:50:27.726314Z", + "shell.execute_reply": "2024-02-07T23:50:27.725725Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.480753Z", - "iopub.status.busy": "2024-02-07T22:09:47.480556Z", - "iopub.status.idle": "2024-02-07T22:09:47.504355Z", - "shell.execute_reply": "2024-02-07T22:09:47.503906Z" + "iopub.execute_input": "2024-02-07T23:50:27.728588Z", + "iopub.status.busy": "2024-02-07T23:50:27.728237Z", + "iopub.status.idle": "2024-02-07T23:50:27.751646Z", + "shell.execute_reply": "2024-02-07T23:50:27.751190Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.506265Z", - "iopub.status.busy": "2024-02-07T22:09:47.506078Z", - "iopub.status.idle": "2024-02-07T22:09:47.520161Z", - "shell.execute_reply": "2024-02-07T22:09:47.519724Z" + "iopub.execute_input": "2024-02-07T23:50:27.753586Z", + "iopub.status.busy": "2024-02-07T23:50:27.753257Z", + "iopub.status.idle": "2024-02-07T23:50:27.767865Z", + "shell.execute_reply": "2024-02-07T23:50:27.767424Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.522067Z", - "iopub.status.busy": "2024-02-07T22:09:47.521889Z", - "iopub.status.idle": "2024-02-07T22:09:49.194798Z", - "shell.execute_reply": "2024-02-07T22:09:49.194164Z" + "iopub.execute_input": "2024-02-07T23:50:27.769928Z", + "iopub.status.busy": "2024-02-07T23:50:27.769614Z", + "iopub.status.idle": "2024-02-07T23:50:29.339727Z", + "shell.execute_reply": "2024-02-07T23:50:29.339121Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.197488Z", - "iopub.status.busy": "2024-02-07T22:09:49.196806Z", - "iopub.status.idle": "2024-02-07T22:09:49.221374Z", - "shell.execute_reply": "2024-02-07T22:09:49.220928Z" + "iopub.execute_input": "2024-02-07T23:50:29.342327Z", + "iopub.status.busy": "2024-02-07T23:50:29.341776Z", + "iopub.status.idle": "2024-02-07T23:50:29.363862Z", + "shell.execute_reply": "2024-02-07T23:50:29.363291Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.223702Z", - "iopub.status.busy": "2024-02-07T22:09:49.223201Z", - "iopub.status.idle": "2024-02-07T22:09:49.241727Z", - "shell.execute_reply": "2024-02-07T22:09:49.241144Z" + "iopub.execute_input": "2024-02-07T23:50:29.365917Z", + "iopub.status.busy": "2024-02-07T23:50:29.365594Z", + "iopub.status.idle": "2024-02-07T23:50:29.383708Z", + "shell.execute_reply": "2024-02-07T23:50:29.383160Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.243746Z", - "iopub.status.busy": "2024-02-07T22:09:49.243416Z", - "iopub.status.idle": "2024-02-07T22:09:49.256057Z", - "shell.execute_reply": "2024-02-07T22:09:49.255592Z" + "iopub.execute_input": "2024-02-07T23:50:29.385827Z", + "iopub.status.busy": "2024-02-07T23:50:29.385426Z", + "iopub.status.idle": "2024-02-07T23:50:29.397799Z", + "shell.execute_reply": "2024-02-07T23:50:29.397365Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.258061Z", - "iopub.status.busy": "2024-02-07T22:09:49.257720Z", - "iopub.status.idle": "2024-02-07T22:09:49.279982Z", - "shell.execute_reply": "2024-02-07T22:09:49.279381Z" + "iopub.execute_input": "2024-02-07T23:50:29.399711Z", + "iopub.status.busy": "2024-02-07T23:50:29.399540Z", + "iopub.status.idle": "2024-02-07T23:50:29.420343Z", + "shell.execute_reply": "2024-02-07T23:50:29.419747Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fde4d4047cc04f52b05c97287dfdab6f", + "model_id": "fc591f1bc33243c09e4539d5f7f93d6e", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.282086Z", - "iopub.status.busy": "2024-02-07T22:09:49.281743Z", - "iopub.status.idle": "2024-02-07T22:09:49.295746Z", - "shell.execute_reply": "2024-02-07T22:09:49.295286Z" + "iopub.execute_input": "2024-02-07T23:50:29.422227Z", + "iopub.status.busy": "2024-02-07T23:50:29.421911Z", + "iopub.status.idle": "2024-02-07T23:50:29.434983Z", + "shell.execute_reply": "2024-02-07T23:50:29.434447Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.297847Z", - "iopub.status.busy": "2024-02-07T22:09:49.297623Z", - "iopub.status.idle": "2024-02-07T22:09:49.303905Z", - "shell.execute_reply": "2024-02-07T22:09:49.303324Z" + "iopub.execute_input": "2024-02-07T23:50:29.437032Z", + "iopub.status.busy": "2024-02-07T23:50:29.436723Z", + "iopub.status.idle": "2024-02-07T23:50:29.442271Z", + "shell.execute_reply": "2024-02-07T23:50:29.441861Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.306143Z", - "iopub.status.busy": "2024-02-07T22:09:49.305836Z", - "iopub.status.idle": "2024-02-07T22:09:49.323660Z", - "shell.execute_reply": "2024-02-07T22:09:49.323089Z" + "iopub.execute_input": "2024-02-07T23:50:29.444286Z", + "iopub.status.busy": "2024-02-07T23:50:29.443974Z", + "iopub.status.idle": "2024-02-07T23:50:29.460426Z", + "shell.execute_reply": "2024-02-07T23:50:29.459872Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2796c1b17ef34cd2924b19c570f1ba19": { + "112602ddf49c4bf785b9bad0c12fe160": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1445,15 +1445,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9fa597efa5d48e59d7f343f74918d9e", + "layout": "IPY_MODEL_6aa4b5d7697a4ed0bc096aa15d54b031", "placeholder": "​", - "style": "IPY_MODEL_bb4f3fe3fa91465da8d8e7461df5ba6e", + "style": "IPY_MODEL_6fa4e74a8cff48f9a59390c7cf9bdc68", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%" } }, - "2821f5f639ba4ffd9334637e6f72a8f6": { + "5a809642ae1c44d1bcb4435dfeba74f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9553827654b745bf83b8b620248421b0", + "placeholder": "​", + "style": "IPY_MODEL_fc883be33a264afa82c5f8909066a0cf", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 11705.53 examples/s]" + } + }, + "6aa4b5d7697a4ed0bc096aa15d54b031": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,56 +1529,41 @@ "width": null } }, - "49bb714cc50743d4ba856e9f230e86d4": { + "6fa4e74a8cff48f9a59390c7cf9bdc68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2821f5f639ba4ffd9334637e6f72a8f6", - "placeholder": "​", - "style": "IPY_MODEL_d96baeb2794b4526b8c5e3e90431ba55", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 10686.54 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8e20c89702ef461daecccbb5da8848ab": { + "8340d103f0ae4a1c9c28c150537d321a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f27d8d03bb7a4b9c80ec66879eba1d42", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_af54435c28a94ad3a9d70db593b5a3e5", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a9fa597efa5d48e59d7f343f74918d9e": { + "8dccc6dba8764969a34bcdd2d2695a48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1608,59 +1616,33 @@ "width": null } }, - "af54435c28a94ad3a9d70db593b5a3e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb4f3fe3fa91465da8d8e7461df5ba6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d96baeb2794b4526b8c5e3e90431ba55": { + "923d794e2ac04e25b34fa7031a457daf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba00a80584da4e25999bd64658097477", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8340d103f0ae4a1c9c28c150537d321a", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "ecad1f34aefc443ca975a3be167d184c": { + "9553827654b745bf83b8b620248421b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1713,7 +1695,7 @@ "width": null } }, - "f27d8d03bb7a4b9c80ec66879eba1d42": { + "ba00a80584da4e25999bd64658097477": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,7 +1748,7 @@ "width": null } }, - "fde4d4047cc04f52b05c97287dfdab6f": { + "fc591f1bc33243c09e4539d5f7f93d6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1781,14 +1763,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2796c1b17ef34cd2924b19c570f1ba19", - "IPY_MODEL_8e20c89702ef461daecccbb5da8848ab", - "IPY_MODEL_49bb714cc50743d4ba856e9f230e86d4" + "IPY_MODEL_112602ddf49c4bf785b9bad0c12fe160", + "IPY_MODEL_923d794e2ac04e25b34fa7031a457daf", + "IPY_MODEL_5a809642ae1c44d1bcb4435dfeba74f1" ], - "layout": "IPY_MODEL_ecad1f34aefc443ca975a3be167d184c", + "layout": "IPY_MODEL_8dccc6dba8764969a34bcdd2d2695a48", "tabbable": null, "tooltip": null } + }, + "fc883be33a264afa82c5f8909066a0cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 27e694d83..38a0df9fa 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:51.944305Z", - "iopub.status.busy": "2024-02-07T22:09:51.943895Z", - "iopub.status.idle": "2024-02-07T22:09:53.035775Z", - "shell.execute_reply": "2024-02-07T22:09:53.035210Z" + "iopub.execute_input": "2024-02-07T23:50:32.050037Z", + "iopub.status.busy": "2024-02-07T23:50:32.049655Z", + "iopub.status.idle": "2024-02-07T23:50:33.121241Z", + "shell.execute_reply": "2024-02-07T23:50:33.120710Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.038346Z", - "iopub.status.busy": "2024-02-07T22:09:53.037927Z", - "iopub.status.idle": "2024-02-07T22:09:53.040885Z", - "shell.execute_reply": "2024-02-07T22:09:53.040446Z" + "iopub.execute_input": "2024-02-07T23:50:33.123591Z", + "iopub.status.busy": "2024-02-07T23:50:33.123252Z", + "iopub.status.idle": "2024-02-07T23:50:33.126067Z", + "shell.execute_reply": "2024-02-07T23:50:33.125643Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.043051Z", - "iopub.status.busy": "2024-02-07T22:09:53.042662Z", - "iopub.status.idle": "2024-02-07T22:09:53.051658Z", - "shell.execute_reply": "2024-02-07T22:09:53.051179Z" + "iopub.execute_input": "2024-02-07T23:50:33.128077Z", + "iopub.status.busy": "2024-02-07T23:50:33.127739Z", + "iopub.status.idle": "2024-02-07T23:50:33.136454Z", + "shell.execute_reply": "2024-02-07T23:50:33.136019Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.053597Z", - "iopub.status.busy": "2024-02-07T22:09:53.053299Z", - "iopub.status.idle": "2024-02-07T22:09:53.058208Z", - "shell.execute_reply": "2024-02-07T22:09:53.057763Z" + "iopub.execute_input": "2024-02-07T23:50:33.138407Z", + "iopub.status.busy": "2024-02-07T23:50:33.138099Z", + "iopub.status.idle": "2024-02-07T23:50:33.142931Z", + "shell.execute_reply": "2024-02-07T23:50:33.142378Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.060288Z", - "iopub.status.busy": "2024-02-07T22:09:53.059980Z", - "iopub.status.idle": "2024-02-07T22:09:53.243898Z", - "shell.execute_reply": "2024-02-07T22:09:53.243265Z" + "iopub.execute_input": "2024-02-07T23:50:33.145229Z", + "iopub.status.busy": "2024-02-07T23:50:33.144779Z", + "iopub.status.idle": "2024-02-07T23:50:33.324549Z", + "shell.execute_reply": "2024-02-07T23:50:33.324005Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.246458Z", - "iopub.status.busy": "2024-02-07T22:09:53.246117Z", - "iopub.status.idle": "2024-02-07T22:09:53.569144Z", - "shell.execute_reply": "2024-02-07T22:09:53.568560Z" + "iopub.execute_input": "2024-02-07T23:50:33.326802Z", + "iopub.status.busy": "2024-02-07T23:50:33.326501Z", + "iopub.status.idle": "2024-02-07T23:50:33.691854Z", + "shell.execute_reply": "2024-02-07T23:50:33.691275Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.571195Z", - "iopub.status.busy": "2024-02-07T22:09:53.571004Z", - "iopub.status.idle": "2024-02-07T22:09:53.573886Z", - "shell.execute_reply": "2024-02-07T22:09:53.573439Z" + "iopub.execute_input": "2024-02-07T23:50:33.693985Z", + "iopub.status.busy": "2024-02-07T23:50:33.693672Z", + "iopub.status.idle": "2024-02-07T23:50:33.696518Z", + "shell.execute_reply": "2024-02-07T23:50:33.695930Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.575899Z", - "iopub.status.busy": "2024-02-07T22:09:53.575585Z", - "iopub.status.idle": "2024-02-07T22:09:53.610611Z", - "shell.execute_reply": "2024-02-07T22:09:53.610139Z" + "iopub.execute_input": "2024-02-07T23:50:33.698376Z", + "iopub.status.busy": "2024-02-07T23:50:33.698197Z", + "iopub.status.idle": "2024-02-07T23:50:33.734067Z", + "shell.execute_reply": "2024-02-07T23:50:33.733496Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.612587Z", - "iopub.status.busy": "2024-02-07T22:09:53.612283Z", - "iopub.status.idle": "2024-02-07T22:09:55.294395Z", - "shell.execute_reply": "2024-02-07T22:09:55.293723Z" + "iopub.execute_input": "2024-02-07T23:50:33.736250Z", + "iopub.status.busy": "2024-02-07T23:50:33.735898Z", + "iopub.status.idle": "2024-02-07T23:50:35.324293Z", + "shell.execute_reply": "2024-02-07T23:50:35.323707Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.297112Z", - "iopub.status.busy": "2024-02-07T22:09:55.296398Z", - "iopub.status.idle": "2024-02-07T22:09:55.312678Z", - "shell.execute_reply": "2024-02-07T22:09:55.312224Z" + "iopub.execute_input": "2024-02-07T23:50:35.326786Z", + "iopub.status.busy": "2024-02-07T23:50:35.326145Z", + "iopub.status.idle": "2024-02-07T23:50:35.342690Z", + "shell.execute_reply": "2024-02-07T23:50:35.342116Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.314716Z", - "iopub.status.busy": "2024-02-07T22:09:55.314404Z", - "iopub.status.idle": "2024-02-07T22:09:55.320693Z", - "shell.execute_reply": "2024-02-07T22:09:55.320168Z" + "iopub.execute_input": "2024-02-07T23:50:35.344850Z", + "iopub.status.busy": "2024-02-07T23:50:35.344539Z", + "iopub.status.idle": "2024-02-07T23:50:35.351268Z", + "shell.execute_reply": "2024-02-07T23:50:35.350723Z" } }, "outputs": [ @@ -941,10 +941,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.322682Z", - "iopub.status.busy": "2024-02-07T22:09:55.322374Z", - "iopub.status.idle": "2024-02-07T22:09:55.327895Z", - "shell.execute_reply": "2024-02-07T22:09:55.327376Z" + "iopub.execute_input": "2024-02-07T23:50:35.353405Z", + "iopub.status.busy": "2024-02-07T23:50:35.353065Z", + "iopub.status.idle": "2024-02-07T23:50:35.358733Z", + "shell.execute_reply": "2024-02-07T23:50:35.358315Z" } }, "outputs": [ @@ -1011,10 +1011,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.329882Z", - "iopub.status.busy": "2024-02-07T22:09:55.329574Z", - "iopub.status.idle": "2024-02-07T22:09:55.338962Z", - "shell.execute_reply": "2024-02-07T22:09:55.338443Z" + "iopub.execute_input": "2024-02-07T23:50:35.360561Z", + "iopub.status.busy": "2024-02-07T23:50:35.360391Z", + "iopub.status.idle": "2024-02-07T23:50:35.370073Z", + "shell.execute_reply": "2024-02-07T23:50:35.369622Z" } }, "outputs": [ @@ -1187,10 +1187,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.341062Z", - "iopub.status.busy": "2024-02-07T22:09:55.340748Z", - "iopub.status.idle": "2024-02-07T22:09:55.349834Z", - "shell.execute_reply": "2024-02-07T22:09:55.349389Z" + "iopub.execute_input": "2024-02-07T23:50:35.372076Z", + "iopub.status.busy": "2024-02-07T23:50:35.371747Z", + "iopub.status.idle": "2024-02-07T23:50:35.380435Z", + "shell.execute_reply": "2024-02-07T23:50:35.380030Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.351812Z", - "iopub.status.busy": "2024-02-07T22:09:55.351492Z", - "iopub.status.idle": "2024-02-07T22:09:55.358215Z", - "shell.execute_reply": "2024-02-07T22:09:55.357777Z" + "iopub.execute_input": "2024-02-07T23:50:35.382354Z", + "iopub.status.busy": "2024-02-07T23:50:35.382064Z", + "iopub.status.idle": "2024-02-07T23:50:35.388711Z", + "shell.execute_reply": "2024-02-07T23:50:35.388189Z" }, "scrolled": true }, @@ -1434,10 +1434,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.360252Z", - "iopub.status.busy": "2024-02-07T22:09:55.359862Z", - "iopub.status.idle": "2024-02-07T22:09:55.368697Z", - "shell.execute_reply": "2024-02-07T22:09:55.368160Z" + "iopub.execute_input": "2024-02-07T23:50:35.390572Z", + "iopub.status.busy": "2024-02-07T23:50:35.390398Z", + "iopub.status.idle": "2024-02-07T23:50:35.399536Z", + "shell.execute_reply": "2024-02-07T23:50:35.399098Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 69da62e85..89256cb69 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:58.185193Z", - "iopub.status.busy": "2024-02-07T22:09:58.185035Z", - "iopub.status.idle": "2024-02-07T22:09:59.240954Z", - "shell.execute_reply": "2024-02-07T22:09:59.240396Z" + "iopub.execute_input": "2024-02-07T23:50:37.883084Z", + "iopub.status.busy": "2024-02-07T23:50:37.882910Z", + "iopub.status.idle": "2024-02-07T23:50:38.892679Z", + "shell.execute_reply": "2024-02-07T23:50:38.892131Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.243686Z", - "iopub.status.busy": "2024-02-07T22:09:59.243159Z", - "iopub.status.idle": "2024-02-07T22:09:59.278797Z", - "shell.execute_reply": "2024-02-07T22:09:59.278254Z" + "iopub.execute_input": "2024-02-07T23:50:38.894943Z", + "iopub.status.busy": "2024-02-07T23:50:38.894684Z", + "iopub.status.idle": "2024-02-07T23:50:38.929710Z", + "shell.execute_reply": "2024-02-07T23:50:38.929146Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.281190Z", - "iopub.status.busy": "2024-02-07T22:09:59.280903Z", - "iopub.status.idle": "2024-02-07T22:09:59.401377Z", - "shell.execute_reply": "2024-02-07T22:09:59.400748Z" + "iopub.execute_input": "2024-02-07T23:50:38.931765Z", + "iopub.status.busy": "2024-02-07T23:50:38.931526Z", + "iopub.status.idle": "2024-02-07T23:50:39.058331Z", + "shell.execute_reply": "2024-02-07T23:50:39.057887Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.403384Z", - "iopub.status.busy": "2024-02-07T22:09:59.403180Z", - "iopub.status.idle": "2024-02-07T22:09:59.407799Z", - "shell.execute_reply": "2024-02-07T22:09:59.407346Z" + "iopub.execute_input": "2024-02-07T23:50:39.060129Z", + "iopub.status.busy": "2024-02-07T23:50:39.059952Z", + "iopub.status.idle": "2024-02-07T23:50:39.064178Z", + "shell.execute_reply": "2024-02-07T23:50:39.063670Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.409634Z", - "iopub.status.busy": "2024-02-07T22:09:59.409460Z", - "iopub.status.idle": "2024-02-07T22:09:59.417606Z", - "shell.execute_reply": "2024-02-07T22:09:59.417193Z" + "iopub.execute_input": "2024-02-07T23:50:39.066362Z", + "iopub.status.busy": "2024-02-07T23:50:39.065950Z", + "iopub.status.idle": "2024-02-07T23:50:39.076608Z", + "shell.execute_reply": "2024-02-07T23:50:39.076042Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.419486Z", - "iopub.status.busy": "2024-02-07T22:09:59.419287Z", - "iopub.status.idle": "2024-02-07T22:09:59.421813Z", - "shell.execute_reply": "2024-02-07T22:09:59.421375Z" + "iopub.execute_input": "2024-02-07T23:50:39.078928Z", + "iopub.status.busy": "2024-02-07T23:50:39.078751Z", + "iopub.status.idle": "2024-02-07T23:50:39.083266Z", + "shell.execute_reply": "2024-02-07T23:50:39.082562Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.423749Z", - "iopub.status.busy": "2024-02-07T22:09:59.423432Z", - "iopub.status.idle": "2024-02-07T22:10:02.368926Z", - "shell.execute_reply": "2024-02-07T22:10:02.368252Z" + "iopub.execute_input": "2024-02-07T23:50:39.086189Z", + "iopub.status.busy": "2024-02-07T23:50:39.085768Z", + "iopub.status.idle": "2024-02-07T23:50:42.065051Z", + "shell.execute_reply": "2024-02-07T23:50:42.064424Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:02.371956Z", - "iopub.status.busy": "2024-02-07T22:10:02.371532Z", - "iopub.status.idle": "2024-02-07T22:10:02.381528Z", - "shell.execute_reply": "2024-02-07T22:10:02.380946Z" + "iopub.execute_input": "2024-02-07T23:50:42.067604Z", + "iopub.status.busy": "2024-02-07T23:50:42.067419Z", + "iopub.status.idle": "2024-02-07T23:50:42.077021Z", + "shell.execute_reply": "2024-02-07T23:50:42.076618Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:02.383882Z", - "iopub.status.busy": "2024-02-07T22:10:02.383431Z", - "iopub.status.idle": "2024-02-07T22:10:04.216983Z", - "shell.execute_reply": "2024-02-07T22:10:04.216362Z" + "iopub.execute_input": "2024-02-07T23:50:42.078892Z", + "iopub.status.busy": "2024-02-07T23:50:42.078719Z", + "iopub.status.idle": "2024-02-07T23:50:43.738703Z", + "shell.execute_reply": "2024-02-07T23:50:43.738023Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.220917Z", - "iopub.status.busy": "2024-02-07T22:10:04.219625Z", - "iopub.status.idle": "2024-02-07T22:10:04.241581Z", - "shell.execute_reply": "2024-02-07T22:10:04.241080Z" + "iopub.execute_input": "2024-02-07T23:50:43.741956Z", + "iopub.status.busy": "2024-02-07T23:50:43.741196Z", + "iopub.status.idle": "2024-02-07T23:50:43.761486Z", + "shell.execute_reply": "2024-02-07T23:50:43.760971Z" }, "scrolled": true }, @@ -604,10 +604,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.245130Z", - "iopub.status.busy": "2024-02-07T22:10:04.244225Z", - "iopub.status.idle": "2024-02-07T22:10:04.255345Z", - "shell.execute_reply": "2024-02-07T22:10:04.254854Z" + "iopub.execute_input": "2024-02-07T23:50:43.764641Z", + "iopub.status.busy": "2024-02-07T23:50:43.763724Z", + "iopub.status.idle": "2024-02-07T23:50:43.774658Z", + "shell.execute_reply": "2024-02-07T23:50:43.774184Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.258823Z", - "iopub.status.busy": "2024-02-07T22:10:04.257919Z", - "iopub.status.idle": "2024-02-07T22:10:04.270597Z", - "shell.execute_reply": "2024-02-07T22:10:04.270094Z" + "iopub.execute_input": "2024-02-07T23:50:43.778049Z", + "iopub.status.busy": "2024-02-07T23:50:43.777135Z", + "iopub.status.idle": "2024-02-07T23:50:43.789631Z", + "shell.execute_reply": "2024-02-07T23:50:43.789124Z" } }, "outputs": [ @@ -843,10 +843,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.274181Z", - "iopub.status.busy": "2024-02-07T22:10:04.273266Z", - "iopub.status.idle": "2024-02-07T22:10:04.284928Z", - "shell.execute_reply": "2024-02-07T22:10:04.284408Z" + "iopub.execute_input": "2024-02-07T23:50:43.793061Z", + "iopub.status.busy": "2024-02-07T23:50:43.792169Z", + "iopub.status.idle": "2024-02-07T23:50:43.803071Z", + "shell.execute_reply": "2024-02-07T23:50:43.802586Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.288692Z", - "iopub.status.busy": "2024-02-07T22:10:04.287752Z", - "iopub.status.idle": "2024-02-07T22:10:04.301331Z", - "shell.execute_reply": "2024-02-07T22:10:04.300828Z" + "iopub.execute_input": "2024-02-07T23:50:43.806458Z", + "iopub.status.busy": "2024-02-07T23:50:43.805573Z", + "iopub.status.idle": "2024-02-07T23:50:43.817839Z", + "shell.execute_reply": "2024-02-07T23:50:43.817365Z" } }, "outputs": [ @@ -1074,10 +1074,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.304987Z", - "iopub.status.busy": "2024-02-07T22:10:04.304078Z", - "iopub.status.idle": "2024-02-07T22:10:04.312203Z", - "shell.execute_reply": "2024-02-07T22:10:04.311804Z" + "iopub.execute_input": "2024-02-07T23:50:43.821198Z", + "iopub.status.busy": "2024-02-07T23:50:43.820286Z", + "iopub.status.idle": "2024-02-07T23:50:43.829526Z", + "shell.execute_reply": "2024-02-07T23:50:43.828987Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.315003Z", - "iopub.status.busy": "2024-02-07T22:10:04.314273Z", - "iopub.status.idle": "2024-02-07T22:10:04.321246Z", - "shell.execute_reply": "2024-02-07T22:10:04.320693Z" + "iopub.execute_input": "2024-02-07T23:50:43.831641Z", + "iopub.status.busy": "2024-02-07T23:50:43.831471Z", + "iopub.status.idle": "2024-02-07T23:50:43.837592Z", + "shell.execute_reply": "2024-02-07T23:50:43.837146Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.323382Z", - "iopub.status.busy": "2024-02-07T22:10:04.323031Z", - "iopub.status.idle": "2024-02-07T22:10:04.329588Z", - "shell.execute_reply": "2024-02-07T22:10:04.328964Z" + "iopub.execute_input": "2024-02-07T23:50:43.839485Z", + "iopub.status.busy": "2024-02-07T23:50:43.839314Z", + "iopub.status.idle": "2024-02-07T23:50:43.845958Z", + "shell.execute_reply": "2024-02-07T23:50:43.845400Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index d5cdbc5a4..d7da7c975 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -706,7 +706,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged'}
+Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}
 

Let’s view the i-th example in the dataset:

@@ -753,43 +753,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1523,7 +1523,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 18dadf034..d297bd27d 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:06.947323Z", - "iopub.status.busy": "2024-02-07T22:10:06.947148Z", - "iopub.status.idle": "2024-02-07T22:10:09.939027Z", - "shell.execute_reply": "2024-02-07T22:10:09.938409Z" + "iopub.execute_input": "2024-02-07T23:50:46.233862Z", + "iopub.status.busy": "2024-02-07T23:50:46.233691Z", + "iopub.status.idle": "2024-02-07T23:50:49.479909Z", + "shell.execute_reply": "2024-02-07T23:50:49.479357Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.941621Z", - "iopub.status.busy": "2024-02-07T22:10:09.941215Z", - "iopub.status.idle": "2024-02-07T22:10:09.944579Z", - "shell.execute_reply": "2024-02-07T22:10:09.944140Z" + "iopub.execute_input": "2024-02-07T23:50:49.482307Z", + "iopub.status.busy": "2024-02-07T23:50:49.482016Z", + "iopub.status.idle": "2024-02-07T23:50:49.485135Z", + "shell.execute_reply": "2024-02-07T23:50:49.484703Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.946445Z", - "iopub.status.busy": "2024-02-07T22:10:09.946183Z", - "iopub.status.idle": "2024-02-07T22:10:09.949100Z", - "shell.execute_reply": "2024-02-07T22:10:09.948667Z" + "iopub.execute_input": "2024-02-07T23:50:49.487098Z", + "iopub.status.busy": "2024-02-07T23:50:49.486785Z", + "iopub.status.idle": "2024-02-07T23:50:49.489812Z", + "shell.execute_reply": "2024-02-07T23:50:49.489306Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.951000Z", - "iopub.status.busy": "2024-02-07T22:10:09.950733Z", - "iopub.status.idle": "2024-02-07T22:10:09.991047Z", - "shell.execute_reply": "2024-02-07T22:10:09.990478Z" + "iopub.execute_input": "2024-02-07T23:50:49.491745Z", + "iopub.status.busy": "2024-02-07T23:50:49.491425Z", + "iopub.status.idle": "2024-02-07T23:50:49.528987Z", + "shell.execute_reply": "2024-02-07T23:50:49.528551Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.993279Z", - "iopub.status.busy": "2024-02-07T22:10:09.992913Z", - "iopub.status.idle": "2024-02-07T22:10:09.996608Z", - "shell.execute_reply": "2024-02-07T22:10:09.996099Z" + "iopub.execute_input": "2024-02-07T23:50:49.530871Z", + "iopub.status.busy": "2024-02-07T23:50:49.530546Z", + "iopub.status.idle": "2024-02-07T23:50:49.533966Z", + "shell.execute_reply": "2024-02-07T23:50:49.533472Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.998677Z", - "iopub.status.busy": "2024-02-07T22:10:09.998368Z", - "iopub.status.idle": "2024-02-07T22:10:10.001537Z", - "shell.execute_reply": "2024-02-07T22:10:10.000982Z" + "iopub.execute_input": "2024-02-07T23:50:49.535879Z", + "iopub.status.busy": "2024-02-07T23:50:49.535606Z", + "iopub.status.idle": "2024-02-07T23:50:49.538753Z", + "shell.execute_reply": "2024-02-07T23:50:49.538216Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:10.003570Z", - "iopub.status.busy": "2024-02-07T22:10:10.003251Z", - "iopub.status.idle": "2024-02-07T22:10:14.583265Z", - "shell.execute_reply": "2024-02-07T22:10:14.582629Z" + "iopub.execute_input": "2024-02-07T23:50:49.540840Z", + "iopub.status.busy": "2024-02-07T23:50:49.540442Z", + "iopub.status.idle": "2024-02-07T23:50:53.722382Z", + "shell.execute_reply": "2024-02-07T23:50:53.721737Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0d885c1a34b04b04a65e76462bc7f8ae", + "model_id": "c122193addbf4629b7ada89af7819966", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70b899115926475ab4ca6289cac6f98d", + "model_id": "49733f926f10403491687cd4d40d244f", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "455cdf2910fc4c79acb1d3b1b36f013d", + "model_id": "e83d2ad65dac4e88a3f2ccde21d67f7f", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "617ccbb8f42e4c1da705cc6973aae912", + "model_id": "294346972e994e1c991aae390ff08179", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a965f31be8c34295846ad4a509228998", + "model_id": "9a65587ca1b94945af7dcc0cfc29a026", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c48d71673f824ce380d94b6bc999083a", + "model_id": "8e9d9888450346db8e3954d17cef036f", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4eef59cd705841408e36d8db6510b5db", + "model_id": "2dd173e0deec4bd6bc92ad03b5a7656c", "version_major": 2, "version_minor": 0 }, @@ -521,10 +521,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:14.586075Z", - "iopub.status.busy": "2024-02-07T22:10:14.585631Z", - "iopub.status.idle": "2024-02-07T22:10:15.504919Z", - "shell.execute_reply": "2024-02-07T22:10:15.504346Z" + "iopub.execute_input": "2024-02-07T23:50:53.724982Z", + "iopub.status.busy": "2024-02-07T23:50:53.724780Z", + "iopub.status.idle": "2024-02-07T23:50:54.607508Z", + "shell.execute_reply": "2024-02-07T23:50:54.606933Z" }, "scrolled": true }, @@ -556,10 +556,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:15.507830Z", - "iopub.status.busy": "2024-02-07T22:10:15.507434Z", - "iopub.status.idle": "2024-02-07T22:10:15.510302Z", - "shell.execute_reply": "2024-02-07T22:10:15.509822Z" + "iopub.execute_input": "2024-02-07T23:50:54.610305Z", + "iopub.status.busy": "2024-02-07T23:50:54.609824Z", + "iopub.status.idle": "2024-02-07T23:50:54.612703Z", + "shell.execute_reply": "2024-02-07T23:50:54.612237Z" } }, "outputs": [], @@ -579,10 +579,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:15.513318Z", - "iopub.status.busy": "2024-02-07T22:10:15.512296Z", - "iopub.status.idle": "2024-02-07T22:10:17.066860Z", - "shell.execute_reply": "2024-02-07T22:10:17.066217Z" + "iopub.execute_input": "2024-02-07T23:50:54.614977Z", + "iopub.status.busy": "2024-02-07T23:50:54.614633Z", + "iopub.status.idle": "2024-02-07T23:50:56.087451Z", + "shell.execute_reply": "2024-02-07T23:50:56.086626Z" }, "scrolled": true }, @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.071173Z", - "iopub.status.busy": "2024-02-07T22:10:17.069847Z", - "iopub.status.idle": "2024-02-07T22:10:17.092618Z", - "shell.execute_reply": "2024-02-07T22:10:17.092122Z" + "iopub.execute_input": "2024-02-07T23:50:56.091488Z", + "iopub.status.busy": "2024-02-07T23:50:56.090197Z", + "iopub.status.idle": "2024-02-07T23:50:56.112835Z", + "shell.execute_reply": "2024-02-07T23:50:56.112316Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.096131Z", - "iopub.status.busy": "2024-02-07T22:10:17.095219Z", - "iopub.status.idle": "2024-02-07T22:10:17.106575Z", - "shell.execute_reply": "2024-02-07T22:10:17.106103Z" + "iopub.execute_input": "2024-02-07T23:50:56.116330Z", + "iopub.status.busy": "2024-02-07T23:50:56.115399Z", + "iopub.status.idle": "2024-02-07T23:50:56.126920Z", + "shell.execute_reply": "2024-02-07T23:50:56.126444Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.109988Z", - "iopub.status.busy": "2024-02-07T22:10:17.109076Z", - "iopub.status.idle": "2024-02-07T22:10:17.115450Z", - "shell.execute_reply": "2024-02-07T22:10:17.114951Z" + "iopub.execute_input": "2024-02-07T23:50:56.130383Z", + "iopub.status.busy": "2024-02-07T23:50:56.129483Z", + "iopub.status.idle": "2024-02-07T23:50:56.135890Z", + "shell.execute_reply": "2024-02-07T23:50:56.135397Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.118760Z", - "iopub.status.busy": "2024-02-07T22:10:17.117868Z", - "iopub.status.idle": "2024-02-07T22:10:17.126824Z", - "shell.execute_reply": "2024-02-07T22:10:17.126445Z" + "iopub.execute_input": "2024-02-07T23:50:56.139224Z", + "iopub.status.busy": "2024-02-07T23:50:56.138329Z", + "iopub.status.idle": "2024-02-07T23:50:56.147473Z", + "shell.execute_reply": "2024-02-07T23:50:56.147004Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.128914Z", - "iopub.status.busy": "2024-02-07T22:10:17.128742Z", - "iopub.status.idle": "2024-02-07T22:10:17.136240Z", - "shell.execute_reply": "2024-02-07T22:10:17.135712Z" + "iopub.execute_input": "2024-02-07T23:50:56.149798Z", + "iopub.status.busy": "2024-02-07T23:50:56.149623Z", + "iopub.status.idle": "2024-02-07T23:50:56.156444Z", + "shell.execute_reply": "2024-02-07T23:50:56.155823Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.138165Z", - "iopub.status.busy": "2024-02-07T22:10:17.137995Z", - "iopub.status.idle": "2024-02-07T22:10:17.144520Z", - "shell.execute_reply": "2024-02-07T22:10:17.143902Z" + "iopub.execute_input": "2024-02-07T23:50:56.158506Z", + "iopub.status.busy": "2024-02-07T23:50:56.158330Z", + "iopub.status.idle": "2024-02-07T23:50:56.164895Z", + "shell.execute_reply": "2024-02-07T23:50:56.164300Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.146533Z", - "iopub.status.busy": "2024-02-07T22:10:17.146359Z", - "iopub.status.idle": "2024-02-07T22:10:17.155364Z", - "shell.execute_reply": "2024-02-07T22:10:17.154731Z" + "iopub.execute_input": "2024-02-07T23:50:56.166958Z", + "iopub.status.busy": "2024-02-07T23:50:56.166784Z", + "iopub.status.idle": "2024-02-07T23:50:56.175982Z", + "shell.execute_reply": "2024-02-07T23:50:56.175361Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.157360Z", - "iopub.status.busy": "2024-02-07T22:10:17.157188Z", - "iopub.status.idle": "2024-02-07T22:10:17.162733Z", - "shell.execute_reply": "2024-02-07T22:10:17.162088Z" + "iopub.execute_input": "2024-02-07T23:50:56.178038Z", + "iopub.status.busy": "2024-02-07T23:50:56.177865Z", + "iopub.status.idle": "2024-02-07T23:50:56.183444Z", + "shell.execute_reply": "2024-02-07T23:50:56.182795Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.165077Z", - "iopub.status.busy": "2024-02-07T22:10:17.164903Z", - "iopub.status.idle": "2024-02-07T22:10:17.170197Z", - "shell.execute_reply": "2024-02-07T22:10:17.169559Z" + "iopub.execute_input": "2024-02-07T23:50:56.185842Z", + "iopub.status.busy": "2024-02-07T23:50:56.185452Z", + "iopub.status.idle": "2024-02-07T23:50:56.190683Z", + "shell.execute_reply": "2024-02-07T23:50:56.190168Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.172679Z", - "iopub.status.busy": "2024-02-07T22:10:17.172506Z", - "iopub.status.idle": "2024-02-07T22:10:17.176201Z", - "shell.execute_reply": "2024-02-07T22:10:17.175552Z" + "iopub.execute_input": "2024-02-07T23:50:56.192661Z", + "iopub.status.busy": "2024-02-07T23:50:56.192345Z", + "iopub.status.idle": "2024-02-07T23:50:56.195806Z", + "shell.execute_reply": "2024-02-07T23:50:56.195258Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.178606Z", - "iopub.status.busy": "2024-02-07T22:10:17.178436Z", - "iopub.status.idle": "2024-02-07T22:10:17.183817Z", - "shell.execute_reply": "2024-02-07T22:10:17.183182Z" + "iopub.execute_input": "2024-02-07T23:50:56.197832Z", + "iopub.status.busy": "2024-02-07T23:50:56.197471Z", + "iopub.status.idle": "2024-02-07T23:50:56.202662Z", + "shell.execute_reply": "2024-02-07T23:50:56.202128Z" }, "nbsphinx": "hidden" }, @@ -1598,33 +1598,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06844a7db8a6422892d1acb1093405d3": { + "01a106c335cd4ec5a6a8b14ff1d5ba8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_974ed300109b4bed98388334741d7e20", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74bffb84a6eb4480a26355932844fbf5", + "layout": "IPY_MODEL_96544fa91ef044518cca58cdc8b7e90e", + "placeholder": "​", + "style": "IPY_MODEL_a9f88197d6d3487599e3bcf4cc14437f", "tabbable": null, "tooltip": null, - "value": 29.0 + "value": " 29.0/29.0 [00:00<00:00, 5.39kB/s]" } }, - "0935d34e934d4f82955d4a9dd06e95e1": { + "05ac06cc7d34426a9f564a521b6f5875": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1642,7 +1639,7 @@ "text_color": null } }, - "0a7f8e7552794e84871dff2662ca68c6": { + "081174bba3534f74bb5ef231d4b3fc4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1695,75 +1692,7 @@ "width": null } }, - "0d885c1a34b04b04a65e76462bc7f8ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e0526787ea344759f493ff3f7048f30", - "IPY_MODEL_94ba3436c83b4db9ba81e2bec475edd4", - "IPY_MODEL_e6f2f27575614660a8dd13e1ce1592ed" - ], - "layout": "IPY_MODEL_b830d17a17194985802b41acfc283bc5", - "tabbable": null, - "tooltip": null - } - }, - "0f436aaa0eda485f8feabba1220a17e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12eca47a10834c6395838a954baa15a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9fe06d39c12248debba0ce4f131d1b0c", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3e83a7c1d3504ca0ac014f3ddb23fa79", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "1daa511c5f96480a898ea35b444b1eca": { + "133eddeef7544847977f9757ebacf52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1816,7 +1745,23 @@ "width": null } }, - "22413209abe846cdbe1e339fca65b5d5": { + "1629e90242ff4712bf0774c4d7943ed9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1781eb1973d74e20986b1ac2f47913b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1831,31 +1776,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a7f8e7552794e84871dff2662ca68c6", + "layout": "IPY_MODEL_1972a9b3359a4b1abc2438b34e72ac35", "placeholder": "​", - "style": "IPY_MODEL_dfb7fa9cce6240e6be17ce35ae03b6a2", + "style": "IPY_MODEL_05ac06cc7d34426a9f564a521b6f5875", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "26bf4567f23a4ecdbbb4391039e47a1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "config.json: 100%" } }, - "294f544e4fbc4e68a974452deb9b095e": { + "1972a9b3359a4b1abc2438b34e72ac35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1908,7 +1837,7 @@ "width": null } }, - "2f4f8123d8ba4a888ed11e05b0c87d16": { + "1ac440e00f2e4511bc1a64dc9215f5fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1961,60 +1890,112 @@ "width": null } }, - "2ff3313f83984a09b2354f35ba8b7f57": { - "model_module": "@jupyter-widgets/base", + "283c8b33977b456ebc5a25d251743c83": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55d53572e1964c34bda15161a71f7592", + "placeholder": "​", + "style": "IPY_MODEL_d1ac4d9b3095413592ea9015d4a58175", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 433kB/s]" + } + }, + "294346972e994e1c991aae390ff08179": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a440225dab48494daf0d867e0a062c60", + "IPY_MODEL_533a2a80ff99434fbad2ef63edf9b216", + "IPY_MODEL_5af1c1a5fa7e4b0e87198be81c8c806c" + ], + "layout": "IPY_MODEL_f017d2f580b040638630015c72d627b2", + "tabbable": null, + "tooltip": null + } + }, + "2d4d74efbd824425870cbaf45c10f938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2dd173e0deec4bd6bc92ad03b5a7656c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_664ea7a324e443bbb27801624a919c05", + "IPY_MODEL_7df77100f86c42f59a817321411eb210", + "IPY_MODEL_42e820ce57d64326b13eb2eba7da616e" + ], + "layout": "IPY_MODEL_38d9a775cbf2416481cf86be42b1b571", + "tabbable": null, + "tooltip": null + } + }, + "2dded20223ec437d9b4f0724d519c76b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "340fe62c803045229af00190ee214ca8": { + "2f50043f1a0d4aada1f2ea15e26779a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2032,33 +2013,30 @@ "text_color": null } }, - "34c8f48cf7b3429383912dffe61081f1": { + "365ba1b09e7341489be8464655a555cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e12d0db22792490c99b19e69618087c0", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_828e8f4e5a684ae88f51ea6ae972b36a", + "layout": "IPY_MODEL_133eddeef7544847977f9757ebacf52b", + "placeholder": "​", + "style": "IPY_MODEL_53ae31ba2c0f4559a6bbe11311fa21c8", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 466k/466k [00:00<00:00, 28.7MB/s]" } }, - "36d01d15d38e4c90afc3997820731f1d": { + "36bf4419cfb34b2fb65dc8ca66ddeb57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,33 +2089,60 @@ "width": null } }, - "383aaede23d042d58e21efdc6823b5a8": { - "model_module": "@jupyter-widgets/controls", + "38d9a775cbf2416481cf86be42b1b571": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d4d46c545514392aa8b9666188c2c2f", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44be34defa9b4e3a8116c9c64f985d0f", - "tabbable": null, - "tooltip": null, - "value": 231508.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3e83a7c1d3504ca0ac014f3ddb23fa79": { + "4026be558dc041d182c88249f880078e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2153,7 +2158,7 @@ "description_width": "" } }, - "42466c5944084b1e9b24e6e9a2f21f0e": { + "4033e28a96fa4a59bb9a423171ca614b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2169,57 +2174,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b089b7ff67904e859e08f74eb4462cc5", - "max": 665.0, + "layout": "IPY_MODEL_43918fb3e44743d19d92614011500cf2", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_26bf4567f23a4ecdbbb4391039e47a1f", + "style": "IPY_MODEL_7288265f2e2a4b99ab54e05e23f5f0ae", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 2211.0 } }, - "44be34defa9b4e3a8116c9c64f985d0f": { - "model_module": "@jupyter-widgets/controls", + "40c2452148e54b80ad05abfeb95dab29": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "455cdf2910fc4c79acb1d3b1b36f013d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9cae2bb475d64e8ea6440578d75f46df", - "IPY_MODEL_42466c5944084b1e9b24e6e9a2f21f0e", - "IPY_MODEL_e38d5a36366d4cb4892d529cf4e51cfb" - ], - "layout": "IPY_MODEL_a265a663c76a43e1b927ff469bc5d2b5", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "486557d720934439a49a6e048ca63142": { + "42e820ce57d64326b13eb2eba7da616e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2234,15 +2252,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_294f544e4fbc4e68a974452deb9b095e", + "layout": "IPY_MODEL_bb8fa5d63e7f401ba6dd282294a14d51", "placeholder": "​", - "style": "IPY_MODEL_c105e79c89b848c98c79ea2425e07146", + "style": "IPY_MODEL_2f50043f1a0d4aada1f2ea15e26779a6", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 132MB/s]" + "value": " 232k/232k [00:00<00:00, 37.4MB/s]" } }, - "49d1dca865a4406f9fd081d76b25120f": { + "43918fb3e44743d19d92614011500cf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2295,7 +2313,31 @@ "width": null } }, - "4a73f1657df6418192b8e88b26bfea54": { + "49733f926f10403491687cd4d40d244f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_738a58ca6f7b4db7a157166614a2d23d", + "IPY_MODEL_4033e28a96fa4a59bb9a423171ca614b", + "IPY_MODEL_283c8b33977b456ebc5a25d251743c83" + ], + "layout": "IPY_MODEL_f48d4fa2009642d08bc01e8fe3f7baa2", + "tabbable": null, + "tooltip": null + } + }, + "4c1bc089fe3a44f99d3e97c6aa907ed2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,78 +2390,74 @@ "width": null } }, - "4eef59cd705841408e36d8db6510b5db": { + "4c6d24e1b8e140589b3f7206e752a847": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b56c9e208a93471cafa984931cfab2d1", - "IPY_MODEL_383aaede23d042d58e21efdc6823b5a8", - "IPY_MODEL_6dcc0a68a8624bf5b340aa9c48917f41" - ], - "layout": "IPY_MODEL_1daa511c5f96480a898ea35b444b1eca", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_deef1f9c7c854b4787e1291d7676ccfa", + "placeholder": "​", + "style": "IPY_MODEL_4d174d86825a4659a535d3f67ddd8f91", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "tokenizer.json: 100%" } }, - "5e0526787ea344759f493ff3f7048f30": { + "4d174d86825a4659a535d3f67ddd8f91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f4f8123d8ba4a888ed11e05b0c87d16", - "placeholder": "​", - "style": "IPY_MODEL_7ee455eacbd742bdb254f16dc1e68910", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "617ccbb8f42e4c1da705cc6973aae912": { + "533a2a80ff99434fbad2ef63edf9b216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fb88ef6b95a5461989853ce1b5f754ca", - "IPY_MODEL_8c226dcc1f7e4700bb2b27f77e40f8ac", - "IPY_MODEL_486557d720934439a49a6e048ca63142" - ], - "layout": "IPY_MODEL_bb249cbd8534453ba55520e924c7b81d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60796f28cf154144a6bacad76d5ff446", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1629e90242ff4712bf0774c4d7943ed9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 54245363.0 } }, - "6386e67f246a46c2a8167db4fbd4f50f": { + "5355024e5df14205a7c989138994be48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2472,7 +2510,7 @@ "width": null } }, - "68191e9841cf4fc3ad5084c453808bf6": { + "53ae31ba2c0f4559a6bbe11311fa21c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2490,7 +2528,7 @@ "text_color": null } }, - "6952ddc411c24d5a9250ef2f3f8fc46b": { + "54c548b22f99437abf98203ae4a700a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2506,7 +2544,7 @@ "description_width": "" } }, - "69e2a0e88f5b4789aca076d1397eeef0": { + "55d53572e1964c34bda15161a71f7592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2559,7 +2597,30 @@ "width": null } }, - "6d4d46c545514392aa8b9666188c2c2f": { + "5af1c1a5fa7e4b0e87198be81c8c806c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ac440e00f2e4511bc1a64dc9215f5fc", + "placeholder": "​", + "style": "IPY_MODEL_65e3df94b7524d67b789725d4178ebfa", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 162MB/s]" + } + }, + "5c42af812e744e9b81b5a6a33e0ce2ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2612,189 +2673,7 @@ "width": null } }, - "6dcc0a68a8624bf5b340aa9c48917f41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49d1dca865a4406f9fd081d76b25120f", - "placeholder": "​", - "style": "IPY_MODEL_b1a67674d9034ceea803f59c0cc261a3", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 4.29MB/s]" - } - }, - "70b899115926475ab4ca6289cac6f98d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b70a3bde8ab44d1a383656136a63d06", - "IPY_MODEL_34c8f48cf7b3429383912dffe61081f1", - "IPY_MODEL_c0f2fcd597464233b9df7c82e9338208" - ], - "layout": "IPY_MODEL_f4fb247100d34699900ba0b2436078d6", - "tabbable": null, - "tooltip": null - } - }, - "730e39295f384d38a7809341193721b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "74bffb84a6eb4480a26355932844fbf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b70a3bde8ab44d1a383656136a63d06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f39b17bf56d44a99a5c3bed40eb29a2d", - "placeholder": "​", - "style": "IPY_MODEL_0935d34e934d4f82955d4a9dd06e95e1", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "7ee455eacbd742bdb254f16dc1e68910": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "828e8f4e5a684ae88f51ea6ae972b36a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "858df27692a24f74844cc2329eb49af6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8c226dcc1f7e4700bb2b27f77e40f8ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69e2a0e88f5b4789aca076d1397eeef0", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6952ddc411c24d5a9250ef2f3f8fc46b", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "9021471f58ab4bfd9bbe4dc26b025b17": { + "60796f28cf154144a6bacad76d5ff446": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2847,33 +2726,64 @@ "width": null } }, - "94ba3436c83b4db9ba81e2bec475edd4": { + "65e3df94b7524d67b789725d4178ebfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "663e96ddeae4405e8915682214e5f41c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "664ea7a324e443bbb27801624a919c05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf2ac6ab2e79499ca90d11cfe4224527", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d0d3c86b2cbc491aaa5eb6ab71d264a7", + "layout": "IPY_MODEL_40c2452148e54b80ad05abfeb95dab29", + "placeholder": "​", + "style": "IPY_MODEL_af88cbafd956443186aabd0ff6d2b158", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": "vocab.txt: 100%" } }, - "974ed300109b4bed98388334741d7e20": { + "6f651b05536a4cd9805b0594ac0233a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2926,76 +2836,39 @@ "width": null } }, - "97925e46e7544803bfa9bbd35f277a0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab4a58de1d1647f496edad461715aaa9", - "placeholder": "​", - "style": "IPY_MODEL_858df27692a24f74844cc2329eb49af6", - "tabbable": null, - "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.34kB/s]" - } - }, - "9a60224542464545b7c54c09f1ed9262": { + "708e85be24f2472c9002b8fd7d8ab151": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4a73f1657df6418192b8e88b26bfea54", - "placeholder": "​", - "style": "IPY_MODEL_b311be58b5184dfeb6b02e5beec356df", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9cae2bb475d64e8ea6440578d75f46df": { + "7288265f2e2a4b99ab54e05e23f5f0ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d752ef40d854b17bb45f92da198d00d", - "placeholder": "​", - "style": "IPY_MODEL_68191e9841cf4fc3ad5084c453808bf6", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9d752ef40d854b17bb45f92da198d00d": { + "729140e943504b57ace99650651ea1d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3048,7 +2921,30 @@ "width": null } }, - "9fe06d39c12248debba0ce4f131d1b0c": { + "738a58ca6f7b4db7a157166614a2d23d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f651b05536a4cd9805b0594ac0233a1", + "placeholder": "​", + "style": "IPY_MODEL_ac027eeeec8d46bbb3f5d08bc844df94", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "739c66018de446f48db6b585f8936d11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3101,7 +2997,98 @@ "width": null } }, - "a265a663c76a43e1b927ff469bc5d2b5": { + "78e9ebb162834213bfce2fea8e8fd18d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36bf4419cfb34b2fb65dc8ca66ddeb57", + "placeholder": "​", + "style": "IPY_MODEL_2d4d74efbd824425870cbaf45c10f938", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "7df77100f86c42f59a817321411eb210": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c1bc089fe3a44f99d3e97c6aa907ed2", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_663e96ddeae4405e8915682214e5f41c", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "8e289bbbfd1e4a2b8be1b6c58b2a5b86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e9d9888450346db8e3954d17cef036f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78e9ebb162834213bfce2fea8e8fd18d", + "IPY_MODEL_ffda121f1cd44363b9efc3901ed1f0fa", + "IPY_MODEL_01a106c335cd4ec5a6a8b14ff1d5ba8d" + ], + "layout": "IPY_MODEL_a612dc860dc94c72bb4ab4487f91d8de", + "tabbable": null, + "tooltip": null + } + }, + "96544fa91ef044518cca58cdc8b7e90e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3154,7 +3141,7 @@ "width": null } }, - "a499d7f12838442180a4cbdb3920f920": { + "96b3841f46794027a4931069701de656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3169,15 +3156,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dd7233a7504d445fbd282ff1343a6fe0", + "layout": "IPY_MODEL_739c66018de446f48db6b585f8936d11", "placeholder": "​", - "style": "IPY_MODEL_730e39295f384d38a7809341193721b7", + "style": "IPY_MODEL_8e289bbbfd1e4a2b8be1b6c58b2a5b86", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 12.3MB/s]" + "value": ".gitattributes: 100%" } }, - "a965f31be8c34295846ad4a509228998": { + "9a65587ca1b94945af7dcc0cfc29a026": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3192,16 +3179,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9a60224542464545b7c54c09f1ed9262", - "IPY_MODEL_12eca47a10834c6395838a954baa15a0", - "IPY_MODEL_a499d7f12838442180a4cbdb3920f920" + "IPY_MODEL_4c6d24e1b8e140589b3f7206e752a847", + "IPY_MODEL_a562153720f0466ca6468834694f3b95", + "IPY_MODEL_365ba1b09e7341489be8464655a555cd" ], - "layout": "IPY_MODEL_b9dd625238174ebab9b1a516894b5590", + "layout": "IPY_MODEL_cfea3cab90dc4d4b8e5c12a36c64326f", "tabbable": null, "tooltip": null } }, - "ab4a58de1d1647f496edad461715aaa9": { + "9becc04773b84d3c8fa6a24cadf6f29c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3254,7 +3241,105 @@ "width": null } }, - "aef64cc2ded04950a68d8fe166bf68d5": { + "a1dc17837a20424680ae0627499e3789": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_081174bba3534f74bb5ef231d4b3fc4c", + "placeholder": "​", + "style": "IPY_MODEL_df0b59c454bd43bcadc10fd7b46c1617", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 71.7kB/s]" + } + }, + "a440225dab48494daf0d867e0a062c60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_729140e943504b57ace99650651ea1d9", + "placeholder": "​", + "style": "IPY_MODEL_a71782ebbaae423285c7e0c7cc938aa0", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "a562153720f0466ca6468834694f3b95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eff42f4744924c029089618d6ff32d26", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_708e85be24f2472c9002b8fd7d8ab151", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "a5fe42ca82c4420c820ad748a75d4efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9becc04773b84d3c8fa6a24cadf6f29c", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54c548b22f99437abf98203ae4a700a1", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "a612dc860dc94c72bb4ab4487f91d8de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3307,7 +3392,25 @@ "width": null } }, - "b0431ac60b4b4851a994c3f65b39fe27": { + "a71782ebbaae423285c7e0c7cc938aa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a9f88197d6d3487599e3bcf4cc14437f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3325,7 +3428,7 @@ "text_color": null } }, - "b089b7ff67904e859e08f74eb4462cc5": { + "ab60f70d2fef418893f80a8008c92281": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3378,25 +3481,7 @@ "width": null } }, - "b15b2120b9a64253ad75edebadfd55c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b1a67674d9034ceea803f59c0cc261a3": { + "ac027eeeec8d46bbb3f5d08bc844df94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3414,7 +3499,7 @@ "text_color": null } }, - "b311be58b5184dfeb6b02e5beec356df": { + "af88cbafd956443186aabd0ff6d2b158": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3432,30 +3517,7 @@ "text_color": null } }, - "b56c9e208a93471cafa984931cfab2d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6386e67f246a46c2a8167db4fbd4f50f", - "placeholder": "​", - "style": "IPY_MODEL_0f436aaa0eda485f8feabba1220a17e7", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "b830d17a17194985802b41acfc283bc5": { + "bb8fa5d63e7f401ba6dd282294a14d51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3508,7 +3570,31 @@ "width": null } }, - "b9dd625238174ebab9b1a516894b5590": { + "c122193addbf4629b7ada89af7819966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_96b3841f46794027a4931069701de656", + "IPY_MODEL_a5fe42ca82c4420c820ad748a75d4efd", + "IPY_MODEL_a1dc17837a20424680ae0627499e3789" + ], + "layout": "IPY_MODEL_cb2cf5748533424cba70d5177df7e7bc", + "tabbable": null, + "tooltip": null + } + }, + "cb2cf5748533424cba70d5177df7e7bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3561,7 +3647,7 @@ "width": null } }, - "bb249cbd8534453ba55520e924c7b81d": { + "cfea3cab90dc4d4b8e5c12a36c64326f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3614,30 +3700,25 @@ "width": null } }, - "c0f2fcd597464233b9df7c82e9338208": { + "d160a62e311e44c2a614b54fba944911": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9021471f58ab4bfd9bbe4dc26b025b17", - "placeholder": "​", - "style": "IPY_MODEL_c9f79242d5f9499285306c8816267e3d", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 408kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c105e79c89b848c98c79ea2425e07146": { + "d1ac4d9b3095413592ea9015d4a58175": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3655,49 +3736,56 @@ "text_color": null } }, - "c48d71673f824ce380d94b6bc999083a": { + "d3b4ea42869f406bb1415d13761b16c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_22413209abe846cdbe1e339fca65b5d5", - "IPY_MODEL_06844a7db8a6422892d1acb1093405d3", - "IPY_MODEL_97925e46e7544803bfa9bbd35f277a0f" - ], - "layout": "IPY_MODEL_2ff3313f83984a09b2354f35ba8b7f57", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab60f70d2fef418893f80a8008c92281", + "placeholder": "​", + "style": "IPY_MODEL_d160a62e311e44c2a614b54fba944911", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 665/665 [00:00<00:00, 82.9kB/s]" } }, - "c9f79242d5f9499285306c8816267e3d": { + "dab660c06f0646dfa8fd919ad168088c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c42af812e744e9b81b5a6a33e0ce2ee", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2dded20223ec437d9b4f0724d519c76b", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "cbc42ac422f34e828447b08b2c8086e8": { + "deef1f9c7c854b4787e1291d7676ccfa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3750,76 +3838,49 @@ "width": null } }, - "cf2ac6ab2e79499ca90d11cfe4224527": { - "model_module": "@jupyter-widgets/base", + "df0b59c454bd43bcadc10fd7b46c1617": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0d3c86b2cbc491aaa5eb6ab71d264a7": { + "e83d2ad65dac4e88a3f2ccde21d67f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1781eb1973d74e20986b1ac2f47913b7", + "IPY_MODEL_dab660c06f0646dfa8fd919ad168088c", + "IPY_MODEL_d3b4ea42869f406bb1415d13761b16c6" + ], + "layout": "IPY_MODEL_fe6c1ad7ef28465084828be32acd21c5", + "tabbable": null, + "tooltip": null } }, - "dd7233a7504d445fbd282ff1343a6fe0": { + "eff42f4744924c029089618d6ff32d26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3872,25 +3933,7 @@ "width": null } }, - "dfb7fa9cce6240e6be17ce35ae03b6a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e12d0db22792490c99b19e69618087c0": { + "f017d2f580b040638630015c72d627b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3943,53 +3986,7 @@ "width": null } }, - "e38d5a36366d4cb4892d529cf4e51cfb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aef64cc2ded04950a68d8fe166bf68d5", - "placeholder": "​", - "style": "IPY_MODEL_340fe62c803045229af00190ee214ca8", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" - } - }, - "e6f2f27575614660a8dd13e1ce1592ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_36d01d15d38e4c90afc3997820731f1d", - "placeholder": "​", - "style": "IPY_MODEL_b15b2120b9a64253ad75edebadfd55c6", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.3kB/s]" - } - }, - "f39b17bf56d44a99a5c3bed40eb29a2d": { + "f48d4fa2009642d08bc01e8fe3f7baa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4042,7 +4039,7 @@ "width": null } }, - "f4fb247100d34699900ba0b2436078d6": { + "fe6c1ad7ef28465084828be32acd21c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4095,27 +4092,30 @@ "width": null } }, - "fb88ef6b95a5461989853ce1b5f754ca": { + "ffda121f1cd44363b9efc3901ed1f0fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cbc42ac422f34e828447b08b2c8086e8", - "placeholder": "​", - "style": "IPY_MODEL_b0431ac60b4b4851a994c3f65b39fe27", + "layout": "IPY_MODEL_5355024e5df14205a7c989138994be48", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4026be558dc041d182c88249f880078e", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 29.0 } } }, diff --git a/master/tutorials/dataset_health.html b/master/tutorials/dataset_health.html index cbddb38ef..7be089a58 100644 --- a/master/tutorials/dataset_health.html +++ b/master/tutorials/dataset_health.html @@ -1045,13 +1045,6 @@

Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Mnist_test_set 🎯 -

- -
-
-
-
-
 
 Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)
 
diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb
index 4d4c8909b..a656e6dee 100644
--- a/master/tutorials/dataset_health.ipynb
+++ b/master/tutorials/dataset_health.ipynb
@@ -68,10 +68,10 @@
    "execution_count": 1,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:10:20.445577Z",
-     "iopub.status.busy": "2024-02-07T22:10:20.445400Z",
-     "iopub.status.idle": "2024-02-07T22:10:21.481005Z",
-     "shell.execute_reply": "2024-02-07T22:10:21.480362Z"
+     "iopub.execute_input": "2024-02-07T23:50:59.127525Z",
+     "iopub.status.busy": "2024-02-07T23:50:59.127102Z",
+     "iopub.status.idle": "2024-02-07T23:51:00.150396Z",
+     "shell.execute_reply": "2024-02-07T23:51:00.149892Z"
     },
     "nbsphinx": "hidden"
    },
@@ -83,7 +83,7 @@
     "dependencies = [\"cleanlab\", \"requests\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -108,10 +108,10 @@
    "execution_count": 2,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:10:21.483771Z",
-     "iopub.status.busy": "2024-02-07T22:10:21.483236Z",
-     "iopub.status.idle": "2024-02-07T22:10:21.486136Z",
-     "shell.execute_reply": "2024-02-07T22:10:21.485591Z"
+     "iopub.execute_input": "2024-02-07T23:51:00.153121Z",
+     "iopub.status.busy": "2024-02-07T23:51:00.152624Z",
+     "iopub.status.idle": "2024-02-07T23:51:00.155459Z",
+     "shell.execute_reply": "2024-02-07T23:51:00.154942Z"
     },
     "id": "_UvI80l42iyi"
    },
@@ -201,10 +201,10 @@
    "execution_count": 3,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:10:21.488244Z",
-     "iopub.status.busy": "2024-02-07T22:10:21.487938Z",
-     "iopub.status.idle": "2024-02-07T22:10:21.499556Z",
-     "shell.execute_reply": "2024-02-07T22:10:21.499007Z"
+     "iopub.execute_input": "2024-02-07T23:51:00.157665Z",
+     "iopub.status.busy": "2024-02-07T23:51:00.157286Z",
+     "iopub.status.idle": "2024-02-07T23:51:00.168842Z",
+     "shell.execute_reply": "2024-02-07T23:51:00.168305Z"
     },
     "nbsphinx": "hidden"
    },
@@ -283,10 +283,10 @@
    "execution_count": 4,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:10:21.501697Z",
-     "iopub.status.busy": "2024-02-07T22:10:21.501285Z",
-     "iopub.status.idle": "2024-02-07T22:10:25.286494Z",
-     "shell.execute_reply": "2024-02-07T22:10:25.286003Z"
+     "iopub.execute_input": "2024-02-07T23:51:00.170850Z",
+     "iopub.status.busy": "2024-02-07T23:51:00.170540Z",
+     "iopub.status.idle": "2024-02-07T23:51:03.496922Z",
+     "shell.execute_reply": "2024-02-07T23:51:03.496339Z"
     },
     "id": "dhTHOg8Pyv5G"
    },
@@ -692,13 +692,7 @@
       "\n",
       "\n",
       "🎯 Mnist_test_set 🎯\n",
-      "\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "\n",
       "\n",
       "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n",
       "\n",
diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html
index b4021fd5e..e05eb42bf 100644
--- a/master/tutorials/faq.html
+++ b/master/tutorials/faq.html
@@ -700,13 +700,13 @@ 

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1416,12 +1416,20 @@

How do I specify pre-computed data slices/clusters when detecting the Underp

-
+
 Finding underperforming_group issues ...
+
+
+
@@ -1620,7 +1628,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index a7665e67c..2827a0233 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:27.452546Z", - "iopub.status.busy": "2024-02-07T22:10:27.452375Z", - "iopub.status.idle": "2024-02-07T22:10:28.497741Z", - "shell.execute_reply": "2024-02-07T22:10:28.497182Z" + "iopub.execute_input": "2024-02-07T23:51:05.455012Z", + "iopub.status.busy": "2024-02-07T23:51:05.454838Z", + "iopub.status.idle": "2024-02-07T23:51:06.473290Z", + "shell.execute_reply": "2024-02-07T23:51:06.472687Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:28.500549Z", - "iopub.status.busy": "2024-02-07T22:10:28.500102Z", - "iopub.status.idle": "2024-02-07T22:10:28.503908Z", - "shell.execute_reply": "2024-02-07T22:10:28.503487Z" + "iopub.execute_input": "2024-02-07T23:51:06.476374Z", + "iopub.status.busy": "2024-02-07T23:51:06.476069Z", + "iopub.status.idle": "2024-02-07T23:51:06.480293Z", + "shell.execute_reply": "2024-02-07T23:51:06.479735Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:28.505941Z", - "iopub.status.busy": "2024-02-07T22:10:28.505673Z", - "iopub.status.idle": "2024-02-07T22:10:31.465345Z", - "shell.execute_reply": "2024-02-07T22:10:31.464742Z" + "iopub.execute_input": "2024-02-07T23:51:06.482920Z", + "iopub.status.busy": "2024-02-07T23:51:06.482459Z", + "iopub.status.idle": "2024-02-07T23:51:09.338068Z", + "shell.execute_reply": "2024-02-07T23:51:09.337471Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.468561Z", - "iopub.status.busy": "2024-02-07T22:10:31.467758Z", - "iopub.status.idle": "2024-02-07T22:10:31.504646Z", - "shell.execute_reply": "2024-02-07T22:10:31.504063Z" + "iopub.execute_input": "2024-02-07T23:51:09.340898Z", + "iopub.status.busy": "2024-02-07T23:51:09.340331Z", + "iopub.status.idle": "2024-02-07T23:51:09.370728Z", + "shell.execute_reply": "2024-02-07T23:51:09.370021Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.507191Z", - "iopub.status.busy": "2024-02-07T22:10:31.506891Z", - "iopub.status.idle": "2024-02-07T22:10:31.538074Z", - "shell.execute_reply": "2024-02-07T22:10:31.537474Z" + "iopub.execute_input": "2024-02-07T23:51:09.373389Z", + "iopub.status.busy": "2024-02-07T23:51:09.373025Z", + "iopub.status.idle": "2024-02-07T23:51:09.401579Z", + "shell.execute_reply": "2024-02-07T23:51:09.400876Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.540560Z", - "iopub.status.busy": "2024-02-07T22:10:31.540268Z", - "iopub.status.idle": "2024-02-07T22:10:31.543180Z", - "shell.execute_reply": "2024-02-07T22:10:31.542750Z" + "iopub.execute_input": "2024-02-07T23:51:09.404372Z", + "iopub.status.busy": "2024-02-07T23:51:09.403951Z", + "iopub.status.idle": "2024-02-07T23:51:09.407421Z", + "shell.execute_reply": "2024-02-07T23:51:09.407008Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.545134Z", - "iopub.status.busy": "2024-02-07T22:10:31.544882Z", - "iopub.status.idle": "2024-02-07T22:10:31.547427Z", - "shell.execute_reply": "2024-02-07T22:10:31.546973Z" + "iopub.execute_input": "2024-02-07T23:51:09.409324Z", + "iopub.status.busy": "2024-02-07T23:51:09.409015Z", + "iopub.status.idle": "2024-02-07T23:51:09.411602Z", + "shell.execute_reply": "2024-02-07T23:51:09.411146Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.549452Z", - "iopub.status.busy": "2024-02-07T22:10:31.549197Z", - "iopub.status.idle": "2024-02-07T22:10:31.571926Z", - "shell.execute_reply": "2024-02-07T22:10:31.571367Z" + "iopub.execute_input": "2024-02-07T23:51:09.413787Z", + "iopub.status.busy": "2024-02-07T23:51:09.413391Z", + "iopub.status.idle": "2024-02-07T23:51:09.438151Z", + "shell.execute_reply": "2024-02-07T23:51:09.437621Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c25091c0e304b75a635d082e4c6a8ae", + "model_id": "1f0a59e748704a83935f5135d15c1d2b", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "05cb13f0b3d24b2c80ccb203c55bfb3a", + "model_id": "13ee7841383649f8b84f5a090929a0f2", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.579230Z", - "iopub.status.busy": "2024-02-07T22:10:31.578965Z", - "iopub.status.idle": "2024-02-07T22:10:31.585408Z", - "shell.execute_reply": "2024-02-07T22:10:31.584997Z" + "iopub.execute_input": "2024-02-07T23:51:09.443984Z", + "iopub.status.busy": "2024-02-07T23:51:09.443652Z", + "iopub.status.idle": "2024-02-07T23:51:09.449921Z", + "shell.execute_reply": "2024-02-07T23:51:09.449510Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.587392Z", - "iopub.status.busy": "2024-02-07T22:10:31.587038Z", - "iopub.status.idle": "2024-02-07T22:10:31.590434Z", - "shell.execute_reply": "2024-02-07T22:10:31.589989Z" + "iopub.execute_input": "2024-02-07T23:51:09.451774Z", + "iopub.status.busy": "2024-02-07T23:51:09.451528Z", + "iopub.status.idle": "2024-02-07T23:51:09.454944Z", + "shell.execute_reply": "2024-02-07T23:51:09.454496Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.592502Z", - "iopub.status.busy": "2024-02-07T22:10:31.592174Z", - "iopub.status.idle": "2024-02-07T22:10:31.598237Z", - "shell.execute_reply": "2024-02-07T22:10:31.597809Z" + "iopub.execute_input": "2024-02-07T23:51:09.456868Z", + "iopub.status.busy": "2024-02-07T23:51:09.456584Z", + "iopub.status.idle": "2024-02-07T23:51:09.462775Z", + "shell.execute_reply": "2024-02-07T23:51:09.462226Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.600071Z", - "iopub.status.busy": "2024-02-07T22:10:31.599903Z", - "iopub.status.idle": "2024-02-07T22:10:31.635926Z", - "shell.execute_reply": "2024-02-07T22:10:31.635199Z" + "iopub.execute_input": "2024-02-07T23:51:09.464784Z", + "iopub.status.busy": "2024-02-07T23:51:09.464418Z", + "iopub.status.idle": "2024-02-07T23:51:09.496417Z", + "shell.execute_reply": "2024-02-07T23:51:09.495700Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.638662Z", - "iopub.status.busy": "2024-02-07T22:10:31.638298Z", - "iopub.status.idle": "2024-02-07T22:10:31.672896Z", - "shell.execute_reply": "2024-02-07T22:10:31.672308Z" + "iopub.execute_input": "2024-02-07T23:51:09.498767Z", + "iopub.status.busy": "2024-02-07T23:51:09.498552Z", + "iopub.status.idle": "2024-02-07T23:51:09.526519Z", + "shell.execute_reply": "2024-02-07T23:51:09.525829Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.675572Z", - "iopub.status.busy": "2024-02-07T22:10:31.675187Z", - "iopub.status.idle": "2024-02-07T22:10:31.803427Z", - "shell.execute_reply": "2024-02-07T22:10:31.802840Z" + "iopub.execute_input": "2024-02-07T23:51:09.529394Z", + "iopub.status.busy": "2024-02-07T23:51:09.528909Z", + "iopub.status.idle": "2024-02-07T23:51:09.651328Z", + "shell.execute_reply": "2024-02-07T23:51:09.650790Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.806059Z", - "iopub.status.busy": "2024-02-07T22:10:31.805418Z", - "iopub.status.idle": "2024-02-07T22:10:34.901493Z", - "shell.execute_reply": "2024-02-07T22:10:34.900838Z" + "iopub.execute_input": "2024-02-07T23:51:09.654079Z", + "iopub.status.busy": "2024-02-07T23:51:09.653293Z", + "iopub.status.idle": "2024-02-07T23:51:12.638133Z", + "shell.execute_reply": "2024-02-07T23:51:12.637512Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:34.903881Z", - "iopub.status.busy": "2024-02-07T22:10:34.903524Z", - "iopub.status.idle": "2024-02-07T22:10:34.961241Z", - "shell.execute_reply": "2024-02-07T22:10:34.960728Z" + "iopub.execute_input": "2024-02-07T23:51:12.640414Z", + "iopub.status.busy": "2024-02-07T23:51:12.640232Z", + "iopub.status.idle": "2024-02-07T23:51:12.700289Z", + "shell.execute_reply": "2024-02-07T23:51:12.699728Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "fc603ddf", + "id": "ce26211e", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "3eef2541", + "id": "b06d92f4", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "bee6fe2a", + "id": "ea762ae8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:34.963472Z", - "iopub.status.busy": "2024-02-07T22:10:34.963133Z", - "iopub.status.idle": "2024-02-07T22:10:35.059654Z", - "shell.execute_reply": "2024-02-07T22:10:35.059063Z" + "iopub.execute_input": "2024-02-07T23:51:12.702418Z", + "iopub.status.busy": "2024-02-07T23:51:12.702105Z", + "iopub.status.idle": "2024-02-07T23:51:12.780616Z", + "shell.execute_reply": "2024-02-07T23:51:12.780126Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "bb0353d1", + "id": "ef415656", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "40fe9448", + "id": "01a67f53", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.062203Z", - "iopub.status.busy": "2024-02-07T22:10:35.061944Z", - "iopub.status.idle": "2024-02-07T22:10:35.130321Z", - "shell.execute_reply": "2024-02-07T22:10:35.129748Z" + "iopub.execute_input": "2024-02-07T23:51:12.783162Z", + "iopub.status.busy": "2024-02-07T23:51:12.782885Z", + "iopub.status.idle": "2024-02-07T23:51:12.844744Z", + "shell.execute_reply": "2024-02-07T23:51:12.844293Z" } }, "outputs": [ @@ -1297,7 +1297,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1325,7 +1332,7 @@ }, { "cell_type": "markdown", - "id": "f3c05afd", + "id": "01300d0b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1343,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "f74e26fd", + "id": "cc35bf44", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.132892Z", - "iopub.status.busy": "2024-02-07T22:10:35.132688Z", - "iopub.status.idle": "2024-02-07T22:10:35.142277Z", - "shell.execute_reply": "2024-02-07T22:10:35.141716Z" + "iopub.execute_input": "2024-02-07T23:51:12.847304Z", + "iopub.status.busy": "2024-02-07T23:51:12.847003Z", + "iopub.status.idle": "2024-02-07T23:51:12.864134Z", + "shell.execute_reply": "2024-02-07T23:51:12.863661Z" } }, "outputs": [], @@ -1444,7 +1451,7 @@ }, { "cell_type": "markdown", - "id": "1909cd9a", + "id": "3e6233f1", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1466,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "f4adae44", + "id": "dfdf91ae", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.144450Z", - "iopub.status.busy": "2024-02-07T22:10:35.144137Z", - "iopub.status.idle": "2024-02-07T22:10:35.163091Z", - "shell.execute_reply": "2024-02-07T22:10:35.162505Z" + "iopub.execute_input": "2024-02-07T23:51:12.866623Z", + "iopub.status.busy": "2024-02-07T23:51:12.866327Z", + "iopub.status.idle": "2024-02-07T23:51:12.886313Z", + "shell.execute_reply": "2024-02-07T23:51:12.885931Z" } }, "outputs": [ @@ -1482,7 +1489,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6061/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_5828/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1523,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "27025c00", + "id": "ec960a88", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.165075Z", - "iopub.status.busy": "2024-02-07T22:10:35.164775Z", - "iopub.status.idle": "2024-02-07T22:10:35.167916Z", - "shell.execute_reply": "2024-02-07T22:10:35.167398Z" + "iopub.execute_input": "2024-02-07T23:51:12.888153Z", + "iopub.status.busy": "2024-02-07T23:51:12.887892Z", + "iopub.status.idle": "2024-02-07T23:51:12.890674Z", + "shell.execute_reply": "2024-02-07T23:51:12.890305Z" } }, "outputs": [ @@ -1617,7 +1624,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05cb13f0b3d24b2c80ccb203c55bfb3a": { + "109440f4ecdb45e48bd5dfb4e921937f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "13ee7841383649f8b84f5a090929a0f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1632,16 +1655,93 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d25a1b4311564103b234c326b27f756d", - "IPY_MODEL_359df53dc8a745b0b4af77e7d5baa3d6", - "IPY_MODEL_2122bb3f9c314e79921caaf0ec520ced" + "IPY_MODEL_be264bec58f14b0baef628c118c9cb1c", + "IPY_MODEL_6bca8cbd5c784882be9b9ba1fb9ff9e8", + "IPY_MODEL_f7c08bebb30b4363b6071b0a91d776b5" ], - "layout": "IPY_MODEL_7a95ca857d02446596ff4b15e78f5474", + "layout": "IPY_MODEL_bc75ced40cce43a4a6c803441a092a23", "tabbable": null, "tooltip": null } }, - "07ad650e025e41db8a3a7f9d4903f4ab": { + "1f0a59e748704a83935f5135d15c1d2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e22079120aae4d4fbc3f623f7733332a", + "IPY_MODEL_7b3ab139d2d44ce09eacb3aed869a342", + "IPY_MODEL_f5b644426ae0412cbd5e3e574cbd2d2a" + ], + "layout": "IPY_MODEL_c104b9ca8f874df9b5176bc9dedbe1f2", + "tabbable": null, + "tooltip": null + } + }, + "26508857376d41e9a2a595519cc0e230": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "272500523da24571b2cba2f8ee1e5d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1694,7 +1794,7 @@ "width": null } }, - "0c1387d046e4406c9665c4bd481ca0bd": { + "3e2781d1b9ac498482800cefb6007621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1712,7 +1812,7 @@ "text_color": null } }, - "1de8c5ce9b044defa2fb6bba7b845f1d": { + "439705e7fbd747aa945a4286336cfeb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1765,54 +1865,33 @@ "width": null } }, - "2122bb3f9c314e79921caaf0ec520ced": { + "6bca8cbd5c784882be9b9ba1fb9ff9e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6e74a6135da64a6da9bff7774b1a3023", - "placeholder": "​", - "style": "IPY_MODEL_30857eeb9f4f4a9d9a4b6703ef52f007", + "layout": "IPY_MODEL_e14323e673094de292c5bcd867946d3e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9aad290993434b079a25a5cfae233e5a", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1904510.74it/s]" - } - }, - "2c25091c0e304b75a635d082e4c6a8ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_383d59cddf1044128cd6c9a36ef421b6", - "IPY_MODEL_4368ff0861b64772b1c876ce3677f85f", - "IPY_MODEL_44ce408123ef4dfa9f0ccb0b61d47dff" - ], - "layout": "IPY_MODEL_2f6d1355674b4154958d3f9fdc5c65d0", - "tabbable": null, - "tooltip": null + "value": 50.0 } }, - "2f6d1355674b4154958d3f9fdc5c65d0": { + "712d2f7be4a74b05a8620096c3529e53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1865,25 +1944,7 @@ "width": null } }, - "30857eeb9f4f4a9d9a4b6703ef52f007": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "359df53dc8a745b0b4af77e7d5baa3d6": { + "7b3ab139d2d44ce09eacb3aed869a342": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1899,40 +1960,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fde2b7ca73b8420dade7126a99c0db5b", + "layout": "IPY_MODEL_272500523da24571b2cba2f8ee1e5d82", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7348613891c541cdbedd0e8a595dfd07", + "style": "IPY_MODEL_109440f4ecdb45e48bd5dfb4e921937f", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "383d59cddf1044128cd6c9a36ef421b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07ad650e025e41db8a3a7f9d4903f4ab", - "placeholder": "​", - "style": "IPY_MODEL_bb33dbfe81ad4ab2838ae1c597cc118b", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "3e5b1ebb362940059efebecf082eab76": { + "7fb415c1e4af4299ae1ec87c915c9c4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1950,56 +1988,41 @@ "text_color": null } }, - "4368ff0861b64772b1c876ce3677f85f": { + "8f017318a7174e83bde2637e28023b69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1de8c5ce9b044defa2fb6bba7b845f1d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a7e694329b5941728726ce57f56210a9", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "44ce408123ef4dfa9f0ccb0b61d47dff": { + "9aad290993434b079a25a5cfae233e5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a78e0b16929d430bacf6a958a9660d4b", - "placeholder": "​", - "style": "IPY_MODEL_3e5b1ebb362940059efebecf082eab76", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1087339.66it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6e74a6135da64a6da9bff7774b1a3023": { + "a46f0c56a05b46db92524f027cd1a3f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2052,23 +2075,7 @@ "width": null } }, - "7348613891c541cdbedd0e8a595dfd07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a95ca857d02446596ff4b15e78f5474": { + "bc75ced40cce43a4a6c803441a092a23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2121,7 +2128,30 @@ "width": null } }, - "85cc0795390d430dba7bd02f2fc01dd2": { + "be264bec58f14b0baef628c118c9cb1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_26508857376d41e9a2a595519cc0e230", + "placeholder": "​", + "style": "IPY_MODEL_7fb415c1e4af4299ae1ec87c915c9c4a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "c104b9ca8f874df9b5176bc9dedbe1f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2174,7 +2204,7 @@ "width": null } }, - "a78e0b16929d430bacf6a958a9660d4b": { + "e14323e673094de292c5bcd867946d3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2227,23 +2257,53 @@ "width": null } }, - "a7e694329b5941728726ce57f56210a9": { + "e22079120aae4d4fbc3f623f7733332a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_712d2f7be4a74b05a8620096c3529e53", + "placeholder": "​", + "style": "IPY_MODEL_8f017318a7174e83bde2637e28023b69", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "bb33dbfe81ad4ab2838ae1c597cc118b": { + "f5b644426ae0412cbd5e3e574cbd2d2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a46f0c56a05b46db92524f027cd1a3f4", + "placeholder": "​", + "style": "IPY_MODEL_f62417094f504253a9df11954097f238", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1096550.07it/s]" + } + }, + "f62417094f504253a9df11954097f238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2261,7 +2321,7 @@ "text_color": null } }, - "d25a1b4311564103b234c326b27f756d": { + "f7c08bebb30b4363b6071b0a91d776b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2276,65 +2336,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_85cc0795390d430dba7bd02f2fc01dd2", + "layout": "IPY_MODEL_439705e7fbd747aa945a4286336cfeb9", "placeholder": "​", - "style": "IPY_MODEL_0c1387d046e4406c9665c4bd481ca0bd", + "style": "IPY_MODEL_3e2781d1b9ac498482800cefb6007621", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "fde2b7ca73b8420dade7126a99c0db5b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 10000/? [00:00<00:00, 1373335.52it/s]" } } }, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index b5419c9fb..b126679db 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -642,25 +642,25 @@

2. Fetch and normalize the Fashion-MNIST dataset
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1023,16 +1023,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:03, 9.78it/s]
+
2%|▎ | 1/40 [00:00&lt;00:03, 9.80it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:03, 9.78it/s]
+
2%|▎ | 1/40 [00:00<00:03, 9.80it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:03, 9.78it/s]

+

2%|▎ | 1/40 [00:00<00:03, 9.80it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 43.59it/s]
+
20%|██ | 8/40 [00:00&lt;00:00, 43.66it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 43.59it/s]
+
20%|██ | 8/40 [00:00<00:00, 43.66it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 43.59it/s]

+

20%|██ | 8/40 [00:00<00:00, 43.66it/s]

-
35%|███▌ | 14/40 [00:00&lt;00:00, 50.24it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 56.74it/s]

</pre>

-
35%|███▌ | 14/40 [00:00<00:00, 50.24it/s]
+
40%|████ | 16/40 [00:00<00:00, 56.74it/s]

end{sphinxVerbatim}

-

35%|███▌ | 14/40 [00:00<00:00, 50.24it/s]

+

40%|████ | 16/40 [00:00<00:00, 56.74it/s]

-
52%|█████▎ | 21/40 [00:00&lt;00:00, 57.40it/s]
+
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.69it/s]

</pre>

-
52%|█████▎ | 21/40 [00:00<00:00, 57.40it/s]
+
57%|█████▊ | 23/40 [00:00<00:00, 59.69it/s]

end{sphinxVerbatim}

-

52%|█████▎ | 21/40 [00:00<00:00, 57.40it/s]

+

57%|█████▊ | 23/40 [00:00<00:00, 59.69it/s]

-
72%|███████▎ | 29/40 [00:00&lt;00:00, 62.55it/s]
+
75%|███████▌ | 30/40 [00:00&lt;00:00, 60.95it/s]

</pre>

-
72%|███████▎ | 29/40 [00:00<00:00, 62.55it/s]
+
75%|███████▌ | 30/40 [00:00<00:00, 60.95it/s]

end{sphinxVerbatim}

-

72%|███████▎ | 29/40 [00:00<00:00, 62.55it/s]

+

75%|███████▌ | 30/40 [00:00<00:00, 60.95it/s]

-
92%|█████████▎| 37/40 [00:00&lt;00:00, 67.66it/s]
+
95%|█████████▌| 38/40 [00:00&lt;00:00, 66.20it/s]

</pre>

-
92%|█████████▎| 37/40 [00:00<00:00, 67.66it/s]
+
95%|█████████▌| 38/40 [00:00<00:00, 66.20it/s]

end{sphinxVerbatim}

-

92%|█████████▎| 37/40 [00:00<00:00, 67.66it/s]

+

95%|█████████▌| 38/40 [00:00<00:00, 66.20it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 58.42it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 59.00it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 58.42it/s]
+
100%|██████████| 40/40 [00:00<00:00, 59.00it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 58.42it/s]

+

100%|██████████| 40/40 [00:00<00:00, 59.00it/s]

-
5%|▌ | 2/40 [00:00&lt;00:02, 17.32it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 18.73it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 17.32it/s]
+
5%|▌ | 2/40 [00:00<00:02, 18.73it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 17.32it/s]

+

5%|▌ | 2/40 [00:00<00:02, 18.73it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 46.31it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 47.56it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 46.31it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 47.56it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 46.31it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 47.56it/s]

-
38%|███▊ | 15/40 [00:00&lt;00:00, 50.04it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 54.76it/s]

</pre>

-
38%|███▊ | 15/40 [00:00<00:00, 50.04it/s]
+
40%|████ | 16/40 [00:00<00:00, 54.76it/s]

end{sphinxVerbatim}

-

38%|███▊ | 15/40 [00:00<00:00, 50.04it/s]

+

40%|████ | 16/40 [00:00<00:00, 54.76it/s]

-
55%|█████▌ | 22/40 [00:00&lt;00:00, 56.70it/s]
+
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.82it/s]

</pre>

-
55%|█████▌ | 22/40 [00:00<00:00, 56.70it/s]
+
57%|█████▊ | 23/40 [00:00<00:00, 59.82it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 22/40 [00:00<00:00, 56.70it/s]

+

57%|█████▊ | 23/40 [00:00<00:00, 59.82it/s]

-
72%|███████▎ | 29/40 [00:00&lt;00:00, 59.22it/s]
+
78%|███████▊ | 31/40 [00:00&lt;00:00, 63.79it/s]

</pre>

-
72%|███████▎ | 29/40 [00:00<00:00, 59.22it/s]
+
78%|███████▊ | 31/40 [00:00<00:00, 63.79it/s]

end{sphinxVerbatim}

-

72%|███████▎ | 29/40 [00:00<00:00, 59.22it/s]

+

78%|███████▊ | 31/40 [00:00<00:00, 63.79it/s]

-
+
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
+
+
+
-
92%|█████████▎| 37/40 [00:00&lt;00:00, 64.79it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 72.02it/s]

</pre>

-
92%|█████████▎| 37/40 [00:00<00:00, 64.79it/s]
+
100%|██████████| 40/40 [00:00<00:00, 72.02it/s]

end{sphinxVerbatim}

-

92%|█████████▎| 37/40 [00:00<00:00, 64.79it/s]

-
-
+

100%|██████████| 40/40 [00:00<00:00, 72.02it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 57.42it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 60.94it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 57.42it/s]
+
100%|██████████| 40/40 [00:00<00:00, 60.94it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 57.42it/s]

+

100%|██████████| 40/40 [00:00<00:00, 60.94it/s]

@@ -1471,16 +1462,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
5%|▌ | 2/40 [00:00&lt;00:01, 19.28it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 17.30it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:01, 19.28it/s]
+
5%|▌ | 2/40 [00:00<00:02, 17.30it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:01, 19.28it/s]

+

5%|▌ | 2/40 [00:00<00:02, 17.30it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 47.46it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 44.67it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 44.67it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 44.67it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 57.01it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 55.44it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 57.01it/s]
+
40%|████ | 16/40 [00:00<00:00, 55.44it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 57.01it/s]

+

40%|████ | 16/40 [00:00<00:00, 55.44it/s]

-
55%|█████▌ | 22/40 [00:00&lt;00:00, 57.99it/s]
+
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.58it/s]

</pre>

-
55%|█████▌ | 22/40 [00:00<00:00, 57.99it/s]
+
57%|█████▊ | 23/40 [00:00<00:00, 59.58it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 22/40 [00:00<00:00, 57.99it/s]

+

57%|█████▊ | 23/40 [00:00<00:00, 59.58it/s]

-
75%|███████▌ | 30/40 [00:00&lt;00:00, 62.69it/s]
+
75%|███████▌ | 30/40 [00:00&lt;00:00, 62.31it/s]

</pre>

-
75%|███████▌ | 30/40 [00:00<00:00, 62.69it/s]
+
75%|███████▌ | 30/40 [00:00<00:00, 62.31it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 30/40 [00:00<00:00, 62.69it/s]

+

75%|███████▌ | 30/40 [00:00<00:00, 62.31it/s]

-
95%|█████████▌| 38/40 [00:00&lt;00:00, 66.45it/s]
+
98%|█████████▊| 39/40 [00:00&lt;00:00, 68.86it/s]

</pre>

-
95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]
+
98%|█████████▊| 39/40 [00:00<00:00, 68.86it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]

+

98%|█████████▊| 39/40 [00:00<00:00, 68.86it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 59.60it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 59.83it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 59.60it/s]
+
100%|██████████| 40/40 [00:00<00:00, 59.83it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 59.60it/s]

+

100%|██████████| 40/40 [00:00<00:00, 59.83it/s]

-
2%|▎ | 1/40 [00:00&lt;00:04, 9.41it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 17.72it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.41it/s]
+
5%|▌ | 2/40 [00:00<00:02, 17.72it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.41it/s]

+

5%|▌ | 2/40 [00:00<00:02, 17.72it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 46.65it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 46.61it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 46.65it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 46.61it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 46.65it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 46.61it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 56.54it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 56.92it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 56.54it/s]
+
40%|████ | 16/40 [00:00<00:00, 56.92it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 56.54it/s]

+

40%|████ | 16/40 [00:00<00:00, 56.92it/s]

-
57%|█████▊ | 23/40 [00:00&lt;00:00, 60.86it/s]
+
60%|██████ | 24/40 [00:00&lt;00:00, 62.96it/s]

</pre>

-
57%|█████▊ | 23/40 [00:00<00:00, 60.86it/s]
+
60%|██████ | 24/40 [00:00<00:00, 62.96it/s]

end{sphinxVerbatim}

-

57%|█████▊ | 23/40 [00:00<00:00, 60.86it/s]

+

60%|██████ | 24/40 [00:00<00:00, 62.96it/s]

-
78%|███████▊ | 31/40 [00:00&lt;00:00, 63.94it/s]
+
78%|███████▊ | 31/40 [00:00&lt;00:00, 63.65it/s]

</pre>

-
78%|███████▊ | 31/40 [00:00<00:00, 63.94it/s]
+
78%|███████▊ | 31/40 [00:00<00:00, 63.65it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 31/40 [00:00<00:00, 63.94it/s]

+

78%|███████▊ | 31/40 [00:00<00:00, 63.65it/s]

-
+
-
-
-
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
-
100%|██████████| 40/40 [00:00&lt;00:00, 71.59it/s]
+
98%|█████████▊| 39/40 [00:00&lt;00:00, 68.19it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 71.59it/s]
+
98%|█████████▊| 39/40 [00:00<00:00, 68.19it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 71.59it/s]

+

98%|█████████▊| 39/40 [00:00<00:00, 68.19it/s]

+
+
-
100%|██████████| 40/40 [00:00&lt;00:00, 60.49it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 60.54it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 60.49it/s]
+
100%|██████████| 40/40 [00:00<00:00, 60.54it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 60.49it/s]

+

100%|██████████| 40/40 [00:00<00:00, 60.54it/s]

@@ -1910,16 +1910,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 9.61it/s]
+
5%|▌ | 2/40 [00:00&lt;00:01, 19.37it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.61it/s]
+
5%|▌ | 2/40 [00:00<00:01, 19.37it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.61it/s]

+

5%|▌ | 2/40 [00:00<00:01, 19.37it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 42.78it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 47.94it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 42.78it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 47.94it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 42.78it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 47.94it/s]

-
35%|███▌ | 14/40 [00:00&lt;00:00, 49.03it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 59.02it/s]

</pre>

-
35%|███▌ | 14/40 [00:00<00:00, 49.03it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 59.02it/s]

end{sphinxVerbatim}

-

35%|███▌ | 14/40 [00:00<00:00, 49.03it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 59.02it/s]

-
52%|█████▎ | 21/40 [00:00&lt;00:00, 56.57it/s]
+
60%|██████ | 24/40 [00:00&lt;00:00, 62.18it/s]

</pre>

-
52%|█████▎ | 21/40 [00:00<00:00, 56.57it/s]
+
60%|██████ | 24/40 [00:00<00:00, 62.18it/s]

end{sphinxVerbatim}

-

52%|█████▎ | 21/40 [00:00<00:00, 56.57it/s]

+

60%|██████ | 24/40 [00:00<00:00, 62.18it/s]

-
68%|██████▊ | 27/40 [00:00&lt;00:00, 57.37it/s]
+
78%|███████▊ | 31/40 [00:00&lt;00:00, 64.86it/s]

</pre>

-
68%|██████▊ | 27/40 [00:00<00:00, 57.37it/s]
+
78%|███████▊ | 31/40 [00:00<00:00, 64.86it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 27/40 [00:00<00:00, 57.37it/s]

+

78%|███████▊ | 31/40 [00:00<00:00, 64.86it/s]

-
+
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
+
+
+
-
88%|████████▊ | 35/40 [00:00&lt;00:00, 63.22it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 72.97it/s]

</pre>

-
88%|████████▊ | 35/40 [00:00<00:00, 63.22it/s]
+
100%|██████████| 40/40 [00:00<00:00, 72.97it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 35/40 [00:00<00:00, 63.22it/s]

-
-
+

100%|██████████| 40/40 [00:00<00:00, 72.97it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 56.87it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 62.09it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 56.87it/s]
+
100%|██████████| 40/40 [00:00<00:00, 62.09it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 56.87it/s]

+

100%|██████████| 40/40 [00:00<00:00, 62.09it/s]

-
2%|▎ | 1/40 [00:00&lt;00:04, 8.50it/s]
+
8%|▊ | 3/40 [00:00&lt;00:01, 26.04it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 8.50it/s]
+
8%|▊ | 3/40 [00:00<00:01, 26.04it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 8.50it/s]

+

8%|▊ | 3/40 [00:00<00:01, 26.04it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 41.39it/s]
+
25%|██▌ | 10/40 [00:00&lt;00:00, 46.80it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 41.39it/s]
+
25%|██▌ | 10/40 [00:00<00:00, 46.80it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 41.39it/s]

+

25%|██▌ | 10/40 [00:00<00:00, 46.80it/s]

-
38%|███▊ | 15/40 [00:00&lt;00:00, 52.21it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 55.65it/s]

</pre>

-
38%|███▊ | 15/40 [00:00<00:00, 52.21it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 55.65it/s]

end{sphinxVerbatim}

-

38%|███▊ | 15/40 [00:00<00:00, 52.21it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 55.65it/s]

-
52%|█████▎ | 21/40 [00:00&lt;00:00, 52.17it/s]
+
60%|██████ | 24/40 [00:00&lt;00:00, 60.53it/s]

</pre>

-
52%|█████▎ | 21/40 [00:00<00:00, 52.17it/s]
+
60%|██████ | 24/40 [00:00<00:00, 60.53it/s]

end{sphinxVerbatim}

-

52%|█████▎ | 21/40 [00:00<00:00, 52.17it/s]

+

60%|██████ | 24/40 [00:00<00:00, 60.53it/s]

-
70%|███████ | 28/40 [00:00&lt;00:00, 58.08it/s]
+
80%|████████ | 32/40 [00:00&lt;00:00, 64.95it/s]

</pre>

-
70%|███████ | 28/40 [00:00<00:00, 58.08it/s]
+
80%|████████ | 32/40 [00:00<00:00, 64.95it/s]

end{sphinxVerbatim}

-

70%|███████ | 28/40 [00:00<00:00, 58.08it/s]

- - -
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
88%|████████▊ | 35/40 [00:00&lt;00:00, 60.19it/s]
-

</pre>

-
-
-
88%|████████▊ | 35/40 [00:00<00:00, 60.19it/s]
-

end{sphinxVerbatim}

-
-
-
-

88%|████████▊ | 35/40 [00:00<00:00, 60.19it/s]

+

80%|████████ | 32/40 [00:00<00:00, 64.95it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 54.75it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 61.46it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 54.75it/s]
+
100%|██████████| 40/40 [00:00<00:00, 61.46it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 54.75it/s]

+

100%|██████████| 40/40 [00:00<00:00, 61.46it/s]

-
+
@@ -3212,35 +3177,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -3268,7 +3233,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 1ddbcfb2b..b5eaf0560 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:38.419113Z", - "iopub.status.busy": "2024-02-07T22:10:38.418945Z", - "iopub.status.idle": "2024-02-07T22:10:41.179916Z", - "shell.execute_reply": "2024-02-07T22:10:41.179338Z" + "iopub.execute_input": "2024-02-07T23:51:15.881810Z", + "iopub.status.busy": "2024-02-07T23:51:15.881636Z", + "iopub.status.idle": "2024-02-07T23:51:18.606850Z", + "shell.execute_reply": "2024-02-07T23:51:18.606230Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:41.182330Z", - "iopub.status.busy": "2024-02-07T22:10:41.182041Z", - "iopub.status.idle": "2024-02-07T22:10:41.185719Z", - "shell.execute_reply": "2024-02-07T22:10:41.185287Z" + "iopub.execute_input": "2024-02-07T23:51:18.609445Z", + "iopub.status.busy": "2024-02-07T23:51:18.609155Z", + "iopub.status.idle": "2024-02-07T23:51:18.612709Z", + "shell.execute_reply": "2024-02-07T23:51:18.612173Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:41.187549Z", - "iopub.status.busy": "2024-02-07T22:10:41.187370Z", - "iopub.status.idle": "2024-02-07T22:10:43.573339Z", - "shell.execute_reply": "2024-02-07T22:10:43.572876Z" + "iopub.execute_input": "2024-02-07T23:51:18.614784Z", + "iopub.status.busy": "2024-02-07T23:51:18.614359Z", + "iopub.status.idle": "2024-02-07T23:51:20.434279Z", + "shell.execute_reply": "2024-02-07T23:51:20.433763Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "150b7b9c86184b3a81ec2e9d2c4862a1", + "model_id": "7fc3c32bcf1148368c0a1dd69f0726fc", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1075a3bfa6094847a1f22a2a826545d8", + "model_id": "33e6bf1a962241b9965f57093ccfbea2", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "67691e10a0ac4a259f3747a827b350d5", + "model_id": "8488030d7afb4e4c95288794d76c2b48", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f297df970eaa40368e0d02896d28f3b8", + "model_id": "75399c16f9a9462ab14c8fc2e9c2b817", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:43.575644Z", - "iopub.status.busy": "2024-02-07T22:10:43.575289Z", - "iopub.status.idle": "2024-02-07T22:10:43.579073Z", - "shell.execute_reply": "2024-02-07T22:10:43.578518Z" + "iopub.execute_input": "2024-02-07T23:51:20.436485Z", + "iopub.status.busy": "2024-02-07T23:51:20.436157Z", + "iopub.status.idle": "2024-02-07T23:51:20.440017Z", + "shell.execute_reply": "2024-02-07T23:51:20.439436Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:43.581168Z", - "iopub.status.busy": "2024-02-07T22:10:43.580868Z", - "iopub.status.idle": "2024-02-07T22:10:54.969790Z", - "shell.execute_reply": "2024-02-07T22:10:54.969260Z" + "iopub.execute_input": "2024-02-07T23:51:20.442272Z", + "iopub.status.busy": "2024-02-07T23:51:20.441887Z", + "iopub.status.idle": "2024-02-07T23:51:31.626856Z", + "shell.execute_reply": "2024-02-07T23:51:31.626349Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5b393b5be18c4614bbbe5748904485e6", + "model_id": "def052e51c5d4bc1b365fb7a46f00d5e", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:54.972318Z", - "iopub.status.busy": "2024-02-07T22:10:54.972030Z", - "iopub.status.idle": "2024-02-07T22:11:13.025094Z", - "shell.execute_reply": "2024-02-07T22:11:13.024547Z" + "iopub.execute_input": "2024-02-07T23:51:31.629265Z", + "iopub.status.busy": "2024-02-07T23:51:31.628926Z", + "iopub.status.idle": "2024-02-07T23:51:49.868014Z", + "shell.execute_reply": "2024-02-07T23:51:49.867458Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.027702Z", - "iopub.status.busy": "2024-02-07T22:11:13.027309Z", - "iopub.status.idle": "2024-02-07T22:11:13.033230Z", - "shell.execute_reply": "2024-02-07T22:11:13.032780Z" + "iopub.execute_input": "2024-02-07T23:51:49.870696Z", + "iopub.status.busy": "2024-02-07T23:51:49.870322Z", + "iopub.status.idle": "2024-02-07T23:51:49.876254Z", + "shell.execute_reply": "2024-02-07T23:51:49.875791Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.035125Z", - "iopub.status.busy": "2024-02-07T22:11:13.034795Z", - "iopub.status.idle": "2024-02-07T22:11:13.038441Z", - "shell.execute_reply": "2024-02-07T22:11:13.038047Z" + "iopub.execute_input": "2024-02-07T23:51:49.878157Z", + "iopub.status.busy": "2024-02-07T23:51:49.877790Z", + "iopub.status.idle": "2024-02-07T23:51:49.881768Z", + "shell.execute_reply": "2024-02-07T23:51:49.881250Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.040408Z", - "iopub.status.busy": "2024-02-07T22:11:13.040096Z", - "iopub.status.idle": "2024-02-07T22:11:13.048723Z", - "shell.execute_reply": "2024-02-07T22:11:13.048299Z" + "iopub.execute_input": "2024-02-07T23:51:49.883955Z", + "iopub.status.busy": "2024-02-07T23:51:49.883621Z", + "iopub.status.idle": "2024-02-07T23:51:49.892194Z", + "shell.execute_reply": "2024-02-07T23:51:49.891730Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.050685Z", - "iopub.status.busy": "2024-02-07T22:11:13.050442Z", - "iopub.status.idle": "2024-02-07T22:11:13.077420Z", - "shell.execute_reply": "2024-02-07T22:11:13.076808Z" + "iopub.execute_input": "2024-02-07T23:51:49.894038Z", + "iopub.status.busy": "2024-02-07T23:51:49.893778Z", + "iopub.status.idle": "2024-02-07T23:51:49.921230Z", + "shell.execute_reply": "2024-02-07T23:51:49.920805Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.079978Z", - "iopub.status.busy": "2024-02-07T22:11:13.079643Z", - "iopub.status.idle": "2024-02-07T22:11:45.583620Z", - "shell.execute_reply": "2024-02-07T22:11:45.582818Z" + "iopub.execute_input": "2024-02-07T23:51:49.923139Z", + "iopub.status.busy": "2024-02-07T23:51:49.922820Z", + "iopub.status.idle": "2024-02-07T23:52:21.122766Z", + "shell.execute_reply": "2024-02-07T23:52:21.122031Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.872\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.643\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.584\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.435\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:03, 9.78it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.80it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 43.59it/s]" + " 20%|██ | 8/40 [00:00<00:00, 43.66it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 50.24it/s]" + " 40%|████ | 16/40 [00:00<00:00, 56.74it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 57.40it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.69it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 62.55it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 60.95it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 67.66it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 66.20it/s]" ] }, { @@ -798,7 +798,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 58.42it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.00it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.32it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.73it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.31it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.56it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 50.04it/s]" + " 40%|████ | 16/40 [00:00<00:00, 54.76it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 56.70it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.82it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 59.22it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 63.79it/s]" ] }, { @@ -868,7 +868,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 64.79it/s]" + "100%|██████████| 40/40 [00:00<00:00, 72.02it/s]" ] }, { @@ -876,7 +876,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 57.42it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.94it/s]" ] }, { @@ -898,14 +898,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.878\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.627\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.623\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.443\n", "Computing feature embeddings ...\n" ] }, @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.28it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.30it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 44.67it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.01it/s]" + " 40%|████ | 16/40 [00:00<00:00, 55.44it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 57.99it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.58it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 62.69it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 62.31it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 68.86it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.83it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.41it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.72it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.65it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.61it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.54it/s]" + " 40%|████ | 16/40 [00:00<00:00, 56.92it/s]" ] }, { @@ -1024,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 60.86it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.96it/s]" ] }, { @@ -1032,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 63.94it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 63.65it/s]" ] }, { @@ -1040,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 71.59it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 68.19it/s]" ] }, { @@ -1048,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.49it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.54it/s]" ] }, { @@ -1070,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.760\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.622\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.601\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.436\n", "Computing feature embeddings ...\n" ] }, @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.61it/s]" + " 5%|▌ | 2/40 [00:00<00:01, 19.37it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.78it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.94it/s]" ] }, { @@ -1110,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 49.03it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.02it/s]" ] }, { @@ -1118,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 56.57it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.18it/s]" ] }, { @@ -1126,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 57.37it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 64.86it/s]" ] }, { @@ -1134,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 63.22it/s]" + "100%|██████████| 40/40 [00:00<00:00, 72.97it/s]" ] }, { @@ -1142,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 56.87it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.50it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.04it/s]" ] }, { @@ -1180,7 +1180,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.39it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 46.80it/s]" ] }, { @@ -1188,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 52.21it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 55.65it/s]" ] }, { @@ -1196,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 52.17it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 60.53it/s]" ] }, { @@ -1204,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 28/40 [00:00<00:00, 58.08it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 64.95it/s]" ] }, { @@ -1212,15 +1212,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 60.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 54.75it/s]" + "100%|██████████| 40/40 [00:00<00:00, 61.46it/s]" ] }, { @@ -1297,10 +1289,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:45.585975Z", - "iopub.status.busy": "2024-02-07T22:11:45.585741Z", - "iopub.status.idle": "2024-02-07T22:11:45.600179Z", - "shell.execute_reply": "2024-02-07T22:11:45.599732Z" + "iopub.execute_input": "2024-02-07T23:52:21.125104Z", + "iopub.status.busy": "2024-02-07T23:52:21.124865Z", + "iopub.status.idle": "2024-02-07T23:52:21.140126Z", + "shell.execute_reply": "2024-02-07T23:52:21.139559Z" } }, "outputs": [], @@ -1325,10 +1317,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:45.602241Z", - "iopub.status.busy": "2024-02-07T22:11:45.601991Z", - "iopub.status.idle": "2024-02-07T22:11:46.071339Z", - "shell.execute_reply": "2024-02-07T22:11:46.070732Z" + "iopub.execute_input": "2024-02-07T23:52:21.142411Z", + "iopub.status.busy": "2024-02-07T23:52:21.142029Z", + "iopub.status.idle": "2024-02-07T23:52:21.586244Z", + "shell.execute_reply": "2024-02-07T23:52:21.585702Z" } }, "outputs": [], @@ -1348,10 +1340,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:46.073789Z", - "iopub.status.busy": "2024-02-07T22:11:46.073607Z", - "iopub.status.idle": "2024-02-07T22:15:13.726179Z", - "shell.execute_reply": "2024-02-07T22:15:13.725548Z" + "iopub.execute_input": "2024-02-07T23:52:21.588565Z", + "iopub.status.busy": "2024-02-07T23:52:21.588385Z", + "iopub.status.idle": "2024-02-07T23:55:46.523357Z", + "shell.execute_reply": "2024-02-07T23:55:46.522791Z" } }, "outputs": [ @@ -1390,7 +1382,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "06bcff0001014bfb950d1828761c0eaa", + "model_id": "15a700e2959f45d9bc818012a4ac35cf", "version_major": 2, "version_minor": 0 }, @@ -1429,10 +1421,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:13.728842Z", - "iopub.status.busy": "2024-02-07T22:15:13.728169Z", - "iopub.status.idle": "2024-02-07T22:15:14.183497Z", - "shell.execute_reply": "2024-02-07T22:15:14.182926Z" + "iopub.execute_input": "2024-02-07T23:55:46.525817Z", + "iopub.status.busy": "2024-02-07T23:55:46.525191Z", + "iopub.status.idle": "2024-02-07T23:55:46.967520Z", + "shell.execute_reply": "2024-02-07T23:55:46.966995Z" } }, "outputs": [ @@ -1580,10 +1572,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.186298Z", - "iopub.status.busy": "2024-02-07T22:15:14.185789Z", - "iopub.status.idle": "2024-02-07T22:15:14.247703Z", - "shell.execute_reply": "2024-02-07T22:15:14.247163Z" + "iopub.execute_input": "2024-02-07T23:55:46.970176Z", + "iopub.status.busy": "2024-02-07T23:55:46.969807Z", + "iopub.status.idle": "2024-02-07T23:55:47.030546Z", + "shell.execute_reply": "2024-02-07T23:55:47.029858Z" } }, "outputs": [ @@ -1687,10 +1679,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.249928Z", - "iopub.status.busy": "2024-02-07T22:15:14.249599Z", - "iopub.status.idle": "2024-02-07T22:15:14.258029Z", - "shell.execute_reply": "2024-02-07T22:15:14.257501Z" + "iopub.execute_input": "2024-02-07T23:55:47.032998Z", + "iopub.status.busy": "2024-02-07T23:55:47.032735Z", + "iopub.status.idle": "2024-02-07T23:55:47.040993Z", + "shell.execute_reply": "2024-02-07T23:55:47.040535Z" } }, "outputs": [ @@ -1820,10 +1812,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.259872Z", - "iopub.status.busy": "2024-02-07T22:15:14.259698Z", - "iopub.status.idle": "2024-02-07T22:15:14.264612Z", - "shell.execute_reply": "2024-02-07T22:15:14.264180Z" + "iopub.execute_input": "2024-02-07T23:55:47.043175Z", + "iopub.status.busy": "2024-02-07T23:55:47.042830Z", + "iopub.status.idle": "2024-02-07T23:55:47.048286Z", + "shell.execute_reply": "2024-02-07T23:55:47.047803Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1861,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.266402Z", - "iopub.status.busy": "2024-02-07T22:15:14.266233Z", - "iopub.status.idle": "2024-02-07T22:15:14.771851Z", - "shell.execute_reply": "2024-02-07T22:15:14.771240Z" + "iopub.execute_input": "2024-02-07T23:55:47.050377Z", + "iopub.status.busy": "2024-02-07T23:55:47.050009Z", + "iopub.status.idle": "2024-02-07T23:55:47.563713Z", + "shell.execute_reply": "2024-02-07T23:55:47.563239Z" } }, "outputs": [ @@ -1907,10 +1899,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.774093Z", - "iopub.status.busy": "2024-02-07T22:15:14.773749Z", - "iopub.status.idle": "2024-02-07T22:15:14.782399Z", - "shell.execute_reply": "2024-02-07T22:15:14.781863Z" + "iopub.execute_input": "2024-02-07T23:55:47.565638Z", + "iopub.status.busy": "2024-02-07T23:55:47.565459Z", + "iopub.status.idle": "2024-02-07T23:55:47.573691Z", + "shell.execute_reply": "2024-02-07T23:55:47.573256Z" } }, "outputs": [ @@ -2077,10 +2069,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.784695Z", - "iopub.status.busy": "2024-02-07T22:15:14.784378Z", - "iopub.status.idle": "2024-02-07T22:15:14.792575Z", - "shell.execute_reply": "2024-02-07T22:15:14.792106Z" + "iopub.execute_input": "2024-02-07T23:55:47.575826Z", + "iopub.status.busy": "2024-02-07T23:55:47.575405Z", + "iopub.status.idle": "2024-02-07T23:55:47.582426Z", + "shell.execute_reply": "2024-02-07T23:55:47.581985Z" }, "nbsphinx": "hidden" }, @@ -2156,10 +2148,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.794419Z", - "iopub.status.busy": "2024-02-07T22:15:14.794248Z", - "iopub.status.idle": "2024-02-07T22:15:15.266167Z", - "shell.execute_reply": "2024-02-07T22:15:15.265586Z" + "iopub.execute_input": "2024-02-07T23:55:47.584184Z", + "iopub.status.busy": "2024-02-07T23:55:47.584014Z", + "iopub.status.idle": "2024-02-07T23:55:48.046048Z", + "shell.execute_reply": "2024-02-07T23:55:48.045495Z" } }, "outputs": [ @@ -2196,10 +2188,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.268447Z", - "iopub.status.busy": "2024-02-07T22:15:15.268135Z", - "iopub.status.idle": "2024-02-07T22:15:15.284704Z", - "shell.execute_reply": "2024-02-07T22:15:15.284211Z" + "iopub.execute_input": "2024-02-07T23:55:48.048037Z", + "iopub.status.busy": "2024-02-07T23:55:48.047862Z", + "iopub.status.idle": "2024-02-07T23:55:48.062692Z", + "shell.execute_reply": "2024-02-07T23:55:48.062251Z" } }, "outputs": [ @@ -2356,10 +2348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.287144Z", - "iopub.status.busy": "2024-02-07T22:15:15.286677Z", - "iopub.status.idle": "2024-02-07T22:15:15.293454Z", - "shell.execute_reply": "2024-02-07T22:15:15.292999Z" + "iopub.execute_input": "2024-02-07T23:55:48.064581Z", + "iopub.status.busy": "2024-02-07T23:55:48.064412Z", + "iopub.status.idle": "2024-02-07T23:55:48.069814Z", + "shell.execute_reply": "2024-02-07T23:55:48.069388Z" }, "nbsphinx": "hidden" }, @@ -2404,10 +2396,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.295629Z", - "iopub.status.busy": "2024-02-07T22:15:15.295278Z", - "iopub.status.idle": "2024-02-07T22:15:15.767384Z", - "shell.execute_reply": "2024-02-07T22:15:15.766576Z" + "iopub.execute_input": "2024-02-07T23:55:48.071509Z", + "iopub.status.busy": "2024-02-07T23:55:48.071343Z", + "iopub.status.idle": "2024-02-07T23:55:48.539232Z", + "shell.execute_reply": "2024-02-07T23:55:48.538712Z" } }, "outputs": [ @@ -2489,10 +2481,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.770046Z", - "iopub.status.busy": "2024-02-07T22:15:15.769833Z", - "iopub.status.idle": "2024-02-07T22:15:15.780284Z", - "shell.execute_reply": "2024-02-07T22:15:15.779737Z" + "iopub.execute_input": "2024-02-07T23:55:48.542136Z", + "iopub.status.busy": "2024-02-07T23:55:48.541942Z", + "iopub.status.idle": "2024-02-07T23:55:48.551478Z", + "shell.execute_reply": "2024-02-07T23:55:48.550999Z" } }, "outputs": [ @@ -2620,10 +2612,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.782972Z", - "iopub.status.busy": "2024-02-07T22:15:15.782761Z", - "iopub.status.idle": "2024-02-07T22:15:15.789772Z", - "shell.execute_reply": "2024-02-07T22:15:15.789237Z" + "iopub.execute_input": "2024-02-07T23:55:48.553910Z", + "iopub.status.busy": "2024-02-07T23:55:48.553723Z", + "iopub.status.idle": "2024-02-07T23:55:48.560475Z", + "shell.execute_reply": "2024-02-07T23:55:48.559985Z" }, "nbsphinx": "hidden" }, @@ -2660,10 +2652,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.792545Z", - "iopub.status.busy": "2024-02-07T22:15:15.792004Z", - "iopub.status.idle": "2024-02-07T22:15:15.996072Z", - "shell.execute_reply": "2024-02-07T22:15:15.995539Z" + "iopub.execute_input": "2024-02-07T23:55:48.562594Z", + "iopub.status.busy": "2024-02-07T23:55:48.562409Z", + "iopub.status.idle": "2024-02-07T23:55:48.763788Z", + "shell.execute_reply": "2024-02-07T23:55:48.763368Z" } }, "outputs": [ @@ -2705,10 +2697,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.998260Z", - "iopub.status.busy": "2024-02-07T22:15:15.998067Z", - "iopub.status.idle": "2024-02-07T22:15:16.006248Z", - "shell.execute_reply": "2024-02-07T22:15:16.005671Z" + "iopub.execute_input": "2024-02-07T23:55:48.765744Z", + "iopub.status.busy": "2024-02-07T23:55:48.765594Z", + "iopub.status.idle": "2024-02-07T23:55:48.772950Z", + "shell.execute_reply": "2024-02-07T23:55:48.772568Z" } }, "outputs": [ @@ -2733,47 +2725,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2794,10 +2786,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:16.008244Z", - "iopub.status.busy": "2024-02-07T22:15:16.008065Z", - "iopub.status.idle": "2024-02-07T22:15:16.207600Z", - "shell.execute_reply": "2024-02-07T22:15:16.206983Z" + "iopub.execute_input": "2024-02-07T23:55:48.774610Z", + "iopub.status.busy": "2024-02-07T23:55:48.774465Z", + "iopub.status.idle": "2024-02-07T23:55:48.966740Z", + "shell.execute_reply": "2024-02-07T23:55:48.966273Z" } }, "outputs": [ @@ -2837,10 +2829,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:16.209828Z", - "iopub.status.busy": "2024-02-07T22:15:16.209640Z", - "iopub.status.idle": "2024-02-07T22:15:16.214037Z", - "shell.execute_reply": "2024-02-07T22:15:16.213595Z" + "iopub.execute_input": "2024-02-07T23:55:48.968846Z", + "iopub.status.busy": "2024-02-07T23:55:48.968688Z", + "iopub.status.idle": "2024-02-07T23:55:48.972895Z", + "shell.execute_reply": "2024-02-07T23:55:48.972438Z" }, "nbsphinx": "hidden" }, @@ -2877,7 +2869,70 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "007cca45272b4a15865ee386417fca56": { + "096734e131e7446789cb828a670c4d33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "15a700e2959f45d9bc818012a4ac35cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e25684bca4d04cc586c2ae9653e92baf", + "IPY_MODEL_64976c7cec274e2cb599f9864d9d2b3e", + "IPY_MODEL_94bc8870033b400c828c994a4697989a" + ], + "layout": "IPY_MODEL_4bee7ed00ac6488f9434077c2e5ffff2", + "tabbable": null, + "tooltip": null + } + }, + "183ec1a8cefe4e868b0f39386c2db1e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2711254680224029b57c4b746e722522", + "placeholder": "​", + "style": "IPY_MODEL_dca81aa852a141c0b18590a7f7cf263c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "1ce7003827024b28a7d772ffcf95c3a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2930,7 +2985,7 @@ "width": null } }, - "00a8666c63fe45f283b11685743a81b6": { + "1ee143b057ae4463bf1a6f310045fe94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2983,65 +3038,7 @@ "width": null } }, - "06bcff0001014bfb950d1828761c0eaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b5b76bb51dd24c3386ccaa609dc70842", - "IPY_MODEL_423bc17c3a044d53a5de362b4d36e27b", - "IPY_MODEL_8347afc027284ba1863d50faee7fb11f" - ], - "layout": "IPY_MODEL_a51bf779db9d469c8cc33a8b24c8e7ca", - "tabbable": null, - "tooltip": null - } - }, - "07ce8ed7891c4ebeb9fefd6949c7b180": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0986b1a6d95d485cbe39462131805d4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0c988c95890b4f69b74f89e0c81d7828": { + "234cdeb4c2ad4b40b8c4cbd3cac01772": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3094,31 +3091,33 @@ "width": null } }, - "1075a3bfa6094847a1f22a2a826545d8": { + "26ad29a0928d4632b2a0122ed75fcba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e4965fe8a11c45b89b19f160a93c542b", - "IPY_MODEL_166baabd90ae4a70974b4d2f3b164fc9", - "IPY_MODEL_2aeff5887c2744658ab43b4d60c1fa69" - ], - "layout": "IPY_MODEL_a745f815281f456fbc80f4bdc464b2a4", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6de8542b53114be68c4e71576a77d58d", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f782ebbbd274491fa6c680f42c1bf160", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 5175617.0 } }, - "10f5705a3e4e4a5489fdffb09b3ae22d": { + "2711254680224029b57c4b746e722522": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,7 +3170,7 @@ "width": null } }, - "150b7b9c86184b3a81ec2e9d2c4862a1": { + "33e6bf1a962241b9965f57093ccfbea2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3186,42 +3185,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8e6ad75a2b144274bcc9ff9239778002", - "IPY_MODEL_b6cd68308d5e4a28b4407d8ee3829be1", - "IPY_MODEL_6ba0aea08e8643b78fb9dd4fadbd8604" + "IPY_MODEL_6cf83a63cad34d77a53d085e937274b7", + "IPY_MODEL_26ad29a0928d4632b2a0122ed75fcba0", + "IPY_MODEL_6fcdf7eb188047ea8070940e35a2c311" ], - "layout": "IPY_MODEL_6ffbbae9cb954f6a82f68b536f065ab8", + "layout": "IPY_MODEL_9b4cac2ed2814e8b9e247efc679c9223", "tabbable": null, "tooltip": null } }, - "166baabd90ae4a70974b4d2f3b164fc9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_38c29ede099f486ead043fd5488a0759", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07ce8ed7891c4ebeb9fefd6949c7b180", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "18293d50d4484b0393bfae1f7b74f293": { + "34b9ed23fedc419c93f8e11b3bba77d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3274,7 +3247,7 @@ "width": null } }, - "197fca20a4434a20984b059e49d64036": { + "3f16949cc8934b0ab3befc7da6f162af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3327,69 +3300,23 @@ "width": null } }, - "19b04ce129ed43bea80c3763311498a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fcc301f31d19462b97bdc821e4e82fef", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_be13cc6a5b264e5c998f323c75cc7bb5", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "1c7be1df6c5e4d32a0559e03971d081a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "26746b6b76004ae59adf81188c1fdd1a": { + "45819af2ac5246748f97bf8d73a8f283": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "29ac47e5ca144d298560f408c853cf1e": { + "45a1b9299e1845aab1844559b266af3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3442,7 +3369,48 @@ "width": null } }, - "2ac6b1ce136d47ef8d4c7d14c22c7116": { + "4a4f8f6ed26f4e04ade21e5c4c413553": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b56c0a3af7b4854bcaa5e65e32570a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_234cdeb4c2ad4b40b8c4cbd3cac01772", + "placeholder": "​", + "style": "IPY_MODEL_d78d044a913243d8bf9346c6281d126a", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 71.9MB/s]" + } + }, + "4bee7ed00ac6488f9434077c2e5ffff2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3495,46 +3463,77 @@ "width": null } }, - "2aeff5887c2744658ab43b4d60c1fa69": { + "4c5bb1bea32c4cf4b4e27b2f03b4cd45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5156825dd8984f5390c32a26ec67aac1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_18293d50d4484b0393bfae1f7b74f293", - "placeholder": "​", - "style": "IPY_MODEL_7faa2feb4f15433b9d040ffbf537d6b5", + "layout": "IPY_MODEL_9d3ce37c18da435f9c36109f68013b0f", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45819af2ac5246748f97bf8d73a8f283", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 94.9MB/s]" + "value": 2.0 } }, - "2d482bad9ee041b79ba26875c7d1a80e": { + "578929fb3a044fb8b98da73290b779d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b98f676249946058d5415d4909e05b9", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_096734e131e7446789cb828a670c4d33", + "tabbable": null, + "tooltip": null, + "value": 1.0 } }, - "2ef38576452d4a8ca2641b46f9f35c14": { + "57bef00c454b4e879a865a60febb6b60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3552,7 +3551,7 @@ "text_color": null } }, - "2f2a551a941645a78fe4691c1f20b53f": { + "5b3a5d15a27842e893e424fbca85b9e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3605,7 +3604,49 @@ "width": null } }, - "38c29ede099f486ead043fd5488a0759": { + "64976c7cec274e2cb599f9864d9d2b3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d66b7bebee1c4c5a9bfb23d862bd89e4", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c83eb5b6161d4f85aa318bfa7112095f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "673d6eed56f44ff6ae4e58f52e19133c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "686948274691459e859ec29d1d6727ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3658,7 +3699,48 @@ "width": null } }, - "39470974b22044fcabdf343041f46c3e": { + "6c6fe37f727d4b6e8f95c49cb618852d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6cf83a63cad34d77a53d085e937274b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f16949cc8934b0ab3befc7da6f162af", + "placeholder": "​", + "style": "IPY_MODEL_80e4373e9d5d4f5083c3e92a61a83408", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "6de8542b53114be68c4e71576a77d58d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3711,7 +3793,7 @@ "width": null } }, - "3c5a1561976c4ff1ad4db4058a8c0127": { + "6fcdf7eb188047ea8070940e35a2c311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3726,64 +3808,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_197fca20a4434a20984b059e49d64036", + "layout": "IPY_MODEL_e072741128074994b5fba0025ee966de", "placeholder": "​", - "style": "IPY_MODEL_2ef38576452d4a8ca2641b46f9f35c14", + "style": "IPY_MODEL_fc7aae1e798a48039208372e86ec973b", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 5.18M/5.18M [00:00<00:00, 69.5MB/s]" } }, - "3cb4a82173174d78a59af75f16489b2c": { + "70cc77e667df49dab4bde4d8dea9c5fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_10f5705a3e4e4a5489fdffb09b3ae22d", - "placeholder": "​", - "style": "IPY_MODEL_0986b1a6d95d485cbe39462131805d4a", + "layout": "IPY_MODEL_e04ff729cd6248debe23ad79acebf4bc", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_673d6eed56f44ff6ae4e58f52e19133c", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 641.77it/s]" + "value": 30931277.0 } }, - "423bc17c3a044d53a5de362b4d36e27b": { - "model_module": "@jupyter-widgets/controls", + "71185cb9b6c8422094d1c0f6d1d0147f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f4443875618434da0e9c191e0ace738", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d482bad9ee041b79ba26875c7d1a80e", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" } }, - "47f5060567b54568b0bcee09f764ad27": { + "713efc8818df493895a188556513706a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3836,7 +3948,7 @@ "width": null } }, - "4e64526cc3ce44e292359000779eb539": { + "73635cd35f554107ad27ff09c5a3deaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3854,25 +3966,31 @@ "text_color": null } }, - "515f681f9dab4dd392d167d2ea28a430": { + "75399c16f9a9462ab14c8fc2e9c2b817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a265c03419fb47d78575b3c0a5c8ecae", + "IPY_MODEL_578929fb3a044fb8b98da73290b779d0", + "IPY_MODEL_8141d17ba66a4fa79738072a90f4bd9e" + ], + "layout": "IPY_MODEL_9727eec2512c4933a9d698603b04afa7", + "tabbable": null, + "tooltip": null } }, - "5487841021704122bdfd383f3ecc760a": { + "7b617e68684d4328b814adff85313cd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3887,15 +4005,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f2a551a941645a78fe4691c1f20b53f", + "layout": "IPY_MODEL_1ce7003827024b28a7d772ffcf95c3a0", "placeholder": "​", - "style": "IPY_MODEL_bf49a26db85d4c928bd1f112e88d04ae", + "style": "IPY_MODEL_57bef00c454b4e879a865a60febb6b60", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": "Generating train split: " + } + }, + "7fb92d346357470cb4e334e9867b871a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b393b5be18c4614bbbe5748904485e6": { + "7fc3c32bcf1148368c0a1dd69f0726fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3910,56 +4046,107 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3c5a1561976c4ff1ad4db4058a8c0127", - "IPY_MODEL_19b04ce129ed43bea80c3763311498a1", - "IPY_MODEL_7bdda0e0e9af4e329762cac848c7afeb" + "IPY_MODEL_bdd9181360ef47cdb60a4d3587334477", + "IPY_MODEL_70cc77e667df49dab4bde4d8dea9c5fc", + "IPY_MODEL_4b56c0a3af7b4854bcaa5e65e32570a4" ], - "layout": "IPY_MODEL_47f5060567b54568b0bcee09f764ad27", + "layout": "IPY_MODEL_686948274691459e859ec29d1d6727ad", "tabbable": null, "tooltip": null } }, - "675dd88192524e39b8b2c590edca71dc": { + "80e4373e9d5d4f5083c3e92a61a83408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "67691e10a0ac4a259f3747a827b350d5": { + "8141d17ba66a4fa79738072a90f4bd9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da707b4db6684c0fa1f42dfbbfa15ec2", - "IPY_MODEL_e57ae3a3bbb847ecae1ef7ae2ed00f25", - "IPY_MODEL_cd2955ed357d49f78df0e62fe52334a0" - ], - "layout": "IPY_MODEL_80b35b7c4593476685445ef3025428eb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b66eff66d81e4438b9228605517b1593", + "placeholder": "​", + "style": "IPY_MODEL_f8a5a07864954ff99b69195ff03014bc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/0 [00:00<00:00, 628068.46 examples/s]" } }, - "6853885176e7477cb8135d6bfe80ff02": { + "8488030d7afb4e4c95288794d76c2b48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b617e68684d4328b814adff85313cd5", + "IPY_MODEL_a2eae19faf36409f8181eef097b68a54", + "IPY_MODEL_cab835ba7133491985672d5adf685b51" + ], + "layout": "IPY_MODEL_f643dd39622741d4a35fcf7a2d438eb7", + "tabbable": null, + "tooltip": null + } + }, + "8762f99816334281badb51b354443160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ac2c8c227bba40a594ee42bcdfd88417", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cac02aaea187408aae5a8c6677012f49", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "89515e7f66a14b7f958928ae0c7e4729": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4012,7 +4199,7 @@ "width": null } }, - "6ba0aea08e8643b78fb9dd4fadbd8604": { + "8ec2228212b74dae9b1d6b947be22df7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4027,15 +4214,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_00a8666c63fe45f283b11685743a81b6", + "layout": "IPY_MODEL_da231bdfa36744078ae247859bcb9b02", "placeholder": "​", - "style": "IPY_MODEL_1c7be1df6c5e4d32a0559e03971d081a", + "style": "IPY_MODEL_d5dac1c26a794eceb5b33cdac38e91e1", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 70.7MB/s]" + "value": " 2/2 [00:00<00:00, 629.07it/s]" + } + }, + "8eec55efd8174ae9b1880eb091282f8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3e1582141cd4032a0ff25cedc977203", + "IPY_MODEL_5156825dd8984f5390c32a26ec67aac1", + "IPY_MODEL_8ec2228212b74dae9b1d6b947be22df7" + ], + "layout": "IPY_MODEL_713efc8818df493895a188556513706a", + "tabbable": null, + "tooltip": null } }, - "6f4443875618434da0e9c191e0ace738": { + "9431d2713aad4a79b208a039fbb37fab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4088,7 +4299,30 @@ "width": null } }, - "6ffbbae9cb954f6a82f68b536f065ab8": { + "94bc8870033b400c828c994a4697989a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c5b2ed298d3c4fbda43a63faac09ec97", + "placeholder": "​", + "style": "IPY_MODEL_6c6fe37f727d4b6e8f95c49cb618852d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1562.36it/s]" + } + }, + "9727eec2512c4933a9d698603b04afa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4141,7 +4375,7 @@ "width": null } }, - "7b37caa92b634a88b72e54c5f100899e": { + "9b4cac2ed2814e8b9e247efc679c9223": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4194,7 +4428,7 @@ "width": null } }, - "7ba1ac52122646b58c5b9a4f176153ef": { + "9b98f676249946058d5415d4909e05b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4244,51 +4478,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "7bdda0e0e9af4e329762cac848c7afeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_007cca45272b4a15865ee386417fca56", - "placeholder": "​", - "style": "IPY_MODEL_26746b6b76004ae59adf81188c1fdd1a", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6531.80 examples/s]" - } - }, - "7faa2feb4f15433b9d040ffbf537d6b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": "20px" } }, - "80b35b7c4593476685445ef3025428eb": { + "9d3ce37c18da435f9c36109f68013b0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4341,7 +4534,7 @@ "width": null } }, - "8347afc027284ba1863d50faee7fb11f": { + "a265c03419fb47d78575b3c0a5c8ecae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4356,38 +4549,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e0d10aecc1b8464c94fddbea98f240d7", + "layout": "IPY_MODEL_9431d2713aad4a79b208a039fbb37fab", "placeholder": "​", - "style": "IPY_MODEL_4e64526cc3ce44e292359000779eb539", + "style": "IPY_MODEL_4a4f8f6ed26f4e04ade21e5c4c413553", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:38<00:00, 1627.63it/s]" + "value": "Generating test split: " } }, - "866395f01978484db997ca8002c94500": { + "a2eae19faf36409f8181eef097b68a54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0d2d9d153814469a1c5f837c963a987", - "placeholder": "​", - "style": "IPY_MODEL_c02b56ba484f4b5bb2383da56ef2baf2", + "layout": "IPY_MODEL_71185cb9b6c8422094d1c0f6d1d0147f", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a825e0188dbe47a195347df2c50c35d0", "tabbable": null, "tooltip": null, - "value": " 10000/0 [00:00<00:00, 576037.80 examples/s]" + "value": 1.0 + } + }, + "a4e2cd3cbcc1439b92a8f2e5001a07a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a825e0188dbe47a195347df2c50c35d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8cb1e055ca064cd6b11318325702ebf2": { + "ac2c8c227bba40a594ee42bcdfd88417": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4440,88 +4670,7 @@ "width": null } }, - "8e6ad75a2b144274bcc9ff9239778002": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df492ac34dc243af97c31bd624502099", - "placeholder": "​", - "style": "IPY_MODEL_973abcd851334a23a1270519eccaa3c5", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "911987d56e934f189bd14bb79602c280": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5487841021704122bdfd383f3ecc760a", - "IPY_MODEL_c855fae6b03a49cb953be1c8f51d44f9", - "IPY_MODEL_3cb4a82173174d78a59af75f16489b2c" - ], - "layout": "IPY_MODEL_6853885176e7477cb8135d6bfe80ff02", - "tabbable": null, - "tooltip": null - } - }, - "973abcd851334a23a1270519eccaa3c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9f2a28910749459bb33e5ad7e62ad01e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a51bf779db9d469c8cc33a8b24c8e7ca": { + "b66eff66d81e4438b9228605517b1593": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4574,33 +4723,30 @@ "width": null } }, - "a6c96a8ee9564d51a056291e1e184f49": { + "bdd9181360ef47cdb60a4d3587334477": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d85cd0edb5d6484b93791a949f5eb677", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8738a0fd0a9491db1151ef381d35254", + "layout": "IPY_MODEL_1ee143b057ae4463bf1a6f310045fe94", + "placeholder": "​", + "style": "IPY_MODEL_7fb92d346357470cb4e334e9867b871a", "tabbable": null, "tooltip": null, - "value": 1.0 + "value": "Downloading data: 100%" } }, - "a745f815281f456fbc80f4bdc464b2a4": { + "c5b2ed298d3c4fbda43a63faac09ec97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4653,7 +4799,7 @@ "width": null } }, - "b0d2d9d153814469a1c5f837c963a987": { + "c5cb71c61f3d4544ace25a3110062e2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4706,108 +4852,46 @@ "width": null } }, - "b5b76bb51dd24c3386ccaa609dc70842": { + "c83eb5b6161d4f85aa318bfa7112095f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ba1ac52122646b58c5b9a4f176153ef", - "placeholder": "​", - "style": "IPY_MODEL_515f681f9dab4dd392d167d2ea28a430", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b6cd68308d5e4a28b4407d8ee3829be1": { + "cab835ba7133491985672d5adf685b51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ac6b1ce136d47ef8d4c7d14c22c7116", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_675dd88192524e39b8b2c590edca71dc", + "layout": "IPY_MODEL_34b9ed23fedc419c93f8e11b3bba77d3", + "placeholder": "​", + "style": "IPY_MODEL_a4e2cd3cbcc1439b92a8f2e5001a07a0", "tabbable": null, "tooltip": null, - "value": 30931277.0 - } - }, - "be13cc6a5b264e5c998f323c75cc7bb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bf49a26db85d4c928bd1f112e88d04ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c02b56ba484f4b5bb2383da56ef2baf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/0 [00:00<00:00, 963377.32 examples/s]" } }, - "c44a23970a994528bfdc06bfcb012be7": { + "cac02aaea187408aae5a8c6677012f49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4823,33 +4907,7 @@ "description_width": "" } }, - "c855fae6b03a49cb953be1c8f51d44f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b37caa92b634a88b72e54c5f100899e", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c44a23970a994528bfdc06bfcb012be7", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "cc76dce215d548d892e41d3a7229508c": { + "d5dac1c26a794eceb5b33cdac38e91e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4867,30 +4925,7 @@ "text_color": null } }, - "cd2955ed357d49f78df0e62fe52334a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc1ff02cf5c94c70b74423fece694376", - "placeholder": "​", - "style": "IPY_MODEL_f4a04192e971448aaecf424bc4f41bda", - "tabbable": null, - "tooltip": null, - "value": " 60000/0 [00:00<00:00, 846818.07 examples/s]" - } - }, - "d85cd0edb5d6484b93791a949f5eb677": { + "d66b7bebee1c4c5a9bfb23d862bd89e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4940,49 +4975,28 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "d8738a0fd0a9491db1151ef381d35254": { + "d78d044a913243d8bf9346c6281d126a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "da707b4db6684c0fa1f42dfbbfa15ec2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8cb1e055ca064cd6b11318325702ebf2", - "placeholder": "​", - "style": "IPY_MODEL_e18168fd3de74d7ea007bfdb3a814603", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: " + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "df492ac34dc243af97c31bd624502099": { + "da231bdfa36744078ae247859bcb9b02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5035,7 +5049,72 @@ "width": null } }, - "e0d10aecc1b8464c94fddbea98f240d7": { + "db4d65560ff04257ad1532c0bf200fa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_45a1b9299e1845aab1844559b266af3b", + "placeholder": "​", + "style": "IPY_MODEL_4c5bb1bea32c4cf4b4e27b2f03b4cd45", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7408.76 examples/s]" + } + }, + "dca81aa852a141c0b18590a7f7cf263c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "def052e51c5d4bc1b365fb7a46f00d5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_183ec1a8cefe4e868b0f39386c2db1e5", + "IPY_MODEL_8762f99816334281badb51b354443160", + "IPY_MODEL_db4d65560ff04257ad1532c0bf200fa9" + ], + "layout": "IPY_MODEL_89515e7f66a14b7f958928ae0c7e4729", + "tabbable": null, + "tooltip": null + } + }, + "e04ff729cd6248debe23ad79acebf4bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5088,25 +5167,7 @@ "width": null } }, - "e18168fd3de74d7ea007bfdb3a814603": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e47d1549488742599209ede60f9bad03": { + "e072741128074994b5fba0025ee966de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5156,10 +5217,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "e4965fe8a11c45b89b19f160a93c542b": { + "e25684bca4d04cc586c2ae9653e92baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5174,65 +5235,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0c988c95890b4f69b74f89e0c81d7828", + "layout": "IPY_MODEL_c5cb71c61f3d4544ace25a3110062e2f", "placeholder": "​", - "style": "IPY_MODEL_cc76dce215d548d892e41d3a7229508c", + "style": "IPY_MODEL_73635cd35f554107ad27ff09c5a3deaf", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "e57ae3a3bbb847ecae1ef7ae2ed00f25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e47d1549488742599209ede60f9bad03", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9f2a28910749459bb33e5ad7e62ad01e", - "tabbable": null, - "tooltip": null, - "value": 1.0 - } - }, - "f297df970eaa40368e0d02896d28f3b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f37dedb7f52e45adb6f1791f0875f640", - "IPY_MODEL_a6c96a8ee9564d51a056291e1e184f49", - "IPY_MODEL_866395f01978484db997ca8002c94500" - ], - "layout": "IPY_MODEL_39470974b22044fcabdf343041f46c3e", - "tabbable": null, - "tooltip": null + "value": "100%" } }, - "f37dedb7f52e45adb6f1791f0875f640": { + "e3e1582141cd4032a0ff25cedc977203": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5247,33 +5258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ac47e5ca144d298560f408c853cf1e", + "layout": "IPY_MODEL_5b3a5d15a27842e893e424fbca85b9e3", "placeholder": "​", - "style": "IPY_MODEL_f8cf10ba3a9341a3aac3ac337cbf990e", + "style": "IPY_MODEL_ef5a2cf277c64341b028581a65c8220c", "tabbable": null, "tooltip": null, - "value": "Generating test split: " - } - }, - "f4a04192e971448aaecf424bc4f41bda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Computing checksums: 100%" } }, - "f8cf10ba3a9341a3aac3ac337cbf990e": { + "ef5a2cf277c64341b028581a65c8220c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5291,7 +5284,7 @@ "text_color": null } }, - "fc1ff02cf5c94c70b74423fece694376": { + "f643dd39622741d4a35fcf7a2d438eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5344,57 +5337,56 @@ "width": null } }, - "fcc301f31d19462b97bdc821e4e82fef": { - "model_module": "@jupyter-widgets/base", + "f782ebbbd274491fa6c680f42c1bf160": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f8a5a07864954ff99b69195ff03014bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fc7aae1e798a48039208372e86ec973b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index eedb2b4a0..fcbca0822 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:21.351866Z", - "iopub.status.busy": "2024-02-07T22:15:21.351677Z", - "iopub.status.idle": "2024-02-07T22:15:22.453306Z", - "shell.execute_reply": "2024-02-07T22:15:22.452757Z" + "iopub.execute_input": "2024-02-07T23:55:52.793906Z", + "iopub.status.busy": "2024-02-07T23:55:52.793563Z", + "iopub.status.idle": "2024-02-07T23:55:53.871456Z", + "shell.execute_reply": "2024-02-07T23:55:53.870917Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.455742Z", - "iopub.status.busy": "2024-02-07T22:15:22.455483Z", - "iopub.status.idle": "2024-02-07T22:15:22.634154Z", - "shell.execute_reply": "2024-02-07T22:15:22.633543Z" + "iopub.execute_input": "2024-02-07T23:55:53.873895Z", + "iopub.status.busy": "2024-02-07T23:55:53.873500Z", + "iopub.status.idle": "2024-02-07T23:55:54.047760Z", + "shell.execute_reply": "2024-02-07T23:55:54.047227Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.636920Z", - "iopub.status.busy": "2024-02-07T22:15:22.636572Z", - "iopub.status.idle": "2024-02-07T22:15:22.648321Z", - "shell.execute_reply": "2024-02-07T22:15:22.647894Z" + "iopub.execute_input": "2024-02-07T23:55:54.050158Z", + "iopub.status.busy": "2024-02-07T23:55:54.049974Z", + "iopub.status.idle": "2024-02-07T23:55:54.061117Z", + "shell.execute_reply": "2024-02-07T23:55:54.060658Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.650316Z", - "iopub.status.busy": "2024-02-07T22:15:22.649989Z", - "iopub.status.idle": "2024-02-07T22:15:22.883619Z", - "shell.execute_reply": "2024-02-07T22:15:22.883022Z" + "iopub.execute_input": "2024-02-07T23:55:54.062919Z", + "iopub.status.busy": "2024-02-07T23:55:54.062746Z", + "iopub.status.idle": "2024-02-07T23:55:54.297436Z", + "shell.execute_reply": "2024-02-07T23:55:54.296880Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.885905Z", - "iopub.status.busy": "2024-02-07T22:15:22.885576Z", - "iopub.status.idle": "2024-02-07T22:15:22.911960Z", - "shell.execute_reply": "2024-02-07T22:15:22.911384Z" + "iopub.execute_input": "2024-02-07T23:55:54.299486Z", + "iopub.status.busy": "2024-02-07T23:55:54.299307Z", + "iopub.status.idle": "2024-02-07T23:55:54.325624Z", + "shell.execute_reply": "2024-02-07T23:55:54.325176Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.914485Z", - "iopub.status.busy": "2024-02-07T22:15:22.913996Z", - "iopub.status.idle": "2024-02-07T22:15:24.619121Z", - "shell.execute_reply": "2024-02-07T22:15:24.618526Z" + "iopub.execute_input": "2024-02-07T23:55:54.327440Z", + "iopub.status.busy": "2024-02-07T23:55:54.327261Z", + "iopub.status.idle": "2024-02-07T23:55:55.923609Z", + "shell.execute_reply": "2024-02-07T23:55:55.922962Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:24.621699Z", - "iopub.status.busy": "2024-02-07T22:15:24.621099Z", - "iopub.status.idle": "2024-02-07T22:15:24.637180Z", - "shell.execute_reply": "2024-02-07T22:15:24.636739Z" + "iopub.execute_input": "2024-02-07T23:55:55.926111Z", + "iopub.status.busy": "2024-02-07T23:55:55.925634Z", + "iopub.status.idle": "2024-02-07T23:55:55.942989Z", + "shell.execute_reply": "2024-02-07T23:55:55.942452Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:24.639293Z", - "iopub.status.busy": "2024-02-07T22:15:24.639017Z", - "iopub.status.idle": "2024-02-07T22:15:26.071028Z", - "shell.execute_reply": "2024-02-07T22:15:26.070435Z" + "iopub.execute_input": "2024-02-07T23:55:55.944841Z", + "iopub.status.busy": "2024-02-07T23:55:55.944659Z", + "iopub.status.idle": "2024-02-07T23:55:57.319622Z", + "shell.execute_reply": "2024-02-07T23:55:57.319078Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.073837Z", - "iopub.status.busy": "2024-02-07T22:15:26.073006Z", - "iopub.status.idle": "2024-02-07T22:15:26.086788Z", - "shell.execute_reply": "2024-02-07T22:15:26.086329Z" + "iopub.execute_input": "2024-02-07T23:55:57.322169Z", + "iopub.status.busy": "2024-02-07T23:55:57.321580Z", + "iopub.status.idle": "2024-02-07T23:55:57.335184Z", + "shell.execute_reply": "2024-02-07T23:55:57.334645Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.089018Z", - "iopub.status.busy": "2024-02-07T22:15:26.088676Z", - "iopub.status.idle": "2024-02-07T22:15:26.166965Z", - "shell.execute_reply": "2024-02-07T22:15:26.166362Z" + "iopub.execute_input": "2024-02-07T23:55:57.337271Z", + "iopub.status.busy": "2024-02-07T23:55:57.336902Z", + "iopub.status.idle": "2024-02-07T23:55:57.408692Z", + "shell.execute_reply": "2024-02-07T23:55:57.408157Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.169567Z", - "iopub.status.busy": "2024-02-07T22:15:26.169069Z", - "iopub.status.idle": "2024-02-07T22:15:26.381855Z", - "shell.execute_reply": "2024-02-07T22:15:26.381243Z" + "iopub.execute_input": "2024-02-07T23:55:57.410865Z", + "iopub.status.busy": "2024-02-07T23:55:57.410584Z", + "iopub.status.idle": "2024-02-07T23:55:57.618710Z", + "shell.execute_reply": "2024-02-07T23:55:57.618185Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.383995Z", - "iopub.status.busy": "2024-02-07T22:15:26.383801Z", - "iopub.status.idle": "2024-02-07T22:15:26.401001Z", - "shell.execute_reply": "2024-02-07T22:15:26.400532Z" + "iopub.execute_input": "2024-02-07T23:55:57.620862Z", + "iopub.status.busy": "2024-02-07T23:55:57.620521Z", + "iopub.status.idle": "2024-02-07T23:55:57.636978Z", + "shell.execute_reply": "2024-02-07T23:55:57.636540Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.403060Z", - "iopub.status.busy": "2024-02-07T22:15:26.402733Z", - "iopub.status.idle": "2024-02-07T22:15:26.412648Z", - "shell.execute_reply": "2024-02-07T22:15:26.412212Z" + "iopub.execute_input": "2024-02-07T23:55:57.638931Z", + "iopub.status.busy": "2024-02-07T23:55:57.638611Z", + "iopub.status.idle": "2024-02-07T23:55:57.648032Z", + "shell.execute_reply": "2024-02-07T23:55:57.647545Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.414515Z", - "iopub.status.busy": "2024-02-07T22:15:26.414337Z", - "iopub.status.idle": "2024-02-07T22:15:26.507527Z", - "shell.execute_reply": "2024-02-07T22:15:26.506872Z" + "iopub.execute_input": "2024-02-07T23:55:57.650008Z", + "iopub.status.busy": "2024-02-07T23:55:57.649677Z", + "iopub.status.idle": "2024-02-07T23:55:57.735094Z", + "shell.execute_reply": "2024-02-07T23:55:57.734511Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.510067Z", - "iopub.status.busy": "2024-02-07T22:15:26.509583Z", - "iopub.status.idle": "2024-02-07T22:15:26.645559Z", - "shell.execute_reply": "2024-02-07T22:15:26.645002Z" + "iopub.execute_input": "2024-02-07T23:55:57.737432Z", + "iopub.status.busy": "2024-02-07T23:55:57.737237Z", + "iopub.status.idle": "2024-02-07T23:55:57.855160Z", + "shell.execute_reply": "2024-02-07T23:55:57.854608Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.647901Z", - "iopub.status.busy": "2024-02-07T22:15:26.647610Z", - "iopub.status.idle": "2024-02-07T22:15:26.651464Z", - "shell.execute_reply": "2024-02-07T22:15:26.650960Z" + "iopub.execute_input": "2024-02-07T23:55:57.857572Z", + "iopub.status.busy": "2024-02-07T23:55:57.857138Z", + "iopub.status.idle": "2024-02-07T23:55:57.861016Z", + "shell.execute_reply": "2024-02-07T23:55:57.860464Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.653401Z", - "iopub.status.busy": "2024-02-07T22:15:26.653143Z", - "iopub.status.idle": "2024-02-07T22:15:26.656733Z", - "shell.execute_reply": "2024-02-07T22:15:26.656187Z" + "iopub.execute_input": "2024-02-07T23:55:57.863057Z", + "iopub.status.busy": "2024-02-07T23:55:57.862660Z", + "iopub.status.idle": "2024-02-07T23:55:57.866556Z", + "shell.execute_reply": "2024-02-07T23:55:57.865984Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.658643Z", - "iopub.status.busy": "2024-02-07T22:15:26.658386Z", - "iopub.status.idle": "2024-02-07T22:15:26.695310Z", - "shell.execute_reply": "2024-02-07T22:15:26.694804Z" + "iopub.execute_input": "2024-02-07T23:55:57.868833Z", + "iopub.status.busy": "2024-02-07T23:55:57.868415Z", + "iopub.status.idle": "2024-02-07T23:55:57.905529Z", + "shell.execute_reply": "2024-02-07T23:55:57.905083Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.697492Z", - "iopub.status.busy": "2024-02-07T22:15:26.697153Z", - "iopub.status.idle": "2024-02-07T22:15:26.740554Z", - "shell.execute_reply": "2024-02-07T22:15:26.739987Z" + "iopub.execute_input": "2024-02-07T23:55:57.907438Z", + "iopub.status.busy": "2024-02-07T23:55:57.907262Z", + "iopub.status.idle": "2024-02-07T23:55:57.950758Z", + "shell.execute_reply": "2024-02-07T23:55:57.950272Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.742713Z", - "iopub.status.busy": "2024-02-07T22:15:26.742403Z", - "iopub.status.idle": "2024-02-07T22:15:26.841701Z", - "shell.execute_reply": "2024-02-07T22:15:26.840988Z" + "iopub.execute_input": "2024-02-07T23:55:57.952847Z", + "iopub.status.busy": "2024-02-07T23:55:57.952459Z", + "iopub.status.idle": "2024-02-07T23:55:58.044023Z", + "shell.execute_reply": "2024-02-07T23:55:58.043409Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.844347Z", - "iopub.status.busy": "2024-02-07T22:15:26.844156Z", - "iopub.status.idle": "2024-02-07T22:15:26.944490Z", - "shell.execute_reply": "2024-02-07T22:15:26.943909Z" + "iopub.execute_input": "2024-02-07T23:55:58.046632Z", + "iopub.status.busy": "2024-02-07T23:55:58.046286Z", + "iopub.status.idle": "2024-02-07T23:55:58.131106Z", + "shell.execute_reply": "2024-02-07T23:55:58.130530Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.946747Z", - "iopub.status.busy": "2024-02-07T22:15:26.946443Z", - "iopub.status.idle": "2024-02-07T22:15:27.154696Z", - "shell.execute_reply": "2024-02-07T22:15:27.154138Z" + "iopub.execute_input": "2024-02-07T23:55:58.133293Z", + "iopub.status.busy": "2024-02-07T23:55:58.133056Z", + "iopub.status.idle": "2024-02-07T23:55:58.344933Z", + "shell.execute_reply": "2024-02-07T23:55:58.344357Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.156796Z", - "iopub.status.busy": "2024-02-07T22:15:27.156608Z", - "iopub.status.idle": "2024-02-07T22:15:27.353494Z", - "shell.execute_reply": "2024-02-07T22:15:27.352882Z" + "iopub.execute_input": "2024-02-07T23:55:58.347184Z", + "iopub.status.busy": "2024-02-07T23:55:58.346751Z", + "iopub.status.idle": "2024-02-07T23:55:58.510583Z", + "shell.execute_reply": "2024-02-07T23:55:58.509985Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.355739Z", - "iopub.status.busy": "2024-02-07T22:15:27.355551Z", - "iopub.status.idle": "2024-02-07T22:15:27.361595Z", - "shell.execute_reply": "2024-02-07T22:15:27.361143Z" + "iopub.execute_input": "2024-02-07T23:55:58.512995Z", + "iopub.status.busy": "2024-02-07T23:55:58.512569Z", + "iopub.status.idle": "2024-02-07T23:55:58.518373Z", + "shell.execute_reply": "2024-02-07T23:55:58.517831Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.363428Z", - "iopub.status.busy": "2024-02-07T22:15:27.363240Z", - "iopub.status.idle": "2024-02-07T22:15:27.581468Z", - "shell.execute_reply": "2024-02-07T22:15:27.580881Z" + "iopub.execute_input": "2024-02-07T23:55:58.520271Z", + "iopub.status.busy": "2024-02-07T23:55:58.520096Z", + "iopub.status.idle": "2024-02-07T23:55:58.734987Z", + "shell.execute_reply": "2024-02-07T23:55:58.734456Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.583753Z", - "iopub.status.busy": "2024-02-07T22:15:27.583416Z", - "iopub.status.idle": "2024-02-07T22:15:28.654066Z", - "shell.execute_reply": "2024-02-07T22:15:28.653455Z" + "iopub.execute_input": "2024-02-07T23:55:58.737174Z", + "iopub.status.busy": "2024-02-07T23:55:58.736837Z", + "iopub.status.idle": "2024-02-07T23:55:59.819273Z", + "shell.execute_reply": "2024-02-07T23:55:59.818745Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index c986eebc5..faeef8745 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:32.145853Z", - "iopub.status.busy": "2024-02-07T22:15:32.145685Z", - "iopub.status.idle": "2024-02-07T22:15:33.233957Z", - "shell.execute_reply": "2024-02-07T22:15:33.233337Z" + "iopub.execute_input": "2024-02-07T23:56:03.103506Z", + "iopub.status.busy": "2024-02-07T23:56:03.103340Z", + "iopub.status.idle": "2024-02-07T23:56:04.118950Z", + "shell.execute_reply": "2024-02-07T23:56:04.118459Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.236597Z", - "iopub.status.busy": "2024-02-07T22:15:33.236316Z", - "iopub.status.idle": "2024-02-07T22:15:33.239477Z", - "shell.execute_reply": "2024-02-07T22:15:33.238940Z" + "iopub.execute_input": "2024-02-07T23:56:04.121683Z", + "iopub.status.busy": "2024-02-07T23:56:04.121265Z", + "iopub.status.idle": "2024-02-07T23:56:04.124434Z", + "shell.execute_reply": "2024-02-07T23:56:04.123985Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.241447Z", - "iopub.status.busy": "2024-02-07T22:15:33.241135Z", - "iopub.status.idle": "2024-02-07T22:15:33.248930Z", - "shell.execute_reply": "2024-02-07T22:15:33.248387Z" + "iopub.execute_input": "2024-02-07T23:56:04.126463Z", + "iopub.status.busy": "2024-02-07T23:56:04.126136Z", + "iopub.status.idle": "2024-02-07T23:56:04.133993Z", + "shell.execute_reply": "2024-02-07T23:56:04.133459Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.250950Z", - "iopub.status.busy": "2024-02-07T22:15:33.250645Z", - "iopub.status.idle": "2024-02-07T22:15:33.298657Z", - "shell.execute_reply": "2024-02-07T22:15:33.298050Z" + "iopub.execute_input": "2024-02-07T23:56:04.136023Z", + "iopub.status.busy": "2024-02-07T23:56:04.135616Z", + "iopub.status.idle": "2024-02-07T23:56:04.188425Z", + "shell.execute_reply": "2024-02-07T23:56:04.187883Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.300978Z", - "iopub.status.busy": "2024-02-07T22:15:33.300771Z", - "iopub.status.idle": "2024-02-07T22:15:33.318345Z", - "shell.execute_reply": "2024-02-07T22:15:33.317890Z" + "iopub.execute_input": "2024-02-07T23:56:04.190556Z", + "iopub.status.busy": "2024-02-07T23:56:04.190390Z", + "iopub.status.idle": "2024-02-07T23:56:04.206810Z", + "shell.execute_reply": "2024-02-07T23:56:04.206304Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.320328Z", - "iopub.status.busy": "2024-02-07T22:15:33.320023Z", - "iopub.status.idle": "2024-02-07T22:15:33.323869Z", - "shell.execute_reply": "2024-02-07T22:15:33.323430Z" + "iopub.execute_input": "2024-02-07T23:56:04.208783Z", + "iopub.status.busy": "2024-02-07T23:56:04.208482Z", + "iopub.status.idle": "2024-02-07T23:56:04.212185Z", + "shell.execute_reply": "2024-02-07T23:56:04.211662Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.325943Z", - "iopub.status.busy": "2024-02-07T22:15:33.325647Z", - "iopub.status.idle": "2024-02-07T22:15:33.356671Z", - "shell.execute_reply": "2024-02-07T22:15:33.356095Z" + "iopub.execute_input": "2024-02-07T23:56:04.214215Z", + "iopub.status.busy": "2024-02-07T23:56:04.213913Z", + "iopub.status.idle": "2024-02-07T23:56:04.240502Z", + "shell.execute_reply": "2024-02-07T23:56:04.240094Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.358903Z", - "iopub.status.busy": "2024-02-07T22:15:33.358588Z", - "iopub.status.idle": "2024-02-07T22:15:33.385755Z", - "shell.execute_reply": "2024-02-07T22:15:33.385132Z" + "iopub.execute_input": "2024-02-07T23:56:04.242411Z", + "iopub.status.busy": "2024-02-07T23:56:04.242089Z", + "iopub.status.idle": "2024-02-07T23:56:04.268227Z", + "shell.execute_reply": "2024-02-07T23:56:04.267681Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.388411Z", - "iopub.status.busy": "2024-02-07T22:15:33.388028Z", - "iopub.status.idle": "2024-02-07T22:15:35.180954Z", - "shell.execute_reply": "2024-02-07T22:15:35.180351Z" + "iopub.execute_input": "2024-02-07T23:56:04.270386Z", + "iopub.status.busy": "2024-02-07T23:56:04.270015Z", + "iopub.status.idle": "2024-02-07T23:56:05.942630Z", + "shell.execute_reply": "2024-02-07T23:56:05.942094Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.183842Z", - "iopub.status.busy": "2024-02-07T22:15:35.183215Z", - "iopub.status.idle": "2024-02-07T22:15:35.190451Z", - "shell.execute_reply": "2024-02-07T22:15:35.190006Z" + "iopub.execute_input": "2024-02-07T23:56:05.945098Z", + "iopub.status.busy": "2024-02-07T23:56:05.944826Z", + "iopub.status.idle": "2024-02-07T23:56:05.951226Z", + "shell.execute_reply": "2024-02-07T23:56:05.950773Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.192648Z", - "iopub.status.busy": "2024-02-07T22:15:35.192320Z", - "iopub.status.idle": "2024-02-07T22:15:35.204677Z", - "shell.execute_reply": "2024-02-07T22:15:35.204232Z" + "iopub.execute_input": "2024-02-07T23:56:05.953087Z", + "iopub.status.busy": "2024-02-07T23:56:05.952918Z", + "iopub.status.idle": "2024-02-07T23:56:05.965050Z", + "shell.execute_reply": "2024-02-07T23:56:05.964629Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.206669Z", - "iopub.status.busy": "2024-02-07T22:15:35.206301Z", - "iopub.status.idle": "2024-02-07T22:15:35.212711Z", - "shell.execute_reply": "2024-02-07T22:15:35.212172Z" + "iopub.execute_input": "2024-02-07T23:56:05.966796Z", + "iopub.status.busy": "2024-02-07T23:56:05.966628Z", + "iopub.status.idle": "2024-02-07T23:56:05.972874Z", + "shell.execute_reply": "2024-02-07T23:56:05.972451Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.214832Z", - "iopub.status.busy": "2024-02-07T22:15:35.214512Z", - "iopub.status.idle": "2024-02-07T22:15:35.217164Z", - "shell.execute_reply": "2024-02-07T22:15:35.216725Z" + "iopub.execute_input": "2024-02-07T23:56:05.974787Z", + "iopub.status.busy": "2024-02-07T23:56:05.974479Z", + "iopub.status.idle": "2024-02-07T23:56:05.977066Z", + "shell.execute_reply": "2024-02-07T23:56:05.976629Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.219050Z", - "iopub.status.busy": "2024-02-07T22:15:35.218733Z", - "iopub.status.idle": "2024-02-07T22:15:35.222281Z", - "shell.execute_reply": "2024-02-07T22:15:35.221820Z" + "iopub.execute_input": "2024-02-07T23:56:05.978834Z", + "iopub.status.busy": "2024-02-07T23:56:05.978668Z", + "iopub.status.idle": "2024-02-07T23:56:05.982198Z", + "shell.execute_reply": "2024-02-07T23:56:05.981653Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.224316Z", - "iopub.status.busy": "2024-02-07T22:15:35.224013Z", - "iopub.status.idle": "2024-02-07T22:15:35.226604Z", - "shell.execute_reply": "2024-02-07T22:15:35.226158Z" + "iopub.execute_input": "2024-02-07T23:56:05.984156Z", + "iopub.status.busy": "2024-02-07T23:56:05.983985Z", + "iopub.status.idle": "2024-02-07T23:56:05.986977Z", + "shell.execute_reply": "2024-02-07T23:56:05.986575Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.228645Z", - "iopub.status.busy": "2024-02-07T22:15:35.228343Z", - "iopub.status.idle": "2024-02-07T22:15:35.232335Z", - "shell.execute_reply": "2024-02-07T22:15:35.231904Z" + "iopub.execute_input": "2024-02-07T23:56:05.988801Z", + "iopub.status.busy": "2024-02-07T23:56:05.988634Z", + "iopub.status.idle": "2024-02-07T23:56:05.992758Z", + "shell.execute_reply": "2024-02-07T23:56:05.992305Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.234323Z", - "iopub.status.busy": "2024-02-07T22:15:35.234016Z", - "iopub.status.idle": "2024-02-07T22:15:35.263094Z", - "shell.execute_reply": "2024-02-07T22:15:35.262539Z" + "iopub.execute_input": "2024-02-07T23:56:05.994760Z", + "iopub.status.busy": "2024-02-07T23:56:05.994455Z", + "iopub.status.idle": "2024-02-07T23:56:06.022507Z", + "shell.execute_reply": "2024-02-07T23:56:06.022052Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.265344Z", - "iopub.status.busy": "2024-02-07T22:15:35.264967Z", - "iopub.status.idle": "2024-02-07T22:15:35.269602Z", - "shell.execute_reply": "2024-02-07T22:15:35.269145Z" + "iopub.execute_input": "2024-02-07T23:56:06.024458Z", + "iopub.status.busy": "2024-02-07T23:56:06.024139Z", + "iopub.status.idle": "2024-02-07T23:56:06.028445Z", + "shell.execute_reply": "2024-02-07T23:56:06.028024Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.html b/master/tutorials/multilabel_classification.html index f70b83f54..510f6d03c 100644 --- a/master/tutorials/multilabel_classification.html +++ b/master/tutorials/multilabel_classification.html @@ -576,15 +576,15 @@

Find Label Errors in Multi-Label Classification Datasetscopyrighted, advertisement, face, violence, nsfw]

+

While this tutorial focused on label issues, cleanlab’s Datalab object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc). Simply remove the issue_types argument from the above call to Datalab.find_issues() above and Datalab will more comprehensively audit your dataset. Refer to our Datalab quickstart tutorial to learn how to interpret the results (the interpretation remains mostly the same +across different types of ML tasks).

How to format labels given as a one-hot (multi-hot) binary matrix?#

diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index c6ef453c4..5e9a4d29e 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -19,7 +19,7 @@ "Quickstart\n", "
\n", " \n", - "cleanlab finds label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find label issues in your multi-label dataset:\n", + "cleanlab finds data/label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find issues in your multi-label dataset:\n", "\n", "
\n", " \n", @@ -28,10 +28,10 @@ "\n", "# Assuming your dataset has a label column named 'label'\n", "lab = Datalab(dataset, label_name='label', task='multilabel')\n", + "# To detect more issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", "\n", - "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}})\n", - "\n", - "ranked_label_issues = lab.get_issues(\"label\").sort_values(\"label_score\")\n", + "lab.report()\n", "```\n", "\n", " \n", @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:38.074145Z", - "iopub.status.busy": "2024-02-07T22:15:38.073970Z", - "iopub.status.idle": "2024-02-07T22:15:39.203313Z", - "shell.execute_reply": "2024-02-07T22:15:39.202712Z" + "iopub.execute_input": "2024-02-07T23:56:08.687266Z", + "iopub.status.busy": "2024-02-07T23:56:08.687100Z", + "iopub.status.idle": "2024-02-07T23:56:09.754564Z", + "shell.execute_reply": "2024-02-07T23:56:09.754027Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.205859Z", - "iopub.status.busy": "2024-02-07T22:15:39.205596Z", - "iopub.status.idle": "2024-02-07T22:15:39.414109Z", - "shell.execute_reply": "2024-02-07T22:15:39.413479Z" + "iopub.execute_input": "2024-02-07T23:56:09.757160Z", + "iopub.status.busy": "2024-02-07T23:56:09.756746Z", + "iopub.status.idle": "2024-02-07T23:56:09.946615Z", + "shell.execute_reply": "2024-02-07T23:56:09.946097Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.416970Z", - "iopub.status.busy": "2024-02-07T22:15:39.416561Z", - "iopub.status.idle": "2024-02-07T22:15:39.429574Z", - "shell.execute_reply": "2024-02-07T22:15:39.429157Z" + "iopub.execute_input": "2024-02-07T23:56:09.949158Z", + "iopub.status.busy": "2024-02-07T23:56:09.948714Z", + "iopub.status.idle": "2024-02-07T23:56:09.961413Z", + "shell.execute_reply": "2024-02-07T23:56:09.960973Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.431695Z", - "iopub.status.busy": "2024-02-07T22:15:39.431290Z", - "iopub.status.idle": "2024-02-07T22:15:42.066450Z", - "shell.execute_reply": "2024-02-07T22:15:42.065835Z" + "iopub.execute_input": "2024-02-07T23:56:09.963377Z", + "iopub.status.busy": "2024-02-07T23:56:09.963052Z", + "iopub.status.idle": "2024-02-07T23:56:12.619380Z", + "shell.execute_reply": "2024-02-07T23:56:12.618822Z" } }, "outputs": [ @@ -452,10 +452,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:42.068923Z", - "iopub.status.busy": "2024-02-07T22:15:42.068564Z", - "iopub.status.idle": "2024-02-07T22:15:43.411615Z", - "shell.execute_reply": "2024-02-07T22:15:43.411041Z" + "iopub.execute_input": "2024-02-07T23:56:12.621613Z", + "iopub.status.busy": "2024-02-07T23:56:12.621277Z", + "iopub.status.idle": "2024-02-07T23:56:13.971194Z", + "shell.execute_reply": "2024-02-07T23:56:13.970652Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:43.414000Z", - "iopub.status.busy": "2024-02-07T22:15:43.413818Z", - "iopub.status.idle": "2024-02-07T22:15:43.417446Z", - "shell.execute_reply": "2024-02-07T22:15:43.416934Z" + "iopub.execute_input": "2024-02-07T23:56:13.973499Z", + "iopub.status.busy": "2024-02-07T23:56:13.973162Z", + "iopub.status.idle": "2024-02-07T23:56:13.977165Z", + "shell.execute_reply": "2024-02-07T23:56:13.976701Z" } }, "outputs": [ @@ -542,10 +542,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:43.419309Z", - "iopub.status.busy": "2024-02-07T22:15:43.419135Z", - "iopub.status.idle": "2024-02-07T22:15:45.207494Z", - "shell.execute_reply": "2024-02-07T22:15:45.206816Z" + "iopub.execute_input": "2024-02-07T23:56:13.979194Z", + "iopub.status.busy": "2024-02-07T23:56:13.978885Z", + "iopub.status.idle": "2024-02-07T23:56:15.657571Z", + "shell.execute_reply": "2024-02-07T23:56:15.657005Z" } }, "outputs": [ @@ -592,10 +592,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:45.210051Z", - "iopub.status.busy": "2024-02-07T22:15:45.209488Z", - "iopub.status.idle": "2024-02-07T22:15:45.217636Z", - "shell.execute_reply": "2024-02-07T22:15:45.217158Z" + "iopub.execute_input": "2024-02-07T23:56:15.660326Z", + "iopub.status.busy": "2024-02-07T23:56:15.659641Z", + "iopub.status.idle": "2024-02-07T23:56:15.667026Z", + "shell.execute_reply": "2024-02-07T23:56:15.666496Z" } }, "outputs": [ @@ -631,10 +631,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:45.219651Z", - "iopub.status.busy": "2024-02-07T22:15:45.219310Z", - "iopub.status.idle": "2024-02-07T22:15:47.808437Z", - "shell.execute_reply": "2024-02-07T22:15:47.807942Z" + "iopub.execute_input": "2024-02-07T23:56:15.669181Z", + "iopub.status.busy": "2024-02-07T23:56:15.668872Z", + "iopub.status.idle": "2024-02-07T23:56:18.270814Z", + "shell.execute_reply": "2024-02-07T23:56:18.270242Z" } }, "outputs": [ @@ -669,10 +669,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.810738Z", - "iopub.status.busy": "2024-02-07T22:15:47.810301Z", - "iopub.status.idle": "2024-02-07T22:15:47.813993Z", - "shell.execute_reply": "2024-02-07T22:15:47.813455Z" + "iopub.execute_input": "2024-02-07T23:56:18.273199Z", + "iopub.status.busy": "2024-02-07T23:56:18.272850Z", + "iopub.status.idle": "2024-02-07T23:56:18.276268Z", + "shell.execute_reply": "2024-02-07T23:56:18.275699Z" } }, "outputs": [ @@ -691,6 +691,16 @@ "print(f\"Label quality scores of the first 10 examples in dataset:\\n{scores[:10]}\")" ] }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d6", + "metadata": {}, + "source": [ + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset.\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks)." + ] + }, { "cell_type": "markdown", "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d5", @@ -707,10 +717,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.815974Z", - "iopub.status.busy": "2024-02-07T22:15:47.815684Z", - "iopub.status.idle": "2024-02-07T22:15:47.819808Z", - "shell.execute_reply": "2024-02-07T22:15:47.819250Z" + "iopub.execute_input": "2024-02-07T23:56:18.278300Z", + "iopub.status.busy": "2024-02-07T23:56:18.277998Z", + "iopub.status.idle": "2024-02-07T23:56:18.282388Z", + "shell.execute_reply": "2024-02-07T23:56:18.281980Z" } }, "outputs": [], @@ -733,10 +743,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.821661Z", - "iopub.status.busy": "2024-02-07T22:15:47.821392Z", - "iopub.status.idle": "2024-02-07T22:15:47.824553Z", - "shell.execute_reply": "2024-02-07T22:15:47.824004Z" + "iopub.execute_input": "2024-02-07T23:56:18.284367Z", + "iopub.status.busy": "2024-02-07T23:56:18.284047Z", + "iopub.status.idle": "2024-02-07T23:56:18.286987Z", + "shell.execute_reply": "2024-02-07T23:56:18.286563Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index bd98ee443..74d92a714 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:50.447928Z", - "iopub.status.busy": "2024-02-07T22:15:50.447758Z", - "iopub.status.idle": "2024-02-07T22:15:51.564104Z", - "shell.execute_reply": "2024-02-07T22:15:51.563498Z" + "iopub.execute_input": "2024-02-07T23:56:20.562684Z", + "iopub.status.busy": "2024-02-07T23:56:20.562520Z", + "iopub.status.idle": "2024-02-07T23:56:21.638239Z", + "shell.execute_reply": "2024-02-07T23:56:21.637675Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:51.566518Z", - "iopub.status.busy": "2024-02-07T22:15:51.566240Z", - "iopub.status.idle": "2024-02-07T22:15:52.801961Z", - "shell.execute_reply": "2024-02-07T22:15:52.801317Z" + "iopub.execute_input": "2024-02-07T23:56:21.640925Z", + "iopub.status.busy": "2024-02-07T23:56:21.640505Z", + "iopub.status.idle": "2024-02-07T23:56:22.688443Z", + "shell.execute_reply": "2024-02-07T23:56:22.687829Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.804419Z", - "iopub.status.busy": "2024-02-07T22:15:52.804219Z", - "iopub.status.idle": "2024-02-07T22:15:52.807410Z", - "shell.execute_reply": "2024-02-07T22:15:52.806937Z" + "iopub.execute_input": "2024-02-07T23:56:22.690921Z", + "iopub.status.busy": "2024-02-07T23:56:22.690540Z", + "iopub.status.idle": "2024-02-07T23:56:22.693716Z", + "shell.execute_reply": "2024-02-07T23:56:22.693271Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.809336Z", - "iopub.status.busy": "2024-02-07T22:15:52.809039Z", - "iopub.status.idle": "2024-02-07T22:15:52.815182Z", - "shell.execute_reply": "2024-02-07T22:15:52.814647Z" + "iopub.execute_input": "2024-02-07T23:56:22.695625Z", + "iopub.status.busy": "2024-02-07T23:56:22.695302Z", + "iopub.status.idle": "2024-02-07T23:56:22.701268Z", + "shell.execute_reply": "2024-02-07T23:56:22.700863Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.817367Z", - "iopub.status.busy": "2024-02-07T22:15:52.816989Z", - "iopub.status.idle": "2024-02-07T22:15:53.308064Z", - "shell.execute_reply": "2024-02-07T22:15:53.307480Z" + "iopub.execute_input": "2024-02-07T23:56:22.703196Z", + "iopub.status.busy": "2024-02-07T23:56:22.702938Z", + "iopub.status.idle": "2024-02-07T23:56:23.186186Z", + "shell.execute_reply": "2024-02-07T23:56:23.185652Z" }, "scrolled": true }, @@ -238,10 +238,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.310939Z", - "iopub.status.busy": "2024-02-07T22:15:53.310566Z", - "iopub.status.idle": "2024-02-07T22:15:53.315939Z", - "shell.execute_reply": "2024-02-07T22:15:53.315394Z" + "iopub.execute_input": "2024-02-07T23:56:23.188813Z", + "iopub.status.busy": "2024-02-07T23:56:23.188488Z", + "iopub.status.idle": "2024-02-07T23:56:23.193539Z", + "shell.execute_reply": "2024-02-07T23:56:23.193126Z" } }, "outputs": [ @@ -493,10 +493,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.317995Z", - "iopub.status.busy": "2024-02-07T22:15:53.317689Z", - "iopub.status.idle": "2024-02-07T22:15:53.321394Z", - "shell.execute_reply": "2024-02-07T22:15:53.320912Z" + "iopub.execute_input": "2024-02-07T23:56:23.195528Z", + "iopub.status.busy": "2024-02-07T23:56:23.195222Z", + "iopub.status.idle": "2024-02-07T23:56:23.199084Z", + "shell.execute_reply": "2024-02-07T23:56:23.198542Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.323449Z", - "iopub.status.busy": "2024-02-07T22:15:53.323111Z", - "iopub.status.idle": "2024-02-07T22:15:54.015545Z", - "shell.execute_reply": "2024-02-07T22:15:54.014869Z" + "iopub.execute_input": "2024-02-07T23:56:23.201119Z", + "iopub.status.busy": "2024-02-07T23:56:23.200823Z", + "iopub.status.idle": "2024-02-07T23:56:23.836419Z", + "shell.execute_reply": "2024-02-07T23:56:23.835758Z" } }, "outputs": [ @@ -612,10 +612,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.018097Z", - "iopub.status.busy": "2024-02-07T22:15:54.017708Z", - "iopub.status.idle": "2024-02-07T22:15:54.187878Z", - "shell.execute_reply": "2024-02-07T22:15:54.187411Z" + "iopub.execute_input": "2024-02-07T23:56:23.838728Z", + "iopub.status.busy": "2024-02-07T23:56:23.838526Z", + "iopub.status.idle": "2024-02-07T23:56:23.988464Z", + "shell.execute_reply": "2024-02-07T23:56:23.988047Z" } }, "outputs": [ @@ -656,10 +656,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.189935Z", - "iopub.status.busy": "2024-02-07T22:15:54.189745Z", - "iopub.status.idle": "2024-02-07T22:15:54.194222Z", - "shell.execute_reply": "2024-02-07T22:15:54.193779Z" + "iopub.execute_input": "2024-02-07T23:56:23.990471Z", + "iopub.status.busy": "2024-02-07T23:56:23.990165Z", + "iopub.status.idle": "2024-02-07T23:56:23.994186Z", + "shell.execute_reply": "2024-02-07T23:56:23.993763Z" } }, "outputs": [ @@ -696,10 +696,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.196260Z", - "iopub.status.busy": "2024-02-07T22:15:54.195894Z", - "iopub.status.idle": "2024-02-07T22:15:54.649689Z", - "shell.execute_reply": "2024-02-07T22:15:54.649109Z" + "iopub.execute_input": "2024-02-07T23:56:23.996117Z", + "iopub.status.busy": "2024-02-07T23:56:23.995822Z", + "iopub.status.idle": "2024-02-07T23:56:24.434799Z", + "shell.execute_reply": "2024-02-07T23:56:24.434220Z" } }, "outputs": [ @@ -758,10 +758,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.652534Z", - "iopub.status.busy": "2024-02-07T22:15:54.652158Z", - "iopub.status.idle": "2024-02-07T22:15:54.984855Z", - "shell.execute_reply": "2024-02-07T22:15:54.984298Z" + "iopub.execute_input": "2024-02-07T23:56:24.437281Z", + "iopub.status.busy": "2024-02-07T23:56:24.436886Z", + "iopub.status.idle": "2024-02-07T23:56:24.768783Z", + "shell.execute_reply": "2024-02-07T23:56:24.768200Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.987521Z", - "iopub.status.busy": "2024-02-07T22:15:54.987189Z", - "iopub.status.idle": "2024-02-07T22:15:55.470495Z", - "shell.execute_reply": "2024-02-07T22:15:55.469879Z" + "iopub.execute_input": "2024-02-07T23:56:24.771064Z", + "iopub.status.busy": "2024-02-07T23:56:24.770889Z", + "iopub.status.idle": "2024-02-07T23:56:25.250367Z", + "shell.execute_reply": "2024-02-07T23:56:25.249843Z" } }, "outputs": [ @@ -858,10 +858,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:55.475223Z", - "iopub.status.busy": "2024-02-07T22:15:55.474845Z", - "iopub.status.idle": "2024-02-07T22:15:55.916362Z", - "shell.execute_reply": "2024-02-07T22:15:55.915780Z" + "iopub.execute_input": "2024-02-07T23:56:25.254651Z", + "iopub.status.busy": "2024-02-07T23:56:25.254288Z", + "iopub.status.idle": "2024-02-07T23:56:25.662812Z", + "shell.execute_reply": "2024-02-07T23:56:25.662264Z" } }, "outputs": [ @@ -921,10 +921,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:55.920172Z", - "iopub.status.busy": "2024-02-07T22:15:55.919985Z", - "iopub.status.idle": "2024-02-07T22:15:56.369242Z", - "shell.execute_reply": "2024-02-07T22:15:56.368651Z" + "iopub.execute_input": "2024-02-07T23:56:25.666313Z", + "iopub.status.busy": "2024-02-07T23:56:25.665961Z", + "iopub.status.idle": "2024-02-07T23:56:26.090422Z", + "shell.execute_reply": "2024-02-07T23:56:26.089821Z" } }, "outputs": [ @@ -967,10 +967,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.372426Z", - "iopub.status.busy": "2024-02-07T22:15:56.372048Z", - "iopub.status.idle": "2024-02-07T22:15:56.587116Z", - "shell.execute_reply": "2024-02-07T22:15:56.586546Z" + "iopub.execute_input": "2024-02-07T23:56:26.093719Z", + "iopub.status.busy": "2024-02-07T23:56:26.093346Z", + "iopub.status.idle": "2024-02-07T23:56:26.281170Z", + "shell.execute_reply": "2024-02-07T23:56:26.280571Z" } }, "outputs": [ @@ -1013,10 +1013,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.589448Z", - "iopub.status.busy": "2024-02-07T22:15:56.589113Z", - "iopub.status.idle": "2024-02-07T22:15:56.788433Z", - "shell.execute_reply": "2024-02-07T22:15:56.787907Z" + "iopub.execute_input": "2024-02-07T23:56:26.283283Z", + "iopub.status.busy": "2024-02-07T23:56:26.283103Z", + "iopub.status.idle": "2024-02-07T23:56:26.463218Z", + "shell.execute_reply": "2024-02-07T23:56:26.462690Z" } }, "outputs": [ @@ -1051,10 +1051,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.790786Z", - "iopub.status.busy": "2024-02-07T22:15:56.790442Z", - "iopub.status.idle": "2024-02-07T22:15:56.793953Z", - "shell.execute_reply": "2024-02-07T22:15:56.793508Z" + "iopub.execute_input": "2024-02-07T23:56:26.465892Z", + "iopub.status.busy": "2024-02-07T23:56:26.465487Z", + "iopub.status.idle": "2024-02-07T23:56:26.468734Z", + "shell.execute_reply": "2024-02-07T23:56:26.468320Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 437a7de66..fb31fe1bb 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -730,16 +730,16 @@

2. Pre-process the Cifar10 dataset

-
0%| | 458752/170498071 [00:00&lt;00:37, 4545271.76it/s]
+
1%| | 1802240/170498071 [00:00&lt;00:09, 17679640.48it/s]

</pre>

-
0%| | 458752/170498071 [00:00<00:37, 4545271.76it/s]
+
1%| | 1802240/170498071 [00:00<00:09, 17679640.48it/s]

end{sphinxVerbatim}

-

0%| | 458752/170498071 [00:00<00:37, 4545271.76it/s]

+

1%| | 1802240/170498071 [00:00<00:09, 17679640.48it/s]

-
2%|▏ | 3309568/170498071 [00:00&lt;00:08, 18583304.64it/s]
+
7%|▋ | 12124160/170498071 [00:00&lt;00:02, 67499577.03it/s]

</pre>

-
2%|▏ | 3309568/170498071 [00:00<00:08, 18583304.64it/s]
+
7%|▋ | 12124160/170498071 [00:00<00:02, 67499577.03it/s]

end{sphinxVerbatim}

-

2%|▏ | 3309568/170498071 [00:00<00:08, 18583304.64it/s]

+

7%|▋ | 12124160/170498071 [00:00<00:02, 67499577.03it/s]

-
4%|▎ | 6193152/170498071 [00:00&lt;00:07, 23121327.17it/s]
+
13%|█▎ | 23003136/170498071 [00:00&lt;00:01, 86235389.73it/s]

</pre>

-
4%|▎ | 6193152/170498071 [00:00<00:07, 23121327.17it/s]
+
13%|█▎ | 23003136/170498071 [00:00<00:01, 86235389.73it/s]

end{sphinxVerbatim}

-

4%|▎ | 6193152/170498071 [00:00<00:07, 23121327.17it/s]

+

13%|█▎ | 23003136/170498071 [00:00<00:01, 86235389.73it/s]

-
5%|▌ | 9076736/170498071 [00:00&lt;00:06, 25243096.18it/s]
+
19%|█▉ | 32899072/170498071 [00:00&lt;00:01, 91230976.11it/s]

</pre>

-
5%|▌ | 9076736/170498071 [00:00<00:06, 25243096.18it/s]
+
19%|█▉ | 32899072/170498071 [00:00<00:01, 91230976.11it/s]

end{sphinxVerbatim}

-

5%|▌ | 9076736/170498071 [00:00<00:06, 25243096.18it/s]

+

19%|█▉ | 32899072/170498071 [00:00<00:01, 91230976.11it/s]

-
7%|▋ | 11960320/170498071 [00:00&lt;00:05, 26449931.31it/s]
+
25%|██▌ | 43384832/170498071 [00:00&lt;00:01, 96066497.78it/s]

</pre>

-
7%|▋ | 11960320/170498071 [00:00<00:05, 26449931.31it/s]
+
25%|██▌ | 43384832/170498071 [00:00<00:01, 96066497.78it/s]

end{sphinxVerbatim}

-

7%|▋ | 11960320/170498071 [00:00<00:05, 26449931.31it/s]

+

25%|██▌ | 43384832/170498071 [00:00<00:01, 96066497.78it/s]

-
9%|▊ | 14843904/170498071 [00:00&lt;00:05, 27180695.70it/s]
+
32%|███▏ | 53739520/170498071 [00:00&lt;00:01, 98584790.93it/s]

</pre>

-
9%|▊ | 14843904/170498071 [00:00<00:05, 27180695.70it/s]
+
32%|███▏ | 53739520/170498071 [00:00<00:01, 98584790.93it/s]

end{sphinxVerbatim}

-

9%|▊ | 14843904/170498071 [00:00<00:05, 27180695.70it/s]

+

32%|███▏ | 53739520/170498071 [00:00<00:01, 98584790.93it/s]

-
10%|█ | 17727488/170498071 [00:00&lt;00:05, 27645215.87it/s]
+
38%|███▊ | 64028672/170498071 [00:00&lt;00:01, 99955094.01it/s]

</pre>

-
10%|█ | 17727488/170498071 [00:00<00:05, 27645215.87it/s]
+
38%|███▊ | 64028672/170498071 [00:00<00:01, 99955094.01it/s]

end{sphinxVerbatim}

-

10%|█ | 17727488/170498071 [00:00<00:05, 27645215.87it/s]

+

38%|███▊ | 64028672/170498071 [00:00<00:01, 99955094.01it/s]

-
12%|█▏ | 20611072/170498071 [00:00&lt;00:05, 27960133.49it/s]
+
44%|████▍ | 74874880/170498071 [00:00&lt;00:00, 102643580.09it/s]

</pre>

-
12%|█▏ | 20611072/170498071 [00:00<00:05, 27960133.49it/s]
+
44%|████▍ | 74874880/170498071 [00:00<00:00, 102643580.09it/s]

end{sphinxVerbatim}

-

12%|█▏ | 20611072/170498071 [00:00<00:05, 27960133.49it/s]

+

44%|████▍ | 74874880/170498071 [00:00<00:00, 102643580.09it/s]

-
14%|█▍ | 23494656/170498071 [00:00&lt;00:05, 28127845.66it/s]
+
50%|████▉ | 85164032/170498071 [00:00&lt;00:00, 101368779.28it/s]

</pre>

-
14%|█▍ | 23494656/170498071 [00:00<00:05, 28127845.66it/s]
+
50%|████▉ | 85164032/170498071 [00:00<00:00, 101368779.28it/s]

end{sphinxVerbatim}

-

14%|█▍ | 23494656/170498071 [00:00<00:05, 28127845.66it/s]

+

50%|████▉ | 85164032/170498071 [00:00<00:00, 101368779.28it/s]

-
15%|█▌ | 26378240/170498071 [00:01&lt;00:05, 28294948.20it/s]
+
57%|█████▋ | 96403456/170498071 [00:01&lt;00:00, 104721663.01it/s]

</pre>

-
15%|█▌ | 26378240/170498071 [00:01<00:05, 28294948.20it/s]
+
57%|█████▋ | 96403456/170498071 [00:01<00:00, 104721663.01it/s]

end{sphinxVerbatim}

-

15%|█▌ | 26378240/170498071 [00:01<00:05, 28294948.20it/s]

+

57%|█████▋ | 96403456/170498071 [00:01<00:00, 104721663.01it/s]

-
17%|█▋ | 29261824/170498071 [00:01&lt;00:04, 28399986.90it/s]
+
63%|██████▎ | 106889216/170498071 [00:01&lt;00:00, 102308446.63it/s]

</pre>

-
17%|█▋ | 29261824/170498071 [00:01<00:04, 28399986.90it/s]
+
63%|██████▎ | 106889216/170498071 [00:01<00:00, 102308446.63it/s]

end{sphinxVerbatim}

-

17%|█▋ | 29261824/170498071 [00:01<00:04, 28399986.90it/s]

+

63%|██████▎ | 106889216/170498071 [00:01<00:00, 102308446.63it/s]

-
19%|█▉ | 32407552/170498071 [00:01&lt;00:04, 29288533.69it/s]
+
69%|██████▉ | 118259712/170498071 [00:01&lt;00:00, 105670851.32it/s]

</pre>

-
19%|█▉ | 32407552/170498071 [00:01<00:04, 29288533.69it/s]
+
69%|██████▉ | 118259712/170498071 [00:01<00:00, 105670851.32it/s]

end{sphinxVerbatim}

-

19%|█▉ | 32407552/170498071 [00:01<00:04, 29288533.69it/s]

+

69%|██████▉ | 118259712/170498071 [00:01<00:00, 105670851.32it/s]

-
22%|██▏ | 37421056/170498071 [00:01&lt;00:03, 35559850.79it/s]
+
76%|███████▌ | 128876544/170498071 [00:01&lt;00:00, 102956737.54it/s]

</pre>

-
22%|██▏ | 37421056/170498071 [00:01<00:03, 35559850.79it/s]
+
76%|███████▌ | 128876544/170498071 [00:01<00:00, 102956737.54it/s]

end{sphinxVerbatim}

-

22%|██▏ | 37421056/170498071 [00:01<00:03, 35559850.79it/s]

+

76%|███████▌ | 128876544/170498071 [00:01<00:00, 102956737.54it/s]

-
26%|██▌ | 43909120/170498071 [00:01&lt;00:02, 44377286.88it/s]
+
82%|████████▏ | 140181504/170498071 [00:01&lt;00:00, 105850590.83it/s]

</pre>

-
26%|██▌ | 43909120/170498071 [00:01<00:02, 44377286.88it/s]
+
82%|████████▏ | 140181504/170498071 [00:01<00:00, 105850590.83it/s]

end{sphinxVerbatim}

-

26%|██▌ | 43909120/170498071 [00:01<00:02, 44377286.88it/s]

+

82%|████████▏ | 140181504/170498071 [00:01<00:00, 105850590.83it/s]

-
31%|███ | 52068352/170498071 [00:01&lt;00:02, 55525436.53it/s]
+
88%|████████▊ | 150798336/170498071 [00:01&lt;00:00, 103312662.70it/s]

</pre>

-
31%|███ | 52068352/170498071 [00:01<00:02, 55525436.53it/s]
+
88%|████████▊ | 150798336/170498071 [00:01<00:00, 103312662.70it/s]

end{sphinxVerbatim}

-

31%|███ | 52068352/170498071 [00:01<00:02, 55525436.53it/s]

+

88%|████████▊ | 150798336/170498071 [00:01<00:00, 103312662.70it/s]

-
36%|███▌ | 61669376/170498071 [00:01&lt;00:01, 67657342.80it/s]
+
95%|█████████▍| 161841152/170498071 [00:01&lt;00:00, 105282046.90it/s]

</pre>

-
36%|███▌ | 61669376/170498071 [00:01<00:01, 67657342.80it/s]
+
95%|█████████▍| 161841152/170498071 [00:01<00:00, 105282046.90it/s]

end{sphinxVerbatim}

-

36%|███▌ | 61669376/170498071 [00:01<00:01, 67657342.80it/s]

- - -
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
43%|████▎ | 73203712/170498071 [00:01&lt;00:01, 81953829.80it/s]
-

</pre>

-
-
-
43%|████▎ | 73203712/170498071 [00:01<00:01, 81953829.80it/s]
-

end{sphinxVerbatim}

-
-
-
-

43%|████▎ | 73203712/170498071 [00:01<00:01, 81953829.80it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
50%|████▉ | 84672512/170498071 [00:01&lt;00:00, 91732954.67it/s]
-

</pre>

-
-
-
50%|████▉ | 84672512/170498071 [00:01<00:00, 91732954.67it/s]
-

end{sphinxVerbatim}

-
-
-
-

50%|████▉ | 84672512/170498071 [00:01<00:00, 91732954.67it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
56%|█████▋ | 96272384/170498071 [00:01&lt;00:00, 98948948.10it/s]
-

</pre>

-
-
-
56%|█████▋ | 96272384/170498071 [00:01<00:00, 98948948.10it/s]
-

end{sphinxVerbatim}

-
-
-
-

56%|█████▋ | 96272384/170498071 [00:01<00:00, 98948948.10it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
63%|██████▎ | 107741184/170498071 [00:02&lt;00:00, 103611942.25it/s]
-

</pre>

-
-
-
63%|██████▎ | 107741184/170498071 [00:02<00:00, 103611942.25it/s]
-

end{sphinxVerbatim}

-
-
-
-

63%|██████▎ | 107741184/170498071 [00:02<00:00, 103611942.25it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
70%|██████▉ | 119275520/170498071 [00:02&lt;00:00, 107040423.70it/s]
-

</pre>

-
-
-
70%|██████▉ | 119275520/170498071 [00:02<00:00, 107040423.70it/s]
-

end{sphinxVerbatim}

-
-
-
-

70%|██████▉ | 119275520/170498071 [00:02<00:00, 107040423.70it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
77%|███████▋ | 130777088/170498071 [00:02&lt;00:00, 109403134.82it/s]
-

</pre>

-
-
-
77%|███████▋ | 130777088/170498071 [00:02<00:00, 109403134.82it/s]
-

end{sphinxVerbatim}

-
-
-
-

77%|███████▋ | 130777088/170498071 [00:02<00:00, 109403134.82it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
83%|████████▎ | 142311424/170498071 [00:02&lt;00:00, 111129043.58it/s]
-

</pre>

-
-
-
83%|████████▎ | 142311424/170498071 [00:02<00:00, 111129043.58it/s]
-

end{sphinxVerbatim}

-
-
-
-

83%|████████▎ | 142311424/170498071 [00:02<00:00, 111129043.58it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
90%|█████████ | 153812992/170498071 [00:02&lt;00:00, 112217547.05it/s]
-

</pre>

-
-
-
90%|█████████ | 153812992/170498071 [00:02<00:00, 112217547.05it/s]
-

end{sphinxVerbatim}

-
-
-
-

90%|█████████ | 153812992/170498071 [00:02<00:00, 112217547.05it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
97%|█████████▋| 165412864/170498071 [00:02&lt;00:00, 113296111.93it/s]
-

</pre>

-
-
-
97%|█████████▋| 165412864/170498071 [00:02<00:00, 113296111.93it/s]
-

end{sphinxVerbatim}

-
-
-
-

97%|█████████▋| 165412864/170498071 [00:02<00:00, 113296111.93it/s]

+

95%|█████████▍| 161841152/170498071 [00:01<00:00, 105282046.90it/s]

-
100%|██████████| 170498071/170498071 [00:02&lt;00:00, 66708420.75it/s]
+
100%|██████████| 170498071/170498071 [00:01&lt;00:00, 99133860.68it/s]

</pre>

-
100%|██████████| 170498071/170498071 [00:02<00:00, 66708420.75it/s]
+
100%|██████████| 170498071/170498071 [00:01<00:00, 99133860.68it/s]

end{sphinxVerbatim}

-

100%|██████████| 170498071/170498071 [00:02<00:00, 66708420.75it/s]

+

100%|██████████| 170498071/170498071 [00:01<00:00, 99133860.68it/s]

-
+
@@ -1753,7 +1519,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index a17f8d98c..216232f6b 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:59.020657Z", - "iopub.status.busy": "2024-02-07T22:15:59.020490Z", - "iopub.status.idle": "2024-02-07T22:16:01.758945Z", - "shell.execute_reply": "2024-02-07T22:16:01.758382Z" + "iopub.execute_input": "2024-02-07T23:56:28.439526Z", + "iopub.status.busy": "2024-02-07T23:56:28.439052Z", + "iopub.status.idle": "2024-02-07T23:56:31.054002Z", + "shell.execute_reply": "2024-02-07T23:56:31.053462Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:01.761638Z", - "iopub.status.busy": "2024-02-07T22:16:01.761143Z", - "iopub.status.idle": "2024-02-07T22:16:02.096462Z", - "shell.execute_reply": "2024-02-07T22:16:02.095807Z" + "iopub.execute_input": "2024-02-07T23:56:31.056612Z", + "iopub.status.busy": "2024-02-07T23:56:31.056130Z", + "iopub.status.idle": "2024-02-07T23:56:31.365716Z", + "shell.execute_reply": "2024-02-07T23:56:31.365105Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:02.099057Z", - "iopub.status.busy": "2024-02-07T22:16:02.098634Z", - "iopub.status.idle": "2024-02-07T22:16:02.102883Z", - "shell.execute_reply": "2024-02-07T22:16:02.102346Z" + "iopub.execute_input": "2024-02-07T23:56:31.368552Z", + "iopub.status.busy": "2024-02-07T23:56:31.368013Z", + "iopub.status.idle": "2024-02-07T23:56:31.372079Z", + "shell.execute_reply": "2024-02-07T23:56:31.371533Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:02.105213Z", - "iopub.status.busy": "2024-02-07T22:16:02.104839Z", - "iopub.status.idle": "2024-02-07T22:16:07.269555Z", - "shell.execute_reply": "2024-02-07T22:16:07.268968Z" + "iopub.execute_input": "2024-02-07T23:56:31.374309Z", + "iopub.status.busy": "2024-02-07T23:56:31.373857Z", + "iopub.status.idle": "2024-02-07T23:56:35.799516Z", + "shell.execute_reply": "2024-02-07T23:56:35.798918Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 458752/170498071 [00:00<00:37, 4545271.76it/s]" + " 1%| | 1802240/170498071 [00:00<00:09, 17679640.48it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3309568/170498071 [00:00<00:08, 18583304.64it/s]" + " 7%|▋ | 12124160/170498071 [00:00<00:02, 67499577.03it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 6193152/170498071 [00:00<00:07, 23121327.17it/s]" + " 13%|█▎ | 23003136/170498071 [00:00<00:01, 86235389.73it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 9076736/170498071 [00:00<00:06, 25243096.18it/s]" + " 19%|█▉ | 32899072/170498071 [00:00<00:01, 91230976.11it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11960320/170498071 [00:00<00:05, 26449931.31it/s]" + " 25%|██▌ | 43384832/170498071 [00:00<00:01, 96066497.78it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 14843904/170498071 [00:00<00:05, 27180695.70it/s]" + " 32%|███▏ | 53739520/170498071 [00:00<00:01, 98584790.93it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17727488/170498071 [00:00<00:05, 27645215.87it/s]" + " 38%|███▊ | 64028672/170498071 [00:00<00:01, 99955094.01it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20611072/170498071 [00:00<00:05, 27960133.49it/s]" + " 44%|████▍ | 74874880/170498071 [00:00<00:00, 102643580.09it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 23494656/170498071 [00:00<00:05, 28127845.66it/s]" + " 50%|████▉ | 85164032/170498071 [00:00<00:00, 101368779.28it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 26378240/170498071 [00:01<00:05, 28294948.20it/s]" + " 57%|█████▋ | 96403456/170498071 [00:01<00:00, 104721663.01it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29261824/170498071 [00:01<00:04, 28399986.90it/s]" + " 63%|██████▎ | 106889216/170498071 [00:01<00:00, 102308446.63it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32407552/170498071 [00:01<00:04, 29288533.69it/s]" + " 69%|██████▉ | 118259712/170498071 [00:01<00:00, 105670851.32it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37421056/170498071 [00:01<00:03, 35559850.79it/s]" + " 76%|███████▌ | 128876544/170498071 [00:01<00:00, 102956737.54it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43909120/170498071 [00:01<00:02, 44377286.88it/s]" + " 82%|████████▏ | 140181504/170498071 [00:01<00:00, 105850590.83it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52068352/170498071 [00:01<00:02, 55525436.53it/s]" + " 88%|████████▊ | 150798336/170498071 [00:01<00:00, 103312662.70it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61669376/170498071 [00:01<00:01, 67657342.80it/s]" + " 95%|█████████▍| 161841152/170498071 [00:01<00:00, 105282046.90it/s]" ] }, { @@ -380,79 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73203712/170498071 [00:01<00:01, 81953829.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 84672512/170498071 [00:01<00:00, 91732954.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 96272384/170498071 [00:01<00:00, 98948948.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107741184/170498071 [00:02<00:00, 103611942.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 119275520/170498071 [00:02<00:00, 107040423.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 130777088/170498071 [00:02<00:00, 109403134.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 142311424/170498071 [00:02<00:00, 111129043.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 153812992/170498071 [00:02<00:00, 112217547.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165412864/170498071 [00:02<00:00, 113296111.93it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 66708420.75it/s] " + "100%|██████████| 170498071/170498071 [00:01<00:00, 99133860.68it/s] " ] }, { @@ -570,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.271763Z", - "iopub.status.busy": "2024-02-07T22:16:07.271561Z", - "iopub.status.idle": "2024-02-07T22:16:07.276376Z", - "shell.execute_reply": "2024-02-07T22:16:07.275905Z" + "iopub.execute_input": "2024-02-07T23:56:35.802008Z", + "iopub.status.busy": "2024-02-07T23:56:35.801591Z", + "iopub.status.idle": "2024-02-07T23:56:35.806302Z", + "shell.execute_reply": "2024-02-07T23:56:35.805886Z" }, "nbsphinx": "hidden" }, @@ -624,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.278274Z", - "iopub.status.busy": "2024-02-07T22:16:07.277964Z", - "iopub.status.idle": "2024-02-07T22:16:07.830552Z", - "shell.execute_reply": "2024-02-07T22:16:07.829958Z" + "iopub.execute_input": "2024-02-07T23:56:35.808410Z", + "iopub.status.busy": "2024-02-07T23:56:35.808083Z", + "iopub.status.idle": "2024-02-07T23:56:36.353076Z", + "shell.execute_reply": "2024-02-07T23:56:36.352508Z" } }, "outputs": [ @@ -660,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.832750Z", - "iopub.status.busy": "2024-02-07T22:16:07.832421Z", - "iopub.status.idle": "2024-02-07T22:16:08.355543Z", - "shell.execute_reply": "2024-02-07T22:16:08.354936Z" + "iopub.execute_input": "2024-02-07T23:56:36.355346Z", + "iopub.status.busy": "2024-02-07T23:56:36.354914Z", + "iopub.status.idle": "2024-02-07T23:56:36.873202Z", + "shell.execute_reply": "2024-02-07T23:56:36.872720Z" } }, "outputs": [ @@ -701,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:08.357548Z", - "iopub.status.busy": "2024-02-07T22:16:08.357358Z", - "iopub.status.idle": "2024-02-07T22:16:08.361026Z", - "shell.execute_reply": "2024-02-07T22:16:08.360580Z" + "iopub.execute_input": "2024-02-07T23:56:36.875189Z", + "iopub.status.busy": "2024-02-07T23:56:36.875002Z", + "iopub.status.idle": "2024-02-07T23:56:36.878463Z", + "shell.execute_reply": "2024-02-07T23:56:36.878026Z" } }, "outputs": [], @@ -727,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:08.362757Z", - "iopub.status.busy": "2024-02-07T22:16:08.362583Z", - "iopub.status.idle": "2024-02-07T22:16:20.966537Z", - "shell.execute_reply": "2024-02-07T22:16:20.965959Z" + "iopub.execute_input": "2024-02-07T23:56:36.880489Z", + "iopub.status.busy": "2024-02-07T23:56:36.880123Z", + "iopub.status.idle": "2024-02-07T23:56:49.380652Z", + "shell.execute_reply": "2024-02-07T23:56:49.380045Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "066739a4f86b491c983744119357f90a", + "model_id": "104aeedd0a604fe19bdfe63c8894bf8c", "version_major": 2, "version_minor": 0 }, @@ -796,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:20.968884Z", - "iopub.status.busy": "2024-02-07T22:16:20.968576Z", - "iopub.status.idle": "2024-02-07T22:16:22.543906Z", - "shell.execute_reply": "2024-02-07T22:16:22.543395Z" + "iopub.execute_input": "2024-02-07T23:56:49.383110Z", + "iopub.status.busy": "2024-02-07T23:56:49.382718Z", + "iopub.status.idle": "2024-02-07T23:56:50.973179Z", + "shell.execute_reply": "2024-02-07T23:56:50.972522Z" } }, "outputs": [ @@ -843,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:22.546319Z", - "iopub.status.busy": "2024-02-07T22:16:22.545932Z", - "iopub.status.idle": "2024-02-07T22:16:22.972593Z", - "shell.execute_reply": "2024-02-07T22:16:22.971973Z" + "iopub.execute_input": "2024-02-07T23:56:50.975995Z", + "iopub.status.busy": "2024-02-07T23:56:50.975507Z", + "iopub.status.idle": "2024-02-07T23:56:51.398007Z", + "shell.execute_reply": "2024-02-07T23:56:51.397417Z" } }, "outputs": [ @@ -882,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:22.974994Z", - "iopub.status.busy": "2024-02-07T22:16:22.974798Z", - "iopub.status.idle": "2024-02-07T22:16:23.625666Z", - "shell.execute_reply": "2024-02-07T22:16:23.625005Z" + "iopub.execute_input": "2024-02-07T23:56:51.400644Z", + "iopub.status.busy": "2024-02-07T23:56:51.400427Z", + "iopub.status.idle": "2024-02-07T23:56:52.063578Z", + "shell.execute_reply": "2024-02-07T23:56:52.063073Z" } }, "outputs": [ @@ -935,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:23.628615Z", - "iopub.status.busy": "2024-02-07T22:16:23.628134Z", - "iopub.status.idle": "2024-02-07T22:16:23.967563Z", - "shell.execute_reply": "2024-02-07T22:16:23.967044Z" + "iopub.execute_input": "2024-02-07T23:56:52.066513Z", + "iopub.status.busy": "2024-02-07T23:56:52.066076Z", + "iopub.status.idle": "2024-02-07T23:56:52.406672Z", + "shell.execute_reply": "2024-02-07T23:56:52.406143Z" } }, "outputs": [ @@ -986,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:23.969758Z", - "iopub.status.busy": "2024-02-07T22:16:23.969409Z", - "iopub.status.idle": "2024-02-07T22:16:24.216721Z", - "shell.execute_reply": "2024-02-07T22:16:24.216100Z" + "iopub.execute_input": "2024-02-07T23:56:52.408986Z", + "iopub.status.busy": "2024-02-07T23:56:52.408584Z", + "iopub.status.idle": "2024-02-07T23:56:52.649620Z", + "shell.execute_reply": "2024-02-07T23:56:52.649039Z" } }, "outputs": [ @@ -1045,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:24.219590Z", - "iopub.status.busy": "2024-02-07T22:16:24.219135Z", - "iopub.status.idle": "2024-02-07T22:16:24.306780Z", - "shell.execute_reply": "2024-02-07T22:16:24.306300Z" + "iopub.execute_input": "2024-02-07T23:56:52.652114Z", + "iopub.status.busy": "2024-02-07T23:56:52.651671Z", + "iopub.status.idle": "2024-02-07T23:56:52.738340Z", + "shell.execute_reply": "2024-02-07T23:56:52.737865Z" } }, "outputs": [], @@ -1069,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:24.309196Z", - "iopub.status.busy": "2024-02-07T22:16:24.308835Z", - "iopub.status.idle": "2024-02-07T22:16:34.736929Z", - "shell.execute_reply": "2024-02-07T22:16:34.736344Z" + "iopub.execute_input": "2024-02-07T23:56:52.740933Z", + "iopub.status.busy": "2024-02-07T23:56:52.740576Z", + "iopub.status.idle": "2024-02-07T23:57:02.887449Z", + "shell.execute_reply": "2024-02-07T23:57:02.886809Z" } }, "outputs": [ @@ -1109,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:34.739237Z", - "iopub.status.busy": "2024-02-07T22:16:34.738874Z", - "iopub.status.idle": "2024-02-07T22:16:36.458553Z", - "shell.execute_reply": "2024-02-07T22:16:36.458057Z" + "iopub.execute_input": "2024-02-07T23:57:02.889811Z", + "iopub.status.busy": "2024-02-07T23:57:02.889604Z", + "iopub.status.idle": "2024-02-07T23:57:04.558953Z", + "shell.execute_reply": "2024-02-07T23:57:04.558434Z" } }, "outputs": [ @@ -1143,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.461205Z", - "iopub.status.busy": "2024-02-07T22:16:36.460735Z", - "iopub.status.idle": "2024-02-07T22:16:36.666276Z", - "shell.execute_reply": "2024-02-07T22:16:36.665777Z" + "iopub.execute_input": "2024-02-07T23:57:04.561779Z", + "iopub.status.busy": "2024-02-07T23:57:04.561169Z", + "iopub.status.idle": "2024-02-07T23:57:04.762684Z", + "shell.execute_reply": "2024-02-07T23:57:04.762087Z" } }, "outputs": [], @@ -1160,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.668659Z", - "iopub.status.busy": "2024-02-07T22:16:36.668383Z", - "iopub.status.idle": "2024-02-07T22:16:36.671525Z", - "shell.execute_reply": "2024-02-07T22:16:36.671082Z" + "iopub.execute_input": "2024-02-07T23:57:04.765111Z", + "iopub.status.busy": "2024-02-07T23:57:04.764820Z", + "iopub.status.idle": "2024-02-07T23:57:04.768733Z", + "shell.execute_reply": "2024-02-07T23:57:04.768164Z" } }, "outputs": [], @@ -1185,10 +1113,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.673575Z", - "iopub.status.busy": "2024-02-07T22:16:36.673247Z", - "iopub.status.idle": "2024-02-07T22:16:36.681282Z", - "shell.execute_reply": "2024-02-07T22:16:36.680824Z" + "iopub.execute_input": "2024-02-07T23:57:04.770734Z", + "iopub.status.busy": "2024-02-07T23:57:04.770350Z", + "iopub.status.idle": "2024-02-07T23:57:04.778478Z", + "shell.execute_reply": "2024-02-07T23:57:04.777929Z" }, "nbsphinx": "hidden" }, @@ -1233,7 +1161,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "066739a4f86b491c983744119357f90a": { + "104aeedd0a604fe19bdfe63c8894bf8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1248,16 +1176,117 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ac761b251bf94ac9b0515c7eb6ee1128", - "IPY_MODEL_a1e5d5eb3b654519bf26e1ee9e662af1", - "IPY_MODEL_ca3c262c376348b19cf1a806479ad0db" + "IPY_MODEL_37c709610cb741598ce0fdabdd829a1f", + "IPY_MODEL_3c821a5c04e64080a5c2d282f35cf242", + "IPY_MODEL_b7cdd7b611234dd7b53f21dd82a37bff" ], - "layout": "IPY_MODEL_7e888ca97822424f9f86d33f0a92b841", + "layout": "IPY_MODEL_be9dd8679029459f89b7c573872bbc61", "tabbable": null, "tooltip": null } }, - "202ea01d0cff416598f8d3b0d2955b06": { + "321e616c64df4e09a970b3f7ec6cdbe6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "37c709610cb741598ce0fdabdd829a1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_78f759523bc5438db78dcf67a29e7173", + "placeholder": "​", + "style": "IPY_MODEL_696e209101d0447183117bc6c5127dfa", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "3c821a5c04e64080a5c2d282f35cf242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69b8a3af8a8046a3a365aa1b96478a70", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_321e616c64df4e09a970b3f7ec6cdbe6", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "47cbbee3f2fb454db90d7a7c5417178e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "696e209101d0447183117bc6c5127dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69b8a3af8a8046a3a365aa1b96478a70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1310,23 +1339,7 @@ "width": null } }, - "5cce777711da484bb13b928829116979": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7e888ca97822424f9f86d33f0a92b841": { + "78f759523bc5438db78dcf67a29e7173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1379,92 +1392,7 @@ "width": null } }, - "7e950bd1f02e4e56940be6dd48802232": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1e5d5eb3b654519bf26e1ee9e662af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_202ea01d0cff416598f8d3b0d2955b06", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5cce777711da484bb13b928829116979", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "aba4b388c9074a3db4555b9eec74dbed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ac761b251bf94ac9b0515c7eb6ee1128": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0ffc152011e4313bb22edae8168843e", - "placeholder": "​", - "style": "IPY_MODEL_7e950bd1f02e4e56940be6dd48802232", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "c0ffc152011e4313bb22edae8168843e": { + "8135528dc3304bc5887731c6b6773be0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1517,7 +1445,7 @@ "width": null } }, - "ca3c262c376348b19cf1a806479ad0db": { + "b7cdd7b611234dd7b53f21dd82a37bff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1532,15 +1460,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc78c8afb40d44d585718c7ac9cacbe8", + "layout": "IPY_MODEL_8135528dc3304bc5887731c6b6773be0", "placeholder": "​", - "style": "IPY_MODEL_aba4b388c9074a3db4555b9eec74dbed", + "style": "IPY_MODEL_47cbbee3f2fb454db90d7a7c5417178e", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 300MB/s]" + "value": " 102M/102M [00:00<00:00, 208MB/s]" } }, - "fc78c8afb40d44d585718c7ac9cacbe8": { + "be9dd8679029459f89b7c573872bbc61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 6460b1da7..f14378353 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:41.001585Z", - "iopub.status.busy": "2024-02-07T22:16:41.001035Z", - "iopub.status.idle": "2024-02-07T22:16:42.113233Z", - "shell.execute_reply": "2024-02-07T22:16:42.112677Z" + "iopub.execute_input": "2024-02-07T23:57:09.007821Z", + "iopub.status.busy": "2024-02-07T23:57:09.007615Z", + "iopub.status.idle": "2024-02-07T23:57:10.072485Z", + "shell.execute_reply": "2024-02-07T23:57:10.071948Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.115952Z", - "iopub.status.busy": "2024-02-07T22:16:42.115427Z", - "iopub.status.idle": "2024-02-07T22:16:42.133567Z", - "shell.execute_reply": "2024-02-07T22:16:42.133124Z" + "iopub.execute_input": "2024-02-07T23:57:10.074834Z", + "iopub.status.busy": "2024-02-07T23:57:10.074594Z", + "iopub.status.idle": "2024-02-07T23:57:10.092876Z", + "shell.execute_reply": "2024-02-07T23:57:10.092428Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.135930Z", - "iopub.status.busy": "2024-02-07T22:16:42.135528Z", - "iopub.status.idle": "2024-02-07T22:16:42.138579Z", - "shell.execute_reply": "2024-02-07T22:16:42.138043Z" + "iopub.execute_input": "2024-02-07T23:57:10.095294Z", + "iopub.status.busy": "2024-02-07T23:57:10.094881Z", + "iopub.status.idle": "2024-02-07T23:57:10.097914Z", + "shell.execute_reply": "2024-02-07T23:57:10.097396Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.140671Z", - "iopub.status.busy": "2024-02-07T22:16:42.140370Z", - "iopub.status.idle": "2024-02-07T22:16:42.204946Z", - "shell.execute_reply": "2024-02-07T22:16:42.204403Z" + "iopub.execute_input": "2024-02-07T23:57:10.099990Z", + "iopub.status.busy": "2024-02-07T23:57:10.099668Z", + "iopub.status.idle": "2024-02-07T23:57:10.155253Z", + "shell.execute_reply": "2024-02-07T23:57:10.154741Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.207190Z", - "iopub.status.busy": "2024-02-07T22:16:42.206799Z", - "iopub.status.idle": "2024-02-07T22:16:42.385929Z", - "shell.execute_reply": "2024-02-07T22:16:42.385435Z" + "iopub.execute_input": "2024-02-07T23:57:10.157365Z", + "iopub.status.busy": "2024-02-07T23:57:10.156978Z", + "iopub.status.idle": "2024-02-07T23:57:10.331972Z", + "shell.execute_reply": "2024-02-07T23:57:10.331386Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.388432Z", - "iopub.status.busy": "2024-02-07T22:16:42.388089Z", - "iopub.status.idle": "2024-02-07T22:16:42.607298Z", - "shell.execute_reply": "2024-02-07T22:16:42.606720Z" + "iopub.execute_input": "2024-02-07T23:57:10.334267Z", + "iopub.status.busy": "2024-02-07T23:57:10.334002Z", + "iopub.status.idle": "2024-02-07T23:57:10.541166Z", + "shell.execute_reply": "2024-02-07T23:57:10.540646Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.609580Z", - "iopub.status.busy": "2024-02-07T22:16:42.609148Z", - "iopub.status.idle": "2024-02-07T22:16:42.613684Z", - "shell.execute_reply": "2024-02-07T22:16:42.613262Z" + "iopub.execute_input": "2024-02-07T23:57:10.543123Z", + "iopub.status.busy": "2024-02-07T23:57:10.542912Z", + "iopub.status.idle": "2024-02-07T23:57:10.547063Z", + "shell.execute_reply": "2024-02-07T23:57:10.546643Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.615732Z", - "iopub.status.busy": "2024-02-07T22:16:42.615409Z", - "iopub.status.idle": "2024-02-07T22:16:42.621064Z", - "shell.execute_reply": "2024-02-07T22:16:42.620649Z" + "iopub.execute_input": "2024-02-07T23:57:10.549116Z", + "iopub.status.busy": "2024-02-07T23:57:10.548782Z", + "iopub.status.idle": "2024-02-07T23:57:10.554644Z", + "shell.execute_reply": "2024-02-07T23:57:10.554206Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.623161Z", - "iopub.status.busy": "2024-02-07T22:16:42.622751Z", - "iopub.status.idle": "2024-02-07T22:16:42.625299Z", - "shell.execute_reply": "2024-02-07T22:16:42.624875Z" + "iopub.execute_input": "2024-02-07T23:57:10.556665Z", + "iopub.status.busy": "2024-02-07T23:57:10.556409Z", + "iopub.status.idle": "2024-02-07T23:57:10.558873Z", + "shell.execute_reply": "2024-02-07T23:57:10.558458Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.627236Z", - "iopub.status.busy": "2024-02-07T22:16:42.626928Z", - "iopub.status.idle": "2024-02-07T22:16:50.819298Z", - "shell.execute_reply": "2024-02-07T22:16:50.818629Z" + "iopub.execute_input": "2024-02-07T23:57:10.560767Z", + "iopub.status.busy": "2024-02-07T23:57:10.560447Z", + "iopub.status.idle": "2024-02-07T23:57:18.597883Z", + "shell.execute_reply": "2024-02-07T23:57:18.597245Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.822227Z", - "iopub.status.busy": "2024-02-07T22:16:50.821588Z", - "iopub.status.idle": "2024-02-07T22:16:50.828619Z", - "shell.execute_reply": "2024-02-07T22:16:50.828176Z" + "iopub.execute_input": "2024-02-07T23:57:18.600502Z", + "iopub.status.busy": "2024-02-07T23:57:18.600144Z", + "iopub.status.idle": "2024-02-07T23:57:18.607142Z", + "shell.execute_reply": "2024-02-07T23:57:18.606625Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.830508Z", - "iopub.status.busy": "2024-02-07T22:16:50.830326Z", - "iopub.status.idle": "2024-02-07T22:16:50.834051Z", - "shell.execute_reply": "2024-02-07T22:16:50.833572Z" + "iopub.execute_input": "2024-02-07T23:57:18.609010Z", + "iopub.status.busy": "2024-02-07T23:57:18.608834Z", + "iopub.status.idle": "2024-02-07T23:57:18.612483Z", + "shell.execute_reply": "2024-02-07T23:57:18.611944Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.836017Z", - "iopub.status.busy": "2024-02-07T22:16:50.835693Z", - "iopub.status.idle": "2024-02-07T22:16:50.838791Z", - "shell.execute_reply": "2024-02-07T22:16:50.838260Z" + "iopub.execute_input": "2024-02-07T23:57:18.614300Z", + "iopub.status.busy": "2024-02-07T23:57:18.614127Z", + "iopub.status.idle": "2024-02-07T23:57:18.617088Z", + "shell.execute_reply": "2024-02-07T23:57:18.616563Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.840784Z", - "iopub.status.busy": "2024-02-07T22:16:50.840458Z", - "iopub.status.idle": "2024-02-07T22:16:50.843463Z", - "shell.execute_reply": "2024-02-07T22:16:50.843001Z" + "iopub.execute_input": "2024-02-07T23:57:18.618875Z", + "iopub.status.busy": "2024-02-07T23:57:18.618705Z", + "iopub.status.idle": "2024-02-07T23:57:18.621573Z", + "shell.execute_reply": "2024-02-07T23:57:18.621156Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.845383Z", - "iopub.status.busy": "2024-02-07T22:16:50.845063Z", - "iopub.status.idle": "2024-02-07T22:16:50.852852Z", - "shell.execute_reply": "2024-02-07T22:16:50.852402Z" + "iopub.execute_input": "2024-02-07T23:57:18.623300Z", + "iopub.status.busy": "2024-02-07T23:57:18.623130Z", + "iopub.status.idle": "2024-02-07T23:57:18.631019Z", + "shell.execute_reply": "2024-02-07T23:57:18.630588Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.854861Z", - "iopub.status.busy": "2024-02-07T22:16:50.854539Z", - "iopub.status.idle": "2024-02-07T22:16:50.974215Z", - "shell.execute_reply": "2024-02-07T22:16:50.973641Z" + "iopub.execute_input": "2024-02-07T23:57:18.632839Z", + "iopub.status.busy": "2024-02-07T23:57:18.632669Z", + "iopub.status.idle": "2024-02-07T23:57:18.751110Z", + "shell.execute_reply": "2024-02-07T23:57:18.750652Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.976792Z", - "iopub.status.busy": "2024-02-07T22:16:50.976387Z", - "iopub.status.idle": "2024-02-07T22:16:51.083738Z", - "shell.execute_reply": "2024-02-07T22:16:51.083123Z" + "iopub.execute_input": "2024-02-07T23:57:18.753135Z", + "iopub.status.busy": "2024-02-07T23:57:18.752961Z", + "iopub.status.idle": "2024-02-07T23:57:18.854301Z", + "shell.execute_reply": "2024-02-07T23:57:18.853737Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.086417Z", - "iopub.status.busy": "2024-02-07T22:16:51.085958Z", - "iopub.status.idle": "2024-02-07T22:16:51.565882Z", - "shell.execute_reply": "2024-02-07T22:16:51.565259Z" + "iopub.execute_input": "2024-02-07T23:57:18.856714Z", + "iopub.status.busy": "2024-02-07T23:57:18.856277Z", + "iopub.status.idle": "2024-02-07T23:57:19.344066Z", + "shell.execute_reply": "2024-02-07T23:57:19.343446Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.568859Z", - "iopub.status.busy": "2024-02-07T22:16:51.568362Z", - "iopub.status.idle": "2024-02-07T22:16:51.646362Z", - "shell.execute_reply": "2024-02-07T22:16:51.645818Z" + "iopub.execute_input": "2024-02-07T23:57:19.346737Z", + "iopub.status.busy": "2024-02-07T23:57:19.346338Z", + "iopub.status.idle": "2024-02-07T23:57:19.423350Z", + "shell.execute_reply": "2024-02-07T23:57:19.422787Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.648680Z", - "iopub.status.busy": "2024-02-07T22:16:51.648305Z", - "iopub.status.idle": "2024-02-07T22:16:51.658253Z", - "shell.execute_reply": "2024-02-07T22:16:51.657843Z" + "iopub.execute_input": "2024-02-07T23:57:19.425650Z", + "iopub.status.busy": "2024-02-07T23:57:19.425311Z", + "iopub.status.idle": "2024-02-07T23:57:19.434732Z", + "shell.execute_reply": "2024-02-07T23:57:19.434279Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 28d27fdf0..725a1c9fc 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -715,13 +715,13 @@

3. Use cleanlab to find label issues
-
+
-
+
-
0%| | 15347/4997817 [00:00&lt;00:32, 153458.07it/s]
+
0%| | 15387/4997817 [00:00&lt;00:32, 153859.88it/s]

</pre>

-
0%| | 15347/4997817 [00:00<00:32, 153458.07it/s]
+
0%| | 15387/4997817 [00:00<00:32, 153859.88it/s]

end{sphinxVerbatim}

-

0%| | 15347/4997817 [00:00<00:32, 153458.07it/s]

+

0%| | 15387/4997817 [00:00<00:32, 153859.88it/s]

-
1%| | 30769/4997817 [00:00&lt;00:32, 153898.57it/s]
+
1%| | 30953/4997817 [00:00&lt;00:32, 154916.01it/s]

</pre>

-
1%| | 30769/4997817 [00:00<00:32, 153898.57it/s]
+
1%| | 30953/4997817 [00:00<00:32, 154916.01it/s]

end{sphinxVerbatim}

-

1%| | 30769/4997817 [00:00<00:32, 153898.57it/s]

+

1%| | 30953/4997817 [00:00<00:32, 154916.01it/s]

-
1%| | 46197/4997817 [00:00&lt;00:32, 154067.93it/s]
+
1%| | 46445/4997817 [00:00&lt;00:31, 154862.43it/s]

</pre>

-
1%| | 46197/4997817 [00:00<00:32, 154067.93it/s]
+
1%| | 46445/4997817 [00:00<00:31, 154862.43it/s]

end{sphinxVerbatim}

-

1%| | 46197/4997817 [00:00<00:32, 154067.93it/s]

+

1%| | 46445/4997817 [00:00<00:31, 154862.43it/s]

-
1%| | 61604/4997817 [00:00&lt;00:32, 153518.87it/s]
+
1%| | 61949/4997817 [00:00&lt;00:31, 154930.24it/s]

</pre>

-
1%| | 61604/4997817 [00:00<00:32, 153518.87it/s]
+
1%| | 61949/4997817 [00:00<00:31, 154930.24it/s]

end{sphinxVerbatim}

-

1%| | 61604/4997817 [00:00<00:32, 153518.87it/s]

+

1%| | 61949/4997817 [00:00<00:31, 154930.24it/s]

-
2%|▏ | 76957/4997817 [00:00&lt;00:32, 153377.81it/s]
+
2%|▏ | 77467/4997817 [00:00&lt;00:31, 155019.01it/s]

</pre>

-
2%|▏ | 76957/4997817 [00:00<00:32, 153377.81it/s]
+
2%|▏ | 77467/4997817 [00:00<00:31, 155019.01it/s]

end{sphinxVerbatim}

-

2%|▏ | 76957/4997817 [00:00<00:32, 153377.81it/s]

+

2%|▏ | 77467/4997817 [00:00<00:31, 155019.01it/s]

-
2%|▏ | 92295/4997817 [00:00&lt;00:32, 153281.65it/s]
+
2%|▏ | 92969/4997817 [00:00&lt;00:31, 154441.07it/s]

</pre>

-
2%|▏ | 92295/4997817 [00:00<00:32, 153281.65it/s]
+
2%|▏ | 92969/4997817 [00:00<00:31, 154441.07it/s]

end{sphinxVerbatim}

-

2%|▏ | 92295/4997817 [00:00<00:32, 153281.65it/s]

+

2%|▏ | 92969/4997817 [00:00<00:31, 154441.07it/s]

-
2%|▏ | 107770/4997817 [00:00&lt;00:31, 153758.56it/s]
+
2%|▏ | 108414/4997817 [00:00&lt;00:31, 154378.14it/s]

</pre>

-
2%|▏ | 107770/4997817 [00:00<00:31, 153758.56it/s]
+
2%|▏ | 108414/4997817 [00:00<00:31, 154378.14it/s]

end{sphinxVerbatim}

-

2%|▏ | 107770/4997817 [00:00<00:31, 153758.56it/s]

+

2%|▏ | 108414/4997817 [00:00<00:31, 154378.14it/s]

-
2%|▏ | 123147/4997817 [00:00&lt;00:31, 153622.15it/s]
+
2%|▏ | 123962/4997817 [00:00&lt;00:31, 154726.37it/s]

</pre>

-
2%|▏ | 123147/4997817 [00:00<00:31, 153622.15it/s]
+
2%|▏ | 123962/4997817 [00:00<00:31, 154726.37it/s]

end{sphinxVerbatim}

-

2%|▏ | 123147/4997817 [00:00<00:31, 153622.15it/s]

+

2%|▏ | 123962/4997817 [00:00<00:31, 154726.37it/s]

-
3%|▎ | 138510/4997817 [00:00&lt;00:31, 153513.94it/s]
+
3%|▎ | 139435/4997817 [00:00&lt;00:31, 154613.74it/s]

</pre>

-
3%|▎ | 138510/4997817 [00:00<00:31, 153513.94it/s]
+
3%|▎ | 139435/4997817 [00:00<00:31, 154613.74it/s]

end{sphinxVerbatim}

-

3%|▎ | 138510/4997817 [00:00<00:31, 153513.94it/s]

+

3%|▎ | 139435/4997817 [00:00<00:31, 154613.74it/s]

-
3%|▎ | 153862/4997817 [00:01&lt;00:31, 153440.87it/s]
+
3%|▎ | 154933/4997817 [00:01&lt;00:31, 154724.64it/s]

</pre>

-
3%|▎ | 153862/4997817 [00:01<00:31, 153440.87it/s]
+
3%|▎ | 154933/4997817 [00:01<00:31, 154724.64it/s]

end{sphinxVerbatim}

-

3%|▎ | 153862/4997817 [00:01<00:31, 153440.87it/s]

+

3%|▎ | 154933/4997817 [00:01<00:31, 154724.64it/s]

-
3%|▎ | 169207/4997817 [00:01&lt;00:31, 153375.31it/s]
+
3%|▎ | 170450/4997817 [00:01&lt;00:31, 154858.82it/s]

</pre>

-
3%|▎ | 169207/4997817 [00:01<00:31, 153375.31it/s]
+
3%|▎ | 170450/4997817 [00:01<00:31, 154858.82it/s]

end{sphinxVerbatim}

-

3%|▎ | 169207/4997817 [00:01<00:31, 153375.31it/s]

+

3%|▎ | 170450/4997817 [00:01<00:31, 154858.82it/s]

-
4%|▎ | 184566/4997817 [00:01&lt;00:31, 153437.24it/s]
+
4%|▎ | 185960/4997817 [00:01&lt;00:31, 154931.05it/s]

</pre>

-
4%|▎ | 184566/4997817 [00:01<00:31, 153437.24it/s]
+
4%|▎ | 185960/4997817 [00:01<00:31, 154931.05it/s]

end{sphinxVerbatim}

-

4%|▎ | 184566/4997817 [00:01<00:31, 153437.24it/s]

+

4%|▎ | 185960/4997817 [00:01<00:31, 154931.05it/s]

-
4%|▍ | 200027/4997817 [00:01&lt;00:31, 153789.46it/s]
+
4%|▍ | 201595/4997817 [00:01&lt;00:30, 155359.04it/s]

</pre>

-
4%|▍ | 200027/4997817 [00:01<00:31, 153789.46it/s]
+
4%|▍ | 201595/4997817 [00:01<00:30, 155359.04it/s]

end{sphinxVerbatim}

-

4%|▍ | 200027/4997817 [00:01<00:31, 153789.46it/s]

+

4%|▍ | 201595/4997817 [00:01<00:30, 155359.04it/s]

-
4%|▍ | 215446/4997817 [00:01&lt;00:31, 153907.31it/s]
+
4%|▍ | 217166/4997817 [00:01&lt;00:30, 155463.26it/s]

</pre>

-
4%|▍ | 215446/4997817 [00:01<00:31, 153907.31it/s]
+
4%|▍ | 217166/4997817 [00:01<00:30, 155463.26it/s]

end{sphinxVerbatim}

-

4%|▍ | 215446/4997817 [00:01<00:31, 153907.31it/s]

+

4%|▍ | 217166/4997817 [00:01<00:30, 155463.26it/s]

-
5%|▍ | 230924/4997817 [00:01&lt;00:30, 154166.08it/s]
+
5%|▍ | 232796/4997817 [00:01&lt;00:30, 155713.22it/s]

</pre>

-
5%|▍ | 230924/4997817 [00:01<00:30, 154166.08it/s]
+
5%|▍ | 232796/4997817 [00:01<00:30, 155713.22it/s]

end{sphinxVerbatim}

-

5%|▍ | 230924/4997817 [00:01<00:30, 154166.08it/s]

+

5%|▍ | 232796/4997817 [00:01<00:30, 155713.22it/s]

-
5%|▍ | 246392/4997817 [00:01&lt;00:30, 154317.10it/s]
+
5%|▍ | 248368/4997817 [00:01&lt;00:30, 155024.90it/s]

</pre>

-
5%|▍ | 246392/4997817 [00:01<00:30, 154317.10it/s]
+
5%|▍ | 248368/4997817 [00:01<00:30, 155024.90it/s]

end{sphinxVerbatim}

-

5%|▍ | 246392/4997817 [00:01<00:30, 154317.10it/s]

+

5%|▍ | 248368/4997817 [00:01<00:30, 155024.90it/s]

-
5%|▌ | 261824/4997817 [00:01&lt;00:30, 153630.47it/s]
+
5%|▌ | 263872/4997817 [00:01&lt;00:30, 154707.21it/s]

</pre>

-
5%|▌ | 261824/4997817 [00:01<00:30, 153630.47it/s]
+
5%|▌ | 263872/4997817 [00:01<00:30, 154707.21it/s]

end{sphinxVerbatim}

-

5%|▌ | 261824/4997817 [00:01<00:30, 153630.47it/s]

+

5%|▌ | 263872/4997817 [00:01<00:30, 154707.21it/s]

-
6%|▌ | 277224/4997817 [00:01&lt;00:30, 153736.80it/s]
+
6%|▌ | 279344/4997817 [00:01&lt;00:30, 154411.85it/s]

</pre>

-
6%|▌ | 277224/4997817 [00:01<00:30, 153736.80it/s]
+
6%|▌ | 279344/4997817 [00:01<00:30, 154411.85it/s]

end{sphinxVerbatim}

-

6%|▌ | 277224/4997817 [00:01<00:30, 153736.80it/s]

+

6%|▌ | 279344/4997817 [00:01<00:30, 154411.85it/s]

-
6%|▌ | 292639/4997817 [00:01&lt;00:30, 153857.25it/s]
+
6%|▌ | 294786/4997817 [00:01&lt;00:30, 153675.58it/s]

</pre>

-
6%|▌ | 292639/4997817 [00:01<00:30, 153857.25it/s]
+
6%|▌ | 294786/4997817 [00:01<00:30, 153675.58it/s]

end{sphinxVerbatim}

-

6%|▌ | 292639/4997817 [00:01<00:30, 153857.25it/s]

+

6%|▌ | 294786/4997817 [00:01<00:30, 153675.58it/s]

-
6%|▌ | 308121/4997817 [00:02&lt;00:30, 154142.35it/s]
+
6%|▌ | 310155/4997817 [00:02&lt;00:30, 153084.29it/s]

</pre>

-
6%|▌ | 308121/4997817 [00:02<00:30, 154142.35it/s]
+
6%|▌ | 310155/4997817 [00:02<00:30, 153084.29it/s]

end{sphinxVerbatim}

-

6%|▌ | 308121/4997817 [00:02<00:30, 154142.35it/s]

+

6%|▌ | 310155/4997817 [00:02<00:30, 153084.29it/s]

-
6%|▋ | 323536/4997817 [00:02&lt;00:30, 154021.27it/s]
+
7%|▋ | 325465/4997817 [00:02&lt;00:30, 152924.81it/s]

</pre>

-
6%|▋ | 323536/4997817 [00:02<00:30, 154021.27it/s]
+
7%|▋ | 325465/4997817 [00:02<00:30, 152924.81it/s]

end{sphinxVerbatim}

-

6%|▋ | 323536/4997817 [00:02<00:30, 154021.27it/s]

+

7%|▋ | 325465/4997817 [00:02<00:30, 152924.81it/s]

-
7%|▋ | 338991/4997817 [00:02&lt;00:30, 154177.79it/s]
+
7%|▋ | 340815/4997817 [00:02&lt;00:30, 153092.91it/s]

</pre>

-
7%|▋ | 338991/4997817 [00:02<00:30, 154177.79it/s]
+
7%|▋ | 340815/4997817 [00:02<00:30, 153092.91it/s]

end{sphinxVerbatim}

-

7%|▋ | 338991/4997817 [00:02<00:30, 154177.79it/s]

+

7%|▋ | 340815/4997817 [00:02<00:30, 153092.91it/s]

-
7%|▋ | 354437/4997817 [00:02&lt;00:30, 154259.57it/s]
+
7%|▋ | 356125/4997817 [00:02&lt;00:30, 152796.73it/s]

</pre>

-
7%|▋ | 354437/4997817 [00:02<00:30, 154259.57it/s]
+
7%|▋ | 356125/4997817 [00:02<00:30, 152796.73it/s]

end{sphinxVerbatim}

-

7%|▋ | 354437/4997817 [00:02<00:30, 154259.57it/s]

+

7%|▋ | 356125/4997817 [00:02<00:30, 152796.73it/s]

-
7%|▋ | 369864/4997817 [00:02&lt;00:30, 154160.91it/s]
+
7%|▋ | 371405/4997817 [00:02&lt;00:30, 152624.10it/s]

</pre>

-
7%|▋ | 369864/4997817 [00:02<00:30, 154160.91it/s]
+
7%|▋ | 371405/4997817 [00:02<00:30, 152624.10it/s]

end{sphinxVerbatim}

-

7%|▋ | 369864/4997817 [00:02<00:30, 154160.91it/s]

+

7%|▋ | 371405/4997817 [00:02<00:30, 152624.10it/s]

-
8%|▊ | 385349/4997817 [00:02&lt;00:29, 154364.42it/s]
+
8%|▊ | 386668/4997817 [00:02&lt;00:30, 152387.84it/s]

</pre>

-
8%|▊ | 385349/4997817 [00:02<00:29, 154364.42it/s]
+
8%|▊ | 386668/4997817 [00:02<00:30, 152387.84it/s]

end{sphinxVerbatim}

-

8%|▊ | 385349/4997817 [00:02<00:29, 154364.42it/s]

+

8%|▊ | 386668/4997817 [00:02<00:30, 152387.84it/s]

-
8%|▊ | 400786/4997817 [00:02&lt;00:29, 154238.35it/s]
+
8%|▊ | 401907/4997817 [00:02&lt;00:30, 151622.18it/s]

</pre>

-
8%|▊ | 400786/4997817 [00:02<00:29, 154238.35it/s]
+
8%|▊ | 401907/4997817 [00:02<00:30, 151622.18it/s]

end{sphinxVerbatim}

-

8%|▊ | 400786/4997817 [00:02<00:29, 154238.35it/s]

+

8%|▊ | 401907/4997817 [00:02<00:30, 151622.18it/s]

-
8%|▊ | 416218/4997817 [00:02&lt;00:29, 154259.56it/s]
+
8%|▊ | 417070/4997817 [00:02&lt;00:30, 151606.88it/s]

</pre>

-
8%|▊ | 416218/4997817 [00:02<00:29, 154259.56it/s]
+
8%|▊ | 417070/4997817 [00:02<00:30, 151606.88it/s]

end{sphinxVerbatim}

-

8%|▊ | 416218/4997817 [00:02<00:29, 154259.56it/s]

+

8%|▊ | 417070/4997817 [00:02<00:30, 151606.88it/s]

-
9%|▊ | 431732/4997817 [00:02&lt;00:29, 154520.13it/s]
+
9%|▊ | 432286/4997817 [00:02&lt;00:30, 151770.09it/s]

</pre>

-
9%|▊ | 431732/4997817 [00:02<00:29, 154520.13it/s]
+
9%|▊ | 432286/4997817 [00:02<00:30, 151770.09it/s]

end{sphinxVerbatim}

-

9%|▊ | 431732/4997817 [00:02<00:29, 154520.13it/s]

+

9%|▊ | 432286/4997817 [00:02<00:30, 151770.09it/s]

-
9%|▉ | 447185/4997817 [00:02&lt;00:29, 153245.62it/s]
+
9%|▉ | 447464/4997817 [00:02&lt;00:29, 151738.90it/s]

</pre>

-
9%|▉ | 447185/4997817 [00:02<00:29, 153245.62it/s]
+
9%|▉ | 447464/4997817 [00:02<00:29, 151738.90it/s]

end{sphinxVerbatim}

-

9%|▉ | 447185/4997817 [00:02<00:29, 153245.62it/s]

+

9%|▉ | 447464/4997817 [00:02<00:29, 151738.90it/s]

-
9%|▉ | 462512/4997817 [00:03&lt;00:30, 146732.31it/s]
+
9%|▉ | 462721/4997817 [00:03&lt;00:29, 151984.24it/s]

</pre>

-
9%|▉ | 462512/4997817 [00:03<00:30, 146732.31it/s]
+
9%|▉ | 462721/4997817 [00:03<00:29, 151984.24it/s]

end{sphinxVerbatim}

-

9%|▉ | 462512/4997817 [00:03<00:30, 146732.31it/s]

+

9%|▉ | 462721/4997817 [00:03<00:29, 151984.24it/s]

-
10%|▉ | 477889/4997817 [00:03&lt;00:30, 148766.90it/s]
+
10%|▉ | 477975/4997817 [00:03&lt;00:29, 152147.15it/s]

</pre>

-
10%|▉ | 477889/4997817 [00:03<00:30, 148766.90it/s]
+
10%|▉ | 477975/4997817 [00:03<00:29, 152147.15it/s]

end{sphinxVerbatim}

-

10%|▉ | 477889/4997817 [00:03<00:30, 148766.90it/s]

+

10%|▉ | 477975/4997817 [00:03<00:29, 152147.15it/s]

-
10%|▉ | 493335/4997817 [00:03&lt;00:29, 150430.33it/s]
+
10%|▉ | 493202/4997817 [00:03&lt;00:29, 152182.16it/s]

</pre>

-
10%|▉ | 493335/4997817 [00:03<00:29, 150430.33it/s]
+
10%|▉ | 493202/4997817 [00:03<00:29, 152182.16it/s]

end{sphinxVerbatim}

-

10%|▉ | 493335/4997817 [00:03<00:29, 150430.33it/s]

+

10%|▉ | 493202/4997817 [00:03<00:29, 152182.16it/s]

-
10%|█ | 508611/4997817 [00:03&lt;00:29, 151113.76it/s]
+
10%|█ | 508476/4997817 [00:03&lt;00:29, 152345.94it/s]

</pre>

-
10%|█ | 508611/4997817 [00:03<00:29, 151113.76it/s]
+
10%|█ | 508476/4997817 [00:03<00:29, 152345.94it/s]

end{sphinxVerbatim}

-

10%|█ | 508611/4997817 [00:03<00:29, 151113.76it/s]

+

10%|█ | 508476/4997817 [00:03<00:29, 152345.94it/s]

-
10%|█ | 523989/4997817 [00:03&lt;00:29, 151901.84it/s]
+
10%|█ | 523738/4997817 [00:03&lt;00:29, 152425.10it/s]

</pre>

-
10%|█ | 523989/4997817 [00:03<00:29, 151901.84it/s]
+
10%|█ | 523738/4997817 [00:03<00:29, 152425.10it/s]

end{sphinxVerbatim}

-

10%|█ | 523989/4997817 [00:03<00:29, 151901.84it/s]

+

10%|█ | 523738/4997817 [00:03<00:29, 152425.10it/s]

-
11%|█ | 539401/4997817 [00:03&lt;00:29, 152559.93it/s]
+
11%|█ | 539030/4997817 [00:03&lt;00:29, 152572.90it/s]

</pre>

-
11%|█ | 539401/4997817 [00:03<00:29, 152559.93it/s]
+
11%|█ | 539030/4997817 [00:03<00:29, 152572.90it/s]

end{sphinxVerbatim}

-

11%|█ | 539401/4997817 [00:03<00:29, 152559.93it/s]

+

11%|█ | 539030/4997817 [00:03<00:29, 152572.90it/s]

-
11%|█ | 554825/4997817 [00:03&lt;00:29, 153058.80it/s]
+
11%|█ | 554288/4997817 [00:03&lt;00:29, 152516.18it/s]

</pre>

-
11%|█ | 554825/4997817 [00:03<00:29, 153058.80it/s]
+
11%|█ | 554288/4997817 [00:03<00:29, 152516.18it/s]

end{sphinxVerbatim}

-

11%|█ | 554825/4997817 [00:03<00:29, 153058.80it/s]

+

11%|█ | 554288/4997817 [00:03<00:29, 152516.18it/s]

-
11%|█▏ | 570237/4997817 [00:03&lt;00:28, 153371.61it/s]
+
11%|█▏ | 569540/4997817 [00:03&lt;00:29, 152488.37it/s]

</pre>

-
11%|█▏ | 570237/4997817 [00:03<00:28, 153371.61it/s]
+
11%|█▏ | 569540/4997817 [00:03<00:29, 152488.37it/s]

end{sphinxVerbatim}

-

11%|█▏ | 570237/4997817 [00:03<00:28, 153371.61it/s]

+

11%|█▏ | 569540/4997817 [00:03<00:29, 152488.37it/s]

-
12%|█▏ | 585614/4997817 [00:03&lt;00:28, 153487.20it/s]
+
12%|█▏ | 584949/4997817 [00:03&lt;00:28, 152966.60it/s]

</pre>

-
12%|█▏ | 585614/4997817 [00:03<00:28, 153487.20it/s]
+
12%|█▏ | 584949/4997817 [00:03<00:28, 152966.60it/s]

end{sphinxVerbatim}

-

12%|█▏ | 585614/4997817 [00:03<00:28, 153487.20it/s]

+

12%|█▏ | 584949/4997817 [00:03<00:28, 152966.60it/s]

-
12%|█▏ | 601012/4997817 [00:03&lt;00:28, 153632.69it/s]
+
12%|█▏ | 600453/4997817 [00:03&lt;00:28, 153586.15it/s]

</pre>

-
12%|█▏ | 601012/4997817 [00:03<00:28, 153632.69it/s]
+
12%|█▏ | 600453/4997817 [00:03<00:28, 153586.15it/s]

end{sphinxVerbatim}

-

12%|█▏ | 601012/4997817 [00:03<00:28, 153632.69it/s]

+

12%|█▏ | 600453/4997817 [00:03<00:28, 153586.15it/s]

-
12%|█▏ | 616379/4997817 [00:04&lt;00:28, 153190.63it/s]
+
12%|█▏ | 615876/4997817 [00:04&lt;00:28, 153775.67it/s]

</pre>

-
12%|█▏ | 616379/4997817 [00:04<00:28, 153190.63it/s]
+
12%|█▏ | 615876/4997817 [00:04<00:28, 153775.67it/s]

end{sphinxVerbatim}

-

12%|█▏ | 616379/4997817 [00:04<00:28, 153190.63it/s]

+

12%|█▏ | 615876/4997817 [00:04<00:28, 153775.67it/s]

-
13%|█▎ | 631701/4997817 [00:04&lt;00:28, 153034.14it/s]
+
13%|█▎ | 631317/4997817 [00:04&lt;00:28, 153964.11it/s]

</pre>

-
13%|█▎ | 631701/4997817 [00:04<00:28, 153034.14it/s]
+
13%|█▎ | 631317/4997817 [00:04<00:28, 153964.11it/s]

end{sphinxVerbatim}

-

13%|█▎ | 631701/4997817 [00:04<00:28, 153034.14it/s]

+

13%|█▎ | 631317/4997817 [00:04<00:28, 153964.11it/s]

-
13%|█▎ | 647041/4997817 [00:04&lt;00:28, 153139.80it/s]
+
13%|█▎ | 646849/4997817 [00:04&lt;00:28, 154369.76it/s]

</pre>

-
13%|█▎ | 647041/4997817 [00:04<00:28, 153139.80it/s]
+
13%|█▎ | 646849/4997817 [00:04<00:28, 154369.76it/s]

end{sphinxVerbatim}

-

13%|█▎ | 647041/4997817 [00:04<00:28, 153139.80it/s]

+

13%|█▎ | 646849/4997817 [00:04<00:28, 154369.76it/s]

-
13%|█▎ | 662439/4997817 [00:04&lt;00:28, 153387.00it/s]
+
13%|█▎ | 662330/4997817 [00:04&lt;00:28, 154500.98it/s]

</pre>

-
13%|█▎ | 662439/4997817 [00:04<00:28, 153387.00it/s]
+
13%|█▎ | 662330/4997817 [00:04<00:28, 154500.98it/s]

end{sphinxVerbatim}

-

13%|█▎ | 662439/4997817 [00:04<00:28, 153387.00it/s]

+

13%|█▎ | 662330/4997817 [00:04<00:28, 154500.98it/s]

-
14%|█▎ | 677783/4997817 [00:04&lt;00:28, 153400.95it/s]
+
14%|█▎ | 677819/4997817 [00:04&lt;00:27, 154616.28it/s]

</pre>

-
14%|█▎ | 677783/4997817 [00:04<00:28, 153400.95it/s]
+
14%|█▎ | 677819/4997817 [00:04<00:27, 154616.28it/s]

end{sphinxVerbatim}

-

14%|█▎ | 677783/4997817 [00:04<00:28, 153400.95it/s]

+

14%|█▎ | 677819/4997817 [00:04<00:27, 154616.28it/s]

-
14%|█▍ | 693146/4997817 [00:04&lt;00:28, 153465.36it/s]
+
14%|█▍ | 693283/4997817 [00:04&lt;00:27, 154620.90it/s]

</pre>

-
14%|█▍ | 693146/4997817 [00:04<00:28, 153465.36it/s]
+
14%|█▍ | 693283/4997817 [00:04<00:27, 154620.90it/s]

end{sphinxVerbatim}

-

14%|█▍ | 693146/4997817 [00:04<00:28, 153465.36it/s]

+

14%|█▍ | 693283/4997817 [00:04<00:27, 154620.90it/s]

-
14%|█▍ | 708494/4997817 [00:04&lt;00:27, 153436.13it/s]
+
14%|█▍ | 708746/4997817 [00:04&lt;00:27, 154483.57it/s]

</pre>

-
14%|█▍ | 708494/4997817 [00:04<00:27, 153436.13it/s]
+
14%|█▍ | 708746/4997817 [00:04<00:27, 154483.57it/s]

end{sphinxVerbatim}

-

14%|█▍ | 708494/4997817 [00:04<00:27, 153436.13it/s]

+

14%|█▍ | 708746/4997817 [00:04<00:27, 154483.57it/s]

-
14%|█▍ | 723849/4997817 [00:04&lt;00:27, 153466.14it/s]
+
14%|█▍ | 724195/4997817 [00:04&lt;00:28, 149330.22it/s]

</pre>

-
14%|█▍ | 723849/4997817 [00:04<00:27, 153466.14it/s]
+
14%|█▍ | 724195/4997817 [00:04<00:28, 149330.22it/s]

end{sphinxVerbatim}

-

14%|█▍ | 723849/4997817 [00:04<00:27, 153466.14it/s]

+

14%|█▍ | 724195/4997817 [00:04<00:28, 149330.22it/s]

-
15%|█▍ | 739196/4997817 [00:04&lt;00:27, 153373.26it/s]
+
15%|█▍ | 739415/4997817 [00:04&lt;00:28, 150169.33it/s]

</pre>

-
15%|█▍ | 739196/4997817 [00:04<00:27, 153373.26it/s]
+
15%|█▍ | 739415/4997817 [00:04<00:28, 150169.33it/s]

end{sphinxVerbatim}

-

15%|█▍ | 739196/4997817 [00:04<00:27, 153373.26it/s]

+

15%|█▍ | 739415/4997817 [00:04<00:28, 150169.33it/s]

-
15%|█▌ | 754593/4997817 [00:04&lt;00:27, 153549.34it/s]
+
15%|█▌ | 754739/4997817 [00:04&lt;00:28, 151072.92it/s]

</pre>

-
15%|█▌ | 754593/4997817 [00:04<00:27, 153549.34it/s]
+
15%|█▌ | 754739/4997817 [00:04<00:28, 151072.92it/s]

end{sphinxVerbatim}

-

15%|█▌ | 754593/4997817 [00:04<00:27, 153549.34it/s]

+

15%|█▌ | 754739/4997817 [00:04<00:28, 151072.92it/s]

-
15%|█▌ | 769949/4997817 [00:05&lt;00:28, 150908.16it/s]
+
15%|█▌ | 770174/4997817 [00:05&lt;00:27, 152041.12it/s]

</pre>

-
15%|█▌ | 769949/4997817 [00:05<00:28, 150908.16it/s]
+
15%|█▌ | 770174/4997817 [00:05<00:27, 152041.12it/s]

end{sphinxVerbatim}

-

15%|█▌ | 769949/4997817 [00:05<00:28, 150908.16it/s]

+

15%|█▌ | 770174/4997817 [00:05<00:27, 152041.12it/s]

-
16%|█▌ | 785470/4997817 [00:05&lt;00:27, 152179.07it/s]
+
16%|█▌ | 785615/4997817 [00:05&lt;00:27, 152744.99it/s]

</pre>

-
16%|█▌ | 785470/4997817 [00:05<00:27, 152179.07it/s]
+
16%|█▌ | 785615/4997817 [00:05<00:27, 152744.99it/s]

end{sphinxVerbatim}

-

16%|█▌ | 785470/4997817 [00:05<00:27, 152179.07it/s]

+

16%|█▌ | 785615/4997817 [00:05<00:27, 152744.99it/s]

-
16%|█▌ | 801022/4997817 [00:05&lt;00:27, 153170.62it/s]
+
16%|█▌ | 801159/4997817 [00:05&lt;00:27, 153547.67it/s]

</pre>

-
16%|█▌ | 801022/4997817 [00:05<00:27, 153170.62it/s]
+
16%|█▌ | 801159/4997817 [00:05<00:27, 153547.67it/s]

end{sphinxVerbatim}

-

16%|█▌ | 801022/4997817 [00:05<00:27, 153170.62it/s]

+

16%|█▌ | 801159/4997817 [00:05<00:27, 153547.67it/s]

-
16%|█▋ | 816526/4997817 [00:05&lt;00:27, 153726.26it/s]
+
16%|█▋ | 816774/4997817 [00:05&lt;00:27, 154323.42it/s]

</pre>

-
16%|█▋ | 816526/4997817 [00:05<00:27, 153726.26it/s]
+
16%|█▋ | 816774/4997817 [00:05<00:27, 154323.42it/s]

end{sphinxVerbatim}

-

16%|█▋ | 816526/4997817 [00:05<00:27, 153726.26it/s]

+

16%|█▋ | 816774/4997817 [00:05<00:27, 154323.42it/s]

-
17%|█▋ | 832085/4997817 [00:05&lt;00:27, 154281.24it/s]
+
17%|█▋ | 832233/4997817 [00:05&lt;00:26, 154401.44it/s]

</pre>

-
17%|█▋ | 832085/4997817 [00:05<00:27, 154281.24it/s]
+
17%|█▋ | 832233/4997817 [00:05<00:26, 154401.44it/s]

end{sphinxVerbatim}

-

17%|█▋ | 832085/4997817 [00:05<00:27, 154281.24it/s]

+

17%|█▋ | 832233/4997817 [00:05<00:26, 154401.44it/s]

-
17%|█▋ | 847655/4997817 [00:05&lt;00:26, 154701.31it/s]
+
17%|█▋ | 847796/4997817 [00:05&lt;00:26, 154767.42it/s]

</pre>

-
17%|█▋ | 847655/4997817 [00:05<00:26, 154701.31it/s]
+
17%|█▋ | 847796/4997817 [00:05<00:26, 154767.42it/s]

end{sphinxVerbatim}

-

17%|█▋ | 847655/4997817 [00:05<00:26, 154701.31it/s]

+

17%|█▋ | 847796/4997817 [00:05<00:26, 154767.42it/s]

-
17%|█▋ | 863128/4997817 [00:05&lt;00:26, 154543.39it/s]
+
17%|█▋ | 863276/4997817 [00:05&lt;00:26, 154708.16it/s]

</pre>

-
17%|█▋ | 863128/4997817 [00:05<00:26, 154543.39it/s]
+
17%|█▋ | 863276/4997817 [00:05<00:26, 154708.16it/s]

end{sphinxVerbatim}

-

17%|█▋ | 863128/4997817 [00:05<00:26, 154543.39it/s]

+

17%|█▋ | 863276/4997817 [00:05<00:26, 154708.16it/s]

-
18%|█▊ | 878688/4997817 [00:05&lt;00:26, 154857.05it/s]
+
18%|█▊ | 878750/4997817 [00:05&lt;00:26, 154184.03it/s]

</pre>

-
18%|█▊ | 878688/4997817 [00:05<00:26, 154857.05it/s]
+
18%|█▊ | 878750/4997817 [00:05<00:26, 154184.03it/s]

end{sphinxVerbatim}

-

18%|█▊ | 878688/4997817 [00:05<00:26, 154857.05it/s]

+

18%|█▊ | 878750/4997817 [00:05<00:26, 154184.03it/s]

-
18%|█▊ | 894280/4997817 [00:05&lt;00:26, 155173.03it/s]
+
18%|█▊ | 894171/4997817 [00:05&lt;00:26, 153911.40it/s]

</pre>

-
18%|█▊ | 894280/4997817 [00:05<00:26, 155173.03it/s]
+
18%|█▊ | 894171/4997817 [00:05<00:26, 153911.40it/s]

end{sphinxVerbatim}

-

18%|█▊ | 894280/4997817 [00:05<00:26, 155173.03it/s]

+

18%|█▊ | 894171/4997817 [00:05<00:26, 153911.40it/s]

-
18%|█▊ | 909799/4997817 [00:05&lt;00:26, 153932.45it/s]
+
18%|█▊ | 909620/4997817 [00:05&lt;00:26, 154081.10it/s]

</pre>

-
18%|█▊ | 909799/4997817 [00:05<00:26, 153932.45it/s]
+
18%|█▊ | 909620/4997817 [00:05<00:26, 154081.10it/s]

end{sphinxVerbatim}

-

18%|█▊ | 909799/4997817 [00:05<00:26, 153932.45it/s]

+

18%|█▊ | 909620/4997817 [00:05<00:26, 154081.10it/s]

-
19%|█▊ | 925196/4997817 [00:06&lt;00:26, 153134.34it/s]
+
19%|█▊ | 925183/4997817 [00:06&lt;00:26, 154541.55it/s]

</pre>

-
19%|█▊ | 925196/4997817 [00:06<00:26, 153134.34it/s]
+
19%|█▊ | 925183/4997817 [00:06<00:26, 154541.55it/s]

end{sphinxVerbatim}

-

19%|█▊ | 925196/4997817 [00:06<00:26, 153134.34it/s]

+

19%|█▊ | 925183/4997817 [00:06<00:26, 154541.55it/s]

-
19%|█▉ | 940720/4997817 [00:06&lt;00:26, 153757.32it/s]
+
19%|█▉ | 940724/4997817 [00:06&lt;00:26, 154798.01it/s]

</pre>

-
19%|█▉ | 940720/4997817 [00:06<00:26, 153757.32it/s]
+
19%|█▉ | 940724/4997817 [00:06<00:26, 154798.01it/s]

end{sphinxVerbatim}

-

19%|█▉ | 940720/4997817 [00:06<00:26, 153757.32it/s]

+

19%|█▉ | 940724/4997817 [00:06<00:26, 154798.01it/s]

-
19%|█▉ | 956290/4997817 [00:06&lt;00:26, 154335.16it/s]
+
19%|█▉ | 956285/4997817 [00:06&lt;00:26, 155038.35it/s]

</pre>

-
19%|█▉ | 956290/4997817 [00:06<00:26, 154335.16it/s]
+
19%|█▉ | 956285/4997817 [00:06<00:26, 155038.35it/s]

end{sphinxVerbatim}

-

19%|█▉ | 956290/4997817 [00:06<00:26, 154335.16it/s]

+

19%|█▉ | 956285/4997817 [00:06<00:26, 155038.35it/s]

-
19%|█▉ | 971837/4997817 [00:06&lt;00:26, 154670.43it/s]
+
19%|█▉ | 971790/4997817 [00:06&lt;00:25, 154956.07it/s]

</pre>

-
19%|█▉ | 971837/4997817 [00:06<00:26, 154670.43it/s]
+
19%|█▉ | 971790/4997817 [00:06<00:25, 154956.07it/s]

end{sphinxVerbatim}

-

19%|█▉ | 971837/4997817 [00:06<00:26, 154670.43it/s]

+

19%|█▉ | 971790/4997817 [00:06<00:25, 154956.07it/s]

-
20%|█▉ | 987409/4997817 [00:06&lt;00:25, 154980.24it/s]
+
20%|█▉ | 987286/4997817 [00:06&lt;00:25, 154826.09it/s]

</pre>

-
20%|█▉ | 987409/4997817 [00:06<00:25, 154980.24it/s]
+
20%|█▉ | 987286/4997817 [00:06<00:25, 154826.09it/s]

end{sphinxVerbatim}

-

20%|█▉ | 987409/4997817 [00:06<00:25, 154980.24it/s]

+

20%|█▉ | 987286/4997817 [00:06<00:25, 154826.09it/s]

-
20%|██ | 1003021/4997817 [00:06&lt;00:25, 155319.53it/s]
+
20%|██ | 1002769/4997817 [00:06&lt;00:25, 154658.28it/s]

</pre>

-
20%|██ | 1003021/4997817 [00:06<00:25, 155319.53it/s]
+
20%|██ | 1002769/4997817 [00:06<00:25, 154658.28it/s]

end{sphinxVerbatim}

-

20%|██ | 1003021/4997817 [00:06<00:25, 155319.53it/s]

+

20%|██ | 1002769/4997817 [00:06<00:25, 154658.28it/s]

-
20%|██ | 1018554/4997817 [00:06&lt;00:25, 155043.65it/s]
+
20%|██ | 1018250/4997817 [00:06&lt;00:25, 154701.77it/s]

</pre>

-
20%|██ | 1018554/4997817 [00:06<00:25, 155043.65it/s]
+
20%|██ | 1018250/4997817 [00:06<00:25, 154701.77it/s]

end{sphinxVerbatim}

-

20%|██ | 1018554/4997817 [00:06<00:25, 155043.65it/s]

+

20%|██ | 1018250/4997817 [00:06<00:25, 154701.77it/s]

-
21%|██ | 1034111/4997817 [00:06&lt;00:25, 155190.83it/s]
+
21%|██ | 1033721/4997817 [00:06&lt;00:25, 154399.73it/s]

</pre>

-
21%|██ | 1034111/4997817 [00:06<00:25, 155190.83it/s]
+
21%|██ | 1033721/4997817 [00:06<00:25, 154399.73it/s]

end{sphinxVerbatim}

-

21%|██ | 1034111/4997817 [00:06<00:25, 155190.83it/s]

+

21%|██ | 1033721/4997817 [00:06<00:25, 154399.73it/s]

-
21%|██ | 1049635/4997817 [00:06&lt;00:25, 155203.50it/s]
+
21%|██ | 1049162/4997817 [00:06&lt;00:25, 154388.08it/s]

</pre>

-
21%|██ | 1049635/4997817 [00:06<00:25, 155203.50it/s]
+
21%|██ | 1049162/4997817 [00:06<00:25, 154388.08it/s]

end{sphinxVerbatim}

-

21%|██ | 1049635/4997817 [00:06<00:25, 155203.50it/s]

+

21%|██ | 1049162/4997817 [00:06<00:25, 154388.08it/s]

-
21%|██▏ | 1065196/4997817 [00:06&lt;00:25, 155323.02it/s]
+
21%|██▏ | 1064700/4997817 [00:06&lt;00:25, 154682.90it/s]

</pre>

-
21%|██▏ | 1065196/4997817 [00:06<00:25, 155323.02it/s]
+
21%|██▏ | 1064700/4997817 [00:06<00:25, 154682.90it/s]

end{sphinxVerbatim}

-

21%|██▏ | 1065196/4997817 [00:06<00:25, 155323.02it/s]

+

21%|██▏ | 1064700/4997817 [00:06<00:25, 154682.90it/s]

-
22%|██▏ | 1080813/4997817 [00:07&lt;00:25, 155572.06it/s]
+
22%|██▏ | 1080169/4997817 [00:07&lt;00:25, 154502.61it/s]

</pre>

-
22%|██▏ | 1080813/4997817 [00:07<00:25, 155572.06it/s]
+
22%|██▏ | 1080169/4997817 [00:07<00:25, 154502.61it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1080813/4997817 [00:07<00:25, 155572.06it/s]

+

22%|██▏ | 1080169/4997817 [00:07<00:25, 154502.61it/s]

-
22%|██▏ | 1096371/4997817 [00:07&lt;00:25, 155143.85it/s]
+
22%|██▏ | 1095620/4997817 [00:07&lt;00:25, 153934.36it/s]

</pre>

-
22%|██▏ | 1096371/4997817 [00:07<00:25, 155143.85it/s]
+
22%|██▏ | 1095620/4997817 [00:07<00:25, 153934.36it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1096371/4997817 [00:07<00:25, 155143.85it/s]

+

22%|██▏ | 1095620/4997817 [00:07<00:25, 153934.36it/s]

-
22%|██▏ | 1111933/4997817 [00:07&lt;00:25, 155283.41it/s]
+
22%|██▏ | 1111014/4997817 [00:07&lt;00:25, 153453.97it/s]

</pre>

-
22%|██▏ | 1111933/4997817 [00:07<00:25, 155283.41it/s]
+
22%|██▏ | 1111014/4997817 [00:07<00:25, 153453.97it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1111933/4997817 [00:07<00:25, 155283.41it/s]

+

22%|██▏ | 1111014/4997817 [00:07<00:25, 153453.97it/s]

-
23%|██▎ | 1127467/4997817 [00:07&lt;00:24, 155297.30it/s]
+
23%|██▎ | 1126460/4997817 [00:07&lt;00:25, 153751.09it/s]

</pre>

-
23%|██▎ | 1127467/4997817 [00:07<00:24, 155297.30it/s]
+
23%|██▎ | 1126460/4997817 [00:07<00:25, 153751.09it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1127467/4997817 [00:07<00:24, 155297.30it/s]

+

23%|██▎ | 1126460/4997817 [00:07<00:25, 153751.09it/s]

-
23%|██▎ | 1143078/4997817 [00:07&lt;00:24, 155537.53it/s]
+
23%|██▎ | 1141915/4997817 [00:07&lt;00:25, 153987.80it/s]

</pre>

-
23%|██▎ | 1143078/4997817 [00:07<00:24, 155537.53it/s]
+
23%|██▎ | 1141915/4997817 [00:07<00:25, 153987.80it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1143078/4997817 [00:07<00:24, 155537.53it/s]

+

23%|██▎ | 1141915/4997817 [00:07<00:25, 153987.80it/s]

-
23%|██▎ | 1158632/4997817 [00:07&lt;00:24, 155524.20it/s]
+
23%|██▎ | 1157315/4997817 [00:07&lt;00:24, 153646.26it/s]

</pre>

-
23%|██▎ | 1158632/4997817 [00:07<00:24, 155524.20it/s]
+
23%|██▎ | 1157315/4997817 [00:07<00:24, 153646.26it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1158632/4997817 [00:07<00:24, 155524.20it/s]

+

23%|██▎ | 1157315/4997817 [00:07<00:24, 153646.26it/s]

-
23%|██▎ | 1174185/4997817 [00:07&lt;00:24, 155271.94it/s]
+
23%|██▎ | 1172782/4997817 [00:07&lt;00:24, 153950.34it/s]

</pre>

-
23%|██▎ | 1174185/4997817 [00:07<00:24, 155271.94it/s]
+
23%|██▎ | 1172782/4997817 [00:07<00:24, 153950.34it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1174185/4997817 [00:07<00:24, 155271.94it/s]

+

23%|██▎ | 1172782/4997817 [00:07<00:24, 153950.34it/s]

-
24%|██▍ | 1189714/4997817 [00:07&lt;00:24, 155275.28it/s]
+
24%|██▍ | 1188178/4997817 [00:07&lt;00:24, 153569.49it/s]

</pre>

-
24%|██▍ | 1189714/4997817 [00:07<00:24, 155275.28it/s]
+
24%|██▍ | 1188178/4997817 [00:07<00:24, 153569.49it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1189714/4997817 [00:07<00:24, 155275.28it/s]

+

24%|██▍ | 1188178/4997817 [00:07<00:24, 153569.49it/s]

-
24%|██▍ | 1205250/4997817 [00:07&lt;00:24, 155297.83it/s]
+
24%|██▍ | 1203670/4997817 [00:07&lt;00:24, 153971.80it/s]

</pre>

-
24%|██▍ | 1205250/4997817 [00:07<00:24, 155297.83it/s]
+
24%|██▍ | 1203670/4997817 [00:07<00:24, 153971.80it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1205250/4997817 [00:07<00:24, 155297.83it/s]

+

24%|██▍ | 1203670/4997817 [00:07<00:24, 153971.80it/s]

-
24%|██▍ | 1220788/4997817 [00:07&lt;00:24, 155319.29it/s]
+
24%|██▍ | 1219312/4997817 [00:07&lt;00:24, 154701.16it/s]

</pre>

-
24%|██▍ | 1220788/4997817 [00:07<00:24, 155319.29it/s]
+
24%|██▍ | 1219312/4997817 [00:07<00:24, 154701.16it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1220788/4997817 [00:07<00:24, 155319.29it/s]

+

24%|██▍ | 1219312/4997817 [00:07<00:24, 154701.16it/s]

-
25%|██▍ | 1236320/4997817 [00:08&lt;00:24, 155297.01it/s]
+
25%|██▍ | 1234865/4997817 [00:08&lt;00:24, 154946.23it/s]

</pre>

-
25%|██▍ | 1236320/4997817 [00:08<00:24, 155297.01it/s]
+
25%|██▍ | 1234865/4997817 [00:08<00:24, 154946.23it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1236320/4997817 [00:08<00:24, 155297.01it/s]

+

25%|██▍ | 1234865/4997817 [00:08<00:24, 154946.23it/s]

-
25%|██▌ | 1251850/4997817 [00:08&lt;00:24, 154837.80it/s]
+
25%|██▌ | 1250438/4997817 [00:08&lt;00:24, 155179.69it/s]

</pre>

-
25%|██▌ | 1251850/4997817 [00:08<00:24, 154837.80it/s]
+
25%|██▌ | 1250438/4997817 [00:08<00:24, 155179.69it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1251850/4997817 [00:08<00:24, 154837.80it/s]

+

25%|██▌ | 1250438/4997817 [00:08<00:24, 155179.69it/s]

-
25%|██▌ | 1267335/4997817 [00:08&lt;00:24, 154514.28it/s]
+
25%|██▌ | 1266015/4997817 [00:08&lt;00:24, 155354.02it/s]

</pre>

-
25%|██▌ | 1267335/4997817 [00:08<00:24, 154514.28it/s]
+
25%|██▌ | 1266015/4997817 [00:08<00:24, 155354.02it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1267335/4997817 [00:08<00:24, 154514.28it/s]

+

25%|██▌ | 1266015/4997817 [00:08<00:24, 155354.02it/s]

-
26%|██▌ | 1282844/4997817 [00:08&lt;00:24, 154680.42it/s]
+
26%|██▌ | 1281583/4997817 [00:08&lt;00:23, 155450.35it/s]

</pre>

-
26%|██▌ | 1282844/4997817 [00:08<00:24, 154680.42it/s]
+
26%|██▌ | 1281583/4997817 [00:08<00:23, 155450.35it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1282844/4997817 [00:08<00:24, 154680.42it/s]

+

26%|██▌ | 1281583/4997817 [00:08<00:23, 155450.35it/s]

-
26%|██▌ | 1298407/4997817 [00:08&lt;00:23, 154960.16it/s]
+
26%|██▌ | 1297301/4997817 [00:08&lt;00:23, 155966.62it/s]

</pre>

-
26%|██▌ | 1298407/4997817 [00:08<00:23, 154960.16it/s]
+
26%|██▌ | 1297301/4997817 [00:08<00:23, 155966.62it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1298407/4997817 [00:08<00:23, 154960.16it/s]

+

26%|██▌ | 1297301/4997817 [00:08<00:23, 155966.62it/s]

-
26%|██▋ | 1313976/4997817 [00:08&lt;00:23, 155176.70it/s]
+
26%|██▋ | 1312991/4997817 [00:08&lt;00:23, 156242.91it/s]

</pre>

-
26%|██▋ | 1313976/4997817 [00:08<00:23, 155176.70it/s]
+
26%|██▋ | 1312991/4997817 [00:08<00:23, 156242.91it/s]

end{sphinxVerbatim}

-

26%|██▋ | 1313976/4997817 [00:08<00:23, 155176.70it/s]

+

26%|██▋ | 1312991/4997817 [00:08<00:23, 156242.91it/s]

-
27%|██▋ | 1329577/4997817 [00:08&lt;00:23, 155424.12it/s]
+
27%|██▋ | 1328616/4997817 [00:08&lt;00:23, 155989.64it/s]

</pre>

-
27%|██▋ | 1329577/4997817 [00:08<00:23, 155424.12it/s]
+
27%|██▋ | 1328616/4997817 [00:08<00:23, 155989.64it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1329577/4997817 [00:08<00:23, 155424.12it/s]

+

27%|██▋ | 1328616/4997817 [00:08<00:23, 155989.64it/s]

-
27%|██▋ | 1345162/4997817 [00:08&lt;00:23, 155550.05it/s]
+
27%|██▋ | 1344327/4997817 [00:08&lt;00:23, 156323.68it/s]

</pre>

-
27%|██▋ | 1345162/4997817 [00:08<00:23, 155550.05it/s]
+
27%|██▋ | 1344327/4997817 [00:08<00:23, 156323.68it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1345162/4997817 [00:08<00:23, 155550.05it/s]

+

27%|██▋ | 1344327/4997817 [00:08<00:23, 156323.68it/s]

-
27%|██▋ | 1360737/4997817 [00:08&lt;00:23, 155607.38it/s]
+
27%|██▋ | 1359960/4997817 [00:08&lt;00:24, 148351.64it/s]

</pre>

-
27%|██▋ | 1360737/4997817 [00:08<00:23, 155607.38it/s]
+
27%|██▋ | 1359960/4997817 [00:08<00:24, 148351.64it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1360737/4997817 [00:08<00:23, 155607.38it/s]

+

27%|██▋ | 1359960/4997817 [00:08<00:24, 148351.64it/s]

-
28%|██▊ | 1376313/4997817 [00:08&lt;00:23, 155649.40it/s]
+
28%|██▊ | 1375464/4997817 [00:08&lt;00:24, 150281.68it/s]

</pre>

-
28%|██▊ | 1376313/4997817 [00:08<00:23, 155649.40it/s]
+
28%|██▊ | 1375464/4997817 [00:08<00:24, 150281.68it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1376313/4997817 [00:08<00:23, 155649.40it/s]

+

28%|██▊ | 1375464/4997817 [00:08<00:24, 150281.68it/s]

-
28%|██▊ | 1391965/4997817 [00:09&lt;00:23, 155908.88it/s]
+
28%|██▊ | 1391084/4997817 [00:09&lt;00:23, 152008.93it/s]

</pre>

-
28%|██▊ | 1391965/4997817 [00:09<00:23, 155908.88it/s]
+
28%|██▊ | 1391084/4997817 [00:09<00:23, 152008.93it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1391965/4997817 [00:09<00:23, 155908.88it/s]

+

28%|██▊ | 1391084/4997817 [00:09<00:23, 152008.93it/s]

-
28%|██▊ | 1407556/4997817 [00:09&lt;00:23, 155321.25it/s]
+
28%|██▊ | 1406706/4997817 [00:09&lt;00:23, 153246.84it/s]

</pre>

-
28%|██▊ | 1407556/4997817 [00:09<00:23, 155321.25it/s]
+
28%|██▊ | 1406706/4997817 [00:09<00:23, 153246.84it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1407556/4997817 [00:09<00:23, 155321.25it/s]

+

28%|██▊ | 1406706/4997817 [00:09<00:23, 153246.84it/s]

-
28%|██▊ | 1423155/4997817 [00:09&lt;00:22, 155479.77it/s]
+
28%|██▊ | 1422423/4997817 [00:09&lt;00:23, 154405.82it/s]

</pre>

-
28%|██▊ | 1423155/4997817 [00:09<00:22, 155479.77it/s]
+
28%|██▊ | 1422423/4997817 [00:09<00:23, 154405.82it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1423155/4997817 [00:09<00:22, 155479.77it/s]

+

28%|██▊ | 1422423/4997817 [00:09<00:23, 154405.82it/s]

-
29%|██▉ | 1438785/4997817 [00:09&lt;00:22, 155724.14it/s]
+
29%|██▉ | 1438109/4997817 [00:09&lt;00:22, 155134.29it/s]

</pre>

-
29%|██▉ | 1438785/4997817 [00:09<00:22, 155724.14it/s]
+
29%|██▉ | 1438109/4997817 [00:09<00:22, 155134.29it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1438785/4997817 [00:09<00:22, 155724.14it/s]

+

29%|██▉ | 1438109/4997817 [00:09<00:22, 155134.29it/s]

-
29%|██▉ | 1454384/4997817 [00:09&lt;00:22, 155801.48it/s]
+
29%|██▉ | 1453665/4997817 [00:09&lt;00:22, 155257.81it/s]

</pre>

-
29%|██▉ | 1454384/4997817 [00:09<00:22, 155801.48it/s]
+
29%|██▉ | 1453665/4997817 [00:09<00:22, 155257.81it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1454384/4997817 [00:09<00:22, 155801.48it/s]

+

29%|██▉ | 1453665/4997817 [00:09<00:22, 155257.81it/s]

-
29%|██▉ | 1470014/4997817 [00:09&lt;00:22, 155947.13it/s]
+
29%|██▉ | 1469349/4997817 [00:09&lt;00:22, 155727.92it/s]

</pre>

-
29%|██▉ | 1470014/4997817 [00:09<00:22, 155947.13it/s]
+
29%|██▉ | 1469349/4997817 [00:09<00:22, 155727.92it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1470014/4997817 [00:09<00:22, 155947.13it/s]

+

29%|██▉ | 1469349/4997817 [00:09<00:22, 155727.92it/s]

-
30%|██▉ | 1485609/4997817 [00:09&lt;00:22, 155913.61it/s]
+
30%|██▉ | 1485018/4997817 [00:09&lt;00:22, 156012.89it/s]

</pre>

-
30%|██▉ | 1485609/4997817 [00:09<00:22, 155913.61it/s]
+
30%|██▉ | 1485018/4997817 [00:09<00:22, 156012.89it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1485609/4997817 [00:09<00:22, 155913.61it/s]

+

30%|██▉ | 1485018/4997817 [00:09<00:22, 156012.89it/s]

-
30%|███ | 1501201/4997817 [00:09&lt;00:22, 155784.73it/s]
+
30%|███ | 1500627/4997817 [00:09&lt;00:22, 155976.47it/s]

</pre>

-
30%|███ | 1501201/4997817 [00:09<00:22, 155784.73it/s]
+
30%|███ | 1500627/4997817 [00:09<00:22, 155976.47it/s]

end{sphinxVerbatim}

-

30%|███ | 1501201/4997817 [00:09<00:22, 155784.73it/s]

+

30%|███ | 1500627/4997817 [00:09<00:22, 155976.47it/s]

-
30%|███ | 1516780/4997817 [00:09&lt;00:22, 155559.73it/s]
+
30%|███ | 1516230/4997817 [00:09&lt;00:22, 153762.84it/s]

</pre>

-
30%|███ | 1516780/4997817 [00:09<00:22, 155559.73it/s]
+
30%|███ | 1516230/4997817 [00:09<00:22, 153762.84it/s]

end{sphinxVerbatim}

-

30%|███ | 1516780/4997817 [00:09<00:22, 155559.73it/s]

+

30%|███ | 1516230/4997817 [00:09<00:22, 153762.84it/s]

-
31%|███ | 1532380/4997817 [00:09&lt;00:22, 155687.40it/s]
+
31%|███ | 1531868/4997817 [00:09&lt;00:22, 154536.52it/s]

</pre>

-
31%|███ | 1532380/4997817 [00:09<00:22, 155687.40it/s]
+
31%|███ | 1531868/4997817 [00:09<00:22, 154536.52it/s]

end{sphinxVerbatim}

-

31%|███ | 1532380/4997817 [00:09<00:22, 155687.40it/s]

+

31%|███ | 1531868/4997817 [00:09<00:22, 154536.52it/s]

-
31%|███ | 1547949/4997817 [00:10&lt;00:22, 155528.12it/s]
+
31%|███ | 1547362/4997817 [00:10&lt;00:22, 154655.76it/s]

</pre>

-
31%|███ | 1547949/4997817 [00:10<00:22, 155528.12it/s]
+
31%|███ | 1547362/4997817 [00:10<00:22, 154655.76it/s]

end{sphinxVerbatim}

-

31%|███ | 1547949/4997817 [00:10<00:22, 155528.12it/s]

+

31%|███ | 1547362/4997817 [00:10<00:22, 154655.76it/s]

-
31%|███▏ | 1563502/4997817 [00:10&lt;00:23, 147324.84it/s]
+
31%|███▏ | 1562834/4997817 [00:10&lt;00:22, 154496.08it/s]

</pre>

-
31%|███▏ | 1563502/4997817 [00:10<00:23, 147324.84it/s]
+
31%|███▏ | 1562834/4997817 [00:10<00:22, 154496.08it/s]

end{sphinxVerbatim}

-

31%|███▏ | 1563502/4997817 [00:10<00:23, 147324.84it/s]

+

31%|███▏ | 1562834/4997817 [00:10<00:22, 154496.08it/s]

-
32%|███▏ | 1579008/4997817 [00:10&lt;00:22, 149552.84it/s]
+
32%|███▏ | 1578361/4997817 [00:10&lt;00:22, 154724.34it/s]

</pre>

-
32%|███▏ | 1579008/4997817 [00:10<00:22, 149552.84it/s]
+
32%|███▏ | 1578361/4997817 [00:10<00:22, 154724.34it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1579008/4997817 [00:10<00:22, 149552.84it/s]

+

32%|███▏ | 1578361/4997817 [00:10<00:22, 154724.34it/s]

-
32%|███▏ | 1594563/4997817 [00:10&lt;00:22, 151300.39it/s]
+
32%|███▏ | 1593837/4997817 [00:10&lt;00:22, 154526.62it/s]

</pre>

-
32%|███▏ | 1594563/4997817 [00:10<00:22, 151300.39it/s]
+
32%|███▏ | 1593837/4997817 [00:10<00:22, 154526.62it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1594563/4997817 [00:10<00:22, 151300.39it/s]

+

32%|███▏ | 1593837/4997817 [00:10<00:22, 154526.62it/s]

-
32%|███▏ | 1610073/4997817 [00:10&lt;00:22, 152415.30it/s]
+
32%|███▏ | 1609292/4997817 [00:10&lt;00:21, 154082.95it/s]

</pre>

-
32%|███▏ | 1610073/4997817 [00:10<00:22, 152415.30it/s]
+
32%|███▏ | 1609292/4997817 [00:10<00:21, 154082.95it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1610073/4997817 [00:10<00:22, 152415.30it/s]

+

32%|███▏ | 1609292/4997817 [00:10<00:21, 154082.95it/s]

-
33%|███▎ | 1625549/4997817 [00:10&lt;00:22, 153107.12it/s]
+
33%|███▎ | 1624709/4997817 [00:10&lt;00:21, 154108.12it/s]

</pre>

-
33%|███▎ | 1625549/4997817 [00:10<00:22, 153107.12it/s]
+
33%|███▎ | 1624709/4997817 [00:10<00:21, 154108.12it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1625549/4997817 [00:10<00:22, 153107.12it/s]

+

33%|███▎ | 1624709/4997817 [00:10<00:21, 154108.12it/s]

-
33%|███▎ | 1640959/4997817 [00:10&lt;00:21, 153398.91it/s]
+
33%|███▎ | 1640152/4997817 [00:10&lt;00:21, 154202.78it/s]

</pre>

-
33%|███▎ | 1640959/4997817 [00:10<00:21, 153398.91it/s]
+
33%|███▎ | 1640152/4997817 [00:10<00:21, 154202.78it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1640959/4997817 [00:10<00:21, 153398.91it/s]

+

33%|███▎ | 1640152/4997817 [00:10<00:21, 154202.78it/s]

-
33%|███▎ | 1656429/4997817 [00:10&lt;00:21, 153784.58it/s]
+
33%|███▎ | 1655574/4997817 [00:10&lt;00:21, 153955.25it/s]

</pre>

-
33%|███▎ | 1656429/4997817 [00:10<00:21, 153784.58it/s]
+
33%|███▎ | 1655574/4997817 [00:10<00:21, 153955.25it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1656429/4997817 [00:10<00:21, 153784.58it/s]

+

33%|███▎ | 1655574/4997817 [00:10<00:21, 153955.25it/s]

-
33%|███▎ | 1671823/4997817 [00:10&lt;00:22, 147620.43it/s]
+
33%|███▎ | 1670971/4997817 [00:10&lt;00:21, 153956.41it/s]

</pre>

-
33%|███▎ | 1671823/4997817 [00:10<00:22, 147620.43it/s]
+
33%|███▎ | 1670971/4997817 [00:10<00:21, 153956.41it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1671823/4997817 [00:10<00:22, 147620.43it/s]

+

33%|███▎ | 1670971/4997817 [00:10<00:21, 153956.41it/s]

-
34%|███▍ | 1687245/4997817 [00:10&lt;00:22, 149534.13it/s]
+
34%|███▎ | 1686509/4997817 [00:10&lt;00:21, 154381.52it/s]

</pre>

-
34%|███▍ | 1687245/4997817 [00:10<00:22, 149534.13it/s]
+
34%|███▎ | 1686509/4997817 [00:10<00:21, 154381.52it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1687245/4997817 [00:10<00:22, 149534.13it/s]

+

34%|███▎ | 1686509/4997817 [00:10<00:21, 154381.52it/s]

-
34%|███▍ | 1702248/4997817 [00:11&lt;00:22, 145716.03it/s]
+
34%|███▍ | 1701951/4997817 [00:11&lt;00:21, 154392.21it/s]

</pre>

-
34%|███▍ | 1702248/4997817 [00:11<00:22, 145716.03it/s]
+
34%|███▍ | 1701951/4997817 [00:11<00:21, 154392.21it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1702248/4997817 [00:11<00:22, 145716.03it/s]

+

34%|███▍ | 1701951/4997817 [00:11<00:21, 154392.21it/s]

-
34%|███▍ | 1717722/4997817 [00:11&lt;00:22, 148327.18it/s]
+
34%|███▍ | 1717391/4997817 [00:11&lt;00:21, 154191.74it/s]

</pre>

-
34%|███▍ | 1717722/4997817 [00:11<00:22, 148327.18it/s]
+
34%|███▍ | 1717391/4997817 [00:11<00:21, 154191.74it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1717722/4997817 [00:11<00:22, 148327.18it/s]

+

34%|███▍ | 1717391/4997817 [00:11<00:21, 154191.74it/s]

-
35%|███▍ | 1733212/4997817 [00:11&lt;00:21, 150249.60it/s]
+
35%|███▍ | 1732903/4997817 [00:11&lt;00:21, 154468.06it/s]

</pre>

-
35%|███▍ | 1733212/4997817 [00:11<00:21, 150249.60it/s]
+
35%|███▍ | 1732903/4997817 [00:11<00:21, 154468.06it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1733212/4997817 [00:11<00:21, 150249.60it/s]

+

35%|███▍ | 1732903/4997817 [00:11<00:21, 154468.06it/s]

-
35%|███▍ | 1748683/4997817 [00:11&lt;00:21, 151562.76it/s]
+
35%|███▍ | 1748426/4997817 [00:11&lt;00:21, 154695.22it/s]

</pre>

-
35%|███▍ | 1748683/4997817 [00:11<00:21, 151562.76it/s]
+
35%|███▍ | 1748426/4997817 [00:11<00:21, 154695.22it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1748683/4997817 [00:11<00:21, 151562.76it/s]

+

35%|███▍ | 1748426/4997817 [00:11<00:21, 154695.22it/s]

-
35%|███▌ | 1764179/4997817 [00:11&lt;00:21, 152568.57it/s]
+
35%|███▌ | 1763908/4997817 [00:11&lt;00:20, 154731.01it/s]

</pre>

-
35%|███▌ | 1764179/4997817 [00:11<00:21, 152568.57it/s]
+
35%|███▌ | 1763908/4997817 [00:11<00:20, 154731.01it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1764179/4997817 [00:11<00:21, 152568.57it/s]

+

35%|███▌ | 1763908/4997817 [00:11<00:20, 154731.01it/s]

-
36%|███▌ | 1779561/4997817 [00:11&lt;00:21, 152939.77it/s]
+
36%|███▌ | 1779465/4997817 [00:11&lt;00:20, 154980.84it/s]

</pre>

-
36%|███▌ | 1779561/4997817 [00:11<00:21, 152939.77it/s]
+
36%|███▌ | 1779465/4997817 [00:11<00:20, 154980.84it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1779561/4997817 [00:11<00:21, 152939.77it/s]

+

36%|███▌ | 1779465/4997817 [00:11<00:20, 154980.84it/s]

-
36%|███▌ | 1794870/4997817 [00:11&lt;00:20, 152948.40it/s]
+
36%|███▌ | 1794973/4997817 [00:11&lt;00:20, 155008.18it/s]

</pre>

-
36%|███▌ | 1794870/4997817 [00:11<00:20, 152948.40it/s]
+
36%|███▌ | 1794973/4997817 [00:11<00:20, 155008.18it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1794870/4997817 [00:11<00:20, 152948.40it/s]

+

36%|███▌ | 1794973/4997817 [00:11<00:20, 155008.18it/s]

-
36%|███▌ | 1810300/4997817 [00:11&lt;00:20, 153350.41it/s]
+
36%|███▌ | 1810474/4997817 [00:11&lt;00:20, 154706.88it/s]

</pre>

-
36%|███▌ | 1810300/4997817 [00:11<00:20, 153350.41it/s]
+
36%|███▌ | 1810474/4997817 [00:11<00:20, 154706.88it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1810300/4997817 [00:11<00:20, 153350.41it/s]

+

36%|███▌ | 1810474/4997817 [00:11<00:20, 154706.88it/s]

-
37%|███▋ | 1825723/4997817 [00:11&lt;00:20, 153610.68it/s]
+
37%|███▋ | 1825945/4997817 [00:11&lt;00:21, 150553.76it/s]

</pre>

-
37%|███▋ | 1825723/4997817 [00:11<00:20, 153610.68it/s]
+
37%|███▋ | 1825945/4997817 [00:11<00:21, 150553.76it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1825723/4997817 [00:11<00:20, 153610.68it/s]

+

37%|███▋ | 1825945/4997817 [00:11<00:21, 150553.76it/s]

-
37%|███▋ | 1841251/4997817 [00:11&lt;00:20, 154108.13it/s]
+
37%|███▋ | 1841366/4997817 [00:11&lt;00:20, 151623.92it/s]

</pre>

-
37%|███▋ | 1841251/4997817 [00:11<00:20, 154108.13it/s]
+
37%|███▋ | 1841366/4997817 [00:11<00:20, 151623.92it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1841251/4997817 [00:11<00:20, 154108.13it/s]

+

37%|███▋ | 1841366/4997817 [00:11<00:20, 151623.92it/s]

-
37%|███▋ | 1856784/4997817 [00:12&lt;00:20, 154470.98it/s]
+
37%|███▋ | 1856852/4997817 [00:12&lt;00:20, 152579.57it/s]

</pre>

-
37%|███▋ | 1856784/4997817 [00:12<00:20, 154470.98it/s]
+
37%|███▋ | 1856852/4997817 [00:12<00:20, 152579.57it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1856784/4997817 [00:12<00:20, 154470.98it/s]

+

37%|███▋ | 1856852/4997817 [00:12<00:20, 152579.57it/s]

-
37%|███▋ | 1872234/4997817 [00:12&lt;00:20, 154379.68it/s]
+
37%|███▋ | 1872563/4997817 [00:12&lt;00:20, 153923.92it/s]

</pre>

-
37%|███▋ | 1872234/4997817 [00:12<00:20, 154379.68it/s]
+
37%|███▋ | 1872563/4997817 [00:12<00:20, 153923.92it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1872234/4997817 [00:12<00:20, 154379.68it/s]

+

37%|███▋ | 1872563/4997817 [00:12<00:20, 153923.92it/s]

-
38%|███▊ | 1887674/4997817 [00:12&lt;00:20, 154351.08it/s]
+
38%|███▊ | 1888219/4997817 [00:12&lt;00:20, 154708.39it/s]

</pre>

-
38%|███▊ | 1887674/4997817 [00:12<00:20, 154351.08it/s]
+
38%|███▊ | 1888219/4997817 [00:12<00:20, 154708.39it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1887674/4997817 [00:12<00:20, 154351.08it/s]

+

38%|███▊ | 1888219/4997817 [00:12<00:20, 154708.39it/s]

-
38%|███▊ | 1903137/4997817 [00:12&lt;00:20, 154430.74it/s]
+
38%|███▊ | 1903953/4997817 [00:12&lt;00:19, 155491.61it/s]

</pre>

-
38%|███▊ | 1903137/4997817 [00:12<00:20, 154430.74it/s]
+
38%|███▊ | 1903953/4997817 [00:12<00:19, 155491.61it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1903137/4997817 [00:12<00:20, 154430.74it/s]

+

38%|███▊ | 1903953/4997817 [00:12<00:19, 155491.61it/s]

-
38%|███▊ | 1918581/4997817 [00:12&lt;00:19, 154231.39it/s]
+
38%|███▊ | 1919523/4997817 [00:12&lt;00:19, 155552.74it/s]

</pre>

-
38%|███▊ | 1918581/4997817 [00:12<00:19, 154231.39it/s]
+
38%|███▊ | 1919523/4997817 [00:12<00:19, 155552.74it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1918581/4997817 [00:12<00:19, 154231.39it/s]

+

38%|███▊ | 1919523/4997817 [00:12<00:19, 155552.74it/s]

-
39%|███▊ | 1934021/4997817 [00:12&lt;00:19, 154278.42it/s]
+
39%|███▊ | 1935132/4997817 [00:12&lt;00:19, 155711.90it/s]

</pre>

-
39%|███▊ | 1934021/4997817 [00:12<00:19, 154278.42it/s]
+
39%|███▊ | 1935132/4997817 [00:12<00:19, 155711.90it/s]

end{sphinxVerbatim}

-

39%|███▊ | 1934021/4997817 [00:12<00:19, 154278.42it/s]

+

39%|███▊ | 1935132/4997817 [00:12<00:19, 155711.90it/s]

-
39%|███▉ | 1949544/4997817 [00:12&lt;00:19, 154560.34it/s]
+
39%|███▉ | 1950707/4997817 [00:12&lt;00:19, 155602.81it/s]

</pre>

-
39%|███▉ | 1949544/4997817 [00:12<00:19, 154560.34it/s]
+
39%|███▉ | 1950707/4997817 [00:12<00:19, 155602.81it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1949544/4997817 [00:12<00:19, 154560.34it/s]

+

39%|███▉ | 1950707/4997817 [00:12<00:19, 155602.81it/s]

-
39%|███▉ | 1965001/4997817 [00:12&lt;00:19, 154544.17it/s]
+
39%|███▉ | 1966388/4997817 [00:12&lt;00:19, 155963.60it/s]

</pre>

-
39%|███▉ | 1965001/4997817 [00:12<00:19, 154544.17it/s]
+
39%|███▉ | 1966388/4997817 [00:12<00:19, 155963.60it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1965001/4997817 [00:12<00:19, 154544.17it/s]

+

39%|███▉ | 1966388/4997817 [00:12<00:19, 155963.60it/s]

-
40%|███▉ | 1980514/4997817 [00:12&lt;00:19, 154717.76it/s]
+
40%|███▉ | 1982054/4997817 [00:12&lt;00:19, 156169.63it/s]

</pre>

-
40%|███▉ | 1980514/4997817 [00:12<00:19, 154717.76it/s]
+
40%|███▉ | 1982054/4997817 [00:12<00:19, 156169.63it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1980514/4997817 [00:12<00:19, 154717.76it/s]

+

40%|███▉ | 1982054/4997817 [00:12<00:19, 156169.63it/s]

-
40%|███▉ | 1995986/4997817 [00:12&lt;00:19, 154624.51it/s]
+
40%|███▉ | 1997673/4997817 [00:12&lt;00:19, 155736.39it/s]

</pre>

-
40%|███▉ | 1995986/4997817 [00:12<00:19, 154624.51it/s]
+
40%|███▉ | 1997673/4997817 [00:12<00:19, 155736.39it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1995986/4997817 [00:12<00:19, 154624.51it/s]

+

40%|███▉ | 1997673/4997817 [00:12<00:19, 155736.39it/s]

-
40%|████ | 2011449/4997817 [00:13&lt;00:19, 154571.51it/s]
+
40%|████ | 2013248/4997817 [00:13&lt;00:19, 155496.01it/s]

</pre>

-
40%|████ | 2011449/4997817 [00:13<00:19, 154571.51it/s]
+
40%|████ | 2013248/4997817 [00:13<00:19, 155496.01it/s]

end{sphinxVerbatim}

-

40%|████ | 2011449/4997817 [00:13<00:19, 154571.51it/s]

+

40%|████ | 2013248/4997817 [00:13<00:19, 155496.01it/s]

-
41%|████ | 2026907/4997817 [00:13&lt;00:19, 154431.61it/s]
+
41%|████ | 2028804/4997817 [00:13&lt;00:19, 155511.76it/s]

</pre>

-
41%|████ | 2026907/4997817 [00:13<00:19, 154431.61it/s]
+
41%|████ | 2028804/4997817 [00:13<00:19, 155511.76it/s]

end{sphinxVerbatim}

-

41%|████ | 2026907/4997817 [00:13<00:19, 154431.61it/s]

+

41%|████ | 2028804/4997817 [00:13<00:19, 155511.76it/s]

-
41%|████ | 2042351/4997817 [00:13&lt;00:19, 150939.06it/s]
+
41%|████ | 2044356/4997817 [00:13&lt;00:19, 155257.61it/s]

</pre>

-
41%|████ | 2042351/4997817 [00:13<00:19, 150939.06it/s]
+
41%|████ | 2044356/4997817 [00:13<00:19, 155257.61it/s]

end{sphinxVerbatim}

-

41%|████ | 2042351/4997817 [00:13<00:19, 150939.06it/s]

+

41%|████ | 2044356/4997817 [00:13<00:19, 155257.61it/s]

-
41%|████ | 2057814/4997817 [00:13&lt;00:19, 152025.47it/s]
+
41%|████ | 2059960/4997817 [00:13&lt;00:18, 155488.99it/s]

</pre>

-
41%|████ | 2057814/4997817 [00:13<00:19, 152025.47it/s]
+
41%|████ | 2059960/4997817 [00:13<00:18, 155488.99it/s]

end{sphinxVerbatim}

-

41%|████ | 2057814/4997817 [00:13<00:19, 152025.47it/s]

+

41%|████ | 2059960/4997817 [00:13<00:18, 155488.99it/s]

-
41%|████▏ | 2073170/4997817 [00:13&lt;00:19, 152476.99it/s]
+
42%|████▏ | 2075625/4997817 [00:13&lt;00:18, 155833.92it/s]

</pre>

-
41%|████▏ | 2073170/4997817 [00:13<00:19, 152476.99it/s]
+
42%|████▏ | 2075625/4997817 [00:13<00:18, 155833.92it/s]

end{sphinxVerbatim}

-

41%|████▏ | 2073170/4997817 [00:13<00:19, 152476.99it/s]

+

42%|████▏ | 2075625/4997817 [00:13<00:18, 155833.92it/s]

-
42%|████▏ | 2088594/4997817 [00:13&lt;00:19, 152999.26it/s]
+
42%|████▏ | 2091209/4997817 [00:13&lt;00:18, 155266.92it/s]

</pre>

-
42%|████▏ | 2088594/4997817 [00:13<00:19, 152999.26it/s]
+
42%|████▏ | 2091209/4997817 [00:13<00:18, 155266.92it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2088594/4997817 [00:13<00:19, 152999.26it/s]

+

42%|████▏ | 2091209/4997817 [00:13<00:18, 155266.92it/s]

-
42%|████▏ | 2104043/4997817 [00:13&lt;00:18, 153442.72it/s]
+
42%|████▏ | 2106737/4997817 [00:13&lt;00:18, 154717.60it/s]

</pre>

-
42%|████▏ | 2104043/4997817 [00:13<00:18, 153442.72it/s]
+
42%|████▏ | 2106737/4997817 [00:13<00:18, 154717.60it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2104043/4997817 [00:13<00:18, 153442.72it/s]

+

42%|████▏ | 2106737/4997817 [00:13<00:18, 154717.60it/s]

-
42%|████▏ | 2119443/4997817 [00:13&lt;00:18, 153606.85it/s]
+
42%|████▏ | 2122210/4997817 [00:13&lt;00:18, 154334.91it/s]

</pre>

-
42%|████▏ | 2119443/4997817 [00:13<00:18, 153606.85it/s]
+
42%|████▏ | 2122210/4997817 [00:13<00:18, 154334.91it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2119443/4997817 [00:13<00:18, 153606.85it/s]

+

42%|████▏ | 2122210/4997817 [00:13<00:18, 154334.91it/s]

-
43%|████▎ | 2134833/4997817 [00:13&lt;00:18, 153691.74it/s]
+
43%|████▎ | 2137645/4997817 [00:13&lt;00:18, 154040.89it/s]

</pre>

-
43%|████▎ | 2134833/4997817 [00:13<00:18, 153691.74it/s]
+
43%|████▎ | 2137645/4997817 [00:13<00:18, 154040.89it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2134833/4997817 [00:13<00:18, 153691.74it/s]

+

43%|████▎ | 2137645/4997817 [00:13<00:18, 154040.89it/s]

-
43%|████▎ | 2150260/4997817 [00:13&lt;00:18, 153861.39it/s]
+
43%|████▎ | 2153050/4997817 [00:13&lt;00:18, 153792.02it/s]

</pre>

-
43%|████▎ | 2150260/4997817 [00:13<00:18, 153861.39it/s]
+
43%|████▎ | 2153050/4997817 [00:13<00:18, 153792.02it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2150260/4997817 [00:13<00:18, 153861.39it/s]

+

43%|████▎ | 2153050/4997817 [00:13<00:18, 153792.02it/s]

-
43%|████▎ | 2165649/4997817 [00:14&lt;00:18, 153505.35it/s]
+
43%|████▎ | 2168430/4997817 [00:14&lt;00:18, 153254.04it/s]

</pre>

-
43%|████▎ | 2165649/4997817 [00:14<00:18, 153505.35it/s]
+
43%|████▎ | 2168430/4997817 [00:14<00:18, 153254.04it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2165649/4997817 [00:14<00:18, 153505.35it/s]

+

43%|████▎ | 2168430/4997817 [00:14<00:18, 153254.04it/s]

-
44%|████▎ | 2181031/4997817 [00:14&lt;00:18, 153598.33it/s]
+
44%|████▎ | 2183756/4997817 [00:14&lt;00:18, 153011.24it/s]

</pre>

-
44%|████▎ | 2181031/4997817 [00:14<00:18, 153598.33it/s]
+
44%|████▎ | 2183756/4997817 [00:14<00:18, 153011.24it/s]

end{sphinxVerbatim}

-

44%|████▎ | 2181031/4997817 [00:14<00:18, 153598.33it/s]

+

44%|████▎ | 2183756/4997817 [00:14<00:18, 153011.24it/s]

-
44%|████▍ | 2196392/4997817 [00:14&lt;00:18, 153515.18it/s]
+
44%|████▍ | 2199058/4997817 [00:14&lt;00:18, 152771.69it/s]

</pre>

-
44%|████▍ | 2196392/4997817 [00:14<00:18, 153515.18it/s]
+
44%|████▍ | 2199058/4997817 [00:14<00:18, 152771.69it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2196392/4997817 [00:14<00:18, 153515.18it/s]

+

44%|████▍ | 2199058/4997817 [00:14<00:18, 152771.69it/s]

-
44%|████▍ | 2211745/4997817 [00:14&lt;00:18, 153359.24it/s]
+
44%|████▍ | 2214336/4997817 [00:14&lt;00:18, 152533.15it/s]

</pre>

-
44%|████▍ | 2211745/4997817 [00:14<00:18, 153359.24it/s]
+
44%|████▍ | 2214336/4997817 [00:14<00:18, 152533.15it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2211745/4997817 [00:14<00:18, 153359.24it/s]

+

44%|████▍ | 2214336/4997817 [00:14<00:18, 152533.15it/s]

-
45%|████▍ | 2227087/4997817 [00:14&lt;00:18, 153376.49it/s]
+
45%|████▍ | 2229590/4997817 [00:14&lt;00:18, 152216.34it/s]

</pre>

-
45%|████▍ | 2227087/4997817 [00:14<00:18, 153376.49it/s]
+
45%|████▍ | 2229590/4997817 [00:14<00:18, 152216.34it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2227087/4997817 [00:14<00:18, 153376.49it/s]

+

45%|████▍ | 2229590/4997817 [00:14<00:18, 152216.34it/s]

-
45%|████▍ | 2242478/4997817 [00:14&lt;00:17, 153534.73it/s]
+
45%|████▍ | 2244822/4997817 [00:14&lt;00:18, 152246.04it/s]

</pre>

-
45%|████▍ | 2242478/4997817 [00:14<00:17, 153534.73it/s]
+
45%|████▍ | 2244822/4997817 [00:14<00:18, 152246.04it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2242478/4997817 [00:14<00:17, 153534.73it/s]

+

45%|████▍ | 2244822/4997817 [00:14<00:18, 152246.04it/s]

-
45%|████▌ | 2257832/4997817 [00:14&lt;00:17, 153331.02it/s]
+
45%|████▌ | 2260129/4997817 [00:14&lt;00:17, 152489.87it/s]

</pre>

-
45%|████▌ | 2257832/4997817 [00:14<00:17, 153331.02it/s]
+
45%|████▌ | 2260129/4997817 [00:14<00:17, 152489.87it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2257832/4997817 [00:14<00:17, 153331.02it/s]

+

45%|████▌ | 2260129/4997817 [00:14<00:17, 152489.87it/s]

-
45%|████▌ | 2273166/4997817 [00:14&lt;00:17, 153125.99it/s]
+
46%|████▌ | 2275379/4997817 [00:14&lt;00:17, 152457.91it/s]

</pre>

-
45%|████▌ | 2273166/4997817 [00:14<00:17, 153125.99it/s]
+
46%|████▌ | 2275379/4997817 [00:14<00:17, 152457.91it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2273166/4997817 [00:14<00:17, 153125.99it/s]

+

46%|████▌ | 2275379/4997817 [00:14<00:17, 152457.91it/s]

-
46%|████▌ | 2288479/4997817 [00:14&lt;00:17, 153046.84it/s]
+
46%|████▌ | 2290625/4997817 [00:14&lt;00:17, 152236.51it/s]

</pre>

-
46%|████▌ | 2288479/4997817 [00:14<00:17, 153046.84it/s]
+
46%|████▌ | 2290625/4997817 [00:14<00:17, 152236.51it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2288479/4997817 [00:14<00:17, 153046.84it/s]

+

46%|████▌ | 2290625/4997817 [00:14<00:17, 152236.51it/s]

-
46%|████▌ | 2303800/4997817 [00:14&lt;00:17, 153094.76it/s]
+
46%|████▌ | 2305849/4997817 [00:14&lt;00:17, 151840.02it/s]

</pre>

-
46%|████▌ | 2303800/4997817 [00:14<00:17, 153094.76it/s]
+
46%|████▌ | 2305849/4997817 [00:14<00:17, 151840.02it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2303800/4997817 [00:14<00:17, 153094.76it/s]

+

46%|████▌ | 2305849/4997817 [00:14<00:17, 151840.02it/s]

-
46%|████▋ | 2319193/4997817 [00:15&lt;00:17, 153342.97it/s]
+
46%|████▋ | 2321245/4997817 [00:15&lt;00:17, 152471.18it/s]

</pre>

-
46%|████▋ | 2319193/4997817 [00:15<00:17, 153342.97it/s]
+
46%|████▋ | 2321245/4997817 [00:15<00:17, 152471.18it/s]

end{sphinxVerbatim}

-

46%|████▋ | 2319193/4997817 [00:15<00:17, 153342.97it/s]

+

46%|████▋ | 2321245/4997817 [00:15<00:17, 152471.18it/s]

-
47%|████▋ | 2334528/4997817 [00:15&lt;00:17, 152346.58it/s]
+
47%|████▋ | 2336585/4997817 [00:15&lt;00:17, 152746.15it/s]

</pre>

-
47%|████▋ | 2334528/4997817 [00:15<00:17, 152346.58it/s]
+
47%|████▋ | 2336585/4997817 [00:15<00:17, 152746.15it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2334528/4997817 [00:15<00:17, 152346.58it/s]

+

47%|████▋ | 2336585/4997817 [00:15<00:17, 152746.15it/s]

-
47%|████▋ | 2349765/4997817 [00:15&lt;00:17, 151169.35it/s]
+
47%|████▋ | 2351960/4997817 [00:15&lt;00:17, 153045.31it/s]

</pre>

-
47%|████▋ | 2349765/4997817 [00:15<00:17, 151169.35it/s]
+
47%|████▋ | 2351960/4997817 [00:15<00:17, 153045.31it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2349765/4997817 [00:15<00:17, 151169.35it/s]

+

47%|████▋ | 2351960/4997817 [00:15<00:17, 153045.31it/s]

-
47%|████▋ | 2364972/4997817 [00:15&lt;00:17, 151434.66it/s]
+
47%|████▋ | 2367326/4997817 [00:15&lt;00:17, 153228.56it/s]

</pre>

-
47%|████▋ | 2364972/4997817 [00:15<00:17, 151434.66it/s]
+
47%|████▋ | 2367326/4997817 [00:15<00:17, 153228.56it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2364972/4997817 [00:15<00:17, 151434.66it/s]

+

47%|████▋ | 2367326/4997817 [00:15<00:17, 153228.56it/s]

-
48%|████▊ | 2380298/4997817 [00:15&lt;00:17, 151975.78it/s]
+
48%|████▊ | 2382719/4997817 [00:15&lt;00:17, 153435.46it/s]

</pre>

-
48%|████▊ | 2380298/4997817 [00:15<00:17, 151975.78it/s]
+
48%|████▊ | 2382719/4997817 [00:15<00:17, 153435.46it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2380298/4997817 [00:15<00:17, 151975.78it/s]

+

48%|████▊ | 2382719/4997817 [00:15<00:17, 153435.46it/s]

-
48%|████▊ | 2395754/4997817 [00:15&lt;00:17, 152744.78it/s]
+
48%|████▊ | 2398063/4997817 [00:15&lt;00:16, 153381.39it/s]

</pre>

-
48%|████▊ | 2395754/4997817 [00:15<00:17, 152744.78it/s]
+
48%|████▊ | 2398063/4997817 [00:15<00:16, 153381.39it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2395754/4997817 [00:15<00:17, 152744.78it/s]

+

48%|████▊ | 2398063/4997817 [00:15<00:16, 153381.39it/s]

-
48%|████▊ | 2411076/4997817 [00:15&lt;00:16, 152884.98it/s]
+
48%|████▊ | 2413402/4997817 [00:15&lt;00:16, 153357.05it/s]

</pre>

-
48%|████▊ | 2411076/4997817 [00:15<00:16, 152884.98it/s]
+
48%|████▊ | 2413402/4997817 [00:15<00:16, 153357.05it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2411076/4997817 [00:15<00:16, 152884.98it/s]

+

48%|████▊ | 2413402/4997817 [00:15<00:16, 153357.05it/s]

-
49%|████▊ | 2426567/4997817 [00:15&lt;00:16, 153489.20it/s]
+
49%|████▊ | 2428752/4997817 [00:15&lt;00:16, 153397.32it/s]

</pre>

-
49%|████▊ | 2426567/4997817 [00:15<00:16, 153489.20it/s]
+
49%|████▊ | 2428752/4997817 [00:15<00:16, 153397.32it/s]

end{sphinxVerbatim}

-

49%|████▊ | 2426567/4997817 [00:15<00:16, 153489.20it/s]

+

49%|████▊ | 2428752/4997817 [00:15<00:16, 153397.32it/s]

-
49%|████▉ | 2441950/4997817 [00:15&lt;00:16, 153587.93it/s]
+
49%|████▉ | 2444150/4997817 [00:15&lt;00:16, 153571.32it/s]

</pre>

-
49%|████▉ | 2441950/4997817 [00:15<00:16, 153587.93it/s]
+
49%|████▉ | 2444150/4997817 [00:15<00:16, 153571.32it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2441950/4997817 [00:15<00:16, 153587.93it/s]

+

49%|████▉ | 2444150/4997817 [00:15<00:16, 153571.32it/s]

-
49%|████▉ | 2457394/4997817 [00:16&lt;00:16, 153839.68it/s]
+
49%|████▉ | 2459562/4997817 [00:15&lt;00:16, 153732.62it/s]

</pre>

-
49%|████▉ | 2457394/4997817 [00:16<00:16, 153839.68it/s]
+
49%|████▉ | 2459562/4997817 [00:15<00:16, 153732.62it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2457394/4997817 [00:16<00:16, 153839.68it/s]

+

49%|████▉ | 2459562/4997817 [00:15<00:16, 153732.62it/s]

-
49%|████▉ | 2472901/4997817 [00:16&lt;00:16, 154205.77it/s]
+
50%|████▉ | 2475015/4997817 [00:16&lt;00:16, 153968.52it/s]

</pre>

-
49%|████▉ | 2472901/4997817 [00:16<00:16, 154205.77it/s]
+
50%|████▉ | 2475015/4997817 [00:16<00:16, 153968.52it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2472901/4997817 [00:16<00:16, 154205.77it/s]

+

50%|████▉ | 2475015/4997817 [00:16<00:16, 153968.52it/s]

-
50%|████▉ | 2488322/4997817 [00:16&lt;00:16, 154163.11it/s]
+
50%|████▉ | 2490438/4997817 [00:16&lt;00:16, 154046.12it/s]

</pre>

-
50%|████▉ | 2488322/4997817 [00:16<00:16, 154163.11it/s]
+
50%|████▉ | 2490438/4997817 [00:16<00:16, 154046.12it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2488322/4997817 [00:16<00:16, 154163.11it/s]

+

50%|████▉ | 2490438/4997817 [00:16<00:16, 154046.12it/s]

-
50%|█████ | 2503739/4997817 [00:16&lt;00:16, 153004.46it/s]
+
50%|█████ | 2505843/4997817 [00:16&lt;00:16, 154040.82it/s]

</pre>

-
50%|█████ | 2503739/4997817 [00:16<00:16, 153004.46it/s]
+
50%|█████ | 2505843/4997817 [00:16<00:16, 154040.82it/s]

end{sphinxVerbatim}

-

50%|█████ | 2503739/4997817 [00:16<00:16, 153004.46it/s]

+

50%|█████ | 2505843/4997817 [00:16<00:16, 154040.82it/s]

-
50%|█████ | 2519042/4997817 [00:16&lt;00:16, 147381.07it/s]
+
50%|█████ | 2521248/4997817 [00:16&lt;00:16, 153702.86it/s]

</pre>

-
50%|█████ | 2519042/4997817 [00:16<00:16, 147381.07it/s]
+
50%|█████ | 2521248/4997817 [00:16<00:16, 153702.86it/s]

end{sphinxVerbatim}

-

50%|█████ | 2519042/4997817 [00:16<00:16, 147381.07it/s]

+

50%|█████ | 2521248/4997817 [00:16<00:16, 153702.86it/s]

-
51%|█████ | 2534620/4997817 [00:16&lt;00:16, 149823.79it/s]
+
51%|█████ | 2536619/4997817 [00:16&lt;00:16, 153488.02it/s]

</pre>

-
51%|█████ | 2534620/4997817 [00:16<00:16, 149823.79it/s]
+
51%|█████ | 2536619/4997817 [00:16<00:16, 153488.02it/s]

end{sphinxVerbatim}

-

51%|█████ | 2534620/4997817 [00:16<00:16, 149823.79it/s]

+

51%|█████ | 2536619/4997817 [00:16<00:16, 153488.02it/s]

-
51%|█████ | 2550145/4997817 [00:16&lt;00:16, 151413.71it/s]
+
51%|█████ | 2551968/4997817 [00:16&lt;00:15, 153045.28it/s]

</pre>

-
51%|█████ | 2550145/4997817 [00:16<00:16, 151413.71it/s]
+
51%|█████ | 2551968/4997817 [00:16<00:15, 153045.28it/s]

end{sphinxVerbatim}

-

51%|█████ | 2550145/4997817 [00:16<00:16, 151413.71it/s]

+

51%|█████ | 2551968/4997817 [00:16<00:15, 153045.28it/s]

-
51%|█████▏ | 2565630/4997817 [00:16&lt;00:15, 152427.20it/s]
+
51%|█████▏ | 2567273/4997817 [00:16&lt;00:15, 152959.52it/s]

</pre>

-
51%|█████▏ | 2565630/4997817 [00:16<00:15, 152427.20it/s]
+
51%|█████▏ | 2567273/4997817 [00:16<00:15, 152959.52it/s]

end{sphinxVerbatim}

-

51%|█████▏ | 2565630/4997817 [00:16<00:15, 152427.20it/s]

+

51%|█████▏ | 2567273/4997817 [00:16<00:15, 152959.52it/s]

-
52%|█████▏ | 2581060/4997817 [00:16&lt;00:15, 152981.66it/s]
+
52%|█████▏ | 2582570/4997817 [00:16&lt;00:15, 152668.38it/s]

</pre>

-
52%|█████▏ | 2581060/4997817 [00:16<00:15, 152981.66it/s]
+
52%|█████▏ | 2582570/4997817 [00:16<00:15, 152668.38it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2581060/4997817 [00:16<00:15, 152981.66it/s]

+

52%|█████▏ | 2582570/4997817 [00:16<00:15, 152668.38it/s]

-
52%|█████▏ | 2596553/4997817 [00:16&lt;00:15, 153559.70it/s]
+
52%|█████▏ | 2597897/4997817 [00:16&lt;00:15, 152844.82it/s]

</pre>

-
52%|█████▏ | 2596553/4997817 [00:16<00:15, 153559.70it/s]
+
52%|█████▏ | 2597897/4997817 [00:16<00:15, 152844.82it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2596553/4997817 [00:16<00:15, 153559.70it/s]

+

52%|█████▏ | 2597897/4997817 [00:16<00:15, 152844.82it/s]

-
52%|█████▏ | 2612027/4997817 [00:17&lt;00:15, 153910.24it/s]
+
52%|█████▏ | 2613182/4997817 [00:16&lt;00:15, 150670.35it/s]

</pre>

-
52%|█████▏ | 2612027/4997817 [00:17<00:15, 153910.24it/s]
+
52%|█████▏ | 2613182/4997817 [00:16<00:15, 150670.35it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2612027/4997817 [00:17<00:15, 153910.24it/s]

+

52%|█████▏ | 2613182/4997817 [00:16<00:15, 150670.35it/s]

-
53%|█████▎ | 2627562/4997817 [00:17&lt;00:15, 154337.56it/s]
+
53%|█████▎ | 2628256/4997817 [00:17&lt;00:15, 149400.44it/s]

</pre>

-
53%|█████▎ | 2627562/4997817 [00:17<00:15, 154337.56it/s]
+
53%|█████▎ | 2628256/4997817 [00:17<00:15, 149400.44it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2627562/4997817 [00:17<00:15, 154337.56it/s]

+

53%|█████▎ | 2628256/4997817 [00:17<00:15, 149400.44it/s]

-
53%|█████▎ | 2643066/4997817 [00:17&lt;00:15, 154544.82it/s]
+
53%|█████▎ | 2643612/4997817 [00:17&lt;00:15, 150628.22it/s]

</pre>

-
53%|█████▎ | 2643066/4997817 [00:17<00:15, 154544.82it/s]
+
53%|█████▎ | 2643612/4997817 [00:17<00:15, 150628.22it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2643066/4997817 [00:17<00:15, 154544.82it/s]

+

53%|█████▎ | 2643612/4997817 [00:17<00:15, 150628.22it/s]

-
53%|█████▎ | 2658563/4997817 [00:17&lt;00:15, 154668.65it/s]
+
53%|█████▎ | 2659103/4997817 [00:17&lt;00:15, 151899.02it/s]

</pre>

-
53%|█████▎ | 2658563/4997817 [00:17<00:15, 154668.65it/s]
+
53%|█████▎ | 2659103/4997817 [00:17<00:15, 151899.02it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2658563/4997817 [00:17<00:15, 154668.65it/s]

+

53%|█████▎ | 2659103/4997817 [00:17<00:15, 151899.02it/s]

-
54%|█████▎ | 2674058/4997817 [00:17&lt;00:15, 154750.12it/s]
+
54%|█████▎ | 2674484/4997817 [00:17&lt;00:15, 152464.99it/s]

</pre>

-
54%|█████▎ | 2674058/4997817 [00:17<00:15, 154750.12it/s]
+
54%|█████▎ | 2674484/4997817 [00:17<00:15, 152464.99it/s]

end{sphinxVerbatim}

-

54%|█████▎ | 2674058/4997817 [00:17<00:15, 154750.12it/s]

+

54%|█████▎ | 2674484/4997817 [00:17<00:15, 152464.99it/s]

-
54%|█████▍ | 2689580/4997817 [00:17&lt;00:14, 154890.00it/s]
+
54%|█████▍ | 2689840/4997817 [00:17&lt;00:15, 152791.05it/s]

</pre>

-
54%|█████▍ | 2689580/4997817 [00:17<00:14, 154890.00it/s]
+
54%|█████▍ | 2689840/4997817 [00:17<00:15, 152791.05it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2689580/4997817 [00:17<00:14, 154890.00it/s]

+

54%|█████▍ | 2689840/4997817 [00:17<00:15, 152791.05it/s]

-
54%|█████▍ | 2705071/4997817 [00:17&lt;00:14, 154543.10it/s]
+
54%|█████▍ | 2705248/4997817 [00:17&lt;00:14, 153173.60it/s]

</pre>

-
54%|█████▍ | 2705071/4997817 [00:17<00:14, 154543.10it/s]
+
54%|█████▍ | 2705248/4997817 [00:17<00:14, 153173.60it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2705071/4997817 [00:17<00:14, 154543.10it/s]

+

54%|█████▍ | 2705248/4997817 [00:17<00:14, 153173.60it/s]

-
54%|█████▍ | 2720555/4997817 [00:17&lt;00:14, 154630.16it/s]
+
54%|█████▍ | 2720642/4997817 [00:17&lt;00:14, 153400.27it/s]

</pre>

-
54%|█████▍ | 2720555/4997817 [00:17<00:14, 154630.16it/s]
+
54%|█████▍ | 2720642/4997817 [00:17<00:14, 153400.27it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2720555/4997817 [00:17<00:14, 154630.16it/s]

+

54%|█████▍ | 2720642/4997817 [00:17<00:14, 153400.27it/s]

-
55%|█████▍ | 2736166/4997817 [00:17&lt;00:14, 155070.41it/s]
+
55%|█████▍ | 2736057/4997817 [00:17&lt;00:14, 153621.44it/s]

</pre>

-
55%|█████▍ | 2736166/4997817 [00:17<00:14, 155070.41it/s]
+
55%|█████▍ | 2736057/4997817 [00:17<00:14, 153621.44it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2736166/4997817 [00:17<00:14, 155070.41it/s]

+

55%|█████▍ | 2736057/4997817 [00:17<00:14, 153621.44it/s]

-
55%|█████▌ | 2751724/4997817 [00:17&lt;00:14, 155222.18it/s]
+
55%|█████▌ | 2751444/4997817 [00:17&lt;00:14, 153694.21it/s]

</pre>

-
55%|█████▌ | 2751724/4997817 [00:17<00:14, 155222.18it/s]
+
55%|█████▌ | 2751444/4997817 [00:17<00:14, 153694.21it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2751724/4997817 [00:17<00:14, 155222.18it/s]

+

55%|█████▌ | 2751444/4997817 [00:17<00:14, 153694.21it/s]

-
55%|█████▌ | 2767247/4997817 [00:18&lt;00:14, 155078.59it/s]
+
55%|█████▌ | 2766815/4997817 [00:17&lt;00:14, 153676.47it/s]

</pre>

-
55%|█████▌ | 2767247/4997817 [00:18<00:14, 155078.59it/s]
+
55%|█████▌ | 2766815/4997817 [00:17<00:14, 153676.47it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2767247/4997817 [00:18<00:14, 155078.59it/s]

+

55%|█████▌ | 2766815/4997817 [00:17<00:14, 153676.47it/s]

-
56%|█████▌ | 2782756/4997817 [00:18&lt;00:14, 154978.09it/s]
+
56%|█████▌ | 2782184/4997817 [00:18&lt;00:15, 146027.40it/s]

</pre>

-
56%|█████▌ | 2782756/4997817 [00:18<00:14, 154978.09it/s]
+
56%|█████▌ | 2782184/4997817 [00:18<00:15, 146027.40it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2782756/4997817 [00:18<00:14, 154978.09it/s]

+

56%|█████▌ | 2782184/4997817 [00:18<00:15, 146027.40it/s]

-
56%|█████▌ | 2798255/4997817 [00:18&lt;00:14, 154977.38it/s]
+
56%|█████▌ | 2797535/4997817 [00:18&lt;00:14, 148188.94it/s]

</pre>

-
56%|█████▌ | 2798255/4997817 [00:18<00:14, 154977.38it/s]
+
56%|█████▌ | 2797535/4997817 [00:18<00:14, 148188.94it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2798255/4997817 [00:18<00:14, 154977.38it/s]

+

56%|█████▌ | 2797535/4997817 [00:18<00:14, 148188.94it/s]

-
56%|█████▋ | 2813789/4997817 [00:18&lt;00:14, 155083.56it/s]
+
56%|█████▋ | 2812891/4997817 [00:18&lt;00:14, 149756.66it/s]

</pre>

-
56%|█████▋ | 2813789/4997817 [00:18<00:14, 155083.56it/s]
+
56%|█████▋ | 2812891/4997817 [00:18<00:14, 149756.66it/s]

end{sphinxVerbatim}

-

56%|█████▋ | 2813789/4997817 [00:18<00:14, 155083.56it/s]

+

56%|█████▋ | 2812891/4997817 [00:18<00:14, 149756.66it/s]

-
57%|█████▋ | 2829298/4997817 [00:18&lt;00:14, 152520.30it/s]
+
57%|█████▋ | 2828262/4997817 [00:18&lt;00:14, 150920.17it/s]

</pre>

-
57%|█████▋ | 2829298/4997817 [00:18<00:14, 152520.30it/s]
+
57%|█████▋ | 2828262/4997817 [00:18<00:14, 150920.17it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2829298/4997817 [00:18<00:14, 152520.30it/s]

+

57%|█████▋ | 2828262/4997817 [00:18<00:14, 150920.17it/s]

-
57%|█████▋ | 2844801/4997817 [00:18&lt;00:14, 153263.29it/s]
+
57%|█████▋ | 2843674/4997817 [00:18&lt;00:14, 151866.33it/s]

</pre>

-
57%|█████▋ | 2844801/4997817 [00:18<00:14, 153263.29it/s]
+
57%|█████▋ | 2843674/4997817 [00:18<00:14, 151866.33it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2844801/4997817 [00:18<00:14, 153263.29it/s]

+

57%|█████▋ | 2843674/4997817 [00:18<00:14, 151866.33it/s]

-
57%|█████▋ | 2860237/4997817 [00:18&lt;00:13, 153586.93it/s]
+
57%|█████▋ | 2858942/4997817 [00:18&lt;00:14, 152106.04it/s]

</pre>

-
57%|█████▋ | 2860237/4997817 [00:18<00:13, 153586.93it/s]
+
57%|█████▋ | 2858942/4997817 [00:18<00:14, 152106.04it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2860237/4997817 [00:18<00:13, 153586.93it/s]

+

57%|█████▋ | 2858942/4997817 [00:18<00:14, 152106.04it/s]

-
58%|█████▊ | 2875673/4997817 [00:18&lt;00:13, 153813.68it/s]
+
58%|█████▊ | 2874363/4997817 [00:18&lt;00:13, 152731.27it/s]

</pre>

-
58%|█████▊ | 2875673/4997817 [00:18<00:13, 153813.68it/s]
+
58%|█████▊ | 2874363/4997817 [00:18<00:13, 152731.27it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2875673/4997817 [00:18<00:13, 153813.68it/s]

+

58%|█████▊ | 2874363/4997817 [00:18<00:13, 152731.27it/s]

-
58%|█████▊ | 2891059/4997817 [00:18&lt;00:13, 153744.34it/s]
+
58%|█████▊ | 2889650/4997817 [00:18&lt;00:13, 152715.44it/s]

</pre>

-
58%|█████▊ | 2891059/4997817 [00:18<00:13, 153744.34it/s]
+
58%|█████▊ | 2889650/4997817 [00:18<00:13, 152715.44it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2891059/4997817 [00:18<00:13, 153744.34it/s]

+

58%|█████▊ | 2889650/4997817 [00:18<00:13, 152715.44it/s]

-
58%|█████▊ | 2906451/4997817 [00:18&lt;00:13, 153793.40it/s]
+
58%|█████▊ | 2905031/4997817 [00:18&lt;00:13, 153042.21it/s]

</pre>

-
58%|█████▊ | 2906451/4997817 [00:18<00:13, 153793.40it/s]
+
58%|█████▊ | 2905031/4997817 [00:18<00:13, 153042.21it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2906451/4997817 [00:18<00:13, 153793.40it/s]

+

58%|█████▊ | 2905031/4997817 [00:18<00:13, 153042.21it/s]

-
58%|█████▊ | 2921833/4997817 [00:19&lt;00:13, 153778.25it/s]
+
58%|█████▊ | 2920342/4997817 [00:19&lt;00:13, 153004.24it/s]

</pre>

-
58%|█████▊ | 2921833/4997817 [00:19<00:13, 153778.25it/s]
+
58%|█████▊ | 2920342/4997817 [00:19<00:13, 153004.24it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2921833/4997817 [00:19<00:13, 153778.25it/s]

+

58%|█████▊ | 2920342/4997817 [00:19<00:13, 153004.24it/s]

-
59%|█████▉ | 2937213/4997817 [00:19&lt;00:13, 153645.48it/s]
+
59%|█████▊ | 2935648/4997817 [00:19&lt;00:13, 152907.67it/s]

</pre>

-
59%|█████▉ | 2937213/4997817 [00:19<00:13, 153645.48it/s]
+
59%|█████▊ | 2935648/4997817 [00:19<00:13, 152907.67it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2937213/4997817 [00:19<00:13, 153645.48it/s]

+

59%|█████▊ | 2935648/4997817 [00:19<00:13, 152907.67it/s]

-
59%|█████▉ | 2952579/4997817 [00:19&lt;00:13, 153613.36it/s]
+
59%|█████▉ | 2950943/4997817 [00:19&lt;00:13, 152850.99it/s]

</pre>

-
59%|█████▉ | 2952579/4997817 [00:19<00:13, 153613.36it/s]
+
59%|█████▉ | 2950943/4997817 [00:19<00:13, 152850.99it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2952579/4997817 [00:19<00:13, 153613.36it/s]

+

59%|█████▉ | 2950943/4997817 [00:19<00:13, 152850.99it/s]

-
59%|█████▉ | 2967942/4997817 [00:19&lt;00:13, 153281.42it/s]
+
59%|█████▉ | 2966231/4997817 [00:19&lt;00:13, 152725.36it/s]

</pre>

-
59%|█████▉ | 2967942/4997817 [00:19<00:13, 153281.42it/s]
+
59%|█████▉ | 2966231/4997817 [00:19<00:13, 152725.36it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2967942/4997817 [00:19<00:13, 153281.42it/s]

+

59%|█████▉ | 2966231/4997817 [00:19<00:13, 152725.36it/s]

-
60%|█████▉ | 2983271/4997817 [00:19&lt;00:13, 150146.86it/s]
+
60%|█████▉ | 2981549/4997817 [00:19&lt;00:13, 152858.39it/s]

</pre>

-
60%|█████▉ | 2983271/4997817 [00:19<00:13, 150146.86it/s]
+
60%|█████▉ | 2981549/4997817 [00:19<00:13, 152858.39it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2983271/4997817 [00:19<00:13, 150146.86it/s]

+

60%|█████▉ | 2981549/4997817 [00:19<00:13, 152858.39it/s]

-
60%|█████▉ | 2998477/4997817 [00:19&lt;00:13, 150708.16it/s]
+
60%|█████▉ | 2996997/4997817 [00:19&lt;00:13, 153340.92it/s]

</pre>

-
60%|█████▉ | 2998477/4997817 [00:19<00:13, 150708.16it/s]
+
60%|█████▉ | 2996997/4997817 [00:19<00:13, 153340.92it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2998477/4997817 [00:19<00:13, 150708.16it/s]

+

60%|█████▉ | 2996997/4997817 [00:19<00:13, 153340.92it/s]

-
60%|██████ | 3014011/4997817 [00:19&lt;00:13, 152080.61it/s]
+
60%|██████ | 3012371/4997817 [00:19&lt;00:12, 153458.61it/s]

</pre>

-
60%|██████ | 3014011/4997817 [00:19<00:13, 152080.61it/s]
+
60%|██████ | 3012371/4997817 [00:19<00:12, 153458.61it/s]

end{sphinxVerbatim}

-

60%|██████ | 3014011/4997817 [00:19<00:13, 152080.61it/s]

+

60%|██████ | 3012371/4997817 [00:19<00:12, 153458.61it/s]

-
61%|██████ | 3029518/4997817 [00:19&lt;00:12, 152969.20it/s]
+
61%|██████ | 3027820/4997817 [00:19&lt;00:12, 153766.56it/s]

</pre>

-
61%|██████ | 3029518/4997817 [00:19<00:12, 152969.20it/s]
+
61%|██████ | 3027820/4997817 [00:19<00:12, 153766.56it/s]

end{sphinxVerbatim}

-

61%|██████ | 3029518/4997817 [00:19<00:12, 152969.20it/s]

+

61%|██████ | 3027820/4997817 [00:19<00:12, 153766.56it/s]

-
61%|██████ | 3045037/4997817 [00:19&lt;00:12, 153629.76it/s]
+
61%|██████ | 3043238/4997817 [00:19&lt;00:12, 153889.92it/s]

</pre>

-
61%|██████ | 3045037/4997817 [00:19<00:12, 153629.76it/s]
+
61%|██████ | 3043238/4997817 [00:19<00:12, 153889.92it/s]

end{sphinxVerbatim}

-

61%|██████ | 3045037/4997817 [00:19<00:12, 153629.76it/s]

+

61%|██████ | 3043238/4997817 [00:19<00:12, 153889.92it/s]

-
61%|██████ | 3060406/4997817 [00:19&lt;00:12, 153331.78it/s]
+
61%|██████ | 3058663/4997817 [00:19&lt;00:12, 153995.86it/s]

</pre>

-
61%|██████ | 3060406/4997817 [00:19<00:12, 153331.78it/s]
+
61%|██████ | 3058663/4997817 [00:19<00:12, 153995.86it/s]

end{sphinxVerbatim}

-

61%|██████ | 3060406/4997817 [00:19<00:12, 153331.78it/s]

+

61%|██████ | 3058663/4997817 [00:19<00:12, 153995.86it/s]

-
62%|██████▏ | 3075743/4997817 [00:20&lt;00:12, 152764.94it/s]
+
62%|██████▏ | 3074096/4997817 [00:20&lt;00:12, 154092.71it/s]

</pre>

-
62%|██████▏ | 3075743/4997817 [00:20<00:12, 152764.94it/s]
+
62%|██████▏ | 3074096/4997817 [00:20<00:12, 154092.71it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3075743/4997817 [00:20<00:12, 152764.94it/s]

+

62%|██████▏ | 3074096/4997817 [00:20<00:12, 154092.71it/s]

-
62%|██████▏ | 3091023/4997817 [00:20&lt;00:12, 152634.64it/s]
+
62%|██████▏ | 3089506/4997817 [00:20&lt;00:12, 153922.23it/s]

</pre>

-
62%|██████▏ | 3091023/4997817 [00:20<00:12, 152634.64it/s]
+
62%|██████▏ | 3089506/4997817 [00:20<00:12, 153922.23it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3091023/4997817 [00:20<00:12, 152634.64it/s]

+

62%|██████▏ | 3089506/4997817 [00:20<00:12, 153922.23it/s]

-
62%|██████▏ | 3106414/4997817 [00:20&lt;00:12, 153013.91it/s]
+
62%|██████▏ | 3104899/4997817 [00:20&lt;00:12, 153769.23it/s]

</pre>

-
62%|██████▏ | 3106414/4997817 [00:20<00:12, 153013.91it/s]
+
62%|██████▏ | 3104899/4997817 [00:20<00:12, 153769.23it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3106414/4997817 [00:20<00:12, 153013.91it/s]

+

62%|██████▏ | 3104899/4997817 [00:20<00:12, 153769.23it/s]

-
62%|██████▏ | 3121808/4997817 [00:20&lt;00:12, 153288.59it/s]
+
62%|██████▏ | 3120344/4997817 [00:20&lt;00:12, 153969.82it/s]

</pre>

-
62%|██████▏ | 3121808/4997817 [00:20<00:12, 153288.59it/s]
+
62%|██████▏ | 3120344/4997817 [00:20<00:12, 153969.82it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3121808/4997817 [00:20<00:12, 153288.59it/s]

+

62%|██████▏ | 3120344/4997817 [00:20<00:12, 153969.82it/s]

-
63%|██████▎ | 3137276/4997817 [00:20&lt;00:12, 153703.80it/s]
+
63%|██████▎ | 3135742/4997817 [00:20&lt;00:12, 153534.18it/s]

</pre>

-
63%|██████▎ | 3137276/4997817 [00:20<00:12, 153703.80it/s]
+
63%|██████▎ | 3135742/4997817 [00:20<00:12, 153534.18it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3137276/4997817 [00:20<00:12, 153703.80it/s]

+

63%|██████▎ | 3135742/4997817 [00:20<00:12, 153534.18it/s]

-
63%|██████▎ | 3152648/4997817 [00:20&lt;00:12, 153568.00it/s]
+
63%|██████▎ | 3151096/4997817 [00:20&lt;00:12, 153404.32it/s]

</pre>

-
63%|██████▎ | 3152648/4997817 [00:20<00:12, 153568.00it/s]
+
63%|██████▎ | 3151096/4997817 [00:20<00:12, 153404.32it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3152648/4997817 [00:20<00:12, 153568.00it/s]

+

63%|██████▎ | 3151096/4997817 [00:20<00:12, 153404.32it/s]

-
63%|██████▎ | 3168071/4997817 [00:20&lt;00:11, 153762.45it/s]
+
63%|██████▎ | 3166437/4997817 [00:20&lt;00:11, 153363.50it/s]

</pre>

-
63%|██████▎ | 3168071/4997817 [00:20<00:11, 153762.45it/s]
+
63%|██████▎ | 3166437/4997817 [00:20<00:11, 153363.50it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3168071/4997817 [00:20<00:11, 153762.45it/s]

+

63%|██████▎ | 3166437/4997817 [00:20<00:11, 153363.50it/s]

-
64%|██████▎ | 3183450/4997817 [00:20&lt;00:11, 153768.33it/s]
+
64%|██████▎ | 3181930/4997817 [00:20&lt;00:11, 153829.95it/s]

</pre>

-
64%|██████▎ | 3183450/4997817 [00:20<00:11, 153768.33it/s]
+
64%|██████▎ | 3181930/4997817 [00:20<00:11, 153829.95it/s]

end{sphinxVerbatim}

-

64%|██████▎ | 3183450/4997817 [00:20<00:11, 153768.33it/s]

+

64%|██████▎ | 3181930/4997817 [00:20<00:11, 153829.95it/s]

-
64%|██████▍ | 3198898/4997817 [00:20&lt;00:11, 153979.27it/s]
+
64%|██████▍ | 3197314/4997817 [00:20&lt;00:11, 153423.59it/s]

</pre>

-
64%|██████▍ | 3198898/4997817 [00:20<00:11, 153979.27it/s]
+
64%|██████▍ | 3197314/4997817 [00:20<00:11, 153423.59it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3198898/4997817 [00:20<00:11, 153979.27it/s]

+

64%|██████▍ | 3197314/4997817 [00:20<00:11, 153423.59it/s]

-
64%|██████▍ | 3214297/4997817 [00:20&lt;00:11, 153771.27it/s]
+
64%|██████▍ | 3212657/4997817 [00:20&lt;00:11, 153324.94it/s]

</pre>

-
64%|██████▍ | 3214297/4997817 [00:20<00:11, 153771.27it/s]
+
64%|██████▍ | 3212657/4997817 [00:20<00:11, 153324.94it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3214297/4997817 [00:20<00:11, 153771.27it/s]

+

64%|██████▍ | 3212657/4997817 [00:20<00:11, 153324.94it/s]

-
65%|██████▍ | 3229715/4997817 [00:21&lt;00:11, 153892.00it/s]
+
65%|██████▍ | 3228003/4997817 [00:21&lt;00:11, 153363.54it/s]

</pre>

-
65%|██████▍ | 3229715/4997817 [00:21<00:11, 153892.00it/s]
+
65%|██████▍ | 3228003/4997817 [00:21<00:11, 153363.54it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3229715/4997817 [00:21<00:11, 153892.00it/s]

+

65%|██████▍ | 3228003/4997817 [00:21<00:11, 153363.54it/s]

-
65%|██████▍ | 3245105/4997817 [00:21&lt;00:11, 153859.37it/s]
+
65%|██████▍ | 3243340/4997817 [00:21&lt;00:11, 151587.92it/s]

</pre>

-
65%|██████▍ | 3245105/4997817 [00:21<00:11, 153859.37it/s]
+
65%|██████▍ | 3243340/4997817 [00:21<00:11, 151587.92it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3245105/4997817 [00:21<00:11, 153859.37it/s]

+

65%|██████▍ | 3243340/4997817 [00:21<00:11, 151587.92it/s]

-
65%|██████▌ | 3260519/4997817 [00:21&lt;00:11, 153941.22it/s]
+
65%|██████▌ | 3258504/4997817 [00:21&lt;00:11, 148147.58it/s]

</pre>

-
65%|██████▌ | 3260519/4997817 [00:21<00:11, 153941.22it/s]
+
65%|██████▌ | 3258504/4997817 [00:21<00:11, 148147.58it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3260519/4997817 [00:21<00:11, 153941.22it/s]

+

65%|██████▌ | 3258504/4997817 [00:21<00:11, 148147.58it/s]

-
66%|██████▌ | 3275914/4997817 [00:21&lt;00:11, 153716.78it/s]
+
66%|██████▌ | 3273956/4997817 [00:21&lt;00:11, 150013.39it/s]

</pre>

-
66%|██████▌ | 3275914/4997817 [00:21<00:11, 153716.78it/s]
+
66%|██████▌ | 3273956/4997817 [00:21<00:11, 150013.39it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3275914/4997817 [00:21<00:11, 153716.78it/s]

+

66%|██████▌ | 3273956/4997817 [00:21<00:11, 150013.39it/s]

-
66%|██████▌ | 3291386/4997817 [00:21&lt;00:11, 154014.60it/s]
+
66%|██████▌ | 3289544/4997817 [00:21&lt;00:11, 151741.78it/s]

</pre>

-
66%|██████▌ | 3291386/4997817 [00:21<00:11, 154014.60it/s]
+
66%|██████▌ | 3289544/4997817 [00:21<00:11, 151741.78it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3291386/4997817 [00:21<00:11, 154014.60it/s]

+

66%|██████▌ | 3289544/4997817 [00:21<00:11, 151741.78it/s]

-
66%|██████▌ | 3306788/4997817 [00:21&lt;00:11, 153609.50it/s]
+
66%|██████▌ | 3305094/4997817 [00:21&lt;00:11, 152854.93it/s]

</pre>

-
66%|██████▌ | 3306788/4997817 [00:21<00:11, 153609.50it/s]
+
66%|██████▌ | 3305094/4997817 [00:21<00:11, 152854.93it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3306788/4997817 [00:21<00:11, 153609.50it/s]

+

66%|██████▌ | 3305094/4997817 [00:21<00:11, 152854.93it/s]

-
66%|██████▋ | 3322285/4997817 [00:21&lt;00:10, 153972.38it/s]
+
66%|██████▋ | 3320616/4997817 [00:21&lt;00:10, 153555.41it/s]

</pre>

-
66%|██████▋ | 3322285/4997817 [00:21<00:10, 153972.38it/s]
+
66%|██████▋ | 3320616/4997817 [00:21<00:10, 153555.41it/s]

end{sphinxVerbatim}

-

66%|██████▋ | 3322285/4997817 [00:21<00:10, 153972.38it/s]

+

66%|██████▋ | 3320616/4997817 [00:21<00:10, 153555.41it/s]

-
67%|██████▋ | 3337683/4997817 [00:21&lt;00:10, 153858.51it/s]
+
67%|██████▋ | 3336160/4997817 [00:21&lt;00:10, 154115.62it/s]

</pre>

-
67%|██████▋ | 3337683/4997817 [00:21<00:10, 153858.51it/s]
+
67%|██████▋ | 3336160/4997817 [00:21<00:10, 154115.62it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3337683/4997817 [00:21<00:10, 153858.51it/s]

+

67%|██████▋ | 3336160/4997817 [00:21<00:10, 154115.62it/s]

-
67%|██████▋ | 3353124/4997817 [00:21&lt;00:10, 154022.14it/s]
+
67%|██████▋ | 3351730/4997817 [00:21&lt;00:10, 154587.03it/s]

</pre>

-
67%|██████▋ | 3353124/4997817 [00:21<00:10, 154022.14it/s]
+
67%|██████▋ | 3351730/4997817 [00:21<00:10, 154587.03it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3353124/4997817 [00:21<00:10, 154022.14it/s]

+

67%|██████▋ | 3351730/4997817 [00:21<00:10, 154587.03it/s]

-
67%|██████▋ | 3368625/4997817 [00:21&lt;00:10, 154316.93it/s]
+
67%|██████▋ | 3367278/4997817 [00:21&lt;00:10, 154851.47it/s]

</pre>

-
67%|██████▋ | 3368625/4997817 [00:21<00:10, 154316.93it/s]
+
67%|██████▋ | 3367278/4997817 [00:21<00:10, 154851.47it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3368625/4997817 [00:21<00:10, 154316.93it/s]

+

67%|██████▋ | 3367278/4997817 [00:21<00:10, 154851.47it/s]

-
68%|██████▊ | 3384057/4997817 [00:22&lt;00:10, 154300.14it/s]
+
68%|██████▊ | 3382904/4997817 [00:22&lt;00:10, 155270.93it/s]

</pre>

-
68%|██████▊ | 3384057/4997817 [00:22<00:10, 154300.14it/s]
+
68%|██████▊ | 3382904/4997817 [00:22<00:10, 155270.93it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3384057/4997817 [00:22<00:10, 154300.14it/s]

+

68%|██████▊ | 3382904/4997817 [00:22<00:10, 155270.93it/s]

-
68%|██████▊ | 3399488/4997817 [00:22&lt;00:10, 154131.51it/s]
+
68%|██████▊ | 3398434/4997817 [00:22&lt;00:10, 155112.16it/s]

</pre>

-
68%|██████▊ | 3399488/4997817 [00:22<00:10, 154131.51it/s]
+
68%|██████▊ | 3398434/4997817 [00:22<00:10, 155112.16it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3399488/4997817 [00:22<00:10, 154131.51it/s]

+

68%|██████▊ | 3398434/4997817 [00:22<00:10, 155112.16it/s]

-
68%|██████▊ | 3414954/4997817 [00:22&lt;00:10, 154286.04it/s]
+
68%|██████▊ | 3413947/4997817 [00:22&lt;00:10, 151516.41it/s]

</pre>

-
68%|██████▊ | 3414954/4997817 [00:22<00:10, 154286.04it/s]
+
68%|██████▊ | 3413947/4997817 [00:22<00:10, 151516.41it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3414954/4997817 [00:22<00:10, 154286.04it/s]

+

68%|██████▊ | 3413947/4997817 [00:22<00:10, 151516.41it/s]

-
69%|██████▊ | 3430466/4997817 [00:22&lt;00:10, 154534.16it/s]
+
69%|██████▊ | 3429264/4997817 [00:22&lt;00:10, 152002.54it/s]

</pre>

-
69%|██████▊ | 3430466/4997817 [00:22<00:10, 154534.16it/s]
+
69%|██████▊ | 3429264/4997817 [00:22<00:10, 152002.54it/s]

end{sphinxVerbatim}

-

69%|██████▊ | 3430466/4997817 [00:22<00:10, 154534.16it/s]

+

69%|██████▊ | 3429264/4997817 [00:22<00:10, 152002.54it/s]

-
69%|██████▉ | 3445934/4997817 [00:22&lt;00:10, 154576.71it/s]
+
69%|██████▉ | 3444687/4997817 [00:22&lt;00:10, 152661.60it/s]

</pre>

-
69%|██████▉ | 3445934/4997817 [00:22<00:10, 154576.71it/s]
+
69%|██████▉ | 3444687/4997817 [00:22<00:10, 152661.60it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3445934/4997817 [00:22<00:10, 154576.71it/s]

+

69%|██████▉ | 3444687/4997817 [00:22<00:10, 152661.60it/s]

-
69%|██████▉ | 3461392/4997817 [00:22&lt;00:09, 154214.46it/s]
+
69%|██████▉ | 3459988/4997817 [00:22&lt;00:10, 152762.54it/s]

</pre>

-
69%|██████▉ | 3461392/4997817 [00:22<00:09, 154214.46it/s]
+
69%|██████▉ | 3459988/4997817 [00:22<00:10, 152762.54it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3461392/4997817 [00:22<00:09, 154214.46it/s]

+

69%|██████▉ | 3459988/4997817 [00:22<00:10, 152762.54it/s]

-
70%|██████▉ | 3476836/4997817 [00:22&lt;00:09, 154280.38it/s]
+
70%|██████▉ | 3475342/4997817 [00:22&lt;00:09, 152992.88it/s]

</pre>

-
70%|██████▉ | 3476836/4997817 [00:22<00:09, 154280.38it/s]
+
70%|██████▉ | 3475342/4997817 [00:22<00:09, 152992.88it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3476836/4997817 [00:22<00:09, 154280.38it/s]

+

70%|██████▉ | 3475342/4997817 [00:22<00:09, 152992.88it/s]

-
70%|██████▉ | 3492331/4997817 [00:22&lt;00:09, 154479.71it/s]
+
70%|██████▉ | 3490806/4997817 [00:22&lt;00:09, 153484.06it/s]

</pre>

-
70%|██████▉ | 3492331/4997817 [00:22<00:09, 154479.71it/s]
+
70%|██████▉ | 3490806/4997817 [00:22<00:09, 153484.06it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3492331/4997817 [00:22<00:09, 154479.71it/s]

+

70%|██████▉ | 3490806/4997817 [00:22<00:09, 153484.06it/s]

-
70%|███████ | 3507875/4997817 [00:22&lt;00:09, 154766.34it/s]
+
70%|███████ | 3506159/4997817 [00:22&lt;00:09, 153394.70it/s]

</pre>

-
70%|███████ | 3507875/4997817 [00:22<00:09, 154766.34it/s]
+
70%|███████ | 3506159/4997817 [00:22<00:09, 153394.70it/s]

end{sphinxVerbatim}

-

70%|███████ | 3507875/4997817 [00:22<00:09, 154766.34it/s]

+

70%|███████ | 3506159/4997817 [00:22<00:09, 153394.70it/s]

-
70%|███████ | 3523352/4997817 [00:22&lt;00:09, 154673.95it/s]
+
70%|███████ | 3521538/4997817 [00:22&lt;00:09, 153511.49it/s]

</pre>

-
70%|███████ | 3523352/4997817 [00:22<00:09, 154673.95it/s]
+
70%|███████ | 3521538/4997817 [00:22<00:09, 153511.49it/s]

end{sphinxVerbatim}

-

70%|███████ | 3523352/4997817 [00:22<00:09, 154673.95it/s]

+

70%|███████ | 3521538/4997817 [00:22<00:09, 153511.49it/s]

-
71%|███████ | 3538822/4997817 [00:23&lt;00:09, 154679.04it/s]
+
71%|███████ | 3537056/4997817 [00:23&lt;00:09, 154008.32it/s]

</pre>

-
71%|███████ | 3538822/4997817 [00:23<00:09, 154679.04it/s]
+
71%|███████ | 3537056/4997817 [00:23<00:09, 154008.32it/s]

end{sphinxVerbatim}

-

71%|███████ | 3538822/4997817 [00:23<00:09, 154679.04it/s]

+

71%|███████ | 3537056/4997817 [00:23<00:09, 154008.32it/s]

-
71%|███████ | 3554370/4997817 [00:23&lt;00:09, 154917.78it/s]
+
71%|███████ | 3552632/4997817 [00:23&lt;00:09, 154530.44it/s]

</pre>

-
71%|███████ | 3554370/4997817 [00:23<00:09, 154917.78it/s]
+
71%|███████ | 3552632/4997817 [00:23<00:09, 154530.44it/s]

end{sphinxVerbatim}

-

71%|███████ | 3554370/4997817 [00:23<00:09, 154917.78it/s]

+

71%|███████ | 3552632/4997817 [00:23<00:09, 154530.44it/s]

-
71%|███████▏ | 3569906/4997817 [00:23&lt;00:09, 155047.44it/s]
+
71%|███████▏ | 3568087/4997817 [00:23&lt;00:09, 146968.50it/s]

</pre>

-
71%|███████▏ | 3569906/4997817 [00:23<00:09, 155047.44it/s]
+
71%|███████▏ | 3568087/4997817 [00:23<00:09, 146968.50it/s]

end{sphinxVerbatim}

-

71%|███████▏ | 3569906/4997817 [00:23<00:09, 155047.44it/s]

+

71%|███████▏ | 3568087/4997817 [00:23<00:09, 146968.50it/s]

-
72%|███████▏ | 3585430/4997817 [00:23&lt;00:09, 155102.12it/s]
+
72%|███████▏ | 3583451/4997817 [00:23&lt;00:09, 148896.74it/s]

</pre>

-
72%|███████▏ | 3585430/4997817 [00:23<00:09, 155102.12it/s]
+
72%|███████▏ | 3583451/4997817 [00:23<00:09, 148896.74it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3585430/4997817 [00:23<00:09, 155102.12it/s]

+

72%|███████▏ | 3583451/4997817 [00:23<00:09, 148896.74it/s]

-
72%|███████▏ | 3600951/4997817 [00:23&lt;00:09, 155132.30it/s]
+
72%|███████▏ | 3598891/4997817 [00:23&lt;00:09, 150504.59it/s]

</pre>

-
72%|███████▏ | 3600951/4997817 [00:23<00:09, 155132.30it/s]
+
72%|███████▏ | 3598891/4997817 [00:23<00:09, 150504.59it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3600951/4997817 [00:23<00:09, 155132.30it/s]

+

72%|███████▏ | 3598891/4997817 [00:23<00:09, 150504.59it/s]

-
72%|███████▏ | 3616465/4997817 [00:23&lt;00:09, 150887.26it/s]
+
72%|███████▏ | 3614435/4997817 [00:23&lt;00:09, 151958.53it/s]

</pre>

-
72%|███████▏ | 3616465/4997817 [00:23<00:09, 150887.26it/s]
+
72%|███████▏ | 3614435/4997817 [00:23<00:09, 151958.53it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3616465/4997817 [00:23<00:09, 150887.26it/s]

+

72%|███████▏ | 3614435/4997817 [00:23<00:09, 151958.53it/s]

-
73%|███████▎ | 3632029/4997817 [00:23&lt;00:08, 152284.22it/s]
+
73%|███████▎ | 3629881/4997817 [00:23&lt;00:08, 152697.73it/s]

</pre>

-
73%|███████▎ | 3632029/4997817 [00:23<00:08, 152284.22it/s]
+
73%|███████▎ | 3629881/4997817 [00:23<00:08, 152697.73it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3632029/4997817 [00:23<00:08, 152284.22it/s]

+

73%|███████▎ | 3629881/4997817 [00:23<00:08, 152697.73it/s]

-
73%|███████▎ | 3647567/4997817 [00:23&lt;00:08, 153198.65it/s]
+
73%|███████▎ | 3645255/4997817 [00:23&lt;00:08, 153005.77it/s]

</pre>

-
73%|███████▎ | 3647567/4997817 [00:23<00:08, 153198.65it/s]
+
73%|███████▎ | 3645255/4997817 [00:23<00:08, 153005.77it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3647567/4997817 [00:23<00:08, 153198.65it/s]

+

73%|███████▎ | 3645255/4997817 [00:23<00:08, 153005.77it/s]

-
73%|███████▎ | 3663094/4997817 [00:23&lt;00:08, 153810.84it/s]
+
73%|███████▎ | 3660584/4997817 [00:23&lt;00:08, 153088.81it/s]

</pre>

-
73%|███████▎ | 3663094/4997817 [00:23<00:08, 153810.84it/s]
+
73%|███████▎ | 3660584/4997817 [00:23<00:08, 153088.81it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3663094/4997817 [00:23<00:08, 153810.84it/s]

+

73%|███████▎ | 3660584/4997817 [00:23<00:08, 153088.81it/s]

-
74%|███████▎ | 3678598/4997817 [00:23&lt;00:08, 154174.29it/s]
+
74%|███████▎ | 3675916/4997817 [00:23&lt;00:08, 153156.17it/s]

</pre>

-
74%|███████▎ | 3678598/4997817 [00:23<00:08, 154174.29it/s]
+
74%|███████▎ | 3675916/4997817 [00:23<00:08, 153156.17it/s]

end{sphinxVerbatim}

-

74%|███████▎ | 3678598/4997817 [00:23<00:08, 154174.29it/s]

+

74%|███████▎ | 3675916/4997817 [00:23<00:08, 153156.17it/s]

-
74%|███████▍ | 3694138/4997817 [00:24&lt;00:08, 154536.99it/s]
+
74%|███████▍ | 3691295/4997817 [00:24&lt;00:08, 153344.25it/s]

</pre>

-
74%|███████▍ | 3694138/4997817 [00:24<00:08, 154536.99it/s]
+
74%|███████▍ | 3691295/4997817 [00:24<00:08, 153344.25it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3694138/4997817 [00:24<00:08, 154536.99it/s]

+

74%|███████▍ | 3691295/4997817 [00:24<00:08, 153344.25it/s]

-
74%|███████▍ | 3709658/4997817 [00:24&lt;00:08, 154732.73it/s]
+
74%|███████▍ | 3706697/4997817 [00:24&lt;00:08, 153545.60it/s]

</pre>

-
74%|███████▍ | 3709658/4997817 [00:24<00:08, 154732.73it/s]
+
74%|███████▍ | 3706697/4997817 [00:24<00:08, 153545.60it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3709658/4997817 [00:24<00:08, 154732.73it/s]

+

74%|███████▍ | 3706697/4997817 [00:24<00:08, 153545.60it/s]

-
75%|███████▍ | 3725206/4997817 [00:24&lt;00:08, 154954.44it/s]
+
74%|███████▍ | 3722057/4997817 [00:24&lt;00:08, 147836.83it/s]

</pre>

-
75%|███████▍ | 3725206/4997817 [00:24<00:08, 154954.44it/s]
+
74%|███████▍ | 3722057/4997817 [00:24<00:08, 147836.83it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3725206/4997817 [00:24<00:08, 154954.44it/s]

+

74%|███████▍ | 3722057/4997817 [00:24<00:08, 147836.83it/s]

-
75%|███████▍ | 3740779/4997817 [00:24&lt;00:08, 155183.88it/s]
+
75%|███████▍ | 3736974/4997817 [00:24&lt;00:08, 148222.56it/s]

</pre>

-
75%|███████▍ | 3740779/4997817 [00:24<00:08, 155183.88it/s]
+
75%|███████▍ | 3736974/4997817 [00:24<00:08, 148222.56it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3740779/4997817 [00:24<00:08, 155183.88it/s]

+

75%|███████▍ | 3736974/4997817 [00:24<00:08, 148222.56it/s]

-
75%|███████▌ | 3756300/4997817 [00:24&lt;00:08, 155152.62it/s]
+
75%|███████▌ | 3752284/4997817 [00:24&lt;00:08, 149654.65it/s]

</pre>

-
75%|███████▌ | 3756300/4997817 [00:24<00:08, 155152.62it/s]
+
75%|███████▌ | 3752284/4997817 [00:24<00:08, 149654.65it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3756300/4997817 [00:24<00:08, 155152.62it/s]

+

75%|███████▌ | 3752284/4997817 [00:24<00:08, 149654.65it/s]

-
75%|███████▌ | 3771876/4997817 [00:24&lt;00:07, 155332.15it/s]
+
75%|███████▌ | 3767574/4997817 [00:24&lt;00:08, 150612.24it/s]

</pre>

-
75%|███████▌ | 3771876/4997817 [00:24<00:07, 155332.15it/s]
+
75%|███████▌ | 3767574/4997817 [00:24<00:08, 150612.24it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3771876/4997817 [00:24<00:07, 155332.15it/s]

+

75%|███████▌ | 3767574/4997817 [00:24<00:08, 150612.24it/s]

-
76%|███████▌ | 3787433/4997817 [00:24&lt;00:07, 155401.94it/s]
+
76%|███████▌ | 3782880/4997817 [00:24&lt;00:08, 151337.73it/s]

</pre>

-
76%|███████▌ | 3787433/4997817 [00:24<00:07, 155401.94it/s]
+
76%|███████▌ | 3782880/4997817 [00:24<00:08, 151337.73it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3787433/4997817 [00:24<00:07, 155401.94it/s]

+

76%|███████▌ | 3782880/4997817 [00:24<00:08, 151337.73it/s]

-
76%|███████▌ | 3802974/4997817 [00:24&lt;00:07, 154579.57it/s]
+
76%|███████▌ | 3798151/4997817 [00:24&lt;00:07, 151743.76it/s]

</pre>

-
76%|███████▌ | 3802974/4997817 [00:24<00:07, 154579.57it/s]
+
76%|███████▌ | 3798151/4997817 [00:24<00:07, 151743.76it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3802974/4997817 [00:24<00:07, 154579.57it/s]

+

76%|███████▌ | 3798151/4997817 [00:24<00:07, 151743.76it/s]

-
76%|███████▋ | 3818510/4997817 [00:24&lt;00:07, 154809.04it/s]
+
76%|███████▋ | 3813408/4997817 [00:24&lt;00:07, 151987.69it/s]

</pre>

-
76%|███████▋ | 3818510/4997817 [00:24<00:07, 154809.04it/s]
+
76%|███████▋ | 3813408/4997817 [00:24<00:07, 151987.69it/s]

end{sphinxVerbatim}

-

76%|███████▋ | 3818510/4997817 [00:24<00:07, 154809.04it/s]

+

76%|███████▋ | 3813408/4997817 [00:24<00:07, 151987.69it/s]

-
77%|███████▋ | 3834118/4997817 [00:24&lt;00:07, 155187.73it/s]
+
77%|███████▋ | 3828722/4997817 [00:24&lt;00:07, 152329.77it/s]

</pre>

-
77%|███████▋ | 3834118/4997817 [00:24<00:07, 155187.73it/s]
+
77%|███████▋ | 3828722/4997817 [00:24<00:07, 152329.77it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3834118/4997817 [00:24<00:07, 155187.73it/s]

+

77%|███████▋ | 3828722/4997817 [00:24<00:07, 152329.77it/s]

-
77%|███████▋ | 3849726/4997817 [00:25&lt;00:07, 155451.03it/s]
+
77%|███████▋ | 3844014/4997817 [00:25&lt;00:07, 152505.38it/s]

</pre>

-
77%|███████▋ | 3849726/4997817 [00:25<00:07, 155451.03it/s]
+
77%|███████▋ | 3844014/4997817 [00:25<00:07, 152505.38it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3849726/4997817 [00:25<00:07, 155451.03it/s]

+

77%|███████▋ | 3844014/4997817 [00:25<00:07, 152505.38it/s]

-
77%|███████▋ | 3865281/4997817 [00:25&lt;00:07, 155478.17it/s]
+
77%|███████▋ | 3859286/4997817 [00:25&lt;00:07, 152568.18it/s]

</pre>

-
77%|███████▋ | 3865281/4997817 [00:25<00:07, 155478.17it/s]
+
77%|███████▋ | 3859286/4997817 [00:25<00:07, 152568.18it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3865281/4997817 [00:25<00:07, 155478.17it/s]

+

77%|███████▋ | 3859286/4997817 [00:25<00:07, 152568.18it/s]

-
78%|███████▊ | 3880873/4997817 [00:25&lt;00:07, 155607.51it/s]
+
78%|███████▊ | 3874625/4997817 [00:25&lt;00:07, 152812.08it/s]

</pre>

-
78%|███████▊ | 3880873/4997817 [00:25<00:07, 155607.51it/s]
+
78%|███████▊ | 3874625/4997817 [00:25<00:07, 152812.08it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3880873/4997817 [00:25<00:07, 155607.51it/s]

+

78%|███████▊ | 3874625/4997817 [00:25<00:07, 152812.08it/s]

-
78%|███████▊ | 3896482/4997817 [00:25&lt;00:07, 155748.19it/s]
+
78%|███████▊ | 3890029/4997817 [00:25&lt;00:07, 153178.11it/s]

</pre>

-
78%|███████▊ | 3896482/4997817 [00:25<00:07, 155748.19it/s]
+
78%|███████▊ | 3890029/4997817 [00:25<00:07, 153178.11it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3896482/4997817 [00:25<00:07, 155748.19it/s]

+

78%|███████▊ | 3890029/4997817 [00:25<00:07, 153178.11it/s]

-
78%|███████▊ | 3912058/4997817 [00:25&lt;00:06, 155484.01it/s]
+
78%|███████▊ | 3905349/4997817 [00:25&lt;00:07, 152911.02it/s]

</pre>

-
78%|███████▊ | 3912058/4997817 [00:25<00:06, 155484.01it/s]
+
78%|███████▊ | 3905349/4997817 [00:25<00:07, 152911.02it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3912058/4997817 [00:25<00:06, 155484.01it/s]

+

78%|███████▊ | 3905349/4997817 [00:25<00:07, 152911.02it/s]

-
79%|███████▊ | 3927607/4997817 [00:25&lt;00:06, 155333.66it/s]
+
78%|███████▊ | 3920784/4997817 [00:25&lt;00:07, 153341.49it/s]

</pre>

-
79%|███████▊ | 3927607/4997817 [00:25<00:06, 155333.66it/s]
+
78%|███████▊ | 3920784/4997817 [00:25<00:07, 153341.49it/s]

end{sphinxVerbatim}

-

79%|███████▊ | 3927607/4997817 [00:25<00:06, 155333.66it/s]

+

78%|███████▊ | 3920784/4997817 [00:25<00:07, 153341.49it/s]

-
79%|███████▉ | 3943141/4997817 [00:25&lt;00:06, 154982.06it/s]
+
79%|███████▉ | 3936119/4997817 [00:25&lt;00:06, 152961.72it/s]

</pre>

-
79%|███████▉ | 3943141/4997817 [00:25<00:06, 154982.06it/s]
+
79%|███████▉ | 3936119/4997817 [00:25<00:06, 152961.72it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3943141/4997817 [00:25<00:06, 154982.06it/s]

+

79%|███████▉ | 3936119/4997817 [00:25<00:06, 152961.72it/s]

-
79%|███████▉ | 3958655/4997817 [00:25&lt;00:06, 155026.48it/s]
+
79%|███████▉ | 3951508/4997817 [00:25&lt;00:06, 153228.71it/s]

</pre>

-
79%|███████▉ | 3958655/4997817 [00:25<00:06, 155026.48it/s]
+
79%|███████▉ | 3951508/4997817 [00:25<00:06, 153228.71it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3958655/4997817 [00:25<00:06, 155026.48it/s]

+

79%|███████▉ | 3951508/4997817 [00:25<00:06, 153228.71it/s]

-
80%|███████▉ | 3974166/4997817 [00:25&lt;00:06, 155048.76it/s]
+
79%|███████▉ | 3966960/4997817 [00:25&lt;00:06, 153613.34it/s]

</pre>

-
80%|███████▉ | 3974166/4997817 [00:25<00:06, 155048.76it/s]
+
79%|███████▉ | 3966960/4997817 [00:25<00:06, 153613.34it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3974166/4997817 [00:25<00:06, 155048.76it/s]

+

79%|███████▉ | 3966960/4997817 [00:25<00:06, 153613.34it/s]

-
80%|███████▉ | 3989742/4997817 [00:25&lt;00:06, 155258.99it/s]
+
80%|███████▉ | 3982322/4997817 [00:25&lt;00:06, 153448.22it/s]

</pre>

-
80%|███████▉ | 3989742/4997817 [00:25<00:06, 155258.99it/s]
+
80%|███████▉ | 3982322/4997817 [00:25<00:06, 153448.22it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3989742/4997817 [00:25<00:06, 155258.99it/s]

+

80%|███████▉ | 3982322/4997817 [00:25<00:06, 153448.22it/s]

-
80%|████████ | 4005269/4997817 [00:26&lt;00:06, 155095.77it/s]
+
80%|███████▉ | 3997668/4997817 [00:26&lt;00:06, 153357.40it/s]

</pre>

-
80%|████████ | 4005269/4997817 [00:26<00:06, 155095.77it/s]
+
80%|███████▉ | 3997668/4997817 [00:26<00:06, 153357.40it/s]

end{sphinxVerbatim}

-

80%|████████ | 4005269/4997817 [00:26<00:06, 155095.77it/s]

+

80%|███████▉ | 3997668/4997817 [00:26<00:06, 153357.40it/s]

-
80%|████████ | 4020928/4997817 [00:26&lt;00:06, 155541.32it/s]
+
80%|████████ | 4013004/4997817 [00:26&lt;00:06, 153315.74it/s]

</pre>

-
80%|████████ | 4020928/4997817 [00:26<00:06, 155541.32it/s]
+
80%|████████ | 4013004/4997817 [00:26<00:06, 153315.74it/s]

end{sphinxVerbatim}

-

80%|████████ | 4020928/4997817 [00:26<00:06, 155541.32it/s]

+

80%|████████ | 4013004/4997817 [00:26<00:06, 153315.74it/s]

-
81%|████████ | 4036483/4997817 [00:26&lt;00:06, 155356.37it/s]
+
81%|████████ | 4028336/4997817 [00:26&lt;00:06, 153114.29it/s]

</pre>

-
81%|████████ | 4036483/4997817 [00:26<00:06, 155356.37it/s]
+
81%|████████ | 4028336/4997817 [00:26<00:06, 153114.29it/s]

end{sphinxVerbatim}

-

81%|████████ | 4036483/4997817 [00:26<00:06, 155356.37it/s]

+

81%|████████ | 4028336/4997817 [00:26<00:06, 153114.29it/s]

-
81%|████████ | 4052019/4997817 [00:26&lt;00:06, 155307.81it/s]
+
81%|████████ | 4043648/4997817 [00:26&lt;00:06, 150591.11it/s]

</pre>

-
81%|████████ | 4052019/4997817 [00:26<00:06, 155307.81it/s]
+
81%|████████ | 4043648/4997817 [00:26<00:06, 150591.11it/s]

end{sphinxVerbatim}

-

81%|████████ | 4052019/4997817 [00:26<00:06, 155307.81it/s]

+

81%|████████ | 4043648/4997817 [00:26<00:06, 150591.11it/s]

-
81%|████████▏ | 4067550/4997817 [00:26&lt;00:05, 155236.21it/s]
+
81%|████████ | 4059148/4997817 [00:26&lt;00:06, 151895.49it/s]

</pre>

-
81%|████████▏ | 4067550/4997817 [00:26<00:05, 155236.21it/s]
+
81%|████████ | 4059148/4997817 [00:26<00:06, 151895.49it/s]

end{sphinxVerbatim}

-

81%|████████▏ | 4067550/4997817 [00:26<00:05, 155236.21it/s]

+

81%|████████ | 4059148/4997817 [00:26<00:06, 151895.49it/s]

-
82%|████████▏ | 4083074/4997817 [00:26&lt;00:05, 154917.67it/s]
+
82%|████████▏ | 4074741/4997817 [00:26&lt;00:06, 153091.67it/s]

</pre>

-
82%|████████▏ | 4083074/4997817 [00:26<00:05, 154917.67it/s]
+
82%|████████▏ | 4074741/4997817 [00:26<00:06, 153091.67it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4083074/4997817 [00:26<00:05, 154917.67it/s]

+

82%|████████▏ | 4074741/4997817 [00:26<00:06, 153091.67it/s]

-
82%|████████▏ | 4098566/4997817 [00:26&lt;00:06, 146375.09it/s]
+
82%|████████▏ | 4090233/4997817 [00:26&lt;00:05, 153635.51it/s]

</pre>

-
82%|████████▏ | 4098566/4997817 [00:26<00:06, 146375.09it/s]
+
82%|████████▏ | 4090233/4997817 [00:26<00:05, 153635.51it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4098566/4997817 [00:26<00:06, 146375.09it/s]

+

82%|████████▏ | 4090233/4997817 [00:26<00:05, 153635.51it/s]

-
82%|████████▏ | 4113914/4997817 [00:26&lt;00:05, 148417.52it/s]
+
82%|████████▏ | 4105801/4997817 [00:26&lt;00:05, 154243.63it/s]

</pre>

-
82%|████████▏ | 4113914/4997817 [00:26<00:05, 148417.52it/s]
+
82%|████████▏ | 4105801/4997817 [00:26<00:05, 154243.63it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4113914/4997817 [00:26<00:05, 148417.52it/s]

+

82%|████████▏ | 4105801/4997817 [00:26<00:05, 154243.63it/s]

-
83%|████████▎ | 4129242/4997817 [00:26&lt;00:05, 149832.62it/s]
+
82%|████████▏ | 4121409/4997817 [00:26&lt;00:05, 154791.86it/s]

</pre>

-
83%|████████▎ | 4129242/4997817 [00:26<00:05, 149832.62it/s]
+
82%|████████▏ | 4121409/4997817 [00:26<00:05, 154791.86it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4129242/4997817 [00:26<00:05, 149832.62it/s]

+

82%|████████▏ | 4121409/4997817 [00:26<00:05, 154791.86it/s]

-
83%|████████▎ | 4144613/4997817 [00:26&lt;00:05, 150968.60it/s]
+
83%|████████▎ | 4136946/4997817 [00:26&lt;00:05, 154962.42it/s]

</pre>

-
83%|████████▎ | 4144613/4997817 [00:26<00:05, 150968.60it/s]
+
83%|████████▎ | 4136946/4997817 [00:26<00:05, 154962.42it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4144613/4997817 [00:26<00:05, 150968.60it/s]

+

83%|████████▎ | 4136946/4997817 [00:26<00:05, 154962.42it/s]

-
83%|████████▎ | 4160035/4997817 [00:27&lt;00:05, 151927.64it/s]
+
83%|████████▎ | 4152492/4997817 [00:27&lt;00:05, 155109.62it/s]

</pre>

-
83%|████████▎ | 4160035/4997817 [00:27<00:05, 151927.64it/s]
+
83%|████████▎ | 4152492/4997817 [00:27<00:05, 155109.62it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4160035/4997817 [00:27<00:05, 151927.64it/s]

+

83%|████████▎ | 4152492/4997817 [00:27<00:05, 155109.62it/s]

-
84%|████████▎ | 4175344/4997817 [00:27&lt;00:05, 152271.67it/s]
+
83%|████████▎ | 4168015/4997817 [00:27&lt;00:05, 155143.19it/s]

</pre>

-
84%|████████▎ | 4175344/4997817 [00:27<00:05, 152271.67it/s]
+
83%|████████▎ | 4168015/4997817 [00:27<00:05, 155143.19it/s]

end{sphinxVerbatim}

-

84%|████████▎ | 4175344/4997817 [00:27<00:05, 152271.67it/s]

+

83%|████████▎ | 4168015/4997817 [00:27<00:05, 155143.19it/s]

-
84%|████████▍ | 4190658/4997817 [00:27&lt;00:05, 152526.24it/s]
+
84%|████████▎ | 4183654/4997817 [00:27&lt;00:05, 155513.87it/s]

</pre>

-
84%|████████▍ | 4190658/4997817 [00:27<00:05, 152526.24it/s]
+
84%|████████▎ | 4183654/4997817 [00:27<00:05, 155513.87it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4190658/4997817 [00:27<00:05, 152526.24it/s]

+

84%|████████▎ | 4183654/4997817 [00:27<00:05, 155513.87it/s]

-
84%|████████▍ | 4205984/4997817 [00:27&lt;00:05, 152743.35it/s]
+
84%|████████▍ | 4199207/4997817 [00:27&lt;00:05, 152050.97it/s]

</pre>

-
84%|████████▍ | 4205984/4997817 [00:27<00:05, 152743.35it/s]
+
84%|████████▍ | 4199207/4997817 [00:27<00:05, 152050.97it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4205984/4997817 [00:27<00:05, 152743.35it/s]

+

84%|████████▍ | 4199207/4997817 [00:27<00:05, 152050.97it/s]

-
84%|████████▍ | 4221286/4997817 [00:27&lt;00:05, 152822.28it/s]
+
84%|████████▍ | 4214599/4997817 [00:27&lt;00:05, 152599.26it/s]

</pre>

-
84%|████████▍ | 4221286/4997817 [00:27<00:05, 152822.28it/s]
+
84%|████████▍ | 4214599/4997817 [00:27<00:05, 152599.26it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4221286/4997817 [00:27<00:05, 152822.28it/s]

+

84%|████████▍ | 4214599/4997817 [00:27<00:05, 152599.26it/s]

-
85%|████████▍ | 4236607/4997817 [00:27&lt;00:04, 152936.93it/s]
+
85%|████████▍ | 4230003/4997817 [00:27&lt;00:05, 153024.35it/s]

</pre>

-
85%|████████▍ | 4236607/4997817 [00:27<00:04, 152936.93it/s]
+
85%|████████▍ | 4230003/4997817 [00:27<00:05, 153024.35it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4236607/4997817 [00:27<00:04, 152936.93it/s]

+

85%|████████▍ | 4230003/4997817 [00:27<00:05, 153024.35it/s]

-
85%|████████▌ | 4251907/4997817 [00:27&lt;00:05, 145817.28it/s]
+
85%|████████▍ | 4245402/4997817 [00:27&lt;00:04, 153309.38it/s]

</pre>

-
85%|████████▌ | 4251907/4997817 [00:27<00:05, 145817.28it/s]
+
85%|████████▍ | 4245402/4997817 [00:27<00:04, 153309.38it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4251907/4997817 [00:27<00:05, 145817.28it/s]

+

85%|████████▍ | 4245402/4997817 [00:27<00:04, 153309.38it/s]

-
85%|████████▌ | 4267342/4997817 [00:27&lt;00:04, 148286.68it/s]
+
85%|████████▌ | 4260774/4997817 [00:27&lt;00:04, 153430.83it/s]

</pre>

-
85%|████████▌ | 4267342/4997817 [00:27<00:04, 148286.68it/s]
+
85%|████████▌ | 4260774/4997817 [00:27<00:04, 153430.83it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4267342/4997817 [00:27<00:04, 148286.68it/s]

+

85%|████████▌ | 4260774/4997817 [00:27<00:04, 153430.83it/s]

-
86%|████████▌ | 4282888/4997817 [00:27&lt;00:04, 150383.39it/s]
+
86%|████████▌ | 4276259/4997817 [00:27&lt;00:04, 153852.65it/s]

</pre>

-
86%|████████▌ | 4282888/4997817 [00:27<00:04, 150383.39it/s]
+
86%|████████▌ | 4276259/4997817 [00:27<00:04, 153852.65it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4282888/4997817 [00:27<00:04, 150383.39it/s]

+

86%|████████▌ | 4276259/4997817 [00:27<00:04, 153852.65it/s]

-
86%|████████▌ | 4298490/4997817 [00:27&lt;00:04, 152044.25it/s]
+
86%|████████▌ | 4291697/4997817 [00:27&lt;00:04, 154008.59it/s]

</pre>

-
86%|████████▌ | 4298490/4997817 [00:27<00:04, 152044.25it/s]
+
86%|████████▌ | 4291697/4997817 [00:27<00:04, 154008.59it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4298490/4997817 [00:27<00:04, 152044.25it/s]

+

86%|████████▌ | 4291697/4997817 [00:27<00:04, 154008.59it/s]

-
86%|████████▋ | 4314035/4997817 [00:28&lt;00:04, 153050.11it/s]
+
86%|████████▌ | 4307133/4997817 [00:28&lt;00:04, 154111.76it/s]

</pre>

-
86%|████████▋ | 4314035/4997817 [00:28<00:04, 153050.11it/s]
+
86%|████████▌ | 4307133/4997817 [00:28<00:04, 154111.76it/s]

end{sphinxVerbatim}

-

86%|████████▋ | 4314035/4997817 [00:28<00:04, 153050.11it/s]

+

86%|████████▌ | 4307133/4997817 [00:28<00:04, 154111.76it/s]

-
87%|████████▋ | 4329574/4997817 [00:28&lt;00:04, 153744.85it/s]
+
86%|████████▋ | 4322547/4997817 [00:28&lt;00:04, 154109.59it/s]

</pre>

-
87%|████████▋ | 4329574/4997817 [00:28<00:04, 153744.85it/s]
+
86%|████████▋ | 4322547/4997817 [00:28<00:04, 154109.59it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4329574/4997817 [00:28<00:04, 153744.85it/s]

+

86%|████████▋ | 4322547/4997817 [00:28<00:04, 154109.59it/s]

-
87%|████████▋ | 4345105/4997817 [00:28&lt;00:04, 154209.34it/s]
+
87%|████████▋ | 4337986/4997817 [00:28&lt;00:04, 154192.24it/s]

</pre>

-
87%|████████▋ | 4345105/4997817 [00:28<00:04, 154209.34it/s]
+
87%|████████▋ | 4337986/4997817 [00:28<00:04, 154192.24it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4345105/4997817 [00:28<00:04, 154209.34it/s]

+

87%|████████▋ | 4337986/4997817 [00:28<00:04, 154192.24it/s]

-
87%|████████▋ | 4360685/4997817 [00:28&lt;00:04, 154683.14it/s]
+
87%|████████▋ | 4353407/4997817 [00:28&lt;00:04, 153783.33it/s]

</pre>

-
87%|████████▋ | 4360685/4997817 [00:28<00:04, 154683.14it/s]
+
87%|████████▋ | 4353407/4997817 [00:28<00:04, 153783.33it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4360685/4997817 [00:28<00:04, 154683.14it/s]

+

87%|████████▋ | 4353407/4997817 [00:28<00:04, 153783.33it/s]

-
88%|████████▊ | 4376194/4997817 [00:28&lt;00:04, 154801.46it/s]
+
87%|████████▋ | 4368869/4997817 [00:28&lt;00:04, 154032.24it/s]

</pre>

-
88%|████████▊ | 4376194/4997817 [00:28<00:04, 154801.46it/s]
+
87%|████████▋ | 4368869/4997817 [00:28<00:04, 154032.24it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4376194/4997817 [00:28<00:04, 154801.46it/s]

+

87%|████████▋ | 4368869/4997817 [00:28<00:04, 154032.24it/s]

-
88%|████████▊ | 4391740/4997817 [00:28&lt;00:03, 154996.89it/s]
+
88%|████████▊ | 4384273/4997817 [00:28&lt;00:03, 153880.56it/s]

</pre>

-
88%|████████▊ | 4391740/4997817 [00:28<00:03, 154996.89it/s]
+
88%|████████▊ | 4384273/4997817 [00:28<00:03, 153880.56it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4391740/4997817 [00:28<00:03, 154996.89it/s]

+

88%|████████▊ | 4384273/4997817 [00:28<00:03, 153880.56it/s]

-
88%|████████▊ | 4407302/4997817 [00:28&lt;00:03, 155180.16it/s]
+
88%|████████▊ | 4399689/4997817 [00:28&lt;00:03, 153960.54it/s]

</pre>

-
88%|████████▊ | 4407302/4997817 [00:28<00:03, 155180.16it/s]
+
88%|████████▊ | 4399689/4997817 [00:28<00:03, 153960.54it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4407302/4997817 [00:28<00:03, 155180.16it/s]

+

88%|████████▊ | 4399689/4997817 [00:28<00:03, 153960.54it/s]

-
88%|████████▊ | 4422871/4997817 [00:28&lt;00:03, 155331.88it/s]
+
88%|████████▊ | 4415086/4997817 [00:28&lt;00:03, 153819.81it/s]

</pre>

-
88%|████████▊ | 4422871/4997817 [00:28<00:03, 155331.88it/s]
+
88%|████████▊ | 4415086/4997817 [00:28<00:03, 153819.81it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4422871/4997817 [00:28<00:03, 155331.88it/s]

+

88%|████████▊ | 4415086/4997817 [00:28<00:03, 153819.81it/s]

-
89%|████████▉ | 4438421/4997817 [00:28&lt;00:03, 155381.33it/s]
+
89%|████████▊ | 4430560/4997817 [00:28&lt;00:03, 154092.28it/s]

</pre>

-
89%|████████▉ | 4438421/4997817 [00:28<00:03, 155381.33it/s]
+
89%|████████▊ | 4430560/4997817 [00:28<00:03, 154092.28it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4438421/4997817 [00:28<00:03, 155381.33it/s]

+

89%|████████▊ | 4430560/4997817 [00:28<00:03, 154092.28it/s]

-
89%|████████▉ | 4453995/4997817 [00:28&lt;00:03, 155487.70it/s]
+
89%|████████▉ | 4445994/4997817 [00:28&lt;00:03, 154164.58it/s]

</pre>

-
89%|████████▉ | 4453995/4997817 [00:28<00:03, 155487.70it/s]
+
89%|████████▉ | 4445994/4997817 [00:28<00:03, 154164.58it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4453995/4997817 [00:28<00:03, 155487.70it/s]

+

89%|████████▉ | 4445994/4997817 [00:28<00:03, 154164.58it/s]

-
89%|████████▉ | 4469545/4997817 [00:29&lt;00:03, 155411.76it/s]
+
89%|████████▉ | 4461435/4997817 [00:29&lt;00:03, 154235.10it/s]

</pre>

-
89%|████████▉ | 4469545/4997817 [00:29<00:03, 155411.76it/s]
+
89%|████████▉ | 4461435/4997817 [00:29<00:03, 154235.10it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4469545/4997817 [00:29<00:03, 155411.76it/s]

+

89%|████████▉ | 4461435/4997817 [00:29<00:03, 154235.10it/s]

-
90%|████████▉ | 4485088/4997817 [00:29&lt;00:03, 155401.16it/s]
+
90%|████████▉ | 4476872/4997817 [00:29&lt;00:03, 154271.84it/s]

</pre>

-
90%|████████▉ | 4485088/4997817 [00:29<00:03, 155401.16it/s]
+
90%|████████▉ | 4476872/4997817 [00:29<00:03, 154271.84it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4485088/4997817 [00:29<00:03, 155401.16it/s]

+

90%|████████▉ | 4476872/4997817 [00:29<00:03, 154271.84it/s]

-
90%|█████████ | 4500632/4997817 [00:29&lt;00:03, 155411.74it/s]
+
90%|████████▉ | 4492300/4997817 [00:29&lt;00:03, 154190.22it/s]

</pre>

-
90%|█████████ | 4500632/4997817 [00:29<00:03, 155411.74it/s]
+
90%|████████▉ | 4492300/4997817 [00:29<00:03, 154190.22it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4500632/4997817 [00:29<00:03, 155411.74it/s]

+

90%|████████▉ | 4492300/4997817 [00:29<00:03, 154190.22it/s]

-
90%|█████████ | 4516174/4997817 [00:29&lt;00:03, 155209.29it/s]
+
90%|█████████ | 4507750/4997817 [00:29&lt;00:03, 154279.94it/s]

</pre>

-
90%|█████████ | 4516174/4997817 [00:29<00:03, 155209.29it/s]
+
90%|█████████ | 4507750/4997817 [00:29<00:03, 154279.94it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4516174/4997817 [00:29<00:03, 155209.29it/s]

+

90%|█████████ | 4507750/4997817 [00:29<00:03, 154279.94it/s]

-
91%|█████████ | 4531702/4997817 [00:29&lt;00:03, 155229.08it/s]
+
91%|█████████ | 4523179/4997817 [00:29&lt;00:03, 153985.77it/s]

</pre>

-
91%|█████████ | 4531702/4997817 [00:29<00:03, 155229.08it/s]
+
91%|█████████ | 4523179/4997817 [00:29<00:03, 153985.77it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4531702/4997817 [00:29<00:03, 155229.08it/s]

+

91%|█████████ | 4523179/4997817 [00:29<00:03, 153985.77it/s]

-
91%|█████████ | 4547306/4997817 [00:29&lt;00:02, 155470.53it/s]
+
91%|█████████ | 4538578/4997817 [00:29&lt;00:02, 153723.53it/s]

</pre>

-
91%|█████████ | 4547306/4997817 [00:29<00:02, 155470.53it/s]
+
91%|█████████ | 4538578/4997817 [00:29<00:02, 153723.53it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4547306/4997817 [00:29<00:02, 155470.53it/s]

+

91%|█████████ | 4538578/4997817 [00:29<00:02, 153723.53it/s]

-
91%|█████████▏| 4562854/4997817 [00:29&lt;00:02, 155331.40it/s]
+
91%|█████████ | 4554001/4997817 [00:29&lt;00:02, 153873.29it/s]

</pre>

-
91%|█████████▏| 4562854/4997817 [00:29<00:02, 155331.40it/s]
+
91%|█████████ | 4554001/4997817 [00:29<00:02, 153873.29it/s]

end{sphinxVerbatim}

-

91%|█████████▏| 4562854/4997817 [00:29<00:02, 155331.40it/s]

+

91%|█████████ | 4554001/4997817 [00:29<00:02, 153873.29it/s]

-
92%|█████████▏| 4578388/4997817 [00:29&lt;00:02, 147448.98it/s]
+
91%|█████████▏| 4569399/4997817 [00:29&lt;00:02, 153901.77it/s]

</pre>

-
92%|█████████▏| 4578388/4997817 [00:29<00:02, 147448.98it/s]
+
91%|█████████▏| 4569399/4997817 [00:29<00:02, 153901.77it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4578388/4997817 [00:29<00:02, 147448.98it/s]

+

91%|█████████▏| 4569399/4997817 [00:29<00:02, 153901.77it/s]

-
92%|█████████▏| 4593898/4997817 [00:29&lt;00:02, 149657.49it/s]
+
92%|█████████▏| 4584887/4997817 [00:29&lt;00:02, 154192.18it/s]

</pre>

-
92%|█████████▏| 4593898/4997817 [00:29<00:02, 149657.49it/s]
+
92%|█████████▏| 4584887/4997817 [00:29<00:02, 154192.18it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4593898/4997817 [00:29<00:02, 149657.49it/s]

+

92%|█████████▏| 4584887/4997817 [00:29<00:02, 154192.18it/s]

-
92%|█████████▏| 4609368/4997817 [00:30&lt;00:02, 151129.17it/s]
+
92%|█████████▏| 4600307/4997817 [00:29&lt;00:02, 154017.58it/s]

</pre>

-
92%|█████████▏| 4609368/4997817 [00:30<00:02, 151129.17it/s]
+
92%|█████████▏| 4600307/4997817 [00:29<00:02, 154017.58it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4609368/4997817 [00:30<00:02, 151129.17it/s]

+

92%|█████████▏| 4600307/4997817 [00:29<00:02, 154017.58it/s]

-
93%|█████████▎| 4624875/4997817 [00:30&lt;00:02, 152288.33it/s]
+
92%|█████████▏| 4615743/4997817 [00:30&lt;00:02, 154119.11it/s]

</pre>

-
93%|█████████▎| 4624875/4997817 [00:30<00:02, 152288.33it/s]
+
92%|█████████▏| 4615743/4997817 [00:30<00:02, 154119.11it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4624875/4997817 [00:30<00:02, 152288.33it/s]

+

92%|█████████▏| 4615743/4997817 [00:30<00:02, 154119.11it/s]

-
93%|█████████▎| 4640314/4997817 [00:30&lt;00:02, 152906.93it/s]
+
93%|█████████▎| 4631156/4997817 [00:30&lt;00:02, 153933.78it/s]

</pre>

-
93%|█████████▎| 4640314/4997817 [00:30<00:02, 152906.93it/s]
+
93%|█████████▎| 4631156/4997817 [00:30<00:02, 153933.78it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4640314/4997817 [00:30<00:02, 152906.93it/s]

+

93%|█████████▎| 4631156/4997817 [00:30<00:02, 153933.78it/s]

-
93%|█████████▎| 4655803/4997817 [00:30&lt;00:02, 153494.62it/s]
+
93%|█████████▎| 4646550/4997817 [00:30&lt;00:02, 153794.33it/s]

</pre>

-
93%|█████████▎| 4655803/4997817 [00:30<00:02, 153494.62it/s]
+
93%|█████████▎| 4646550/4997817 [00:30<00:02, 153794.33it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4655803/4997817 [00:30<00:02, 153494.62it/s]

+

93%|█████████▎| 4646550/4997817 [00:30<00:02, 153794.33it/s]

-
93%|█████████▎| 4671257/4997817 [00:30&lt;00:02, 153802.55it/s]
+
93%|█████████▎| 4661930/4997817 [00:30&lt;00:02, 153604.14it/s]

</pre>

-
93%|█████████▎| 4671257/4997817 [00:30<00:02, 153802.55it/s]
+
93%|█████████▎| 4661930/4997817 [00:30<00:02, 153604.14it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4671257/4997817 [00:30<00:02, 153802.55it/s]

+

93%|█████████▎| 4661930/4997817 [00:30<00:02, 153604.14it/s]

-
94%|█████████▍| 4686669/4997817 [00:30&lt;00:02, 153895.43it/s]
+
94%|█████████▎| 4677291/4997817 [00:30&lt;00:02, 153189.45it/s]

</pre>

-
94%|█████████▍| 4686669/4997817 [00:30<00:02, 153895.43it/s]
+
94%|█████████▎| 4677291/4997817 [00:30<00:02, 153189.45it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4686669/4997817 [00:30<00:02, 153895.43it/s]

+

94%|█████████▎| 4677291/4997817 [00:30<00:02, 153189.45it/s]

-
94%|█████████▍| 4702162/4997817 [00:30&lt;00:01, 154201.34it/s]
+
94%|█████████▍| 4692776/4997817 [00:30&lt;00:01, 153678.87it/s]

</pre>

-
94%|█████████▍| 4702162/4997817 [00:30<00:01, 154201.34it/s]
+
94%|█████████▍| 4692776/4997817 [00:30<00:01, 153678.87it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4702162/4997817 [00:30<00:01, 154201.34it/s]

+

94%|█████████▍| 4692776/4997817 [00:30<00:01, 153678.87it/s]

-
94%|█████████▍| 4717639/4997817 [00:30&lt;00:01, 154368.96it/s]
+
94%|█████████▍| 4708145/4997817 [00:30&lt;00:01, 153652.86it/s]

</pre>

-
94%|█████████▍| 4717639/4997817 [00:30<00:01, 154368.96it/s]
+
94%|█████████▍| 4708145/4997817 [00:30<00:01, 153652.86it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4717639/4997817 [00:30<00:01, 154368.96it/s]

+

94%|█████████▍| 4708145/4997817 [00:30<00:01, 153652.86it/s]

-
95%|█████████▍| 4733081/4997817 [00:30&lt;00:01, 154162.68it/s]
+
95%|█████████▍| 4723512/4997817 [00:30&lt;00:01, 153657.16it/s]

</pre>

-
95%|█████████▍| 4733081/4997817 [00:30<00:01, 154162.68it/s]
+
95%|█████████▍| 4723512/4997817 [00:30<00:01, 153657.16it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4733081/4997817 [00:30<00:01, 154162.68it/s]

+

95%|█████████▍| 4723512/4997817 [00:30<00:01, 153657.16it/s]

-
95%|█████████▌| 4748501/4997817 [00:30&lt;00:01, 154009.56it/s]
+
95%|█████████▍| 4738893/4997817 [00:30&lt;00:01, 153701.57it/s]

</pre>

-
95%|█████████▌| 4748501/4997817 [00:30<00:01, 154009.56it/s]
+
95%|█████████▍| 4738893/4997817 [00:30<00:01, 153701.57it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4748501/4997817 [00:30<00:01, 154009.56it/s]

+

95%|█████████▍| 4738893/4997817 [00:30<00:01, 153701.57it/s]

-
95%|█████████▌| 4763970/4997817 [00:31&lt;00:01, 154210.31it/s]
+
95%|█████████▌| 4754264/4997817 [00:30&lt;00:01, 153504.60it/s]

</pre>

-
95%|█████████▌| 4763970/4997817 [00:31<00:01, 154210.31it/s]
+
95%|█████████▌| 4754264/4997817 [00:30<00:01, 153504.60it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4763970/4997817 [00:31<00:01, 154210.31it/s]

+

95%|█████████▌| 4754264/4997817 [00:30<00:01, 153504.60it/s]

-
96%|█████████▌| 4779393/4997817 [00:31&lt;00:01, 154123.36it/s]
+
95%|█████████▌| 4769615/4997817 [00:31&lt;00:01, 153247.32it/s]

</pre>

-
96%|█████████▌| 4779393/4997817 [00:31<00:01, 154123.36it/s]
+
95%|█████████▌| 4769615/4997817 [00:31<00:01, 153247.32it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4779393/4997817 [00:31<00:01, 154123.36it/s]

+

95%|█████████▌| 4769615/4997817 [00:31<00:01, 153247.32it/s]

-
96%|█████████▌| 4794807/4997817 [00:31&lt;00:01, 154105.05it/s]
+
96%|█████████▌| 4784940/4997817 [00:31&lt;00:01, 153081.02it/s]

</pre>

-
96%|█████████▌| 4794807/4997817 [00:31<00:01, 154105.05it/s]
+
96%|█████████▌| 4784940/4997817 [00:31<00:01, 153081.02it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4794807/4997817 [00:31<00:01, 154105.05it/s]

+

96%|█████████▌| 4784940/4997817 [00:31<00:01, 153081.02it/s]

-
96%|█████████▌| 4810237/4997817 [00:31&lt;00:01, 154162.41it/s]
+
96%|█████████▌| 4800270/4997817 [00:31&lt;00:01, 153145.18it/s]

</pre>

-
96%|█████████▌| 4810237/4997817 [00:31<00:01, 154162.41it/s]
+
96%|█████████▌| 4800270/4997817 [00:31<00:01, 153145.18it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4810237/4997817 [00:31<00:01, 154162.41it/s]

+

96%|█████████▌| 4800270/4997817 [00:31<00:01, 153145.18it/s]

-
97%|█████████▋| 4825680/4997817 [00:31&lt;00:01, 154241.45it/s]
+
96%|█████████▋| 4815618/4997817 [00:31&lt;00:01, 153244.30it/s]

</pre>

-
97%|█████████▋| 4825680/4997817 [00:31<00:01, 154241.45it/s]
+
96%|█████████▋| 4815618/4997817 [00:31<00:01, 153244.30it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4825680/4997817 [00:31<00:01, 154241.45it/s]

+

96%|█████████▋| 4815618/4997817 [00:31<00:01, 153244.30it/s]

-
97%|█████████▋| 4841107/4997817 [00:31&lt;00:01, 154246.31it/s]
+
97%|█████████▋| 4830943/4997817 [00:31&lt;00:01, 152781.07it/s]

</pre>

-
97%|█████████▋| 4841107/4997817 [00:31<00:01, 154246.31it/s]
+
97%|█████████▋| 4830943/4997817 [00:31<00:01, 152781.07it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4841107/4997817 [00:31<00:01, 154246.31it/s]

+

97%|█████████▋| 4830943/4997817 [00:31<00:01, 152781.07it/s]

-
97%|█████████▋| 4856552/4997817 [00:31&lt;00:00, 154305.23it/s]
+
97%|█████████▋| 4846264/4997817 [00:31&lt;00:00, 152895.24it/s]

</pre>

-
97%|█████████▋| 4856552/4997817 [00:31<00:00, 154305.23it/s]
+
97%|█████████▋| 4846264/4997817 [00:31<00:00, 152895.24it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4856552/4997817 [00:31<00:00, 154305.23it/s]

+

97%|█████████▋| 4846264/4997817 [00:31<00:00, 152895.24it/s]

-
97%|█████████▋| 4871983/4997817 [00:31&lt;00:00, 153994.32it/s]
+
97%|█████████▋| 4861611/4997817 [00:31&lt;00:00, 153064.51it/s]

</pre>

-
97%|█████████▋| 4871983/4997817 [00:31<00:00, 153994.32it/s]
+
97%|█████████▋| 4861611/4997817 [00:31<00:00, 153064.51it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4871983/4997817 [00:31<00:00, 153994.32it/s]

+

97%|█████████▋| 4861611/4997817 [00:31<00:00, 153064.51it/s]

-
98%|█████████▊| 4887443/4997817 [00:31&lt;00:00, 154172.58it/s]
+
98%|█████████▊| 4877009/4997817 [00:31&lt;00:00, 153337.36it/s]

</pre>

-
98%|█████████▊| 4887443/4997817 [00:31<00:00, 154172.58it/s]
+
98%|█████████▊| 4877009/4997817 [00:31<00:00, 153337.36it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4887443/4997817 [00:31<00:00, 154172.58it/s]

+

98%|█████████▊| 4877009/4997817 [00:31<00:00, 153337.36it/s]

-
98%|█████████▊| 4902918/4997817 [00:31&lt;00:00, 154342.78it/s]
+
98%|█████████▊| 4892368/4997817 [00:31&lt;00:00, 153409.94it/s]

</pre>

-
98%|█████████▊| 4902918/4997817 [00:31<00:00, 154342.78it/s]
+
98%|█████████▊| 4892368/4997817 [00:31<00:00, 153409.94it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4902918/4997817 [00:31<00:00, 154342.78it/s]

+

98%|█████████▊| 4892368/4997817 [00:31<00:00, 153409.94it/s]

-
98%|█████████▊| 4918444/4997817 [00:32&lt;00:00, 154616.11it/s]
+
98%|█████████▊| 4907726/4997817 [00:31&lt;00:00, 153457.78it/s]

</pre>

-
98%|█████████▊| 4918444/4997817 [00:32<00:00, 154616.11it/s]
+
98%|█████████▊| 4907726/4997817 [00:31<00:00, 153457.78it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4918444/4997817 [00:32<00:00, 154616.11it/s]

+

98%|█████████▊| 4907726/4997817 [00:31<00:00, 153457.78it/s]

-
99%|█████████▊| 4933928/4997817 [00:32&lt;00:00, 154681.62it/s]
+
99%|█████████▊| 4923182/4997817 [00:32&lt;00:00, 153785.56it/s]

</pre>

-
99%|█████████▊| 4933928/4997817 [00:32<00:00, 154681.62it/s]
+
99%|█████████▊| 4923182/4997817 [00:32<00:00, 153785.56it/s]

end{sphinxVerbatim}

-

99%|█████████▊| 4933928/4997817 [00:32<00:00, 154681.62it/s]

+

99%|█████████▊| 4923182/4997817 [00:32<00:00, 153785.56it/s]

-
99%|█████████▉| 4949465/4997817 [00:32&lt;00:00, 154885.99it/s]
+
99%|█████████▉| 4938561/4997817 [00:32&lt;00:00, 153783.97it/s]

</pre>

-
99%|█████████▉| 4949465/4997817 [00:32<00:00, 154885.99it/s]
+
99%|█████████▉| 4938561/4997817 [00:32<00:00, 153783.97it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4949465/4997817 [00:32<00:00, 154885.99it/s]

+

99%|█████████▉| 4938561/4997817 [00:32<00:00, 153783.97it/s]

-
99%|█████████▉| 4964994/4997817 [00:32&lt;00:00, 155003.99it/s]
+
99%|█████████▉| 4953978/4997817 [00:32&lt;00:00, 153897.59it/s]

</pre>

-
99%|█████████▉| 4964994/4997817 [00:32<00:00, 155003.99it/s]
+
99%|█████████▉| 4953978/4997817 [00:32<00:00, 153897.59it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4964994/4997817 [00:32<00:00, 155003.99it/s]

+

99%|█████████▉| 4953978/4997817 [00:32<00:00, 153897.59it/s]

-
+
-
-
-
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
-
100%|█████████▉| 4980530/4997817 [00:32&lt;00:00, 155107.15it/s]
+
99%|█████████▉| 4969368/4997817 [00:32&lt;00:00, 153894.61it/s]

</pre>

-
100%|█████████▉| 4980530/4997817 [00:32<00:00, 155107.15it/s]
+
99%|█████████▉| 4969368/4997817 [00:32<00:00, 153894.61it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4980530/4997817 [00:32<00:00, 155107.15it/s]

+

99%|█████████▉| 4969368/4997817 [00:32<00:00, 153894.61it/s]

+
+
-
100%|█████████▉| 4996041/4997817 [00:32&lt;00:00, 154803.83it/s]
+
100%|█████████▉| 4984758/4997817 [00:32&lt;00:00, 153605.50it/s]

</pre>

-
100%|█████████▉| 4996041/4997817 [00:32<00:00, 154803.83it/s]
+
100%|█████████▉| 4984758/4997817 [00:32<00:00, 153605.50it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4996041/4997817 [00:32<00:00, 154803.83it/s]

+

100%|█████████▉| 4984758/4997817 [00:32<00:00, 153605.50it/s]

-
100%|██████████| 4997817/4997817 [00:32&lt;00:00, 153673.72it/s]
+
100%|██████████| 4997817/4997817 [00:32&lt;00:00, 153435.77it/s]

</pre>

-
100%|██████████| 4997817/4997817 [00:32<00:00, 153673.72it/s]
+
100%|██████████| 4997817/4997817 [00:32<00:00, 153435.77it/s]

end{sphinxVerbatim}

-

100%|██████████| 4997817/4997817 [00:32<00:00, 153673.72it/s]

+

100%|██████████| 4997817/4997817 [00:32<00:00, 153435.77it/s]

-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -9536,7 +9545,7 @@

Get label quality scores -{"state": {"f41092a7d59842b9ad606a8f302d363f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d07ca6a86c524696bf2f66ee1603b173": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d33a86d6efe94493b4b31f045603d488": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f41092a7d59842b9ad606a8f302d363f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d07ca6a86c524696bf2f66ee1603b173", "tabbable": null, "tooltip": null, "value": 30.0}}, "22d942bf7a87444da02c7c20bd4910c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2fc35848fc74364ac28195032d870ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d79c9ddd7877446ab1df1603b14668ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_22d942bf7a87444da02c7c20bd4910c8", "placeholder": "\u200b", "style": "IPY_MODEL_b2fc35848fc74364ac28195032d870ea", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%"}}, "f1af3509b6d1462eb403501270f043e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7df2290308494535889d78cc19f6f628": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "651dd97d88794c158ac403cb3c7735e9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1af3509b6d1462eb403501270f043e1", "placeholder": "\u200b", "style": "IPY_MODEL_7df2290308494535889d78cc19f6f628", "tabbable": null, "tooltip": null, "value": " 30/30 [00:00<00:00, 443.65it/s]"}}, "ab870be927044154a9d2c007c5f1ac74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8e42fb70e364942b5126777ae7364b8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d79c9ddd7877446ab1df1603b14668ea", "IPY_MODEL_d33a86d6efe94493b4b31f045603d488", "IPY_MODEL_651dd97d88794c158ac403cb3c7735e9"], "layout": "IPY_MODEL_ab870be927044154a9d2c007c5f1ac74", "tabbable": null, "tooltip": null}}, "f94881c5ed114484a8718388dbf7f8d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d1795d50fcc748b790e1deefd918106a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7366aa89459c4323941d0f375f98ee15": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f94881c5ed114484a8718388dbf7f8d4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d1795d50fcc748b790e1deefd918106a", "tabbable": null, "tooltip": null, "value": 30.0}}, "9db709e8796d4663b3ab4076e3a7abe9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c17ddc75e18d4da39b0de12e5b18a200": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e76f660cdb0f4fb18531762f6b7a3a29": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9db709e8796d4663b3ab4076e3a7abe9", "placeholder": "\u200b", "style": "IPY_MODEL_c17ddc75e18d4da39b0de12e5b18a200", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%"}}, "2b22ce7632384103bfb532a95a042ce4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c5fc60a011f478ebb70ebe314c2c57e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aef4eb7fc2264bf7ba91be0aa175ec26": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b22ce7632384103bfb532a95a042ce4", "placeholder": "\u200b", "style": "IPY_MODEL_0c5fc60a011f478ebb70ebe314c2c57e", "tabbable": null, "tooltip": null, "value": " 30/30 [00:20<00:00, 1.44it/s]"}}, "e95f4c3e917b4f5fbba46be5f7f6f31d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "be506591e8ac431dabddd430053816e2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e76f660cdb0f4fb18531762f6b7a3a29", "IPY_MODEL_7366aa89459c4323941d0f375f98ee15", "IPY_MODEL_aef4eb7fc2264bf7ba91be0aa175ec26"], "layout": "IPY_MODEL_e95f4c3e917b4f5fbba46be5f7f6f31d", "tabbable": null, "tooltip": null}}, "8271ac55c2564cf7b8afdee5bf7bd183": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "924f64d2fdbf458ea8d923ef45ab99c7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a0a6acb581394b1ea4c7f7aac9f16e56": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8271ac55c2564cf7b8afdee5bf7bd183", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_924f64d2fdbf458ea8d923ef45ab99c7", "tabbable": null, "tooltip": null, "value": 30.0}}, "95c37d202f1b4e74b31a3b6ea23b57ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9553a7077d62470e942998ee95b9c71b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "359a0c7c06574cd79a1df91fca1753fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_95c37d202f1b4e74b31a3b6ea23b57ee", "placeholder": "\u200b", "style": "IPY_MODEL_9553a7077d62470e942998ee95b9c71b", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%"}}, "5310f63af03c448bafde34420ad575dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8129239368ed4dc9b5b1f61d4c690601": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37e3e49c8c874ce5875e52a48a409eab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5310f63af03c448bafde34420ad575dc", "placeholder": "\u200b", "style": "IPY_MODEL_8129239368ed4dc9b5b1f61d4c690601", "tabbable": null, "tooltip": null, "value": " 30/30 [00:02<00:00, 22.06it/s]"}}, "5fd6745edeb14f4ab19844d3fe8866d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abf433ee486a49889c3915e424953a34": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_359a0c7c06574cd79a1df91fca1753fe", "IPY_MODEL_a0a6acb581394b1ea4c7f7aac9f16e56", "IPY_MODEL_37e3e49c8c874ce5875e52a48a409eab"], "layout": "IPY_MODEL_5fd6745edeb14f4ab19844d3fe8866d3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e7755b2634e14aafbccebb4f6e64de73": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5345a96c9cae4e928a6e1a1c125e7ce8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6c8638463fca49d5ac7672e74d4ac28f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7755b2634e14aafbccebb4f6e64de73", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5345a96c9cae4e928a6e1a1c125e7ce8", "tabbable": null, "tooltip": null, "value": 30.0}}, "42320f8ec99345a8a1d7b3743692570c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b918e3f2902845c992e2ad99e1bd5c7a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "346d07b85b38438389fe133e9a418479": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_42320f8ec99345a8a1d7b3743692570c", "placeholder": "\u200b", "style": "IPY_MODEL_b918e3f2902845c992e2ad99e1bd5c7a", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%"}}, "3a07ea846e4e4da4b9e3d078bf06d668": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5059974e71574e4498b7c49142eac459": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0353adc3e9e4c0c90c48a657b747da6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a07ea846e4e4da4b9e3d078bf06d668", "placeholder": "\u200b", "style": "IPY_MODEL_5059974e71574e4498b7c49142eac459", "tabbable": null, "tooltip": null, "value": " 30/30 [00:00<00:00, 442.51it/s]"}}, "ac8230aa76d6480e86bf2f6603b01482": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "516f602a1da94152b495bff09963ecc2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_346d07b85b38438389fe133e9a418479", "IPY_MODEL_6c8638463fca49d5ac7672e74d4ac28f", "IPY_MODEL_c0353adc3e9e4c0c90c48a657b747da6"], "layout": "IPY_MODEL_ac8230aa76d6480e86bf2f6603b01482", "tabbable": null, "tooltip": null}}, "e615a970c954413db367b2d9fef60135": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "103bbc3ca3ac4dcfba34d609ab3401f1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f74b883c262a452dbe93b2d5f75d2310": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e615a970c954413db367b2d9fef60135", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_103bbc3ca3ac4dcfba34d609ab3401f1", "tabbable": null, "tooltip": null, "value": 30.0}}, "ed35e6eff2d34dc99d89e28b6b2db842": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c395077a208e4a06a79fbb862d6ddcc9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e88b7cbd81ec4799be04b90b0f573df2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ed35e6eff2d34dc99d89e28b6b2db842", "placeholder": "\u200b", "style": "IPY_MODEL_c395077a208e4a06a79fbb862d6ddcc9", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%"}}, "2043eeeca4644a31b8f49647f6a2c502": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c23cdff36d443ceb4a978630497cab2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "604b254022624d5fa1f0d5ce00717a7a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2043eeeca4644a31b8f49647f6a2c502", "placeholder": "\u200b", "style": "IPY_MODEL_2c23cdff36d443ceb4a978630497cab2", "tabbable": null, "tooltip": null, "value": " 30/30 [00:21<00:00, 1.46it/s]"}}, "3fd0a98738d9423197f5aa0943aefb02": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04cf97e28dc54e9e8ad9b5cad5a1f640": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e88b7cbd81ec4799be04b90b0f573df2", "IPY_MODEL_f74b883c262a452dbe93b2d5f75d2310", "IPY_MODEL_604b254022624d5fa1f0d5ce00717a7a"], "layout": "IPY_MODEL_3fd0a98738d9423197f5aa0943aefb02", "tabbable": null, "tooltip": null}}, "8e3bb7c90f954f5989152c60322ea693": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67bcc31fd41b4667ad691485ff610fad": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "86232ca075be441790e1f542ddfb5a71": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e3bb7c90f954f5989152c60322ea693", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_67bcc31fd41b4667ad691485ff610fad", "tabbable": null, "tooltip": null, "value": 30.0}}, "3e80361896654b9fbb2d3cdda124e6bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e4eeba27ffb44cf9cc05b55fddd701f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "568eaefdf60e4e258e477a3b0cf2674c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3e80361896654b9fbb2d3cdda124e6bf", "placeholder": "\u200b", "style": "IPY_MODEL_6e4eeba27ffb44cf9cc05b55fddd701f", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%"}}, "57e56153287f4b06ad3a7b451296be74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e007fc188f6545bc8c178075c8e5371f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a9599f5237b44a3db3f3e53cdf188800": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57e56153287f4b06ad3a7b451296be74", "placeholder": "\u200b", "style": "IPY_MODEL_e007fc188f6545bc8c178075c8e5371f", "tabbable": null, "tooltip": null, "value": " 30/30 [00:01<00:00, 22.74it/s]"}}, "b1e04cba90404290baabf2dcb33d0f58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70498ba46dda4093ba603778995e76b6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_568eaefdf60e4e258e477a3b0cf2674c", "IPY_MODEL_86232ca075be441790e1f542ddfb5a71", "IPY_MODEL_a9599f5237b44a3db3f3e53cdf188800"], "layout": "IPY_MODEL_b1e04cba90404290baabf2dcb33d0f58", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 2278816b2..979c7e3be 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:54.759216Z", - "iopub.status.busy": "2024-02-07T22:16:54.759059Z", - "iopub.status.idle": "2024-02-07T22:16:56.709104Z", - "shell.execute_reply": "2024-02-07T22:16:56.708365Z" + "iopub.execute_input": "2024-02-07T23:57:22.267015Z", + "iopub.status.busy": "2024-02-07T23:57:22.266847Z", + "iopub.status.idle": "2024-02-07T23:57:23.557742Z", + "shell.execute_reply": "2024-02-07T23:57:23.557100Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:56.711689Z", - "iopub.status.busy": "2024-02-07T22:16:56.711492Z", - "iopub.status.idle": "2024-02-07T22:17:51.576173Z", - "shell.execute_reply": "2024-02-07T22:17:51.575514Z" + "iopub.execute_input": "2024-02-07T23:57:23.560412Z", + "iopub.status.busy": "2024-02-07T23:57:23.560029Z", + "iopub.status.idle": "2024-02-07T23:58:14.095094Z", + "shell.execute_reply": "2024-02-07T23:58:14.094451Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:51.578880Z", - "iopub.status.busy": "2024-02-07T22:17:51.578435Z", - "iopub.status.idle": "2024-02-07T22:17:52.624888Z", - "shell.execute_reply": "2024-02-07T22:17:52.624282Z" + "iopub.execute_input": "2024-02-07T23:58:14.097742Z", + "iopub.status.busy": "2024-02-07T23:58:14.097332Z", + "iopub.status.idle": "2024-02-07T23:58:15.117655Z", + "shell.execute_reply": "2024-02-07T23:58:15.117170Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.627442Z", - "iopub.status.busy": "2024-02-07T22:17:52.627135Z", - "iopub.status.idle": "2024-02-07T22:17:52.630302Z", - "shell.execute_reply": "2024-02-07T22:17:52.629875Z" + "iopub.execute_input": "2024-02-07T23:58:15.120117Z", + "iopub.status.busy": "2024-02-07T23:58:15.119697Z", + "iopub.status.idle": "2024-02-07T23:58:15.122830Z", + "shell.execute_reply": "2024-02-07T23:58:15.122391Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.632362Z", - "iopub.status.busy": "2024-02-07T22:17:52.632061Z", - "iopub.status.idle": "2024-02-07T22:17:52.635961Z", - "shell.execute_reply": "2024-02-07T22:17:52.635445Z" + "iopub.execute_input": "2024-02-07T23:58:15.125002Z", + "iopub.status.busy": "2024-02-07T23:58:15.124688Z", + "iopub.status.idle": "2024-02-07T23:58:15.128438Z", + "shell.execute_reply": "2024-02-07T23:58:15.127995Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.637990Z", - "iopub.status.busy": "2024-02-07T22:17:52.637625Z", - "iopub.status.idle": "2024-02-07T22:17:52.641010Z", - "shell.execute_reply": "2024-02-07T22:17:52.640595Z" + "iopub.execute_input": "2024-02-07T23:58:15.130385Z", + "iopub.status.busy": "2024-02-07T23:58:15.130025Z", + "iopub.status.idle": "2024-02-07T23:58:15.133555Z", + "shell.execute_reply": "2024-02-07T23:58:15.133040Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.642975Z", - "iopub.status.busy": "2024-02-07T22:17:52.642693Z", - "iopub.status.idle": "2024-02-07T22:17:52.645515Z", - "shell.execute_reply": "2024-02-07T22:17:52.645069Z" + "iopub.execute_input": "2024-02-07T23:58:15.135489Z", + "iopub.status.busy": "2024-02-07T23:58:15.135128Z", + "iopub.status.idle": "2024-02-07T23:58:15.137853Z", + "shell.execute_reply": "2024-02-07T23:58:15.137431Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.647312Z", - "iopub.status.busy": "2024-02-07T22:17:52.647133Z", - "iopub.status.idle": "2024-02-07T22:19:07.736286Z", - "shell.execute_reply": "2024-02-07T22:19:07.735682Z" + "iopub.execute_input": "2024-02-07T23:58:15.139805Z", + "iopub.status.busy": "2024-02-07T23:58:15.139476Z", + "iopub.status.idle": "2024-02-07T23:59:30.237567Z", + "shell.execute_reply": "2024-02-07T23:59:30.236895Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f8e42fb70e364942b5126777ae7364b8", + "model_id": "516f602a1da94152b495bff09963ecc2", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be506591e8ac431dabddd430053816e2", + "model_id": "04cf97e28dc54e9e8ad9b5cad5a1f640", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:07.738877Z", - "iopub.status.busy": "2024-02-07T22:19:07.738502Z", - "iopub.status.idle": "2024-02-07T22:19:08.410129Z", - "shell.execute_reply": "2024-02-07T22:19:08.409587Z" + "iopub.execute_input": "2024-02-07T23:59:30.240593Z", + "iopub.status.busy": "2024-02-07T23:59:30.240063Z", + "iopub.status.idle": "2024-02-07T23:59:30.904928Z", + "shell.execute_reply": "2024-02-07T23:59:30.904345Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:08.412426Z", - "iopub.status.busy": "2024-02-07T22:19:08.411976Z", - "iopub.status.idle": "2024-02-07T22:19:11.136068Z", - "shell.execute_reply": "2024-02-07T22:19:11.135474Z" + "iopub.execute_input": "2024-02-07T23:59:30.907247Z", + "iopub.status.busy": "2024-02-07T23:59:30.906730Z", + "iopub.status.idle": "2024-02-07T23:59:33.588948Z", + "shell.execute_reply": "2024-02-07T23:59:33.588459Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:11.138343Z", - "iopub.status.busy": "2024-02-07T22:19:11.138010Z", - "iopub.status.idle": "2024-02-07T22:19:43.883956Z", - "shell.execute_reply": "2024-02-07T22:19:43.883330Z" + "iopub.execute_input": "2024-02-07T23:59:33.591098Z", + "iopub.status.busy": "2024-02-07T23:59:33.590759Z", + "iopub.status.idle": "2024-02-08T00:00:06.382957Z", + "shell.execute_reply": "2024-02-08T00:00:06.382396Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15347/4997817 [00:00<00:32, 153458.07it/s]" + " 0%| | 15387/4997817 [00:00<00:32, 153859.88it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30769/4997817 [00:00<00:32, 153898.57it/s]" + " 1%| | 30953/4997817 [00:00<00:32, 154916.01it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46197/4997817 [00:00<00:32, 154067.93it/s]" + " 1%| | 46445/4997817 [00:00<00:31, 154862.43it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 61604/4997817 [00:00<00:32, 153518.87it/s]" + " 1%| | 61949/4997817 [00:00<00:31, 154930.24it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 76957/4997817 [00:00<00:32, 153377.81it/s]" + " 2%|▏ | 77467/4997817 [00:00<00:31, 155019.01it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 92295/4997817 [00:00<00:32, 153281.65it/s]" + " 2%|▏ | 92969/4997817 [00:00<00:31, 154441.07it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 107770/4997817 [00:00<00:31, 153758.56it/s]" + " 2%|▏ | 108414/4997817 [00:00<00:31, 154378.14it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 123147/4997817 [00:00<00:31, 153622.15it/s]" + " 2%|▏ | 123962/4997817 [00:00<00:31, 154726.37it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 138510/4997817 [00:00<00:31, 153513.94it/s]" + " 3%|▎ | 139435/4997817 [00:00<00:31, 154613.74it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 153862/4997817 [00:01<00:31, 153440.87it/s]" + " 3%|▎ | 154933/4997817 [00:01<00:31, 154724.64it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 169207/4997817 [00:01<00:31, 153375.31it/s]" + " 3%|▎ | 170450/4997817 [00:01<00:31, 154858.82it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 184566/4997817 [00:01<00:31, 153437.24it/s]" + " 4%|▎ | 185960/4997817 [00:01<00:31, 154931.05it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 200027/4997817 [00:01<00:31, 153789.46it/s]" + " 4%|▍ | 201595/4997817 [00:01<00:30, 155359.04it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 215446/4997817 [00:01<00:31, 153907.31it/s]" + " 4%|▍ | 217166/4997817 [00:01<00:30, 155463.26it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 230924/4997817 [00:01<00:30, 154166.08it/s]" + " 5%|▍ | 232796/4997817 [00:01<00:30, 155713.22it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 246392/4997817 [00:01<00:30, 154317.10it/s]" + " 5%|▍ | 248368/4997817 [00:01<00:30, 155024.90it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 261824/4997817 [00:01<00:30, 153630.47it/s]" + " 5%|▌ | 263872/4997817 [00:01<00:30, 154707.21it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 277224/4997817 [00:01<00:30, 153736.80it/s]" + " 6%|▌ | 279344/4997817 [00:01<00:30, 154411.85it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 292639/4997817 [00:01<00:30, 153857.25it/s]" + " 6%|▌ | 294786/4997817 [00:01<00:30, 153675.58it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 308121/4997817 [00:02<00:30, 154142.35it/s]" + " 6%|▌ | 310155/4997817 [00:02<00:30, 153084.29it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 323536/4997817 [00:02<00:30, 154021.27it/s]" + " 7%|▋ | 325465/4997817 [00:02<00:30, 152924.81it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 338991/4997817 [00:02<00:30, 154177.79it/s]" + " 7%|▋ | 340815/4997817 [00:02<00:30, 153092.91it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 354437/4997817 [00:02<00:30, 154259.57it/s]" + " 7%|▋ | 356125/4997817 [00:02<00:30, 152796.73it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369864/4997817 [00:02<00:30, 154160.91it/s]" + " 7%|▋ | 371405/4997817 [00:02<00:30, 152624.10it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 385349/4997817 [00:02<00:29, 154364.42it/s]" + " 8%|▊ | 386668/4997817 [00:02<00:30, 152387.84it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 400786/4997817 [00:02<00:29, 154238.35it/s]" + " 8%|▊ | 401907/4997817 [00:02<00:30, 151622.18it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 416218/4997817 [00:02<00:29, 154259.56it/s]" + " 8%|▊ | 417070/4997817 [00:02<00:30, 151606.88it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 431732/4997817 [00:02<00:29, 154520.13it/s]" + " 9%|▊ | 432286/4997817 [00:02<00:30, 151770.09it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 447185/4997817 [00:02<00:29, 153245.62it/s]" + " 9%|▉ | 447464/4997817 [00:02<00:29, 151738.90it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 462512/4997817 [00:03<00:30, 146732.31it/s]" + " 9%|▉ | 462721/4997817 [00:03<00:29, 151984.24it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 477889/4997817 [00:03<00:30, 148766.90it/s]" + " 10%|▉ | 477975/4997817 [00:03<00:29, 152147.15it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 493335/4997817 [00:03<00:29, 150430.33it/s]" + " 10%|▉ | 493202/4997817 [00:03<00:29, 152182.16it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 508611/4997817 [00:03<00:29, 151113.76it/s]" + " 10%|█ | 508476/4997817 [00:03<00:29, 152345.94it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 523989/4997817 [00:03<00:29, 151901.84it/s]" + " 10%|█ | 523738/4997817 [00:03<00:29, 152425.10it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 539401/4997817 [00:03<00:29, 152559.93it/s]" + " 11%|█ | 539030/4997817 [00:03<00:29, 152572.90it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 554825/4997817 [00:03<00:29, 153058.80it/s]" + " 11%|█ | 554288/4997817 [00:03<00:29, 152516.18it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 570237/4997817 [00:03<00:28, 153371.61it/s]" + " 11%|█▏ | 569540/4997817 [00:03<00:29, 152488.37it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 585614/4997817 [00:03<00:28, 153487.20it/s]" + " 12%|█▏ | 584949/4997817 [00:03<00:28, 152966.60it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 601012/4997817 [00:03<00:28, 153632.69it/s]" + " 12%|█▏ | 600453/4997817 [00:03<00:28, 153586.15it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 616379/4997817 [00:04<00:28, 153190.63it/s]" + " 12%|█▏ | 615876/4997817 [00:04<00:28, 153775.67it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 631701/4997817 [00:04<00:28, 153034.14it/s]" + " 13%|█▎ | 631317/4997817 [00:04<00:28, 153964.11it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 647041/4997817 [00:04<00:28, 153139.80it/s]" + " 13%|█▎ | 646849/4997817 [00:04<00:28, 154369.76it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 662439/4997817 [00:04<00:28, 153387.00it/s]" + " 13%|█▎ | 662330/4997817 [00:04<00:28, 154500.98it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 677783/4997817 [00:04<00:28, 153400.95it/s]" + " 14%|█▎ | 677819/4997817 [00:04<00:27, 154616.28it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 693146/4997817 [00:04<00:28, 153465.36it/s]" + " 14%|█▍ | 693283/4997817 [00:04<00:27, 154620.90it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 708494/4997817 [00:04<00:27, 153436.13it/s]" + " 14%|█▍ | 708746/4997817 [00:04<00:27, 154483.57it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723849/4997817 [00:04<00:27, 153466.14it/s]" + " 14%|█▍ | 724195/4997817 [00:04<00:28, 149330.22it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739196/4997817 [00:04<00:27, 153373.26it/s]" + " 15%|█▍ | 739415/4997817 [00:04<00:28, 150169.33it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754593/4997817 [00:04<00:27, 153549.34it/s]" + " 15%|█▌ | 754739/4997817 [00:04<00:28, 151072.92it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 769949/4997817 [00:05<00:28, 150908.16it/s]" + " 15%|█▌ | 770174/4997817 [00:05<00:27, 152041.12it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 785470/4997817 [00:05<00:27, 152179.07it/s]" + " 16%|█▌ | 785615/4997817 [00:05<00:27, 152744.99it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 801022/4997817 [00:05<00:27, 153170.62it/s]" + " 16%|█▌ | 801159/4997817 [00:05<00:27, 153547.67it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 816526/4997817 [00:05<00:27, 153726.26it/s]" + " 16%|█▋ | 816774/4997817 [00:05<00:27, 154323.42it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 832085/4997817 [00:05<00:27, 154281.24it/s]" + " 17%|█▋ | 832233/4997817 [00:05<00:26, 154401.44it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 847655/4997817 [00:05<00:26, 154701.31it/s]" + " 17%|█▋ | 847796/4997817 [00:05<00:26, 154767.42it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 863128/4997817 [00:05<00:26, 154543.39it/s]" + " 17%|█▋ | 863276/4997817 [00:05<00:26, 154708.16it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 878688/4997817 [00:05<00:26, 154857.05it/s]" + " 18%|█▊ | 878750/4997817 [00:05<00:26, 154184.03it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 894280/4997817 [00:05<00:26, 155173.03it/s]" + " 18%|█▊ | 894171/4997817 [00:05<00:26, 153911.40it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 909799/4997817 [00:05<00:26, 153932.45it/s]" + " 18%|█▊ | 909620/4997817 [00:05<00:26, 154081.10it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 925196/4997817 [00:06<00:26, 153134.34it/s]" + " 19%|█▊ | 925183/4997817 [00:06<00:26, 154541.55it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 940720/4997817 [00:06<00:26, 153757.32it/s]" + " 19%|█▉ | 940724/4997817 [00:06<00:26, 154798.01it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 956290/4997817 [00:06<00:26, 154335.16it/s]" + " 19%|█▉ | 956285/4997817 [00:06<00:26, 155038.35it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 971837/4997817 [00:06<00:26, 154670.43it/s]" + " 19%|█▉ | 971790/4997817 [00:06<00:25, 154956.07it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 987409/4997817 [00:06<00:25, 154980.24it/s]" + " 20%|█▉ | 987286/4997817 [00:06<00:25, 154826.09it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1003021/4997817 [00:06<00:25, 155319.53it/s]" + " 20%|██ | 1002769/4997817 [00:06<00:25, 154658.28it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1018554/4997817 [00:06<00:25, 155043.65it/s]" + " 20%|██ | 1018250/4997817 [00:06<00:25, 154701.77it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1034111/4997817 [00:06<00:25, 155190.83it/s]" + " 21%|██ | 1033721/4997817 [00:06<00:25, 154399.73it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1049635/4997817 [00:06<00:25, 155203.50it/s]" + " 21%|██ | 1049162/4997817 [00:06<00:25, 154388.08it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1065196/4997817 [00:06<00:25, 155323.02it/s]" + " 21%|██▏ | 1064700/4997817 [00:06<00:25, 154682.90it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1080813/4997817 [00:07<00:25, 155572.06it/s]" + " 22%|██▏ | 1080169/4997817 [00:07<00:25, 154502.61it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1096371/4997817 [00:07<00:25, 155143.85it/s]" + " 22%|██▏ | 1095620/4997817 [00:07<00:25, 153934.36it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1111933/4997817 [00:07<00:25, 155283.41it/s]" + " 22%|██▏ | 1111014/4997817 [00:07<00:25, 153453.97it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1127467/4997817 [00:07<00:24, 155297.30it/s]" + " 23%|██▎ | 1126460/4997817 [00:07<00:25, 153751.09it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1143078/4997817 [00:07<00:24, 155537.53it/s]" + " 23%|██▎ | 1141915/4997817 [00:07<00:25, 153987.80it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1158632/4997817 [00:07<00:24, 155524.20it/s]" + " 23%|██▎ | 1157315/4997817 [00:07<00:24, 153646.26it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1174185/4997817 [00:07<00:24, 155271.94it/s]" + " 23%|██▎ | 1172782/4997817 [00:07<00:24, 153950.34it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1189714/4997817 [00:07<00:24, 155275.28it/s]" + " 24%|██▍ | 1188178/4997817 [00:07<00:24, 153569.49it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1205250/4997817 [00:07<00:24, 155297.83it/s]" + " 24%|██▍ | 1203670/4997817 [00:07<00:24, 153971.80it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1220788/4997817 [00:07<00:24, 155319.29it/s]" + " 24%|██▍ | 1219312/4997817 [00:07<00:24, 154701.16it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1236320/4997817 [00:08<00:24, 155297.01it/s]" + " 25%|██▍ | 1234865/4997817 [00:08<00:24, 154946.23it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1251850/4997817 [00:08<00:24, 154837.80it/s]" + " 25%|██▌ | 1250438/4997817 [00:08<00:24, 155179.69it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1267335/4997817 [00:08<00:24, 154514.28it/s]" + " 25%|██▌ | 1266015/4997817 [00:08<00:24, 155354.02it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1282844/4997817 [00:08<00:24, 154680.42it/s]" + " 26%|██▌ | 1281583/4997817 [00:08<00:23, 155450.35it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1298407/4997817 [00:08<00:23, 154960.16it/s]" + " 26%|██▌ | 1297301/4997817 [00:08<00:23, 155966.62it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1313976/4997817 [00:08<00:23, 155176.70it/s]" + " 26%|██▋ | 1312991/4997817 [00:08<00:23, 156242.91it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1329577/4997817 [00:08<00:23, 155424.12it/s]" + " 27%|██▋ | 1328616/4997817 [00:08<00:23, 155989.64it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1345162/4997817 [00:08<00:23, 155550.05it/s]" + " 27%|██▋ | 1344327/4997817 [00:08<00:23, 156323.68it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1360737/4997817 [00:08<00:23, 155607.38it/s]" + " 27%|██▋ | 1359960/4997817 [00:08<00:24, 148351.64it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1376313/4997817 [00:08<00:23, 155649.40it/s]" + " 28%|██▊ | 1375464/4997817 [00:08<00:24, 150281.68it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1391965/4997817 [00:09<00:23, 155908.88it/s]" + " 28%|██▊ | 1391084/4997817 [00:09<00:23, 152008.93it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1407556/4997817 [00:09<00:23, 155321.25it/s]" + " 28%|██▊ | 1406706/4997817 [00:09<00:23, 153246.84it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1423155/4997817 [00:09<00:22, 155479.77it/s]" + " 28%|██▊ | 1422423/4997817 [00:09<00:23, 154405.82it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1438785/4997817 [00:09<00:22, 155724.14it/s]" + " 29%|██▉ | 1438109/4997817 [00:09<00:22, 155134.29it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1454384/4997817 [00:09<00:22, 155801.48it/s]" + " 29%|██▉ | 1453665/4997817 [00:09<00:22, 155257.81it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1470014/4997817 [00:09<00:22, 155947.13it/s]" + " 29%|██▉ | 1469349/4997817 [00:09<00:22, 155727.92it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1485609/4997817 [00:09<00:22, 155913.61it/s]" + " 30%|██▉ | 1485018/4997817 [00:09<00:22, 156012.89it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1501201/4997817 [00:09<00:22, 155784.73it/s]" + " 30%|███ | 1500627/4997817 [00:09<00:22, 155976.47it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1516780/4997817 [00:09<00:22, 155559.73it/s]" + " 30%|███ | 1516230/4997817 [00:09<00:22, 153762.84it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1532380/4997817 [00:09<00:22, 155687.40it/s]" + " 31%|███ | 1531868/4997817 [00:09<00:22, 154536.52it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1547949/4997817 [00:10<00:22, 155528.12it/s]" + " 31%|███ | 1547362/4997817 [00:10<00:22, 154655.76it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1563502/4997817 [00:10<00:23, 147324.84it/s]" + " 31%|███▏ | 1562834/4997817 [00:10<00:22, 154496.08it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1579008/4997817 [00:10<00:22, 149552.84it/s]" + " 32%|███▏ | 1578361/4997817 [00:10<00:22, 154724.34it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1594563/4997817 [00:10<00:22, 151300.39it/s]" + " 32%|███▏ | 1593837/4997817 [00:10<00:22, 154526.62it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1610073/4997817 [00:10<00:22, 152415.30it/s]" + " 32%|███▏ | 1609292/4997817 [00:10<00:21, 154082.95it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1625549/4997817 [00:10<00:22, 153107.12it/s]" + " 33%|███▎ | 1624709/4997817 [00:10<00:21, 154108.12it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1640959/4997817 [00:10<00:21, 153398.91it/s]" + " 33%|███▎ | 1640152/4997817 [00:10<00:21, 154202.78it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1656429/4997817 [00:10<00:21, 153784.58it/s]" + " 33%|███▎ | 1655574/4997817 [00:10<00:21, 153955.25it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1671823/4997817 [00:10<00:22, 147620.43it/s]" + " 33%|███▎ | 1670971/4997817 [00:10<00:21, 153956.41it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1687245/4997817 [00:10<00:22, 149534.13it/s]" + " 34%|███▎ | 1686509/4997817 [00:10<00:21, 154381.52it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1702248/4997817 [00:11<00:22, 145716.03it/s]" + " 34%|███▍ | 1701951/4997817 [00:11<00:21, 154392.21it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1717722/4997817 [00:11<00:22, 148327.18it/s]" + " 34%|███▍ | 1717391/4997817 [00:11<00:21, 154191.74it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1733212/4997817 [00:11<00:21, 150249.60it/s]" + " 35%|███▍ | 1732903/4997817 [00:11<00:21, 154468.06it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1748683/4997817 [00:11<00:21, 151562.76it/s]" + " 35%|███▍ | 1748426/4997817 [00:11<00:21, 154695.22it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1764179/4997817 [00:11<00:21, 152568.57it/s]" + " 35%|███▌ | 1763908/4997817 [00:11<00:20, 154731.01it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1779561/4997817 [00:11<00:21, 152939.77it/s]" + " 36%|███▌ | 1779465/4997817 [00:11<00:20, 154980.84it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1794870/4997817 [00:11<00:20, 152948.40it/s]" + " 36%|███▌ | 1794973/4997817 [00:11<00:20, 155008.18it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1810300/4997817 [00:11<00:20, 153350.41it/s]" + " 36%|███▌ | 1810474/4997817 [00:11<00:20, 154706.88it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1825723/4997817 [00:11<00:20, 153610.68it/s]" + " 37%|███▋ | 1825945/4997817 [00:11<00:21, 150553.76it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1841251/4997817 [00:11<00:20, 154108.13it/s]" + " 37%|███▋ | 1841366/4997817 [00:11<00:20, 151623.92it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1856784/4997817 [00:12<00:20, 154470.98it/s]" + " 37%|███▋ | 1856852/4997817 [00:12<00:20, 152579.57it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1872234/4997817 [00:12<00:20, 154379.68it/s]" + " 37%|███▋ | 1872563/4997817 [00:12<00:20, 153923.92it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1887674/4997817 [00:12<00:20, 154351.08it/s]" + " 38%|███▊ | 1888219/4997817 [00:12<00:20, 154708.39it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1903137/4997817 [00:12<00:20, 154430.74it/s]" + " 38%|███▊ | 1903953/4997817 [00:12<00:19, 155491.61it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1918581/4997817 [00:12<00:19, 154231.39it/s]" + " 38%|███▊ | 1919523/4997817 [00:12<00:19, 155552.74it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1934021/4997817 [00:12<00:19, 154278.42it/s]" + " 39%|███▊ | 1935132/4997817 [00:12<00:19, 155711.90it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949544/4997817 [00:12<00:19, 154560.34it/s]" + " 39%|███▉ | 1950707/4997817 [00:12<00:19, 155602.81it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1965001/4997817 [00:12<00:19, 154544.17it/s]" + " 39%|███▉ | 1966388/4997817 [00:12<00:19, 155963.60it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1980514/4997817 [00:12<00:19, 154717.76it/s]" + " 40%|███▉ | 1982054/4997817 [00:12<00:19, 156169.63it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1995986/4997817 [00:12<00:19, 154624.51it/s]" + " 40%|███▉ | 1997673/4997817 [00:12<00:19, 155736.39it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2011449/4997817 [00:13<00:19, 154571.51it/s]" + " 40%|████ | 2013248/4997817 [00:13<00:19, 155496.01it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2026907/4997817 [00:13<00:19, 154431.61it/s]" + " 41%|████ | 2028804/4997817 [00:13<00:19, 155511.76it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2042351/4997817 [00:13<00:19, 150939.06it/s]" + " 41%|████ | 2044356/4997817 [00:13<00:19, 155257.61it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2057814/4997817 [00:13<00:19, 152025.47it/s]" + " 41%|████ | 2059960/4997817 [00:13<00:18, 155488.99it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2073170/4997817 [00:13<00:19, 152476.99it/s]" + " 42%|████▏ | 2075625/4997817 [00:13<00:18, 155833.92it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2088594/4997817 [00:13<00:19, 152999.26it/s]" + " 42%|████▏ | 2091209/4997817 [00:13<00:18, 155266.92it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2104043/4997817 [00:13<00:18, 153442.72it/s]" + " 42%|████▏ | 2106737/4997817 [00:13<00:18, 154717.60it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2119443/4997817 [00:13<00:18, 153606.85it/s]" + " 42%|████▏ | 2122210/4997817 [00:13<00:18, 154334.91it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2134833/4997817 [00:13<00:18, 153691.74it/s]" + " 43%|████▎ | 2137645/4997817 [00:13<00:18, 154040.89it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2150260/4997817 [00:13<00:18, 153861.39it/s]" + " 43%|████▎ | 2153050/4997817 [00:13<00:18, 153792.02it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2165649/4997817 [00:14<00:18, 153505.35it/s]" + " 43%|████▎ | 2168430/4997817 [00:14<00:18, 153254.04it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2181031/4997817 [00:14<00:18, 153598.33it/s]" + " 44%|████▎ | 2183756/4997817 [00:14<00:18, 153011.24it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2196392/4997817 [00:14<00:18, 153515.18it/s]" + " 44%|████▍ | 2199058/4997817 [00:14<00:18, 152771.69it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211745/4997817 [00:14<00:18, 153359.24it/s]" + " 44%|████▍ | 2214336/4997817 [00:14<00:18, 152533.15it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2227087/4997817 [00:14<00:18, 153376.49it/s]" + " 45%|████▍ | 2229590/4997817 [00:14<00:18, 152216.34it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2242478/4997817 [00:14<00:17, 153534.73it/s]" + " 45%|████▍ | 2244822/4997817 [00:14<00:18, 152246.04it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2257832/4997817 [00:14<00:17, 153331.02it/s]" + " 45%|████▌ | 2260129/4997817 [00:14<00:17, 152489.87it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2273166/4997817 [00:14<00:17, 153125.99it/s]" + " 46%|████▌ | 2275379/4997817 [00:14<00:17, 152457.91it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2288479/4997817 [00:14<00:17, 153046.84it/s]" + " 46%|████▌ | 2290625/4997817 [00:14<00:17, 152236.51it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2303800/4997817 [00:14<00:17, 153094.76it/s]" + " 46%|████▌ | 2305849/4997817 [00:14<00:17, 151840.02it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2319193/4997817 [00:15<00:17, 153342.97it/s]" + " 46%|████▋ | 2321245/4997817 [00:15<00:17, 152471.18it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2334528/4997817 [00:15<00:17, 152346.58it/s]" + " 47%|████▋ | 2336585/4997817 [00:15<00:17, 152746.15it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2349765/4997817 [00:15<00:17, 151169.35it/s]" + " 47%|████▋ | 2351960/4997817 [00:15<00:17, 153045.31it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2364972/4997817 [00:15<00:17, 151434.66it/s]" + " 47%|████▋ | 2367326/4997817 [00:15<00:17, 153228.56it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2380298/4997817 [00:15<00:17, 151975.78it/s]" + " 48%|████▊ | 2382719/4997817 [00:15<00:17, 153435.46it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2395754/4997817 [00:15<00:17, 152744.78it/s]" + " 48%|████▊ | 2398063/4997817 [00:15<00:16, 153381.39it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2411076/4997817 [00:15<00:16, 152884.98it/s]" + " 48%|████▊ | 2413402/4997817 [00:15<00:16, 153357.05it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2426567/4997817 [00:15<00:16, 153489.20it/s]" + " 49%|████▊ | 2428752/4997817 [00:15<00:16, 153397.32it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2441950/4997817 [00:15<00:16, 153587.93it/s]" + " 49%|████▉ | 2444150/4997817 [00:15<00:16, 153571.32it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2457394/4997817 [00:16<00:16, 153839.68it/s]" + " 49%|████▉ | 2459562/4997817 [00:15<00:16, 153732.62it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472901/4997817 [00:16<00:16, 154205.77it/s]" + " 50%|████▉ | 2475015/4997817 [00:16<00:16, 153968.52it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488322/4997817 [00:16<00:16, 154163.11it/s]" + " 50%|████▉ | 2490438/4997817 [00:16<00:16, 154046.12it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2503739/4997817 [00:16<00:16, 153004.46it/s]" + " 50%|█████ | 2505843/4997817 [00:16<00:16, 154040.82it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2519042/4997817 [00:16<00:16, 147381.07it/s]" + " 50%|█████ | 2521248/4997817 [00:16<00:16, 153702.86it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2534620/4997817 [00:16<00:16, 149823.79it/s]" + " 51%|█████ | 2536619/4997817 [00:16<00:16, 153488.02it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2550145/4997817 [00:16<00:16, 151413.71it/s]" + " 51%|█████ | 2551968/4997817 [00:16<00:15, 153045.28it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2565630/4997817 [00:16<00:15, 152427.20it/s]" + " 51%|█████▏ | 2567273/4997817 [00:16<00:15, 152959.52it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2581060/4997817 [00:16<00:15, 152981.66it/s]" + " 52%|█████▏ | 2582570/4997817 [00:16<00:15, 152668.38it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2596553/4997817 [00:16<00:15, 153559.70it/s]" + " 52%|█████▏ | 2597897/4997817 [00:16<00:15, 152844.82it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2612027/4997817 [00:17<00:15, 153910.24it/s]" + " 52%|█████▏ | 2613182/4997817 [00:16<00:15, 150670.35it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2627562/4997817 [00:17<00:15, 154337.56it/s]" + " 53%|█████▎ | 2628256/4997817 [00:17<00:15, 149400.44it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2643066/4997817 [00:17<00:15, 154544.82it/s]" + " 53%|█████▎ | 2643612/4997817 [00:17<00:15, 150628.22it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658563/4997817 [00:17<00:15, 154668.65it/s]" + " 53%|█████▎ | 2659103/4997817 [00:17<00:15, 151899.02it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674058/4997817 [00:17<00:15, 154750.12it/s]" + " 54%|█████▎ | 2674484/4997817 [00:17<00:15, 152464.99it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2689580/4997817 [00:17<00:14, 154890.00it/s]" + " 54%|█████▍ | 2689840/4997817 [00:17<00:15, 152791.05it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2705071/4997817 [00:17<00:14, 154543.10it/s]" + " 54%|█████▍ | 2705248/4997817 [00:17<00:14, 153173.60it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2720555/4997817 [00:17<00:14, 154630.16it/s]" + " 54%|█████▍ | 2720642/4997817 [00:17<00:14, 153400.27it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2736166/4997817 [00:17<00:14, 155070.41it/s]" + " 55%|█████▍ | 2736057/4997817 [00:17<00:14, 153621.44it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2751724/4997817 [00:17<00:14, 155222.18it/s]" + " 55%|█████▌ | 2751444/4997817 [00:17<00:14, 153694.21it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2767247/4997817 [00:18<00:14, 155078.59it/s]" + " 55%|█████▌ | 2766815/4997817 [00:17<00:14, 153676.47it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2782756/4997817 [00:18<00:14, 154978.09it/s]" + " 56%|█████▌ | 2782184/4997817 [00:18<00:15, 146027.40it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2798255/4997817 [00:18<00:14, 154977.38it/s]" + " 56%|█████▌ | 2797535/4997817 [00:18<00:14, 148188.94it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2813789/4997817 [00:18<00:14, 155083.56it/s]" + " 56%|█████▋ | 2812891/4997817 [00:18<00:14, 149756.66it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2829298/4997817 [00:18<00:14, 152520.30it/s]" + " 57%|█████▋ | 2828262/4997817 [00:18<00:14, 150920.17it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2844801/4997817 [00:18<00:14, 153263.29it/s]" + " 57%|█████▋ | 2843674/4997817 [00:18<00:14, 151866.33it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2860237/4997817 [00:18<00:13, 153586.93it/s]" + " 57%|█████▋ | 2858942/4997817 [00:18<00:14, 152106.04it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2875673/4997817 [00:18<00:13, 153813.68it/s]" + " 58%|█████▊ | 2874363/4997817 [00:18<00:13, 152731.27it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2891059/4997817 [00:18<00:13, 153744.34it/s]" + " 58%|█████▊ | 2889650/4997817 [00:18<00:13, 152715.44it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2906451/4997817 [00:18<00:13, 153793.40it/s]" + " 58%|█████▊ | 2905031/4997817 [00:18<00:13, 153042.21it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2921833/4997817 [00:19<00:13, 153778.25it/s]" + " 58%|█████▊ | 2920342/4997817 [00:19<00:13, 153004.24it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2937213/4997817 [00:19<00:13, 153645.48it/s]" + " 59%|█████▊ | 2935648/4997817 [00:19<00:13, 152907.67it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2952579/4997817 [00:19<00:13, 153613.36it/s]" + " 59%|█████▉ | 2950943/4997817 [00:19<00:13, 152850.99it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2967942/4997817 [00:19<00:13, 153281.42it/s]" + " 59%|█████▉ | 2966231/4997817 [00:19<00:13, 152725.36it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2983271/4997817 [00:19<00:13, 150146.86it/s]" + " 60%|█████▉ | 2981549/4997817 [00:19<00:13, 152858.39it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2998477/4997817 [00:19<00:13, 150708.16it/s]" + " 60%|█████▉ | 2996997/4997817 [00:19<00:13, 153340.92it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3014011/4997817 [00:19<00:13, 152080.61it/s]" + " 60%|██████ | 3012371/4997817 [00:19<00:12, 153458.61it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3029518/4997817 [00:19<00:12, 152969.20it/s]" + " 61%|██████ | 3027820/4997817 [00:19<00:12, 153766.56it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3045037/4997817 [00:19<00:12, 153629.76it/s]" + " 61%|██████ | 3043238/4997817 [00:19<00:12, 153889.92it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3060406/4997817 [00:19<00:12, 153331.78it/s]" + " 61%|██████ | 3058663/4997817 [00:19<00:12, 153995.86it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3075743/4997817 [00:20<00:12, 152764.94it/s]" + " 62%|██████▏ | 3074096/4997817 [00:20<00:12, 154092.71it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3091023/4997817 [00:20<00:12, 152634.64it/s]" + " 62%|██████▏ | 3089506/4997817 [00:20<00:12, 153922.23it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3106414/4997817 [00:20<00:12, 153013.91it/s]" + " 62%|██████▏ | 3104899/4997817 [00:20<00:12, 153769.23it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3121808/4997817 [00:20<00:12, 153288.59it/s]" + " 62%|██████▏ | 3120344/4997817 [00:20<00:12, 153969.82it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3137276/4997817 [00:20<00:12, 153703.80it/s]" + " 63%|██████▎ | 3135742/4997817 [00:20<00:12, 153534.18it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3152648/4997817 [00:20<00:12, 153568.00it/s]" + " 63%|██████▎ | 3151096/4997817 [00:20<00:12, 153404.32it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3168071/4997817 [00:20<00:11, 153762.45it/s]" + " 63%|██████▎ | 3166437/4997817 [00:20<00:11, 153363.50it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3183450/4997817 [00:20<00:11, 153768.33it/s]" + " 64%|██████▎ | 3181930/4997817 [00:20<00:11, 153829.95it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3198898/4997817 [00:20<00:11, 153979.27it/s]" + " 64%|██████▍ | 3197314/4997817 [00:20<00:11, 153423.59it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3214297/4997817 [00:20<00:11, 153771.27it/s]" + " 64%|██████▍ | 3212657/4997817 [00:20<00:11, 153324.94it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3229715/4997817 [00:21<00:11, 153892.00it/s]" + " 65%|██████▍ | 3228003/4997817 [00:21<00:11, 153363.54it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3245105/4997817 [00:21<00:11, 153859.37it/s]" + " 65%|██████▍ | 3243340/4997817 [00:21<00:11, 151587.92it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3260519/4997817 [00:21<00:11, 153941.22it/s]" + " 65%|██████▌ | 3258504/4997817 [00:21<00:11, 148147.58it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3275914/4997817 [00:21<00:11, 153716.78it/s]" + " 66%|██████▌ | 3273956/4997817 [00:21<00:11, 150013.39it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3291386/4997817 [00:21<00:11, 154014.60it/s]" + " 66%|██████▌ | 3289544/4997817 [00:21<00:11, 151741.78it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3306788/4997817 [00:21<00:11, 153609.50it/s]" + " 66%|██████▌ | 3305094/4997817 [00:21<00:11, 152854.93it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3322285/4997817 [00:21<00:10, 153972.38it/s]" + " 66%|██████▋ | 3320616/4997817 [00:21<00:10, 153555.41it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3337683/4997817 [00:21<00:10, 153858.51it/s]" + " 67%|██████▋ | 3336160/4997817 [00:21<00:10, 154115.62it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3353124/4997817 [00:21<00:10, 154022.14it/s]" + " 67%|██████▋ | 3351730/4997817 [00:21<00:10, 154587.03it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3368625/4997817 [00:21<00:10, 154316.93it/s]" + " 67%|██████▋ | 3367278/4997817 [00:21<00:10, 154851.47it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384057/4997817 [00:22<00:10, 154300.14it/s]" + " 68%|██████▊ | 3382904/4997817 [00:22<00:10, 155270.93it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3399488/4997817 [00:22<00:10, 154131.51it/s]" + " 68%|██████▊ | 3398434/4997817 [00:22<00:10, 155112.16it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3414954/4997817 [00:22<00:10, 154286.04it/s]" + " 68%|██████▊ | 3413947/4997817 [00:22<00:10, 151516.41it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3430466/4997817 [00:22<00:10, 154534.16it/s]" + " 69%|██████▊ | 3429264/4997817 [00:22<00:10, 152002.54it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3445934/4997817 [00:22<00:10, 154576.71it/s]" + " 69%|██████▉ | 3444687/4997817 [00:22<00:10, 152661.60it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3461392/4997817 [00:22<00:09, 154214.46it/s]" + " 69%|██████▉ | 3459988/4997817 [00:22<00:10, 152762.54it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3476836/4997817 [00:22<00:09, 154280.38it/s]" + " 70%|██████▉ | 3475342/4997817 [00:22<00:09, 152992.88it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492331/4997817 [00:22<00:09, 154479.71it/s]" + " 70%|██████▉ | 3490806/4997817 [00:22<00:09, 153484.06it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3507875/4997817 [00:22<00:09, 154766.34it/s]" + " 70%|███████ | 3506159/4997817 [00:22<00:09, 153394.70it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3523352/4997817 [00:22<00:09, 154673.95it/s]" + " 70%|███████ | 3521538/4997817 [00:22<00:09, 153511.49it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3538822/4997817 [00:23<00:09, 154679.04it/s]" + " 71%|███████ | 3537056/4997817 [00:23<00:09, 154008.32it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3554370/4997817 [00:23<00:09, 154917.78it/s]" + " 71%|███████ | 3552632/4997817 [00:23<00:09, 154530.44it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3569906/4997817 [00:23<00:09, 155047.44it/s]" + " 71%|███████▏ | 3568087/4997817 [00:23<00:09, 146968.50it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3585430/4997817 [00:23<00:09, 155102.12it/s]" + " 72%|███████▏ | 3583451/4997817 [00:23<00:09, 148896.74it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3600951/4997817 [00:23<00:09, 155132.30it/s]" + " 72%|███████▏ | 3598891/4997817 [00:23<00:09, 150504.59it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3616465/4997817 [00:23<00:09, 150887.26it/s]" + " 72%|███████▏ | 3614435/4997817 [00:23<00:09, 151958.53it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3632029/4997817 [00:23<00:08, 152284.22it/s]" + " 73%|███████▎ | 3629881/4997817 [00:23<00:08, 152697.73it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3647567/4997817 [00:23<00:08, 153198.65it/s]" + " 73%|███████▎ | 3645255/4997817 [00:23<00:08, 153005.77it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3663094/4997817 [00:23<00:08, 153810.84it/s]" + " 73%|███████▎ | 3660584/4997817 [00:23<00:08, 153088.81it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3678598/4997817 [00:23<00:08, 154174.29it/s]" + " 74%|███████▎ | 3675916/4997817 [00:23<00:08, 153156.17it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3694138/4997817 [00:24<00:08, 154536.99it/s]" + " 74%|███████▍ | 3691295/4997817 [00:24<00:08, 153344.25it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3709658/4997817 [00:24<00:08, 154732.73it/s]" + " 74%|███████▍ | 3706697/4997817 [00:24<00:08, 153545.60it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3725206/4997817 [00:24<00:08, 154954.44it/s]" + " 74%|███████▍ | 3722057/4997817 [00:24<00:08, 147836.83it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3740779/4997817 [00:24<00:08, 155183.88it/s]" + " 75%|███████▍ | 3736974/4997817 [00:24<00:08, 148222.56it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3756300/4997817 [00:24<00:08, 155152.62it/s]" + " 75%|███████▌ | 3752284/4997817 [00:24<00:08, 149654.65it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3771876/4997817 [00:24<00:07, 155332.15it/s]" + " 75%|███████▌ | 3767574/4997817 [00:24<00:08, 150612.24it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3787433/4997817 [00:24<00:07, 155401.94it/s]" + " 76%|███████▌ | 3782880/4997817 [00:24<00:08, 151337.73it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3802974/4997817 [00:24<00:07, 154579.57it/s]" + " 76%|███████▌ | 3798151/4997817 [00:24<00:07, 151743.76it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3818510/4997817 [00:24<00:07, 154809.04it/s]" + " 76%|███████▋ | 3813408/4997817 [00:24<00:07, 151987.69it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3834118/4997817 [00:24<00:07, 155187.73it/s]" + " 77%|███████▋ | 3828722/4997817 [00:24<00:07, 152329.77it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3849726/4997817 [00:25<00:07, 155451.03it/s]" + " 77%|███████▋ | 3844014/4997817 [00:25<00:07, 152505.38it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865281/4997817 [00:25<00:07, 155478.17it/s]" + " 77%|███████▋ | 3859286/4997817 [00:25<00:07, 152568.18it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3880873/4997817 [00:25<00:07, 155607.51it/s]" + " 78%|███████▊ | 3874625/4997817 [00:25<00:07, 152812.08it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3896482/4997817 [00:25<00:07, 155748.19it/s]" + " 78%|███████▊ | 3890029/4997817 [00:25<00:07, 153178.11it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3912058/4997817 [00:25<00:06, 155484.01it/s]" + " 78%|███████▊ | 3905349/4997817 [00:25<00:07, 152911.02it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3927607/4997817 [00:25<00:06, 155333.66it/s]" + " 78%|███████▊ | 3920784/4997817 [00:25<00:07, 153341.49it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3943141/4997817 [00:25<00:06, 154982.06it/s]" + " 79%|███████▉ | 3936119/4997817 [00:25<00:06, 152961.72it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958655/4997817 [00:25<00:06, 155026.48it/s]" + " 79%|███████▉ | 3951508/4997817 [00:25<00:06, 153228.71it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3974166/4997817 [00:25<00:06, 155048.76it/s]" + " 79%|███████▉ | 3966960/4997817 [00:25<00:06, 153613.34it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989742/4997817 [00:25<00:06, 155258.99it/s]" + " 80%|███████▉ | 3982322/4997817 [00:25<00:06, 153448.22it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005269/4997817 [00:26<00:06, 155095.77it/s]" + " 80%|███████▉ | 3997668/4997817 [00:26<00:06, 153357.40it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4020928/4997817 [00:26<00:06, 155541.32it/s]" + " 80%|████████ | 4013004/4997817 [00:26<00:06, 153315.74it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4036483/4997817 [00:26<00:06, 155356.37it/s]" + " 81%|████████ | 4028336/4997817 [00:26<00:06, 153114.29it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052019/4997817 [00:26<00:06, 155307.81it/s]" + " 81%|████████ | 4043648/4997817 [00:26<00:06, 150591.11it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4067550/4997817 [00:26<00:05, 155236.21it/s]" + " 81%|████████ | 4059148/4997817 [00:26<00:06, 151895.49it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4083074/4997817 [00:26<00:05, 154917.67it/s]" + " 82%|████████▏ | 4074741/4997817 [00:26<00:06, 153091.67it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4098566/4997817 [00:26<00:06, 146375.09it/s]" + " 82%|████████▏ | 4090233/4997817 [00:26<00:05, 153635.51it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4113914/4997817 [00:26<00:05, 148417.52it/s]" + " 82%|████████▏ | 4105801/4997817 [00:26<00:05, 154243.63it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4129242/4997817 [00:26<00:05, 149832.62it/s]" + " 82%|████████▏ | 4121409/4997817 [00:26<00:05, 154791.86it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4144613/4997817 [00:26<00:05, 150968.60it/s]" + " 83%|████████▎ | 4136946/4997817 [00:26<00:05, 154962.42it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4160035/4997817 [00:27<00:05, 151927.64it/s]" + " 83%|████████▎ | 4152492/4997817 [00:27<00:05, 155109.62it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4175344/4997817 [00:27<00:05, 152271.67it/s]" + " 83%|████████▎ | 4168015/4997817 [00:27<00:05, 155143.19it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4190658/4997817 [00:27<00:05, 152526.24it/s]" + " 84%|████████▎ | 4183654/4997817 [00:27<00:05, 155513.87it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4205984/4997817 [00:27<00:05, 152743.35it/s]" + " 84%|████████▍ | 4199207/4997817 [00:27<00:05, 152050.97it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4221286/4997817 [00:27<00:05, 152822.28it/s]" + " 84%|████████▍ | 4214599/4997817 [00:27<00:05, 152599.26it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4236607/4997817 [00:27<00:04, 152936.93it/s]" + " 85%|████████▍ | 4230003/4997817 [00:27<00:05, 153024.35it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4251907/4997817 [00:27<00:05, 145817.28it/s]" + " 85%|████████▍ | 4245402/4997817 [00:27<00:04, 153309.38it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4267342/4997817 [00:27<00:04, 148286.68it/s]" + " 85%|████████▌ | 4260774/4997817 [00:27<00:04, 153430.83it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4282888/4997817 [00:27<00:04, 150383.39it/s]" + " 86%|████████▌ | 4276259/4997817 [00:27<00:04, 153852.65it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4298490/4997817 [00:27<00:04, 152044.25it/s]" + " 86%|████████▌ | 4291697/4997817 [00:27<00:04, 154008.59it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4314035/4997817 [00:28<00:04, 153050.11it/s]" + " 86%|████████▌ | 4307133/4997817 [00:28<00:04, 154111.76it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4329574/4997817 [00:28<00:04, 153744.85it/s]" + " 86%|████████▋ | 4322547/4997817 [00:28<00:04, 154109.59it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4345105/4997817 [00:28<00:04, 154209.34it/s]" + " 87%|████████▋ | 4337986/4997817 [00:28<00:04, 154192.24it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4360685/4997817 [00:28<00:04, 154683.14it/s]" + " 87%|████████▋ | 4353407/4997817 [00:28<00:04, 153783.33it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4376194/4997817 [00:28<00:04, 154801.46it/s]" + " 87%|████████▋ | 4368869/4997817 [00:28<00:04, 154032.24it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4391740/4997817 [00:28<00:03, 154996.89it/s]" + " 88%|████████▊ | 4384273/4997817 [00:28<00:03, 153880.56it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4407302/4997817 [00:28<00:03, 155180.16it/s]" + " 88%|████████▊ | 4399689/4997817 [00:28<00:03, 153960.54it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4422871/4997817 [00:28<00:03, 155331.88it/s]" + " 88%|████████▊ | 4415086/4997817 [00:28<00:03, 153819.81it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4438421/4997817 [00:28<00:03, 155381.33it/s]" + " 89%|████████▊ | 4430560/4997817 [00:28<00:03, 154092.28it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4453995/4997817 [00:28<00:03, 155487.70it/s]" + " 89%|████████▉ | 4445994/4997817 [00:28<00:03, 154164.58it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4469545/4997817 [00:29<00:03, 155411.76it/s]" + " 89%|████████▉ | 4461435/4997817 [00:29<00:03, 154235.10it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4485088/4997817 [00:29<00:03, 155401.16it/s]" + " 90%|████████▉ | 4476872/4997817 [00:29<00:03, 154271.84it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4500632/4997817 [00:29<00:03, 155411.74it/s]" + " 90%|████████▉ | 4492300/4997817 [00:29<00:03, 154190.22it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4516174/4997817 [00:29<00:03, 155209.29it/s]" + " 90%|█████████ | 4507750/4997817 [00:29<00:03, 154279.94it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4531702/4997817 [00:29<00:03, 155229.08it/s]" + " 91%|█████████ | 4523179/4997817 [00:29<00:03, 153985.77it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4547306/4997817 [00:29<00:02, 155470.53it/s]" + " 91%|█████████ | 4538578/4997817 [00:29<00:02, 153723.53it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4562854/4997817 [00:29<00:02, 155331.40it/s]" + " 91%|█████████ | 4554001/4997817 [00:29<00:02, 153873.29it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4578388/4997817 [00:29<00:02, 147448.98it/s]" + " 91%|█████████▏| 4569399/4997817 [00:29<00:02, 153901.77it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4593898/4997817 [00:29<00:02, 149657.49it/s]" + " 92%|█████████▏| 4584887/4997817 [00:29<00:02, 154192.18it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4609368/4997817 [00:30<00:02, 151129.17it/s]" + " 92%|█████████▏| 4600307/4997817 [00:29<00:02, 154017.58it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4624875/4997817 [00:30<00:02, 152288.33it/s]" + " 92%|█████████▏| 4615743/4997817 [00:30<00:02, 154119.11it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4640314/4997817 [00:30<00:02, 152906.93it/s]" + " 93%|█████████▎| 4631156/4997817 [00:30<00:02, 153933.78it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4655803/4997817 [00:30<00:02, 153494.62it/s]" + " 93%|█████████▎| 4646550/4997817 [00:30<00:02, 153794.33it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4671257/4997817 [00:30<00:02, 153802.55it/s]" + " 93%|█████████▎| 4661930/4997817 [00:30<00:02, 153604.14it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4686669/4997817 [00:30<00:02, 153895.43it/s]" + " 94%|█████████▎| 4677291/4997817 [00:30<00:02, 153189.45it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4702162/4997817 [00:30<00:01, 154201.34it/s]" + " 94%|█████████▍| 4692776/4997817 [00:30<00:01, 153678.87it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4717639/4997817 [00:30<00:01, 154368.96it/s]" + " 94%|█████████▍| 4708145/4997817 [00:30<00:01, 153652.86it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4733081/4997817 [00:30<00:01, 154162.68it/s]" + " 95%|█████████▍| 4723512/4997817 [00:30<00:01, 153657.16it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4748501/4997817 [00:30<00:01, 154009.56it/s]" + " 95%|█████████▍| 4738893/4997817 [00:30<00:01, 153701.57it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4763970/4997817 [00:31<00:01, 154210.31it/s]" + " 95%|█████████▌| 4754264/4997817 [00:30<00:01, 153504.60it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4779393/4997817 [00:31<00:01, 154123.36it/s]" + " 95%|█████████▌| 4769615/4997817 [00:31<00:01, 153247.32it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4794807/4997817 [00:31<00:01, 154105.05it/s]" + " 96%|█████████▌| 4784940/4997817 [00:31<00:01, 153081.02it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4810237/4997817 [00:31<00:01, 154162.41it/s]" + " 96%|█████████▌| 4800270/4997817 [00:31<00:01, 153145.18it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4825680/4997817 [00:31<00:01, 154241.45it/s]" + " 96%|█████████▋| 4815618/4997817 [00:31<00:01, 153244.30it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4841107/4997817 [00:31<00:01, 154246.31it/s]" + " 97%|█████████▋| 4830943/4997817 [00:31<00:01, 152781.07it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4856552/4997817 [00:31<00:00, 154305.23it/s]" + " 97%|█████████▋| 4846264/4997817 [00:31<00:00, 152895.24it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4871983/4997817 [00:31<00:00, 153994.32it/s]" + " 97%|█████████▋| 4861611/4997817 [00:31<00:00, 153064.51it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4887443/4997817 [00:31<00:00, 154172.58it/s]" + " 98%|█████████▊| 4877009/4997817 [00:31<00:00, 153337.36it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4902918/4997817 [00:31<00:00, 154342.78it/s]" + " 98%|█████████▊| 4892368/4997817 [00:31<00:00, 153409.94it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4918444/4997817 [00:32<00:00, 154616.11it/s]" + " 98%|█████████▊| 4907726/4997817 [00:31<00:00, 153457.78it/s]" ] }, { @@ -3083,7 +3083,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4933928/4997817 [00:32<00:00, 154681.62it/s]" + " 99%|█████████▊| 4923182/4997817 [00:32<00:00, 153785.56it/s]" ] }, { @@ -3091,7 +3091,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4949465/4997817 [00:32<00:00, 154885.99it/s]" + " 99%|█████████▉| 4938561/4997817 [00:32<00:00, 153783.97it/s]" ] }, { @@ -3099,7 +3099,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4964994/4997817 [00:32<00:00, 155003.99it/s]" + " 99%|█████████▉| 4953978/4997817 [00:32<00:00, 153897.59it/s]" ] }, { @@ -3107,7 +3107,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4980530/4997817 [00:32<00:00, 155107.15it/s]" + " 99%|█████████▉| 4969368/4997817 [00:32<00:00, 153894.61it/s]" ] }, { @@ -3115,7 +3115,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4996041/4997817 [00:32<00:00, 154803.83it/s]" + "100%|█████████▉| 4984758/4997817 [00:32<00:00, 153605.50it/s]" ] }, { @@ -3123,7 +3123,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 153673.72it/s]" + "100%|██████████| 4997817/4997817 [00:32<00:00, 153435.77it/s]" ] }, { @@ -3362,10 +3362,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:43.886161Z", - "iopub.status.busy": "2024-02-07T22:19:43.885903Z", - "iopub.status.idle": "2024-02-07T22:19:58.548875Z", - "shell.execute_reply": "2024-02-07T22:19:58.548259Z" + "iopub.execute_input": "2024-02-08T00:00:06.385092Z", + "iopub.status.busy": "2024-02-08T00:00:06.384772Z", + "iopub.status.idle": "2024-02-08T00:00:20.964006Z", + "shell.execute_reply": "2024-02-08T00:00:20.963327Z" } }, "outputs": [], @@ -3379,10 +3379,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:58.551285Z", - "iopub.status.busy": "2024-02-07T22:19:58.551078Z", - "iopub.status.idle": "2024-02-07T22:20:02.354281Z", - "shell.execute_reply": "2024-02-07T22:20:02.353681Z" + "iopub.execute_input": "2024-02-08T00:00:20.966344Z", + "iopub.status.busy": "2024-02-08T00:00:20.966137Z", + "iopub.status.idle": "2024-02-08T00:00:24.772469Z", + "shell.execute_reply": "2024-02-08T00:00:24.772011Z" } }, "outputs": [ @@ -3451,17 +3451,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:02.356481Z", - "iopub.status.busy": "2024-02-07T22:20:02.356293Z", - "iopub.status.idle": "2024-02-07T22:20:03.761295Z", - "shell.execute_reply": "2024-02-07T22:20:03.760735Z" + "iopub.execute_input": "2024-02-08T00:00:24.774618Z", + "iopub.status.busy": "2024-02-08T00:00:24.774283Z", + "iopub.status.idle": "2024-02-08T00:00:26.116018Z", + "shell.execute_reply": "2024-02-08T00:00:26.115366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abf433ee486a49889c3915e424953a34", + "model_id": "70498ba46dda4093ba603778995e76b6", "version_major": 2, "version_minor": 0 }, @@ -3491,10 +3491,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:03.763597Z", - "iopub.status.busy": "2024-02-07T22:20:03.763413Z", - "iopub.status.idle": "2024-02-07T22:20:04.335755Z", - "shell.execute_reply": "2024-02-07T22:20:04.335196Z" + "iopub.execute_input": "2024-02-08T00:00:26.118532Z", + "iopub.status.busy": "2024-02-08T00:00:26.118335Z", + "iopub.status.idle": "2024-02-08T00:00:26.677134Z", + "shell.execute_reply": "2024-02-08T00:00:26.676500Z" } }, "outputs": [], @@ -3508,10 +3508,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:04.338171Z", - "iopub.status.busy": "2024-02-07T22:20:04.337853Z", - "iopub.status.idle": "2024-02-07T22:20:10.510631Z", - "shell.execute_reply": "2024-02-07T22:20:10.510083Z" + "iopub.execute_input": "2024-02-08T00:00:26.679373Z", + "iopub.status.busy": "2024-02-08T00:00:26.679192Z", + "iopub.status.idle": "2024-02-08T00:00:32.802449Z", + "shell.execute_reply": "2024-02-08T00:00:32.801973Z" } }, "outputs": [ @@ -3584,10 +3584,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:10.513006Z", - "iopub.status.busy": "2024-02-07T22:20:10.512502Z", - "iopub.status.idle": "2024-02-07T22:20:10.569613Z", - "shell.execute_reply": "2024-02-07T22:20:10.568972Z" + "iopub.execute_input": "2024-02-08T00:00:32.804452Z", + "iopub.status.busy": "2024-02-08T00:00:32.804276Z", + "iopub.status.idle": "2024-02-08T00:00:32.860364Z", + "shell.execute_reply": "2024-02-08T00:00:32.859839Z" }, "nbsphinx": "hidden" }, @@ -3631,25 +3631,47 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c5fc60a011f478ebb70ebe314c2c57e": { + "04cf97e28dc54e9e8ad9b5cad5a1f640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e88b7cbd81ec4799be04b90b0f573df2", + "IPY_MODEL_f74b883c262a452dbe93b2d5f75d2310", + "IPY_MODEL_604b254022624d5fa1f0d5ce00717a7a" + ], + "layout": "IPY_MODEL_3fd0a98738d9423197f5aa0943aefb02", + "tabbable": null, + "tooltip": null + } + }, + "103bbc3ca3ac4dcfba34d609ab3401f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "22d942bf7a87444da02c7c20bd4910c8": { + "2043eeeca4644a31b8f49647f6a2c502": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3702,7 +3724,48 @@ "width": null } }, - "2b22ce7632384103bfb532a95a042ce4": { + "2c23cdff36d443ceb4a978630497cab2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "346d07b85b38438389fe133e9a418479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42320f8ec99345a8a1d7b3743692570c", + "placeholder": "​", + "style": "IPY_MODEL_b918e3f2902845c992e2ad99e1bd5c7a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "3a07ea846e4e4da4b9e3d078bf06d668": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3755,53 +3818,60 @@ "width": null } }, - "359a0c7c06574cd79a1df91fca1753fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_95c37d202f1b4e74b31a3b6ea23b57ee", - "placeholder": "​", - "style": "IPY_MODEL_9553a7077d62470e942998ee95b9c71b", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "37e3e49c8c874ce5875e52a48a409eab": { - "model_module": "@jupyter-widgets/controls", + "3e80361896654b9fbb2d3cdda124e6bf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5310f63af03c448bafde34420ad575dc", - "placeholder": "​", - "style": "IPY_MODEL_8129239368ed4dc9b5b1f61d4c690601", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:02<00:00, 22.06it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5310f63af03c448bafde34420ad575dc": { + "3fd0a98738d9423197f5aa0943aefb02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3854,7 +3924,7 @@ "width": null } }, - "5fd6745edeb14f4ab19844d3fe8866d3": { + "42320f8ec99345a8a1d7b3743692570c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3907,92 +3977,88 @@ "width": null } }, - "651dd97d88794c158ac403cb3c7735e9": { + "5059974e71574e4498b7c49142eac459": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1af3509b6d1462eb403501270f043e1", - "placeholder": "​", - "style": "IPY_MODEL_7df2290308494535889d78cc19f6f628", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 443.65it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7366aa89459c4323941d0f375f98ee15": { + "516f602a1da94152b495bff09963ecc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f94881c5ed114484a8718388dbf7f8d4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d1795d50fcc748b790e1deefd918106a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_346d07b85b38438389fe133e9a418479", + "IPY_MODEL_6c8638463fca49d5ac7672e74d4ac28f", + "IPY_MODEL_c0353adc3e9e4c0c90c48a657b747da6" + ], + "layout": "IPY_MODEL_ac8230aa76d6480e86bf2f6603b01482", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "7df2290308494535889d78cc19f6f628": { + "5345a96c9cae4e928a6e1a1c125e7ce8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "8129239368ed4dc9b5b1f61d4c690601": { + "568eaefdf60e4e258e477a3b0cf2674c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e80361896654b9fbb2d3cdda124e6bf", + "placeholder": "​", + "style": "IPY_MODEL_6e4eeba27ffb44cf9cc05b55fddd701f", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "8271ac55c2564cf7b8afdee5bf7bd183": { + "57e56153287f4b06ad3a7b451296be74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4045,7 +4111,30 @@ "width": null } }, - "924f64d2fdbf458ea8d923ef45ab99c7": { + "604b254022624d5fa1f0d5ce00717a7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2043eeeca4644a31b8f49647f6a2c502", + "placeholder": "​", + "style": "IPY_MODEL_2c23cdff36d443ceb4a978630497cab2", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00, 1.46it/s]" + } + }, + "67bcc31fd41b4667ad691485ff610fad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4061,7 +4150,33 @@ "description_width": "" } }, - "9553a7077d62470e942998ee95b9c71b": { + "6c8638463fca49d5ac7672e74d4ac28f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7755b2634e14aafbccebb4f6e64de73", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5345a96c9cae4e928a6e1a1c125e7ce8", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6e4eeba27ffb44cf9cc05b55fddd701f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4079,13 +4194,63 @@ "text_color": null } }, - "95c37d202f1b4e74b31a3b6ea23b57ee": { - "model_module": "@jupyter-widgets/base", + "70498ba46dda4093ba603778995e76b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_568eaefdf60e4e258e477a3b0cf2674c", + "IPY_MODEL_86232ca075be441790e1f542ddfb5a71", + "IPY_MODEL_a9599f5237b44a3db3f3e53cdf188800" + ], + "layout": "IPY_MODEL_b1e04cba90404290baabf2dcb33d0f58", + "tabbable": null, + "tooltip": null + } + }, + "86232ca075be441790e1f542ddfb5a71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e3bb7c90f954f5989152c60322ea693", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67bcc31fd41b4667ad691485ff610fad", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "8e3bb7c90f954f5989152c60322ea693": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", @@ -4132,7 +4297,30 @@ "width": null } }, - "9db709e8796d4663b3ab4076e3a7abe9": { + "a9599f5237b44a3db3f3e53cdf188800": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57e56153287f4b06ad3a7b451296be74", + "placeholder": "​", + "style": "IPY_MODEL_e007fc188f6545bc8c178075c8e5371f", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 22.74it/s]" + } + }, + "ac8230aa76d6480e86bf2f6603b01482": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4185,33 +4373,7 @@ "width": null } }, - "a0a6acb581394b1ea4c7f7aac9f16e56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8271ac55c2564cf7b8afdee5bf7bd183", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_924f64d2fdbf458ea8d923ef45ab99c7", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ab870be927044154a9d2c007c5f1ac74": { + "b1e04cba90404290baabf2dcb33d0f58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4264,31 +4426,25 @@ "width": null } }, - "abf433ee486a49889c3915e424953a34": { + "b918e3f2902845c992e2ad99e1bd5c7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_359a0c7c06574cd79a1df91fca1753fe", - "IPY_MODEL_a0a6acb581394b1ea4c7f7aac9f16e56", - "IPY_MODEL_37e3e49c8c874ce5875e52a48a409eab" - ], - "layout": "IPY_MODEL_5fd6745edeb14f4ab19844d3fe8866d3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aef4eb7fc2264bf7ba91be0aa175ec26": { + "c0353adc3e9e4c0c90c48a657b747da6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4303,15 +4459,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2b22ce7632384103bfb532a95a042ce4", + "layout": "IPY_MODEL_3a07ea846e4e4da4b9e3d078bf06d668", "placeholder": "​", - "style": "IPY_MODEL_0c5fc60a011f478ebb70ebe314c2c57e", + "style": "IPY_MODEL_5059974e71574e4498b7c49142eac459", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:20<00:00, 1.44it/s]" + "value": " 30/30 [00:00<00:00, 442.51it/s]" } }, - "b2fc35848fc74364ac28195032d870ea": { + "c395077a208e4a06a79fbb862d6ddcc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4329,31 +4485,7 @@ "text_color": null } }, - "be506591e8ac431dabddd430053816e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e76f660cdb0f4fb18531762f6b7a3a29", - "IPY_MODEL_7366aa89459c4323941d0f375f98ee15", - "IPY_MODEL_aef4eb7fc2264bf7ba91be0aa175ec26" - ], - "layout": "IPY_MODEL_e95f4c3e917b4f5fbba46be5f7f6f31d", - "tabbable": null, - "tooltip": null - } - }, - "c17ddc75e18d4da39b0de12e5b18a200": { + "e007fc188f6545bc8c178075c8e5371f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4371,111 +4503,7 @@ "text_color": null } }, - "d07ca6a86c524696bf2f66ee1603b173": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1795d50fcc748b790e1deefd918106a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d33a86d6efe94493b4b31f045603d488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f41092a7d59842b9ad606a8f302d363f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d07ca6a86c524696bf2f66ee1603b173", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "d79c9ddd7877446ab1df1603b14668ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22d942bf7a87444da02c7c20bd4910c8", - "placeholder": "​", - "style": "IPY_MODEL_b2fc35848fc74364ac28195032d870ea", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "e76f660cdb0f4fb18531762f6b7a3a29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9db709e8796d4663b3ab4076e3a7abe9", - "placeholder": "​", - "style": "IPY_MODEL_c17ddc75e18d4da39b0de12e5b18a200", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "e95f4c3e917b4f5fbba46be5f7f6f31d": { + "e615a970c954413db367b2d9fef60135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4528,7 +4556,7 @@ "width": null } }, - "f1af3509b6d1462eb403501270f043e1": { + "e7755b2634e14aafbccebb4f6e64de73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4581,84 +4609,30 @@ "width": null } }, - "f41092a7d59842b9ad606a8f302d363f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f8e42fb70e364942b5126777ae7364b8": { + "e88b7cbd81ec4799be04b90b0f573df2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d79c9ddd7877446ab1df1603b14668ea", - "IPY_MODEL_d33a86d6efe94493b4b31f045603d488", - "IPY_MODEL_651dd97d88794c158ac403cb3c7735e9" - ], - "layout": "IPY_MODEL_ab870be927044154a9d2c007c5f1ac74", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed35e6eff2d34dc99d89e28b6b2db842", + "placeholder": "​", + "style": "IPY_MODEL_c395077a208e4a06a79fbb862d6ddcc9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "f94881c5ed114484a8718388dbf7f8d4": { + "ed35e6eff2d34dc99d89e28b6b2db842": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4710,6 +4684,32 @@ "visibility": null, "width": null } + }, + "f74b883c262a452dbe93b2d5f75d2310": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e615a970c954413db367b2d9fef60135", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_103bbc3ca3ac4dcfba34d609ab3401f1", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } } }, "version_major": 2, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 12339b227..76a108569 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:14.552650Z", - "iopub.status.busy": "2024-02-07T22:20:14.552302Z", - "iopub.status.idle": "2024-02-07T22:20:15.660995Z", - "shell.execute_reply": "2024-02-07T22:20:15.660436Z" + "iopub.execute_input": "2024-02-08T00:00:36.774281Z", + "iopub.status.busy": "2024-02-08T00:00:36.773817Z", + "iopub.status.idle": "2024-02-08T00:00:37.788765Z", + "shell.execute_reply": "2024-02-08T00:00:37.788231Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.663590Z", - "iopub.status.busy": "2024-02-07T22:20:15.663114Z", - "iopub.status.idle": "2024-02-07T22:20:15.681900Z", - "shell.execute_reply": "2024-02-07T22:20:15.681417Z" + "iopub.execute_input": "2024-02-08T00:00:37.791351Z", + "iopub.status.busy": "2024-02-08T00:00:37.790846Z", + "iopub.status.idle": "2024-02-08T00:00:37.808738Z", + "shell.execute_reply": "2024-02-08T00:00:37.808220Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.684620Z", - "iopub.status.busy": "2024-02-07T22:20:15.684012Z", - "iopub.status.idle": "2024-02-07T22:20:15.726274Z", - "shell.execute_reply": "2024-02-07T22:20:15.725730Z" + "iopub.execute_input": "2024-02-08T00:00:37.811101Z", + "iopub.status.busy": "2024-02-08T00:00:37.810591Z", + "iopub.status.idle": "2024-02-08T00:00:37.832882Z", + "shell.execute_reply": "2024-02-08T00:00:37.832424Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.728677Z", - "iopub.status.busy": "2024-02-07T22:20:15.728247Z", - "iopub.status.idle": "2024-02-07T22:20:15.731824Z", - "shell.execute_reply": "2024-02-07T22:20:15.731348Z" + "iopub.execute_input": "2024-02-08T00:00:37.834758Z", + "iopub.status.busy": "2024-02-08T00:00:37.834499Z", + "iopub.status.idle": "2024-02-08T00:00:37.838471Z", + "shell.execute_reply": "2024-02-08T00:00:37.838045Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.733742Z", - "iopub.status.busy": "2024-02-07T22:20:15.733561Z", - "iopub.status.idle": "2024-02-07T22:20:15.742811Z", - "shell.execute_reply": "2024-02-07T22:20:15.742380Z" + "iopub.execute_input": "2024-02-08T00:00:37.840544Z", + "iopub.status.busy": "2024-02-08T00:00:37.840142Z", + "iopub.status.idle": "2024-02-08T00:00:37.848401Z", + "shell.execute_reply": "2024-02-08T00:00:37.847982Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.744804Z", - "iopub.status.busy": "2024-02-07T22:20:15.744628Z", - "iopub.status.idle": "2024-02-07T22:20:15.747139Z", - "shell.execute_reply": "2024-02-07T22:20:15.746697Z" + "iopub.execute_input": "2024-02-08T00:00:37.850450Z", + "iopub.status.busy": "2024-02-08T00:00:37.850150Z", + "iopub.status.idle": "2024-02-08T00:00:37.852760Z", + "shell.execute_reply": "2024-02-08T00:00:37.852223Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.748959Z", - "iopub.status.busy": "2024-02-07T22:20:15.748786Z", - "iopub.status.idle": "2024-02-07T22:20:16.268470Z", - "shell.execute_reply": "2024-02-07T22:20:16.267865Z" + "iopub.execute_input": "2024-02-08T00:00:37.854671Z", + "iopub.status.busy": "2024-02-08T00:00:37.854370Z", + "iopub.status.idle": "2024-02-08T00:00:38.366943Z", + "shell.execute_reply": "2024-02-08T00:00:38.366411Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:16.270985Z", - "iopub.status.busy": "2024-02-07T22:20:16.270796Z", - "iopub.status.idle": "2024-02-07T22:20:17.950965Z", - "shell.execute_reply": "2024-02-07T22:20:17.950223Z" + "iopub.execute_input": "2024-02-08T00:00:38.369355Z", + "iopub.status.busy": "2024-02-08T00:00:38.369010Z", + "iopub.status.idle": "2024-02-08T00:00:39.953418Z", + "shell.execute_reply": "2024-02-08T00:00:39.952805Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.953912Z", - "iopub.status.busy": "2024-02-07T22:20:17.953172Z", - "iopub.status.idle": "2024-02-07T22:20:17.963171Z", - "shell.execute_reply": "2024-02-07T22:20:17.962746Z" + "iopub.execute_input": "2024-02-08T00:00:39.956230Z", + "iopub.status.busy": "2024-02-08T00:00:39.955488Z", + "iopub.status.idle": "2024-02-08T00:00:39.965485Z", + "shell.execute_reply": "2024-02-08T00:00:39.965052Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.965362Z", - "iopub.status.busy": "2024-02-07T22:20:17.965053Z", - "iopub.status.idle": "2024-02-07T22:20:17.968689Z", - "shell.execute_reply": "2024-02-07T22:20:17.968259Z" + "iopub.execute_input": "2024-02-08T00:00:39.967556Z", + "iopub.status.busy": "2024-02-08T00:00:39.967205Z", + "iopub.status.idle": "2024-02-08T00:00:39.970941Z", + "shell.execute_reply": "2024-02-08T00:00:39.970507Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.970666Z", - "iopub.status.busy": "2024-02-07T22:20:17.970397Z", - "iopub.status.idle": "2024-02-07T22:20:17.977942Z", - "shell.execute_reply": "2024-02-07T22:20:17.977363Z" + "iopub.execute_input": "2024-02-08T00:00:39.972919Z", + "iopub.status.busy": "2024-02-08T00:00:39.972669Z", + "iopub.status.idle": "2024-02-08T00:00:39.979374Z", + "shell.execute_reply": "2024-02-08T00:00:39.978962Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.979985Z", - "iopub.status.busy": "2024-02-07T22:20:17.979656Z", - "iopub.status.idle": "2024-02-07T22:20:18.091893Z", - "shell.execute_reply": "2024-02-07T22:20:18.091396Z" + "iopub.execute_input": "2024-02-08T00:00:39.981265Z", + "iopub.status.busy": "2024-02-08T00:00:39.980978Z", + "iopub.status.idle": "2024-02-08T00:00:40.092266Z", + "shell.execute_reply": "2024-02-08T00:00:40.091698Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:18.094062Z", - "iopub.status.busy": "2024-02-07T22:20:18.093720Z", - "iopub.status.idle": "2024-02-07T22:20:18.096596Z", - "shell.execute_reply": "2024-02-07T22:20:18.096144Z" + "iopub.execute_input": "2024-02-08T00:00:40.094466Z", + "iopub.status.busy": "2024-02-08T00:00:40.094078Z", + "iopub.status.idle": "2024-02-08T00:00:40.096691Z", + "shell.execute_reply": "2024-02-08T00:00:40.096261Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:18.098529Z", - "iopub.status.busy": "2024-02-07T22:20:18.098202Z", - "iopub.status.idle": "2024-02-07T22:20:20.077737Z", - "shell.execute_reply": "2024-02-07T22:20:20.077090Z" + "iopub.execute_input": "2024-02-08T00:00:40.098593Z", + "iopub.status.busy": "2024-02-08T00:00:40.098420Z", + "iopub.status.idle": "2024-02-08T00:00:42.020458Z", + "shell.execute_reply": "2024-02-08T00:00:42.019691Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:20.080833Z", - "iopub.status.busy": "2024-02-07T22:20:20.080047Z", - "iopub.status.idle": "2024-02-07T22:20:20.091704Z", - "shell.execute_reply": "2024-02-07T22:20:20.091118Z" + "iopub.execute_input": "2024-02-08T00:00:42.023533Z", + "iopub.status.busy": "2024-02-08T00:00:42.022782Z", + "iopub.status.idle": "2024-02-08T00:00:42.033585Z", + "shell.execute_reply": "2024-02-08T00:00:42.033121Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:20.093925Z", - "iopub.status.busy": "2024-02-07T22:20:20.093490Z", - "iopub.status.idle": "2024-02-07T22:20:20.122307Z", - "shell.execute_reply": "2024-02-07T22:20:20.121770Z" + "iopub.execute_input": "2024-02-08T00:00:42.035536Z", + "iopub.status.busy": "2024-02-08T00:00:42.035222Z", + "iopub.status.idle": "2024-02-08T00:00:42.066169Z", + "shell.execute_reply": "2024-02-08T00:00:42.065646Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 470a89510..fcedc0e44 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -732,7 +732,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed', 'getting_spare_card'}
+Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard'}
 

Let’s print the first example in the train set.

diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 14b0188fb..a33793a5f 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:23.034108Z", - "iopub.status.busy": "2024-02-07T22:20:23.033949Z", - "iopub.status.idle": "2024-02-07T22:20:25.644096Z", - "shell.execute_reply": "2024-02-07T22:20:25.643492Z" + "iopub.execute_input": "2024-02-08T00:00:44.559964Z", + "iopub.status.busy": "2024-02-08T00:00:44.559768Z", + "iopub.status.idle": "2024-02-08T00:00:47.083313Z", + "shell.execute_reply": "2024-02-08T00:00:47.082784Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.646761Z", - "iopub.status.busy": "2024-02-07T22:20:25.646232Z", - "iopub.status.idle": "2024-02-07T22:20:25.649662Z", - "shell.execute_reply": "2024-02-07T22:20:25.649125Z" + "iopub.execute_input": "2024-02-08T00:00:47.085963Z", + "iopub.status.busy": "2024-02-08T00:00:47.085456Z", + "iopub.status.idle": "2024-02-08T00:00:47.088646Z", + "shell.execute_reply": "2024-02-08T00:00:47.088220Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.651772Z", - "iopub.status.busy": "2024-02-07T22:20:25.651399Z", - "iopub.status.idle": "2024-02-07T22:20:25.654323Z", - "shell.execute_reply": "2024-02-07T22:20:25.653903Z" + "iopub.execute_input": "2024-02-08T00:00:47.090601Z", + "iopub.status.busy": "2024-02-08T00:00:47.090279Z", + "iopub.status.idle": "2024-02-08T00:00:47.093338Z", + "shell.execute_reply": "2024-02-08T00:00:47.092797Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.656427Z", - "iopub.status.busy": "2024-02-07T22:20:25.656112Z", - "iopub.status.idle": "2024-02-07T22:20:25.696715Z", - "shell.execute_reply": "2024-02-07T22:20:25.696251Z" + "iopub.execute_input": "2024-02-08T00:00:47.095320Z", + "iopub.status.busy": "2024-02-08T00:00:47.095018Z", + "iopub.status.idle": "2024-02-08T00:00:47.117162Z", + "shell.execute_reply": "2024-02-08T00:00:47.116660Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.698892Z", - "iopub.status.busy": "2024-02-07T22:20:25.698436Z", - "iopub.status.idle": "2024-02-07T22:20:25.701940Z", - "shell.execute_reply": "2024-02-07T22:20:25.701520Z" + "iopub.execute_input": "2024-02-08T00:00:47.119103Z", + "iopub.status.busy": "2024-02-08T00:00:47.118781Z", + "iopub.status.idle": "2024-02-08T00:00:47.122228Z", + "shell.execute_reply": "2024-02-08T00:00:47.121782Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.703894Z", - "iopub.status.busy": "2024-02-07T22:20:25.703566Z", - "iopub.status.idle": "2024-02-07T22:20:25.706909Z", - "shell.execute_reply": "2024-02-07T22:20:25.706467Z" + "iopub.execute_input": "2024-02-08T00:00:47.124229Z", + "iopub.status.busy": "2024-02-08T00:00:47.123895Z", + "iopub.status.idle": "2024-02-08T00:00:47.127280Z", + "shell.execute_reply": "2024-02-08T00:00:47.126831Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed', 'getting_spare_card'}\n" + "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.708983Z", - "iopub.status.busy": "2024-02-07T22:20:25.708666Z", - "iopub.status.idle": "2024-02-07T22:20:25.711641Z", - "shell.execute_reply": "2024-02-07T22:20:25.711082Z" + "iopub.execute_input": "2024-02-08T00:00:47.129237Z", + "iopub.status.busy": "2024-02-08T00:00:47.128922Z", + "iopub.status.idle": "2024-02-08T00:00:47.132004Z", + "shell.execute_reply": "2024-02-08T00:00:47.131534Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.713626Z", - "iopub.status.busy": "2024-02-07T22:20:25.713301Z", - "iopub.status.idle": "2024-02-07T22:20:25.716436Z", - "shell.execute_reply": "2024-02-07T22:20:25.716011Z" + "iopub.execute_input": "2024-02-08T00:00:47.133964Z", + "iopub.status.busy": "2024-02-08T00:00:47.133652Z", + "iopub.status.idle": "2024-02-08T00:00:47.136698Z", + "shell.execute_reply": "2024-02-08T00:00:47.136289Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.718429Z", - "iopub.status.busy": "2024-02-07T22:20:25.718116Z", - "iopub.status.idle": "2024-02-07T22:20:29.429090Z", - "shell.execute_reply": "2024-02-07T22:20:29.428554Z" + "iopub.execute_input": "2024-02-08T00:00:47.138634Z", + "iopub.status.busy": "2024-02-08T00:00:47.138333Z", + "iopub.status.idle": "2024-02-08T00:00:50.729967Z", + "shell.execute_reply": "2024-02-08T00:00:50.729315Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.431649Z", - "iopub.status.busy": "2024-02-07T22:20:29.431416Z", - "iopub.status.idle": "2024-02-07T22:20:29.434206Z", - "shell.execute_reply": "2024-02-07T22:20:29.433681Z" + "iopub.execute_input": "2024-02-08T00:00:50.732784Z", + "iopub.status.busy": "2024-02-08T00:00:50.732432Z", + "iopub.status.idle": "2024-02-08T00:00:50.735259Z", + "shell.execute_reply": "2024-02-08T00:00:50.734700Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.436191Z", - "iopub.status.busy": "2024-02-07T22:20:29.435874Z", - "iopub.status.idle": "2024-02-07T22:20:29.438880Z", - "shell.execute_reply": "2024-02-07T22:20:29.438478Z" + "iopub.execute_input": "2024-02-08T00:00:50.737214Z", + "iopub.status.busy": "2024-02-08T00:00:50.736909Z", + "iopub.status.idle": "2024-02-08T00:00:50.739581Z", + "shell.execute_reply": "2024-02-08T00:00:50.739056Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.440688Z", - "iopub.status.busy": "2024-02-07T22:20:29.440515Z", - "iopub.status.idle": "2024-02-07T22:20:31.731024Z", - "shell.execute_reply": "2024-02-07T22:20:31.730409Z" + "iopub.execute_input": "2024-02-08T00:00:50.741554Z", + "iopub.status.busy": "2024-02-08T00:00:50.741265Z", + "iopub.status.idle": "2024-02-08T00:00:52.955848Z", + "shell.execute_reply": "2024-02-08T00:00:52.955096Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.733921Z", - "iopub.status.busy": "2024-02-07T22:20:31.733231Z", - "iopub.status.idle": "2024-02-07T22:20:31.740520Z", - "shell.execute_reply": "2024-02-07T22:20:31.740077Z" + "iopub.execute_input": "2024-02-08T00:00:52.958573Z", + "iopub.status.busy": "2024-02-08T00:00:52.958020Z", + "iopub.status.idle": "2024-02-08T00:00:52.965371Z", + "shell.execute_reply": "2024-02-08T00:00:52.964862Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.742564Z", - "iopub.status.busy": "2024-02-07T22:20:31.742256Z", - "iopub.status.idle": "2024-02-07T22:20:31.745803Z", - "shell.execute_reply": "2024-02-07T22:20:31.745375Z" + "iopub.execute_input": "2024-02-08T00:00:52.967398Z", + "iopub.status.busy": "2024-02-08T00:00:52.967027Z", + "iopub.status.idle": "2024-02-08T00:00:52.970968Z", + "shell.execute_reply": "2024-02-08T00:00:52.970539Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.747786Z", - "iopub.status.busy": "2024-02-07T22:20:31.747469Z", - "iopub.status.idle": "2024-02-07T22:20:31.750335Z", - "shell.execute_reply": "2024-02-07T22:20:31.749834Z" + "iopub.execute_input": "2024-02-08T00:00:52.972799Z", + "iopub.status.busy": "2024-02-08T00:00:52.972623Z", + "iopub.status.idle": "2024-02-08T00:00:52.975944Z", + "shell.execute_reply": "2024-02-08T00:00:52.975459Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.752406Z", - "iopub.status.busy": "2024-02-07T22:20:31.752088Z", - "iopub.status.idle": "2024-02-07T22:20:31.754796Z", - "shell.execute_reply": "2024-02-07T22:20:31.754356Z" + "iopub.execute_input": "2024-02-08T00:00:52.978048Z", + "iopub.status.busy": "2024-02-08T00:00:52.977628Z", + "iopub.status.idle": "2024-02-08T00:00:52.980927Z", + "shell.execute_reply": "2024-02-08T00:00:52.980389Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.756820Z", - "iopub.status.busy": "2024-02-07T22:20:31.756510Z", - "iopub.status.idle": "2024-02-07T22:20:31.763078Z", - "shell.execute_reply": "2024-02-07T22:20:31.762532Z" + "iopub.execute_input": "2024-02-08T00:00:52.983081Z", + "iopub.status.busy": "2024-02-08T00:00:52.982752Z", + "iopub.status.idle": "2024-02-08T00:00:52.989594Z", + "shell.execute_reply": "2024-02-08T00:00:52.989175Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.765349Z", - "iopub.status.busy": "2024-02-07T22:20:31.764941Z", - "iopub.status.idle": "2024-02-07T22:20:31.990470Z", - "shell.execute_reply": "2024-02-07T22:20:31.989930Z" + "iopub.execute_input": "2024-02-08T00:00:52.991604Z", + "iopub.status.busy": "2024-02-08T00:00:52.991288Z", + "iopub.status.idle": "2024-02-08T00:00:53.215514Z", + "shell.execute_reply": "2024-02-08T00:00:53.214999Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.993806Z", - "iopub.status.busy": "2024-02-07T22:20:31.992872Z", - "iopub.status.idle": "2024-02-07T22:20:32.169989Z", - "shell.execute_reply": "2024-02-07T22:20:32.169440Z" + "iopub.execute_input": "2024-02-08T00:00:53.217866Z", + "iopub.status.busy": "2024-02-08T00:00:53.217475Z", + "iopub.status.idle": "2024-02-08T00:00:53.396736Z", + "shell.execute_reply": "2024-02-08T00:00:53.396217Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:32.173948Z", - "iopub.status.busy": "2024-02-07T22:20:32.172981Z", - "iopub.status.idle": "2024-02-07T22:20:32.177939Z", - "shell.execute_reply": "2024-02-07T22:20:32.177455Z" + "iopub.execute_input": "2024-02-08T00:00:53.399160Z", + "iopub.status.busy": "2024-02-08T00:00:53.398767Z", + "iopub.status.idle": "2024-02-08T00:00:53.402668Z", + "shell.execute_reply": "2024-02-08T00:00:53.402187Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 3bda41f5c..6cb14cff1 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -625,7 +625,7 @@

1. Install required dependencies and download data
---2024-02-07 22:20:35--  https://data.deepai.org/conll2003.zip
+--2024-02-08 00:00:56--  https://data.deepai.org/conll2003.zip
 Resolving data.deepai.org (data.deepai.org)...
 
@@ -634,8 +634,8 @@

1. Install required dependencies and download data
-185.93.1.249, 2400:52e0:1a00::845:1
-Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... connected.
+169.150.236.100, 2400:52e0:1a00::1069:1
+Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.
 
-

conll2003.zip 100%[===================&gt;] 959.94K 5.80MB/s in 0.2s

+

conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.1s

-

2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists </pre>

-

conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s

+

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

-

2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

-

conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s

+

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

-

2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists

- -
-
-
-
-
-
   inflating: data/valid.txt
 
@@ -718,9 +710,9 @@

1. Install required dependencies and download data
---2024-02-07 22:20:36--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz
-Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.33, 52.216.44.121, 3.5.9.100, ...
-Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.33|:443... connected.
+--2024-02-08 00:00:56--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz
+Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.65, 52.216.34.89, 52.217.194.57, ...
+Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.65|:443... connected.
 HTTP request sent, awaiting response...
 
@@ -744,49 +736,32 @@

1. Install required dependencies and download data

pred_probs.npz 0%[ ] 0 –.-KB/s

-
-
-
-
-
-
-
-
pred_probs.npz 32%[=====&gt; ] 5.32M 26.6MB/s
-

</pre>

-
-
-
pred_probs.npz 32%[=====> ] 5.32M 26.6MB/s
-

end{sphinxVerbatim}

-
-
-
-

pred_probs.npz 32%[=====> ] 5.32M 26.6MB/s

-

pred_probs.npz 96%[==================&gt; ] 15.71M 39.0MB/s -pred_probs.npz 100%[===================&gt;] 16.26M 40.1MB/s in 0.4s

+

pred_probs.npz 96%[==================&gt; ] 15.71M 73.8MB/s +pred_probs.npz 100%[===================&gt;] 16.26M 75.2MB/s in 0.2s

-

2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

</pre>

-

pred_probs.npz 96%[==================> ] 15.71M 39.0MB/s -pred_probs.npz 100%[===================>] 16.26M 40.1MB/s in 0.4s

+

pred_probs.npz 96%[==================> ] 15.71M 73.8MB/s +pred_probs.npz 100%[===================>] 16.26M 75.2MB/s in 0.2s

-

2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

end{sphinxVerbatim}

-

pred_probs.npz 96%[==================> ] 15.71M 39.0MB/s -pred_probs.npz 100%[===================>] 16.26M 40.1MB/s in 0.4s

+

pred_probs.npz 96%[==================> ] 15.71M 73.8MB/s +pred_probs.npz 100%[===================>] 16.26M 75.2MB/s in 0.2s

-

2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

[3]:
diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
index 408427f4d..552855170 100644
--- a/master/tutorials/token_classification.ipynb
+++ b/master/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
    "id": "ae8a08e0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:35.313990Z",
-     "iopub.status.busy": "2024-02-07T22:20:35.313816Z",
-     "iopub.status.idle": "2024-02-07T22:20:36.922275Z",
-     "shell.execute_reply": "2024-02-07T22:20:36.921658Z"
+     "iopub.execute_input": "2024-02-08T00:00:56.196767Z",
+     "iopub.status.busy": "2024-02-08T00:00:56.196596Z",
+     "iopub.status.idle": "2024-02-08T00:00:57.333399Z",
+     "shell.execute_reply": "2024-02-08T00:00:57.332829Z"
     }
    },
    "outputs": [
@@ -86,7 +86,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-02-07 22:20:35--  https://data.deepai.org/conll2003.zip\r\n",
+      "--2024-02-08 00:00:56--  https://data.deepai.org/conll2003.zip\r\n",
       "Resolving data.deepai.org (data.deepai.org)... "
      ]
     },
@@ -94,8 +94,8 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "185.93.1.249, 2400:52e0:1a00::845:1\r\n",
-      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... connected.\r\n"
+      "169.150.236.100, 2400:52e0:1a00::1069:1\r\n",
+      "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n"
      ]
     },
     {
@@ -122,9 +122,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "conll2003.zip       100%[===================>] 959.94K  5.80MB/s    in 0.2s    \r\n",
+      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.1s    \r\n",
       "\r\n",
-      "2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+      "2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
       "\r\n",
       "mkdir: cannot create directory ‘data’: File exists\r\n"
      ]
@@ -136,14 +136,7 @@
       "Archive:  conll2003.zip\r\n",
       "  inflating: data/metadata           \r\n",
       "  inflating: data/test.txt           \r\n",
-      "  inflating: data/train.txt          "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r\n",
+      "  inflating: data/train.txt          \r\n",
       "  inflating: data/valid.txt          \r\n"
      ]
     },
@@ -151,9 +144,9 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-02-07 22:20:36--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
-      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.33, 52.216.44.121, 3.5.9.100, ...\r\n",
-      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.33|:443... connected.\r\n",
+      "--2024-02-08 00:00:56--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.65, 52.216.34.89, 52.217.194.57, ...\r\n",
+      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.65|:443... connected.\r\n",
       "HTTP request sent, awaiting response... "
      ]
     },
@@ -174,18 +167,10 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz       32%[=====>              ]   5.32M  26.6MB/s               "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "pred_probs.npz       96%[==================> ]  15.71M  39.0MB/s               \r",
-      "pred_probs.npz      100%[===================>]  16.26M  40.1MB/s    in 0.4s    \r\n",
+      "pred_probs.npz       96%[==================> ]  15.71M  73.8MB/s               \r",
+      "pred_probs.npz      100%[===================>]  16.26M  75.2MB/s    in 0.2s    \r\n",
       "\r\n",
-      "2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+      "2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
       "\r\n"
      ]
     }
@@ -202,10 +187,10 @@
    "id": "439b0305",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:36.924800Z",
-     "iopub.status.busy": "2024-02-07T22:20:36.924609Z",
-     "iopub.status.idle": "2024-02-07T22:20:37.975651Z",
-     "shell.execute_reply": "2024-02-07T22:20:37.975124Z"
+     "iopub.execute_input": "2024-02-08T00:00:57.335654Z",
+     "iopub.status.busy": "2024-02-08T00:00:57.335468Z",
+     "iopub.status.idle": "2024-02-08T00:00:58.349948Z",
+     "shell.execute_reply": "2024-02-08T00:00:58.349412Z"
     },
     "nbsphinx": "hidden"
    },
@@ -216,7 +201,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -242,10 +227,10 @@
    "id": "a1349304",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:37.978094Z",
-     "iopub.status.busy": "2024-02-07T22:20:37.977720Z",
-     "iopub.status.idle": "2024-02-07T22:20:37.981475Z",
-     "shell.execute_reply": "2024-02-07T22:20:37.981015Z"
+     "iopub.execute_input": "2024-02-08T00:00:58.352415Z",
+     "iopub.status.busy": "2024-02-08T00:00:58.352000Z",
+     "iopub.status.idle": "2024-02-08T00:00:58.355349Z",
+     "shell.execute_reply": "2024-02-08T00:00:58.354896Z"
     }
    },
    "outputs": [],
@@ -295,10 +280,10 @@
    "id": "ab9d59a0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:37.983434Z",
-     "iopub.status.busy": "2024-02-07T22:20:37.983151Z",
-     "iopub.status.idle": "2024-02-07T22:20:37.986159Z",
-     "shell.execute_reply": "2024-02-07T22:20:37.985712Z"
+     "iopub.execute_input": "2024-02-08T00:00:58.357557Z",
+     "iopub.status.busy": "2024-02-08T00:00:58.357166Z",
+     "iopub.status.idle": "2024-02-08T00:00:58.360004Z",
+     "shell.execute_reply": "2024-02-08T00:00:58.359557Z"
     },
     "nbsphinx": "hidden"
    },
@@ -316,10 +301,10 @@
    "id": "519cb80c",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:37.988170Z",
-     "iopub.status.busy": "2024-02-07T22:20:37.987840Z",
-     "iopub.status.idle": "2024-02-07T22:20:47.095100Z",
-     "shell.execute_reply": "2024-02-07T22:20:47.094496Z"
+     "iopub.execute_input": "2024-02-08T00:00:58.362059Z",
+     "iopub.status.busy": "2024-02-08T00:00:58.361747Z",
+     "iopub.status.idle": "2024-02-08T00:01:07.375886Z",
+     "shell.execute_reply": "2024-02-08T00:01:07.375279Z"
     }
    },
    "outputs": [],
@@ -393,10 +378,10 @@
    "id": "202f1526",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:47.097690Z",
-     "iopub.status.busy": "2024-02-07T22:20:47.097345Z",
-     "iopub.status.idle": "2024-02-07T22:20:47.103018Z",
-     "shell.execute_reply": "2024-02-07T22:20:47.102553Z"
+     "iopub.execute_input": "2024-02-08T00:01:07.378420Z",
+     "iopub.status.busy": "2024-02-08T00:01:07.378100Z",
+     "iopub.status.idle": "2024-02-08T00:01:07.384174Z",
+     "shell.execute_reply": "2024-02-08T00:01:07.383731Z"
     },
     "nbsphinx": "hidden"
    },
@@ -436,10 +421,10 @@
    "id": "a4381f03",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:47.104811Z",
-     "iopub.status.busy": "2024-02-07T22:20:47.104636Z",
-     "iopub.status.idle": "2024-02-07T22:20:47.452942Z",
-     "shell.execute_reply": "2024-02-07T22:20:47.452409Z"
+     "iopub.execute_input": "2024-02-08T00:01:07.386092Z",
+     "iopub.status.busy": "2024-02-08T00:01:07.385770Z",
+     "iopub.status.idle": "2024-02-08T00:01:07.712835Z",
+     "shell.execute_reply": "2024-02-08T00:01:07.712280Z"
     }
    },
    "outputs": [],
@@ -476,10 +461,10 @@
    "id": "7842e4a3",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:47.455228Z",
-     "iopub.status.busy": "2024-02-07T22:20:47.455038Z",
-     "iopub.status.idle": "2024-02-07T22:20:47.459456Z",
-     "shell.execute_reply": "2024-02-07T22:20:47.458974Z"
+     "iopub.execute_input": "2024-02-08T00:01:07.715171Z",
+     "iopub.status.busy": "2024-02-08T00:01:07.714983Z",
+     "iopub.status.idle": "2024-02-08T00:01:07.719127Z",
+     "shell.execute_reply": "2024-02-08T00:01:07.718612Z"
     }
    },
    "outputs": [
@@ -551,10 +536,10 @@
    "id": "2c2ad9ad",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:47.461295Z",
-     "iopub.status.busy": "2024-02-07T22:20:47.461140Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.817383Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.816736Z"
+     "iopub.execute_input": "2024-02-08T00:01:07.721205Z",
+     "iopub.status.busy": "2024-02-08T00:01:07.720894Z",
+     "iopub.status.idle": "2024-02-08T00:01:09.991203Z",
+     "shell.execute_reply": "2024-02-08T00:01:09.990397Z"
     }
    },
    "outputs": [],
@@ -576,10 +561,10 @@
    "id": "95dc7268",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.820516Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.819779Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.823692Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.823151Z"
+     "iopub.execute_input": "2024-02-08T00:01:09.994297Z",
+     "iopub.status.busy": "2024-02-08T00:01:09.993597Z",
+     "iopub.status.idle": "2024-02-08T00:01:09.997604Z",
+     "shell.execute_reply": "2024-02-08T00:01:09.997062Z"
     }
    },
    "outputs": [
@@ -615,10 +600,10 @@
    "id": "e13de188",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.825615Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.825439Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.830967Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.830515Z"
+     "iopub.execute_input": "2024-02-08T00:01:09.999626Z",
+     "iopub.status.busy": "2024-02-08T00:01:09.999251Z",
+     "iopub.status.idle": "2024-02-08T00:01:10.004932Z",
+     "shell.execute_reply": "2024-02-08T00:01:10.004388Z"
     }
    },
    "outputs": [
@@ -796,10 +781,10 @@
    "id": "e4a006bd",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.833007Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.832708Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.858073Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.857632Z"
+     "iopub.execute_input": "2024-02-08T00:01:10.007156Z",
+     "iopub.status.busy": "2024-02-08T00:01:10.006650Z",
+     "iopub.status.idle": "2024-02-08T00:01:10.031991Z",
+     "shell.execute_reply": "2024-02-08T00:01:10.031546Z"
     }
    },
    "outputs": [
@@ -901,10 +886,10 @@
    "id": "c8f4e163",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.859992Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.859817Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.863878Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.863329Z"
+     "iopub.execute_input": "2024-02-08T00:01:10.034012Z",
+     "iopub.status.busy": "2024-02-08T00:01:10.033696Z",
+     "iopub.status.idle": "2024-02-08T00:01:10.037460Z",
+     "shell.execute_reply": "2024-02-08T00:01:10.036924Z"
     }
    },
    "outputs": [
@@ -978,10 +963,10 @@
    "id": "db0b5179",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.865694Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.865524Z",
-     "iopub.status.idle": "2024-02-07T22:20:51.295184Z",
-     "shell.execute_reply": "2024-02-07T22:20:51.294642Z"
+     "iopub.execute_input": "2024-02-08T00:01:10.039392Z",
+     "iopub.status.busy": "2024-02-08T00:01:10.039074Z",
+     "iopub.status.idle": "2024-02-08T00:01:11.408481Z",
+     "shell.execute_reply": "2024-02-08T00:01:11.407944Z"
     }
    },
    "outputs": [
@@ -1153,10 +1138,10 @@
    "id": "a18795eb",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:51.297251Z",
-     "iopub.status.busy": "2024-02-07T22:20:51.297061Z",
-     "iopub.status.idle": "2024-02-07T22:20:51.301790Z",
-     "shell.execute_reply": "2024-02-07T22:20:51.301246Z"
+     "iopub.execute_input": "2024-02-08T00:01:11.410630Z",
+     "iopub.status.busy": "2024-02-08T00:01:11.410275Z",
+     "iopub.status.idle": "2024-02-08T00:01:11.414236Z",
+     "shell.execute_reply": "2024-02-08T00:01:11.413795Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/versioning.js b/versioning.js
index 6c13a6f65..3869290cf 100644
--- a/versioning.js
+++ b/versioning.js
@@ -1,4 +1,4 @@
 var Version = {
   version_number: "v2.5.0",
-  commit_hash: "387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623",
+  commit_hash: "077f5a936954c203fc8740fefd9eeda606f26f5d",
 };
\ No newline at end of file