From 5375b172d5d92a6a6423ae5b01e62ef06da41687 Mon Sep 17 00:00:00 2001 From: jwmueller Date: Thu, 8 Feb 2024 00:01:45 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@077f5a936954c203fc8740fefd9eeda606f26f5d --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../cleanlab/datalab/datalab.doctree | Bin 175535 -> 175535 bytes .../guide/custom_issue_manager.doctree | Bin 29191 -> 29191 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5977 -> 5977 bytes .../guide/issue_type_description.doctree | Bin 104403 -> 104403 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 102267 -> 102267 bytes .../datalab/internal/data_issues.doctree | Bin 76884 -> 76884 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 43741 -> 43741 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4488 -> 4488 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 78620 -> 78620 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68053 -> 68053 bytes .../internal/issue_manager/index.doctree | Bin 5947 -> 5947 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88321 -> 88321 bytes .../internal/issue_manager/noniid.doctree | Bin 90559 -> 90559 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75294 -> 75294 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120182 -> 120182 bytes .../cleanlab/datalab/internal/report.doctree | Bin 33614 -> 33614 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5316 -> 5316 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4492 -> 4492 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/outlier.doctree | Bin 17168 -> 17168 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103926 -> 103926 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 164172 -> 164172 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 91933 -> 91933 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 52029 -> 52029 bytes .../cleanlab/segmentation/summary.doctree | Bin 68105 -> 68105 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 16628169 -> 16573779 bytes master/.doctrees/index.doctree | Bin 42561 -> 42561 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1292 +++++------ .../tutorials/datalab/datalab_advanced.ipynb | 306 +-- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1668 +++++++------- .../nbsphinx/tutorials/dataset_health.ipynb | 42 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 607 ++--- .../.doctrees/nbsphinx/tutorials/image.ipynb | 1808 ++++++++------- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 116 +- .../nbsphinx/tutorials/object_detection.ipynb | 146 +- .../nbsphinx/tutorials/outliers.ipynb | 498 ++--- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 1486 ++++++------- .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 164 +- .../tutorials/token_classification.ipynb | 161 +- master/.doctrees/tutorials/audio.doctree | Bin 336518 -> 336518 bytes .../datalab/datalab_advanced.doctree | Bin 199746 -> 199746 bytes .../datalab/datalab_quickstart.doctree | Bin 142172 -> 142172 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3120 -> 3120 bytes .../tutorials/datalab/tabular.doctree | Bin 116812 -> 116812 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 292050 -> 292052 bytes .../tutorials/dataset_health.doctree | Bin 330431 -> 329494 bytes master/.doctrees/tutorials/faq.doctree | Bin 196291 -> 197228 bytes master/.doctrees/tutorials/image.doctree | Bin 499365 -> 494905 bytes .../tutorials/indepth_overview.doctree | Bin 220554 -> 220554 bytes master/.doctrees/tutorials/index.doctree | Bin 3232 -> 3232 bytes .../tutorials/multiannotator.doctree | Bin 137376 -> 137376 bytes .../multilabel_classification.doctree | Bin 59511 -> 61606 bytes .../tutorials/object_detection.doctree | Bin 113579 -> 113579 bytes master/.doctrees/tutorials/outliers.doctree | Bin 208986 -> 174926 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 80806 -> 80806 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 3212711 -> 3213496 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59790 -> 59790 bytes master/.doctrees/tutorials/text.doctree | Bin 93598 -> 93598 bytes .../tutorials/token_classification.doctree | Bin 196530 -> 192772 bytes master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 20 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1292 +++++------ .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 306 +-- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 18 +- master/tutorials/datalab/text.ipynb | 1668 +++++++------- master/tutorials/dataset_health.html | 7 - master/tutorials/dataset_health.ipynb | 42 +- master/tutorials/faq.html | 18 +- master/tutorials/faq.ipynb | 607 ++--- master/tutorials/image.html | 361 ++- master/tutorials/image.ipynb | 1808 ++++++++------- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.html | 10 +- .../tutorials/multilabel_classification.ipynb | 116 +- master/tutorials/object_detection.ipynb | 146 +- master/tutorials/outliers.html | 340 +-- master/tutorials/outliers.ipynb | 498 ++--- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 1969 +++++++++-------- master/tutorials/segmentation.ipynb | 1486 ++++++------- master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 2 +- master/tutorials/text.ipynb | 164 +- master/tutorials/token_classification.html | 67 +- master/tutorials/token_classification.ipynb | 161 +- versioning.js | 2 +- 162 files changed, 10418 insertions(+), 10858 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index edb0c42a6..058513ca7 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 288be3d1f97ad378e0b64702f7f06ae2 +config: e53cc0bef305022986dbf869967df687 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index cf15aa3d791bc53b788b0bb1603f9bf03b08db8f..b03739e72e2872f939827de392bed3c87b38a023 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO@fR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Wrlgo!n5S*-U<}|SLmMaeaz+5P)Fj;i delta 117 zcmdlWxj}M6IHRFON|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Xp%GApL1NP84#ogZGPH4WFJ}Y*$ax^y diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 1ddf79667202b5d8e51c3f112bf5eea57c0fd246..70f464dfd3456a2bb6e4b46c48551144b2466ff3 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYh6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYws`_0D;e4*JDSIBR$=yIA>Brh*6F%7jQo=YI10(q-oDwA^Di4&TDv!Y z5^!W9Q|o(SR#vjK_H5oL*+HJIJ)6JD)N_z&tC3nKc@fmJxk9^ynM_+(>a&sS*BqlI zWH@-Uqxp4qvK(8od9VFKPBOJJdp(pQOKbe(^?F>J>r(T`i&wDr$#tm$o2TUk$Wq{f zhMs#8n-2eap delta 1464 zcmX^3o8{ndmJRWYh88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt-7yvXY@~vZHz2W))^X7Se45X`QZX!^l5bfTNHs?d_W_IsdYerL}wW zCjmz$GPS-JW@RNyYtQD5k{#sP+OzqaOg#sgwi>B*k{3Zen=7b^rJIcgJy<0bEnWjO$)LXi5f)+ z23I&OgoHs_SfJhHYthD4v}{pOPJ>`66b=P~BrZBPrP|Iri@SW^=X=ln&Uen4j%7{9 zvSwPCySG#C>Z$1KFDVaH20M<1+CA=o%i}5w1zma|7;*>NOH1WfR@tEkgXNVKA#;>{ z0A$AAPbb7gld2gWZHKw4jQbKt|MOt}8<4!tT=T~jOlqw8vyI7Rn>o;;q(BypFFImQ zNa;8Afi`T_+f4tRMO)%jF>hDh#^6ZUREMeo^k2Q9jc6d=931Jrn7CH<$z0+p;mc>b z8D8j5#k8H~?WIQ?)lMxJ0exxJ+-d6HyfD|h8iloQe%RrfyVp#Z`+EHftex8!MK*)A z&T~-~K{kS=rF?}wK#Qj86lR0TpHo>7CPy>aJ(#>{XOCfWNhbRUlOwy>ButLwuqv4R zGM9w`GRY=+3PX(o76G7trU$*-!@j^|?>^QIlbeg!Nto=}&!%AVz#-NOj)4YhcCoK{ z*qm>m`7>;&3J`Cf#$A+opIsgX3}k~{pr0AMwFDE_8@=&VdVh@jfXk27XRIMAn9@%xs_Ns=+-sGa_)0M0CB&6LV-JxdexS^dtk!CKX)B;2ISc ZsFxgA?QW9k&mKu!Y(3IRKJ>?&zX7avMr{B9 delta 4197 zcmbuCO-NKx7=}6L-tn)Q#z`Dggea8$BQS_rTT7zbmqfUiRYFd!BNYp4o zFu1~LAtVga!UF3iUyC-bqGgMMavB6np>QY=ByrKXDb;q~+28klzW3bkeCM30xMM2r zm~LX4x4pOQ;?;0>sn^|B7An^?&Fl7+d$dqn$m4Qf3bh|}h21`{$E}sgFI=HkV}yMG zWctoeN5pu8YS(@CEyl7k7Dyib&w~Z8L-HD9C74h!slF1-(I*xyMt_r%23gdk#sqZ+)B(Gbn^=To&jc{g=@TTJ0=c@={#;1ol88I)*o=n zNy(-w!87R8V?KHev#AvW7UrPH67NMjV#A?3!H2TY8s^rxP2Bm#W1s;^gO*G{ytyIs zMck?6&|6g*Ra12l(#1*ZnaX8r3RWZwI*d%l{}YwaY`#*1{1xd^EuQXC>>`}0W>d6C z8AC3KrVUA()5x$elZg4fY88!pl<_8TF-?bRitCDU19PY+xdi)x^dtj3Pbs*N!R=I3 ZsGhT7wQD5PpFEJf*nFgueCUrle*nL7O*9?BgO!Yxw5x z$`i@(EYQ~Q%>rs2Ok~=spvlcbrq<26!Q|T7XAnxR)@q({zXM%ORoI=0qhH@S{I;M+!qW5Mb7T;LpXZT%E>o?Kf!qqmT&wKe_= zxhaV;se#DEq)>~O^z;i%684+d)y)ecORN55KXu9J zu~Ceon{Qpb%}Kr)oAvHk*^{n)df;P5i|GbZjO^QQNHg9d!vRPpD5)_XF(%y&z!21* zyy2C^_P8j<fW{7X+-pD9wM7sX%z;I;dCtV*X^qjY!_{3PL zOP*$n$?KdnrgO$Hi*A3ez;v3A0#mj-8!$PFl5PMf{-!TrWRckZ$CWACgmeR@FYITE zo6h}`Nnrc8DyAwC(oNV7G~ovsO&O5Qk=vDLGaZm5-BJ{PPh{HuW;;`#0qMqoGtlG@ zA&SY^rv(Bv4~H%u4GQ${zr&8pPK^nK7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt>$}caouP`awe$+szA^R|}JFC0Os|UE(FAYn{yK8nk(%#6B*vw1#i~ zt~`+p&jM`?-z=ck!9=F53Yy$3WNO{48%(aPeFmZAYRxvTCs%8c*)?)Q_<}_Uxwfvc zUO{dM-*NcDOnT&OW_0~Ru48LGc9ZMa1HNr!I2N3K&jrpQ*Va#A=gGCzGkOcTT3h44 zkeiYilN!j49L`i*ahBV_XG8}+pf|45J5o6Nb01QF> z$s1ltY>$g#TrNPq{>l1x*tfT2GYYtpZHD-E?v0G1Mx^WC4h%)LHv*`Bc3QVW@C@^KavjLN%DCq`(;&1u_MizD-SKofqD(Ubw%9JyV2Hq!w~(k(^t_e7@cZ?-e_8IW!aI0H@o z5Td-D?IqJ|F$xUWTFV?KNVq_S2?SF)r^SLQ750oB&;ZmZ= zEM!HxF`&4y-2Ne&xt5GF0jzmCP_x|juQ|*el=uP>D%*jfvQv``pMVS5xSh?z-eSV&;(r`(yhlCziW2oVJU~@y2+X=8jpLH*dw8zo@^+g}=XvOwfeP(6@fe;6q*X_OXa5nY_;b=DY z$%qHElN3dBlk1WUS~Dwtu=`pznceY;Z0zT*)MR6?=;=2>+eM~RH$P*iT7(vFZ)2Gw zbadbbmN!BTcf+W)VemR?4Gqr#R;o$lVS|a#55etUjnQY zm`b6>$otuFYn;rMAPRbn-MCehB~ zbHuo_*h&YM)_{u+IaXdEM#oAUwXFTgHJ(x1fL=8?CJFL*)5<4bsR6p2xzNjnaImpm7bED8I)b7Ld zl29sn6_8n9FiCii@KV66z0W@J)6d^x2eePsSi3mg#FGWaW9xFgfLWdG;>BVz#1laN z|5b!m?uvX_+NTWf3NnLWr`s z=*9d~R1#&V>nA%95eR~$wxaMMB&~etH6MDZm+l?W`~B|yetw_d_x#R1_uRP+>)eKQ z{sfbJkuG<*BYL^a=V^5-6_OD{hDR)IZl|HXWa_djHlylU}z5tk7 z6|bh0<`-7GqF#` ze4w4=b~HD+E=53Vdc_ZRUdtr2)IE`j{p^*hOzh=7{T67uMCjzr&)BIJqs80XSmqcV z8MuMvjZy90Hq=@>cpbGyhi3pQRmF3$!Nll?YC)U5GunZogJZ{locc#DMi0E<2{ftdJ&BH=kWsiUr)^x5;G`(XlfvFm>tZjW{Rx$F4HGukm6|SzcMqpS*4?*Go z%4$J4{uVo+gPP7d#Ho6o$TuI`kQ)WEwAl;1NK8g~9LWE_ ziqNav$Nu>OVyTDMV3)~&=)c7m>{xt}jPovFyQSwgJ<1R5fxO0VeZG)qc$ohM8Aa>q diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 5115787db12413ea0877f219b5b74f727166b544..0f46f66140763869f6b92ef86612ef1ca3e24947 100644 GIT binary patch delta 64 zcmZpF!r1pZEj?2D*yo3)D@%v delta 64 zcmZpF!r1c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S)?!zd&U0G9L<^8f$< delta 62 zcmZ2yxXy4xHlv|MN|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP8IgCQ$09S<(@c;k- diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 20e5b50625df496ae0fc6dc323e8784eebab9ef5..df9d59ffee5a3b64deacf668df3738874547abb1 100644 GIT binary patch delta 62 zcmcbqcT;aeG^1fbR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S*-VLU4e0H>}L+yDRo delta 62 zcmcbqcT;aeG^3$KN|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP89>%kx0BAoF+5i9m diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index a9bd8039894286b3ce31a0b99e233a213e225964..e66cb78cc52c1b83ed3652eeda28289e2c95d3d3 100644 GIT binary patch delta 68 zcmcb-p6&8_whgI_h6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 Wk(8Q}VrpTY);x`I`!q&I+i3tqNf!bD delta 68 zcmcb-p6&8_whgI_h88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| X=B9>5KotgwNzKz3w@+haw4DY3{KFLh diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index b62bf53a828803804dcbdeac542a8655e2eaa6cb..f1d4021dab236d0274e0e0ae32c6f68c50a6d11c 100644 GIT binary patch delta 117 zcmX@AbyRDEFQZ{WR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Wrlgo!n5S*7W85xChPE`}`-}kWA0{CH delta 117 zcmX@AbyRDEFQcJFN|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Xp%GApL1NP8I>zmSWN1qhzRw5%{=_03 diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 0e1fc1469d979ab649ace5f14b8f17fb149edf79..09e2f273dcf23b18670909e61892afd38982a6e5 100644 GIT binary patch delta 5466 zcmbuDOK4MB9LD*psnxViZLBw9ec&si15G=vP1M>@Q8NnGHZjW7Np4LVw2}C#v`S+X zbm3#82R*n@lo4FGu*`pPHcBbXQVJC!_`+6%L3Cu$8DvI$oSRT8v&)yoUH-oB|M<>5 z-23Tz$*1cjgPW=DU{81QK-1wPwT&@ve9w=GE?-^DeduNG6G!XskP?PUMl2RQCxp5Kr4ZMnPn;lcpccOD;Jyt^3p z-9KKTlM@}8#)a~}F5H|)eSXZeM+}7n{P)_Q zv1yt7!k@-g92IXj{9AadV$^4mv&4WI;E|1eHb7!L6cx1{Hh!{o3DR~RFXhYIXCgz_ zIM;TZ0;a~}p;pW>$wT2Z)@v7!bRxxy@sKITBL6}AvB+6GV2)tx4U5X&86ujp@ry*H zIEhk`-H-K|O`envk!&)F6!PYyh{M z?`GZDZ5tGh=S%s-<8lyZ$Me%jM0L^PZnjLmsUbhdUT(y0?4U?JD`W5Loxq~4jpgu# zZ;nhaeC)Dr8HL#R&^H5Qh4b?}5S3@k$;ns0BrA##=)~9^a{FvrApCR7)#VCW4aCNp zTux<)>aC(Mu)3Ur(sg8jOZYqceuF;33S%`?AunvAWopGds)xJKGK)$JUxm^`ya$@b zr8h_|YS>Ndf#BN+pcO!{Cj{*B ztDnl$`gSslC?l^TGj3{CeL)IT#*7Nj&P4D!--hsB0BNZ8?lbJtxr8i$`4x*yYfE9rZ5*c+@9V{y9O3 PGU&~?P3eD>H>Z9BXk7&? delta 5466 zcmbuDOK4MB9LD*psnxViZS360)KPpz9HB`u&5c?cDr&S~t%*^rlib)g%vdMGIF;6+ zF(ZtNd2Ggm9$YAjf{R(S%ztq}p$6(8p&l*;V#Wq*I)_kVon z9`1d2w&LB{ijghkH+v2>CBN_eq0tOH~We!m$AH3$8v?o`khNT+(%_<92&GZ^qU z=_h=t{bG=w0MvMBJKvvi4l&fIy!{8cM4jVD%vm_=-CSRBaTbgl+~M2<7O&k6ZmHfg z19tcD>e?jk?%^eM2S9gr){B`?;R!L~b#r*ZbsYCFFC4`Bw%t8^V^IX_yNF+1vacNX zYs{^gKxJlMcOXnm3(r?Tx94P z=f<7KfT{6htPOMQovt=T}ZKFGG>X1#9L@THaU-ntTAl8aZ%epM2zMD>z zCs8T#2eBRsMQ}2+3NPR>G(6k5zHqK54hOKM+Y(N`^fS148=ot(zto7Q37>eKy$ttJ zR5@a`^O+n2gXCk!-A=&0^F-H$#eV^ZjXO`&0d?xvT9hBi-t|zeX?fqIHNwcx2XNbY zIPb-7+o*8eS;j|iRf9OY?)-{GR2MCV^HuUu1BJQ!-X`qEj*85GRct=o4J_K;SOH)3 z=%?AGk6rqgQ;dxl19L!DxZghoQTbanx%u>mzM3)wx-fQ^+%ccN65$2a>SPTy1F^9u zS5R51`s*kTtgfJ-bR9Y168_A7(4g0_!bAhr$UisJa<%eHYJ$7aGK(uqUxm^`ybPN5 zNHa>U>Z+GE0KwPirbFc#X)DM|&AR07AU!L+YumfX-!v%>@*mgJ7t%7wZHHLu5dW*L ztR?XCvO`YEc~rgyN^_y9X_Z^8)CYv}e=5)0h=8*>rDCYxH&X)0*R((`LMwq_PYF2X z$1qi?4V`3_QASZk=DgIV2BH)JGpky=@Vsl*C5>)4?*;x;51jYWZ*|_Uw0xfTY#PtI zEvK^IQ3hShR6QPbx(|=~w8}pjJnCA-P}>gSQ7;Iz_Ty340!}%4P)Gg45FYhul~+e8 PT?M@vw=4aR^8CzCp43=z diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index cc3344279252f8e270d9a5eaa34a989d692d68a5..a43077c9447604ecb64d416619ff02e6abdd7760 100644 GIT binary patch delta 2679 zcmca|gXPK%mJOkdh6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYwz-Xwi41L%9Tj6Xi!%3fk!~YM>+}LGM*hhTe1+s`pFCe!cyl2CL1yx_ zZ=NsA%tD6Ni+NR>eI=sFvGrnJ{pJXn9c0+L*-ynHdQdU9>K;O5YfRt_?4?uuPa zp3U`}pT_TFBGcC3WM*=;vZWm+S8HWv6uEwF&Xy%318u&T=T5F;PZa(qS8I7Gnf|Qa zTw5MPZW`{aT}DO_P5yW+ck|gsKQgsWKHDfZ*&v8@^OaUvGKwjX?UO%rux_5xRm)9A zTK;$}V{$<=*JQPu8k_G-Gb1N;L5c1CDOG@pbUIM4==KR*jK1X6>#@`42>=af f5Mn$7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt@dknaI#K*-v7wI;Fv`#P3V&tFfz*k6~_Q~^wg*ONCA7my^ z`{wz=%q(PRy_i?E*;gW(99u8u)o+fF*+GV_n;jLC*vW9Lqhiix2Tf1%;x=dU1~0zN zCffJq$g>%!J&X*UzyO}?E5W;YpZ9TAvb5K4HVsN9$IBPOaG&6Ei7u1N&TW3rrr&{`WtZ?(I#iz;hd*SBrl^x<_`MYj& z-$5fXlFH_f$GQZ`vN2=wfm@=JHE;eSPxs~nx5Na<(+aehV{*bf$;}g9JChgCAh&~! zm^|S%>*h%x){>jpfW~Zo@TZ)UJdbSuz{dEAoKgjtNT&n!if*64#pp|3y&gM#o&eB* g1|h~%Pz{`)xb0{q}?r0O+(fivR!s diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 04528b32ba4c4f6ccd61f34480d1f8991f0826fc..c34e2c831baa22c6f1a4c7b676c46b1800f5f540 100644 GIT binary patch delta 1184 zcmcb6mFezPrVYM~h6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYwz-b6g^6@+lN%KaCNB^d*u0s=M~H0g&1CA-l@;E6U1BRUdD=JY$||#v zu61*x;$AYe0Yj>1vV$z^CUrM5q6emXGl%9)@}dcB`R2tsft1+3P46-#wtE{Xvy&d+ zK)+XRmaw`mOP1Ec$#cTEHqVZ*VxvHNW4w_fncCwGStozc6xp2D$VXnPDVz*5!n}=( ghiq3!ZvHdr1}g>H`)4ZilcgP0K=5x)T3O8q0269~V*mgE delta 1184 zcmcb6mFezPrVYM~h88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt^2!TbM}KHn~x;VDbWSfz6v)e1yo>-b|)WU0LDH*Cn~D>e$WH^v(&lBqr3kahA0O_9xcjeO*#n!?F2Bh1^l gc*u5z@MKUvyA1qA=*q?Of-0M)8nJpcdz diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 6dd2ecf684a631f6604dd762f0e500ab08e9bdf2..f517daabfbd6aeb7b077ece5c2e36b11dcde7428 100644 GIT binary patch delta 117 zcmeBB?oi&~&uCbXm71MzUR11anrxAhWSo|0X_#zaX<(9;Vvw4gl4h8kXk-M$CKgGl WDJiBF=4qQ780RvRq0NugiU$CtKqR#Q delta 117 zcmeBB?oi&~&uD0oQe+gLo0_k0VVZ1|Xl7_=Xklt;W^S06oM>)fnwFSiVvuTTX<=?^ WXarPYkeIZ&fpIP~8QT0pZSG){WG7wQxacKi}k;?gEp$^td*EGUO5^-xWY(Qpwcq z5TLzzhetTM5#SJDu=$+tV=_`XFuBHUb_kGXCfnf#o8>|_lNt4!6QX6wOYL!!fm%0f grnA|S?Qq`BrTorx^1X`2&x6u8OK`j9MLagz&_cqa4732%0g zG-e^+h|PR*Dr{tH=i7W<wCqph#@?8NmCY4Ox z4guPmcX))88vzah2Aj|MJ|-iT1CwjqW`_WIX0jb_uvso-GnrApIU!n>ywn~y8K`x$ hW;&ZK*$(I3e0qsCnL#$$A%J)C=_N9o*Dbp*008y0O9=n~ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index a8b693764d2a435ccf564b8b2ed027ca52c37049..c2cec20709d355093f65cc35519f0397b3bbc7eb 100644 GIT binary patch delta 62 zcmew$^+9TbE0bYCR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S(nWBSDf0Hlx<+5i9m delta 62 zcmew$^+9TbE0du`N|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP8GNxZ#0A(Q(*Z=?k diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 94b724b19d9735fb92f2f7e8ce5902e056630c38..876c45f32de76b87bd7509b9882a9cc0d0f97379 100644 GIT binary patch delta 2685 zcmbR9jAhO%p)^9O?l zGQ7Kap-~GnS&rSXna#Y13>zmeG}^Ga*zyw-nYOywc93i9dix*b+S=i~f(% zLG&vMTmTG8iOt*N^(b}4rNl>+x?*AKQZgfSGk>-j7g;%O#^eMm_Q?(=ESn|ERJqAE zLSVCalP$U0_je0#Hs~wkC(rgt?n0Xz=glIs8k(H2MsV}jC5za|vwU;Hnjf6xX`O5r z&O3R*Ue?K9mk3Ob-Ojr?V0#t0o&XxPdBNUn@?26ddA^*~zbGpl*Y3KNJC_nz}?UUaLGyv708h|Tw&b7+#~f*IS_3o7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt1gR?~H>dNo zv67{A#^!B8qCDhjoqSJ|WAhyO0P;d>22i{3<`as(>}1;>O_t8pn?<#Mkr&V#Hh(Z^ zAj7+x7aFxNljYbAo7v2J$gpwpLZc0vi!DDfk!h=&Z3nrwuDAa|uB{!;E6A{QbE4}y zazpon=Ni~nqWpqZ1xFmC&S;sI7S$8AoMi_9@*RwSxl)5 z9z?&Qzy-jdl-RsIUXM~&TuOXIsVf$yE+sQUH}hwkagmkdW=u}7VxR0_!m?SiOqH8# zBLp^!H`$V_eSf#`W`n*me)4Re}8$&b&0^_*zLTV1GZO@>j|Jyn-}cOCeI}WljqAxO^%J_oosN1b@Pqm6UZym z;Kpn=IJ26UtT2HXaql_L=0&#}$!i>djo5teIfo`$E|{@>y&xkKdEp4kN^IL3q#0Am NOibI?DKX{=007O?E*Ag* diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index ae8e89ac0e0c32e4b6aad252b262056f3a451cf8..7f3e2bf5bb878666d6e8491cd5134d4cb55ef9cf 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wgp+K+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYrk|3ZT&!Q5Us{x$I(eeK@#ce!a~TauHU_A*WICq`BmZO}mO`?$_f1}{ zEVem<^&kt`+Jz?zgs^OW&t<_%rV#>)team8EaoL!JICZu`9EaqK18-o;mH#A_Ey*R zOL7Z9n4IYA+q_!&C1qjHx;b03fxN^6ihWS@v2H%3eUypJaDW*Rr{6=VD-IgIq|_CS zrYk6P#U_i#lsaOU^)hDCLv!;)`%v=o&{}XDo^;J7&+8EF;vV10^EX8MNADs^YG14xde4{++eiFjkO@^kf1o^!q3Kr}1v)&k*4zQ~QP*!OdTa ztN6*&zFDs&nv*=OlM{M)H;47HvQeO2V`>Vywtw*A-5fc8D!I0UwC`SKMy~DtX>5}} ztmBz%5*svqx;UfiW~+^d$V&j(ljF}zPuB70*}Q+x1Tu;mU>brOF?s(U*3IGv*N|8L zW^ax^zlevd*aW#iZS&zfpEStQ-akE_hmm!A6&vGQ4)P2D<|5YZIs%MgWTuDdy;6)E T+r7jYrN|3_lI_5@+Y?3rlEZ10 delta 2632 zcmaERn&s_jmJNZ7wiYQxM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwN%|@I$;JA``K3k4sgoz#8*e_yIG53oWMhC@OQv(GF!E0pVksm`d*9^M z%3_-%SP!z0tzCGsKnTm`_gogNWEvr$$h!Hpz+zsqwR21kmH$Jw?n7kj6rL<$Z*O&7 zza+N+gvp7%zRjzZUs4wKtedkn8^}vMpx6gRAM55r+DDnl3G0X)<=p3VFBOdzAE0j43i5tH}tVcjf#a1D9& zZ}#T+^NV=MicOFU)HWZ!^GSm&?fui^c^Fx@SFtg^6Nw@#P}V*2x_*!jlbL?5%F-m*f_J zFv*d%Sy7{!yx>|i`9lEf<`TUI^85|ae#YPg6Ip(TXwNa}p~UtJW^X95eTvlzN^BRg zeMX7xmmHQclM!@6d$UDSEjw9BVZvnoOrFV)i-jkjpXBek!EKVh-)GYLwFuBizdvj5(8+rbQXm4p!A=mc$F22p>J=tue`x%(JCQJrt-#FQl zT-*6G*(Tq&=i0n`?q)JV9azccZ026RlbqBB)H<1ax%TFs)$@7D@H<4i)aFM!yLc$j yu6+Ey1{vBxA)oi2ZS%7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwN%|@I$;JA``K3k4sgo5oj5i--oXcoPvN1rdCDVViGxARsVksm``_j#k ztVdYL(zMvb6SZz9yi&6e#v1OGZ{fw=(BEfxa%Bpa#x|x=FQi=GRg4s=0cwZxLA1d`MJ)UZ)90; zkZ#Oo$Kq6SO3gx_36uLgxHlKox{>E^i1wBy6>@E_@8a8B-jmHnx}SlmYrSd#=s9=WZq=)Pa?3&SviAJIP6HK&_LxmuqkCSv{YZ48KFPOKpC%vx|oU z?aIgRYmlKG6!LlR**2g2z(Y>G1=7x+$+~&=HxV+mZ!Y-rjJ*1~WIM1`bc+!Hy7A#k diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index d31472e0b7c8a11a64419125e349bc7b6c56b94e..b4c4b72f292b3cc40e0bf475a7f65764bd9eeda4 100644 GIT binary patch delta 62 zcmdn3w_9&RB%@(LR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S*-V%#VS0GO~8fB*mh delta 62 zcmdn3w_9&RB%`54N|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP8F2;?b09ip2egFUf diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 4b92c5ff5502b6a272edfacd2e55eacf82f07cab..fc280ac1c9660af7540fd0c18f6e069688e731f9 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}Nh6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYwz-S(1sU2VJFcjiEYH$Fx`jZUos-u(iEYkjtzsctyYOUz6qe1qxI|dV zGh%axzy@|QwSJP&Auq%_H{XzAQzOsT$uk_I$q3V^X1x{+{!_&_T7{DH=Ff~kf*(CvR}BsX3?3y`AB#CX2%uo zkbHP&N{A5p1->` z2V4{-uXgO(tZ>toOj{@G5cB Q%WhChihuiJW5!~30A$ic=l}o! delta 2506 zcmbRCjb++5mJN}Nh88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt?SEUyz|~vg3-H$?_}>q+1Bo**STwli22b)+!dVwF^%cNMYH$i%W!+ zJR>%D2y9>{Q|l)Q9r8k~bMp-;HZ}5Wojk)anmnDG*E*e}ETCC8`+78x>1AM4gW`&H z^L(#WOyqe0ZiKX752dcC3^+llD}+NjD0M|{*f~mF!5ejqnXKUKn(UA!H~D}Q-{xI$ zwdAD>kP*t8MN#g*zy*ePU@1 zxsj&e#=ZG+)hSN0l1=wyJzuWP$*mmZYTrGXf3sP?2zlDOCi{g8Y!;pQn~!wIZ+2Ya zPM)pZlizP(-|W3fj*WC%fz@2s^MyB@7>kfP*uX^j6yzYR&=B(q|pZLVUxK!&!-iY+;lpEEa*ZXr---Q_x>>PBmb|*6YxB=eEq1c9K>g$cZ`dZ=O<>>rV4^VxnMMfA z6yAJo)-f`*Z}wRdMV`OwC-2JU-ki9qfn2|Xw9nb3D^I4s|6dT=+j%m8yUqjN&C~7%vXSX{koF}{q&dmde&CJJ=Eip^`8jg~=@tTY)=h3m5#FrH8plGmcJa-=TtckmY2VBz zz`{qK*2xFuo{*_?rJeBRbcM;XWNVKmQzs~_kJ+CmKddD-$GA3-mqtJ_EwOpA`$8tN z9WSw&+q;Jn+v9wXQeyk7fEAS39vQr!65H>Gbx>lvUSusLwim^CGE)$7O$q*FYTw+D z@`XHy&z*eCo^NwN#v$_3`=ZTHb6v>`@kN{e=07CQ(Tg^3ERH7E*88O=$hEbqGLu|e zw^eT^*H(vmJ#uYzY+O%5x;Fpp)M6(q3)D|O@P=)&-30c{4<;IOkZFX# zOySMfW*s9_`(~ddQRMl%e)6tt?#+p-8p!oKNc)^ky7FZD`~L-@&E1zylUI7wPX=k1 zxPFjazw12U-8}7XARC#E2WemOM4FRK?FZfnZEk#*LSCGwPu}obXYAlwl8vEyh>id56Z5r+jZO+Zeq Y=k^2MjN7=#azCg!&A(kKobf&*06@x-oB#j- diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 650b30ea1c6b2ab1d9521444641f4f06e82feb68..8c90a3394f80a1ef40f43e9f987c0a14221c641f 100644 GIT binary patch delta 3004 zcmdmgn05bQ)(zf_h6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYwz-D!IvLs~Z(NW!{dPPf|71p%LegyoX`j4+OL(&i>s=P|v~OO(HH(=n zt@)D!*p)W_;afw2_Q`+vgeNC-v2Jb>)@CKs6%WKzHWx}dvs0kGLeWx%EbWbx{}-}u z&TxwrAX_`f=K63Z@{$h7cA?2Tb_;Kgi2N!}whN-k)cK)Gc(Z)*Rq_&E*)0Ehr(z1dQ+po19rNs8st`16U-`>+qiR~;C z{K+dZAW24cN+>1TZD!md&+!W;%NO%){yw{tjP$;F;{qA-Y+br}@!~V&YIR+nN?trK z-Q2KpFS)h~uhk>hR`K;)$+dOSrUo)123UdiZho+xo4m@SY5D|TM%Kv__OfqYwcm+@ ztkS4y^ZXM>$kaO7-~#VvJ(_79Pos7v-MkcPV#~d z68!a@+?!dy7m??TjI9EUE66KPGNuYJYHY7$VQl3k%lRPv(%Ux)G3N77p#Q2o<3SCw z^fzty^kjTUUZw%3e2(o;{TLsRYrvTxM$XBPwhK@H;m7E-{aOfP8W&mK$lDHVKR;mv E0Ex2?VgLXD delta 3004 zcmdmgn05bQ)(zf_h88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt;H!hGN&(@`z7cV|Tu2$FOspQ4; z(#;Jk_mXR?@LD}`Z53a?m0VjFZE7GRVt^HB@8$>Fxyh?Mnx;?iWn`T^VK4jURr{Sd z$SRGRHqSqCgiNiI4KDC*R=%{AOxJ_8&$#uIT-)oH@N5ovqE3PK$pKGTH(S4D=Oi!a zAi-bX$-SBNdl7lg$k-~txPrX$Bx9-oqsI117RFXyvYZdnFTH(}5Mw?M1^TbbGal3+ zOMlaLPfx~&_w)UHpPOan&9XAyqA&&hzQC|;B&4@` z?V`slxgAEY!C|mSqQU1CC8O7EGNnF?-QyEQtKBB)S!1S!ZRt2VRP=DhfAj3A*3VY6 z^XVk3SpnnI5E-Rgb&e838SQ9Gu(}b}AaE2abn%c`#(4^sR$!+Up$6dx4_?58_Ig&Q z%Z9Q?iL1Iq4}7V58mr9cR=<`31!iP5FQC>r>lte09eaS4o@(1N!Jez~_kx=Iksbb4NdNhf_E?JEO=c|C!5az55goUQU(0?sV*3 zeb5%ky*CCI(=mT}66y4wlyu<0*v62C1_JxYb0-f?2y5tK^jHlnrHnt;Id?hlJTw0TncZ`qIMZS+&#*Iy3bKbJPh18I!{~{L&gaf52;x6 yT1_oi&&a%E$tC)@3jl8##gZxw7+QGc$n~5+XFT}E)4_X@3be<+d5V1A=l%jw&5~sR delta 2688 zcmbuA%PT}-7{(hjXXcoU5y^r$H8eIlbA~e)WsImXrPv_J<+v3RF``B;Nm)#z@sS0& zY)}?vyb>!Z8yhPWk*wJWE4j?cU*MVj`Sp9A@BQBITrcUamvm8|#_sAGwzmy*4~j0i z)2=uqNpi_*dIF6I2K8&35pV>ldjVE|;3l%ggiP#%j zpe<5+ueUEGV*cugCDMDc#|jRNt@oO!t$z=B?$n_P0TZ2%9vOk9RPjeg8aZb~Gl-j) zQz$R;g1q*sUB%B=K9Jv(if?YDQebNqwX68S&Y=P7K1Vsx0C3~zEOwC%87EkDM9;!k xM)F-gBlC_tEYinqKk%ke5- diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index fe32be8cfdafa49a6994d66f907804f6e0b78500..967db3b4ecacdd2d269b9627fa94185b321074fa 100644 GIT binary patch delta 3004 zcmbPthGpIvmJPm)h6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYwz-b+8X4Lq8~PPYH&9{ZpUlEiNV=^+?JbiNw1qd@vQA(jTf6w?nOrig zWNJ5%W!;=F;K@a{c8<-Z(rn}fUCU$x*+XPoEIfIaoCle@L1BJMUW(j6OVF0syiv7* zTwjB<|5IPfM4sa}CulFB#O8~-7s<34m{cV;=Nqn|#P%n~cPX*G&)kL*+oxNero?uA z+YU->Z?W&B#P(ZGq0HnZ8F0k?af_xzyNdT6G916z(9e#%T()@fhE&$g9wFuAg*Zg} zj4(3OIz+ouR5B&D*TozrBglZ20>pNy1U*V@S4`SXrtO49ZlH$JIjxqtVG&6 z{emDP>*V_yteZKD{W!=oV{(Im;AXiRDNZuA2bcG;VG%lS5|uGAyf1t9I>8^y`A9TNBdt++OS-c?Or+-FWc zFCjHK{)EtGlOyHi6?9-DHpib>!An;1fw(~C3g_k{*RpviG~&(U`x;~!(Yn2nm+>We e*|&AOf-vI;GW2eDlwkDZCd<7A+kx%pcZ>l2`PAhA delta 3004 zcmbPthGpIvmJPm)h88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt^2!uaTi`vY}tWbORMe{>dyXg{0dG)ZQ{VL0fpUE$ajpvbBqEp2;P{ zN~U%LS=P<@0-juCYv=9BWdtJ<7GJ*_PDL`zOO3Vs%dw{9XrncW?>fXF@f*yHky>&9rRPN0S zrtKj!=s?;hFPO%PkIwT>#Q9zEPY^+aYoP-->JV=Uvt0#eL@F z^Ab{%<4*`}HaSvGUO@*oVsre76})66ABYQNu5fNXaxI&OLL=ThzOO-+5v|)Bc^O}l fmwj8eD+n`wAVcqVM+rthZnE54upQWbe#Zy^^7wRx diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 5d3d456a6e9414c78158fc66ed3a412fc55aa852..ecb8101694a77460f9807e1a7c06993cc67d4c43 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5XR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S)SVSLB~0HZAw%K!iX delta 62 zcmaDV^HgR-Fr%SGN|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP87RHA>0As!q$p8QV diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 2d8994b16673d26559a46c030803a398c7bfa172..fe5700e3c0ce907873fcefdc4208b63e159ea6a4 100644 GIT binary patch delta 3483 zcmbuCPe_wt9LITT@3iJ7w$h0uNDvW~@0Ne&q3|?ND2Ity5~c6EwHjqk+@ZpTE|5|S zAI1*VSgk@R*y@Kq5Rr$XljJVZWzh&abcv0i4#ntwyySJ?9p2;T_x*jpzu)sbyrp$> zY2BRZVa_WTeZjHL&_rvy=GI4#_(!^&n%bqd`E}K&>3*j+;&K^Zn|su!>+SANKV4-- z0OL%Z=FO%^`GS&MwAe{kzMC-mrDc9AKo$cpc(T_@*K3Cn;bLHg-t3%0vXbcDhCf@N zrdLR5x~l*vQ&V)I<-DzYl$iP)@yXPuJlJEQJ1(WZd{tvHBz_VgjnPuF*M_7dXA|>A z5W5on+n-0r`gU**RqZ%s!cM>nwVYW(RWoNxsMnY_i>jLZuK`sm29BYpy#De6n(pmT z4rtcc`~>elQN#P9cH@e&krqxO&HpdspkLQKNaCAIv`+o5%#4E?r-v)(g8HI1WD=WA zcxMk+(19@#2aVtQQE3kS3u$nml;ukAInD&0_fy3xgpDqrhWqeP^V2 cW851>&2R8x{3e@hfZWSpqgt`_fDLZ{2MHH}>i_@% delta 3483 zcmbuCPe_wt9LITT@3iJ7w$h0uNDvW~?>pKb4~3_JLOD#tlCZgHi(%rz9V%?-0x7ld zVeC+i)hdL7t$w%%BJxml65S=bEE++FF0m2Rp%}f7m%Q$~`}_HQf8X!#_dE}8Wz$&M zG-i94<_?7IBNJnjoo*9l14h3xE$#%!a_}Wj^_uBM<1ivz4(90X-Wen-i5_hEvjb{6 zM@rj01wfgarpq0dEY+jL)E9_Prat4L9uwWQE6vrb>Wd-qvjC}&mQuYIBqceUxHpQ} zmFVC8B0AQ0gA1st^PB-Y0Xgcpu!5>)M=Ge-xPKm1HH^OjRH+<1g`V=}D@$m)cftjr zS$*@9y!%W8?~7UWE6PItND68Ge;FJ7y6!;|-(I3~=67voY}7hCTtgSs7qcLf*lxl* zf4qhc^oiJL>h_OXbLd~nfCHsGr#j$Dlo{khMjCpMt_SgpX)AqxT0wEuVC}r_Z}Tn(5FdfkhamXz@L^|6v|29wqCy ztQm?=;%)H)Gtt7&Cq2A|srfI)e zJITIc2X~84=)58#9`?KmZz541VgooX_MK-NdoVunWtz2%)d>~>LlAm_C)oPVN%7W% aH-?(u;>FZ0Hr)cbm%m1hV&x$l-2D#$4iS3* diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index e0ef33ab7341d5eed30a84e2983afdd0ae2b55f4..083a3d60e33295ac96fda22508307ad222825444 100644 GIT binary patch delta 3935 zcmbW3TSyd97{~dv@v`aWuC`fJ4`G(kW!DS43fct}!-`5P#BS@%Zdr*}D73&dQD`Cb zL{p~O5G*0=qWeK(5N6=MM1hho2^JOhQiSy2Q)n{<^}PRwdHkK<_x;az&Y7i=#HEqM z(K>Q9Uh-XTa5uN?DUdx%ZJys-=#rg<&V0Y(^vR0fC3|yojW6F*>r<2hkJ~Q>=o>)w zRRlz$RJ$={)nN2(?l5N4lGU;?tl5JsW zdwn8YKn+Ar@}TQ07Fv|Ac{;F`qx_?2ISwi~%AZRDs8!j&B_6b1FMWzyHmFLku+fHmmt%2%Z)M`0BhsHE_E(jFNV{+3faEdbPJ|e|x!8c;i zW#zc~p#;FJ1!q`m?LiVY(H&RaKup3!<@Vc{^(}wDA<$lLc6Vde8BXdwfcAPQ(1Pvl z48OVqTcx`f(Ow(wIniFVfo9aYc4!@H-L1J$tM|zoz{*S}-i8 zi&v|WGjxi}pWRQ2{k*g7WsN0v%s8-NvFV_Ly{~hUL44)dX6~7-hKimaMzBu{658wD zHY>kde2n6Yopx4!l_F1pnY4lH14O&hfT(Trqv~=RrRn2#av}rzZ-MujG-Z#y0<|fR zru6=u6b9~S-GGlHf7(WD>b^>{>0CoW55;le}T9w^dU9&P;{e$B7if+L;Ct&a^%D= i{j(F+2vs4&Yo4CzVo5I>r;{MBuDqaR{niBibo>URCo5n8 delta 3935 zcmbW3T}TvB6vsK*sJrRru4We1Lzrdsv16^f3fc!Kh82}oh?PydRzhN$P-uZ^;zA3d zH<~g(8iFMjcF{f17{q4azC?kNF9{YE_ELoO;8SQb1@*lD_xau5Isbd^y|WlfT@0m; zHj?b|wHDSlH8k(?xV(i*ku1v|S8AIl!_Bb0{#U8gyE;PPyD(A%jeFLbz zs(@&d99)y^MWlc6PDnh#^C?>-2%TigP%$(tjyfgo$QrRjW)n|~=3B9_Ogc-HmHVpP zXhg9iR{*2vtBP}8^*OZ9_7m$-YoOMTTCJyN(U@lIgFwMN=51L4PEl^-N2FLS_(lxM zHco09N&(DTaGJHYUL;`?-FD3l#3W4A+i?f8zUA*X1={Pao*v9P&1wDvXs?F?SFydF z=2v%Nt90)Y+H3QDC)%qv(281D53ND1J2e@#Do<7cR@QAjvp;KJ>>_J-M=bh~@>#T`m#(|B94F_{rd0k)u@#SM1xp$@(Dtc}N!9LAPXs>(Q zZTxQGF^VsAIoS8B9C-@NqzzmjAli`$L~WlNRhKd;Qy+Jb6B*Ed3%t*zNk`%ps4cr` zQt#hR5#Wy24fr_nr)|Wh?yDxd&gB$IPrPb#!gXVTZgjk-N>kLZLRPgqM%m)gOtv^2 zwyG6T+N@j7QV5t|)!t71!Zw_)cU`10;EMXcK+eYLMYIPtR1Tq*sj7Nsw2UUywz=9iyK)zX6tlsLucZ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 6345c1c6087c7431489cc453700d11b6768a4d08..899cf81e49f66f9412be9e242ccfb0278099b916 100644 GIT binary patch delta 1062 zcmX@t#&oWYX@fVTVL?`EcD{L0vA$`tMM{!!TB4<4vVo<6Nm`0QYH~`NVRE985fGbL zB&DXLm|B>pZLVRw&qlho$s0LCCqLwvPrA;{8##ZG;ZCrHhCH>TTR3^6U-aa?g2J19 zd7m(or+xEY!M|h$l3(;@H_0RXWZF7S(~^lytK{M}|Lv=`d-tT`U_XS+>SZ_RHX%d@t=W LdAb+-Wk>@6Dv~>c diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 2d92ef7c08c34f975d408f95473738abb262e354..3a45a2069ffc4841f18d1ae0e3b6a15eebea3c83 100644 GIT binary patch delta 62 zcmew@^;>E~3zK0%R%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S*t%5;ni0Jv!tIsgCw delta 62 zcmew@^;>E~3zMNmN|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP8txU(b0C@TnH~;_u diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index bb413a7b4e7b6d3b1a99459dc80c01c9c02071cb..6d4cd9f290119216a8905549fa3d81434548fb1a 100644 GIT binary patch delta 1253 zcmdlng>A3;BiVSeA7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt5ds50kEIdVnmW(dH#g5824nJNX4?19@7FCw~wy*!+iU0xOyNH-8Wa zW+GGX~_L=q^tjlp)aNY;~UH(0-n%r1)T&zEzh$bMhN=Pcxg z{RaWr&0Ez3g(=bRZgtR#O#Rc>Ycoo2ZY{MJp~wKoF2{QE3<%oJ%Ec%}hWEDvlTVu@ qd6pV)w=!ouPKKr6G&>!rS$KPeH{(eg@~k%k78Ly3H+L|$G6DdRCS%0_ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 0b20640091b6443df7d20b2f5cdf19f31669c22a..52c0357a00191d1d4ed1b6daee695f4df1f851dd 100644 GIT binary patch delta 13101 zcmbuGYjBKb6vyYhm#~rD&DH(VhA?r<3L(*wMAFnKAqY`I$fd+3Aq^FmN*jWfV8f$^ z7F7l{Qrq^3yJ1otZOUk(CP<_g5~68SRG8?qyPc7*`R|8({QrOFoaa2}dEe*Fo@{7; zvY~xZ91Y7%Po0}FWKmX7NOEY(tbu7W!v-Wv9k;fEq*H9M z{)$J-rMBGudDL>5?3HQOX(QU$c3FbGVEF_F3#aQY?})CC;<$ zO-Myr%r4zGwJ$)mQQ~!!n4L5RAX@Fg&X_d6I1vsPvyzacHj9A4H?n3#+G~)Z+XYl)7{MQF5BD!d zsdUH>mD;|9sU=5Y>U+oFoip~E2DHMJJRB|4i4*W_Dmt|brPiL^f=WAFxQI$~O5l@j z-lg>@)q42`x~_&&xQ9Dmtw5=T*S4a$mXtq3snc)lM5*HDeU#d*at=xjs2+_{O}`yN zsquH=lWt(m4wRbyARNs#=HY3Sy8Ey3D7B#BGD>~&7=A|l{oitwn(!R%rpTrzAeGCA zCW0mA5|#c&x$&*Y8`Wy=v<}twHc~%S`;VFGQ0+<|8jRLC&W}n_?y2^agxnsu7hu{ik+^mkeU5T_N6<)=YmTB2lzS(dqEPPnH)#T@{c03#Mzxh=2z@2s zvay6dPjSU~$^`bGhVl%V5$U@;L*i2-4_r$I@eN4A#m@cUzg=O9IeK1SQ!-oXNj|N(xwR6dXC-Gbcfu< z7gh8NPyt8hN`qJEAS)Vf&%b*iUAvKy;2Llkqf7CIcF?1cl7 zUbS!u!orn}$O<@i(a1NH7*s5-%vLnfWvpzWu5T$ha2wlgSlWDyOhd;okq*A1s;B<{ zd61W)Tt=f|>2(V}5giqYU8evv+HWkqdcoq^7nOr(F?h=*#bN?Wz){zgaP*vHwMt5!=AsyU#NOXoE3e@738?c=D z1XrQkY0bbM2h^LueT4Jmw>t>w;LUl5)Z6G-5DuFaCsl)ZRIE0&ybLdcVd;|I(-j9% z6{xiqt7=t^S5&Ka(P`z(>7`fWeRW5Ot8w{>stuYaNBL_$z<&=mtCEasdq0<=iAdDi ziLM7!Pf@=?OXM{PngxAraFmLr;jTM z$FjTcp~tPgHof@hdF}g7AYS}gEsG(qM`ohMVCnD}eb{g=Zbpr^(v=bzgmf_R>N>3n zeoL_r88(vM2R?ipV@f*sa=D_PHGm7kZH;<2crCv5(zn7d2Tgrs?DFMc7mSw{N65dh zWK9Um&YL(VY);q4s*kL&v0|s+)(&w#suBCbus%>{l_V zZJ{B+HZxPRpD*(+mhV+VNKw^<_mVEJ%BNg3}t7RhKIkx=Fj>8IIwWD1fqWlXd0 zOwU1D%pu)1rYAtPQ^sYKI5%@JK(sl69Y0|JO6{Ms7nLrXJPei2nfe0F)ih%iN>yhi zq0~QT!?{+>O+%^Q&mWKGdM1A+D!s6{5S2b$nu_LH^I;-NJ+pi?N-Zr+LaAF@V<}#K3LAhxy$RE{eUbG6;b~jQlRQu3Gb*Oep07as8P7R`RlzXf-Wg@pn@}-?i zJJ3p$TlEU9Me{XurUI1Ptt)LtwPQnR4RTTEsMU&IGy>($x6ol!`(q#4jn>%|N$~)e z3!>>P%B<;2Qvs&q5{d8hqc2cy_c$7ea!m(rqleGvtT=lOIMpgRm$8WekgVv$!!CSk17 zCUMP2fRZ=IBja06R|mF>V+R@eA1k5WucT4=vj*$D?C zz3#vzh>2C!A}iqBMFZbdl2Ea@Fj>(=has|sI=-#s!)@%aVQKRTG7X)>L^=eD>aP0# z=fSdU&={PBWofe@2pw?FnkE-1!mSvDbnxYQHsy2| zG>}s#6ho73(xOy}M*EGWS2tKZ`K+=REe3Bmr&xT!5^%z0B^Es=S*=#s0+L0Mzv?A! zrKuqz*H7IAy0CPK1O5%h^^h>Mi`oXAi$aRc+z_H3Xb;BjaPSbl6VzIF4EVD|^|0A3 zhwEvo*_|?Y2v+=d{i}vN2O|G^ULru7?v)%UEOgI z)uEcFSb9g*cyWz-3!PT3oL+i0+*P+&-Hj_qRIky@oDi%90RKJMq)IZb&Ar@;CN4v3 zB|7d=&EmltErVC2YZmmi!C5MnhR?#>4arx;t(P4c7OVxbjBAHmAqg3h%a9{%+O$wG zIF{Xg8$E6vwduwOPisH41M%Xo8d(f^J(7hMgQde`^kKubxOuhO5_d{q5YoYym)B{H z@LP&w$gq+09`NDg98=OEkSi7aqybzIZfVpz!E5oIpS}@(IcV%5W0x-n+hDwOD27Mk z?r7bw$pdh%RX>WJJS@Fx(Vk>;tnLqYffO6LBu>xo2{wS(KV2^ewcId6UpEL9dmqvB z(V__{Hgdoz{XF{k$Kx;Rh42)RVlSRmp>IM50I$5Qhr*2?QK#Prc08v((VrqYOIp>8Io;7wZ@2mlh?bPCnSEGRz;@mn?FdLro`qn87DGr z2Kzf$ZXG4IuTku!#P%o3;gs0^OwExJ+b?M(Q)2rAZA%t1lgtD`{>^I)R&r3F{e>m7 zB$?VBLZvo$1{;$ZbekPQow&%f`Fx`IX4wQia&11JXijdB&6gM5JU`2XOq(ZzwCChh qagycl*v%znGTfwV-F&cdyAJ8vfW>(5=0EESc*xQkwE6w+d5i#t133`@ delta 1676 zcmeDE&D8swX+tohtwlg0osN|QG+9yKJ{6rj$a&A*sB*vQj5`TcJG$s$~Z zWa$o`JV8)tvo`lbR`RrOo*)>_NS@ZoA0*T_PZQqAM1l5CVpU|?zWIa1X-aHPlW`)` zX0X45<zVIHO@fR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Wrlgo!n5S*-U^HYWL)$BkTigKB=q4Wk delta 117 zcmX@2c|>zVIHRFON|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Xp%GApL1NP84n{+EGPJ$oxWx?s<&7d6 diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 10a3ca19381ac36f2afb7642ca53166d3e4a910a..8810b60e7a12442f59276b53778a72ff479576bb 100644 GIT binary patch delta 3290 zcmbuBOK1~O6oxs|rt}df(NIi%MkLrSq?1S6j8JG%1kpu{iUmPwGBbgyBv{NMAWZ`i z1c}x`uUb$fXu%fLUg02^wmyP_sB}}@b|DC^6cQC&c&AxpJ!clP{J#I6d*|Fc`L(wE zTHCWEgwhlGxzxbL$=<$1Op8a1aW#}sR3&O?ik{GnP+~kB7Ed%5*EOv#Hem2Ou$h3F z!xe)MHSOxKpSXcm{7g&D@tsHeyGW@y-mIS(Bcan~`_g41 zsV={wk$i6D0Bwq=x%oz=p?P!a-HiRde7JIi8aVj=uKhr9;NS)hvss?g|kJ-5KgFu;QLMJqzdrM zZJ4CO8}++pVXq^B?*UwKBuJNFt0TdgIe6_zP@4ypaJ@CQu;n?F2}9lx+~e?9a`F{U zAS8)%SHv4-_(ZsLtolVJU>EMGKr7+r$TDP^@)bO6z6M_Qs0?vDxe5xgO%{dgBjM_; z7fJsBAHMtsZsJO2Q5dG$Y5SOExj*2>$2B-ijjtO@|KL<7twV-g*d_(otulCVb&FIb zZbJrz=J+Q29q{Kq={#lq1Xsiz5vk<2A1W@)BwHDkWYmvIZwcpsB|sr~Liq3mYnWBp KgWj{!ua5uWoJ7+A delta 3290 zcmbuBOK1~O6oxs|rt}df(NIi%MkLrSq%+e_k`W3miXggZQBe>q)8+wUNm0xqAWZ`i z1c}x`uUb$fXu%fLUg02^wmyP_sB}}@b|DC^6cQC&c&AxpJ!kgweg8lA&bfE;Yi;?p zwr43&WAO{x=tLsj8`H-%Goq?$OgAD?)f_jYik>v%{YpYNVo_by#1o1+#_zyp0%i?W zl6NZ3n6?;re3OU?0}M*v-%S6&x zenlhs+{yvk6i;*OjX^{6*3`Qh=Y9E5Jclx2$Qy!t9R5mfzQS_| zDdOA}@kSXw5iT9Oevt{-gL^8_O87al4Oymq1s|KQfuB7p!x)}i1%=oqi^BDhaP`)U zO#XlXzWfGW;!0*w7^d23`nmsT6b`DlW_vTN#mLOdONm63zizfI{$u@ZkwIX;oz( K`bVW-9sdE)yV_a+ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 7c5f3cdc33278666f5278722dfc411822b676a71..ac5d71b60b33fc29ce7ba0cffd3834295d643e25 100644 GIT binary patch delta 15985 zcmbuGZB$g(6^7TjckaC~2#mvr_(h5zRaz4V!U(icf*1p6QWS|Gq9Vf>P(-lC7Nh7g zVxpF1oTVp4TNbf`()u|yJE>M`v^4}QCM1fXL9JA!Xca9nQX)Nbr#34;=baz?eBWp9 zefBwLb7rQlC!($=;z$;YT2Yw4v^chOx?eF7bqv=U72s16KrcKR#<=|Vol+3o*B zq*|`Ls{_wSaNuE1IjBhXT<)w1?E++un$Wcl(<;R|d3ZdQuUj5Dat@ZWTWC&5*Rrxo2TI(%6XwWzMSH)kssjq$h0?P^!be7N9y43(lcL z=Td0%y7D}>`~VQF!zEQqZKyP4)c~4n!|DQ*+FCXprJj8q&b75X1EscZC_!_*`vx5F zDw(AQK`8VzUj=L??I_qZI{t?{qhUAhfN*r zD0SD>IyBc?*Z+f3D{mY^sW-d20VjqnQKcp0=`WsP^kPR*m-a)X6LvV>v3{GMN)&L(jxK=Ljy)A4Za69puQPLc~a61d(k1E+U&x6(tNEn<|QSpAx zI8tjpbRiC;*4?bw55)7Q4lp0yQpcJ=0}=+#A)uJQb&mOSdxkWf>QA$IK-ahzK-g@8 zm;amd%*cP$%-X>uNEo~p42WHg%l}j)RxtEBOM@GzyNeA4PD^+13$Z`#y3MMQou{|p zA9~p>Ao(X+BR|fWnNQiQWY9Yg+5JJN*LtJmLqim)6Kw<%4llqhm}-*Fpxc;s1WO(M zo+nPCh!4Ps7t)wWDGL$nZQD^Q`X+p$WQE(d%_`jlh9UQcpB5**0esZz?)fV(Nr5zf zhV&T53x}`a#OG&7?;v&8cZ?7lX=AqZ3gR%UOv6JlTb_;V=^b)e1dQUj2)dyh9=k){NoiC6whN`bF5Ar7V$52ZW{ zi07H(<;$R!-iwrH4+g{~%jJ3G_^~_`Io5P>>}2`q2$0P0WXpbh-8{JyG$3Jc%!G+; z6jLM*0`ex2_i|)<)$3JQA&&*1To(^}Q%(;D($%--tNUetK2Qr4TR#|tK_hag>GUJ< z248A8CEtg~PTe8lL-{JY!MW~m@Dte|S%Cj%!G(h_Uz#hKDX&$I{XV)LBAUTu>64AV zUO8Nl4cS)EfkX^*HBjs-XE@a-8Zw^t!of(D#fC=Yo`13+MlKvessE>jvWeaV;~%>0^V(8x7#Hb9T)vd>nV}cG5%r$u!Xcclwi%j+gMpBx*H8{uM2Lea zxzBJ99SYo8)DIYp$1f-j?`k1j{HWic^uYfM=*P&KFlD@V$B1wUF%-XttrY06i;MfYYZBjA1z;=%N8nsOEH z%dCFMkIZuw{6^6o4reM=6FlFVJCCXvyk(Qpib-kwW~D9_)AGVLWe^w7wk9h1R9OiW z&=ouhm&?HXrYGKgNAYz>@b@ldBhUnT1j1z}a1tCps%{55ULdomNl_odJN-qIivN4G zHCXjSrzaXdTD1Y|?0!EH;s7#7ssX@T9nG?;>yf9EPkPn)wBR{4F4XfT=el@wx(c20 zy0~qQ+OrHKb0H4m1s|%(m_eCiU`7BHo>7~SB@^M7(?1&3SmcJ&#m!CXGGx-%#kc;d zCc)(P3o7!>W!HL_)Ad%h0VdDBsLqFTUT|4Wg~^%i>JFG()uFb+;+Z$p^>EIwcd4bojo~K$`i^=XE?Cq(75VOin|$bjdLJN@=LL delta 15985 zcmbuGdsI}{6~@=OckaC~2#mu+e39a#N^9ak9Ug7eAjSZi6h$J4hzMdp5g|3U7)6&6 z6SXYkEIlcju!t3u*5}mhq*|%b))26mkSK-*u~LQpwy=IcRUMq>^p|ZWOv>w)c=hp5H(xPOU&g4n$7&X(8JZZS|QtY1)a$Npmhb=*IPKYl?=!X0jkg}ol za!}$QJW#7MQy}#!=fKQ+R!Cav+>@1pGB-y)DAkd-7N9!g^3S0} z=Q3#Xy7D}>;s6k=!zEQqa#3l}ssS|D`qlX;wWV|hNkk!=QTLs zN1K0xQm1X5jpjP#*Ds>fsoSB!$koH~JJL|r&qq13CDKS8PWdsd>R+qppwu(J{R*Y#*1m#LH`V#0(y0e4Q0Xs^u3vru_pqhC z4W;hts6}(VdF{U_wc`3AlzOA98=&&AMQn|8-K|m-yZ6p40IQFtl|3g>D(i)>y4zp< z9;Ht2n~LW8RDUx{-9L~4Qt1$5UxHYQQW!cWQl!RiqTIij8QM{`CkHX)>5P~$X{m+H zMa!ILWhRsx6wIt>sXh&1yHRb(2o{EFJ44w3s;wBsqR=`QjbR-qw{ILZ7Jo;H~!pj`Vi>|<107td;dI@5+{*?E-tFoC53 zOxNW{{YeaY0HtfkyukLN+>&HAAI*1l3bUi!d8sTF<<3iE&!O7H47L~5@`VifUO-}| z>P4BSbJ$8?@A01XtbiXZVgYnzDU0^RA%q&1u|(8?L<~Pi#jXTG=8=&dXzMmXKiOe{9y&V>VD9=0SSY%Dk|R3 z8AocZhc3ka)Uulu`G9!-!~y2Tn`>DkXh6ciIRq5*H_kC%o|h`kpt{p+KF~GB0tlN; z@bZ6io|*aEO{@(}f`q{Z6xctwBVg-Y*v1GV`y1Up=;IuS)Ux^!{% z|JciJ0?9wtn)z|gtbEF5C6(TK!0rt~z1Ev0FB+mqooFMFaCjDO!6b`x2HnQABT#Dh zbw60}uKRrfz4fv_m==m$pOa8QA zrt}EL3x}`a#22JWZy|NpcZ?95X=8@;BH}Q+R7#`8+0t&LQFU?o5~&h6>PUz;BKuP4 zUZTP>=@N3k=@FmbDjh`AvBpckgmQpU)nGG@_`zt*!saB3>uI_O{X7; zHF;D0Dfu2ecIpmOKa@Mr4bF9kgP+L0$O8O73oabI`Lb-uN;xfZ^bgVX5YY@KTc2$9 z_Q>IaY|5~M4kTijr-5QuIYX%~&XoG32M%VcC^9u5_x$4pF>~P%O#Qzwl}_{|5SNWF zx12P2(Xf4{CXYk<)@w_hX4Cos=*P&K5M{h)$B1wU<|Fr+ti13u)ALj_ zOsPOm0{UQ#VuzPUhy$oRTv-Q9>BiXg#uViQil>Hn4}DqR&#-MHlCjdu^(B(RX^Za9nH3@>ybw%pY*B=XyMapOtAY+&UNwV6csw< zb#d!lwP!g<=0Y66^FLG*FoROZz)U|XIHNWqOD4iEqklH2(Z~&_i<=tN<;bM3i*No- zjfcr?7gXe*%dYh9or@vQ6WdN}7-yVMfk#xTh5+*Yr_1&g?=BL96b$cOH$_W&}9-X0I9d*GqE54h_1 zY*|}Q-H%jcFeM>g1zZ)bGG*@SQI%ciRfQH>w2#2FzcV=%s9i)Op;4nW8CWnq4RVgw zst|HqhL+23*tDy_)#1`oW~BBXU?LZ<58C;WTrG^>c}5E-_Ou4Rr)s#6aM=Om|Gh8* zcvG@A)cCo$^absGU@^Y$N5XHq+5O6rsH`_I^||OIin?~3`^?9YC(_@yX;IT~gLIw} z;pO|D@)K!&c3>IR$VGIev1skM{4fSD|qz^Es(LGPQzjekm(LW{`okcPV}&BiJ@?RA0bJmVb>W+Zl*&K4Una zJne?lFN8A+ZoX&DC`p#}Q2jxnDci``&pNq5LU_9Y52FWp=^X3`up!fdhOln`F2Z;~ pntbO7PJeI1sJz|RkWrtT0#mjFO;Ix>%K(GPo!tD}Tk{xO83EhtbPoUk delta 1139 zcmeBrz}oeIb%Qsfp+!oOQG9M{zP^QNvQeU$p`oFLsim2@VPbNkxq)d~Vv31Ds;Q-g zxv8NMP=!Ha(&QS(17zshsBW-%E>kxLnOZx!3z*5$>asbHzl4=Mt&`75No>v+-Ahg= zZB%ywYu_opfQdZYH=mR0BU3Bb=9jV}WCj^ndza!jGJ)fnwFSiVvuTTX<=?^ WXarPYkeIZ&fw7yJ3~e^70XzV=XCSKp diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 79fd4ebf4093d96cd98bbc580a3b38a85e935271..e3a5b4fc787c4da0bb261995ba0845cc168858a9 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^Ah6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYws{&O6B*hjGfKp4R%KpBrq;7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt>rJGLfNeGNVMyW>w~8WNMupOyV*2!`W9Gky5e-kH5d(7lJlERz2V&0JxTo1Xy z+9%65uy2-6iV!8s1<{lF8bl}e#RzQHsE8sj_@X!SHDt(>Y5N3Ksm(GAxH%}$es)E+ z8d=(7CiCBA+kE=`b{_JyZ|1+7WkH_S?QCL<_2hXvX1kC)qoEF2_67mVcmC~Hy&3x% E0U$CjH2?qr delta 1690 zcmaDdi}lGY)(z2&h88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt1gRKa-*BA$QPbCg#=b*kO0qGV_T`}2U(KXSEJsIii()m*ccT&-m~>?~x) zskvbnxwclD%poTcKIAUkywheP8yOA;YMm_Cz_Iy@^EYv_w8u=oBPqPOE9Mw#}!{Z|5OT`)2;TSr+7J-OeV)SWlj(W3~&)GaBlUWp5C$eCOYO)tj-O F5dfJM_U-@x diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 29eb6854c0821f9b918f2999b804d5d290724249..918734abd648ec183869e6995871e3a8785f136c 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(gh6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYws{64D;e4*e`HDAtj|1=JgxUgcjx4Vx>Gh!VH4sYOY4ly`TQ2-xOJiK zjLijt>zT;1b>`-mB9q9ob>?PQ@x$cWdP(Xtxmx?>j*+WXUg-w8em$tNgB|u zs*cP!kDn}{CbgNdwVS+%gJ?JF)*#pM>-)twvrbasA~Wbf+AqvGL9XMwj6^rvE^eVj Ud)i7ya#Gz#mfX#(TW2x?0QZD`WB>pF delta 1932 zcmbRDmTBHwrVZ(gh88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNtATj$0S% z&e&WaxSokDTW4;5DKd#XTW4-|6+cX_t(T-eldH8~?ijgR<&|!b>(_%STgbK5USkK@ zwrY_RubUU@ULe=8)`m;T(7IXBl ztLn&%^Z3aEYEqjSTf51NIEZ$$ZVhrBzrJ65GwUQ3E;54-r2WF26XZI+%Sd#y?cx?n Uw5P3PBq!B_O188YxhcUMaZk5xa9cG8m%Fe`i zqmLm;5nXfus~3EYinMMzP$3Z!C8AgmWpz*BloJd1Nu0&l&=5>Rv=htO}B%f^EjG}3Ir_oX!1qm_GR46>7s1loqI&LcQnjzOZW-8I~ zw6Zj;-Z0Lx*BaSCc_$t~DpW#r3%6Dr#&)5?J=LvP)e7&}co <&<(OkNKPUtKeb zqNDCx$VfT@$K^p~Uz#>ebNV<`C){+Mxoj+!0s?U`z|^ z-UD4i8rr4YN9$aAU?&8&3AXtnu4Ls_e9T^J@8@6>j~o(kKU(5?#>&A?jf!XL*-ly$4-je zku?mJa@&Vpm}@D|{CEaA6gAiUFHnaybo#gDz%B^a`r`XGwAPzHegUp(ZwzTxhgF&- z+9-(!%!O1qY6aFdXkX7dvL=bw`Q)uW3Vuy7IhTa->b|WcUhVM^oj6fOl(;BW^x{$# zfyPGmVmwQd=&2@KOi^ap5Ctzfy(AZTjEt8d1*WpkX4%$y@*25K{wSpjqo16NB1*a{ z1;(OOZzsLL4w3J=@YYp8 z_5*Sqn2f)rEMops5(~`wzcTOo$i@F4v+6lP{<}=15wbs-z}A~k&^l}pH(n7hDkJ1V z%>idDyvhb~WRN_YkIk4zHJRz;u0+}f?A5V0Xac7bsZQifrDf@n#}IN{`@jYq6U8=K zJ{vIYT}x}?Bj;4fHH(LKnl>|XSUYFM)_pVus5ZHLjD~troREg!(i% zHD@;0w=`9GnBSeo?vjT}$SRU7=ZO(t2!`sX9#9)QXKKW7emd&12}9X{J(0hQX#s-= z@lk6T#oYOTeFS%Q@Y-p|L1!7N+y72XsBRCLJXCWamZ{OvlahAT?$_7ii@BmVw45Hh(v-BXg3pMVoXveD7c<1^%z-)29+X7(ndeHdF%25;@ z_1r{8QuQ5`2bGoY_a-7^srvkUW5WQ_VFUfyv>U0{Knq#}sB2)G4!CmFw*0AYS_LeM0E&ym9z0;@UV|!o};zNufKk z#^EBaeAt1x7V*@Nr;$U^aLxV#b=W|se_IOdf?%yLzHdQmz47B0;HvjUkXHS*PSZpO zCDDMnkP3&Lz}ouVYguR7B+;Ku-kQVUR~3-6aTu@fsUy*Pua}s_v0|b{g{fi|7t0AW zHnJDvS>i-*1=(y1Gt0U#c+pi$vXIBfco|Y)D*J4gZLKH$$ZhgRDOp&X$?-6vBz(g*Ai`K}ADO|s~1BPJ`}R*UX#A!fZ}h{TJnM@STMGX2RiCMBl($qpcpel>&E zh>SDD23(y%Sns??%wq5|IRP9P;|g&irHj0Agx=9{1z^Yx)~nwhlq)gtLQaN!JBwTQ z$u(dy{+4ox`AiqxVqLN3%C zaK?hGY!Qcs$g}y_jCpmNolfqKr5(Ut9czOja59#fMCMdloE&-#A;K{mFXrpAZvYlPmw7U!giA)V#}<`V*s Q0<;Kw36%@^cesH51_iF$uK)l5 diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 6a36afd6664ee4d96d3d53de4d76aeee26620794..3b7fbc28290b9230b4bc9703a7fca2707811f983 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tVL?`EcD{L0vA$`tMM{!!TB4<4vVo<6Nm`0QYH~`NVRE985fGbL zB&DXLm|B>pO`gE`lMG#jJYky!nAeeGAyDh&f@c27A*_XDSzNWbfb9Y+=~_1z^1LR` zz4e=U_~$c`ZsX*MQuUjog__B+6{NLK#GhPSd&Mu4p>^{_sY_&N1N&20&V-CenOw+| zzWKg#069Sf(t2D~REUg-DdY*C++`-QxyFKtjRNg*_Dea))V@ZPYjdba4m$ hlc#-iUczPaA}f4yUIPE-8)$@Hs}X+u1tp+!oOQG9M{zP^QNvQeU$p`oFLsim2@VPbNkxq)d~Vv31Ds;Q-g zxv8NMP=!Ha(&Pz@KgrNl$P>0%fO#D`76P?SE@imc><@3)n8OlCE`gA6`B>2app)Ag#w$MTN+Sm_nZL$z5g=n`pO|E0SM~1EhNB7NFm}Zh=VS;1ugv_+!ZPI@kl7s|B~{lWzOw1jh}G04&U(E&u=k delta 491 zcmbQx#yFvkaf2_Tp+!oOQG9M{zP^QNvQeU$p`oFLsim2@VPbNkxq)d~Vv31Ds;Q-g zxv8NMP=!Ha(&ReEdt~TJaCF~%g=r=^7A80bPyWbKNS388lkaoLP1fQT-ps+)&qBTt ho3*&lGgF|whd+iquY*0Xxms|GKIyh^PH^172mpG#j~)O3 diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 72e7b097963157a4a781b74addd7404de361d322..20d46f69bae82d30f4de744788b5f23d3482453b 100644 GIT binary patch delta 1705 zcmdlyhh_5|mJP*>wgp+K+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYrk|3ZT&!Q5Us{x$Iyq2EZ}L6HyM`p20@RtcIgEJ$BY9eQJIJ;5qJ%#gwr&oT zdQXOpn+s(>kzpG!CG~GsRwyOIMzGch%k8^1nYR0h@ou&%HX+w`kaqFXIC(N{pD)e6Sz@XZ zxweC}-<_r_OQ!7w+xRwb*`h$E?VAg>Jux89=FK0To0DnlwiYQxM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwN%|@I$;JA``K3k4sgnbx^d{e9ylY6ZDL|cBo5PqFFp{Tr`cxi9{>cki z3(3;nwfPL29vfL&`!?_7tt8LUeVae>Ph}#@*8a_I!p-E_+P}F|w1Zq*FG~26Ve95V zsrO{qxVcdF6B)JvQ&RtCWrb2QYy@kKP|hLO))v(+a&0}Qag&*>q)@)uUpI_A2bXX5 z)juFYmaW;7?>P%@-sNIUp3M;Lv)sOGlWDu381H7QViR(02Wb~Cjgu$S_W9E6nk diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index f2d3a5c18b4ada6a36b75de1fc150bd91e61bd05..905d17b1803525ac4dbb38385f86b3798c85694e 100644 GIT binary patch delta 7878 zcmbuE`%jxy7{_x?*A{7|E%*BtoHZfn%4Gt}q;;7hX~u?RWa0ozOE)?w0~W(jGABy5 zWFdoBJlUnrY-1t2u(`wX41>`)S>_T5>d*wI0w%^EL`a;oBtm>!=Kg>$KlI1%_w!uN z^PH2n<4eZzCF8YXmc8Fsx34L`rFFwbcY&ui*Xt_GcH0VVd0vmL&h7DLyInas>MyUL zw$9_(Sdi~k+SnwZnz0ti5w7EyR0N;bm=uS$8Ispar>@unNgJgtaT`*l8Ed0VN#2I# z>zDeppD?OlcCOuuQoR`!DE0OAI{~Vku?_<=Wyb24g_$F$^n+)6QR%3y9hLr^djXX` zm0yQSpV`!j_OxWP0I1Spj{s!hp5A=XiAv9IZAJ4OdU*#*Jy+5JP-U5O7A1aLnhOxa z)jhwX1*P67hwh5doSxc=oT6~R-|X5B!HL#ek~H=xv>HxHoH^KJDg_3~STD0Q);8>Lzg ze+p2grE>@+db;)iMD;lMr1waP7J3W%Woh>-C^h@|{WT!cUwcN?q)~h*GxZdcxzj+WZldTd*)$QOQ_G=p^8I)iisbx+`O z#SzrfZN{qNF%NOZ$&7R+k^PGG&K@=ps)3d?8SIO-s|mxtg#}g>hH8*ZElw7v1H(9e zo3ByQbIoLUmE~aj!Y=+d5qqb2EKQa(vk3~vAwGApINIlCY1ke5$RMhoy^WnvhuGf6 zQYoRG4Pg`V$Y9qYmW6#1vWv72Sq$lW*aa*CJE;ay2~Y#<%2=_PE?r^GSp8S@rzIOe zr*r;qrW5l&uxJrA&&+iHE(;j3R7A*%R4aYlDh!lg%8b-D$4uyKgrW$Uh}}W;Xs6FJ z1Gf0>p?p$B`y8{1A0M)R@SIYqI>;(k5rytXCSSjrdh})TC&it+ELN!X(9<7`$ADXq znj-nr;8_)_Hi1&i{2XYYT&*+F3-P=ZT)ts_WEyWnhjsq}y=cniT3XKI1!xkFO|Ea^ zC!(-prG!jAE9C|nE8z#hy%jPc)g&bn4#Gg?ukm9z-$0esycg9^9E>Kvn@517p@j57 z4?mg==AU&aRXo?v<0#`DK8+@!no#%qyvTqBL7RK{QM7^G@0sbP)7*nDgQR}$1GVCa z7Q$A#u)<2=Q&1`vboG-tYJGT+Z{H zlegnb#_=WNwPI#3@U=Rsn`)ak6y(-8ym@xJy&$(RFW>I1@#fod>%6`kTWxM(L4K~? zq5i_=-J`UzNkBDYEs`T#$1$l0=4nidOWOj;>!n9mY=NXr(w4XlsnU$KNv0%k!}9e@ zecDeL)h|2OZb7Ma8RaPT)%808s+_S712SdC>X(I?BdGL)XM0iUsI489{+xXQl|GeU zi%Or_*opSky-5I6X>mpXvT#ptzTiQnXSeJ}^Bmf`1ErpGcK}pb>X}7}-=QZLuO>_-)b*(rxPu(iPM_fy)(F zP)oNNtBl7y#2F7W(wRi|E7m(_*g&WTTGC{&FV?Om4CiJRSXCIRK{B;^SeyP^Kru%nUz=)+HLRO?&>El*mp!`y5q_#O`LT4isMaV?#4ys2xeV!Sx z#qSK|lPcQhm{t7vko|+_luA`WR=$cTbT=~j`qk8NFVg^ zqsd_YS%*@^bNxJyGT!0SXcDRkb-&Mx3|J7fsfQm$8`%AxnO;22edsbs>gNrhRveMs zB)THGnW6`|4jd*@T`q!JrRZb=4G;4N;ARf%bH3!)L4N2JXA$*NJciou@FuYTVHetW zk9PoJ2=6Q}r^YG%6;K0G#S;Kj{c5xFf)#%*@ED=eE%f#8{1YIA$5y0THG;7yfkE|h zbn|$cd&sY%SBq*wNy~g4`UuUmXp+S(lLmZekgER(j9o0HX_8h((VM8r0?SCM%dtdg Ni4~FhfAIJE{{W@0Kf3?` diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index b1482e5dcebd0af2c9de49a64c541bf3471daf78..1896851598b1ea7e7bbff8c758a9a0e57403832f 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wgp+K+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYrk|3ZT&!Q5Us{x$I@vH)cJf-reTF2P0@j%zth@OcQyU}s+9&T{z(4sL zOCi}Ngly(y3t=N$d&FjD-fK)0Xs;KTOs4kD3BrfS)mk8So=mNi6NDo-Ka*43u@0Pu{lmll9lX~=D3;7ppcIe?e=EmW|I$o zKAW$(p5Y+R_RSys&XVtM)6EW{JDAC{8JN~hCp&}+Z|;knMTrYm$D8m_;DXih!kbHT z^2v9B-sXfNc^0x=pf@?8NMtjA`E~M>kKSa3Zn@13Z7LMFVzWZGiYVEh(A~U$!8}F) DLO4HD delta 1783 zcmcb6gz4@PrVYW2wiYQxM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwN%|@I$;JA``K3k4sgn&;Whbv?+-FF#DPWxm!n&KEF|{$0uYL0V1^ko0 zu@sVRLda%Lwh%V5wMT4b=Do&5f%bZV$z*EZoFIINT&)FS=gHJMIYBsb^D{{$^5ZOW z^LptXN^E~5mqv;9_liN3Xn&zHi%h?7zM%G;5}V_+Bw5K$X^xxO3<~)u(Qa=>ZZ`Sg z=d<~m>lqI6Y~TFB?=1QLHr?zHx`UZKn}KQFbh1OJ@aDeAS(Lb7b-W1=1uj?}FTA-l zC!c&5=xt6Yl4l{?1$vVcibOW^mtQA8`RGkn=$6~u(56CxD>f^1tB8{A3Ej>67tCV> E03{^{8vpc~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S*7XH?<<0DIaKWB>pF delta 62 zcmZ1|yij<9AETi~N|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP8dPXG<06c3EVgLXD diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 5aaad4c68d64645ac915b7dff52d086238d837ce..f131ec786d7a4ab7b4faf5d32c9b4bff2008f498 100644 GIT binary patch delta 117 zcmbQJK2d#xH=|)eR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Wrlgo!n5S*7VO-2chPD6>M{WSHa3tFR delta 117 zcmbQJK2d#xH>06NN|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Xp%GApL1NP88pg$JWM~WEaO4I6!xbRc diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 579712f481b113d935ea2099cb4c07035f1ed24d..02395263012651b76f6003b3e69076a6dd224e51 100644 GIT binary patch delta 4019 zcmbuCT}YEr7{__i?VU5T4NS z>(eH3g}XaXoUS<&byNpDy1y#eQR@mgYn|?(?(7WcL06!ovQm9+kH1sbt35SAah_t9 z^fC6VyH2!gZ%QzfwQDwh^cHFC!OkA2gqKY_Hi<_SgP9mErX2$r7^;->#jmPwYfRvg znk*ZHw}`(D_p%_gO_Vin#LnC%UL2k&f>fVFl$RApiuvSv+92{yUPXIc90>y>q3*UJ zUn-o@9<;{>-q^d}jJhM%WJbNnJFi1|~rVA~Bpq(Zz?M zJkWW3*2a97G#>AwOp%-r*mm}^|LSPM^U7<7{n$nB9J=|G4ZA3PcMb~*FFQVO0`ft54L2+6n9 zziKR}v#_$if{<)WDTj7Z1Xk{MkPDnBAKzC+i`X>yq>8jZKqBy$eRPb^*OOfZS~>68 zO>Y4QD@CNrwR$U1K@C@{ys?+^P?#&&CY{Zs1L0;gzLoFUPV1JVjU^|da=4w2fV(wS zN~)C9fn-}TqsefThJY2fT7jzy7I`;DaUkT3yW!(w3Hp+LL#1L1a?lLH7h@Qi!}CNXE#*B$ENL@#G}f=Obi#(_JIrxRmuh8SM|3wCh(Xm z+X~^$;%~#fYzXy>@}`a0nf>C$;hADc^*KcOSV^pePp+p8BLC!7w8tf}PGBU|-8SUQ zgrln)?XiJ3_Ut#KZtwM)Q7^nuW=8$fMQ%pDAUS)6K%4dW9*hJnOy7`n1n<#sC4hsq&J3epaj}x?m z9h{#851>kjYagFz>ErzVW@;8w3-5s*EVFECAxmsc9ss6rmH+v>p$PPD==1SB3S)ds zs@xj~GEb@>cL!K}#-V%U=PlF+ti2SRTSQ3Q$WSrO!J;3wQ5}5T@lqOrl{3l-$+y(M zYOJ8MuyVMPkZemSM|V*SR_?cx4o*~n@2jRoY#IVmMcN-A5%|kKI>zTcWK)4w!Mk_U zTfo6e5vg*`V*x6t;cAgL_EJ6ya|K(aqlqFwxEYOa;d{2zy5(qN$%!sG9Hb-QZcUYv zDkUR8vaOiWWM>x*0V{5`0#_BXa^RPWxA F%zpsQt_=VH diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 32eb026f3d39ce72c7449bf7b2c00f987af0cd64..15746cdad73147010d45195523a91546762fc26e 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVL?`EcD{L0vA$`tMM{!!TB4<4vVo<6Nm`0QYH~`NVRE985fGbL zB&DXLm|B>pP3~d5L540zWrxjIncU^c(>i^9GZX*hIZ7p@Yv1gs{DYlzZIcbHDmOpY zzE4gFfwbo6ePANfRyLzYwwAgrBG=Y~o{z~%gpSIIprp^b**a*R7#YC~)z7}UDD%fo^7K!3FyNZr{gzQ= zyOav!4MFk^+1_Wy=#)gd{_Tu28M(Pg*Eb!gFJb%K#f%Z2os#NGPG_swDM#o)1NAK56JcBI)~|GI2IhI z@15_EYip_7B64j#==qqOMChoT2uk{_o2`T9iIEY^Q2p$ii!y)gBv1cj2LrC@-ESF1 zwo9on-Vh|;knMeDj7~|U>)*~elaZT?bbZr-`VzL!UCbEaNuK8D$?>*a+kswh;H1QW zh2I(PT99tQWJhJ!$qLRQ+c^xG6gVi*zsZuRR+TLMj+1x0%WU5p&$Nw|0{x6>Ot!LQ M>37%;O#AZ~0Ra#2wg3PC diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index f77b21e391e8a3ef3d24026b03e3f7bcd2074b71..cba953baceb2488ef2b1ffb268122129a76e2257 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVL?`EcD{L0vA$`tMM{!!TB4<4vVo<6Nm`0QYH~`NVRE985fGbL zB&DXLm|B>pZLVV!BtzR|L%FogYRpTRNw*QCb#fwm16evJZC=6=#736ZX`A=*Pbbf- z(>6;B{a_-?*6EvXi|!)N*6EvLC0>(jtANZ0GHl&!C>KXwluq9quB5_BRuI*1*4B8y zL7vvdyA7Sl(wRPa!gr<3r6o3-Cwy1hTw2n^OM&){O#((_YQG>Uzqw*-4G#s{S0CC>uHzdX$Zb}* Yc!G~S+c!5n&{82wYua{4R>m$y0D@ax5C8xG diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index cb114aa8bffd04fa36ad3ad4285d909220466943..80be0a0c73f610780e501a8f694e26669960d753 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVL?`EcD{L0vA$`tMM{!!TB4<4vVo<6Nm`0QYH~`NVRE985fGbL zB&DXLm|B>pZLVSDBSYJCgFwdg%}UJknMt=2q_=o-DtjS$T2m$m@TqQ|z@g1brvA+V zd`HOiGRSVN&6fq9Fp+6DP`~EpQV~fua`hWr72a$nZ74;Fett8r8glgq@UczKJFl== YWb=M$3e4D?cYb0c>H4<=lg=$h0Hd|;761SM delta 751 zcmeBL#@e-vb%Qsfp+!oOQG9M{zP^QNvQeU$p`oFLsim2@VPbNkxq)d~Vv31Ds;Q-g zxv8NMP=!Ha(&idQJ~FgTHwa`*->k$upP6(kL3)cPr?MB4r!{4A0H5mS2^`w2Wa{4> zz;}d9FN5sX+I(5y2@{!i1NCceE)|hvBUit{RpHHM(uPu$=;t@{sv%c@03X}ryz>g1 ZMKc~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J trlgo!n5XHdev tp%GApL1L1AN`7*&esO+jQF5yOoZrkLIOv#h&*=xztnJ`&^M{@Fe0pZP+99gUs86mNG zDc=GzybW|e*cF@K3ow!AeV8Z2H*XS=Wg*WKn-e7ek?Z&bNtw;uGQHvC*$j?>cuua( eJ|(&2x&Rc3AR}_iD(%T~1t7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt-JeImpqrk?9vR>9$SY$do+Up1qbVoe7f#cqAvk7ZBcD$&tlMkr5J` zm+~zj!`ndjgI%%ty#Nz=-iLWYeDfv|Sr+m{F6Ut_whs2r?qKtkRw=SAbFw&*rvm>5KsQTHLAt diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 3e2f61911c50c5c99df762b1d74337f3fe069026..ebdf9f7c625985f2341a29a5893a03c5311c8dda 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVh6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYHo1mzBN@6Jc!DNxU|K|;&dpbujhM*O3ba&c@*K82vUHbk-ozfuLb}$? a4m>@qq-&e(z>~5$Q7DF&Oszo*b|nB?ke2=c delta 474 zcmbQRl4-(9rVZYVh88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt0_BHtfhTD42Bt;i>D+vk*@%fetw2kKCeLBZBTIMr=1uIeETn7Q b?7-8*O1iem4m>HF6NO@U$yg_K&uCbXm71MzUR11anrxAhWSo|0X_#zaX<(9;Vvw4gl4h8kXk-M$CKgGl VDJiBF=4qQJF!qw8&5wB>Hvp^?B|-oI delta 117 zcmeB?>yg_K&uD0oQe+gLo0_k0VVZ1|Xl7_=Xklt;W^S06oM>)fnwFSiVvuTTX<=?^ WXarPYkeIZ20%I>Z+WeUJaRUIpxFJ3O diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 81d71fc3b3dbb12da0900fb5725c1ca6efba8642..7f4598eec094fe450d9b51700513be30fc3f5225 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2h6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYHo1cFEg8BN3i@q+!eqxpp4RD8-I@3&Z(uDXOMBJkGi)E($a-ea}W(7wBPtvt+ZtR*!PHt)JO5410Qllv8 zHUg8q|KtEUj>!pLl-A12r zCYg?yUZB7vz8x4C)dJ)>0AfJhN=BbN@(kGSCBdY{O`hKAK)rI?g;bbWl*ux{Z#%HW HpT`IQ=D{ba delta 1704 zcmdlyiF5NL&JFI2h88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNs}uW-;$wgp`hR9CroxsiGmWjTDL0CC08q> zdJ4H(MYPtDtF=&fJuB&naC4xs5ijZ5CI=elY*uhI@FZR9=Ekmx+imn2 zXOiiN=>-Z*;@g3NQ7u5810V*}tz`7cBhP^CUJ^`N+~nz<4%92RT}XwAMVTxE{I&y2 H{CSK3SCH>w diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index e64140e3a3eca6cb3e6c0957b36a7eb3149f150f..d16bb1d0980c2a5b56c217d1a4c5eaa53b052416 100644 GIT binary patch delta 2442 zcmbu=%PT}t90%~uh+*V46fs1E80OA+%pDW*PC{XJ@|rt0p}fkZykbHL=`60Y9GR6; zKb(?B6-}3YIP6VY@tyu4|x=&Lbj`Xff1mB&K~{{W#reo9Zb`G#GDSJq2eV- zE>c4DR}4f~=*+l{Y;VxHLO&^2*iwDuO?$^$ePqfw09*auEKrg;=M<${-Xpry(t;bb z^{{9jZGABBgROp90wulKJSf#y>QQ_8e&BL8p(}8rmYE)-ft; z^%_9h(zDkEQ5Ovd{BaoN!+~5nKIyh#oHn1IVlm1$pED`tW2+eBT8D|5L}M1~$BxSN zAJCM?I@7Qj@a@7(VXtQU(P8+7X110J`&jL$m&Nn-K(Y{hOwxxLBvw`Sl7xk5yBjQC zn|Wo40plz)Vj&_FQZj&9Zm!A~ldtRt`=4EZKK+Yb)M5Q%z@hsDuYwk`+2Xri*In}q DQur}M delta 2442 zcmbu=O)ErE90u^th+*VyOc6swh{3(Xow;K|-jh(q?1XEKEJ!R&%3Dk*A)UolmLs!L z>W@>hP*RdlU_m3wf)Wc^C==h{u|L1(Ij^0YCDYB4>9CW@>hP3(VB9}ZsVY9Z=8$Ds zRa_3Itobyjq>O08)skOvsZK?| zu+*@5hMBPt5e+FH#4NYf6p6_f_Kp3|-d~^f$<7!()oAe4{Q#L= B;N<`S diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 1bcc1ed7533e5572a6cd3e28fb0147ae1181cbeb..72f6467e7ea1d881c87427e30152585613f15673 100644 GIT binary patch delta 1369 zcmbPxj&<%i)(yUlh6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYHo1=RFd4cw{x{mZglQEEd0MA;rZVzRKEPf`mUfrT%Q)D`v)N_xG7jO* zCcM0?vgL5g+rZXp47^0aSukcuEDjyC>xne4Doc(a1c>K5{B25OHcOQ*+Vz8!3n z=d2Olth=a|M;xv+Bul&RX8*5-WZ1lU7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt5ds50jy52dZz>R Va&13r&KRjnmH|fFfko65MgZrDt2Y1u diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 523b993dd5baf9a46090cb51eb2075b90b950d38..a9ff0691083b5ce59e9ca12acccce7e86bdde795 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#h6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYHo1av7wNjD2kv6j-#m$Fy9jxDttW34FCjx~Av2@yWCK<0&6_0Nvyrdg zV6(nL78!vx9csV9W_6|2Ok~=>*+BIKMRvET2a;o0W@WmECtS({MS)?`i4qI7D%w%n$D;|LGEIK8OOf8Z!Y5`8PXlL9auHrV*~(r CNQz7V delta 2066 zcmZ4ggKhl}whiu#h88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNs}uWcag4Zdf+Zb{mqk@wu_Lb*Lw0+@e(q$7BVyHPBu{0-n>cTJsbJ@ z4L0j5WRVeA)1meoY*trV%|xdCn+;S?P-J(TdLX%W1H;Z>bE?)FiuBLdEny+k?_m2E z8l_O=|H&pBDRTcM^A?Kie`2|pBK!4idnmHs)BXcR_8)g*WF= zxBR2X89-B3$x`5q$$uTSr*EiaWPt?Bt?7&k6yz=zm~rge`{puEk|Et;+ksW{Jw^bP C?n(>* diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 2b429b103a9f9798d818a2ce13a53e43050d8f28..f8fd15566740c5699baecf014c09df922f65c06d 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#5XR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J arlgo!n5S)SVQeQu+vEw1qMHMmJ-Gozs3rvf delta 121 zcmbOwJ4<#$Fr%SGN|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev bp%GApL1NP87RGimv`wDCD7rb2*^?UpNIfC} diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 45b731942bd534c137ff4e3892e792664eb0ba60..c4014c79d4fb67a3d783d088d0f62a733e26d77c 100644 GIT binary patch delta 4106 zcmbuCT}YE*6vug=ce+~Y+$!QFFDeTID>u_NDX-E%3#|Fo2kGYKEQixJjiL)h?7|GR zUg;?otDp?B=;KKb1QvxN2}$gxFN1YggwcHkJsb3K`~JOnFMt34InO!IIq$PLo4q)j z{h(QKcD1*LI$e=yQK{b@XxSe0l{x*6GDk@;;Ar&+f=<7$xLAHA?v~a-pw#UOiV@`- zfa$h)1+QsRt@?_M7LjE-RAAitpT?KMZV2~?EIpPb>tW!WRDtV6u_I;_eL#iq_x!0HDHm8+NqZc?~$G z^E`d;Fxo|t`|YUfnMY>{Axo~A zR(h34j&W12G_X3}*P&!mZl`h**sT94*iI?Q4aQ@Tm$#nRkONakraSZ!Q^WETBk_Vx7At_F}v{5Nqf6SvZ*^{N*=Ka$V0 Ryluu4m*c8}h@f-avIdA{~ delta 4106 zcmbuCTS!z<6oxtbj80AJI8zaae5fo8tehi_Gg3aKffiWftqVDG@>a==HEI++C}Iz0 zpmn5OOiTrpkVTiBE(k0NMG}&jmu?2rTM4^*w9rw9iAX-&<1Uv44d8x;3 z4plnD-d$Rzb$5Ou#CG$iMQXlq1eR{LE+EU5ilGf6j|$%FTLPgG5gr(0AWG*uP;`38 zz$z6H(-&G%*Vz$5(KVMRP_#SN4xqvn{|R8Sks{*m4F`(W-TVNc!We}e9d}*>j_Ev4 z-#dVIQS|;X)b-4xvw*A6A7^3HG$Q8d9pIQgqS`07(LAqAZbMx=pG8sE{ugDaYiMc& zbv0)asH<(Z3w2%fsseTWF$a(BibO89o9o5=n+Z3xEb4{!wJmHNrHA{J1hSAN7o_DO zC7NU1lq>bDmiLC0Ov>$0P6C_tKLyt*CArRe4D#~U@#=gfm&fgF1;t`Yz_}QeLr!L= zb7M-+K}e;>^xU%XJx=E0gE1LYvVoP*XFE#*wUMc%mO;a1OvUb0jVVP)id+XS7Rg544or|#dxmJPfklDdCi$=X-Dds7 zQvb-^WN&5dK+RKdkWY3qjaGLuH!yJ13M3WU9YE~QbJU%5t(T1hE1aibE@3CV?`MtK zfc>B6#YXygk@a~Np-@QnDK=1LU4dj4ePH%=^wO<1Ba`@V;#?-~q)%(r5PE(jpJ#bn PtS2tVRXNGmcs%1bFgUW? diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index bfa143951f84a225f27e78ffd43d1c2a0d0ae5c5..fc59c924028c01d990844b207ab53c213d27b7ae 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIh6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYHo1@SHW|7eh&ye*!}N@cJgt*|d-G3r;VUFdcl6|Y!or(F`2R7Jr+xE1 h;frKw-TXj&8#&?oKs;`7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt62+ZSS}7rsKWbVpCVCoH@*3A#Zw~-UR55(g(t4bvUBZB0p0R{4J?;J(|&X$ls diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 8106fd3fcbd5761d6379244856f79cac339afe4b..7fb1e207023ceacdf3d2887ad5d79e11cd5033cc 100644 GIT binary patch delta 525 zcmdmUpK;H9#tq(#h6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYHo1mzr4h-x^d|>$%S`TJHkcgA#y@!zQxBO&Z0=$9XChNC)cRWTwd+pK oR~DMQgGYFC8T(ci3eDNPgXbO_WoC$P)(|hH~;_u delta 525 zcmdmUpK;H9#tq(#h88JBM)A3+`T7>7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt0_BR~nJ5OMh}8x6I@oW`oI*Z2XfqG4+sX#O5Amejdq#FcIHO@fR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J drlgo!n5S*-V60^{B3YaMjdq#FcIHRFON|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev ep%GApL1NP84#rwWBa*f0PoBUcw%M1to*Mv}-y+EX diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 957eebe9ab2797d60073c6ad550f69207e363502..4532b24418d3a910b649e857e94f76d8a1f9a471 100644 GIT binary patch delta 747 zcmdlxjd|}h<_+$Qh6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYHo1cFAsM2#ayz$rOdPEdGr2irduii{B7 ztjps~PJlI@gt7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNs}uWACjS~@ucVG%S_TtWN8hZT*6vNmQJ_H4xEycj2-ncC|*B{tjC Wo#rA>`{ugNOZKE|-Q0L`4pO|D~nMTV}0B|e*Jzk#U7+<-@LG73oq%~CNC^W-Tb<#%9|{$zLN_?`8R($=fO^a_T$%F O4aw5(vmKaq8W;hCZ%>2( delta 1009 zcmeC2!qPc~WrHuHp+!oOQG9M{zP^QNvQeU$p`oFLsim2@VPbNkxq)d~Vv31Ds;Q-g zxv8NMP=!Ha(&ReES7hi~SmLw!DU%Bmd0MA;axn5w-pX1?mUiFC0bG2OKL`qMKFX%Z zN|6!bn>%?nkrQeQOJJ@L-+Yg+jl6IG8?pI=;C#wlAhFq4q=Et$0E1Fuv%mOl7BYjf zK}ulr4w-g73bdcqUhF}-_RR}Rw(yd!ZSumB)XlG(s=Ue4>N~kWlz;Q5a~|vzXg_|< S6__(g&a1#&w;h;u8W;iRSubP& diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index e5bfeae7b0023fa79ea28f3cbb44ba374d998970..5b0d6fa583f7236acd9786dc29402b85ec1f9f58 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#h6P!v+4<&0#rmen7AZ-_X^EDG$p)4NCTS@KsmUp6hRKOWMnG(0 zk(8Q}VrpTYHo1oJKN-62vd3=bWM0fdmeyNj>57`1z^A%7oimR-OQSX?@a7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| z=B9>5KotgwNt0_B|C6EXE_>`|PUgidWNE!cmaeGD34E%X(>e3VvovaR0^bg1GHq_) g7TUa3XfZkAdzU?GGD!PZk+@*8Y|q^MHY1i10Bos`$p8QV diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 50440affb79dbd63637085405f3ec5bea647e757..73bb6570a6cb11caedb533905bb83309991d5657 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_AhR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J erlgo!n5S)?!ML8$h-7X0llQU6ZJy42oEreh1}F^x delta 122 zcmca7cTa9ZI-{XQN|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev ep%GApL1NP88I0>0jY!s}KY1UE+~(=b$GHKpO|D@4NrtYA?2(&)Gc9EyOY1cpZLVWvB1hXsrZr5Y+ctS4Q~cz&thHq6jG4TD3;$$ZQQ^&!>@lnq86mz| zgZBU#-UhlK<_hu6v-#(e7X&aPBsRYhYNfyxn|VcNQ|f{ki5h0|gK~3;%q&Vguu85! znM~X7w1{uM+f+oR?VInk2o{lP^WJYln|r=1l4Sx^0s;GR04R%UVm8&X~#jxA0Hq6&2nr$sWT>krCpX zHFyt@;ccM%VXhG0Jez+mc|ia(LSpk9p;ii9v6)wNHl;3zk*HxNKPWes$jqX|1FPiv zlgYIGPK)^FyG=!8+P?Wti(nC%Ht+o=w7KWIBAGT%25I;Cx!jU0+d;X9XM4XfV<95| D1KKfu diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index ac60678c15a30c0f42de19790c3d831e442f135e..c2b3744dd5d688036037ec165a8e2a0afac8b58c 100644 GIT binary patch delta 916975 zcmb@vcU%<5A2sD$c$`&3ShuTe1}vPNW;#J-XJ68a`qOo*>k3H`59y-&ZseWR*ZOI&cfuiSrA zK_fwJhdg%Rh|1L?6B7$&I)@5nm1|b1QL}Qjg&teFKimIr?Cea%@RSk568iNWI4nD} zafP%YsqFuMjZ>j-O2Y68%rZ}(f3F`?&TD7#eWifAfnCAW4fikwCBwC_?P&uQ-w*XLL*i}B_od1)@4Tf1cBbM`JF}*=k7*JYEii*!jbECz z*_okfBhpfa4U8W=yu!fbzWqisDJ8-gU9VD1#~xLfqTVt=I5T;3I3nNy^&?Flrcc=j z#vASwlmy4V?@OiH!(T!Ms!Cl=56T)f^Z3IIT~jbgrTCGATFECbR9ypR~PGt~ie^o>u8AKnic(9OIpVP#f#lQWgec)@}n zs)RFw(pKhOm=JWPr)BYOA0s82Y=pDpSmV32 z$k{y9%(%ndY_NP|BYo!o9S8xh1mec;J}#yZUKlvm{iPMGj2jn(Bx26jr5g!|p;6Q^ z?vhrmrZ_Ot;`@vk96t=aeKpj}bm$Sq#sx^dJi#W+k6BIk~8^1Bh@m9oCFn_W28&h+Ug@U3I z6CLhi;=NX&em~T~9Er0r(PhJQ-v;@R`2PK}Q7qyZy%tjj%WMwXtw5sCVY5hi{IOXb8RCeb72HCfS z*;@Jkh;s1y;WjCUuf=^*yyjm_N>nx;s(W8E{nJiSse*N_*I5fYbq}fNM`k z{3D87w1WAOjv7Ik{wnZIMK%1RsfZuZcVJ3(rV*rX+F(Rsob^MM5}?B62^L`{j$!6? z4~M|ZMw&NJRhjFhDlmn;N-$HqnwZDEd;+e<6omAxCQ9Eg{y+a`w(MN@Ro$Sr6pKe5XDK0vGnZPNqj8@OEVvEQXZDx z!&CU$0xb1fcL7Ud#ObW|FXAp?@esb)c{C^GW9dl$EBM+hEZw+$9ZN}Ag41teDHlsQ zPw!wU154j`{sBu9u{0`?lSW{vOU#e>T7vlhq@&``@BJBzQ}IRRqK8--jitmjoU{&0 zO*N13wJBJN(0{}Wc?ZDEK<~l5m!_xBAW-KLQspldKmKI`Zz#~oqSkl+A z;cF{cDP1->%#FoS_+nNs50)ljNtMh=i?CE-7AI}M(&NKEoO2kKs@5-wrBzruGBpBA z$FTJ1?^0OWjis^n(pVaZrS!i)a^f~DjxQ{OFK)zAhufUA9ZPRud3N{94jSR9PSQVb{U z!BUTLcY3m6au7?G(<}F4r6E|l$jrskbSz!l$Vnry1coVlvpM%+>B+Y1Sn7+Vr7J7N zu-BGi>FUo{)3G=oix-}EOkpq1z*6?iS6Et$rJ*Z1=>V1vHE5K|<~)L>O{4zA(pW4V z)(;=bUR#f))9oG%XC($p;gdM&D3;#M-PQwr-$Vx{3&5`MoAORKSzxP~zC8NJ#NR5-I2ZU7SxIa| ziY_ok>0wOg`ALFOjAwxvM7M6NVU8zvV>T{TGtqOEKrM5TYl=efjnS!Zp{*g<)sJ)DBlG*EThlL36gJxS9ULbWD@9(zt|4 zV>HbDVFqU8ga%CB@bZEQOq=0Rg4yg}#b(0Xi|#Uk7YB5~%+BGFf?Z7dh~|RY%$n4y zOyo!z(>SdR=CpooW2Q`+V&Mp*pf|eM2nkkER#MhKvkNoJvn0TkQwCK~c2*MGg0uY8 z;~FxjN7Z5aPmE^rN7rQ9Pp{5Q8Cf2}IHhB~0>46N5AXZm~I7j6fGN1IN^0qGt4Ds*g=$CXcLza^*2sr#EA!k7|H*jhfK| zom;@PUY)?y8vlhkxqcu%FCJYRogahqibq#qrv@P`O}5=9W@NI*)n`UbXc#boLdNz3 z>{Zs4i^g#Z?4H`1IW)-R7_Gy)a3*nPL#A@NhIz9l7)*MfBx62jG(<=V#47b!s|aE+yF;_T<;jL0 zs}pNs&IePO33I9l*0H{3W~5q~>vL=`VzPR4dhoZO1B&TYs%*{4$)m8`29y#kVn&0q3bs3Bk(|sVU<5_Kbda+p4#T-R zF7dIfhzeeG_bO)VlCI3vtSHnbM6t2W_*t=c9m98B&8mWO?q*_^4HFDxt}YuGh-_p! z!8VN0Bu&jIS6G>jD>@1)Vz$YvdZUKz%W^l!s`ygIX|oa4*Q$c;Oq*2`P&>rlVL{0A zkX%bp8s{x+9vj4@O=yIGI-pDAnKkQuOvRjvf?~rkE3-@E7-5^k?F(8nv2)O5hg2LD zx@irwV6K~)xTfMaF4rN>thKf>ch*G8*uIx_XZxW8*#;QtypUn5#mVF@jAm^=tREM7 zY`@Ir)XW*kl-j>js;G?XUlt zS&+?mHkLp*Z0F5hDuHq4pBs#I7qn$OS&f;a8-r0SvpqVSr8t&{ZmRN+E<%G!V|#iw z7uVH*_RUgU%=~2`Na3N_7$euJLCc4l=pYlT55yiM#01G9Q_2wR~A{t$B_T5K23 zqD^NsJNklpH^!;KrB5%l=nC82vsW_wSHck5e5U2rVa(l~qYGTydkL6L+eS0*cMNBa zY)u10{(7lkl6MYaDsM{z>h6q!Ikh!K5m`Ppxj$k(gPD*&7<_pIG+@=)r3$7fZxjf9 z3=~WpN`!Ft=#`WydCY+#=-#o4sLy8q&c=T?< zgj4r7iIgCW>W`3ud2d?_Fq?uG@9vS*?cX3t<$Um`27LU5u|Pr!X|=WNQR7-f-MvZ!ua-r z`(msX*wjIwW3D{4!bx2O*-{E)A*}J>Qg8<;Jl$ImNjS>;3XCLKA&E61+m=9PnBXR1 zK6aF#X9!(sgTdF00vnt=O>o%8xh6J8Aflu`7$Pu8jC^{lAd+}No+oI-Q5DuQf?Yog z8i6)>0x!J0Tkyo6d!L{!(Wd0#Kr-W);5j)v^^{;Hakc%d;H8W+g7vCku7XSMyDNB1 z&gT9ss6=ji_gIie&KA59oF=h6=Z)Yk;Wqb!;4nGc^P}KPFr66(f-I@P19EgiIkZcJ z`XDYIMyiBdJPZpJ4j1u(h6oxxWyYSD*n}#gUYJYRf+W*@!mmW9`K5&GNWe6V6h0ss zDn$uTQ^YshCd4kTA&daob4ys^`C7u}M7ti1iFRF@2shAZ=SPMGErjhzAn4l&50K=K z?S&@7UDicdfhgCsr|>>WM#T%SkPOB|VMY1BH!vC!OaQ+p3-=1+rn zgloxJ=N#c5#%o08*$>lAzPq>(XT{$IG$hfo5E(%W(gkzV57f5o|RiTP- zIDA7mlg6*CE&%D`0^i>jj{EnAPjvVv{S?bKqa>U6)q*pLH7}* zbfC>2or6HqB2g%eej@B+1%H)oYJgB6TE>|h^bw0D{d;zSQdBTSB05Ynu=Mj(!TmB( zbK);uuxK8QzZMk8DuS%g2DM?mP|*+?IspWL5GsPpR=KnW^$I`u2U;ZTsui6l8df%n zu8}}ChKnw#xj_CsO4O5Nh_4}<$VCo(Q%6*lB&#(L*+>ORXe8=I&R%II+D@v%+;*bz z5)RDTMbwReP3SZDWVN-Rb2+*=gUM1Q^U?SJjv#GvL z^czvC&PLIES~f#Ai4GE&8e3`DK;&>Vzr&s0((R&cB-weVXd}@wBww_gmR_?0QE8g) z7)POQuV@a@Eq9-287+rr`$d^FjVk6~IwTrGI4n9M%BJOT?x-k)+76?R2Rc0Ocl5r9 zIVIXm&0*77(Q0Cct`|hBDD5DcUhV&YpAM9@!h(yU4b)Eg^Rj3JA(MWM-YL7Ui%wE= zu-p`FA{?&X7A>VT2n@a}Dxh{s?0wNF!r{q}^mefSB)ULthglB;cBucDJ~$^l5jCWE z&I#YX5um z;u4=F8IE|w+sKGvY)Nr3h86%DCC%#Tbbv@F=SwxG!#)$Wm z4Bt%@PbVaM&Je$qavXZk4Jco2zPJQYC>e+ygzt)_;uj>jbcNVWlIK>5Ym=mDjrapm z$hl5@o}B%(LEMiRDs_ukL(VSTCU%m7kL?oIB+NqgiWMYT;(%B|Zi_xFzDl(4o)G(| zbgfQ_^9fk!S@8{$_qPk;PlUtQOX4~TPPf*##UBVlrw3wxr>HIxk0Q4%c_>~VMDo58 z|3nb#y%E15$>?|DTrTh458~tG6vvbLswI!d4U7FRC9H4ndfeLC1Ci(iy!Rj^= z8F*8tz7D7xI+LKPi9{gA)e}5wB+-GK8Zs+v-$HVVQXQ@oh)NkojOXnj@mImWJ4z-H zi_PvPkrMx{=`D$-)+x)=Uj`guujMc`K{A`u1cnZf82BRsgeV1sc? zP$zVFK%JGNBub*r!SNCYP0hzH`r2r~JotF3q_l)0UVU?iKO^FBoc2UxRux)xxGK*A}pKeHU$=Nk`Bo|2wn*LN$H<+tfm)=We zg@Cesnrik8kiH@(`-e!AY;>cAwu^s~Xn?ExAWmEGri8vdxELWl&1t-)lyoPpGyTX) z_dS5-lL7uT%$~PZ>BE9&RnorHRS^8_NRfwy!URmQGTIP%sDj zx=5!5p@*I7#RK*5P@HriO*f zRa%qM9*yAOk<#Zh0fR_3f)~a~7m@a5Sh_Tw@DWat#*lCvnjvjMF>nk#cu2GbFFDb0F`rE`hvB z-2!>b_K@X}y!Yb*c~|rakoUqYSw6v?pB2d4 zW?>-jA50+c{zbAvl6UrsK;Gu70(sx94&>dvMs}ZcWNWv`WRx|d3yjQ_MN-rZh-!wD zgj(TV*)kGTgAU0&B)RgKYz`$W{3N<7NSdBB3nrbB&DZd*834SKX<(>IW)Z;4_hj`+ z9rip3R1#Z}>@}$*wvV#PM2XnX0XI0m%GPi-W6u@2zm6;v%DWOTd{W3OQ!Y1fD<$x- zR<1P*(z#VAQyDqU6ApIk4*a`}{3Fd|dd)z2d62hU=>qN6DoVo@<>hE`sHof!4ICaR zSBtr1b`?2Vn89Z+RhOS3$xU_S2{a3*#YN6+E~i*00tlcp_uP493;D7jObj&ZEKjG1 z8HCjvcJ3lK)AVQf=D)hhbA%j+?LFl)X*nG4B~PNMJD9_PKJt--L;ZeonqCFNv`UnR zQH%^Ay7>bse)C}Y3|bQ$8Y1sa?S@UM0TYxTE}uxtp=O%=wuJMhZ>&6p7REhJo+1Wu z$wRbYO}c#bzlVWCC&^<)9Fd=<%KQ9#1h$&=1`lS)L*V^s@`nOb|Gr+1mY%UHIh*L~*Y3^oB?PATHu+#$ zRl07Mefx2=-9atwOjQZkELT`z z>OT3Z5YYJI5CimmCy$_L(%8y_OHskIXXLN3x>|Vdf_yIt(gl~~S2;p7QgF%j5sE(u!uGO?9+X{1g~h$(Xunz|#WfkW6Zo~FLI;YPpp)4(6?OTb z0{0h%5_XSPY~Xrk7}`?tRLzl>_fnumKdk7L-U`0~^WzjQDR=hgM8)1=|PTfx{{pvngrFcYHF~7yGxKif6c=&_U%v1zP&VwmEr3@s)txIITz^o^N(l(Ne}`Sbtk_ zN=0jsBHIfK7?7>7z`vg;VnexllKO|DI%RFF05D?fXhjGt_eF7mC=nzKDn}x@nJmcf zcC{kN@Ah}WL4J#v)j@uXywwKnAh+e3gML$S3hyo%G>(`ox^z%HiLCr8L7zyp9F7jU zOH8)8c@SDY!G@gBGN_Ow+q4eaL6RYDgV3-ZXE@R>XeF)MiwDU~@LJcP&ZOMxaY0)u z(K-c3X}jcKWT0}T>Q*?22|`Jvx7*@6s`)Yq~KiuT)!!3DzR|&9YJqN8&vaP zP;F96GtLJcB!SlPdcc+u-v@n1toG$*5PFV)4S4u=kd=h>(;tF*(>xMEO>G76=4o&U zm}GxZ65jqLXeJkwAmSIl>T7=sDn~J8Wt;JDutBM1At5mN&!7_|MjLz%x*x(R5*ZY% zCXG;gb+A7gOY4I7QcSC$#t@92XJHHFT7rKfQM@K1I6Ra)d#hToKcEw82Hztg)V5); zKXk(y2m8(asY$Tk-20malA~J$M-VseY8$MeoQdH!EC{@8`rHef^bB5LgROAybE3O3PfQO0ib!?@v~X~9iM?LR&v*x#2fn;D!+nnv5g;A12pUoyd;h*>@^ z4OSDwTGj?%q=+BZk57c~%a-7c1b)x9;LgOGwgbWWq@)K&1KvzJ9-Kxh&+D_n)k(7Y z)nK%$hU4ME_rYsPa>3nzyAyv1xV!d);3$GSd3Ep>NDnHn-)!#R6vw%^(F7KIoo48=8_EH*@~rkq4TVZO!+YJT+BBtqJUeZa(m$TvI!@^yK}?;f^gl4|HB~vCbYt(PE7uXf zY@Dam61C4V%9%83qwcaiL=SNnmOvi`!Y?$W3+!dV-s8%V6vIXIJlP3S-7kXSj1x+Q zF!JAis|~bo_(BJwFDoO#a=pd{RQYN(tawU!RK^?XO{6LY6kSp}=#U^H^-9Fd|DXZ& zt}7SQfv}pj0g>xOa+rKW`A|xaQXL$5he8#7C*k4sO zhaRa7XqOVJfDfvv9tilL;7IFSQx(Gn!O7aH`Mlv?)KM9DRBRId%c4~Y94S>pRTdvo z>JLp6uzDla5&o8%-$d1dBlWBqKlfq7t6He8^Cva7m1+n_>SG(#LOzzlqTa-BuOHm41=x2mW!D zwM5m4GuiLU{sU6Z6{@Xbo|clp7Hd?O`9^~TE?=iwrK05Gj#SqGsy%2ZTl%KAJP_|! z8KAsCHJg?diw6ml_Zgx|d5;hzs4#A^$co^d&c_f0rCOhD(hf z9(vk>Q98{HjR?o7x%r_d%n#fOJ;Z69aVIo}o3?y-5bENtmUtAJ%$?itEEI6(TE7k5 z#i4|L2pu5eqjiOc8VUUPXXq7Px?z;&e}^vSRf!Oa5;(URr7&5n=1mAg1%sR;9yPdp z-YA2=O4Tt+KDJVu)Iso~UVWO6tsp|VXr`k9Q6)qlH^CEkdlhv@9(B1TcpWK~LQysK zWZcQXMK#p5xj6f|t~!s4$92)_GeI~;$G23k!2@SlzN5Mik9yVsq>fO@Suf|n!@bnO zM4S7u>is;lDMpopoc5@mRZLJ<#yvV5k*HqH=@mX$P3qaZA?k3hCPk#FcXC&sj8Pw? zecFQDQWrGOPzQs0Q8pd8{M;b}(c6p@;i<`LpgPP-rY=PIIb5axG)LWpBi(+1 zUnM7_HgV^gEK%?0+^1fqCe7)sE~+nbirTKKZ_|$I*d86G+(c2u>Dc`) z(Gj-4r|!?IS3#&DF#1RJ9*(8-q52TV{Q4913$Er}d8O`6*;_yqA4?=$GwAqREuw8W z5KLpZ`HOlo*T&UUXkG=;HO%;VG(^v%a|MD4>@#vZ==IAwEf{0e?52K3UgCulE;DJ= zV!;Hs&88VCL`Sbvb211WpG0UhHgx>6p{5FZzI+o+MfMoiOq0OoKiNw2gAyIr^w2C4 zp<}fejYxuywGuRPHeaKDn%eAfa(_)HEjr#Dqj_Z$OyeH!hb-0iC`yJ!XL*q2Pnb!p49A|jJ~2l@7v??}+H)k?K&(Z3 z5HPG>sx6`9k}Y-GzsT9H2JI7)Y-`dUBuSe^ix$A}ZEvkw^pXKi7TC2OLhO-K+d;#f zZ5FA`B^l(Ew0lVMQe|ytLbpmyE#U}%ucb{Eakr(_(}o+kC8KM;!y>#0Sr z3gdzs_YQE7#cI(i7e0GAPP<;kC8wnX5E>8FHk5N`myXfiCww!;2N0T1)S^u;7~%U# z+Mfv6=_y*YUdx`{6qcbS*P~`>e=4js=xx31))m9)G2Cvs{B^gR?)ZQVgX|`%R z>$tq54r_Ol47HDH69}=q)7pLH?3lCK(*&&j1+9!E2VT;yBpFOswCKHXOxJl$i{6CC z$uT#y*GaPXEo~9W(B@7c2Aub_BS{!;_*sj-7sTE6i}qPCmrQ%3Ekh9U-f35I&fF9u z){&Db=>0$9K$BAUh!|RF*9|8AneEmM3FWZlk-AbrT(Ut;U8sah_Nk}4N&>D?YhAR0 zJG-ch&P0rJc%W_%G1=51y5C5KnWJ>KiJgW{(k(10*v!>Qym~llvyO80&<*0EUdX`t zu^mv?yG0kH5Nw9I`MRw_bnLN5*Os#1hv>`nHi2Ll$Fc1p9nBX^(c)%FMmx-)obPSyd0D|buEiG$`bP`%)6r-H@S(nOMq{<^*HXll;v@udl zDfn02B$iU6 zG#>zf07AjN68c1VL86c6WqVcI=Tdk)Snr{m6uCJM#%c8$@K>b164(=}|H{Kf03%(h zq)&oJH2RWsvnV%+cIlfz6jAYP)Zkz`W7d;ka@+Mdm{Og3%3y*Beh;k!(YSUux>@Y_G(I53Ep6Kc0=H?e%Gc2C$$2fy&{@272_hYMR|) z=vRRPDEk}f+o84+1~t=Hw6HMF^RqLTopbaI|!Bv6IKKkTfe@k?Cu)ig`G(_K! z4JvJ_emo^p79JpY^sM2GUJBhq=_BhOP$r04r$|bt!kp3ig{bPl$`kazqIm~&r0YMi zNAqO;dG`3r6n#E>1k?2BsnRakbcX&ad$i2dA7YO;XK~kO&Ec-sn5#d-o)^y7U-hBm zjePwLR^GB(zkw~M?SB39AatyCQg5bvWQhB*VoTEPG(wYf6vQowy;= zE|j(lME5oZ&ONH8u;*j_X$7T8@+^iZ@aijSnseXiixmEv+U1?Ure6J|Z^YJA<7fQ@ zo@JW8oUR0Z-(#F2e>o4y;14Fwt%3$HTVu!O@Zi zDYuOxE8MV(hyUwC1a+G3X+HK&RgmQ}D8Z{ihRU#2Wy5M7TsSB=G0NbgB@{UW)xEr+ zM^X^e${>Rkq7C(>D3*sdF&txST;=A5Wt4vV2eK0OYhg&HRrMcGw6kwNhyXTw;Q*S4;Pt-N{t*v+t%wg!E}E6$*0 zt5Fr$EXJ^suRoEs;tWsthOPt_4Kh69%>^J79ca19&=T%QHr%1@%#f{WLiHF!b5xDE z$xCv&VF&9*`xHKPsV0n`Y8cN$%bEZIs6eOb2Fh_cM5_J9b|~Sq`P7qM++(XLa|{o8 zXhTpe^SCOKoyDh$^a58JHB-R%3k=CTsz?*iD;!mfGQhBohhj|t9?=ynHDvOr7`4Ec zbzCP?1FARBcX-I<1PXOB?cm}~hS`*?AX-5{6Xq;-733}5!f8p68vP;^SfJrORdW~t z3eThQ+tPgoy%6NgXsm%p4j9ntDo!>&YB1A{#yME<>^sWpjqh*Cbx1W&8|I2IA#nSg zf$lwm2#D1DNH=+mfa+_8A2|k#ZyM2NS3?44R~Y-!P)5Q<-ST&a3kohd`fr1cB-cxfVG0np zw}}?sRT)pvJ)8NzxYWFAhzFJ}MjhCB)j(H^G3G#+r8hq16acfVM!HS+T#$e_88zha zzRma-rNJQzHHOsY8*U?7_{X(*h1a;3Boo4n@3=Y+5=$BB7Wux3=!2z=l<%8-1G281 zaSsXBfsw|Il&x8ymVH;zNcp-6@j|p3c|jUw+($@Vu4dfCmsHsr#-AviTHJn|sAUxU z+rzrXy?i+}iZ-^T8=QaRyygv!&xxHHH!<$w%V~R4<9i-<8U*{aFwW&-eQzrxdS@HA zfp^*&=_cIYC|ae1aS&xUf*VrMt{>WPSf`tDByr)%p49aZcLppTKzJ5z2*;IMintzTU?OTTaSt=1zi~5Z!OIUaqTjf~EzQTlftKcIvN4Ko z{7BmBoUYH6VEI{NB@p^SCxKUn8!4w)-{MVEw6=iQ{8|ziInwx&Zksy6L-r4XN2eLl zmK?VCg|lX&A2Otjf4@V600LBSd&YC-81spR6XqMyjxcQDum#2=L0t0va^nOkmz=!T z_?~W6z^_cV=X&VgX53Gdd9~AcfuAx65FkKAkliRgEZ>NJ_Y!NcV6X8IQ6^@eF`Q_S zeZ;6I!+`xKj8VKI`Au!30?t2c>`2>^V0W-60HLVC$3qqai2TWD0`8xTDX{zn<8=Y& zbK@oBTN$U8`KHm%V;m6;PtoXX2LY)KH6 z)Pxwk=?mjY;vD;1<8;2ZH!l9&D2HADFft^VzJ4;UCXt-`#aM+Ger&}@T5wrzl7TO; z641v%*q<@@C^lW={PCm2)P$F5Sa^uw_Y%H~Lrjf%4B4xKdK!}+PSBaq56R$GVw=%K z`6U5dQ#n9@0A;X}#ngd#aFNrrfOxQ)&xH1r;+pn3%#=@(g(XazX!T&{iR^^V1$E_3 zQUO>L;b;cpE11^OPF%B^qtB8gMw&L!xysJu^-+SzR;FffXJylNp&$qLtZEv~9&c1P zp&#?jf&J>4#<22_^-b;BW5q_MLJ>N?Yiiocw@`ozb%9`fq!0aJn{|pfVwsxk? zRDDLk2r=XdQhU>Sx{Adixks4V!z*1)!^MbIqh7pNu~-0M898dZdz&uOwZz5LzJY5V zXS#xX3akmH{X9%pOtM``y8^E0Yr6FxlC0I=be<(COET^IPe|fVMq~^!Y1uGdmTW3V zSDU%$V|6zooMCfJE0DioXqM?FdwiU2y37L?v|DfL4$6#as)J)!m?le*{&>TRdadaR z58FZn+n=SkZ?j3o*5=b&O=uN62P$@&WbAoOz9}CS22Von`t|*$hU|IM5mPvOzRn5L z^@53umHb)_3(RB8mnEm+omY?IPb3MI{`X& z`oT1n)%Ny}Cd#fkP>q_yua8VkSOw6MmI3zs)wGEfL@!Nrdp?SR0Rncz`manISn5yS zaMX9a2% z^fJMf5_6tZu$UvWD8#(|-;-f~d^`eVwRjNHN#LwF%zh=AAAO|=3b?cs}RX7p3b^6MoG;JdnJ z^vYwF*$R)gaLXI{b)19t|R*Yb@Y1n1?3FVTa{NxZ5c8;-?r zDaqy^h?jc}HRt^&JoCQqs({yqnY)q(q~=KTK>EQTs(^%Y2&mw)*#P>q#ZvfXym>${ z4p}&Erg_1CVG#^3$4@)JrYy4tT-t69g%j?n%tBBn%WMbk<3Sqm^0>~h-+OZ&ZD*L%=7kH){mqM8N>zCF~X7uArIXyHQQ0t5N7fOW?-ts+COMS|wmeprENC!S0EF-sE4?;e| zFCmzMEIM$dlEn(6b(VYR5k5<^tkFU_9fhcv>XeNFOK}dYV6}YYq2nBY05l-fXQ7;z z2ONi<*MwOl=*bFe5vG)-kcZ=7%`z6s9Z)!umc#PpEk}rVK1W)P^5L?slEp&nA~p)) zx+u#n!evf%%Sk?5s@Akne!P;{rBWRW>PL}}w7?xr%LO8}uJAI+lSY=Gh)M1=wVdK( zk{Qh{t0+4anA*lNkVNdWj?@vG8f)1ES9Z4OX-$Fw)_1d@cdc>lnc35FjM5|+s&;P+ z<=cvOhycc*r?_k-{?vybjh%fh2Wh(#tVgf@D9ku6b&@Ox`IzMSAWKgvEkGN~ti@?A z8>n~In+CTIM~=p%;N=mP1L#RHvK3r5%2JnZ_q-jTD4Ym>tZI=0_gOCkYfTOm5H~eY zK$+>5l5`6t#RY_dNvrHq&_jwQP*|4(S%IQ{To@>7Yqq5xucA`wTGYVx*?JeQ%n1~5 ze68gqF&0>FVK-T@c8lE@D7N(Gz}a_OEFwM(;L+Wd7}{PDyCW|SEu$t+@t`l>1O|v{ zhb@^xK^_zoTEvv|1kTrfa4ENB`Sd#rnu1_+v^#5Q%#D5E#*3B_yh@3VeWV2L*f6xx zw#=gg^+Z-RwBN8aMJjMl;zr-JEF|UH?pnmuRh122e_=`}`oVI6)Q_SEmdnJ?g+-QR zT8E%<4*Jc@SC$IkvJ`y;DDQ};Ds1|zr5k0d&yJfqLxi`CDF6JeuQTGa-&eElAW5dS)yZ{)@OXXeZDN9Ljjio@ zg<$ew+h&;D%Bms(F}ID?U-3J)3$U|yu&(A+%#XdSa^Rj&!UEK(z9CT8-RdI+HtlJh z$qRbbv=UwpHKI=dwO3#3fndP`Zq^o)YTZaXYrE3rg%yq(itIxf9(ng|qrs;o))*j9 zx9Y&4rB=#j6RJm8XNi$c%f?ur(UE~y##*OQ)^V6K#kxv~ir3WWZUAHFTeYaGvY}t; z%d*}SqSIX&E9HU^K*-~OJJ=(IKV)0G(>8Je6!7a3s|IXL*Qi0V)=&zx0@f>Z_9|w^ zVrEi;Aiu4Ey_Z>^u+D3|+IpT62RUy6e3@gV{EVm_V1Rk+th-r%HQZ=D$A`$XP1bXi zuG+iRnjk_H`tG2044kyndWyD2Vl(*itruA{yxncR%*PBX_gX8{Hec#<)F`%6~%+1X)n!Mtmd%oeIOT4p|qU@wt%csH6&(<%9>mHR2y+OVJJ`~tav&U^B z8>T)|!pU`IHWQz6K$w=aPCMh<CR`n1t06^f@07PKq-2S04SuX{`(_RSJ4D&mvu!J8 z9$dpV7YT4_ZJVA)vyc`jLq;A_$k8J}YN*2r=N`5J z*3sdGTqS*ZjAOC;gpKmcW_F0s!&!!>F4$(#GUS@A>$ZHB-0|;ilwY;6Lp0oWN1?qoX?*ThieIE|on79DQh`T#5z=DGkIuvypuV-~D1k zKRMnmxW5K`_tbWeZkT{UAp-r2w&t*`7OU)XyaWWwPqmf;Iqz)2FzKCbh7{P(BpN`; z_vmZdSwEo{t|HqCHL%j3wwpqZxaDsf<$4e%j>=WR`JZh)XjEU%=}yHPrq$#|KQ%+Yj+@I2%PyXfoQV=P-U& zPPpG}-%GqX$!4d0^jwT*aoA}mG=Uo8gvVU=8$u9i9H<4Gyms0ZwqjO|!|YMCgO6gA zZYAxPiLI)a{tsB)EMuph^&nOwKw(Ea+SJh3Vgy-7d)T3@l6@VCu!B|kL|8Gh6UJA! zQ+_qn&N}p4sQR_+cZmJU)U_X`uL0kJUaM#SjYs?OEmU3u`#HjIPUHWIU!|sY>iN_E z*zZH_>`$Ufv9KG()fmC%^2l$|~{V46U3MoC7 zomLHl-^bc_(~e)U>9Ra_ygp+Cv450IfVT(PXYj#;u2FV_2$WwqzyRuxw13+vjvQ;R zz@vc~0T8r~TO~=KV1F#-`mK@E>|<%iV%PxxGp)Hj+m6;edxQ=&fc|s;!JnCD??d`c z=|c1^K|ZnNFH{L1F?O^>5_xKX7M@saza-$aTD!#VqMhvE;9w^^08Mr*T(Et~vCAp< zZ?i2FdKclTWfZjTuy^4xM!+cL@!M>mX(1Zdw9U7p#V)q8Lb%6{)?ILN`T;vycfrYF zN9-v)DqedqsZ5D}@Zop%O|)|ztUN-A0MQpirLglYJ6dzW+-}~pqcsAoRM;3ks)|Xb%@T9nm~my6zCoEo=ht{oU0Lkk=r# z4ErNVCQ$gR(E|*n9F!ktk6_-!sKBHFFXZe8+HKHK+R;%eI0OeqI!;N@F|w+otq2__ z)o`qp0MTY$vu}!BTaUU}kU9|kTE_fnhmp1|jGpU=2SrDnE^u+KBL-Y<=%Af$A*5um zqdpoN;ZGZ0Zsb5OGvtF&%^Z&?8#h0q6IN;ApnVYrAe52Ze!JW49k(Qi5?W?AfGr&z zT9DepVTEtII(iDx>DE0Q6X= z>S+_J6Nh40?La^Gk`Jz~ah&2!DP^7G41X(yZgdo~l&)-coaRqytAqCW7Kkfyq=4u% z4iC3h^fk}1UW|CH-$NZse#BC+1$2C-HB~W6nFEfKtf}4{a-5(vRWTSi;-KE*T#PdK zm;Ije%Tq2kqFwcc=UUD=gZ#d{H zZyh~(K&OCJ1MKMY@Sm-B;FV7t^rOEWXuT>Q9{A!w>s9%CrZ}-dS__@52n}KK^sZ+ zooGj@INXZ2*7(9W$fhNnW%RLO|l3PA3YU@NxZuzjVy|Xi)$cIMl zGfvvc)Z(-kMp$^(DW$cQx}K{&I5XDm0-uep7*KS^kMVi9JTGvv_S8IWvB<*?= zx*tb~9_9@2wh_YBR@X|_`gI&G+Lwb67rh3!T>!yt`#hiKYXqud;)e#xQlwG zgo#)pTnAVpH%hxs@*&c%tc!Y02@~mG!L^4a;;7`J9q(hD9hF_w6EzIbpsH&kOXOH} z7mpe`88)fuI>EL{L3LdR=qw8npXR8FfgTNAv}=)ArJozQXkV7%s$gL|7yj-!`bwFt zju;MX;d;vQ>d=-?HA;X8_HSP87Xl~^7j<;qU>%m!#dV6#&;cb&Lq#_i?MqY`1?Kc{ zJ!jcu_IA;()FPiH0IXVgtc!ZNu^8pIcvl`vX+z)tfKuH=)XeiX^R)r4oh+rvgJ>(q zH$Kx3aaH8iYv+t~ss4A-Zb+JIFzuskZ2Fu7;YtvDD16Y~iLM^B3vC$5JtQ2xxB1y> z}+jX3m(NaU-tJrs?tZ>E(*994JCLa6uU+~bAvj}r=9=xN_9SYxj%N{Wst zhq(MLk8t^=gnB#<&v#tZb9-Du&Jq-#uGld2HW7MJ4Av`hrLo-= zcH)_bt}*NwufY=+^^Ef$g{YwWR~MRb&VnzWyU>ht7QFb<^_5rrq56ehZX(Ze$l~Y6 z-(3fJRJB(ByT|i{z+H`Y85HS{@uJ{qsT<82`=L+^^u_X9=lKU+$R)y2UQJsmm+PF1O#W1&*M@P{fqPcJdfgp+7-dS(F zJBRkYvaE?OOt9?)cL?p&yl9fUBXC#ux`1VpdmLRS4-v=|F^Ftr(tzR9-S_EG074na zeNsr7;T}fmuf=mcouF&3TTA#fSm0hm$A?7%2&p>9>BK_!Hp-goNAkkRW$w#j@YfoX z0qR$~t5eRA19$-8$)RzbJDJlKF52WiEWnO{30nfmird^f$l2H1-LoWIhFST63|)5z zlHq#;c^^V|E0Q<*u=}2fyRGaocU8*92k}k>hub@Bu);NWuol~4Q`=wM95RS|;@(W{ zszk8TWKqF0Pu;PULsiU<1p)S7-I~QGJ!X)rh>wBE&)w*g z#%E`IaHEg1;pCrxyBm@Wt%V*7WgGENCTzuw0WD%Y=!ewL@%bTjJH|a~@!%Z+`1we_ z07k1kO^5@4#zXgk`T(*Mnspx9$0UAwPPpCR$wAwu*!HBi*^@^f6cA}kJGU#QGs^Bk zpP0dPnz%fB>FEGO#|baEJ+#kFiaA~NdG-@d%S(9n@a5!=@X$U&Ddx1Vv}X$8)Uups zD_>6EmG_(`k-4&xXFFdwOBK%r0{5YsX9r)n;Wa$84_J`J`h&Pw581kmU)}t(u4fnN zvJN)nQ4NcMov>MBkC<{?@DGYk7}3mgf_V1t79Pq^kNpqk>{gz4^iB1*dUk8;*-h9v zI{ZiMwsrK-KJ)k=JsWiKV@(iGyl409T8spJ|;1f8J6P|0n*?Fug@KFA`shu6}w=SN1L-etip|taEKU5Ta zeZtd^Sh3$}588B$wXS@@^8-2SzT#<5X#kFK;3dn{Tb@kHfp9SrL@UVC2+PJVJ!sD{ zCJcY~pgqSpnfuv;_8jBnn6DnR=NKoW1zxo07$?)@UbN>JCw~j^?j^~C8ZX*(jL$wZ zdeNq1oV;%JmgN(<6N4{zT<-wUBZjMw;PJy|iPp z01E9Ys(Ze7B)87qr?Gd32w6zo+)Meexe(vvNp#K#M3h`tj&o@WV_m<@A_X~FYWvcURmnZ zvdzlFRn%1mK}_Ku9FENKQh!Vbqo{Qr1#G;|Tflng&kbJM-6I&RT}rG1&fDaDNjdcb z#fr7x>O~t`a>1+Zw9ftpZ2V5|pZqDc+~wWQQuY4K#Ds$0$o^~*VQA0CaMi4j1 zZU7HfTaLotZ*#1J?s?IE=3MyW4_>r^ITvnvz?C^;t_+}IVa67cd1ZwG%@ z4w}C8>OkRmuN5Y|^HRS{g_T0!=>6tfIbgidXM}@= zz9wws;gQH`v2P^X_t%yCsMk_4d4EYtXbJM6wbWerIK=mqb;4zpk9H2q24_5&Wb%c; zXL{eSJZfD$L@3DtuUYIq;zA9_(B7q(6G;o55&;6p3A zx$wb2UteD3pf*T?-xh%ATbx;J5o?C|TJwT@UEhV)_v5WIVd*hG^zK0}Y%|WcQ6b3S z=4a)e4Wv5{V*4p@Ut%lEMri>-%kpoj4p`a zx{8r@)#v$&D93-1dAF0;z~SNOx0c$K(<$Hy;433Xyx7JJY*>tx z%sb+)yX2WRRLAN4#7Ycl5;+j(YyZYO=`_z?O1JKtGe7Flq{cbFy8_Pp;jA0oeA@KHY+ z!WNl!**AkF5`4`^I~T_|%dY#*ix5uYEg$8y1g75R8o@I^_-HriV=6r!_-H45V3I8? z38$h)x*ANmT|b{RaSt;HA-BE)jERoPFe6tuteq3?%gfQPSrCn9Y#H23={&eHyOdbATNKVB4+PY6R3 zstlMsDGW`hGGOiLVQ8+I0ZYvaOQelJj2>9=o1YbyMZMz3>Rr6=_UW21wC^?pcHbC= z_T6T{^E<=PzS|6VVs9AQcbfs{?h8Y+v<%qkKp5J0n*nDY3q$*EGobub7}|H60Z*L^ zL;G$s;P02i(7xLY_~3e2eSXpTLl{}vYkD{A6ECQohiHR2-gi6jr!WDn>Dj=8?x$g^ zDfcAcxf(=sHMG%oA~%1$Ga#`NP`nSLo<9~YeBl8<3``6Ly}p{%Q2$$4O)&yTUlEFC zih4`oqK{$mV(|Ow4d1?aoA{Z&z`XcyC+zqo%thPOMQ;u755fiEwCjNQ{zmd}yk$@a zmkY!H5(!2CAPuKom|_tjLYzt)V+dd>`p#0g25wS?uM;CSEp_4FQFc^*Fem)14-e*H zWlYHle>a8yE<}``Tf>j@rnJl+-hj5<#)<`AO$Ls0C9+_b@bEfHL=Ja3n=6F}v92tL z3a6dS`^!+lX4S%}C-VUmu%cSH2DG~v&V9)is%nO#-{KwtJJ$&xE3!8^hf1kBb3>a$*r1ky%SZsfY2rM)b==uX02}SJAp2 zU>t9T7IPB*WZN0$Yz}=)+v&svhNH=KgIxiygpH;gdLtf1cH=&uSc+@`esV1I07DBj z9B=sycID42hea1dA2?z~^ZkH%H$&TTt*67CP;Ul5s>Bx#EZ_cj=umfhzaEY@-orU= zt$S7ZLk$r=)UYw!eI5E5H~Rwn$8SStaqNeF45c18^V+t&&K-t)4#ktjrC|6Pibv0- zApIVyW$>xtXh`i~(SPn*Js=7TVDOG#{&NWZ);p}2b_k8-=kXFCs%jV>LYKmn>S1^Y zT?)-Z!tfBf6!dk&CNuP?eyKc}2G!sr%ZcnDnzxoyJm5V{mfJBHyQbSX6J z8b-alns=d+exdd-zch??o1jqbU-b)fL>1!N9bxRiuxtjc4@VVUAK=OujiJ0ogl%T< z;dbcNyk|k^==tJmuzo_A9~V3}$(#DYwdr9W83s)PE-aoEc9F9{?|EUvIm>)43wzI9 z-z*C|!dY(Ty099wODM5r+M$ZEVKvaQO=0!v1Cjs&$2W)Jlmn$OVq4f&KNhsfm&0m- z`>C)mB1pN5^` z)EE6CY??p4`uHi0V3_70*1OuY6ef4XUgCY!i?`=L3q!5E#k30!)t=$q&?J9xFnsnA zU!!hC2@3UGjc52&r0ypsb2YN6;!u0!IZW?`+SCw#rqwn94T7Q|aUpdK;ZQu)Vv;Cr zd6>9~H(Fby_k#eH*uzd>sYns8WMPT%-Qi@axGjSLrUFKJPu=??Vg{r2{^Dk+IA2Vg z=MH;Rr7eA7gid_dLC{iPv-k{)mau~aK~_C6{ak_7BkUTAuiFZ&UNjO@k3Fq;&{#}A zU0_8S*i`(9uo_t`rk=#G;x+h9Oh0X4MH$&z>`(lBT{|)LWQG-QXb15R7C+|#MGy?^ zELIU#M@z)CYmh9?8U#zai>VhDSE7tB6~84GoZLrzp26DzOZk9ZO|=J#_Ygua2aAs~ z5E9hB`FF7m3C)K`h>tVljTt2t5xlZ-;uFkxZ6=5pQI94(!>1w7En>2iqWU!PGLaA? z&dnB|qo>A$M!@R1V(MH|*ux0Qkp*Hm;`jF!vBU_1w||M4{^J2*RT~-e{e9u~a`7`8 zUSV)^rMQqp{q*%>>e)uC)WI9Y-qbxzi~`uKDMW2exBm|arS1@CQg`gFVvX7(_9d*= z?ibT;Qmb^1aR6?8COf>9t?;V4n(#SHTH^2lJ)MsY(&NT?V7fp!%bUm;za`glW)7MQmn!pWB5$CzS12Z%7B z6O3;c?n>lX+0jbAUuSDk-_?5GM~Vayx{hY_Rg6^)Zj1{*ECfB+ zI58aW@#pp3Z*urnQcRy3-q(Y&!!%?|_zEG(l@=XhU2UP z{L4RY3Qwkt=78UbkJjU1Tp%3ho8XI2c7)R(uffI7|2XQd>_B)!+TdgQ6y6)*V+NXn z|C#WfwEbHP3OTHx?S*ihaDtch*5z=VaDp$cxe<;NPVmK9x5H=Cwng||BanMwNGha1 z4F7}DeF3BVLwGg$7LHR)@Vw4AMBo$?eDR1|#6e=O*&Y!VXDIfHz$qs92c}nzz$qs9 zqHoOze5@T`JYOpUr zFYLmA_%p%v2pJmKIwBaAw1}XcytE?0+TS9Kw5^L3h2ujzgJ}U#p|u?&$Ta4uHWBl% z(op*j5wr)sT44dh*5WL1rc1;}S|_!lA)jG5A?V~yIWB0|I=r!LVrj$$Pc&xjOjnfb zVe5ic_KfgB6{8}^vEfTbM&w|tqsOBo22e)z%2&6Y5aA9##zYixh(+TghOi<6Ml?HM z)$E)afzxykgLX3_#N2ft3fh1hmM*rD$7vXaN5;V%yT}SVn^B^-g1A(3-w2{_b_)KC+6 zS~s$kBhW$|IqAPA0N9pCMgRTp&^b+HBh=3(#0Q4QMCSTp0{j}N+gXtZ?EZT=z;I_V z2rOz6d5UxSF2#}YZuq*mbL8gQ|2-b(qVZ_s?pal#Vshj~e+#{xDO+g4e#RlZh$R7MDN@Rx>GxDFPtt=v8#KSc63xrY>qu}jH54@u zlT4?Vn}>IYkz&aRn#nC<6dolQ-8m}DLM3i?aZoo>au$<=cM=KirVfR%GRacz8Y7oX z;jRZ1lJyQ2NrtCNj?(m9e||ZGlh+eEKGm`$c0QO=&4!YN^!hA<=D$d8FsQN!Zv86h z&KcI!L{i2=WLi_nP9`ERn@f6eMB4l&SxiR+a1f(fA3{u91mSHYg&c?e?IiOlITW{- z)MBWBMNqekq&df7cnO<9j&_q=q!|NRm628|Y0VK?+MCTqAM}w>?a#0hY0_WN$ew|0 z8u>9u@;8%<4*y-!nbXLdVQd%WTORrpj|{oP zS;P@(@IylL6~_`4x0OlzQ1XCcJ1I9XMKY0eF^f@39i>!zSu8TZYiH>yj>z09()BDv zp1Da`dI3f-c}j6^u%XD&N6OUJnSG_Fn7Sk7{!*O(Zzvj6O-geBl~uE60;RW^h?r_h zk8(t+hDd3Se6teiR7=X%iGN;4TEP+77be}p;v>G{jLteaQhJXgQYw|wtTV7`epyGiSF0{zlM$}pW=1k-y;?=#h*8ohA`2NRjmSIRU4e6^ocMyU}n z4V2NR=1gm@>A!VA$N*yJ|nV*NEzsE=iGP&zG>17V* z+5{=n6kot3Dcj6i*%T>WCNLEFPnRxY5vcJDX+F*RC(^2?qB~2aLHsvDv}TLyFG!vz z#dlnyoL5HMM zX#qky#;H*LNoiGd;=U>xT{$j&L+S4v5@4jeG@IBt_3%^*KB&B*{GxOQt=TLnRpG@o z>3Hl((EpZHO|x|0%IUO2k_weRmfmF04C?Hd)DQGer7c95()!oZ?Hsk%@1>61|2zL9 z-Rs7J-X%K86LvdCSH&NG;i7vqZPO$e0i*fDT(9U5+D;;GgqMj)Zb;{s5{(AC$2gz? zRikN_Ygpjs!r;JYXGbjJm|D@-ZSb{Ko#=*Ml#0V2l~R#xsniQh3DG^7ymn7fQcu{K z7F~_9M_izJ+wX=A5b|I)@+Hs!o)e~c9J*ha4p&gy$bU+L*Kp8RGadxCdPPG zp=Nn>3dgST;ppcqo`-%sO6mrx6VZz~w3}xbeFdYr!IX2+xwO8*$CEoT$@a+Ody+d~ zwIL?)EKt5M=g;WJT>CftUUVOt99dTV^N@RklYLOps5oNOPhX;6W2Zq+zDEydi7OWD zYTK&BeB+|2i(^b@ChxSxgP?I)8CYDM#67c?>rJ08duNc;eNV@Xyv55AOf25EEV#U*#8L{^Wk| zb2;W7leRp*C%Yl-Kv^`}awFyrONGWrJz&(Wn5UdG_4qr6@3j@*iwULKLT#-;uToM( zD9tY=88q)=LTD#>_*lz9!Hf4Xecdp@c6PEWoC4JjGMvkND7+QPPIK1-PBMcxiyH7- zGSRu}viFQ2zED(CmdFL6sdWUZ9YO`FHN`TV7j-Cn3zzxPB&7YfZma*2;)c>2q(sBT zcv($m1tW~N86p#9J8Lj1K!lP@Q_^5%Jy`@hD-7j{JQk(+AP7wJDJv(h5wH-{61YN9`p4Y$mR+dX#tEKEDLkOyf%%JJ?Ho>93$I7 zJKV!{A$jI@89pJTOy-MH_ob9V$9b|y+QrcpIKXhjxDd5;u`G%U0Ts(-54c_ktd%`y z7(XYYvdbwM&~B^DkHHO+w{MpX<}5zspe&pVu&e%%jp10vpO8J^?gw6x;a$#{?RD8i z?tboV*%*f22&ZAZci%PjAXI-WYr!z>A|TxfNDYLL_p-a3_3b~(c5;LNecxrfabpDi zoMSJ!|dM=aW!IpaF&P*j&1IZuTx`VS%&pI1DKo?yNhOfF^M*U7#O4~Y8I9z zLKn@kUPxUO?TKo%OPz>%Yhr7lS7(~w{n|OP|6tCia%10dG973TJBf?e=9aOKIoXoi z#(Hp9U5D7+uK4QME4Cf8okA9;E`(WwW9Kr=9tr|tq(ELkxHTd+hBK1egjl|zxj!)$ zC$1d|i>Ac#Rd~|0*i7#K=V!#0b4HzpVnexTzjJ=9m=pZ3HL-U&LI2ng>&9I#Y>s`; zRj1=SVuvsb{OVAOJ5t|IodLZL#%^Gi+5+b(*mmT_*bwOSEY;rzoKM7han-5%nOJVV z9>!H*>*DLE^MbVNuEwTu(ms0-`;?RN>XX=--1Wor*w37_uipL-q)iP=t0e@w$=_nz zGjx{(8)G;zthSAthj(&-#y>9F8DDz^$5m%F3set}tB<8dCDJ&C-lf12W4WV}!ZZ;~ zh>m;A>ArVtoRY=Vs5m9ADsuCT@qwm_xFIZh1Pry3v$L~0ZZ8*pkLu$Va{q5@iu=d{ z%!l3J0cq7xQopolh-nyCho#l9z)glujpC-$q+ufAuK>A^OEwbQ*gClu|J9*tb@#<7g!03(T_Fr^+I@iv?#OTFU5xa&Nh zcw6qe&@bMeyDklgmvfQtT1dPD7piZE#^2`psQaViYp_gBK$GlvBhx%Wjqd6GkfD#~ zcH6*rV|*gl4kt8>pT$stRbXrxzn`-1@}D(eV!L=7&i^KNjOV9eTXc>;!~I{@Eq)12 zYAI_~nY%K53fvzWFUR2k1&)fRU3$P*6%1Ad>W+@z&o$Hc#>9VQ=)0=WzPa(PKYcxT zIWwMVatAQpUQTBN7RK+PtS>NRef;mZr-f{{#gC&5br>Qay}Fq$g3#^pUpO}l*%`0q z+^j`;{8!rG!hby&GDM0GD_Q&00iGX;Z$jIpz)&h~Uv@A&J{uq5XR|`sYu@;N{7Txr z<{_W3DK{K>=71a}PR-Gg77^ZP-aWY+^86a_f?hm`Z%(O944e!V5932q)4!GbZdDc6RjVzhyL)ry}UmYEe-|M?W?H) zF`eW+3AY{Hebo^iL{r$LH z&tR*{Za_8k?5w=prnS)Tc~>D{```C_0O#1bMcFBV57*^QZIILMj_%Onro52|)lRRe zMRo7W{ZYVOId#UL^3!;QV8lK7H_G_#X_rudid!Uz&@b{|K;4n*p27>QxscclZv>S4K+-#T9on#fL0b!1fogu1x3lL+qM6_1OX&sg3@^XS zbM1JfT-$`9bVz`S)pOuMdO9Ugb~nM~obV^Dqffq?U_!S~JPSrzzXXz@$lWvHnjqOH zpM=?Tk|8TFVBmYS_1uC|3+~rQxJWya=TRn~dFFsm%}ywy9UpTjke8SMl+~D1Nqero zIH9LC61-8!DSSBKm-GZbc$l70Q60@08srD3iV{qMe@csKy^4Pk;1^Z#;j81oo(XR} z_|lN!2~C~((u)ZRwyu21W_ChV7rqp^Bw>q4`0J{KCPJxbV?s^dL1E0cgqFNlz_%R< zi9AQh-kXpu+?!pVFi&_c_eg@96OYpBOhOTZUv@;@FD4A2cfXEk(WQjl48I4DD+wyf z#u>1&mr(wevtI{v|9Zkydh#7m#La|bEWclJD}i=b5yu~1{+VF!$oql)gMxt!v^wp_J&JNIZ6+cVY_x`K4dtcj2$!t0sOE@Tyc#j1lhXYbN#( zo~sB+{3MjF)lJ+W{B^cCaja01M<)6Se{C#HBuqQRBoe00V-rsb$jR}EPlR72CMF&i zN}j63M?%RtCGnC_dYP8ET_|nONUSCx-^otwB$S$J6F&-nZLPELdu&V$7XDhTF!8nU zw(9j0iFO?uCMt!$ntn~R5q|qyQQ~RgId#*-tCXP`id!WHd-FjHp*D$lN$-h-KseAV zv4DRGs?|5K6Q%oM_X=Vt8HN)m)Y*{viaZJ8Kdz2tn`g z_QbxzJ>#ClSwhhJcrdZ8ptP<>5|e~bx9dcrR=DSLCh-DoM}#AUa)u=aa2=cel=|6t zD{+D_z2tEzaVlTO(B_+o+v(r{!(|Cgj{V<>O;&2wE;^&E30@Bu3i5ppvGTtQa7m&O@B+}0I@_Op~(W0kAUlJ)N1qF>8zb5|R zIn8LMpsgf4r2{sKse%)<5-Dg-AK<v28~eoz~lhMQahoGmRDWjA*iZ-u!5n!@bK<%Fht?Xn-Ko2qwp6( zkwb(cl7V&6GAN=2%<#|+1^?R7 z5tXOZ71qO};NKKC1Tj2XDjEr5^l8gdv0Ea`d)(kqJ4Kuu-wuj;DRv2FI@ed>CJ6L$ zkm3&pftsW83GZs6NuAt8fGf;s;%(K(DB25h%$UGZS1RGF!0U+$so+{M(-gafj?6#P z6$U|$U*{+m(spUoixiU`1q0k)sn{eCU$Ktbk1$?8l-9J72)?XWgbAEuwh z5~mhu>s!S{s#ZS?$?TNzaPplZo33660BF`11>HD`|9ze?ZFTP-#X&nX`J&ki!4Cyp zPmjklgRhP92;IOm46sH#2@SJINtYj!(3t6{%%RomKxTo6e7lznXl%WV%(j-qr$D>VW1LsexXy1G^=r4Kv} zRtDOk-4TU;5Lib^nb`Jcz}cb7T){oyRk$*g6vHISb}W{jS@f_vx}#J&qG#7lK46Gb z;sXyk)@YSn>4Rizm4UE0K{=bQ(<$)h-U0X>8p2tbVx`|DUAdfrek!cUQTDMF2)EN% z2)EEG`w_QzmanAihw;=?(VPOMJ9z1p84MoFqXeVk$9Sv3ptb5Slw?%WoB@C9StTjj zsE2)>q&RkF^1lM5g6`UtI)xRY~kPOF=NPG_*4nRU)sK4^WB{0A#= z-YRS6a;VQ~J>O?Oo zQL1xn$W?tNTn^-^=#q95s4$(1GOaoR*k@ENAzZqf z+3L~ZLRAX_mDoT<*;orLQ^STT1!=Jt{Hj{Y;>B+pt0?oU6AiU(N@|ohs$b0J#hY8G zC{wHxE<4&;t<|X`TZ_H7lZrCSI^i;=t7gboyB-FwCg8{=(0DXi#WWoqKUGDU+Lp-SJ44lpaG8QsOjE$uW~nH%uM;l% zxmNT1F<-?rc~)hiYAF%xz#>&=76-n)SoMTJU07jXxx91&?p5sMl$Pd{D*k3EKfDY!9=c ztmzgM1XUiX2GDI12}2kq1L0)tgJAw^mDHY&3t*HBf=_|{7ge?^9SlcC24@_S0vU87 zgD#FquS9%X1zp{fHV|Gh-bo)Fgu9BWNk{2YwTGed#3UK&8lB{UaH{rJ@G&gu1aYqO zQAq)`-pZi@M$HpZY7PUW2#MNXns5%$VF^hO>5u>;J$4lIv@0zM?>pwchr zn&Z4T25^>j8H4x6ATCWi!fDzE!=lbfIDsgy{ue!xJ`+Fw)H~@A;eD!KQZi+Y<;fy0 zX*$8f2k{XDIA?n+s8*h2 zLs`85qr?y;Z~P;voK&jck0z1X92k2dsTz4;>*=H`By`R@pY#_4aTyA}o#gdX_VzwE zlWI|lfUpQMzfg==P=)MtQzzKT|%-SiSpf&lLz=SG(L#eAWpVE5$x+Fr?YY+dE0OO zlDwe0&W@PLm=s%WZD^9USk-!CZz36?nol^u6@Z1 zYy}&)KagC76h|IPZcSwQdL;RXaCgOppe=UZ}$kllUh*W?FuwE{565)z)K+of1KdA~cP#Cgym3YO;6vE$6{Eo@j(5Kij8 z6Yd72TqZg_Q8(o%(ca>)l*OdjAUtI+Db|Th(b8pk7s4!H@~N!6eG$&^-UcM;DG!Kx z>*QE@|C4Lwy?A?UgWIw{H*PA1)dYv>nrGn_SWNeDwmr{(1vXpco)%)OuDgV%c00wau z!V)}Lm2!*Fy1FLiAmxA&UhPe>wWni)@NW%57VEhOQ^>kT@cSdBy1k&!jN>VniOYtc zO?fS%e~k*oY?Z0tugfXbX&nHQSRpPlp(5loJVyb2vQ!R~B;^x#fM2t6EQ!Taq&i2$e za<|UT)Qv1KBQf?==Lf4$iCX&lv^PYkp#f?1 zLhVgaqRLG0vRY|_?P+a{p#Vee685=(Q&L(G3EqmVv`}iba}06X_VLh5pZ2E^j8JQH z8f_;P2Sy&x9dH_WOAsh&kd{e1dv7XE%j5IEBb@)e1Dq*JlTfM=-gf1y=6 zhXNSoE2%o4r=0@)u-qg|DNQL>=Mp)`NuVOdAgTxpHMt8Dl3xK!{u zl~$Y9!z?HsfOEkgi4+>Mg`d)FX)VbQOSw$&fHT4S($cb^i~^%e`U65MCn5b2@xU}i zx<9dMYgPIia<^S_`a4qWoSI&j#KXn8>FQAJ&V1)G*($VT&zQU@Fuk+Nm9E9SF#cG_{p5Hrvb%mN( zpyevHJ8fOC=sf@xS5Y=Y{nx8$XK*l*0;vzFYYCan8gEd$3$yU3?>05Ty<0n?nSj_1^Ly>>M~|sMPF4@ zub`}yZTWTeWa3hqTWZ?O3zc{?|5X1Y#6h(9Z#C_r!%Dojchx)Cb>HHl+OqQ`>xp_9 zv+fr>RUc(%RsE$JXIJ9dY;^mznszT&rLN>})k{PyvYAdib(^s;Lxf}-9DUHbFKTbJ z?ozrJ;8FvUKPKS2`UO)B<=(MvVa6EJSgPzZNT7w|qKsx_&PG`!BY<|8#p~mhM@AKN zGN^ta3ir|-Z4qR<6r47azhtuWO(uERA5rK4lQj^hZ-3* zP)IX7FXVYXBNhE#E#sol0caDLF^7of6_Qbl6thAz_Smu5tmLnU4rr){Z#*21$enOk(-cFz~oPNQZw8^mXbkvoL(5>XaPp~E_7>9VrmBI%Y!5QlkDC^I^prVj$RtFKB+LqCg zgeL9IjK@SxnY%M?2MB74yO5zJb$8s=415j@KjzB6o-vCQ-`>dBM2g#PWo#rXOnTk3 zKAZ5s`s|+%tLZT`yoY|tC)vq#@rpB?i)V>5YH|JC}e>v!w3TYp%e?PZgB z#Ze&H%sKP$|48i*JThO<4gmgNY9Ak+X;HgVT&6|sw(`uFssi^+eI`ErgV*(JbEZY@ zjp}7u)Na!t)1vl64Kvpg^$clheKx(h_1Qil2-k|`Bo^{jyn z-7@|EmpU3a$*QBzQ>{9BJ3aFUaZS5*nQEe=`kSqC`)sw!y=R+M?m>__hv+C`pY_>C z`>oGTIbeOZ-l5D3L`RB~nIjzOt6MymBrzCTUC7Myw`nIFvr;j=C=vxf$?Qdu0ZL_j%SzrK@!@K=?N}ZjuMzdgXf(F58=d2t%c9>$fEc_{x z=hekCYau&enOD|sM@kqdtCsbrE9H+7{&6sB{{C42d=AZ;SA_wlCK}@7ioe^}&vFFM z_^bm#NWUuI5A})5@iqS3XQF$_f+g0LPnVHMA4%%35UU zorL0q_E}&f6dQER(zpu6b-l7`y9vcR!?G&Kvj@g!jl##eWB-R=%d(aeFwdn~{lkR2 z^G;-)7b*x0uE_dAIE=lLHO5zXpzgD*CZ0lZ%GWG>6blb_#Xh^0vryE#XBU!JY^aru z_owj>tcc9c@MKbaxhShD{Fa=(&ym+TBxGeXxp_^*BfiVc#))Bhjz{yeEsC6^&;FgL zp;lq`DxtXI#xL29!lTccWp^NdZ`&&SG_6~6o>>zW|Lx?3WSz5vQMD~OfpDi&_8=F* zuL3${6Td3!oqdI+QvdvxxrbZ0f&YN)5_>@yG$h-O2(xBH_B~?rvhmq-U4#epD7!y# z!K<^gw~+@Hlx2@2)=gSvRmZmV*~^`%4Gr0^QJhVr7U{nSL?g$Y*)*+}&1GFMTJYhS zGx~N;UL9WV%x-4?-?y!Q**^E3*0`@LEZCQwZ(}n7oqgRcV0(G?T@l*cvoLXHP>wf> zI-0$ULROC8wEfL|koH*iM@nYg&u`VpNkQL^J{Zux^7n7ec z5|QWi>;SlQI{T)b&1kgwT=rQu@d#k(h3sY&Bj$fm15E8N2h1wg!`2rmZ{wQv>PL1U z#NWxLNd@ySY)j z=TLl)e!ewzr z4#nhkC6|9Pb9|V%oXN?-c^Y^d9nt12W>Il?ehy7aT22_iMz*mNXcU@q#<9?tZ_Zgy zFV~I?a|ln&HNy$ zV~&EMGVrMG;N3OnxuA0J?2+@#k(U_U`sX|%MbWUF!#2X*8^d${AjM51bMQ0{RCA2%7n~?)V&e^kb_7dURF3QJ4|+=FFoM4$3#@d~_6Sb!t~m7;Oc`FvZAoK(+|x?akRqWN33B2k-3Q z^)Ek^^Tu8%Dvssk6LF@V&B<~S?moDZ(~V+9pGAvWH1Nx_>S*w5+%yChMEO9#gPiSx zT&UXf9DG!B3*4Xfc#(6QRzh6ug_i(+$zdX4{r5Q|i7ZdQ=HUJyFYIl*Ton;3qDt;+ z2jT8LuiU2;Yl18i=0TG>xr<$SQ=$CmTq2S>CU+pE?YRh_hcK!$)Jw>HNyyhr$^DxY zbF*@55jpzka`E~hUOKHIcLOOp73AVwJpA3=rd)h@H(%^tn5%LVihG*pZX#RpUf?EL@!S^_Cn*% z=bomQY7~TD%)LzUjS?G*Co~GqT+aQ&R^YPqS}sM3uSzKI8@a&@8Xg5Uf99SgT>iR~ zyM#qA_5aTGq#Gs^y~rQt;>7^Gjr^bFE@j~|_GxZwCcW%`k$aGEnff|+5epZ)x4Ah? zT&jMsa(VhGm#$}D4RDRr(epR0=1iX?8Nv_Zc!i;|9h!Kw zZ-qt#8e5E^TDYo@c%c(_MnN9WREc+Ij#E)ujc;<$#c zLmP${E^8Vi*%CV^xN$<`K&cWQ1ty=?;3JNBSE*g0p_^>`nNaI<8k)@WyaQK?_2Gi% z7-4nxGG!0yXI6EtY9=tLsrZIfO>b^#rck<1rGUw|HFa1B3D)=jTjOdc7%%R=W*svt z^g!c8*L~oXosBvBU-^~>zd)T_5h?ls*9#WtU1bbVp zkr=q8y|ybo^K8KH{GG0^SV`I)opI3CLS4N5BG7F|Z3P1#P6s@k7wURY(+mx+tMyfF zj_KLCg!@<0p>@ZuitasP5?U%-{TAP*g(|kCOeK@IX(emjvQ?YdmM!Aq@ISfox7Mv% zB`6ihQZc&1N*C>F64YCIXjjrxB%$Mwr`ChP1slLXAMF)l!`A-V)y#yB254zgIaxGB z#F`nXeM?x)sj1z{%t{ojok`cv3PZ12YjaR~yf##rSt$wC7B~piwIWixh?1HGR0=AI zwgasND^WVeXh#u+*~Kxj0xW7hc0!F4wQ~s}kxILaSxr5Xv}x?D`lf296IMZLE!~t$ zrAJ6%Y=)M)r&wvctJzvh^W8ziWIWDKrEo#3r8#VluY;AWiga2_pYM@DTgGfbQ-Rio zvd1OVL66;d6=HC6tq6^2>Fnb#;uy2$0Cf#xn>;QYU{?y@RuT}=*%e7bOKE_}x@70FD_2b$%)CR@?2m^Sa+4&iM z(B_oZMB4-8xkxT*A2D&k096DoYc6X$Q@6aFUMAjTa3)SK7{FEF;&NNtkv0NxV?I1}g#F^Y_CNDWjmx{rA~h_O=Pf1V>MQdW zlRE2|nm3CSH)dD`xtE)FjMjm96_@GrTv661pFm*Op4U}>W~nlr5}onATO`G%F`1)(8}^Qxkk&1yG=LhElF3SerM$&Hbp^Azb0^RF?u zK{lHBCeH;zo$^~!y0YL0Jc`66|ApgEbuGp_e*|&dKdR;5BL2Q5C?BVo;XS)oSpGiZ zH_#m>Ur?XmfeR``LAeOIo_4h)cLN+Gas*}!x`dyU|?o`vi(mCPv_<@V6rKP z4;a6I5H2z1<0V|YaJ>ujYY;h?{+e$`9@x<|f0+l1)fcw=Pz$B*>JkU}UGkeU8I6b1 zEzEaDU1Xk~(7zYDdHL0ldS)y9P5o_$7O;6?{v78@hG@phd@_ukxGKLVts(#QCO7oU z$$WPxUz@*=1m#KF^4k&7oOb8$BK~?|Pd*Uq&OMy}k=T66vHT_EXTO}wUqU(d0n?TI zskD~GztzCtYxy|JSf}k_(#?D~V#;-Y=i|I~yrs50%x_1El4toVn0gP`Qub)S%X2Z{ zlTq&`pasIq0@hexODr={heo$@RGdS{Sc;N>u}bk!Mq#68)*riG*ECQ3*QA1%{PS zbRVYq-{*m+N{5d#QBU#oLVeS8Tj-_ALuI+TAox37=So*+1wsPKl1$xhTY**A939qlwy>#;(__xBz{<_)>?m_@34ANZ|3@_JnaT_2ffkjFP{ z(IpVV)4*z-#yfR*1kQ^Quv=#!ZdY2a!+QbvyEzAS3rO+ZAswED=kF?x>+rr0zUXk$ zYW3@8%T|AYq&UqI*A{}`#c1P3WWSJmJ(^tDi;hPk`%AGsbGu8m8;@IC(1X-dP2Dy4m`lRJ7EjPo@mS zoY_F#P`{2v#rXFIG|^!2gN=>!Uu|uWkXE6=uX@~Vjn)Ukiz0oQP@Q363q9Ts$cYZE zTk7$rGQL=~o&L6+P;}~~KStL{uxcb3ZH&`r?kn&j0#*DwJIjW!sn!@g4eXa^!2 z6!q7?BoY<tR8>i;^q80PLFp^^2I$9^na3P*G$vn?i7Ew z{|r6uPVvP^q{m-J_~M&c`Z7{nGDq)1eztF+zMLp+(h|KR-AvR^N?V_-cL()GeSa2T z!1W^;aYzUw;Y^pC_4BPttFZ(BN08{mUVRWLem-cG{`g_5^nH%#amSOFKH->NB@&8* z&**K4%S<`1H&O0Zx5TPsWK`=NVfZb52WF9Zq$#)cVtb2=oW85aYdUxdHa)hwNbjfm zw?u;eudH`7-ssIl#3i4sciVr_`;ccReAlPYjqZLj@WlR)s-RKt^W$Nuqd~zeG7s0V z4&JFX-`U_~m3x<)0iV~z%l*~YfQJEm@r1v%IIF6`QVALb8gN2E{(-<61`-qDc#z>L z(Z=RbgC$(_5gSgr2+!7!vx3!@TZ^v}thgH$R^09?D{ie6!w8~JoWr3Cv-b?iH+Vo7 zouPzTl|0fIgF$Z9;(4Gp`We5G}#>YR)#`NkLvO3+Eb!vT!*v&v2JXFUExiyyBGSa%YiY7z-DtC5EfCPRHA5 z#B#$0!lnHx17*KcQ1SBBhPHI`q{K#>*BcfRF28LujHS~HV6p1bO*Ro4pSK%u!W!N@ z({>uh(a{i8a%h)X^w>3P5)W^xtvVFRAQ=Jj&qh=Fo=&x^I< z)lmZzl^G`teF&AH(`=C?|BS(fiOc5-!)(H3$pu=k6|8;!qJeVhIB{LY6~ipT<<2$3 z7#4SNzhSt@6y-+UGHfGU40jB4`@M)*!~QbRj{14U+KfOpcMP$}^tT}Z4EGELgx9(U zY&yE}(C~~&N1dJ+@Wv6oO4&bW;}ZA65X9ui?_U{45H9218b-4C&h~c(${nx7;9Wi% ziV2t7pAEmWaB=v@@RrF&^S>E73S4GXGY)5=l4)c7lZnb7cE%<|EpZ~_P!=w~IvQ=5 z+~tR}aT4LOu!@l>)SPxRCNpta=V@F`xU};zQXD|U&8TpZq8JwX8qG{xW&{|!5H7xf zMy5`$y1MZpgTFLJ#(aNYxK`6R!-kJBFgVzV7kl#ICZ(=%Jd6Ky4*ef+LztTh8ipHl z2*I@xMts&bPcSjs$W-r}#26_*4wD#EC(gK%81kmvNVklDK)ELx&rmuQgs6--qa?4A zswqaMu$+}@q)hQa>m2Rxe??-CmJ&5casCwZ~a zNI40{P0D0}b4TMqd-VEtwja#xYCK9iJms+-_b|2+f)h0BW5n~}oYf(^pApX$^2HbZ zjX2dHUtBcMh*J&n#YTgTU&zl|4mVbH5blm2W2{d3MTC<~f;{d##h-z1KXrqMNya*M zyo_k^6eG^L_`(nf6Q|PG_5Z+cFvF-LtT)ZE%KiI1tK1n2ta86wXq9`-B4aT5*^TAK z+N{F5p^%+M5e!*tbafF7TDIM2M_FyHDs%&kiVywdEwyfs5igG6izmyCA*A^AurY`f zqmCQzlVYti#w(=ge8HH*BweuY^D1!Ss`0gxAXvp;#$!x^@qoVfjUGh*@+Zc>h&P5k zGhQKg-QO7TS07&7t8a~kcU#1{75*BHs_<5M;-Jkw4fSzcob}N z6nr$$zkv9tD4?K_p+;8Xi-a6m9|H>p6Pt_*E_lEM{c_wRU-U8*CmYZXltn|`x&<2A zt{ATh4i7NiI9I{OlVS@*)EUMH8l>pePJ=J{o>Ab49zS&ULECm1{2@QN;F+y}uS+Y4 zW>A2D4;a4*@s^I70-Vd2cae;|0u9mgY(v2_QhR2a3r>;;y4NdUsS#4-Ir&j_$ojP) zSBPt{ph>}8h8jTt|7cz?pOEd*vH&k6=cP$&U0?~|-`f2Ebu0hPb(?FA4>UW zJ9RGzWvc26{GNNFyAPeKL1do-d!c1QJ$qYfM9F{x%G5uk#&P&?d{DtwBIm@R1;+{Z zcEbz$6XD*Cw%$E6w%~xfAY9q(0xu@vLZ(0R5)K8?FD&>(nxr|4Ey9glQm}@>h!Vu( z^T&bgUtZAANnjnep+zNX?$k;?itQ?>NzB)Ne?b|oSg+hoameKV+yf^5Q83Iy z2w-h5S|qA>sep2ufG@H_BMdEqk}Cy0h|S(zFTk5scrl!A7kHCm)ZGFXQp|l=5KD@q zpBBWC;>ni z4Mc)Dj>K5FZkCzuFmdIfed0|UNd35=FzqIxaG}by!x9yfP0L6zDAk15u<&x7O|#w| zp*C51Nd=jv6Xb!&Y|~j%bjh{;Y`4bxvu=6TpC#+8Kl3-347B=AD&&$qO_Psrax$v#^D3T#|PN+I;hpms;}qGO*r=fe|J|4tF#?kTBWVk z+A8hSHdbkmv@_LXkrpO*F;yp{xAN{L>W{9x<}en{DaIv+jV?9W5g9Z4nD7cFUNDz_ zRvEAKw@R~UpozLCgI}8t?T4A(la}!KP>Y$$Mww{8X8=aUiII8AW5%2A&_*miQf#>Q z)EAylHW_JsrV?fUR8t}eU@o&vKkiw>n0z_*>3tM zba2ts9Tsg4+G)DW)UV)P0{A7@h*w-KH+>^s@!+88GAW)uY{I(?dBtBkX3{e$9>1{$ ztUF~Q%K#w#tmy)IO`UV542FS$1eF9Dz0i|jyxZi*b<=I4Ee+P5FfkDFrzxC>@#|kE zf7<%VTc;!t=Yf5>$0UNU4@_Ul$iwZ4sWEv$pXa7ev|SSJ1#st$=`$Guy!c>R&SYhb zjs&1}s^(v{e0VmyHC>1Vzyj6u=G5DVe*T4rA+hvuNs_(3{1Xc1~|O*DK(Y_7vZxS~2f%V?0) zJb^@(ka)8%lU_MMgaOHf!C{4!Yf=&;*XCNIH{4D)Pa@uMINPG!jXCD~Ov>e;5r%dG zoC=(Li-fs)vn`WyLyF9PC}f+v4`x7)1n~dzu|c z3x2GZMLS!2oAYT|@}aZ1xzP{p8*X+)r_UGr!2E$`{FR6A&0QaCdC8F><{nIr!@UIX zOBRq(ap!Sn%N$PD1T)T)z?&q0iaCkcVa80erCVD%%Y2D$e=uVwA;MNR^T#XpLr$=mt*_QY1BT=aoKXnJdJSq<%pSfMI6?1dzg9Dyn!}I@BnX) zn^zGoYfrIpd3xGBj7cxm&zte;JlQidj{P^yInecoxxN$6 z3myM%_L*634g?3MLJ5QYa}Wmg1w6iOPgrW*3ndIJ(^2^mvj>QL3%%_G6-omNPczgO z0yw@}VF_XAR-=%5Y>n-kj=Bcp$?p5L3NJef3@aiE&rohb;T(nl#>N+RB@8zu6b3Tr zP>G5kKlOq}$%S}q#Jgepw8C`iLCj4v0Zhm!Tx2Ks;=}Ah{B2_LKs>ZLkXty{Ubx#? zS9qNi8<`5zm_#VQX08TN4J~ef`Zg#OJa+J}g_KEKaR-5ug-4ETQm7-cjBH-G33mb) z;C^&ot3sTYimz=|+Z5vcW_*DFMAXovKhjiiIRXG^(@>* z(NU@OBfuZ+8eZrDZ%Yej+u6(zPFUH06dzP^y>H;i0!kVvxfbq%@f*C2yKon*dT6~WPg}Z5g765!tqR$ zOlJz^f_O0Fe4&eo5)6W_6^?R3|A)Qz0FSEZ9>(9@^qvqxiKKui(zh1`>C)?N`X;-# zZhE6cdT0rWR3Qw#SO5_PMHrE;f~bI~sDMaOL{Jn^UPT4`&fK}X3H;t)^7rQbKhO7k z5AXBhoy^WXbIzG_X3m^BXYPxalh8-G z5jKTmGy*xlyb_GdBW;&u5iEA&JS=HEVmsNuqLW5>Wf$Ax#zWnfZ4JU-cD4QR-{N78&XzA@c-ipZz)+&Q zwaNCpuTpAzp1Kl(hd*i4E2fb^K=Yg0N1_9N_A=weJ#6qDBQnz>zPl|NZM!-;7GLOP zyW#WCQN*x#&Q*w*6P<{+PsYm!*jP24_#+3~9{2m_NFYFB1S&pz#TUOl!lw79w6z@J zp{;AOZKFaQWw7a~wsW$OLzaT?+%}TewL7`<_ zA#20!Q#SBeO0^%JQ)VN1dQ-Avf_KMK*XdW^+m6VV(VN$7D-|dxz?zKj{AAmrL^`CG zlWy2ZHXX5je*8r_4*FZlObH2x>fdaPjKiJVwk7|Z4;a97S7Ikf-EY2Qdr9uz^|wvQ z?vsGo@rwOX#VAbjv6CAJ$SC;x+n4=w4j_q=Apv$pGn(}Bw?X#tG7h<+%5m5lX0KFY zZU7EhXxNiB1OB6l-A|!BXW@BG?cj5g>JZ`7#b2S>xSB= z2T-1v?DoHv7!?E#d?v*ngFjBSm&&X1XouZnG(Dc>rRA#AK1$&-XkYsCk3nee0^3B~ zC)*B-za(x~b3NjABhUVCr6VDMo}|eR#nTE2XlV%Ulz1sPF~&>5;&Jx&O6&@WNf$!F zwg1BlHa(g=+5VTZ3CE5kC@WvGO~3~#TpPxVD&_2_|U z!hHKS1t?1H&f*33s|wy7b==+yUD%W2k54SL?*gr;v_;_+OYFm&(&8VR?EemJ1l$BP zb*FujG5}@NeAt2Q@C|u_7z*33Xu<{}r{Sanc2UW~CB2;YuKl{2;*fXPzFrwU)9{}6 z?Kz5Z`20gVB*031n19Uv+&{+w11TCM(~ZOe?Wgw7~6&@m~h(5 z0^M1=6915dL&?{6PB9L%F4$j_`Ox=Uy84 zpY7vf(O-jXF*rRaX}Ut%Bw*oqQfN}AAgcXu#U#P^2BbNmZCnz>sz}8@vDs>x?~TxzceJjD%aL@^VYWSk-Su{J<-PtLF}JAU9P=7*xPpQ zu;lmUTHco2M@AB-Cwo{t#gXh`aj&f8?y{)Ob0`1tI7Jf8Pu}CJfZN*Olni`+aq_Vs ziOI;cI5`?6h9|>yqN|hFC}B5&hyY?BPF$bth@t4s+v(*u_f~T2P+D8_Uh)oEoH9O0 zM)D~5oJhVP*WNmr+(WMI^Hnm$-$?_~{A(|;pUx$3lhx|AtI0cMzKr`d`57gqCZL{= zK;j^l?QZgWlp}b2KuWa&K41X0MAoY>nxuH7ZA;UXwKA5D_!PH1=qDdd=`9cX;~i6` z%Ot<0P0`53Kg=l}>W^E!z+QYZWun}mYoC-3vhwHlO9_$TRt)mi9vqUAE_1ch$dpw| zWCb*{KYl7H1x~NXw29g!r^vGMX=X|f1w10U-X8(PNANmViboVg!AoFwcghBtFTWP1 zJS($vL0QU6a&7-d~fCZqn zk6HXNzaqsd3;b&vQku({fAMO{BzctB?I~eO#1$}??9lV7HT1B)YiO@dNWU*-yaLRL zL5y$gOKGE0@UnJus)*M8mFkbT9!N1Mku48|1hn!{iW1uw0Ju@)*C}170es_d%0fSs zxFSCaEjpU=kusVjfF|7Gc#2VpbbC-T;m)6={H>+_TWjl<^HsTBA) zq{N%!U!`nThz$m2Z*LqTi!P*mDkC!X+msiTBC_pL%26e@pl5tqpsBy71focN-)KDG zT1spnT6r@s29Lj$lG+&hT3`U%$zNhL-hDS^xDPGHs#5cPX%YFQs^#M5pwv(0;=J%w z_;@cFAMDdS^{QNZ_mR{+a`D5&)Yu@};NR_24<;yN9NKmjU<2_}nW?veDWZL|Q?G{7VvljD{o5+Tc|M9A(J>l*cP6DZ>gdxv zjFh_IZ7WjS2Gc>i`eJHx1s*dDvH)MFka+&dwp935n^YXUGj*C`$$BdEYAm|`QpW)F zv43PVuGyPJ#nV#)G=4Z|6qrot!UB}BJ>ow`d#f6ArQxy_VuSDM2=QXQnL z$%!Qy9njZzQkAYI2v(C=w6IB90NT?vFC0a73QR@`_fnM{j4XOFwJibF3!+$3yD3>< zybvIatS}sP^i7+qfJq)G*>she_Bu~o@Arl&z(y3{tU zA`Q}xpx6YbRHcDWQmVZ?FKx2?+L(oDLGo+!7N^1Y6Qu^PEKi#T+ZNK>lP{)S2fJ1( zzM2*%7jt%`O_3q|j?<3G5I*0XHcak9e;}=|+_v&a+R3I0MGtTLIxQ()8YLWiCvAnl zLO2NEz<;RPWD=4M4Z{_@U3*IsL4&=Bp0vdrN1f{Hx{HHl#3IJ(qEK|T}sm7 z<}B&8?@GOGUl^NyUgpE%Y3ZSlD`hpA2ECJ56tZndU#5DKPTBg6>4z17m2CfBo6_4T z9sb1&R)oNm+M+pfeV)=1t!WY%zH@7O7nSNw+;v-ekw5ai*L)zlG1Bok3dQM-TTsdm zrTd|4sE|iP-%4MqfZCG986uvrE4`DivX`f!q7Og;8eU&O zKNSD#q4b_gmWo;ke;!Hyw;E8n@lpEQjY6gLSo%~Y_Ezi9(hHT40Pju1J-tPu+Ksufs znGr$S*F=7O_j1ykRen&ov|j^!w~DJjF};T*j`6QD?;EIXGR8L zgo)2MN&XJW&KODvP8~-X@pBnv#J!0bh_qWeEhB&swq|z5^I`uSEe!hgw-R#J*JK>~ z=iQ;3n=(eDxC#|mqGw|=(3CtmB^!~cO^zGyvw63zqI!F=BkVtN@gPoLKiVG z9zXtkhLXh_0|a}dGN$EIGwjN)jCY<@Z9uKZhy&5D{T$j&fX4K+CA<5&h)cZAvq9MFfzi&`paf)dBH|2kz>lkl<7_TmWk} zKJIe-s*uFlxQur^uckP3a61+$WAkiWlI@tM7>76W9Prr?i4V&P9ZFO`jynp( zmJG;jysFf(U&bMSoI^=)mjveR@s8IN^C5ns13q#f@!`^BhZ2iQ!a+0DaYF$P7+xOa zL%V-vmU0&SG24+CpiGY3$W=Tz1YNk0mxW{JJJy7vJs%ii@UayRm6E+G5F|ka7vB10 ze-yADba>$gM~guSPP z<)Oiu9%&gnG}9w3=HZ!t%M=Z;XTs^9)Rs&0LNH}y!j@I4z2(TfEi>XSm-(Aay>Ct? zT#qI-_#`)ToZKL##9P~TOlEZuZLoi`7w&UYGhdTm8&#fJprZ{wek0Q(rZ2vkSuJyA^Q(6gCGCP%iyl+EDwWC0a+df`vheb$PAty;jJAWl{H^x@K3Q> zo}oX`D$B#*Y4KSe2Hzc-aKv*$O{(z`FUm-PAJO?kU4Lz@X{ANC(9$+?^b1bM7#9aERSd#=Vf_ByZ_=W zk7zT?ybug4vOJ>w%gQW|X#e%Rm-FgPULJq^a+XK5leT$l+q{wWZ&_uYcq_{@f9`oZ zt5*;zf7#FkhrgEvULHv~E*$cX$J+P3;}Q3#cRYUiD=UYN$BumGP$k15O_UL{9kJ-o zWzJZfALLv~=SSQs()lPA9JtWcxmww3Hv&npCvR|u;U&$TXJx{sw{(`uD~E3@=Q&wE ze{JLR2-=ahP8T&Bv9*)aBg_6>ocmCkE30hxz+iZ|4EkeEER8 z%j2C;Kwqa450Yfq9~k5eL|^xHu2aA}<`LG8Tu(dw(cgodEm8l$y+)xE&EPWpvi?q9 zAv_H5nkrGQ`;bu*PzL~#P&x1HOg9DTL!6_6P%nQ=6xw5VzNL&D37`>oO?Gxxu=pVl zN=Do~&3Rf)u~9jc4wj6KBhxvhao8+zId{w0xHzYhoj#!q1GC?093pq!&JWb6`2B88 z(5YOfl5o;m7I(>a7Bvo=)FS5@nJs-woogE8fS}m-Xr#ltJJ=Q|FJ8-)wex*kU}{JWTz;-0O6&)T zwrwG<1Uxd_H3RHrLfiLouGNZZBft;<3&5JzuEjDbC)>F?%1B3cb`6(ni}bD|bREG1 zd$u~jH(MU@eP+C6S4FyudIE#*Htao7QE*bguaJe$7Rym9P!rP{=n5i zu?8Kx>k2_ri=9pIp-)}OL6kJjSyx-dq}4+F{hVv5OvIY+yriA^!Bx;i;pB_~I7~8< zt{?Vg)-?vn1O#gCk1B$gDAel+6NzkBeapZ;R4RV<9n(%`NytykJs(;ddy}b=Iep+a zFQXRU_HugQpI)X$-C;Nx!fYSbgHDnk>lt|80M^6QgMlpEt}k_573^(b31yedwcmuX z$K{R>MzcipKS!$)^xJq#b(ll3sXb#KSqzo?;`(}EX_)C_TiK|@fXEMI!Zgyv=YBJsLPaVrXuV6wPHIDs3!E2xBI2~Ry zp8Zyd>X4TayzGyb3y6>ykMH#2eo;7NwVaB_&-UdC2vUFa=aihfK7f>N z0M|*0k>>@2zaGK;90K@AqJ1HQD^oJ>dch$87l`(6hGdvaS=`D95X|yIu4@oHx0P|< z1;TS_IrkKKem;jozzAIMEO#1o3lCVtEhNuVOS#FxiY2la=ZBB4=f3xn^x>=AugZrF zz##w^fS=mN?F|R)?(E|_5^A0}!tI1U@cGX;N&SAmM5$TuJ$FsvG}8~?_?e3h@Qg*m zZ(JKCVKLHJ0Hknqeu1Aq{_s!k7g$p8-T?kKVf)TVK8z6XUQ1qtzHrCZ{7QvWbnTS? zF*>j#MvigJ*YQd`)Y6>2q#_=Klg~5eTs*hy67Ek0A+;D*&AavIxUQu$= z17KWJdGI-txdsW-c_r)o0|0Ag@Pm{rE45$_{F+;Y_g3+N!RUuSo5kQWi}~w~Q+wAM z2i&8)ls_Iw=g&@Sd2nk;6YQ!@e6uiGe0K*wv^^~*p64OcUTSdf3g6q07DxWf50Yo# z&A;#glx_H(TfDzqJpCJ=resq>XvZ*nUW<_^MlpBzXmq2HkH!0%2tJLGzV=dZ6CNHT z#D!BLCO;}buD(RthwTNoT-(PYeAS%Rb{Q$ax5A_b2Sy7UWZKJ8y|qCZ0({q5YH-sf zoRm58g&@EUyizTjEgX~^7zzas_bSE+FUxCPuQK5&B?bfVsUOY%^q(wb`BU+jFhfXD zU|3=R_K3W+c79G+EF=605?aZ{d#i+wGI8D33l$0m7T??;d=f&@{PGRqD;4qrmJUMjjsapjne=J?qDQzs z2@z*17$EPY>WkKu3~Y@Oe-L8POB49VQPvMa7&7G#)Z>&U;wL_ot{%_Ht7Q z!?#tzFLhRfm%3-I;`+u>SKdSHC{c$$>nRSAhe_X09Mm{+C|Do| zRSprO(21dZBrb{(EGqa8fcSwtOoK*v$-80qlJ`W0m%NEC@qL8?C>hhgqD61@8;DM4 zi<=az_mVlk<%`@9^wU#6h2V2JqLM6+#TP4M7XP(gPOrMqFFP3f=8K(G=*s?n;i?ws z_5N`9l3E}h@l(A_V(|ZJ6s9M7xc%|iv0^I)!-o%!7r{Fi*(o*(pO`2<)=2>-0D?nR z8$|`_RVXUaJsN#{THOJ^zDe9i5kci!L?tdE3D*8|>Ug~ARk61Mr!K{&>v1s>%O8;WX9r?kGmmg zP+~z!d$*D_4he^O9o+9IU;)vwvG`UO_f8py-CDPjphyYKU7g#Y7>6%RZn)-D;=_2W zTghfe!U1=4f2LsKrF`i66ueAvi0ms^{CYokcX`geH$Zv!0|&V; zDi+7%L)`FzGiew`4tFcbWRY0#>_-(Yo3&uWaHS?YPv(V>AscQFm(c&( zm_1WwOG&rvOL9@{nH{6h613sJ`(?i^qkepF_9Ufn5Woqer%M+`W~Y!f@hqu0d1AJrpamFQh`2+(k!Yd4FC=$#ZySvxre`NaEj<8x6n;^*yhka1E?cQ_ zR0}^04_KPrTOQ@*%d`8-l6ie)_F=j9@Y-x2ndUPud3m{gqnDSfU(Qy^ioJEamzR@v zczHP#dwChV%gf6@-p*bib8Y!MUbv<2WqWoPy$@$YK##=BAK%Z0kSnPe_;Gfm%;EN* zW$%-Vx4+DWU=^vs*>l-{%5A^Doc*p$#qJ-n9|@ujzW+6wlV8iYoo$LyW|i5NUi6DX z32Axq5cLYriB*vy!bK4|2PrP7ce5NN-=`q@?ExQ#r#H_@m#MfGoAZ^-l2fg6vSbM! z&?ZNb$4Ht+T%mrxxcG^jFJukO=#tYy@#H~(ApjPKTj+8;eus9ZoZn?kyLQhp%EL6S zPmV`_M)k{CCpS&I2nM&sm-Gt*m~N*XGQV zCz03}bA07#v+IVOrWDPUa^b64{<$7|LkP~jDl^&{ntP== zow!rm=ED84(j@;!`&>xDm5Oh5%v~lIna;ToK`GTf+BNrttdqVbZ`*gx-nRKxZ`&?U zdfP_y@wPqQ*W0$NzqhS*KrX~NNL_>v_qIJY!rONIC~sSfEq9OH)-T=L_Pq>m+k#AQ z+pf;s)AFj-(w!TkRERJLk+U(P(;1zc1o!wAmgK%8%S-RExhrI@Uz?EIS}w*<%Uz@t zNv~(J2fFZnKsEk#c5Y2nqlE~A5S7T{{>DnL{A^jBdtH{FEjx1cGWs{(_KwHaJ>Kz1 z-RB*T*aNw6SF|+FGv3dQQ#eC%Sbrkd;-{KULuY;CE=8gDKF?jRfLPDT#kGI_E*w|1 zLJM!^K8}9=F4rIBEH7+|A3K%1!B;gMA3d8}riN#~^SN*P!1M2KawjWTDDUe+K~$sX z{hnx>%OQu?_V_;c13(D{{HTOs_d$%uqp#)ORG=3G3I^6G`R=L*gZ^m5+QA&|dMh_M z0LUQ`jT=||l^X)wUg@7#?hnsaVR_BTXc(gMS_Z>&_#=7IAT^jx%=FO#BS6A(h1camr_H8%w6n*T^15UoT>i56$qR`)O z4&38GqF>f1e*bS0v;gQNfdIonIUP z&y!EkzgKt2FY|}LW3>6!mhc=gIR7MR*LG5u8_m%eiJOVc$E#I!lO?)yB z0-JPq>s&OolgalB^zbJ(C;th+6ZI|3S8{0qu!(}laF5lxAV4&1LjFNQ_{UT8PZ0t( z&CcIL>V*aQUlPK4EXw~DddIC-L2#|o*!K-C*c=0XoDEdKFW{>y5>qUJ=tBJ*6PiNzN_ z$#2>?RMwo#UqMi@ewnXeD)X|J#pS2+hbh_Ld$`gM{dJ}&3BPte|8fN2Bh6$lU(X-a z81nj|?=}A6c*!sMkY2MA7v9cq5vW?Zqp~0aNXFl)3tlJHHGu`7rYmtlaKS0^_tTLD zXUX%?X0-mV<^|{c;qNo?1+zln>FiMODQU0kRPY*kUhG`Zo76vQEr5A%CBD|JpoY9Z zqZe(L)Q7h7?N>09)Xy1IFki`Z@8OgQZ5{Db3`$IcRh4|R1Z{K{_rv}p3tsUs4*fB_ zAR3)Gl^=_LbrvX!e*d4Hh2kk}!MB7^rm%qU5luCS@1_*M0dT)BU?p9NgdSQ8|f{{v7H~Dlvy1;FlzFAR(`+3aKu<@ND58B{l%r z1A-dFptVDP3PBLo+Y+CjTewRp^J~AI0GiPh$1f-}t5D%!M>ysd7WVU3l~8P@k0-<+ z#hOb|_Iy0yh62KYpUIe8UU*TVx+bG7J7E&|VXadAOhLWgO>g1#+BL;p*B4&%1qQX+ zP^ctl5(ugV8INDuSoo@v`Tqehk*^fO_W?@K{#OfMQpV-FNVVBo__~j(1fP7P@C|^9 zD|Zw&RXBO1pmo3g7>j$nUHFAUS)~xrkhO!|xYgc5E&|9Th8p_dqeA$=&zZtleDG*t zQ4rv%{i5(E@=Ul;m=p=maW@J-RKc^?FNJ?R2G4FSin{y3vn;MCJQ$u8?TTPCSb{U! z7l9E~g4=d1x(>3Bo9c=R$#bTqXtjbIT?~VBLm{`Sj7By)MzlY+)kBfE_e9nGSq;PJN22Q5#$9Nd zR}9;~JRA{Fe3!Hfizo)2&%>u8i_1gdnHER?ZkteSjE29{b@aUs2KwGF+=GDgGoF{@y#RSn!AEqxRxlC60TT8zgQ$C2bqACbM|AQkD_j zrC@4zpBQ$ZF9LmZ59JzDECd3whbK{DmrkL?^q)qFRZlMtCBH{h6-!Kg_Ss^IsqTfe zz4$km$AE8McQQ^E{45! z9=`Yyh5Pz3`n&66ibvch#r+9Q1UsHS|+dkcX1?Y@_1VV z-tk+psd1bpuyEDw;$A=s#oGv73w%mohnR=E1(is`7#va}3FEHN5=p4WhnJWM zU9UAQnN5V((7XivUU~S?BeZ=@9Btn(q2w^3JER@0|LO@^U)_Pi8PKWZUGiRtwj@iz z^6Q=!|-1DW)dgDQrCGDUYhIb0( z=Dktg{*rDuV{VBbfyz85HODSg(wh7|V|9rLz0zLpZY+6$yuN;ONh*2%xut|BPv_Q> zJ*2Nz+e`F;p2qy{l0#5Q-+XF+Nkx$7kJCp=hPHv`kN;RQnou_3T1k>0I-I#89G|^e z@+^Ur{qK?=;irxE-%CPO`EI=3dGit z+B$H=eRV8Q)dW}XjF``D$8LU=@<*XLo%xN@QDAN|00BX(ruf2uvR70Ij39CX$7swN4Qt>`I#y?} z=ro*BFPQYaSwxF2jBkN&_?B%@B{tAEgI+&crfINm)tx0;^s`XbDnZW+I*UPP6?I09 z!C({_i%|G>)wBi%#o7k?8#FS_Ic!9~{zIJ&h$DA@YrY;X z>9q!3o6Jtg|LIxH5*i=~X&03}h7Rav`o|j$qS>M`8O=uCU}UTe5M^PEoQ5|UbOsJF zQ8i6*`MvR=V<2ImdR7re#-P!et(?edb*x}8fToEoo<918wWw z#_Fv+%k%KNPHzzPgzq{QM%u*a8574K=2n@kS_$>{E1-2B*68Bu>(Ye&K3b+jX>-aF z6Bw9SID?>LbXu#ysx>egtElCTEDVQUCkhy5GLS?Q=(xowSU~GVgWjM6iM28uX9j{< zEo(qGkInVW5ipf#SdGSNGQu1I6N{BIYj~@kV+3Ar&}*^w$C`br#0I+M==9J~x4lzm zY0j!YFX_{Of8)v9Ur4~^k|m1#gAA5g~zxW$5kC8DGc#>aqM)=O0#4b!pE z76wye6bym|CVGRBhoRsNCf=YmA?E!vl7?mYCK#=-i19Gq46ik?My=Ik;y^SRlhz_? z^;*PSnjtM?b5-$1Gsq;TVa+007&R8oXc2)?qE=(lGB6b#n|lp3tp2WzsLOg-!5Zk5 zrz_ae^{|2oyZ~z=XVhs;8iR=g)d2xDnGI&0VASdi6hXQo^A=V#S}l5B4^z0nT3{L# zL7qXPwHB+0L4WqE5=4vE1T(!x;B~BlH=0-wX;G)q=*=*-S{b_5ZR99ti_0KJ7f!BRGej^YAqNXuwL{1N5Vi5$Z-fFdI^#X4ZOeR>3 zYp0CF2Ku(3*Tf9nRAW*{q?{e$t%66z<4McQewqV+ltE1Jcu)58j_)9H)`s}V-Rpwlo`lZIin zR-={5D6D9pZ)QD6n-Rp$qJ<$7b*vRc!pMNY8hI@TJRpl7H5&zy;SCHAL(3QqjLB*R zzUiRG1Zt|+f%N%6Q))KW-#?GgyJfb-2D*lYa%qhQb$hQYJi!3inLyVy77^}{;XtVv zGMF$ia)OD6rAS_)GkjZ_1(RR}JBk<0f`PXRjL5KntR7U%if{B;@{S6`-eR`s4Pdmv ze_>6qh%kScbp}``Emn?4+6*8>Qn>~@K2S7MmrzfSjGi+Rg&UHf1EtXdT7p$D8hE{y z)fh!1$AP4PH4mz>e(I8@_`tO@U}Xp*!A`4%H5X=0h7mcPMlS-}Ek-bZ>sY_>urOFn zdb2?Q3k;S@v&90on^n;Au&`Je+`ApjFo_NHY^Dnv@Uz}t!S2-|(-&p&opk0pD;o%a z$g@UZfsqB1LT@p17PH0-`xA{83}M{+;*uiYM6;DQSs7j<8etJ0u6K%wT!3 zTAdbO99gznHLZbx(ciB(4alSA{?_%gN~0xOwp3HrETI94sFvN(l=&r?1&vw9TR{Ff zvw`PWtDe;edYHU{HcqFfYBn-*DGVuVB*JCTi;NCb5iBm9&cJdyt;mBBZ6qtZN6R>d zx9WI7tApK}!Ki0oM8PQ2S{O3}@?xS*Pn6Wa=B)niVbQu=HoBpnr++h7gF?HNg(aA@ zyahH;8Wt8GLJb&FVE=+}ij1J)EOn{jMLk*AU{(PmlY=EePedEcGuS*B^!RoDh5f2{ z5eyvBYSj@)22q5)B^W>)2gaj@*TNL6o_9c%P=B8=r;tUU{_dp3S%c8^vbaRp{t6ma zE3y_d*uSvm3cQA6jI70E)Ei)?$J(BgihScuMiDk@tO2GJ*tZ!idOd6(dCqJSL|Dhs zC;ebSleT2>JWM%8L1zNn-C)r$jET{}QVDYq3wt^kVXq0?VAr1AW&K^>_^?Kg*4{3Q z?V>eyvDVQuqeTGoTnm=HXoT&(l{N8t7%Lt|3ic`%409GSiowQ!Nt!o-9ceJ?^sp@f z^TY^NBx}@IwRC2?FsAHT)wFs?N8s;Qo(6={bbo8Uey))PO|~E#pb8yaeI^I3w3Q8h z=mvS{1_6bB=mzmPO&+>I9`wFEbb~x}gWT_-dgumu=mz=Uye|*kAP?Ojk}vV08|0xI zgg9Uxx6Sk{RM9qZmXw7pI z7BGIE z$fy(VL!S2K>B>oZ!q8Lp|F>q}sBp{m6a1e^fHMXyxZB`3U1!k4(SZQISSt?)ajO3unT4S~wSK|N#E=pneq zXyzID477p1%_!M8X?T47-7bZ&m-cYX(?ugii(6@#Vqiv{LDd^zO0h1oFXu&Pr#i&mdo?!}# z^Mx_q@E!}#aU6+GvVd3L3WqUzIDdfP4qj)1cr1f_)Z36ikJ<$%W8goA2!sX(Omn|W zxB)?Z;6$_`-g!<$6C0ok4w3!7%0TmNWnrkM)1<)eC|&AGHT6t&wnD;yVpH|+^G5-QI>ik=)%9*3sQKHmm) zA6_1hCRLnIM3&j-JD`;n@N2uu^G~7JVdW9%(_!U9|Ir(&Dd=L{#HOfVMENyzDK|tbu@G*_K+pzQFj|PsFiD1DgRSt* zDdjtY6Ae~~1`(|~6U49?G;q$Wg-8_+&U3*agrjzm0IN!9s1d+wfh(%YpAAkF!2PLX z$Z;?O5tSAT1JMZ_#GvT3JcMIG)Cn7c^tuK~*eTw`b;{1PB-hk|EFo zEKdjy;w&OW8bItZ!;2;oRxO3RCK?SK#BxDY7lc(9^k#+?AtqO&C%XiQUtqMDIX-?3 zgv1*~h|J)KaSDNv5V`@eU%VLtN=baP03lr@gmPQPOo$+17lmzvJhAc zq>)$+8WKM;e&!}syorU_Nr+4{!7c{^t{DiHh44`nEr6 zAo^IN*MmSoP$lefVP8w4&mme$Yu0iQt873APeAxN4f1cGXC2z}{mc=G_4mvORLjz@ z%nV61i6$e7A2jMA5*LE(z^wp(Sq&_R$c#8%ydT#b16%PheEASTyf0(Aotc#VaH zfN}#bTIKL#h}eVhA;1{|@eDkyURtAB3$eKnqzrpQJ%-5wG_0W>>6V-HUr&$nk=t-k zj0DJQG3t%5ia>z3frGs$4;^bEZriLC%|jHWY4jSH!?k)Ngmp4j4fq&< z;jq@wuyN`>&{<&8Wc7Nh8OSi21Qvn|br5q0!VT^l3k`f4x#SFF4AtMWj*`OH-?b4% z70=Y7VSmny@2J<;(J(UQfeQvg=*Zq*VmAa@Swsj6G_wp^G=5eLNhN{6+XmKp*_9w| zwHp|t2lNIEhx#Owy?ScMh-k45G<_&w~s-vLR2xVlaTNL3n(Y( z1Pl%YkW5%pA>3V~)9GPN1+SKsHHZ*O3E}Tr$j!hd=9%kM2|UBXQUXa|BFUNH!Pz46 zR)`|x!6?#LYO~ZJji!NK1=J#V)`+-zJ4F{e&C<3vnT)c7OA96r1EL2~2NQu7GBv;t z2oeVVEO53#ut9m=XxUfu{sHwkSDePE_UXGsCJb^W7M40KplO`Ip zkaedQVF|K8Xd~D%I*S|?nE(k5j7cYuSWW}voRDb@WxZ;31P~w%_wQW2Cl1U4UCWZe${C}Kp)IotDkSCT1Bg$G$U0s zlg1274>*QJNLGM!L5RX~4NMx56Pq6r#+pH_!%o}3Zm$ycktR}(7kG|LuWf3HZhs7#B_ zJvlQX!3?>n28{r?Kn5jigd8W>RlsP%@+QFYFQ-MpngD5^0@!0<=|WzE1;VXiIx%yQ zJY``R46b3wqk)7sm{4G&17YZ}jUaK=5Sk4QAv;G0zUEp7azovs>3u-G8t7F+{l~$k zS#b$utpGA0r&b5Y1X^(QY8gl<0p-#{bg?MgizcI>2Zn-=*$6Y8$qcD^?V3w+n{V7Iceu~h#q4@C`u#g00Q8yK7ioW=Fa zqxJ!-vH@;!wTe|gQFH}^7EMuWpjVn>ok%w1^>s^i>nS(v#k62Lz`_m5K1PUBfpyXhCvaw?8BS4PE2G0; zXTv-Pc@nU0K^7~g5e-J51J)%$3;BYOa!HnhItNX9laU2i1DxoY^)PV)F_2(Q4&scA z(P-qT!P`)`NDG_A#0Gk`kmYM=7oDX`-GmuV6d);xVXY+38g`Tx!3Y~JMsFhd6FL)3 zn2E37-9e7$j?h z4Fmbc7BGGw*VO=t)bcqLOy!UW32q_C+A=`CJh(DoUk15*7O+}i$1I&gNk^dZBBanj z1`*7dJe;qYK%?MB0Psg?1zrm~HfdU=`>+POwxC`mvxX%$(6zh|J6kdC2`2dCy%jTvk{>gX_md1obZ3N{tY=>q7W5tad+ z7F1I-pw?@_8lf=;#5rV!8!JSM2{w0-_r<{88{!a1IwK3=2vY8)?CGe#YaJ?je= z{H?ERn60JjLLy$68J1vxD@`De38raCnq*z6*c*%Bj)FuwEo8|V7&uGN zf>8;+5y(L^n;{(>oNu0FYlBW8SDgqD=^-s0EF@a9U?(#W`C$SNq%=v=Wx1igsjk7` z*4sCDNOj1vVb&vE_2w>yI>~8z3vXr2W+Ml=#E{Pq*}5D^3ry$0elY7jq}A^uCwb%^ zzhVQ!^uRLJfP_9^T{gfr!Lz6(Hbj*aT;Nl)M}<`EnCOSD{D-dmhpv42jOl^(@S!We z&LP4>SN=m+{{ME|@_^nvbmc#Ifbh_jU%y|SUU2Zxl|SvFE1v}FJapwhbmiCY^?vBe zhr{>={pt^0`Tyep;h`(PO#@!}0S3Hbg5$1!pzBMaG$>&9- zJN-lV&qAU5XEW-^09>?xcFrQd)Enx5{R^#&Ufu#Frc~6RV!pB!I-XJytqR7m85OP7 zzV$a~sz#cCicqv~bj4!zqdw?n!IZA(=a}VDXs^BEFmC6n=&b(F^@(b9;NX~0^kPy) zw(1oWmRu3%m-;2aX1c8+8ud)BIN%c;9E^v%E7Z`*#L6(=|NLvX8vUG7;SN6Jle@zI zU;oM-l!jW5n>ZN1oLbRMrTQB6Ub}K6TDX56qe?@)=S&)`UY&++-kClC&z)A8r$${) zRYaj1BdXdUO;S}19$ZxMLxgG4GiZpaFy{b%o-Un?vJ$sk>2f3H;;djl%fjDbM#gt&RPdb|3zN$2Mj4wsB(x+6T##X z{QcRSXVm$==)enARjT*VC-WyDbw;{Gwkj2`-%#8Vf0>(9(7SE*~{{x5oekQl5kOsD;)rlXSFiVLc%Xwl`#Bhiii6I|*ev{UsVXhV42 zc3VYvv-%=*od%TrB11ZtPFeaDbp6h}p`^7$$vf$kr$72iJXJM8H(iywrOn5-R7Gs; z{X<1NRY$~pU(pJ!8(NVPyw#ub^ob0Kr|5dSIaT=F4;8nXpc|IT7@Ea3|H-H0X{_d^)E?@YvcGg!8J$2tFz5hzto`RVX@m zrD7Oz-KgrM-sDf2|2bMT?+{YWlrTq;*;8T>AU+Vk%T-=hsaDlN|EvsrIYl3L7b|UQ z)vLAm{orkYRXLSks8oCFp!SFNN2I+ue+WgaJcEviKPq`@5kg(K${LjT`s_GVTrtNV zw<@eO`l6SG%CYLOK$IX>#^Fn)m3w{Bg6zs{bv&&?Lw3)O!ow$4{;tBHe67{!%iK!0 zN`rgmRnAkXdj+E2Z_V4PPIpk9N^y8~YIPI!7zZ8aL4lOB#SS{o1rBMPRVk?V;>v+) zyMqpMpFpZQFH&Ht_2~72%0bvxQ@J=;y%%5+&G|xx^|pg*&V+T9Ekjht(ZcLXcknL{ z{Md3!<%D4MIftY;K@mX|jknRk$(2LY7;pu>fo>!$*1(@cZ9Wd9Bi8{!}Vskx6w3dLcTb9vVdXIsnb}0C&_@8Wm4AG zWKtEH22U~>Oa`>cv@|@3^7g1q&Ij;2OiQTxhYC9$$<6t-3F;hG8Hl=lio($4yLBs@ zs=lj3ZIckn#BVYw|3S-ov{U_7OY+#-21JbzsL?Re1E}Gdp_LgMp%|_5N2A8i5re<1 zZ7WS>=Vdk!>zX;uo2olI zsd{aZ-|gU}GSJRRWdK@BTnu+o8F(p_%0QM3EyIZpE!dwdLo#pQqhgi=1frc z2&2RKB4XNnfYcw$_#6d1y(*@@BIEOl4D&lDRWJ1)GAeJ@{y-O~AQ#1ApZ5oWl+iBA)e$Z_X<5;tvmjU_pIzHYZE{i0 z9toqIt&kzkgtlbSzjABN*TL$w0FiJuBb;(}l}qC6j?}8XA?j_=lrVPE{XgPWp;hk& zs}E3;f>wEcC7lmZF9(dt)HSmXF6B^1bj2P{nG5&vw5&qv-({3;0jh+#KgU+V$Fd?( zdHbp{!SBdm!x%c&`EgZgYISQ!2_h(+sQp#ag`tU6@U>1Yay73KgU{FgD6NITXnor% z9lEe};bW>>wP>NDN2`{ru3^BXlL{Ljs~YT!PPeKWtNIlUkE@EuO*&L<^+ksgs^+yaHu{EZui*3~3!}ln_ zoCxX~LHT=$G-`zspF=%V7b#kabLR%5;#XdbBCkqHafG2m_e2C8x)!V?45}FHa#Wpd zriL3+wx3dsSZF=pmk~(x`sXD~K z+hlrc0)NAhsam4_FH}{lwxRXw7n`Z!R7KHISFm+;;&~YXVU#&u^Xw^7>6dAfQ zj1;H)gEWUP=LmGl^a6Jyu8dsF0HE4Uwqs!E<%SgTkZHdnG|E20>mFhzRdTfvk z?|lwQN-_ObRhU}!RUO1mJ`Z|1W zePU@e-u!3PT_3PFH{Gk6uZlzFzpI7}c#IGDS5@vg8~N`zJNa)MsTr5M4z@p2mOPPb zfj@IIM#F!sq-2Mdx!p+VA}KvdO3&B>P|2jkX@Od3Hjd3*UVG)kj;YnF1JxsVbkR8} zqgz_nu?5BCUvaLGS7a_7)71zWoDgykA&PLzk_NuFpdp{PfJ9UHx*KGPLuv@mLtHU@ z<1L~(5xFm|4G$ekx?D*%XG3{Z_}#R*&Fa>`Z>z{}P98;Go|gN+{kHJ(G!yCpJCDyo`OZ{|_!uO`Lb_af=CRc)8@qEx3#^vRC7d`z7R0-utO3Y%2F6mq&w zhlEWrU({CAX*)f-I`2RKgjG$eYkWg))V@Y|wKi=zsbzJ^gU#EZ zXJf0!goFuz9Tfp2y)*og>MS1sjWn67Ti*B51C+O=6G9#2CCU@(RMb*KO41N@l=KIE z)~b5e|H7mExa!>@-Rq!5c$8qRt@sa6;kvV9rAz~j%t&>sNi^0aR9C7)Y_;%^syzta z<<`|tg=EyJy?Cv9xbOdA@4Mrox|)V_4=V1is7SL?>>5RSv13ha5o2PDg{opf#DZN+ zb$4MKIvOk1SdkPri3PBCMUA~DF($E*Jn1HWbIRR&cR_ug@BRJ0_xt1V57~RpoS8W@ zbLPw`_YMVvjM$O>*VLD5B==di3m&-%f>{O|xZmkQnqZ|0$8uz!VxFM4e`b)ewBsbNM(tYLv zjhy&5s|Yva`*3;af12rkcjaWT?s9p+Pg>}soB&ws$$wynH2oxV13W>;H!f5y>xXd0PogDZ*~HA zVYpKT3^Ru_GDNSFbdf5Qlwpk34utC0=t5QHE~6^097aB>)G~4S6UV6P3E2&Aj3aNQ z!tD(+5_Cf-e&KR5`WbqYH&dakt1;OAafBY@$*Gt}=*O(ly2;L9VPLj`hKxvs!lJAO zv<=RC4Zz$nE5x^A@(};W{INb2*1_%=z5N*@{DWBib=^jl4A=-?rxa8$!iTdF?)MC! z#Xm2vYfo>duP^ELDroqO@_Bpx2;Cu7DY`i$*_#Rl9rO#Fz+F@^hO0tFlDl?Qfx;*R zbka{HkA(srP;zPo{E!NsU1tQtoX+~EL^GPpzshJQC?Wr!g#59IBL50$CUf~$SZ8nD zRZk>c2qhuhJC2OOx)@af9TZXs-0!9jb^>&f!`%N!4pn=g97c}jhWM6q4||g#qnRA+ zsXg^U63G&RnCc8B1d%YB8zQ#(9|!_sdg+(yR;jw3k?b^s=lw_BE9#Bi+bz2Hg)`s1 z$xdYT!<;tY-&encd?k8!))`9lZm;MaZQ>Ya6{_-iYKGCT>HpF_d3NtM{YSm)ACJAO zGlnbAcZ`#H_9k9qxDjt3px;Kq#&9EU;|vuBI~v~6N@KX{u*LtRbJgC^pVkeb1cV8@ zsBZ6n)VZT?V&|rb&Sg5Y-J47joohB&zlfMb=Zwx!LUmc9ci7~A&^!Btq53&Qw^P+U z7L@u8*MF$nt14w-Sf^j0n3lR%y%{_Ft0qxkRTK zt0^ny5U(tE0N|_VWz<@FO&Q8!wmPKRq@97$;pqVTejnxm6G*C8HpX=0wN=?Pz z*U#Y3t{taOmpnQuXfawg|D_3p4deAKbv=}FV3U4FXgNXul}-iEC#F^tabg;*f>sp$ z(cKJR=rmkk1w7LAwWN*^n68g>!r;Q|x6k7BR=WO80`t=JT0A*%QNVW8*JVkFN*<+z}@yuulgx0!xjxgl=atQg1saCP#QzlH+mjqO}PI4f; z36?iKTf@w0xVkA&F~S0dtxADnc8;dM@Fl_Xf&Su4f<{?-PdD8m1s`7$U|3ic#?I1r z(VbFNu~72RSg0~vpWxc23H;b*U%2j81>jBQ=*PN(H-t%#A_nVzssMcAT>V?+!C3@e zDNPv@GBcJZ`g*S5gLS?YKn|I&x41$!1ix&I0h(6;zB*f1vSon0-7;nd}K;Pz~ zn_s5!O{s58dW}R*rGaJHjJH&9!On0n#e!?o8;JXj`NLFTkqQ{wnzCcZ>DCl-K{w5+ zsTqd&?eC@gs7n;7eP`2uDd7$l=-HtysXmTwD)v~sGAAPdzax%0LGi0^(U^ELCOkGA zKT3kH;3VVsJVNmWS^fb-d{_SYQ1kOqpM5C{ zvOlW2Ee2b z_4w`51~WaNjTe7xNixT|YO1fmHfbDq7D5*o=e@5FZK{ESW%{e+9c0g0Wv?p@=zb$K z^i?&$J?$0xnegsneTT(^rUa@~I83p>-;wT*_R*-tiMN``}-W7Cn%k!IwyYP`7rbz&lTqcs4pApsuwwReTVHJTZF0{lIRiX5r&_&vjTVEnpuo%p%O2SU>C3Q6zSrZ2=3`U<3~7r0jn zsTv1PX${*8^shr;!h8>?^9Fw$DScd_w9GEe^LFS#+DAd#y9fhhNG^}@~MH<5IYR1##drtwq#o4VgrrEIo+G#)y9rtelBeEVlK1f8I$ zK?Z+yC+^^t!_KDudKG{Vv+MgifxFD1YaB{cNCkba|5%EF>|OeL_~-HG`gXbwD%32p zob`o%w$v8#i}hVprnOFBi=q|SG*#02hAT~#$r!(CGzPzpT>PcJSQ^GCxec4(zNp6F z*L0&4c)p3;aW_sh!(B*#d!+0od-U&1ZVM*3gXPnSy>#!mQu($>ze}3$N@atf zGFzeIQ(=c7q^aRW{&O8Dfs@?|g*Rt;+mrX{Uv<-cqT-TmQWi|GS3RVkB-Pyf=!!m}ALd2;Ci0-md!iGV2)bUH$b&9yqb!sw_Bm`T>jiSY z3vruo_Jmbc=QShUCUXAboC)_P9Vc@B*4@#cBV@SXZ>Tev;I9Yg57$=-xAgsGXDpR#+|zH=nJ8JYcfr;yMx{VCvJi+Kj`aP5Tif%2o^os3|Gj=E(QQ!h z@ioha`}z>wc2y}etPK+(^nt#G6F6HSzyCo0hOSrz&OF7_O{6-seW;K2p!ns@h5%Ug zgFXOOJk(eBrsaz+c}g$Qe{v5Q#@i3|Lv&xcV$?s<_jE#LfwCX;7D#`rukOSZ8yG*R zn#=sRE5qGOb$6+y`zs-4CBj!0YT>cNzl{Mu=_MUWS2W?g4DRb*z9pbPZDT+1v;KRc z^Ha5C(*j$B1*l3Xi;^EC{)Wdl<)GPyMQC~G1;6W;IYHC@sG4(i!Qx*KX^#GxX?IAF5+O;yT>KT3yqjUmVh+=X@xLHoylgLb^ukRs{oOi~6! ziO$eV7o;l4sBY-zK_TR^Ul}al%<*z<)DQ}*8G?1;E-gu&Nx(KFTxc|e1s(|Ay<%{0 zICCYgN@dz669R+hctgkPhUU6KF3@;6r?|Qy(TNooVR#B*_)KC$=Q*ZO&o0$8w3Bo* zR798}>R(?nMVGBAWr~l2y0VV2ix3rX+yr81QB%&UCX!0J-n`)?)M77yVf&Amj`DqO`D+@Ez<~MkE(BI z>;&$j5kDcYox&PEQAjF|R5*s128P>2*GfeNWjI(Dp(>zcrB-ku(9pj;V2|>EUk4dR zlm{GK9`K)rh7RQc)5-(>-pKH}D_}#&YHXOVo9zNkT4ivHRd>lnK6QkAnrHBdrb78V z&tgAnY8d|vV{XyRurBbqTfBY$koX>N-R6cPx=&U7v!jJVr9e>@^lyO_E3C4YwlLHt zy5mYSJ|X(HLJxONRm#+O91`jn0?I>IX>Ay)`_=`T9M6DVtql#zgI5kV^w9lQ0r-Ys z!_@NNue33|snbk$v1G*lM;n9L37l$5IgscZA~dDyIo~{06{w_?6>7-B4Un=>^p>qD zIdvG{axxE-FNYaMYou2puDxN5u7@*}h?2u5LrKl0{?cT=b6O!Wv2$8s9sJnAkS}H8 z*`a}NJ5HL+cWoMWGAxyhltI@Wno**s3n%ma(|(-|k|eF5pbemZkHei+3)s;zEELBX z7U2sT45--pK_^u-l`aEKX4fsH_b4}m2y%i8lfKo|e6tNyKXr*iba>A5;gJ=XFsPg1 zM#W*jeQnPIOO{R@{u4VOGj?F`XxqA+48T zQh9Lq-sq%!UBEpkR(W18h5myK_25!(!vUw}E|&Mc5TA-!Zh5K#rC(s^YsexUGWiOv zEv2tEz35DCdiVPo+EpWOX7Ux}>&{@p_Bv(q6(qJ{+x8XG$Zt$WnZE-m~8=`nWig-*D}lU~qFIn=@TEfDgIAT}(DiC*(`)t@EaRsRD;P zzP)h(us!=ZNSKDTb?(E>6{!#W*{sVOaU9s+4*6IOsUt zFxv^*W$G&vlsZh|fnr+)g(5n!@3l0`@K`ra0pJ62=M2LbcsS8OPgfbyaga6B@QM?l z3(=ni(a|p?T9*v&W|!s|dPvaV9Yfuna|{b4-6B^O3g#lc6{=Fk$0CTIXK3aG&9u6H zp5d0RKn2aT`qg~H25Aw@&Nk?snz*q3i(uXIV%F{7ETC3(UPXzi>fpPEF1l-~QpW9h z&aE0+;r5{l+QBV3KLv6=FqoVuxUl=1VE4@P*-iLkUcAb3WutJlTwh4h8w@(1smeHU z3C;fy^i(ammsAxfb_F*L=q1CZaxdA2qE&fGsg>O`$8fI_={=SE$5)&Ignx{f%Kc-j zsoXzSNQwK$fQsvoEZckXqA%no!I^@YjmfO3;MsV7qSl#YZ!&c%e+eOakzwe#T7AX# z&m3`s3b5As*ss2LMK=#TCF2muLjTl zgfqu4bCWsC$Auh^xbQ3;1e9X{Jgz^pCDg8Dd`iAUg3g|Qk9h6%o2fk7*j(8-K_b6T zb@luQoZ(=lyYX96b(*W=KcRrJqrThfZl4qiJ1Dxn&$-(bAKUB{7_rCf%FUr7_rb7>K`CW^pZmD zK;w6K->ERf=o)9&tjsq}t4xR6xu!0QThFcvk0OoZp>vVBt^AaQA1%hVJn&Y<)U}ny z>?HhQl<}n0l7rIlTNR@R$)Hf!*w~x6P3N%?GRR^fbzgY+tuArMlfINNc2#|dZ)&`z z8#EouRo4Pl+6)%dR7jXM{Zs{tMI+YRX{+$QKyzbbX^LR~RAzTw2Bo0Z)44W3MIBLXo-WFC z2V0=A1@rMNC*(vIgKum~k=Gn7^Vb>0- zaV9VO%k7O9Dq#!eHAm%Sh3GaZ%~%`@+v1F^=#4>VKba#sq@uz`7TiiSYJDoYt&<0( zZRYfXQ69F&5Y-juRea|c-$<}O>S{dFfIsjd13xDiv-lfne9ZBv<=L43_zj8S0q?CcZvtBnP;ryDC|#E4E2G)_i-G?EHHLv0D!F?*vGzY ze2rt_&zs&gj#u-Gw@ThOhB`2wm7v)|W03mU-(XBrb!V99PQ#hBJ3;W+b4mz2Fc=G8 z+$Ve`*P*D*pDt|z%X1V(y^(A5Cr*kgF#l(Yn!pv+$7(#M?qMd}UxbQ!CC|82T|Co{ z#S!X~1@@Q0SV?+uKNiC6oy)!9+!Eu4=ij^SYk-U+^Mc{fQsWJ@bm~|FTg`f&V=-0X z*KMBCMZjo z6%1Rp80XVIq8?!8R-=}`iYweCs)Yrko4E?$F9fL274M+Z_lDqY#6bCn_#_qs1OtXtXkC>m07zD{9T|lXw5bcnlk}>1OjmV;5bA*$!jk z4)^4zMyfs+pZZ04jC8u0SYh{yxKzjNG#XzZ)y-V0adzW0q{*huRE41m6n2o?ZOrFJ zo5N-vet{3dZaeM9uNl1crLj8P{L+|(rOc{k?lR6(K`fBVx0e{-g3fzX*0#qu7AtAz zRmwOlILF7vk(4eb7uELPQ&GRdBiMK2vqk6t-!^KORGTHqf9Sof7sY7 zAPh4fhJ-|hg(u?+?3f`26H{aMw$zxElu%3!7Q??v91t3UsYfxR8@}$2S$$LRP4{HX z8;1EuF|%TfR20t4${+L!1Qzb@YwwnY@6^{9dVxn03-=y$JOuh-0!I(*jr_hR_ zX%#U&5lt-_foVw-lQFALcr>Pw#=OmmQFhC%X_(hBB`gfHY=&aec1+EL$%GS=Fd-l2 zpT^|y_z&50pN{F8CJtW`-R3Vh6;|vJM>Ew?Y+e4BfqY^NkG$!0l zj19v?m8qE0ISI2Nho{;Tewjw|6JfHX&}dW)CJVxJX5k63_$h)=Owb$>8;uu>Rr$

!3HHq+#t&m|3IgWd@Zd_HB&YF2h^Q8e^z zp5qgSxy2$wfDu})p1x3;_X0h+B>8&2eMW>iC*FI3=n@<`ieAvGFrE?&(>8`kUkm{uOXk9A21rTvqfMIPE4yDj;SCq!x_(Q7Ko|5F==#iD5jTB ziil-tjxk+5rW1_9M2MKnk!NLYkQ$9C-x4u1{eYb87cAEg@`e41*K^wXRs4N2cPRa8RcA6X z*`D!aVQ^4vkdc=bh2IFmla7v)9yF_zmzJLjYu?O>A>WOG zYj5VfT4fWyf^Cd~vWy3inDJXob#y^N~tVF?DYTd@Y4qi(93DfIv9!*hNd!-$leTCsuAn1VYgJPh+g zhhpyD@Ti!i5X=FY92J`y5*-$mn#A8feIXQm|J2@pRnB&8Ag(|#+jeL|Y*ZMoKNDkd zg_jzM%g}JlWuKUmAl_(wAr!-SV>87_7cL>;A<5ARbVnf~DK;`JCI%No$Y9C zPV<2$JI!_A)_~lGtmt-wncgt|_1s_Blhkx(BPjmB)QJMrh8qKOb*wzpEwdq1e1H>nifDliZpCmr;Iz4%y}KE~qb=kk5+ zgR^pHxZ#VEWs@xvq4VtAD)3X%K_BRF%iM@RcA1&)V_!Nu_h-UuilQL)RKD$zc_Kq6oO5Q0#Bra=Cmmke`mBf;R|~c&Ee3c?s42&Se6^_ z20xrN1!G;A&+)#Hdd}2FhTF=2$JIUVYu~gg_XL5x7fh|?+VnJY2n=X?!q@(E4W%|K z(;QYQGBy|y&9h7Z|0(7O{urNU_J%ZkB$2T&KQ!NW=eFDdZcsJL970R-e>L@m_p{{2 z47wB_WoUa!VeUx+_hy;fsPMI!Z4Pxn?E5tLa8)>4W{SpZ%JJ`?MTh#6DHcKusIjB? z%Pk~07J|apc-znHrKHFGYKmlK8I4Z%hKIkJqA6@`=jcbPx(UNWK&11m{f4e*IxBz zuF=gcHW+VcQxdODGquMm3bweXh5lqvAAFq~=qAdc=x%O1xx(|i+%1jJgeUbqnhvdW zrWW+~m~*}`p8wA1chuLuRcD$`?Yu_kqkZAc9i~Q=!&(J~3c!LIre;{j03Xyal@S@k zl}}6!1t6;o^D<=;_^f)<+AwOE$fe)%ym0t6f#0UXXZ+$7t-s6+b?=5^zu zOlS(S{i8Fup3Ci@s>}R!zAv+WYP>O!Fxlj7pU~MP1^_P%ib1{6A>e302Y{-<*={B= z1RM}_0H`3^yh3^C^sYG;YIV$?2zTE#w}Sy)^L-%dJ^bbN&q*J9hXIuArG@5blv2Vw zNOPDT;ThB>`intrf0NQWkYkSGH8pb0F}%iWsL9U_%m<(*^gn26PS!00%e|b*T0e0( zp1+KKD7Yc??|-=soEmTH0mW8xEoeHygjas>F2>^c+y*eeL%Wu+<9cp~O3`7|WUuFL zCegT+_T>pbnAgS9o<3yQPxzA3W#E~cn*ioyQ&n1JduKhca}kR zis^N7a~Vi8b3Y(|E`!2TIjI_d!Ou;Q5==3$`k=Q~I>~=O?r!ns7>_N3gtS~An7H2D zjAwo>Ofju-|4%vfE zaTGFimbo{uW=M0?3{wh>8fWr>faT0BV8?ywcx>zF_!}H4X;B&CdRuHzYocihNykEZ z6>I!*$X{umNIqE3Wgj8>`tEW?_GH0wdM&CO6F+Scbl!5DM1?@H=YHWw@FDO$GxH-I zXw7ZC*_V9AyQu9Ta277-LO+JRy=zK@;!G3XI}^Pu%ET`3U(O|eV>y#NRG-QV^ShYi z2sWo(cc9yjNil@PJHi0p{e7sbYDcM4R+zA5PW};`bQ7HXDdg?7g3Ehv7SgG)g3Fsd zR9nI2jgX9}+!BeR$Ul{-a7oK#VmUhd?U^{Ok=OBwin#v@en0AIpWM2zcebf78NY%F z8|KYHvSX1F{a#C_Su0w@@j0fgWX=lS`mw*@1?D|z>yzMk8O!Z)HAN=Rm78p0)t2Mkay&-Rd3a=8>NL|)}~rxxPe zOR=+n&cR15EXsQ~FFQ}Z1Uz6R7hSR5R28#wl)Yo(pMJr_Fjmtb$%mHQhJHru-vXt7 z^Hy@*&CW5kbBn;}6T`#T;77Bmq5Q;RM6zrpc&;*MRu!FE0=IHaSuzL<8q;X2+R)cz z(kbOMd?Z^}Li{@OXpP)f2xQe;xn53`SZEpKQiP$U2iYz9R?UiiTcY%B5%1eP-nS2J z*th#i-@adIFVR>6C219e_Aw12)mA}CLT(ynr;%1tH#arcTl=YCO0x>`hgb%YHUhTQ zD*W2FDTBnVVgpF~nSkqn^}{T2_#UDIheoc`@Uoh^lR6|RP0MXh5>_!|(0n19SLPu7 z4Jy)P6_nP)X>;BmxqnIXVAL{G8kx0A|f3%AG@M1wB zhf?Sw&EkZ(`(BBSvsO`Oa*rHABsfcGj|%t$C=}|MuZxZz6y=v0u|BfWF05kiLOP(} z)yOEac-g2wnrbBiZPu9HA#SUg*fhrlHbOzTJwD|+`<`hLZjCdahVAQcK!;)z>P>=I z+of1@fJ6qa=4y*y&D9nU`I}6ApwkxYO~2J#T~h>1#%ivv_c&d6unB<{U?tU625mS{ z>PP>?K=Gs+TGDGZ(~qNPr4g7!+V+NzkmYf-ne9p{W z!Hg!K>$)K(`oW+;dq9(4=bM#TPh+9CdooE5muno0<%zR-1OOXK_xYAY$pY43TIlM?28{t3Vp?tC|mDgd_+qiI|YVE3Wl-(EH~xz;re4f zpSSw$MlE4sLPwmAWpc)RY6in4414Q+#lvs>9jgBd!;w9>AdJ9oYklQQG;5g9HBSVM z$}nlKX%_Kc!)M}tMd-rnLg{`qW%`@=t>FVXYz=q*D~e53q0%l~j!_dJmDlk3Sw=_J zaP?;enp(L<;NsEpDK5z{)Nds-!-9Rm%mBfRo7e{I2gUnL>&a-rOoIc+3}&m?kHZ6# zyX+UiAL%EE%FU2ycBCl|Um2ASnqHL&vE_pxl*2JEH-y9%;$4=CTbws`~$2! zj6Ql7B^3(&n=GwMK3^l0eFJGyFMV|l8}9Tk)i$&_g+jWthO7D?0rb}zHr_FNOZFKI zw632(m}+aelCh38WQEv}Y4|)!nL6Z3bPXTqV@~1PKN2QQJ;zr; zZjr$ekPwV9Xi=g$1Z(o=p7TY2g0%aAc|ZDzC#R8tUTfJ{M}cBR8X38kjdG2TAceWS zN=*yN^tDXS#IFkIPsjtk7aonH@R_@2xO%RIxKwjDq!l{z9A9I}TzCW9XAoR~!i6?a zP_nIM<6PRxq@%4bia%OQ!~Z@S@wgrzG2)hN3T=&yp(ih+L!F>hR$nmnR>;$ZoGgU1 zoJ2!`6Je>^@w0bK!y%VUO;N*K^<6IG7=LLUALD4v^j*sy`$iIqXJP_;Y7;i2R zHdx0M-&KHhreIBBwZEkgc>`go8*3q8;}M3A^3DQ>T#h)H4b)l3ZD8s;KFa6bM5SRN z8|5-VUj*ue#z|MFbnQ6mm;7|LH$xxdZd~GPQ~HpP55%^Pjds|28*!QNqg8a#^^ssK zOfa?%fzaP;<>!2)LFew>>!>M=#vEY5H-sfn9Blo=5E_y5>E@nv*%}EMU#J$nj1zg+ zhjDUEa8lzQa&l=M_w;4>_pWIyc_2856&(Grj=Ok-W7Jq9q{c?MFATe93S=8dj!w(l zN0bzPaVPW+j=G88BPEm<8|YqC$e4)fZ)!Qht5^9EHQs$a*LaupT;uqKYHZyP9+y?t zl9cs)Zcl;I2d04}aXr(v^nnWG-SvE^f5?e$dxS(6uje!SyR=y!pk-1b{T%}#Rq}OU zd2H%HzFf~^uU?|hBRBw?*Bd;<7Q$iFm^?tis|E;$E$=>AtbXteNvk93K1 zK?k_@b%EskdOpSSc0d|+Oz~=Vz{5PB1W$dLW zj)i7Fy5ANJ8GR1*p?htyoUiu3;V;Hl5PmyXc03P$Lvb|Nz{h(Otw@A_e#f$~4LrtR z4{bJZbt52CH*F=AG6ojcM0rL3X?l}W!9BYeP6e|HA~MZeg7sk(nor<^*K<{OVMTlb z|KSO$TEBs-`uz<;)!R6yfj;><6a@{w$!3J113XdS-ME3P9QPY&rE2Wj9VsIZS{@2ys&gB$(^%S!&W+5u8Y!(y2_{wJV zDI2+w;2vgWa~cWW$cD5N!M5?U30;I@tsRmbD$9?vd2OI?@G z6@Er=exO5bq&xH@?%6X1GyUpdVY*<3J&gZ|s|q2R9kFIeasID4-tLQ}m*}VCApYz@ z+-j|B9uFAJHk-zUj4t=E31Y%;FEsp|Gq188W^tw%aC!#?^bGFnBN*b6mwerRG#+&#a%Hx#v ztzkqX^C7ex1gH=5FJ;9ozMP{4V`CJ947R1Qd9?Hjhrsk~fv`Ht+ERN!@P$y!yn;4y z^FqRm8~0|&O_tzh>LwANEZfAx(j}X?|H8j4y7X^}1Q%`M(aA0W^f~r{?i!p#AiC?i z{bd9?ij~xDVI^zH3bAEEzNL$_iLXN+@cxzx7A;syqf$yl%C+aW#(jE82U3LWX49iJA+daeXL>z#V9|#~_#0*~|?zVl$tRE(zE=P#B7^Y(jFUzXy^^o2hNy zlLo5D^^Zhy{qgqxN0#-pI891Xh-j`0WQnw_i`1Xu=>xQlREgtfOU7JS9%+6@GC@!j zI>lU}1q0WDG}RswZGM}k@AwCYf{Wz<#76TS80>tB}zrxGdR>1`n9bGwu zZQLxJN0hhgCaqknF*vQ6MlPkW++qxsPW9umC_Wyv_saHHU57?5(=2c^W=VylNX zU6K7hTevn;6no;}fZc@@q8ZVt5I3@lYKu(}5_uxJaEe2My1#Pz4>>SoG8AC3IDkxOq>qtiOf zQ_jdU1W2CF1q220poiHXR(@g%QjwN-2&!=U=T(GW5;>dCQJL~>qBGnM=n6vmk`?nn zW8SOgCAiDv*+UqK^mJ#e8Ta^_Kzw&pbI8)sI*9LU#w9{qb9d5kD<5+;`(plr!a{=Ih7@hHsP) zW?r;_tVOzX(XbakdW(lPq?S93>xW0EICgco(qr?Bx8Nlgd7&oPs_T{7K~&)g(O=%)P{+J zar9?2HpOu=b-;57j(3y@^}4tZ%~Z!$hEKQHgNB+HNTlaBJ_mH$CI);Ocn-%gJbD{< zy7-s5&gBUxh~#a2oa;Hv``h?9#}kkt7(_G{{4CkVy)IVMrjBxK&D1ywV^cb;cW>jv zy18gK3i>DDXdAvw*$P0p#qxnnk3`v1(AVg7=(PYm6s9MX(iKXb$AH>Uf$G9Gu2z&H zat8gAk@+9D@vwnC+(RCyO5L_ImBOkNgup@;GhpkuQXF*x**SbnHTR$g()93?UOP}Y zp&J71iSg11GRDXgMe$ff8L*ve7mu9Bpzp>_tFgkgG!X)QC@t$kA=!9l&5$Hh>2Ro) zX6{ER(_YhS405kA+w&Ndd0T-5g~n#qp;X2gxOGDv(7>%=JdRl-r63&p!tFxO1)Npp z*ta5=bcKL_LxRfq+C|~6khQ`4b z2hXZZn27OsKmm^_`w6=Bu;+BEAfkXp3X7*9uOSG7Atn3Wx`3O;D+Sy%UYl;N3i%m$ z=FD~lvAN}rxldJrtu{QKZuX-WP1fTXWpT$dRVe3dr9j!ED+SW-S+#7vKx=27t)MOA zehlXx=FUJilM8qRI)}3krkPkcgY(WGrWLRVR7!@BSvZzz<0G9HP`pQH;k@7^UI&v* zhHalw$+%dHGWh`m9non-$21i!-)bs@ z>`C$jQHGtM?qRq<`mlgUbly97*yp)}M|4eh@V%xH01@;0J2Z#u5y zjMME0jf`?Q6fZQt2Bo(!rvtm`fGqd`yXnAK*d|z*ELhmIgImHr!9uYSS=cLBU=O=? za7(~=mWqi{lUom`WnFaN704^c(O?M<@rHdAl2K+iDH!E@flTJEk3z=1D-xF|H&gLD&lV2H6 zmHZc(-N_o{9|MW<+Yh1aK8(xu1Fp)DUq753T=yPu{T~X9=br@6E0!Y94^b!d@X`Ha zv0nNRUAY@%ti=doJN=EH%3Vu`7d;6ftjA^Ffpg^RQmSy% z`eO+4usB=_s)t!t3#wDJEH5O9mSx|y!ra>px4cUNPfTF<$|^;L;EpUF33$_+W$Z@C z<3zKs-G7ZamjY(TP55Bo1)nAyG0 zD0;BpA3E(Z(`%dTsm0E{W=WEt*ctvfxVaY@69E2z$M<*TCw4mDRe7QZ^Y(rv=JR!6 z#uhwr%-=WSI48mqEAd!=(Za@ zy}~sLE=n3&d;pgxjaU^}JC*v_XWcTNAaotkj923lqB*ZA{@Q%7>SDYBhwB`6ONZWu z!{6+Z4!aL`M{oAAZ+u|x??%I5di^clcfYt47xbRlaVd`7sqt(u&uLqhRd-y0?$ypTx)JhxbvaIroId6f(ONL=-Z++iF`5 zR)r2Y*J4Oa_kHOlz*sy~<-5J~A|S1yo2K^98d}hhF5p!_R?lu1;}prCXy`(x$!Hlm zuo>!uPGnIEHk{0&?9Sl6cIZ#&ok1=SdSg&Uxicpq-Gr(^k3%W#aj_D@FS7ERgq$-zGYQ7N7mPg-jD4%p%0Gg;`mZ9%KV7+F zrN4<%hgQDj+{oyV8>XE`y)3WMS&m7D-R8sxCYi>2nd@=qx8ULh3+dkT zpuIe}+SV5(F>o*6cpkHtM=~`ueDq*B&fE?yMlibN zTr>=IGmzp9g)^0ocoGDl?O6p0EaJgx{URQ$W)*RH?tTm9iG?g!l_}LJ;(H+UVj5Xo z#D=P-i(tbFg(J{lw+OPPkw_Ld1}WLq7dv?Jfl5osI;2Gd&Y~i2us23os>0-97F>pm z+OLzaAM`*;#%n?*=smTYg5Ilw-c?FZc!z%pqSum;=wnx+tn>jdoiwwZC%Gy}$f%G6 ziyi9}$+2Tch--G(8~Uy>rINbET#!#vkarXT)1WU!H;BB1nCMC)Z?t6zc?ALKxk&e7 zp}BFzTytZJx#sXMTPehgE~MafE_%n%AmBbI=Biu4DQX7@xTRQ6R~lH)+RNqGo~<+z zin;Rk6m#XBnSh*PAyb}AY(z0rUaPq=O=jO&tPhm`%?=E26A=tlp=+S=ZHv%uN#-}UZ;xQ1(xuIPizS{wpLTok|V(~!)f@iQoQO!Ya8~Q?(*SZ=9X&AMogPa_{caTfKHb1k#R?mTQvv8bAti zcH~q@Ur8%hNMB5o0`ZG+7O~AcTj;X>J|0Wq4INrX51Jr&0Wus4p$nb#NlQuaK4!?6 z`2o39onX#+n^&?$IO1fAmTA=4$IKZo>6t>0)J6m*uSyY77^u=Wn9y(>r6eK>%90M^ zx+E;}CDthhOpEFJchXp;17La|DW>dWmMG0txYx`RJ)7y$0Y}AjUcqb<5l~h+Hsq6S z^`W@0y>DsYhF>6ZW`goozLc?sm!}-^yY>OHhDa=L;>?AHBqmQi+6T3;DSEW9vy=%w zd7j?KtxWob;uuVR!cI{m!@taf8bpU4?c;Xlv!5Gdt^M52n(b%9P-_%$jj*2X?$rX% zMKr9UH^t>T#KElXN7N(k?n!vFH4pVjuMooyGqQ~p%oEE*@9pEJ=dyCF92psm`+X&? zP2%t{X*;cw< z*q9pvZB`+!hy%>La3R6q1|4A5C5@+#!Z8%BM#nIQ;^pBPE*umjtP)QgDAvadPc|hX z2e^$H;dZ`d7ELKbtCWQhquLsQDmt~O4K@EdG_iv9dTnSp4t-hq^9pnkR&F1G)v%uZtn^H~NA?M* zO}YnJ^&p>$`)!XxJhi4M{o&TwsjcaEy_XCBCwbek94|@W-Mr0cK=cB&G{j!A9ba-G z^A2*KHv1sA&e>41LHI71@F}Wg#zF4AqYW5z*F@a|)1bvF@@ySTG3=h>xi_QlU{5~GrX2SgzeCrs~ zH@lRE8V>rpl;REwo;>2a$m9`b6re9S_SuQO`SBpP$x2YV(~^c8#ihG&(R*6Z{u}wC z(PHgGELzl*%H@>zF4B*@3(Wg5Z1+%T3-RbI^uqZd$|O6LqJ-%S&r&C+a@@p0HgSjL zq6;i#5;vTKK9(bdD}rjoAwI|UrFDtWU^iOWtCZn^QV;q^Y;YqOok=xvvwNINc6nwp zNP8^)xEz)R#`d@vC%!JF4uN6f8%j@eO|XF(nD%0{kj{;V-K-cwi~Qm7XSpX~M-jR_ ze8*vzuq?9j5Z?p&@(^EV+&_qX+bKYO2(*Gbdv6uL9nM-HI&c2|BsSykPliHVM|`!M zZi3)2emv&_-<2X!p-`Hz-&guh5f!vLf;#>B5ZCDw&i8%6_wSTKAC3I@3s~%yg{006YDgvBEa!Eu-2QT-5aJZOMUkrKpT|DPA7oEI7=!DWYy!hLDwqnL;#fTE5|d@A@9a&Gxr% zTL$u!-}q}3Dc}OqXq=(a?pQjJBJ3o6&$9nD6#KHnd*Mj^ASv1HX|4YKC-MO1xHvO39|JF1ifkNMwTGD+-!dd|E!tO z0L&e;@crDKxhwF@sVwY6Z~LJ#%UFrrJ_4aXqi}B=f$aPERyXafeb>*H!4i4Im`l+1 z5@JJ;46DuGzVa8#Fhc$o!swrq)mf?xo;NK0Y^(2TX?fxA`1ZF`y`NM4`adk=oatLwF8)!=W4ZmRAP8wnLs60*d(_;d0h($ zpJY!U?;YjJdHX0=&itcHIg9?Z=95)Nxo(yp<+}OcC{G44AL8$!o1?m+_=1+_%#rb8 zvUJpimwl|8wGxpIQ4Z@t|M9K7p+QY!B)-Vvkocja(7KA%BEuACfs@6#|0!C!a=UI^$ZFv5PRBIBc0|k0VV-1#p&NQs<2{$#? zO}GorfI_Tst>JN@&K;IFs_p|1wAMMa&3K))z1&9O{$&L*z_Utcaeb*TCcv?odMqX0rVlNPn9%WyiJU7~6%lr`O8%l1LGv$NO(^ zznZlw5miv#2gPt2&nM8SY2O$9!AiD2@zF89KY@fS`uU8Z($_3AWD6iUIQCQUb#cMZ z6Ty$Yw)HD~6}-&D$^#p1p1|vKobwY<*BUQLEhq#}(L!$`YnM4g!Eg1fyYNJu0ny|v z3}~$a#8|9#oU@3uD`at#klEPdTxO}qxy-%_uomF!+zO971mby|NBHO5lGZGpOoJ?A zAeiUOtqME5p$^MC0tG==jfhN+ zO-zajjR^@2ONdCouSqAR@()ObM!o=wen3hZLV0ZmHTUJbto>ea_~r?SU#ss$UOxer zeK~yyQf3^sJwcu1G+p1X1t9vc&^7Z5$wJPe^d3mHtgk{rv$gK9CEOYTvl`6wfOX;4 zp3)jhM?~iT63y}5_Ig%deyXu0!g@&hgaVD${OMd@{mBN{em=z9)Ep`vjCkTeGwe6xL}bEyv)ig3CYZ4gM5e`HgkO z{!^^AuOxYaXG@v+YJyNrkb@4CmQV*H=iv6uutexuOGDi_# zSHa&sDn1{3>m=*Fy3!LazLm~(%jQ}e*Co|Xac}ykTq#8Ntq>h0MZGC6Wkk(OTNKhYbferCu>s6u`gaDILe{CrogpA-Iipn(S;S!3bb&9-LbrPHd;{w+F- zt(g6}3ekX<#H}M7g9I(k@}_5NFmAC%k*L$m9P#puXHRPbVyT92$<^|*_uGo5O1hoq z=4cb03CD}GR$G9*dV#fV^4q6*T!8h|lsP8c z=;~lel>4&28hG}GL(|G}{GtUqjFe^c1)( z?SMfU{%-4*b^`lO6CGkpCgc*Dck-T8Ttq1+}%`WGrV`+FE$j@pcFlECozDhG{;*v?jZj{mc>TKsVA8(}H2hq9q>O zI>UJj`<4^d)^21F5~N{Eb)}ZgQz2&{{@dAYNquZxl+}PT#Jb^$@YJI|mg%2nxd~;> z)PcA?Exqh-p0(yn#DK6=;qxVYRetVeYYefS;R?qZ`+4h02gImVBfKE;*ywg-y#mqe zg7qB=;cOCGf0s+NT2HM_cPp~=EYR;gkIOJL*VgPn+J?2{@5Kl zU$>?czfx|O-lg0wUn=GD#fHza%McH0m+z6DrQAlk;k_A3E3TB=&*t8F&^lhG+GFz}2>vTDt=B!IH;cSqIaK`&wIPXMiC(1o+4Sa7Ab9N&%ehp4{=kFG5){$>0M^f{N@t zZupqF%!_4qBd5=Di#&lmP>VczmRtXX>NXp>ca~fFx7bq}OO&4FmX1Kw(mCGZyqxhW z3T2c6kXq;X^j!mUnmSG2wmq9QQ2Q?6XYhvLtk(RTYF2APb|1%_hx1xS$h^@c^&F4BlJMm)x)1PDbryZu&Azs+ z5}AUe=q+thox4_qVw)$2YunzJ$O7b!x)95`?k_r&Flad|4$;vD+v3+ma+)NMa=q;|`zWqW=WB zr%oIJSsaIGSsW+#%BMQ@FbO;z-L@(=e;y_NCh-4@siCL6dLvsMciak)YS{40fVXY0 zYWxMiUJ&GE6BA%f`Wq*}CnyX$0b*-5kjqe%TXPcK7qykxOTd<6IeuC{Rfj$El3`Q> zTVtsgr@$iBp67WVyPf9|*UHv54UtkQ1m3*+(LC58vh&;rwGFY&A<}e?f~K!zOWstO z&Uqf1bqu#XlBD+qA$eguS%IQH2@kw^SNfdi@XQb_@MwB;Ss}}FPIW$f z4@KMhlfCD;3GG58)P&yVCIm^bwojqOf>%B0uM%+aL z#?D!-rLQ^TR0mqK(tx@=>1S14o>Ir$UO{`?DZKY(dD&JE=8egE17GXK-#y{6ujJ16 zC*8hMdA=n|bBE`X0-!WN=wJJx1HeAAlWln|sST@Ke9sT}yH?j|1)W#hwAz&pC~!DH zJl0Uq+)@D4eU|VHqRv8*D)IE~sZH>`Q`U%C#;~urWeom`JDqxO*p{K*5nv3N@)bAy zQD1SzAq+Eo6ecr#Aylc15&%4RC~Ij8TO75juJo0Q$AOwdY+YdL&**LJNKjrd;K2hn zX$zeTY+hs~%8ah#5Gz}Z$k_jcvd1mFAaIy%v}_vE+q`T>+Xe9sXM;|K1=xe$vb}<$PP7ahu((~G>UKr~CXeN7>pos<)~0Q=$; zTd+jBBBeq2$qrQ|HDAF!sa6BxCr*78=AB>K7{^sYJ2WAt#^KnGIn3*4ehoRY=o|JYJgPQv1dGw)n~<>LQPq%t|ebmug(( zto|j$f)qVBFX=}apsp!dVU)QhSxReaa9cZX!py9PO}36?!bR?%(vS`6pFXO=ayk{9NK!Iu^@@@c~78y+Xd}x*s$5w2^xHio@%+8 zz*0fr?dK5Cs0bVr1P;3rumxC zmDnyr(A8OWIe0yOpfqW`NvEmFT{DtU+aAu7@w>-)gLaoKOLmbMmgn!XO;%C1dVh-7Tq1NYeQ?B*5+xV1*ZPqH-8g7Rs+t%X}KyNYZjlJt=G zhWYwUCAJvpSKf>r{ye-4?f2Pc%0O(J=I%aQIH`JtPZo2*dw|iUZ&L2i~aVaS8N+4Qu!)(@Ees{=HPD#7LRdxkbNkpntA=G z5UGP-s4&PJyeyoLYjOv#xoI0AwTI9mTR(iy!BY$Ges1H-NAfv-xbWoU1Xami+}D@0byel+OBE2s)fe#gu>8KQDnZP2tSQ|?D@Xs?3pzYR9iF<% z?d3R%ojUp>SGl9_^~h!--(BUl_zmKtYt}P(@t?*V2t*w{N6FT#4rxkHRsP5G8h2~e zuQ|K5nGo@_Ee@8~LciJUn#%h(zQ&y!HlX%L2{eFP-%K8%;=U@BRO;Yu@AiwWEpDPB zAYCSScyh;5uCv6;ldo|NzuBfZe8uP7--P{c>*a7Tk-}1r(!$x-SQLPPSIJFV1E~(D zx#|zweTnD=&3c07jB9+E>-)rZMm$_K8_aAg{G6V}kQ=eiG z`mqDzGi~0h42L7cgjQb;p8hP?4vY&fiV+noDH93mBfJ{(rp1a0f%UZWQ zn}o;T6oN&OkFIfzUcJUOihxw3h`8*rZLW+z#FKlLzV3NVNW<&gQUb1X-1V<>&oZTI z-dhsp>+uO&Fr4zp^MT(y@@m1-leX5dREv+jtILlMw0Yj(qvMak zaI88$j&(fx*TBa;;;}xMFHC7_|6BL}g3`}(o8lKN_~xMyd%Nr0O~zd3ZnE)p?j}(L zrT?1SkACoi9SMf1)a04>0hugBmM%m#{yGbT;YqDLPsm2;kibBYD&^tTci%jpDwu^8 zvy4JXl{tPeYW}>+u(~cUjfthN@V<|iNPo|&1h;FW9BbCes|sC0=lhB>FIwh}WsRD= zFUsco@UluICK7H3$juLRSmg~#-YEC~Ee=vI+Pq0F%7Sj1P7^XSTxW9xjP}io_8Xr* z{jHH>C#I%Po{%tQZ2H8vMrJ0ZPfo$FuH`lOe<`cLD>h#+-<<3LRcrtM#a2VI3O~9< zr_pQ|0k)}|r~6-1t?4Rm?=P&ESM7g`gBniX;V-~}M|anA6d7d)&gqQi5jd-R#`W zZsO;CpWpNQ2cO5~X6|Wo=A1KU%AHArXn0z3?Gut~|9*(|o3AQL%Md!u`pvr#M@YYU zR$>G|VWRBn1h(ql=`iap+aH$qmb37sTd;b$vQ?=Gd%Z8UMGqY2y3C&NDGu4609dpV z&>NA#QlRI81KOas#ILp~-G(Lt2ZZ=Z~cN zl^mv-4>|3Ki2EttsV#jn4KCPrI1Fl&)dsh78*O&D(O6@)!41ww5?{|vYz z-D0zuR7RCXue3X~aFw}5uQY3I8l4d?F4k%daMX5blE2q)WpKT7^{g?uggmu+&dyt< zYTTuNY4cRIMr(z3&|1}IxVcTMv>2`A-gAxBY*nfZ?`)hgCAx*dXj5vna7VL7t<~6! z76;tCt+&F}({SH2>|_7^nMP6_v=*HnZqU=1;hK4^Q3p4{naw)89GH5~Ix>Y*D}nwqKVY|46|@)C8uQE$>3)dsEJq|)k4b|d_6 zRhw)oo8F){fFQ@8PLeLWuiz%7_A%pzF<{B(BOau#i(aT;Zsmx03nW-R!b@X&R8lq=oC#jbMCmVYo$Ou{*2=8#tXxuQvO8A1j5( zVN}9J-Uf}`WP^JM9dHFZ-0o;Msm*$o*{IPf*?sTK-{A6cqsFWULkIta%g4<+jZJCP z*-aX-5Uqvz8(gRUx=<5uy!q=HDn$*fjifH{c@+2@L_xwrrBWM}2Cc~iZSSy{l}feF zZa3-mHge7V}H^gz;qQg2Hrn;=};H3qB7Xfwm@kPeeoqgN?S z4)7xtbP7yJqeE@GVdm&So>3 zj9|eUlM?PHHLIb~^#Rn# zT1f&XT!z~AnGHe;*9&T6-T{TcueOd`oYtn^pX`BlppjJ={v zl~z4p+BqxnwI!u#sW!7(qq5i>W)0|Bt27wR#2TR!uvjf7i+}ZV#J?a!n5`-+m=0W~ zYKH^_s;{v^nZ{^0sr(7&pV=v-8KK)ytDzEVi$QBM+f5eeLM$e&0Wuf0&A~+pMfFUT ztVdH+&(*G?9_B17P0m!qfl7wl!pc6)pwfUp8DXa_Np&tmIhthY~zfZ#2WfW`9Gb zxqnI-xLfu79r(p}%N|nHz*>n{ILi!aDyto~Pir7QQL42Twb5*V{zvU_SRE#vRU`GI z3+_yRJUUGWhUQQzty)N?Agn^BY}D(_dZh!pY`sPAhq~+#(m+}jB*8|#QESs`)JC|( zS8KL897gE=!KC3Zx?iQ-F|B&m&_hDnrKo|c5-+SM8il&|bgI^_wnC(`SgnvQn;;t|!OpHzDph8s!OY}WSj`rrMh94s-9rvy zGU^~rv+1A;dWbwam0#F7{Ubq9Jwuy@32&~RrIPhw%g>j^;vMVD61$r88jZowS)*3i zXPPHYo?tJibU6nEIGasF?sA6y+NL!_aJM=PW;JNpXqR#X)=)Lvzbs`Q1v3^4MK!dR zPVPoEn5b3`U6Up&ovx;;O*t{6HC{gBnb=f|$>`7>*2tpjV86p0U;j-6%Gre3easD zG-{L5VlbE__hemM^{h?Q=hAB6O1n6`(^*z4)uh#^Ak9^2%rMr0sBeLk$_$y6!(!1G z9B}Dw33Lluv(^C>2E&HYCyZCkHoID7*TJYrtAbmjSB!=Zm}Zcv&@1b#O6UQB00bE5 zUkuQN!1xC`Lc0~GXD&_lH}Fs2Af#2#*bG;wl&I3GXRIUjP~ngFm!`JR>+LWq)vu)mQa86C|q8g{gHawG}!#joAbjvO@(SmC~9W@EPXQjaW~YTKz@lc;RI-GNnFO zeOsCBaxbdEL_^X^2)5NJ&|aBNR$DJKrY?6$IU^<&5^1Xu5)T7JQZ3jM7rs-LOh#=bLMpf}G`~>=VNMIl zxy5XQh-%U3v|u}d@f{nqRnHdAWpte`9hOFB1|l+cz?ax7V4Pz-Q!1u`tEtpFEu_I} zwN|M%S#$=g7V;>)-Jn+M)P7;(3^L9!L-Gh2rrJz0MI{VlbS9TA#i z8#Q(-jO46#2h0dTZ)Z_DG>{4Dt!kS^WoO+SSSlox)pHKyV%4*jGRn*=Fl5t0vITx- zGTBu|cs7HSTCENeN;P+AE}^Ggfb?Ax>9={!GN_%4U@&r`1p?Vy>+*@wzmdUT=YP%L3DD z(0V$v$>Ol6VZKYRw!mo2&ZhKItzd*ORM4yRkPtwIWj1S6FeL`Liwd$*eCeB#M$&W% zgkFQ*YOq2mGmxCbqBEHs5XiJPlTB^Wu)xYZuLjmy$@8jZt;5+(U~q0a11Yc-Qe}h6 zs#iHQHb@=evpl<62ZF-%q+V@TOCwT)2IeIpJJUII(5FK>2Aw0ABTSr{H86pSFMm@4 zvt*4Iy&-`=Aa zsj#n6Sskc{g-j_xhM=)Ru0V#@FlFN~LkNNiJvh>nOo}QtlsysM!m4+`7#t>-4Pcde zJB+TO&xQmKM#bkMyef_qB@_m&9g;?=z+f_qB@_m&7C$#B5pp-E%4IxO~kO9c0p2*RyR+*=|b z3pmxzq~BX2xVJ=bZ;61eZ`@lVsAjPxFmg+~w?uGniNJqviGVHV+*=}``?~He5y)02 z?ky4ATOzo(L~w73Aj0~@y(NNbR$BhMC4!uWNIJ}NUMc(B@Zw?iq1ac!FAf%5U7CtV zzqN=SZAwoN_(1xuVrgUNGGPEah*;UgnHGhTj^OO(&c9<1!l}I_eQ|b+GjOcj$TN-O z^28%h(hSxmW;Vj9X=h?PmgXt#C;`FW6zEzj0P;#eE(z#$2?+i+k8sYy-P=09K%YrKpGZL8 zNkH&7r8K=gP`V%iot1!YNkH&71=`XPfKuRGEh2al9IQ+PZ+(;r4u4aibD03tO9HxI z0vaL#!QT|9trCE8B_M|cG(!S{zX50z?yYv7MK4J}FG@hGBp~>kQd+46N*_o-?@B;l zNSlv z8Hh##>B~UiPYSa5egGNEK%S65CNdEClY)HK6F^>IAkRu5P6h&h0?4SStTr+DSZ`;V z&<+a^IKO~%tf*LTNzib=84(NqB+$5NUuR1s`fzqP=l_te-boF9l0Z)}Q23MZMn6_C zs3?3{=^QQGhj;0m*(l*R+J5k7!u`%!sM%@;)QJJLXFy#gAUK_z0OhP`3z_d11gb#<}jc$YZ=gM3}`I_+AaaDWk6kCWk7HgArTyoWhH_imVn@N zRw7d&Tx~~m@DBsJN`c_OrY#RTAA)b&0cJG5G7^+EVLbzEiF@}4YH7H^L(XitxP<_s zwBM<&1Pjg{4Z0u9UMaKJIRo0wfZ!-BBGPUN2(E0W6}-rR&M~0d4CtH$^ucBdgc={GUMe)gyM}|V+8k$2 z+UPhlh5O!SV7(=<9t>=#1lEIsjl$oI0}srTV8$_+nG(!6MhbVx0|$Irf?3XBR!cC; zB^dhzfca2@d5^(-CBeKW!K|7DFn>rezcH9A63lNB%)!avJ@s&J8yI=rKbV^~$6G9* zCHRv%SaJb?7#N6F0(p>uz@HQ(dm4b`Fpx14$Rq{=e-f{X$~s(&`XEaDh$+38fj=jK zV+Ia?5^((LEU>F<66o6ubdvImY_~EDEN~?sdusVi9W%C zt#E<`+lD8YvkG`iF4+8xPZ(IH1lBn4G9U|?`-6R{lhhy*r50<%eABN&+Q83QYl zz~)L|OC_+m46NVh3~apwwoU?jM*>?%z(z-9U9C-37~SK4;_kz}zevr9dUjqMUOL{9 zj`z2EuA%?V5~sfw`tAf=aWm)fu8uB+6DO1ZC+FFp$~R0c=mL9HZ5G&3V}h-BCiq0s zrnJL0LzUI6R>S{Vqs4B6@5Kxb+`Inb6g+HvN7kgHGZcpL3M>5C@1uXiDeO4fq!{%T_vv#G47N=b=JlO7qI_ij~f;Sh*l7UbI%j zLpq&m?7!gAXqB@7%{+-0uX4^1XIDd0IwNIz%{2W-Ry#`saYZ%6q*Q-t^~B8o6lJ%l z(i(h&;)M9Qjr?2IIf>b_o$bX#JQ^^&-}#2K7*4aFQamLo1ar#k z%^KmIZ#Wx;5dppFoGxAsq16|E@g`)DAO|@XDg+BmpVL$#8(GOTb*vQb{oV1F^J}ru zDbCdrOs*`Ha0;K;wbC%eTFQ%wVw?Z$>P@6{q7FP9GnS>L!fr&m|1^Cx((3}9wzFjv(*Wnb= zIE>KbID%weHJmHge#hw*=gU|?_)43@l?0*Ti3S=tRP3=LOKP<+9m>o9aPoFx^78yhSJue?_q)!U0(#{X>CpO>T~ftxNSZK6q>?p=eLr5<^6*n==P7z5 zjrb7}D-h@D+57LG!k7D$boMJha{i9cFQ@2v4C0SG96bj5lT-M>{+CkWXiYdgfn6As z%-4XUoBhv%+#19h%8nX({6CB4riE{%pxzH?*LKFQf8v}d);$fSfgX%>Icc@HlAr_u z+>!LSsv3YE=T5L{c^Yr>^`HFC zdA=^1bXqza>z(=vj@P6xxWKC)nqP&@H(@}jMe@q3+9+_M>I}FyXVbj38OV2%D2VB2p!NZ?-m+p&I)3o1v!&RcFHXpvlZDdH;7`svN6Qfs zI?v0%1J60ziQU2>e0>f=zKlai$Uh&Z8L7q2JMa8L9Kq9sXueE*oG+n)yvs$Hq#1Dr z&%Njz6VD^W;pI1LD{$;3XAf~Qk4F0=z^J(7>=?pA-XC2IBODFwyox#7dGE4wRiv<= z|EF`exT=a6-ZOaV6=z@3%fA5~^`WQVCA+v{j#00_oOu!6`FH;1G$3&ohe&&XVAh%y zE3kU;#OX=UX?#hL9XydvC`-h>Uq3Ps?>p{pg)hGkR^Q+ccfY!XQNVdfOovlOg^!$F z{15))92+HEqmbk*Gx0ATk~-1RGuW&uNfpj;Q9Zl})QM^kFBNBhSCE7Y?l{kisb@i| zN~1o5Tj6DQohGpjU!2`$UKUC{%TgT~0s`ZtZB!&4@&!f5kZ7Si4X!Q}UpeF<;w&KaLnnR91# zm#X~vS$4=dyRz)pvv`GP))O3DA2}Smzw8V!7`fo_;D9P?Z~%-{rMdIq(k^KCS$Zvv z0JpUM0cNW#TF_DC)k&jd4c3*-D%SKIt60i8zd2=L0|6@&aa+86&ir^hz9GJeH1J+t zy-|`p%5(l>iTG`}ZsuHQ&8(FmOao0*@F4*`e2!L))4=2)964*VVdgn&1mYx6*s4MUP!OtFu_l7gLK~ zcn+^_xiDRh5Mt2_C81>sr#&@a60}=*qS5Ag8f~1nre>hcpov#!nZ-AW05bD_{TwrI zauXE#5~MjhbDa1&4@S-V?Q`q|F#snAdqvU!>8Vp9NQFOGzqSHhk(&P!v>~}O>P$M^ z+lVu#7sdN0EAiZVNIW0f{!Xd>wa>G|Rg2(s*%qk9`A{Rc6$1C#7<{BT$~+%x1XjeN zH_)R8uEw5ccP@cQ|6O~}nu|Y*)LT6?5AP9k&vRx#I?X8idAMz`;7niVh;?xy{1LR0 zV3%d#in->>EW%GEM|k&E5yY_NP*c*#O9{TLkrzV^$sj>oh?hj+2jg)n?N46i0ckV8 zbe=UcAkb!xz>YMtBK$jGO^xp)!ds#}X6FK&fqsz$`;q5IM=#%jVC2x=Z6)~oXuP@k zf_U6i!;VF)JkEYUDGD#f) z=}t?;Ea%BxOlCZE(c;!{r(*gT%uc5l+gu3Ip^$-Br{jVC+GY6nDB(c@+T4i>xQVE& zo>9!M9>6Qc;ADT13y+Ex9wCrpxac}a4mD;a{xS;gwE(DY_|hi@>0Ff`34mU}*&i(( z4973iM(TKhHB!a}R%Hc|HPBTbYghDG*eV+(Vo+t;8-{N_{K8uNf#~BYl7X7S&6NZ- z6Hw>4C^}M0i2#M)H~lsgAC0MKExga^*k47*+lY?SoVN=a_*cA!yTrg{?xabmvF_)g zsUAL*^swy$GuH6jX`dTWvPs)l_GIU)-v(`xQopYr1es~}|HC*H+v#QEV64!w*2lp}<6 zSQS#$c!8PG@g>13;2rN{f27b>@&W!PQjpF65PvVeBa@NLl)ZfsulxuV_AB4TB@RtG^pB7uw)mZ$JQB@X?xnbuWcVrMSdG z?dnf4t_7164D{H`J-LAMxzunyFR>Wg{Su2f?Jm(ED=2XGHk^ukl@=<+7KB3}>O>5* zJ0yympz`F>yJ2a+wGyT?=Hwa>v7m~elP|H%VAFowB}#aSz|u&|$yq;|McNlHv7>Y! zytMYkcYeSPqu|O|S}$_{4+q~g1b*UQYo7%8G{K+zD=rt{CQ^z;F3RO1b(;Vdsr6t~ zA}M3$CE8lTWKJ0qd1XWl!L=lUpbQ#emv#XS%aKs=C?v|mznuSUk=h@i8)-3Lr>`+bqtRXkm544+7>(M zGE?}HU_ImT=7mS$)~ZwZs%OSBc=A@sbDg<;$L$bM+u^f$K7%Uj}ce% zB{aczUBHcI^tmgTx*!0|BI0Bv~mN9?fCuLqq;#v2XC7EcO}TFnMyFS(iVVk#!=h0tOQ??&VhMo5ejU?X!}!PxI3Do;{yP zO9w+AJIZ$>v>G_cvyNu5EZ(jBlZ}9q^2%XT-P?dAAKqc`-tt09zR0bMa6c zgrm8KN2=@de=?UYlIl8_uWQ7xmLyR-34xoeXjE@ez3{Pjyh-?zspUT=M+ks#6_g)} z)a9=(EdNf7zrwWv^?}+~@V;r~BgESLn_!n8%N28$xng?xO4Q*BR?R4XO6nOk$P96h?oJZEP4RMh(lzBsddrr3uA3?({HBHFWNqW*rf%O4fQ$Eu+= zNTT*g_0-66Ef?Yf72_2|LmWOixBNG;Fq9#O`jEs>hD!T2zJ$}xd-Ka@pcPk`$1Wq3 zWszjb71r-GSx{adq1UglNb(vFM#?K8(>^T_GLu;Qr- z1Nv2x>nENc9ix7Kg@zKmPxE_>|EXuoPt-+Mp-3J*#!Je$0@^3HuU@*sqQ`%(u;>9q zXcu*WS7^lOVXjmy&hA(A0_yM=Q(D`&IA6ApD}(vr^pn77J*6vR(> zTpDUV{tN3jm*o7@~cQONh+~nyP=(=E;0k4A9bS`VHC$WZO z`fcTK7S5=t39yNhK41J&(Todf0m%3N!Uu9(y+uFIyvX5F_*-o+&lkkTe{+pVRgm;I zzVJ?YiI~K{Au8bHXduba0Pk8+4hw7P@okcM4xA;c+AOgs__hnagD2{$BJ6t1^>)S= z-YwrD_T<@;+&H;AR}w__H-Eo;gdjf5y~H&2^8M)(ao5K>DDW2_ls_as!2{5&?cu+} z>b8+or(wZ5rDSo)LDsP8B&n+o6OD5rGl0*F%lb^dgrg$Wz8N;VXAi)-eR`Z}FgbGXX4NtB&F*Qv^i_GhAe)Fzy2}K-qO&r|pZ|0D=Ym*q6^aAFI3#jTkr?yj*nX{Dzm|7K;+s4! z^_}L2$_vHqd@=QyH?Oi~Kp8^FAfzB1GZOg~Jo~D(nH9&jn>0L9{(W-zIDu~+DL)t~ zXFPwj{3r1|FEWW@QKzqhmo7Y$o!E{ARQNlnr^?(>ae^zZDqB$;oBE6Zg;($VthxW$ z-^;%c@SE?I!}XOXXd0Ln>?;;aT9Hv;y~gD~%Et>h{{x0cH)B0_vV5%A@fs&7UBlO% zDj$F{uF*CKB0xm08)Q_1Klrfx;dt46c-Syi5=J5xrerc!#vc%dTHQ+|Oie=OYb;xN zl1M2FQIEr7Hd%*QceY#*(d=t1#hbyy(G<^mjinO+PXknVwrpx4{JVfiTk(pepJBB2 z8uRMa*I2sr!j1BS2z>;la<_g@s`>lZ{KsyW=R~2sfFRG5KB)v@8PykpYZu&u19g^X zN?!-zs7w2y?qq%!M4&Fs%gw?PU&3i_ZmjEfMYWr(vcL#eJd%)!--vU)AvV1Z$N_h! zhMs&q4nO)2h_)mn}a5(W-Qn&COJ2{FDTC-_`80h^&2Rb8$mh>RySbKMl1bMHd8#w1Ci^7yQA`4W!eqb;Cu zP5-dQ)f386ip_gj;(myN++-m1)7L`~QAM(}Yt3XB`J$h9l z`d4&vZAR!FsJXnc2Umiy<>?ne2PANSOthhS`B^T&mjv|(Pqd*&V)N>!lW?}m^+E(E z#}`$un-Mxsr^dBMyumj(4JlXuiNmQcoaq|qJK^u30R@A~6|Oia8U9J@x{Ok8;IDM9 zkHsc8I8>6Ja6^VzTP=)YB zjU^8scz$Gn(uOhp@o|L1=&v zw18TL3^ksX!{RZm`q#zh`nyzk%mc6~=~#c)09g2@ zG#B&ia911>f8g;$yw@Y49H10?qrLQBC3P}xiX#BF6|c?!yHdQ{p|!Y~Crc+$YCYnD z`+INR#C=D(OyX_+Jsmmy6JBheB*WhUu^$`lnv2AgTbz-Eh+QF}B;KOY5;dUzRuMY@ z_IGt+(ypTH)shH?TavQJKIyUw;-fr%h}5r0C?h4Q zhjUVM&K3YOz-uyFRYlRbhuL*8st6b-Ozzl8T*$MeBF_si@;ZtCEJ)6nFF7sPH?& z3%@~P{XszAg}JV6QQ{#UpXTd|Pi-y5KloyruOGUFzn$pH41>^VlB=b7EgZszNv;-h zgpgiyqa@TXl0JS6ua5xO2VwLPwo?muG9Me*H18XeT_1{VZ-=-BH}m$UBodG6KQhH- z5=0}9MpxQ(TuIfqy15n|@h69e!nFz^pB;Id<+H;HC0XA&^ft?A$4_(ZiA9rcvyApB z9*%aNqu?uOasxTQ)6O#jH=5B#cz0wTWVGeCS)W;Un`N|(id{3VQ1{ z%V^`Cb?u8mp8%FTfxR38H)e^ecMSR#>MPG;>(*vN7NAG_#*I*KlEs1?v~T2PW_=@H z64aW1#Y?W6f_Rr}lF%VXdx;fKfDJkLk|0Suw+x!7`5o3oP3~}SXnK)+hov|Fak`2H zq`SkKNX^61CQ7|Sn@C8;Du)YZxc9GBM=}b!7!_U`;7&8Iu6W^}hZFr8w<}#p=FK!H zo$)Qr5GnZ_A}aq*9Cp5VW@I2!hrfdmmAORn1g<#95${~-nk_Ej z-mwYv3nkBrSgiL~V|?d7eHu7dKU)WZ_DUkaAx3`H7=|89$!o+#ok@x8XQlcr&;pKV9BJU z9qzr_)eblDI_k-(KuXjKPk+Uw5%=;`XykqS4x8DOvz0G)^bJ@$zC7M##FrdGo#c%i zB~GJsjrjIjmnG@~RLHWMk2n zMG!M&oj6cIzHwOS%~|i7CZ_WYkF9qt6x;J9)Cd3uf4l)wAQ><*0xnJu2xA1ymwC>d zI!nf_=!GxcENF;d-{xwKhTUaeokiHo0`H)^Eb#V!!)1>}xp$dYJ9s$i)x+m4WRc`(|JE$_o-wWkGY3h=qBnzIiK z!}DiD(D3g9HCT%mJ_18fD^UHzJqYE%`41WHJ$U7pt_Sc>C!KA@S-b>vd)jn>UApEW z0-HU)B1_~Mu!$SKq^i>1q&)(DYme(nTKLuo2v^1+zx&#CIxT$f5P8Gp5Q>5P_u-uVu2yn{%FafyjYFtf z@2y}gQ(AQNw>#h(Er^#mSQ;F;F~N4pw$I&%h1u@jDW^GDj&9gRjsPw%3yU;-NstQe z^u23_&;;+_=CX*%0%w)fsS^camYMz~Ke*nii_`)$%Pu?|HOpoKGfM(rX_gTcoglnVERK&;h(FCBuN^)rsUde%Yn1-xsQ`*AV2Jao4< zUa-@ZffX;|`_W7g@1m<~iVbKs7&j0QYDJTSjZA}Z`-T@z-Oi#|kFWz;Xh>+`TU*hf#i!z8)Kb@8B zjB4RO@EHeIcpY&f{1t2-=#*RGoya{#?8_I^45u@~Go#$?OG+L9}}- z5})8+h9>4SrE2p8sEaB1k|4=|0_NAj*^{OX#PRjrtUDLd@k}g_nT#1Q9BX->>JMfp$pZe8{t*;=G5b<@z-Z+$Rt^ z2u$Thx>C}{&p?3~>BdC&kSKHx;N(WSJ_N2P#r-uxx8QrKZ9aYz=hh$`HPIiSdc;I` zA*@?tWo>Gr$nTCpPuGc2@uf;EdBmxEDuWCb#N4ISD_C+a1q8|n+_Iq zN)9gvZPprO{I(9htXS?uB|w$*@WoMnh?(&MKKiArt+y$C??#8h&*Ga zX1*k-IA;a6c_ZM{~vi``cUL+>UOOSeGxR0VFya-|pyErk0gg zE`YUT5m`opG)zQP-Zl~>~S}hBZRR3Lt@{) zdiEg$p@1^^Mxik+jV}qR6`p7Y3?ERd-ATBm+PyhK^ZQS!-3ud*?u)eU9X0F%cwAc1 zU7~Y)#D%<0=wiaWXuMGG9xl$~-&96<#cZy)s`!^BKd&C@n&jvAfAw-Jv_6^z?sbH) z%*WS&BqUeb-NRiL2u>`nMEpkx^Scn^$z-g@?Yz39@s->>5H*$_7mUd5*2?kv>cI(~ut zd+8ti({T4Fbm||h9O3SQW`@!@KE1A#4_mi zoxbFWp1JfOd7?+4^dnF7gZcjCiGGwjfIQJJB?pox`jNyS@^9U#o^?M&Pa|RPjr0wFnOY5(vjqeW~q;m zCz>&gB2Tna8%>^QxOHvo=A95>mr2*35?E5pR6$cw5d0M68RN*I7fbk|Y+FVDYRzQ-GbkH%d{z`4gO;_Jo+Dialp7ap%zn#>iz zD_T1!!wDyfa#Nxryj*djNQbrg?vF(!2SLpwIg=|162#`o?z{-^{KqCk+!Fh9i1>2c z+I0Lv0T|*?zBqf;+gYf8tUs~PT`0&g%wyIJX+dCVQzx;+NhS=N1@AQ7{X3cvixXzJ z)8i*`#A}g#E^Y8zi$=xbr)Idd;xz6hPCx4IgB25F>!3-o_{I#kO5|~wyrXBjdx+2T zSX5p>xIELnR*pc#ZCEL;bmCxMESrHD$I%Gtuogb>V?tAZ!ECny%uTAn1|F2{)VVRo zJxScml?R27C*Xm3{0n%p@8L9jey;nF$dkcx*;1G)*VQ1~<*bHH@%s7h<7j^@URLDp z6#p$J0#&X8pDc0@5P#vygQB5tWAWkz?j0hJ79xst#^K(7A&S54)9x`s{7sIRB*T_x z+*8GbV8+S!6@`*vfmm*^dTC6K z{Gc4wR?okEnY$kny*w*<#T1NS`M)3-(*BaBW$nN4Lw6&8@0Z*kBk_HnCoxCo`Zaao zjPl3I+?V6u;a*BMJktr0=4-B;+Au@%Ct&wnLFBQh2{*57_Li&~GGVAOHg>r`6_4{| zX&kQYc6S!f@x?T*9go8=x!wKac?3zmSdV+Tc!$Rb`WT?mQ6-NSB4Fz<0+K1e2ptH% z;dPG}Th`)SnzUQ6!dgZzjfWuG$4B*#NBb}PAeR!A{7Y(hx3!*!L?d5J4NqAMU#b9w z$PiTBeWS!d;b8x>%DrC>ON=xqn?8(eFtgPNEB~4IGO|FP0TawzBr%48rzzp1uejmk znW>P{z2P3uA#@LeK!<=iNvl+%EIv+tZs|buLKT+%7zLTV&>2|1gbNl@bQ!|7Mth6q z6pCwk)sS>Dc{NuO#Kj-K26;k+cRkj-UE&8E9)@-rDDLJPVHBL2n8CO680|B~LNx7>v&p*EWis8^fg zL}%LS!g>#x^2^%nhU0TP)MgU_ZFx94v6)z#O#~45%87soRk-}HH#bsa+}P@VHLZFB zc$gW$xot4we}V{7+2Ilcc$6#QDzk4p7(n=U{-N)<2MJ;Uhe#|S9e?h3w-V>@#ncP{ z5MRzfO~YU;eHSp6hGL+C+BiLFWoj6NQSSjlMJR$$fG>I6&E)WMJ9DvS=4(WIe*c{J z-OB~h&y$oJh^H#1AEH*BDDg8MDdC#075-p{TPJ?Q7t>hvS#3Ocr@N~hK`x)KDi^lA z!b==%A9$jv!zmfHEewk z1?x-u<_PV4x0PpuxSuC0x7#+7WIQ@`(-giW*y^?LmYW4b@v7{_tuHN(MdqtfVvr15db}uApMd`xgN+zE+IyxUjmT_N$+Mw0nkkaD9^miY(X&)Y zEbEPg`^bNRyXuCDA&uW%(#bq9fO5o;#_tybcD{>ej({eMwDA*zjh`KW z!&?ryQ}NN-e3SiCVNLuO5+ueRWmE{BUIb}q{eer5Lc7>27H9}g>YEG zTAk-z(Z|1`=|i#J(^=fg7t{0s0P%{k-I|8MnEY;bEAg{X3Pxtwci8p!9a#PQj=wIhSNZ;$9 z+|AQm5NpSCij<>H35QBYwT3w+Q(Bb41vXcJnO~mPy#3=o()iCGRhmJAY9F< z(lifx`Uzq#Pn1@V8o(63m?|VU9%uLWJR?Vt^O_!x7wg2)0;R}XL3MtC+Yj`-Rzt$R zj3w;N2YHT*ukf5%ZE;RBC@jvlDT zbkvg&mg%T_J-;xCEw#)GAg@pfaaNnk52J_0v7;*ap|&IHdsF}*&B z5HN8X*=|hqEE3!E#Wb>|*T=t1@{E)t$Rpc{|56wJ)X5&0EFD>eS9X2Bp}7&F`RZ_q zSXaO&gO$F^JdYr}{K(XJ|AWgsW`u?`2uWRSAsC%jc$!9|CmV#0TV@2|=(xqufTgV& zAOab;Gy}q9t9oN1v8?71$1Q_{HLoTZ_}634GC}n5bg8qs8sHT!&p6S=zmePjGKoW3 z17`m(aiBrP2JOEYj`w()MKY-#o`~@m@9=nLpaW8??Imn@+edpE;LBc*2c3a`Nf&*R zhoE-zf(=3n)(#dR!Hu zZ3)ciJMQpYXpEjq2r>Fcq&*JL00Fu^_Ggc?DQu|?vGk=OVE=Q)^L=CVT0-a`?Xv(J zsZlCcpuL?d>y9P>b23V^vFe(uR5zlv50%J5b*r=X+x5Jwka&WpORfF41bjWgdq@0@ ze?zRjazQ;yh+%Vbhl#ikq#WcRgJ!@Pd*{4eV1|REq_%vqByc`p1hX?Gc_ZZ?_~@7l z`Y}}^JzW<*cF0}=ma}7TK|e9MVURnUz)Nh%I`F2+UaO#Hpu^_69um9opwumzHDuw1 zpj6HaM3Aq#e!P8S?{adFaivsac~-Pbc%mWa8Xq+A9*P&{GlWa)*Y#|a7aYbnkrX`# zgsSWpX3{_4y9Xd##XEpDjgF5JuK&(G8cIw8{Q@}$Sa_SO!KNxTc%vcnlX@M!b)uun zU>~<&DM<9U?&56}4M*-l<#V~-?OBPzo`%eAzSej@t|c5{92WdMvo{C3Is~@C{oaPP zgo~BxQQ!qHuSpLk9v=tcX>aibQx4iDH77_)^|7IfJ|g&dkDC5gm=TfUDEA7+d@)ttbBS1-=vB%Q!vBfZZe@o&EV z@@9*d&Zgz@X)V+El3*?1i6+pAc*@)o1J3C*+khG-vD(&83c|72DJGHHX8QX+<{ghv z$0SzWc03%dZc-AfE`hHMoZ$svD*)l&1%y)&;V>ErRLLg}!;{!N>awxk6ah_wQrVn& z8%YIEK{d#OEwB_*3P&y<7V9#-#d1YS!&R|$q&T@Z{0lkrJduzMdNLeL<> zOHOBlYEX1{e4t+UB>%$>?>mC{A<{3;&<0tsd-0p8=CtaeM$p>f)lYd}6aVJuan5_2FQ(4>cM@}68G_t- zM@!n^xwA}$F9}MGJ5BP=K&=`vLr!nRy`d(Q+K9PrNj|vk{f(F%cjdvT9k*%3?3jR8 zx@`oGbm}VnyMPYIv$k(I)eDCz+X%PtZ9g$wZE4t67J3m9r$$E24~I&-tm;LZ#{6GV zvc!O1l+;$j>w~JTn5r$)zi_5^QZ!mG>1`bkNAi?b~EcO3C8ZrL|L8$-plC#-hz9eXO{`Sv#|Bez($q`%qwMb2u9G)Vsx5Rro z(r_`p#QRgk&08hj?V^hSOU70bM4L7dGYhRim9EY*p}XMW3< zaNI5}2fxM1%x_BxVOe*(BAInSLtpZKj?m_0=D2V2aMS=@$;@#He5KN`jT~&o1}A5EXxke~EXstf#s&dR zC+&`RzUi!mfA)I&qf5y+-REr+2G?Kc^Uf2*_!Qt1h$}(l-WA?|2r^y$;u(j`v>ujP zj29f!C8pn2c~2p+9Z#NaR=oC#w}+_Yi|J;?b}4xITJLB%0!@Iw9y?XUdE%({c+fiU zNbvz46*`0=LJGdI&O0NXX9Zj2Ks~RmeANpF&hZGr8eVwK`vC&3w1zxxNDYrgtYP*B zNNeKrIr5AxKC#j35NB}ZT&sBB@D4`#Dfsjo-up!!m-Tr$Q|z&{(~=@=XA#NH+%EMT|9SU#%UjOB|$R| zxW`G>uN7|b?iIv+9B4>1I4udtQ)8R5_ipvRiH@Y;dE2~;#bZ2$VEc~R?tKj%N+FYJ zY`;-(dEjg~!gR30vkD51e}2d7i{!~m{NBsS;XlN{`+unDjgn*iD?IB43-Ew*eyTW) z;v3`m54?{=Jp$X`hI}f#CnqXzOfv5Hp|@Ym&yWI@ zU==>!28~R{D?juOkNXd}d`ae1eA?;Ftd;ixXrLs?frag7lA`ir8sk16d9_9HjmhU) zzyyAQ1N;*5#Xy$)5~9U-BbMCs&-?n7)zp6Ie>26>{3 zT&>6xo$F{#o*>O_cVAu`@<@B5w&aNh&35F8MvM032^5Z}%u$TR^FH?O61$P2Krj;8 zAIw6=#$?(;g_Wb)rx67nTlGq!BK({Rpwj5OED9g{Jhc-ZwA1SpM^>RY{J*Ct#Nggv zq-I1xE8`a*7@N*M0c!Gz_sd#nN@Fr3`55l8$NPWz1SnISR4M5sknng#NeW*Am7_h| z!p734KapP2Pk&H{<6UvRUwv@d@HgK6qK79<`6M>g z66K$;7+X3-Hvwk2!Oz~FV%;VI(}dbr5+xv%y6W%jBz*8^uUc#o5m2Jl7<+&5wiUaC zg;Q;5&_rIZ1M9t6Euh(%bq|)lrR5ut4cPgTV3P*WU=Hg>(O7W=&lF-MPg(k0Wf%`a zdh*84!^R`)1iN|C1hYlq$em;>P}t0c<}Ua`>t)IK;32Q*ANn6}X8|v`KCeE0_o%lK ze(jLAUL$?ANKHjE&xtk$?fr83V%qzeo8XOyy$j?BbVvW3P}q1vG+<)i;=TXzZmJZk zrJO*BVx=!YWYs650=CcpyWD{!4=wYBQoY1UE3w-c*@60DM6c6Vs zZ1zICwNNoJf2v)PTTn2~t|*)}*bilA!hD+9$o+ z#20We1v#+XQy*Zm^1Rpw45QC@e-Thr z(@_2N4TC_l5}pJnuIjwE5VdT|20v*{xi@s|+q@|o{4BlT-HA}Qrfl$IgP#a2>9R%mcmBJ7dPkvn3!zWDaOk1fAZ7h0zEOD7H>~3bCTK%<`}!eEQ;c`} zGQyzwPww`m3t|yRk4vLRf9Cs~Ak*xf=ZQnydVB<>riHHs2v3rT!IQY{^RF}w^?m8n z5S|2`LBMqT{MIV)Gr|Z#CTOttrnfwPH&;bz`}`iRh}-(I8=8o0pC^}Laecy^Fyw># z=Z{noXI>b1x_@4M$NOOmbg_zME)0V}H_+d$Li>6c&}xj>|5giMR+QMdSr%2_F12#zqF6bS!LvZ$=ac*^8e7|jH#WM*nwGqQr$AGdAq+lya##n)C`#!GNu z|C(&H1YpV0dH_o&k9Y=b@|Z6PiW6X&j;CB(+6aHv(f4w4gaA3IlkY9@QEGdDX@UT-4{Ci`;pEw&^$iglG>1w^K`AH?0<`fupE3lEPON;U z^Q{+KhM-9kD6~^Pe5;n~cPBycVd=Pc_Hy4Dt05Pw{W4Vc+3P zs9^)_D?@#4;(1urKZJ;HOLFA#d16lAQoLw># zy4m5rnQ~mxQ*v!HG;G_D9k8AeKBpk|2<3vhw!kGLeci;a{2Qos2EOr#PazKDi)qyX zVag-E$08wE!XZo>-Cba=Rm((d@}M}0fQ5}qj4 zZz*3w*_5v{Mal`M6@NZ<=r(n_K!U;u%6%=7%R+Fh9JN>BkfbezXP&#swa>2smfH=r)H+ImEJK9-!1_Sgi>-gVK9@JELFN+D%(Y} zdAv`J&|?5c&L#}P&5^;umo!iLUK3DWDqHLc!aW~^gQzkH^+{!mJs=0|uX*8Ff6bQ! zbrY!0OQgR}!is#~GDZ0QIsn;Lz*`UV@y)5s#$^c9AHE6)t1s}usV4lJ5Vvzn+Tw*{Qx|+mP~1RWSJ7_`owufD zpv%y3WUJ`~!bWC*XH$s*cJ}`{%{N6rb<&st#-(v^)BvwQW0Rzgz*ibzc>ZjuF~Ylq zZEK~aMr|51K2;i9YP|cM!tNLD|~Pd?i#|M-D4FrRI*WbH(}U764L3<=v2WZ; z68ntlEcWSmINH4F>8yDP{J&}5wD95pd)oP`vH8ox)U7)HDmu*>%QBq6R6bUVv$9XrwZ~gF+{8zY!S|7e}F zX|zp|KM9T>UXX%+zBI3XY`!HArqXfxUn`m>PBc%NrN}QFZ=cHM(-rv+yjt70ahG=a z(+Vf#+NZ({`y{)0s=_vH@`PNgxsXh`+Y7DjJ1a)yP9(GKQ|%M;r`xgjotdeP9aHls zDu9^6Y=JU`6=vlXh53pcobY4Aq$k_8&&iSAm?zm3IXQh{5d@Y*pmatqK+?H=YyQN^ zQ|;sJlL~UD+kw1!nk~0bF)M!>hydU)hu>K--0mRq<|{~PfC@IBDoTn{bnlE6kIjLz z4_nWyJqkcz*=6b^#rXUg1U`3Cp?xZlFQh`k3c<7qg$0UsMB>UYGuxyQ~)v+ z6oM24qQE@SUdL>mnqPqTZOLxbH0vP+$n#V|`_83#&%>1Gn9_Fa`k1bvS|3#6P88>~ zgcb^TUvS{^3|~wlU=jfg3_TYp{!L?L{#T8KdynsyT$g7{n&l>`G@fbP?*V{*RhdkcxRGJ-7_+A%GX z1n0@IXO`^~hkELpL6l zc2{jPSmr=*DyPrF%fL2hhkqAPKp9iO=$*a{6mRDgz)w?77a@vdoIPk>=(HeCgYj9Dbh% z+gY@*v9z;jVPm?pDE0%Wc8L+^Z$IA%-*KI99rH0vm6zZtE6-;*zwyN*Zz`_;jjwam z)(p_}U%$7B`wI-UBxwTP^^PwoE^i}2?};yZ&$q*yzwxykN9Yyj5hBHTUdUF9^8gcm z30g4)=e7#%g;#lW+F~DhqDvF|$rGLQI6$6gLisIuqMr91c>+@*JAjI6k(xrsF`GMO z_rhMEzZN=~LATg+D{=fEPcy!Gz?Y13fA-ZAj}y+cH#-g{O*Y%`CGhV5vG?BbRTN+U zxVs4?BpV-ogX%=^?ibEfRd$&$PW)lOor^`k$U!X- zspvVOmy4DwNvIt4oEw*m=F2UjNdA{arxZ-fADL=mgLq2SiDlcP?|oJDPEa=DF1D@T z_`2wXG6?pd}5RWW18CA=W;Td?PC{YTUgqR7_UjMe}QDr77N2aa(u4s@v zDT;jkU6D({v_{janTYMv*43Oey;_tc7eTOFd=>VT3<6oTxE>i z1>erB;TKCbUMqTA-VsHH`~WM$moQT{f%>xx9BhraUbIYk1=q24-X@DqDSNtQKZXFFzI82`aq2GO{S(z8z* znYa-*979;h&-%IOO(hN&^SLiQrkje3nJID6e9Kfv0MpaKN`?^|L^0|-c?>E3xo9l; zd!T=iK^Q$!qNyqFx7Desol(k-=I0bNd;=ctIy`&OfAen9Em@u(O)mdgG!_YHWJ174 ze0oGj=T&}0XStV5asMgC^2IbR(Snu06X;|TcMm$Z3;T%W&|*}gk!*~#KBMeLRWzV8 z0&xLrjor~?f@B?Nfa*Qkog0h=@k2V9vK78m{Bblrq|=q;`&uKBn=(wO*ai;fqbW=x zD_CdBx1+`8HC0rMFMPp%Et*cnT6h*!v?@MwKqIkv-3Z~>H0(~a*t`aO=`^eik?bjE z8Fj4#L7kLFT%ANLhV5Ti8u9(4XB6s!>_+5JbNl!}3}f1)HR9S(_#sH9yvGOp3#;j|SC8)xr4<}Q>y0nnrnD;|_v~>|&0QgYpSEsm~6`&G5?eGL9WIc0wW8O0mUi_GzN| zh2JG}Q}~$TOE=TaWj}zAxACvC#WmprLJRnWGd&!(D%pCNywSzhSm}xtV4LZk082O1 z0b4xW-izgDHA&J38uxKT32)W#H0x)QGL3RqiAyIqq(uX3fD8*H)~Ba6;rUUAW%=27VK zG&fSnV05D%z{}g{@O>lWl(wb>8P=XA1S5ln!B=6-2%2SDEkRg7Ky*6B(PrqE&{ zqo;K!vxi<3Zbp2wr}YJ8wmI>4S=J5Iw98+)>lifE2g&Ou*@Vsiqk3ECD2152773ei zF>9y7rX=kZYi9$2UesO_QEcvrBNSzum3?5ccCaZQB=%8}xm-{2g6^6To?XJKN;!|9O>DQhnoGHjF~kR=D}}Q_jGvH3Lkg-tQ$&= z1{urEftcM;O?yyFfVZZ4bMUH3avDX~d z;U?JMKN;DX{GO>{eLznVJ|!pG1bowHSd8)!wu1&XqbM0(%}kXDOO@zABY_Mq+3U8B zGLbOqxgk-?k7fi%p11ZlAprfm1U5&WWnB#fe7hBk-SPNw~rdRzp;ALxH6Drm~%gqS-?XtErA=tmm8l!A6Bj{2BHP|M; zYOt1A2PrR_5wNqHdIHFv+GbnUOmW>CPL}+g;9qxJ7b@>yrYuv_9;kePi<$ZFH0POG zPoS4I*GyJ-nM<~$YNqB3=<`g(Jos*k;99V#m^JWE%KK`@r4es0dw6ovoi zES>cvx!v~56jCs9ZZ&p}NF#~72fTSK#C-8+US>(;=RCTq~jbb1?# zBLKPZ?z`4Yijx|rOT=s@wgVTlFmT53Nv)26O=|aeiPax=x5{C6RIpohA9i#H z9c5V6Hl1tPjUK%}wGNSjwj+_aHFu+OYMIzL+1`Q-{>*w+!DPnpKW5S-{5dyP0y$Qk zKs$+Y+Y-`HKHq}pwzE_foO-2GMA`!+Lp<{d?hO+c~p#@Jo zr&^%&Ypw@BAzVgX?XRqMxo#|9(ASFPN3ycNwtg?kNl;3UWNAV9weUcEEYGb~gKUFj zxhvrGx%H|JSHp9&itV^0KMa?CzEU(4@w=_zSXONr%a1>T9+y)b-4v`dKbek8H1EML zcGm9~gQr)3p7bF06R{eWTlyHclze`}I$3sm8Tyw{%)tz;K|a4}JtM#7Wv7q0fK-LG zx^3+zzw2dYfCgh`+G6?O@f0wmg9j+X4jN+P9>mzjAGnyF_YI;z^@$Fgv#n#RMLxe{?MmAHVy&#_!e%D>_6;3D{=T5i%jG+q?H zJ_A;t`DzH0btbW0wgtagqa>wiOQfyV4WnC<-|t$RE77>RR1KvyE@p`y2m=4GHZ~#H zHEv~hCCf+^iY%H|JDo^54c6xhpOHy01_3*}%wUVugve`%w zL>a3NfICL-StCh%*%qW{z>WfI{XSYa0Bg)Isy`>&-jkFPEQJmiC{Z^yqh-@m%uTbO ztgT?1C4bbC_uONYGtQCndoB6&^hQP7VfovZe0usdhOzv3q9yNJ6ka+#Ekh!E2vtVi z$VxW593029M&&r1ADcm`K0me-wl8{8UU`TT%sLFCBHncp`J+Ifc!OZbHYO{BCyoHNdfBG(t1k|(rt|wp_h$R%+g7~lu z1OyOZ{NxA<`>DbXou1`|{fptYITC#^Z_8C0P${~o54Z4#EJ~zpha|P5uzKwEh}Ia& zJk{93Jw-_#B=WdXmDb zlW~8)Ta666w*XHbpAc?YW}!W#hR5C5RwPN!FndUL*CQR!?BHnw_GnXE9ZA~8u?N>J zZ;!AJSa zPijjVoWGz-0;?1_ibHHk%HOz{#o8|x@{GmS&xD}vkhhYQs`0>D4RV!WM?8!UIteVA zBNJ?KN&_>37Zc!{19}4eaJW_Y8r#IrPT&&FO7eZ8ZI0X{o@bw~RHiPrJH^x3ZsF;k zY>V}kbK`kRABl0SEi>U&4oCsyim%|pwO$6iG+uLIdEst=HpPtPOrDqu-p z3t17*<9AS7TLnpWL#aNozbj03fDtroZ?&^cmE_j|r%&u3l;XAmP9mR1fvSd3JynX~ zN!=FDlRD_Yk~&tLXEt1doVULd3{Ahplj0`u5sP^GC~gnAmuw9tFaLcV?%3&KOC$bI z!$UbG0THo>a+MPJL%BQgyjNfWOk@}?(Ww22{fVV@J|Ekv*16XuKq`c<%z6{Rj%omrAGS49UNob6@?qeor_%TE+rlKQCtvB}5>0dX z#d;Ndu;%%BQ(zgJlLVvK2`XFH(?3jLJ)N|lWQ+0~7-E|sdDaZExh3fbO2G%T?=cnY z_h%qlq2Eg%lJt(Yy5!{xGh)i{AYbX4>qx(+V3$J^d55o_$UA)KNSmJ|w}euChp#N| zRgX#J9e&p++cZh)Kt^@24M)RHh#p3^<=U>x*@?z^TpbO@MyIBUyvu_YtjlAKS^o>i zC7KsiKf^nVha5y+B8*v-h&q4kakh@6WIpu!O^F&MVf}tR5YUJ5K)^;rEQO~UT!N@u zPOu$P4pDw(bof|dA*SbJ0xm%uFXh9S@Hu#w&PXp{O(7v?N{M_(fIwL-5r~mEPlYMA zS(5x~A|D-o!W1k@E`e=yf_M%{OQ$_$2&V%?n0cK)`Tg*h?b-Fr@Xp}U5w=XZeiDln zvg;@$^C`1!y-3w3Y&FQm>9!>@eB{XxIhn!}DM{qA+cty~+{>|vH;rF>-qxkGtbv>f z^!g#Bk47K)p{)hQ_9ng4Z9!z%HXB@8HrqB-9-3r~ut6FXjWF7D;3&?6zp&XOUp_2cv~+8JNZE(do2IR#FB-! z{mKVaKpF8i@t?+9>?06w-zV{SyMk3`6M(OhP-eaIci z(Ws;J4-$1{C9a9fAUVY(v*aW-CBc(yunkyuelr3Isy;dJINZnD1#0z4YPoPi$7GhI z2qdX4o+VG(VqmWg!1}m)+5m=BRg*IALwcp#DwFU$^`CFfwgt&!lZ_F!QKM%$tbH=i zVNH|E2(hwE4O#`JZsMlO>yuGvy}KGhYtcAJT`wjZVoQDj2x#g8f`62{JbTvIl4Ru* z%CL-B+GZ9@e6MPq4Za5VO*ypN&1l&&4@W*SX5I$dfwJbUy*An&Q~Xk}rf1!~YM=td zsKX}PRR!0fl|wy5!jDDONFi5=ZMUAlu*>thu*DZsGe0!hZ0jH?Nw}OZiC@b0C7ZXv zN}?^UW3!W_6cY8U?Tmp+KhM}>CNX&b?$OvTWb^mW!5VoqiCk$DmkH!hvAQY7h!nAy zu-a06q(uzN7RvK6l=a=QDZKAe654kQN_NMTA-JSucYYaFF-{2Qt-y+|BU~wHs955% zeI*^F8t|J0v?=2$VfVfi4~!8@B+i^~*ge zykCMUEcNSJlU*TzOOX5C+zy5Wr*cCor=os2>qY376+VW3**Fyuuqj0p5YT=J1gu|T z=6p(lOEhZFgq^k-lG2wlETdoE`G?W*!7hl7sU)We=AM(VqEdh@Q%dD=(R{bfD#Pfs zwAeOYc^soyOiTlFXg;3+@CS&A`Y7x*+u#?Q4p-n`c-bv{`f@4?j(vM!9?{!vgCj1l z!yM-rRofUQinsv$y;MGxU^MNw>ZTHESp(@a%A%fe6Q!EQgH0y@57UWlwrB#shSG^Q zB{D2gYiUF*rVgj_m;wvTV=COdkyS_3=Z>hG#)GR?8Vauc2OzjSFG6s|r)e&v^VPl* z;Aw0D-aNMMBNk52!dGd?@k6%d%5ciOj6jPK=3*lVO+)23Z#@6HNL=A_Df0X@KC_sE zZD1*3W*QH?=ijk4k>&Mid?v9L<5=V^1Y>FBQTzi$UK!bF{(I1g_X$7mN#lzgn7B%k zd=^S!{-7Ob%jzQRK1D9MZ9_@>4{W3PbvSI23jZvSzXc-wJR(yiN~1~XPx;q0<4mEi zhG5ZiB8^86sAC>Iq1f>#1_DliF^yaCpowaQg64yO8v*3QleW}N2O)6Uwn9WKE42b5 z8aY7puOep@|1`$wQ?}f)2J4=uZSHXM_d!4#*8kn)cFV;fBgj7nfwLWUmJ=S zWPfeQuijtOie#R%rN|2#k>PM^{^r=Ec_oD^3QltO_Hx;_EfZ{`0ng#fzX|MgBrKMZY5dXE)jQiSFS=mPAu`a)@ z6@Pmcmp~nxIP7gD-kvS1lD$29{u|pf${Ea%ZR>uFN;HNZxS+m?9P|~g5Wlz`UA zeC-iy#n#&Eq4hMT;%!=Qrd6)na+G?Q7n}MOUAJ{rqH!^u^-1-JHY(N@vl)$Qdkb>;XE;!>?^k$+i+QoAL7G+Pnyr2i z&9?n!>j7`VU=1`+zKe^QC-=7|FaK_{=n3fJ0*SA|#qW6#@%#UvQ^W7D9Iah$;bJEK zyVm6TU$#XC0=;wuEmY1Ob#t|SjgIe(}T-wX?ko4 zbu$qkxF_(wyHm2yP-3u5c86giE@9Tjv>{)}_5?kat>iTQ#5WSK6w%*2KK5-=P(Q>~ z^fwlBLs7XQ=Hz~D$f}C=#}!P=Vhs63e4L;+@=H&|(yIsD^s{Hk$`S;jQn9DS=L;4- z07rwTg)Z0!Y(p{(mtc+BHk~_8dETfCYP(q8>P`%Sub>if)N*f-y{qyjDyN2Z zA}0n63zXWBVU_LE6-;GJ@o^@i=z}Nzm50-9_#4z(gNqLi=u~5GP|vSw@9ZOg-G;wG ztq~-f2!P32J+hX*L9KHUsd^he;k7Ts{*LlHHi*Ti+!pl`7N5Vj;ZG%WSk`^n;nol{ zg6d)RC-ux}KqJ@p;Ob(%_?B1P-9_u=n6^fLWSZcaKf2bkZ}E}av^Dypw+R7r_}V8{ zHewY_N*96bDiLgmpG?HH7_UDwj*jH@6F$rrz*Q3k_i<_v)~oo{EZnw7iJSG;~oat1HyN?v|)K|}eowtQ`No=OyRKE9?n+m^4* zmNv1s^O1jU%hzTz?>ZY}@KNDI;i-*VBpHUjO0~OUN zD{b-cC{&`UuUfo~zaH7Kr9D>;O2SY+lQ?OyPf^;Ua+KBA#M=kRN$tp$czd#fY57CP z9trlHN?%OMx_44LPv1oQ!>}8Ot62X&lVl&SjK;-+g5PzmC(wu7cHZFFSpM_~muTjb z;uQN#csg;pu3c;dE~jF3ZTomT-nM_G+J6g>Tnx)L0*f(}HSg+nym=`}=_Y;|lG$0Y zGU|%E*lqGhz>IDM9&5*Ud(L*X-;=(j;@S2Nni8GkMt|LoKVlr$-TtH`{YH@%GV14b zF$ns(4oYTb*uRne+p~o?LVZ(;V(ae9?fAMIG-2y*tTlfYgG)63slj!XzwMjao*R_Z z-ZO2aJzP?Twg-e7q)VsUvy?%!MD_l(X77xW2el`MmKCQX<*sw(2DB%IGwcJE1zt?% zVkYU^?cFt)D;Qscil5z~|RPtgm*69z<=?I8=&OTqcgrNrYf9256+LMz* z>{zI%INzRFR@s-!KY_Zi|AN%L%PA?~4A=$2AZ9TKp~X8;QR#3EGHH28N7&b`+*mVfMEi1@53g6$^G zD*LIY0}w0Ki1p-hKYLv08cX!Th|>RC7-30`i;qtvk^O;x)s=SNz_geMOG z8CBuv)X=JuvE$x)?m$*4j{)Me6(-|rPj3sgod7lmO6ZCw<mghbAh7|2E1dY{5j|?{g1?vmM__> zRgAa9Ct8xV)DsjR6Oo*fn3k55k`fC?*#CHUGP&@Qy}B1L5CO^M*!M$8%boXw6+H27 zs4@UM#4v6q35WFQ$kR+d#u}Vw5!kUE*?5oKs@CLn1a1?#uqK(f9f|ep+#FzSz zB@=Y1N>!v+M=~wwy-;$x#9rNx`-*oAqn|n)?Ma63Hh{c+v~#yTM8`)5Vg9jVn+^VH zBlO+^fkNjM|HD{=e^LeZWiS7zH7|DLxnqmbdQ}WqPbU+B=VUcIlS zbzdtF!Yn;+)E;H7c0&7eG?X*tGwEz@A|0UrtWP>@m>E}IQYe3kmzB;x9^==E&%%8> ziCK8FPN+Mx#L$?QsQsDF!llOWs0F59be4kD?JU%dB5P;Z2Pqj|jJjb)EHMnj7(?3c zBG?Tg5wl?G(alt*3X0;j2MekM$Pt}*ZdeGW>89jaJp{`Lj;0e7)FD*;>vduib7><< zA9)xeH6bo8!2%~tf3epNu*5{9CdVfvCBQYaSw{<`?%tR{4U1EMvc3~r1xV9K_^iVF{!1H4=zoZ)k3Zfu?y=L$(NS( zDla{hRX1vb-7fd+%x4QdJbfOcvxTWx4VDxp(Gp!!m_$mJi===$RgO?{LT5f(SmVWM z73RdULNUe|nk!fEE9%Uq3(_i0Dry-OHG$W%v@oVKPYZ{@Hho$cD|n8fXdLaT^0}Q^ zMj*SJ7l&0yO-qY|V_9SEwJOI!S5LD*l%}O5$6AP`?wZLYH%5mEL>OZ6IUh#eCY1H+<>)?F=$=dE@^4?kEk~^9_h3c$T{4u_{f9kow@Zc8=uG+P zE@Dpb3RZ=6{}Nh)yT4olE{B~t)b$?`O785!yZ&h}E+;V;*7dJojG@663w~enCZW3) z@<}cgHJpmtNp@|vca*nxVZC0eNGx0I6OeX~32p$O`*Wy9)q86f*6V#pd=k0c{=E>t z#Ds*@#8h}|1p2pA-ZB@IIjX<)g4CUrHY0ktN+D@y}X7WGkGvgF)c?2eU!o}%c^U_@8e z3y{N9W$HlDdAb6-5u}{-L0?H4TX5&_poQ_|vy{lv+sQqKoL9y)a<^udrzBOIa11ndt(puZq&7}Jf<4j#c+gYVn| zJHMMTEvPkfy7Ae;I`EZ#>tL&(r3ji5K%Sv1sG8(L4WtBV7Ae_(w3ff{nb=pOIYIST z&TF4!Ng4M;F<)hn+b@>Oi}`6cw%y<-^(w`k5HEBK;RwbW{Pd!*^=&UdsWk_?@q_@} z3|>&>fEU;v!Vk2Ih$EbI4?*g|0;C+bFoW-lVg_F?$B5m+2nb>JnB#j0W%`)oRM-2a zh5KwHyvnu_q&h@;17-|0yNmSDt~=`3EIqWQC2G%Ry9lkx(xWik7`7K*7pkUq=P6=@ z7pI|^6Uz|=7(?3+jg;y~M<-DYErdPm7^+D&LBbJzsu$a5Ozh654{M2KzkLD%?-Odm zTY(g8*k)9Xuyj{b#%;f2HT{wkBac;Wa0g5yYd-_v1c zAU+!r%!uWaHKEE*>=Q%$tDjEY4%X3C#M>Ba@ZVd)&;#6m^w}KBnriKv-T4&a6Y3{E zg+R`FNAP%4IIHxL#&%vnA88=Cs@_&|=xuu_( zo>0YY<+b$Lg$yzE=6Tp*=%J4l>J~41O)%c}#+PHmabW{odvR3kF-UNk)*I>rikh_i zU+ps#dTr5- zvSUsxb-ao(h6X$<_?7T>x;3{#fMnMsqZU<>i+C;DZd@A_PqiDR} zpc*i{2TvQ%kpmMxsO^`Mm zNZc9N2ENHXY}kfSb@`zOpKi=01xr4t<1ZY?ryG^y;DK_S=Cqt;kTkMPfC>guhlToP zB_=*Z4o&!=rkwIYL7q>@`Tj|GDB z4EqwQq#wAq*uDe=RqR1mU3pbc*8b&LLT!d&h6Z1GFlO+aa*X&v7%`iw!Jlr<;5|O> z+?qzxa8~@Uw<=cMfDGa$!53lT;m8mZkN2=TEPEWLB{+M?hr$2)b;*xH(YG>q=J?Kw z%Qu({%N)OBjG^`J2!6kaMuN;Cf8!-pMS)bdIN1*~TgVtvZIb?_Zm;53!43e1wTY_u z-V8Nk1UriBR7|qKRD*9+kSfs&Dps^4B&VjNkm4O{3LsIKV*EHJjT}mPFSIO>V6^F# zHDO9>ChG8pP=82VLY|n(lS3B9QfHw##Gk^t9+}3Kh+5M%lg}=4sAIe~DE=1o6h&7f zAk#1pSGBP~4PA}QCDM@(>-eP#H_@S!X9wYeSa=2R4VE3eaJ^-3bVpTYtek zqNgq#sQM;0dV{=de6t+AD+#?pCfk*Go%Fd5yAqC!`z}Aq*p=A0t=KMK&E%UB-)4%= zAJh{?BJ6H5T?F~-nPRRzD+J^5n_xN~2X zigLM%^5eB^+Ta6g06J|L+0!^}2oXGeINI>^Qnlcro;(v+iDmThy8iU|R6=4>GRe*> zh6fgO2uw_gwoD^m@X8d0--)F|5N_ zg9B>`?9)AsNkOf7swbZ^JP(f2KgX;iXrJPaVuz>Z(cgHkr7APKC(8-){3KGi>tqdL z-&I`6m->v@I~Lb8dW^0#6?r5vujox+;c-6@ zvs21K{gdjB6lf%Le~3ihg8}`oOuj?$ZRWpC5u{R4Q3rP6j@&YfCyJOXktq6NMOdQf zO-po%qBpr5T30a@+U{3eqG!=7ViDDVX7@Dkw;I|};CyJ?>ROB2L1+7PQ zVp|j4vv{I#fpPlhnHIsbJ4YM#CR7W$WU)j+p4wL&>6e_Eng&?`WeIqynVOiG9GlF~ zKXu!0K=Bw5D6+KE;ZU-@e9UpcC~sk37(%_3(0e~vM)Sib7;ErbvcR6oGUf-h<^(*> zphumrfq(S*Ayv?x5dJCMj@Zu&3@0pAwf1JQOhJafRotK=cNi(|SS+Rv$X^|fW|E%` zAQN{z{I;Ht9>Tm8*b8+SgSXO!6@I;VVu-+4gSXlWY~5Z)Z>cr4dhx{IM}lh=^OMym z{#03exr5jl$}Y5Z*k&eNp;LWk2zm6~;z;Zly*(^K%7-wMyBf_vYIG82bfId96Av9B zjOmGo7+UtPb|NlC6%Y3lFZhrWzlJqPMAvy1NPFzSUCP+N zoo6_`-9uG zK4tV0JXcdR9wt@gSN7u5ieggI?&JD?7E5Y;5evKw z`{L7+rTz~Hj{NHBkOv0mOkWeC`1LNkV+<6w`1Iy!q%Ou%Um`E{6Ij^CiZ14F9-x(p zT3e$xPbG1^jZZ=b2zrX3YY&iVn0Bk$JOnj#?Xieh>VI5|M4Tx0uTbj4I)Ror&3BQh zu=eQt066NlzGRf;<8a&{dS=XB+1Le!JTgL<&=X#-r4K{KV64GiLj*QQa~E=^T04T* zvNIFF)!-0S9yo+O6j@0_o#l~!ERVoU(->lUi&(VW55&xVsvJ{B2~$?mi04Nro`e{u zsbm@}`q%pse_4nYZy|;IKeL0)ZW#Z5%+=njzVIj{=@_HiIde;Sj}iK~GUMPk>BA zw@|g|0yQ*GEGBEuoQm{Uy+(5Cm(Dawowl^k;Y`Sz_Xkp+$^BDENtLs8$S&)t3VOaK zj@yWxVQ}06VN78*&luY=*5J4~0{gs|Ti2Li+Hu;U<^6pJ`CZk{D-6wIs#y zv=P8|Fp^S};*!YU^^Z)G2AQFFD>D=v#VF`|KGYm1CM}d(T3l=@IoauOh*F5XVu<`g zVZmy!k*-jl$5?|0R|~A8k1=JaHE>5JTcPX$Pw7`EYXq%Lc&c=TvYHndRw$}kEBo-= zv6R@u&ouN`UB_~V-X|sBAIX9wdOsL-ozKIm@x)U34CErw6et%7AFICm6#K*AyJv(= zXZ!H1aT8+=zS|(M*SvhE)_m88uUF1$4nc9L%38^5*?J{}%4744)qI`-uZux|>8;Xx ziA9bX%rtOn^hKSQ8iW+uA`A+l3T4W{5aaax#UI)KHIWq2L?U$}C4FJ~N}r?39r}u7 zG8XH@l1Uyd(It~SGHr-=GO-J7NA=~&3pNGM5hDQT$*34F7IH+VvV zB|bSho)jFgPlZ%*U)+gqYiLTjFK*gFd#G|2d&bZyb_xqV1{-NYxrVU@FK!puZ>bmY z8cnVE8rBSS$KxJ2N}o?&6r^7ZN0sK2k9mP1pQu_L@2lpM;$wx7PlV^#u7}=nw>zz& z`Q&~u=C_B*?fY8jRu#hPa#!Me#Gzaw%k1%I2Rfq3^fa6*BXAf07 z(DHw^53*!(vCSucIjq9yi=vNv(udJ~j~!SSmPNMF5?vPA#vNza_t+;ib@$_0s|)-=nx6&mez+ZTfwWw*=2(ipG6PRo)7d zO}M2&-U@e%{&ohgLG5$Ow-UUqo@_}?v{*>5yy80iNmx>RYCKF*q%H3h$U`0wTsgcr ztURz7W*Fz>Sh%gUca^^8|sK>bm0jo9Fok&z4uW;8<18+}Y0}LGwdG9-+Z53jfUA#bPf}u2g5cF#SjUwsOVU#gE zzEx`@VThn(c$)#nG5m_4k0gf{0zG@GS%v>LoQ6`BQUnf z7I{sr@^VPMmS#lEA;Ykhv_l~)Zwf78ax@!;r?|h4JgH2>c!O823H)TuD~Ov~o6l>j z2E7-kS*%?Inx#rruq4{iLUi%Lhb_1tdrfg2G9eyXoO;E}^y6xc&R@)Qf(1}hkP^4m z2F6!avHQwQl*r%PiUhBNjlvRYnwYxp9Ki2(>e=&&6#0FK0Daf^QwTURfL~H~(0bk` zU+@YPS$t&l2z6CmtpiE#a8WQ#2w|N_+DQ@hNZjHj%@wTU1Ki@26-d8{N@V3>-nA<| z%vHac=6F_)hC;pS)r3wB9_E)))obnWk>q5+!9*4H{+fCm+1kdjRPGA%8~Oo5?e2nb z4aUy1hr`YxT~C1)|K>`ntSD~GY+=j{VNAUSYyHUj4vrRNaR*11yvEC{=0cBE+$=IO z-SNF__p-`jfF1AX7$@)YvMN=BF{@Sxt3VxdtIE29hy*H2#l0Vwgh>~fNf+e1UN&?R zQhyOPEbivGCkG5PwoHZrR-uPuo?LsNv1R&dFlNIYVFSo#H)j9SFdIw?T_l!l%XB=V zWDG=!nBHO+(G8VAotTuWL+eN%vh>60Irl-0@gdTm>uQiHuPtaH=L}?5KB8WoFATz> zc=x;2dVNcInis(oGXna#3sTa{v0hn9=T_VF=k$j1jY0fk&}-ONtYN={wtVi{mSl6jW0LGQm^ZBNV9hD~ z>!P?V4-OfNnTNj8}{>E+j zAgz0mEPZ)d2w7O**l?dmA|pAn(=^B2vhFfHInD8@@;KE|y(W^~W%?*8(Ojv<*H<*Y zs(X@WI7(z?J%aN4NJC~j;+1D{F$=KugGuphN8=z&Ag;9jdA6gY@)D+igxZE2d}$MW zilCxhA?xQjn#k)1d-lz7%#{ox^%3`-h&XHk{~#hR@wVwEint}Dq5R2U9&x9sR=QMj zaxlNH^w9;5?LP7?5pvftj^&c`(9ZNTArxPF6|K1vJeQc)sZN*a7aJjYRIo+M^@ece zY7a3g7dC_|*ZNUML`6Ay2=5OG7{`yURjvUKg9?8 z-+R^B_oyMXU!;(O{+FwgH7~55RzERk%$U)m<8qSY6333Qq~(qtJ0>|H501(u=8jFx zBbE(ImecdJ<)dydT2fP9IE2kB(9$MCd<%0P)quYnF`Fv`^YcLdvAa>+UN%1;PQ6kZ z_B7xko?23`KKr_aVct_)uznO`c;B;qxTP;5OJ5kmC+i2-I6U%UaISu`-dxbX1r0~P zN*hqQSj0!ypS))4dqJ}P=QVAvEDqP;u5XLsFuJiom%pw zuwxr zi1-gfd<21~=JSp=QVh$K&$;Va60;6As)$ zRp*lCJ>Lg^pkVp*x{Pn;1}Ckb#W7J2otUiE1mZ&+W5!~e-hwv zq!H^0nD_V&*Qog?ZQj~LDaZ78;xweg_g zY}w(--0#Sdpp6g2FcxQ{z%_KLK;fm!4s*E=G916fTd5eh(m=BgN3HZCv=W=0 zX1)!r#7&{)o~yW+wa}NtNydAQHw^^(7E-^) zj{QPsb`AVCR%D+NAk!XR*(nrPYt2PUCc)+_v{rR;@K0Bi96W+IS>+K3!@Ly;XDwl+ z=y~{<;{{1>HiGAd#u&%itojJvW)%N_&}QH8HtP>uX`A&KQQBtvNvo^SRQXr~)>PvF zOBWJ={Z~zOgLkIMA3Lf^%0|jw*O}O|uLu{jrrJ1yv_9=PVj$2r)t$0B(|yv*U8WJK za@O&KvL8#<)}im>Vy4jk5ybO}BgH_VS4a{csKmiRmeQ}>&p+oFAS<6^u1wgUpE~+0 zS8y>C_W201JhUnP{~)v@`6sGJkirV^4JLM? zX6VS$@Lojje(y*pTYiTapNUnWF%AcZ8Bys3UIxm473|IU=c+6H;BYE7Dn=LU=YMeY zRkq?{*4nm_A7*sG0I4xmu4}Q zMtAOTXlo4*zu3T?LIY%qd_%;>H7Z>5wh$zipPfUD1>9NaZAJo#Xm@F zlsSB|kGI=jx97l>6)fe&jzTeUF93E?=H)p?D&4ROd;eYhRMowDn|_pL$@4Y=5^Mi2i$W!DL*=je16X{T3Kdb!FMn= zu5&JxmyFWB<%jmi2AVNud1-~@d|FbrV2&(!I{P?BD-K-Df@jMp;^XUVq$jxT=ZYi` z`#NKkS1>^z`|d0m2rl|MhXr8?VmD@N1?L;eyO@IQ#@K_ts6+}XIyY0=KtJG$Y5CR< zTUuPeq^fq-md*$Rfj+Vao4VrukqudF2zX*Gg*&?ed|tegGF#axGy5mdWkA*3=1$%6UEtBRvIHH`)(QvfpNla z%#IID7b-g!$Vw8XWtz6dB}~(#91>E^nWM+DaB);~_EmbD5%jL^wCV{M^Bgnmju2<_ zAgqXp6rUQ-d&&$fm+^vo!^ zD2ESuTPTGtt--2_4SBw`odLe`YdJiv{SV_JGcrez;JHy2Aas&87QhGQWg zgBuaaqK?50bNTx7<;Ko65`0ppjl=NSqbwp?rVS}<;|L`un>g=E@R~~-$8fa8QKSd; zY37^-867~a$*s3$M50H`E)|)}_HE#s(M%b7#!d!h*szXW&KHEZL~8`qE;uYW5uUvt zm=o+zK96x8P*&$cm72y`L~q0;th=nvB|~GKbM#o&U0D9wYDU2FmyWq1j9>nDVf-o& zB5nS-f z<{V`m6{Bm(HF>Nh$p`J6Tjia3JSXkIFxH9$yhe8gDEvWkQu!I+I#+E}(E2F(f>7-o zmdTRS8KK(a9ie%D5~|(CFs9l?p&Et%ch!F7W92WMoqH+-)fug|iWp`tW;lzLhNv8U z8}Fk`=X$x$X#U|kOv^shiN@JK%WBc^aucUdMRNNl>>8}ha%O}lr{$*RB;<@u%}I?* zOom?x$w@gmmRz{VAtf~jZXpcb7~)wQzIvE%{dmimWJ_{ha^mQ*iDTl@a?(=baudd; zjLA#R8=X6b9ICrI#ACNCcuJ}dk3ZrqIZ1hOiDTeqk<>W&89y2hsE$oY${QO`O4=-| z;aU6BqvxcE`-qPtnGZYrhbP=e^wKX^#gQ8iJFC`9NgbP#1Q)I*!l@+iH}RO#92niB_^g=QWGqelw7bR$r2AAGGF31 zr-tWJw>dk&mXy4dxU^(TTwZQUq9rLUHE&GZ*wHz;qerL4r{#DobvGW6BFYtONl73j zAIymZUzaCzESxaeU?Ja*bk++`wIn3Lf!EP_2?=qDU<$kxnUY}1OU_M(|AMbst1S6@ z_E6vO#FV_;+%aPk#>S7$O-xE0otqXnIwdCs%(tXiQc_8uH=qHTDdD*(d80?CezC|@CJ((#Y8m79g_xP;k#XN@o9-kX=78D^#CSdWK5iS^V0aAae{^wCtr;s4jZH8TE@&gh=r4BMaz6dV4(=?Vzu4Z}Li!850-vsl7)d4vU3f=%nii>x5vl2gEcvO?^aIV= z(sR_U781APLLKEPic%+thaAqq)auK2XLY$j2V!wLk0>55KCcKqhY_Dw%H#u|^J9E2 zdGWa@_}oBzE|$p$KJCT$R2pNntKt}DmmD^R6u#ulR4P)0sZH?hAI2lzi$_brql4hl zvMe4_GKq6K-&2Nqu^1#+Ob{#vnXyQ(^H~UdLWyay%!|cR!D5|YvDAzOYaO_yobh4i&KKd*Mh~VvRKF&aM3Fbl6zh}{uDfd#_~q_vrHav z$06gW?$FOPz7NU19`}Iuv2rF7OH!jD*xu(B`e1;DdQY5xnh8PWW1-=AI@>I zas<~KSXVV+O&{oa0{?b?Dk)!KQo1!*SMyReFH#a&?5MGEs%uG@-gP|ufs)kQ6P!d^ zORf>hpE}Mopzfj)&4(U;*>y_t37Y`zxqE%}Fmn`q2w^~2El;Gc>m47Z)&wADv&}Z+ z;Y$XtPD&&$VUPW4O(1LhU9G&Zk>nSDS2HESNZtaCkXm7`%4TBvhq*pgj+={lq^7F`#CSkVh~)Ey z5J3g!)pm7Ou!C5lKpj)qr}Hg)93EfCwV&AbI09q{LE3K+QG`i@us53K*L5|iC|Ag5 zZ#1Ef*1(H^bu`ktp=)NDJoRKEE`0wq}S zkv5hMNB&T#iT!0DxKw2CY?1RlfGY-o_`5~;qrzlR`OXBS9duR z-W7gvOB|`XsX?&ZJ)gc%11r~oO~a{A$kHzpE&kNU5SIt|xO^h&iE5sP&0IVD<+1tn zl>QLXEWs6E`In>d!UR`+C69WFCAU1#;A`8eFkAw4Y^pIkANul@#S_Y`EWEN9uDMEd zO;OfjhHPYCjY>3zB&T3YerOqWmkYMk^~_0jjjpI{Mbtd>K^ZahhwwR-5cfcX{OR@=1$TTjG?f2+7ZUyxY+=TDgsj*+bT=`Q-6V zu15_7Fu)@vYI7y7Jb)6LYJbtxQ@M+4sH9Y%2r85Yq-AG=K? z-)F!mXhQIMpC~2AjNqM2SBeQi#PYFG$_yic4{#>umCsw7P%xbyH&V!;6UlP5H6d8L z*A*RThF{XlWijCCWKU~^7;jhcmxAN&E?O_YJdwTagYdB?coBBWDyMk~=v6MhhZnxD37&S) zveI(p;jRtJ80;&S;B!%l)}3MU=gJQ)qpom-YqPQt(b2xzLs^DPXgl}-hOAk+dY}QU zZ-|N94lIlA;?(f$8|9K@`MF7SpdF85cCrZpGaR!(rrg@OWv0A$5*9>6o=*x~PX)-!C-b)(wfwk^hr;8ainzq5t^6qaN2{_}A}m4}8){+eSwHhoejO~QM{oYH49eakV2EEzdBT7FZg{f3v?uT7>0$hvt>KjK>M zE1v^j(RcndjsN1@&H#fB@H*P{$6U25$ln8u9tA3eWmOR$8&YwrSGcD5%6BL8vp^cI zfrf*i%#c6k#>@LfBY`^1-v4>oOW$}jwfC1&ds(M4Z#~bjwJtc7-C_!IBV_a_@aS5ZCvHoAsOLF18Ve{$ltnGMOMO|D3#0G0DC8n%%#ehNQTgUR@*8cnaxW$6`B zzFrv;x+0`-3JZ2*Zf`TTY(!yKgcN%b^fM!1OVV%0&0QE&f-DsGcf5g$kkKVmXjf0+ z7kFrP4m9JhUEuMdmqLTh2-tFW(Q~etit@!NEY~BOhnrEb3p}oSabIYLEhmP_M3-w8 zd~u;T*;$ty_-IB~rP5R_Soq*jaVk%WN8PS2k`&Fc*$X%KR2pC`ON^DL^2A7K{!3!q zv(06fdjm82&Qs5+`~`rUFSx!{#$cK3*ncj-=<7}ZWBnWl7&|IjM)vjOyyz;Hl(m#0 zN`ts}S<7-~`J+vii==P=q6fX9LVAh&Yt08Uy9Hv^nPpprYqNK`s>ss2$hB`{EOYJ4 z!nKs9bnL~pqIP3rZy9yLuRx36K`nj@i(+bBpXy0})kP#(Dc~bur2@p9Y4fwt=K6os zX65UyLM559FQW;Lh$cwD7}kNezTrBpbjHOjnHJF1PfuLTvTx@C(s(cIHF^`U3G@gv zf+}yidK(Dz*;oC%tWLSowS$6NfFD}MC7Mg&7fZ^g$h2QqhmaHdT$94_q}&Uc`7|k+ z0K4xi_PbtH)?(H9h6O6oXvs?lToXfAo7Q>YdzA~}22xZ>nA^4%kP2_P9LiQ)qpdsk z;bN7b-`lRm1_Hg?z7}nYb>VxkBi?bn4@)b|l?g*jD_qAUo+%(dyz81}LiO|!*sr{4 zLf~ofo~waTj$TLg&t@8Fe>4bj^{632g>rF-)6>g*Ls8yPlM132mlh7}I8i z(1yYvM4NDPZ9r!h-x9lk)8jhn8XzflDoyS5tRbJ9M*5#}{iZyJYqVI~jf+)+-%h(4 z7zp(3SW(>Mhc)vQo^inwsP{2LP0q)-n8|s68rgZy^+H($Uz-v5eCkRt5a<>2H&Kkw z+_0)zbE{6QOf13fj7?V`iIM}S^Jw#*uEF?_Sz$VlwlLpIo#d$LJlY~LjJ0pjbRKOK zE{5xxej6q6)^yR#8fBylwy23HU(Ya^1ZQ8$Ws3F}iuS=8ut4lJ9W8PEF1adHk_)D@ zSsz*nsGroE3~H9Haq`(eT7^9fJiXR9z?RJgGO0i{$Y4uQT;*c2#>rAYcDTBLE^?O3 zE}?U=m(JGdY<)v^RlhXa^T-WX6UkHgh6@(z2f>~6wFhl_I6*Y>K41oG9a3x=u*)Ng&oQfYk4l2x8BqpIo6n^5yBq1<(>r2=vknc@OuD z{Jdyg(3d&mSuba>D__i5tj^|TrOW7g}->@-Hs+0e8 z&5`0s`YX5ic++7oB+Xs09(lFiBp z{*52F=fHPunNI9hxmj4!$=$m%r5QvT{%lK63)%gIBo%5pJ&ln}r};vs>7Y~TgxS1f z@tuS+>PA*@+vUB$j82$epTXYX@@%Z=9wSMoseJYd7YfY(iIzAygYEcvR{Og@l%#Jc z)Ivu6yeEq$~uI{8n732sTwCIvC`8_Vry^2FJOve$)E+Dsl!%d5HnkmNx#dFC8| zajf0aXYyF0_y>ul`;3fN2uKJc7}M=Zp&Nz& zmzdgB%e_|qNN95mi(%TlHxs4qj& zxOydTV9a9WFctY=$y>b;m?!Vi+>!NX@m8)g%h<{_;rK7zp{mi;4Lek=W*O6Vmbfe~ z1vthDT_t4==F9e|it;ZdDFheOnNAP|s*fJ}kgENE z4Um7s_i)zLk%j5^Qdj&8V6=sQHn9^s-au;tra1g!v+C{qhC=psarN0e-$3n8kY#x#nUz$A36<`C>eUy8hUx@iIaHS(tzu9bLBF7KR z@FPvK+;QZtb#@5-)kdBQ82#*NzwpQ;u!=r4`ZddaQ(giveJ^~+0Gr&~Jy~8m+t>+@ zX)x9aC(PzU6X?V`A2yN?O}GU4^TR&wlgd8oIkl@A)~JVZ9qU&Vt@f+BB(AT!9_jGS zGeHI}`US#Svv^?LsbPP2yrf(zfvyZ8bc>NXU3J?ED=7?{kf#v)zN*c<6N(>JUTUR88!2QEv45z0 zuL*&sSc(}{+u`no1}eRSKQ(m)UE-I~@Gp#T&yh#W;azMfm8qLM44T8cSfx?!FC=-+ z9NNXk2VxlOVWZ~o9!BB+2R-Zt?_tHjmG&^}9NNQrlR9JE$>i#cSwSRZjJt=t2ded* z>nCBo2kfDp3ob0YBOe2pzH|L;n2YL*ngd(Ki_Tj@HE}c zk=z!tcHs2j(DewfwU{S+f%^?fc^g%-9nYWxP@<;lCrR8w_j2;za|y-&7+2Ko%yOSI~< zz<^%PJL)NSv?RX_IDLxjug8(_nzjJabd|dm$zJUqDIb_;OqN460+uYF0i)@1V3}|N z=*5yIwx2&gz$IFX!Y`I#a(IS$YmIxkto%UDRVOHhPB>O5fZ2Htt%I4N@;fFo%xmQN zh$ZclK7c0mD^;p*LiYSd$Rr^~3i?06Gv_^5#G)7(Y&Z+5?ZpHZO}x!n?8NPT6Cds(RYfl|U=NS&Q8UPzst&t6Ea z*bnqy)r6F6zuwH}p~?Q_*6w8u=TV8qkX*WAtLq7Q(Y?(#$b%7t9l-y7m%Ep80F~1@hzP@$R2S=|Mq-WLBIE!@vcdFETueJ|5Cy8E-1Be`@9vu9<@a|-ks%)UToW$$Jnmej@&Zs)Z8A0_|1_Vp z`)GF)6N2?0?QW+;m=SD$!#zk(z;0uTH^Uy>hYG* z`H!vEN51Lat_;IGY0gBH;r}0N?*U$AvHXvFP7)Au=pmsOd!gi{M@5QaLlEq!AYd;@ zvr+_<-Xp@&Nr2E>A`ptSlR}5kJA%Cn*LJbsZ)SG(oO$;>A^)%Uf1fAM#huyN`OMDe z%OCXYB(vWzeu!*KAhbxm1k}53BL70N#Fe# zkS$anKu6#G=u~#j$sO8tIVj!zsG1gK-|aoo51$*nYtngtl$edX!}Ot5le7|YU3J`+ z{kr$}etMbm3;M~wFUnH}7E1kSm7>;c&pz#~++VMmD)bjxRG%;Q(~Fb~pdMT^l`tSJ zQo_r?ESBpw@X3*@&b;Dn)?a&diyV*EC#n6lTh;euKd-LblReP;DEs!1)Ft1V_t(B* zpZ_nu#fJAyrSF44z0WQUlEaWo1IVSud6SB>Uxph~*`29UkK7r`?x6nv;!e(?>{YSh zQ&{yooITCA7l$@KO8B#1f0t+p&7cW7>`Q;CS}ia0NcPJSzEeU~@51Qk@^jftKXj-1 z>n}t(I?(UdZ{c)joXkF2lJP4C2#1aF8&79H?Cb!>+tr)&So9V2KYa7VG`x+oR=D1` zp2?n4LAs_FRFgl+4)_|$4xv(3^=$S6FQD3RHv28tz>oP_%3j9F^XIagId$pR_=!)m zZ}L49uEQsvX5Sa4!=s;N$NQcO*Wuh}*|n_>&Yy~RbQI(i>l;Ugf1X|0>l+}Al5=Ml zJ=VxKR5lZu0R!^de3cD%@jH7s2kY-1Y3AqN^_9I6WaXyi=KEGl1fd$ZQ8p8>)dO^*Iyz9I z?hB{ec}DJCmT_kcM!934?@VtxGq)1HZSdT@d37g$9e1tj`QUBk#SiqjFdgaea^tMr zbdT>>=?y)T`nPPMXHtJ1pfWRa1pgQs0(7vKy(bOmGFGB>xka}1h{%*V<_s?&49*VeKt%?R|ORf!zTUN24z z6D(TQRmje5?Wxd77-c^P&dhyIwpX{e7aBs;T}{ z3>z7)!=Z(_&7B>{`1EkP`xoV26AnP<-e+#}Et5S$fd-#C#?E@#IRrh%8(K0=3KufG zSQ4H_=I4L9+8-5BO*L7X`l2-!ssOtyyEiQ*S#0t)rI~y zG;Ee1SvM54@w}@KNnTlz3y;xM9jMnIl?DnmDyo0Jt84tvpdUOW36J-(KPg$Mnf%Sl z+Xm`Wh|a-a4-0*!DIQY{qhJPr53fpE<~_muZ}P=F&4p|CNiKuhAet8-g> z-yBHi9zv@is71#f4-C|2#4tD=cSt03+z}^RLcxH?4@VEJt$xePE%437Aer(XO4}u} zneu$@K-F_y?kizBv`xSJcHhQu9kSNv-WH}q`3*qyec?I~(VZ?ie@^%PAM<9`$GQD| zzsR9NEIB_=y|FR(I^TIIw(|7E|8cxgn{r?G)K-JPo7c@(V^ApMI!me#((BQ$Hs}7} zNkT3CqFKMxq)e?lNM|bc_+K)0P#|}SOB+uP(n-2HKld>YTxa-ho_;ZLC{HhF zxUUb=mo#P-oe(VP@Ob4`OLsj&G86Z~!0XZJak^XYPHTh+~7~dHHE+ ziZcGhAocd{+*7_2QbH7=-TY6o*>s@Yyt@PK<~@Ujv!+9%eYuI&2$1nHAsEpN;|Rp9 z@3fY22gR_V{L)Vp=iOeMd%MSXy=$PW2P--XxLQg=Y)_ZXe;~Jk&)uQ@7k6Fb zYh!na07X^&#a#(j4<{BMW2p~cO1c~tI^uVSK+dGTWK!dB?yJ5&(wPvwdkj{e9L~Mk z*F%bt-t|J3D~8DtvYa>WNUqQ08!h`{eu=)7!}X;twDdDHMQYTs+&8=nA+Y%J;%u~R zY8bI|&S3m;Xq@-e@!V^?-mQam5!)p7=%-=vVExm8`oW!H2}9C_hZ1BPPv@$Vc7`vX z$(`Z**#RDRhUY~~$bI-1ou0#??I-LWkQwgVm~|1C22Gv)pTZjb#TjLiNvcU$#0p zli?E8fS@ajVyM3*tQ7ac3h3PuH-IuxW_YwT9g1^=9w+8<5;BPJbt%JYy@V5c} zK8C-I@V5#6HpAbRymnu1&5eub@}A!I#7UP#;PE9jwbb30wx05Jlir1x{jzMPNOXHo z9sg%*BWDL%e)bQeJ1IZV-Kk2pSH3Xn9^bey`g*DEbjBHFf0$6^Wq1QKy}tRZt@+ldw5}pg=GWpS{*WK-Jyli9TG@J;Q0aZ4s28;F z@q!k51eXcn2iFVQ5@Z*Bfpy;I@9Sm4ZSU**66xcjD{A!Z(IDBM@_b5sLRbH@UDM(1 z(+S;@(v!PA|9pIUdP?GR&peZ$KQCIU7JgpT1K(-}JZjLniOofoyN^Tp$oq7YnU3(y&j}Ea??tC88yr4Rpr0c1^yK-$q0fqXM=-vj@9SkyZq>j= zPZqkPZ|)71g-6(%S?}u$m$%0RI(a;~+H+h83D2K&>Z+?^VbTIx6<0z+wOdG)mO|6t z*GnOANPl0`1(5Du31Z8bzsZiV`RAH1ER(XkP0+n4*o7fst{$Ey0ZK4`37 zi3v1R@qdk}qP}ks_>Z>-baHIY+75DddhV*g9`C>*`l56Q<#3|~DDf$R$A{?I1&;_} z^C5QnmN>h8LI`O=5q@^n=xYO+-Zc#TBL=?pI-v4C7w`|*XNx>5>d3$C~|2_*UwWi!=?xrLlU*A9&E$MViIa^teuk#tzlRW+-$E7Mt*1=sR1(%fJcxjozes^~_Y>yT)Xu0*IY{8U`03CJVYHuy4 za%eHvJ#3GzwOiD4_MjWo>pT%i_6@Xqcpn<3%HI*V%h|!&6&)@q=So7@;?BTZ-uc7y za%L`$DbviGIZUr-GFt~udN&W#8=H@%8s*nQ2r%BvkLv$F#yPFj6lb>9x>E@2hJ&1e&Yj>rY(o8}1rz2oDDx!sl-N@VN_a6IcJyKhTK}1=f3f zxoF;z%Ijqdr84N~RCXwbQh9gS9+b+C9-&k|WB2gp4p&b;7P!snPiTnq;W{*onN`o( zfw<@$As|ut0OL1y4CFg?L*B%M>#+2Rzyr<>7O^7vQ63p=zWnxN0PY=YB&`yXk)5C- zCCO&;uF(ipqjO-QtHU+wWaq%OzPrM8c=G80T+Ngc%RBR=ufsdKw_{P4z^A^>va7ZK zHP7NYy3*1`wg?jR>lPT=;PQ)tWgcBu+ddO`+c(HDIG#le5G^6Y@GnZ(82vhxugN<(5D1v zTD}55A6JajKU9B@$m{iVW_^$E>XG1;Vf5hMnQeUyu*LY<>!yM(-UcJp)*)Ff#dhWf zjzry&Dx**4W4=3FR$4f${3r9pXsLoZB+T8&<~od24d2LY>22W}&}hJbIa5KSCcHIv zQPyqVHvkXbc^Xociu>~|A|aFu90MoRQ@rUBfKAj&v+MX$mb;PiyDUk9gGKMP}(q_i~&ix z!s@E~n?TD`(jCk7W^D2pgtBAiJl_SWYq_4zx<9yFHGJeW$ z>4o6_{Z3%4FK(2`D{H*wJRa!McBvXn2t4TO`5P0w4t;#~-z4~e{*d6UN9hD_HHs7b zMd`>^Z&tf#Y;ffFbEEA1Zp|Kc8>RL~WIaw@93&YkjWm3A&x;Nf3-4WQZ8G>4mDS4Q z8qO%daFpGhN9pWd4;`G@eIJ_w4J*5i%TJD?>{buFAE@R@o3tgrhU&5_P$nWRIbCgC zaioX(IgH?3;r3W{`w&-;$?J~9`i{v6T50wW`*R39Muz+#b*(Twz`EZ+P@N1hk}pT8 z!R50?!mh<4NC)l;3PcbX&dNjM$bOI@L5>fH?NwST95w}NMFI9EX{y({j5ey{h)_Gl zgrLu{S_yZ<(ISN{+)uDWbw_J@rAS>1_oJ+vFxtj#Buz&ve!#+#n|E?;9`iPv%r{_C@dJQ3(Ovum7UT`%f*>5_&$+3)*L*;a8JU97%R+9*N8>~ zMkEf-9j!U|4*+s<@CCL78WsnQ*O{X=2cstisz#(ICr;X$ABQZADwCA%PiX>YYIVkU zS1W93BuZ6-2M@)nKf=rWN5{wd>W(QnFMG0YHOHu~wX^y~OI0f*ud-^BF?L!S$<1SQ z!MY2KISbZn+!r;lV8L(}AB`iiAVEG>*chl1l^74fQ1MHFk~$6-CIKbKIzI4UcSYSbsM93*-z?P0qDcJZ@B_sB(IOrWe==b@XR;>4~ZF_iMdD1 zPk7B|wbx@*lNEu=0&fV^`k6W>EKpgOar7N_6w->gIup_hxjKAwsa!2(t=xZ7PL}fS zgZV|y?jFOO{f~5pIQtW}I5_(gMA*sMf$Zk@5EEP!Rvjzyl&n<37Gs4tdyUkw=EuC7 zrNLOu*-B&W5se0n=)VbmKgVdw-Z|E$>=1VC>oGQEjniL@2~xIlWKv2}l4^J=P@|l` zQ3HQ+Qd&xaI{)?29!S~n(z8d4h_vCQ{$oY4zHSn#m9}Hqzs_TI8GTFYT45QNF_LmZsE9nF1F19=PMS&3~tc@iW+-eNqGRhP*8nvoQX;*&*fHEnGP#Q}I* zCCZji43^Hh15d2?jBPrT}vvvIXO^TW5#KkRvE`MO&uo)wsp#$ zcG1{i_(fZ{q;WQ9X0Uhuahj!%Nh8G4hozNsw`9FYX3g@~nu(cg?zwTAqz}6WG#W4< z71qY%h^6q|kA_9L_T{%MHU~;pZ8d)1G%iHcs1$#CQaV)EIuS|fiK^i@MLmh4R{Mo% zh9Sv+mk)HZP52^*G|Crx=mn zss`2Rf0ft-F692Gh1`TOt;{vvWP*gb3H324otQ}x*f(ojJ0zynOaUNPQoxwW!3dm} zsH_O&uvg#1ydo>3#*3V@BCw2gJ>%^N7|A6_y4LVR?Sf{80cb=@nB_fNfRqk&0HcQ5 zFf&j|&!Y|F=F7PD5xWL^NR?^3n0k$^Oy_qSHIr;vnTa z<84x|WB1-1uR7ch`%RaTsnST!QrK@w6>A>Wv$e(J;ffzb+clg~fZ>Rey~pdqxfjql z*See76lhp{G%oiTuld+~CuCh}QVQ%i>y}B5_otg>?iWH3i2}XCy>u#2H8Pbu=yqD& zeJ_Do$+(TZ`5OF1I(jCQoQ(Ob`?o6@jpUEJ=j;MLQS`LzssTHMw>7pO)sNhI*k*eALO{K*oNg?}&m<)5I*c%Rg@l3*w6-ZjA{ zqmkS(L6=CdX2CP#06bdV_P{xz)os4Y%0E+G4g5S%B`m7H4(KcpXlYh^UdGd6_7pOS zxcMqX9l7}^km1GIZA+?&mpkiBKMdTQ1@nr_+UXORn_Hz5#LZ3E;^5{c2(5EjdxYKF zFhLj0b1o}qq!n7${w#H@i8;#lewv^w<{8(BMgvA9dge{g^sJU))AJg*{vTmykJ3)=4d4?wF6M);fj{TJTq6XGV7|%*!jdhk%!xN#=e^oBs?mZ`iJX5ys^gW2$3L*iY2Mxk8WuT? z=NB`Oobl?|4^Sl1lKe@yl#NVEOife%=i#XK-5&!nR(qAr`(xE^cl-YTZjbf7DbZP( z>EV|V_5MIpbF|d8BJnpz0xlh6B({_};95De^4*jD`zMnEx0|JmJxg0NWvvx0CX2VnzDE3Re_NnI-lk*r%B z3W7)$Bi+N&h7}-V3S-K9!L)_d3<_AOnqEZeQ8oQrpB1(Lji*_FCydj>2ngdJw%=lU z%Cp~)T*ThrAjy!uXERD=Z%L*0_p%ZZw` zGXa!y#ao>Xf`-Lfu_JxK+?i^Rw5fu zR)K^`8>8V+;+9E*2sBAl8LRfRLEcJPB+3*7Ayxr#-4cpIsJ5Jj)IX?{g7&_=L+R%4nJ@$a&M78aAqvPN%a*byz-U#2~b}Xn4v*1z)+rQ zAt5l$FXQ0#>>wB>irxwtg%rJZVyP4@rNG{#-)PtUL*l9jJ_6V}P(N=_;|vdctwVZ5 zRdy`4NWyx?>VTYGFir-fG5b5}LrvP1E=$X#rIx?K{#2@1^V5XQZTgTn>sb~WRQ$pk zEx0g+b98>>p6k5BKGd}R6z~CUg?0kl9HzCcl4StA{~=PhRb*m%5*!zW4tP`iiE49$ z-91#(s`;?ybqjmlxI0!2C_&h=)~;CJ6_ZL%-dowZzrcN@aCNC`1t*ntt4y+!*GMW( z(iFaN5>Z$LA)WhHR2S|G)Ky(Rh^S3P$@7zHST0oG z)mF`l&95G52`D6+ZV1zb;&HFUXpy-U``LPuCUa-0YsKSs)_uYi4S=XwPAY^lQpIP6B<>-#%S$hY3hU5dUs7i zN;mUNwi*2Zo7|<9;}47r2VnaoVsun89Ox#hD);2q!7`N8Bt>m)u)90*xtfq+8A?(; z`yVDUOGyMs)P)JfalY0Prj@vlvrjE2Ya%}(b*+#*%({jLCYF3)U=vW*h)WMHnV}?alfA5JrImm>LrjgmCPz zeG|FZm3`Ze=~aiGIx2)*LY}Umrhk1OQs*Z5ncm-FPLZp>OlGduQi46i)i`W%a5YY4 z^n?R}7LT_mFSz;wdm00;TgB_Dx40~&N=wAm`=yRGD=)IWdz9vCYG_muAEOn6(pKKe zN>|=jmCe&v*<599rv2z~;he9aG*46Glak|^r)kM)a9hrW)8m+@AsJj|Oioi1KFeaB zh9qTB0=>HS9v|ZyB~e;=`Ubl-3>?RrJ6q~n5$VOc)0ItCBblN!RX+mwKvfZ^KHPVT zhQFo3-e~==_-~rZKp21CS3$zYL}^@_u^LyyG`J&z7#os_Xi&WkNgUBQC=puG=+9p6 zQ<}A3OI<4(Z?o>_u4ov^Ii)M^z7SFo5i{2NTH58}b>+P<{bQQt#|yv$6cySMKvkR~ zXoHT5f!<|DE8swy!sQ{&a3%fAA`&4;uQw`q<_*MIBr`GbOPhl=UEuA7R zKZPxl%igD^*jwKr>~2R$73A?imzDm~3h_8Y>R9lHvOTyx;vM+aIRAE3d2fH$s74D$ zrJe61Q#6rtrr0}Q^9=&fuy(%2^9QHsop03L`PCwm(^E8&%RVi~@Wb7AtckzTes%WcW3lSu-SCqg6u^B^XhJnioD<{QCox-j`~hR$1t^f! zpG#dUKI2&Ttd5WM!(^nVr)XyX7vkY8!V|bZYG4tDF|8V9yx9&CEW*uum+T>T% z$TY7tvR+rirufHB`DMe!MwjJaY%2ByGu`hGXNCe)W2)eU6`-l?bj(yu^u|)xBKjoO zy>Y7jvu7mNP1WTYtXa^_H~^i>Go(hB2cSIDlv;Rt_Q@|(5^TrJKXe&qr?ay#5bl{h z4`^b>9~*xi5c7X!`z*b09z0c7?RTd#)8|Q#i0N6_;$V6fgc=UH#1B&z`#MW?%?Ld1 zE09LAn(b{DEo~6bk4P13n#^Z14ouZYTwC>cVufHdW=$oId!{M>ut2P8@W6!Yy}tn@ z=Ly$*_HG*3bKW6u{8m#n&zHTNUo|S;pPZhox{imHb#fxyNE@$L)&n~NfrFw*6u}!4 z4#cWGZo%Y4xNR|Jnw7O8U@O?A$|`4apr7wXscNx$39DYKE_?vLdKRmV^ePAe-fQ1% znq9A#asR7Sm6>?)1#FfGXL7>-7jp|Fl7$nm}dZIRd2bu2;xiUly) z)rEr5Ng_lFi(sr_4?AKo>Z$m@w+;98miksia#{biP(*|^BYj0n32(;`UZH8mt$@;2 z(F#+NHpxp=l|HaZ)`?&t1a4QeC4ew4+ICo^>sodg(u|J3K7@3`qW$jFQfXY$=J~`k z`I+z$SV#%3)%nwy!QV(nh{0cCi)66pOC1ku-Mxw3{A`-8*X5>*1SU&mu*Fy+9@myS z7LPZxy}0R`$7QD5zZ*v5Gwsioo|VdbKbfZX{|x)%>GrxipUr)ul`SF|=TA)wQn{Kp z)vvbRonKQm_$WWBOmb36Vv___<;TElShTA~_@y`k#OmyU!WwF?OBRV;RfnJ9)T^V! zYn7ti?BFBQb*+9)>RPec&blwdOXi%<1{lc;(>0^tgFraz^iJ-J8d#@cJgZn4PaXsb z*XimQ4FCQ4v8u)3P%!*cVZRJ)j-g-##U>bW3JC4&DPl24;s1E(}?}$uDO;4d>9FYtOJUB6St&u)Yog7E@e9 z1*aI%Ixt-|Q_u$e6yyAd{cMQi=>2oO8Ttt9N@^;V!lhh|`c?0t+p7zkOmFdwb5b_t5`km%Go@T%IVcc;e=?ikK`6k@ zfpBPDsXiQr0h!^35W8oGoN+O}&m>GMdCTxuK0X1*k<0&;x>iWMtow@&iS=`2q!(rq zpFKX6vnS9=tnDJXJ1Sr?h9RvIWt=$$5-i3*WVrPMG3n&h(YVkX&cO_oO*Ax@gV6vk zhv`YtXf#Wty%miL?BWfxG?iOQU5m=)Shv|M`0*31?3hL?S4(MOy&U%Zc;i<2*>**)#Wt5~ZHofN|0T1K$;qloW`4zpM0nJ+ z%lQ0y5vlR1s%J(<4`gzTv$@I#aQ8#qEYS?dp{Y=dJ1pKA3uiZ`|80Bb}G3X_6S**Q@{pvnjvv!!&wPIjCl=faI1|k8C6y6n$5u&@c zz^aAPj0Y%@xzS57328fAUv*udUtP^v2#26f*aYwUg+SwAyM(v&GA=h_cuO$nbS+*u zOV{ELsHxOiT+-GUK6=(dop1e47taX<%=_b`vzf?$OQ(p)e_)FwviA>&x$`!z1a|j# zhz_1**Uc2!OIB)Oi?Kp9ZYp&w8Yi;7n=|#^xK^e;qS1g6sR;iJTtNChkZBj;RJH{g zRuMK{pPvo4u|p9~O;3ae{h$cfEtBN;H%a3o>;_-wN2vh?`4xmh6e*~j0yqc>b&G&j z)$`SDvA*sS9Hy>FxEActOX|YUaG+CMrm&OmJ*jU6<2KfRH`6XUM$#`+(|0m}chdKE z?u!~o-quKQ?t559|FAv3LL|Z^A;%yq zazc#ioM-o_RsgeLRCWn83IiS;7`+g-N?k0RJbSU*Q_3@{@1YC z1#VWfr7h3ERi&v%@~f6fNVhs>fykFD(OI>n6Qf%WPUHG`o7A-;(UEoYF%qu&YNT7T zG(k@Sd?!K82MkdI2?}FkA|X@sb{PU=|G(w*(C zo}*X9^JqYkUq)dt3eqM&l@aZkqse+4067n*dakFsR;X^1VK-_9kq27_$TMd40U##zU3DwHhzUN<3r&?a0-^!DQ|K~czF}@_v z)6AaGuplN9u?k{yEa;)%=9OJ?5s#;@DnUvy87gsFF`32A4xXp^JWc9aF`34?lU*?} zl8N*5$<^QxW)T=O7OW;PBFO3J&6t$52ZpCda1XrCQ&80kgaGh~=b_9Lv`1E()O*K{R9a)zaeOun2@#v3m;QOU6cYz6`dg`GQO6uNZG5 z`x}Yl>4FX8(cRYH;SWsdZ+$GKU~ka{J8`}yc>H`O_@mM(BKSktA_?w&Xue&r^V!|@ z^EJcYbXn;mtq{XUNF8gs3fSI|`MP5FagAs+U_`3e_s`c$@`V7%dHdFOwgnnixi((k zJ71LR=IdqnPk`LHb>7E)Q3JQmFrKxoG@fh*37&0Hp~eV=$gHDKsl|@A z3d(f#h%myQ7ztu>xULkAN()4;Tj4myZbmQAJibQiTH!dvx(ycC;V_cA3p9`6s`z8> zm5CV(0MjY;y%>6`(C}b#utJA}K_G$BG2tRW81K7`-zV5_NHr?ZcR|WwfsUX5uM70e zu?3mlw-;#szOjJ$J6$?K{GEa=lE3irIS7s1QlDk-CN0qP-QY5^RvIDt?vXmyES+O} zI~M2yy_N9w5Ok^G|e%u1V;#7YU++a;L zIw1uX-F|(!m=@h3StQC-{8G45Op9(?GI%_^?<#s>$*KDzdscR#W^x0mYX#+7)~&P9 zPF*9Zxll7XX`#*J@3}8(Ad_J{i^;~5NRR}XjCev!F2j+aOU1P0cFJ`$GAH7@H?M+~ zXgDcFQYjHKH_y@dvA7G5(B;H6V*nEj5|LNyNO zG)*v7<8V@fG~RYoB54@nZOO{t(h707s?@P2=MvkixJZ}azg;65 z4H%J1@DU&Z9ASGBRKwR?n`Up6{1wXmWN$p>S7?IlVpU8C8p`xj{fKPPpqh?HgBu8V8}8%gIy zde{68MnLYG%W>DvD&sZSHQ$f_=h`(JU+!I`DeQZ!pqfGJ_ZHODfjAd`u&o*&Rz!g~ z8CFDrm@2_pfvCzJPFkdSyIks8fvCv3i(P>*k_C%&5r(H_4NyTSGuFLYO2=O?`;Aiz z{E;;6A+!Xk*^{AZ4~YoUq06`#!)}6Us=39GU|4h4FD$j@ma=$`Q(d>tQC{z2&D?($ zF>|k7Y;*1^Y>~|MT%`uT?I^yr*v*Cvr1{C2p z3iVL{Sy-46ty=bjz42Rs$60ynvn}{cFREIV*LYrIage$A_(M9}(t*VF!poWczwhmZ zw8eYgO?#w2B_Tn1dczw6fVFPPxz~2b`X)()R<7Q_US%xSq+Kj^t!P}sy7LzkX+;=} zWG;e_ope5E zuZ6^T5Os0-?*-}x(F#OBT{l)jRC9^o3VJC<@w1mTa1_1!tqy}=#r+3=GfLn6mQ-=i zzC2ss+~K`@i6-xzOPIVbONXdnzJM)~yxtd<*kw1BU43?mX74DMmEqC~v3G{lu_h>u z?M;CjTi$?`-f-85MgvBqvfE{eUN?UXfSfzu+t?OpST)yp-DydXxv<`gPleSYR$PBd zJiHG8KYjqzjj;vv1pr{KEueSkpODzBL~YIf908AU-}{r)wc^l{b-!C;7h5Cw8m{-^ zBTErW?bY%f+!r-)wG87~t4HI>L6G2T8A@$+4U^d#p91IfhOG>gN)LsGA^>C+eJExW zfvcB_#I_=EKYLbxsitb0)U_gT59=l^wIg68{-t_#4Av}sW*opr+uTkVY1-ztR9#;g zAEWBs3%vBxj9ajPu{K_U)%h~6wqsWzov6}20cnMm_Rb}xR@#z?+OHEVjmN;$;?j8J zQs(Fi=>&0fDYiH`x)fsTTpB;j?k!rXIl9kfWw*3K96cv>teJU)?VVn#Il9|5qS1g6 ziKE#|HAmsqJr+khvMtcCIBL9}19$r4OYhn}TTsmlg>z-gf*PtpJ-9aNPfd-7#|!C_ z@h{I7#5kmpC{LCwO3v19>|5<+ny*Px*NRDJ){S3gXRDDkUZ(ka z55&M(WV>+R#;U_CU1ZC9YU_VnhtI~N8p||q&%Ov8Oh|y+UNmoYKQ2d2B#@1@G%Z0{=D~t_CN;TaS}e#)AcQ zfWC=o<~fELBjEQqB!k&aOw*4reCw2$UUZxLvl6nEu>;w+F3UA}-;ugjc>1yK8_R9- z8cFZvdS^Qp!ytFI1GsB%jA$!Q7adrOw#JuE%Y(EntHzHhfaeq_935KY5?P0XPN$;B z!a_JC6X5{%mQ|g{hV4o*StfB>F&W0rE?TZx9FV$JOx|PNO|F<2$%f^c#jw}KWJ1g$ zH_TX_w3Jv3nK0npf`kZ60mLkDt(y=`02vK}^tJ7#7-j^!`4y(1UMhbM`G!m7z0_3d z;Z!MmUHF_2?sa2VXkJ%a!MsjiVN)^%TMQ-X`N9;nf3t(v@Ri`EDkA{9-O+%^x!aw{)|zT%i_XUPMk|7JhKE5D zRLe~T^&-;Y_Nxxl#`RD@WO(3Jw6@1*W`V@cR{D~{B8kjO)fwzdHoRO3*UFout`&tT zth;^%(O1AXl01a0_qYcDwzK?BaiM2rz#`-RJ-_-~8H#;G|goII|Ch&}lQwJ8q8 zv&OYmz~ER%E5spAt$eAV46@hRfr9ZL3D640T=wwC6`HqYSBl)Tf-#$QBUakKWkzzv zO3m9JLl{NK%vf-fCPsjG3sc@oX%~$RlCIuq@C(P0mubw{)dmIZtqg0grQcyOM2zhP84wUiVswOl_(7#5$SFBZSF`Rvt~520zgFt?a$JtRzs=*msDb-i7|+`O8Be|f3GQ#7 zo>dS>VD^7gP|FM0SKM>Fo!Y#zpgLp6_6P$#ezwrYRzjXC(OAg0ut$kGnxOYfT`LDZ zX5D*oY=Rm|>m0qW1#1>AGY;UQt3EKpH_s_Z3_@cFaca^WxKxdkYJd@h-j{JJz;1y_ zS`fbm$%6~x$5)oRATFhX7HURj!aU;2cxDbWGGBT_WZHr)4oYr;fI2s`+u6^JIhvB6 zxvZR(R)~_nN*!xDcCft*IhvAZT_YL|7?CKsE=N+%vi5W)Zu4%!^SM&tXtHuL2;}vF;`H|O41|j zUDI4m&wHe<6_o?5duOhlq(;&*SJU$;h=Q}89^$?&Rn`}#o;KD0w(6aSDSVAuqzvt`vl zxA5Gk39-JnC1@*;e`fDq|47q$tkksv^b_lj{K%%WkqrAtZ*bu`p1&L$+zZ@w7)Gs? z=XD)Ci^#^8ULOUCe5I-%V8m2|Fd7|V^NGt>s)2_f;dQWrQVIu9`bu@))sv#JRU)*a z@dvxP@gvRZBU0Cj#&4{9z!eQ6+4qrV^~Mldkw|8&URsJvkI}kY zOIH@fMtfH2LOmO>Id{5c+2kEs*x44DAL623h-G2 zqY#M-itf3AH8gSCEvB1pHcHS|K38TB*8v7xOCONBR)Bo0yLXk%ZX?;XN*C)dArj7F zU6K3l(vhIe?>hXqJdQNZtXbuxx50%u9;L%V$5&9UiQ<(gYQ%tGObo$g-w2daNXo1h zS!abLj$QSx))cQTb*+$8W8Jvbc1VmQX0={qgEd@ai%c@(tWhni6}0j~7HmEWYiyj~ zAQZYwtZfmTS?P%n3J66@+cROkCVSQbgRFVn4Dt+ld_6Ul%HvX&+jUg0{$rH4$7)UJ zS64HkKafuOm%;`Z8zi5-;~}!n)pmXMcFbzcimYW@mog}7WGb*y=5!1lJlyFT#p z?h4n4MgvBq)%J+hn#7+29_MQN8ny)*)@s{$J#@7uaQZn|Ma9DhJT-xnQ}Lk%dVkKw zpJDr(m~Le7^a-5g(5rLeKMm7|jw8KmO3u;7?9(Oi8fhCRb*)(3$hy_m*g0w>mDgz6 z-n_=%0^iJiQ3JQYFrKwlG@kqk65Ims`vR8Gh!aw^b|giBxZ3o;u!hzVKnb4l5dO?B zUHXK+jYMQIG>N^sdyQsj7pZHZk7wPdT(-~~aP z{WCbdA=m_C*kxQxVb{Pct)Sn7G{P11tE)?0L6^eKbj{6GFrT=T&RN6UJSx2*S{=d` z2RRQxP@Uwwjs4ueMw9b*mz7_n6(VQ3JdwOOCE};48QY6e9a5mI(+i@1agA!UU{oUL zo;8}FH|E&{ZOQgP!y>5heCL`VLGhCV32C~i!*a^2((T!8U zPT4_A=)Rh}B|s}b?_-DV$kXh6O6pp{xQlfk*TJxs2uAuyo@QuI01t&#+)s25_eTw6 zD2!=kvGJw_NSLA3IS7=j{uF)3R2u~xh3zjyff#CH01TD-c)J-zV1h(tMW6$FH6~9p zG+XLg5opW0@c28X14ck3i;==xjZ&aWf)@&(n_yucC?F@Mu@8Iq>A_GQ>8=5d1`J3v zt-4mz^tHA2Vz@Kgs;U~aa4h?b&z0c$1w2RoBeF0yDkVJ`ZmP#Z3JYCGN&14>uTfzn z^!2W=68hlP7zxix(-+vK5#ThI(JZNJh2k03ow?R7qee1qttRPefbJyebKDm-kfbo4 zmBq%Bp&%(&*ofgnX2OCuEzNwrtWNpDI3bF_z!3ab!UzccVTs5>{~CL>A0`!Fs`0JV zwa~xJx?j4`8_8#Dbr}U~7B({uU_*vRR9btb8gOIZI%;Tz;B+EV11C-mt58_o#z}B0 zuM?!OToi9{0zl5SZa=mK8dfPa zUO&7}lXTN9Fh$8}N$E-I+*CMKzI0<@8F#Zka>IIkHWjO~9(DX&n_&Pp72Jn$0;u2) zQoVrD>S=#rwacO0T)!|5KDm(;CQ5|yk<0i!mi>k_B$9W4bVQQh3Wo`$yiu}*5ov6pt!HY_mp%}+=VFVY_POfCT`?}ML#c`EU*>vE?jo0+d})WseN5_D^YkIx zJG5ROO2LQD&8T9LWVAB1l#ZNdtk)#}FFV4zvVln(d@W&&BNIR7^O17Bv~N3wY}pL`|ihMU}u^^?f3ccRNfoZgUGaFnPa| zz7To8#uh_fdNtkG5M1XrcO`rI1%v~i?2Gec0|wv=>Y9CQ*XGr14>YXWY&<`+AxPP{$mBG*LX^`P7@G>$=Nr`4 zMHyz$@09pQ!L7?c+1MyckO2bUlMTJ$3E7i?J0GwV611|S9LI~-y9=->0?dY zApqW4jX&o8sDZ?VF|BMi-aHHvCN6&b1fFTEGPSTa+<%b_s|)%DFtD};a99f{Iurxo ztJO>qm?u$L5h!G@GGSVA1-(w{S`paFx~oGG5XoYsxhQSr1%nnmGZerhvcg<9x}z{D z3=ZUJ6wNXrCxC?H6WcqnwcWKlie|&KvdOxvgtNqX8olL9g4W z3HlxYaxR_^ur1KA2x`2(dZQ-j;`<@h68-S}9`G|NJp~_}r3N*{ zq6X3v#&LW|rUhzcTYH&CCZkX=XmKiJAF^^o9ywZ)|Zev-c*OncuRX zJvM1(PI6iKKw2SYE|5AF?(f*%+)bL9AGk&|8ZaU;^Oa4SncD!6lbJuUEzq!-X}o@M zQ;?alQAsJVuSIUwiAYLJQ4Km2_f){lxX568B($fivpsh)GebSJBxh4WtnUkn&Pvb! zvPb8@XC&qyQrC*aFRc69CYzW>^7AGlCcF}?<;(*4*@NG>D=Hu_VK^&)jU#73qeEe% zNJOG??kKFKfi&p4v#r_xL0C7NDcO>Wdg=+N=Je8a`5ZQ&?0$)VK&|7zor$mvPinR^N;O zc|O6w0on z!?_oa#`RLgm!n(I^v9r}k(zfUd`VfG3R?uqP7d4QnFrLL! z2U>rt z$V;+P2V0C4BB@{MSTk}h+iSd4m(V&}?GcRzj7TN)SIBbQeRkMtm(Uy87HC){)Oh`$ zEt;6Gy$38y^QWt>^9$jt_bG6FF+ug3p4nZUpI=yBz5QNc#h@5|f8lcC*5vJRs>!;- za^ZxYRq&C{9ug(ysF>RX_Usjvm0!T0F&HBCt*A6%{Xtu8mKw=`t(v7%APP>F#&ciP zK$gC;l`=VuH!mtrpdeQ5{kSk%O&?xZ(Ti_xyrZ!Cg^?6()tp_Wk%}#&8Ro^UnzJzfr$!Yf zmw=`I3Z8qnoB;iN882^TFJS~Ku0KJhVR1daz#Zbs|9)Xj)qW=>YeKxaj|muD-I7DT!s7#UFHhrj zE-9os^`?XURT8vSX&zulR{|7V5buz>R)E^DZehS?u#p4;n!%?bAWjCi<-Vwa42JQn zT4X#~7EtG=6gKfDq^YfE3u_r9bRh>w8?Bz+SQrggDHB;i1OkW~t(H5*rawjEZ;8%| z#G~xtMVNNnxmL{=NohsmLDsF9Z%4vNqVqL>!J38Bi~~5a=9W)IpJ;8Ysvqs`TmUbC$A7^hN<%q{gkb21DdVx}TT*@KSlPY6uq4GYTuL=E3J`;MR z^oA-&Bkvli>4ys%vyX4=lwstakrfJ7X147_RoD zIeYl4XT@3OvKOGk_etmg*s#|Z8I66Fpe>Ay*iTqn2OHQ+LizQK+{S`lgAf%HPsK9gT6X-nGKcFBR_yQDyKbzuQ>b+2@SxVj5l z3|Dg&z}A)`VQp>uv4h(SG+Tdk+4)Y|A+}yoSaO2)XM2AY=&kK{p;5&;&uDGeQrg-U z6lm5qfJYI5wL*Ik+XRz1m)6$SAlO>qWUenNA;}LPxrhC2?XpSfuo=QHmz*9)E9qDv zj3S}_ur4qd&SYHO=)=0VOW0QOj${{aDbyT(Na|Y2JCt=FD6~0jB=;BU0{jAm!dZZa zb6?cJ0u19>EH<8`77~lgr0OWZcCQ8lt)B+p@iQ#0pwS9(<=Zmi)Y;*%;Dj11#K9O+ zFosKjRxl>8lkXR5CeM(%Rxrk}?i5!rjARl3IR;R{ng!L215jz-3mK5P1untT{0T(# z$z&j}nRFC6(FAM{MfQEb9>O;83*P;1f>guZFT5rcn*R0f_x^lf@_CqJ-2MJg$V{$Q zB-lkvu8b{)$+(R6R95~}@~1>>$0dx|OSX@w%q}AE7DwkuE^%{Otx80Yi}uE5Dr0^BF*J`JE71f;fD@x3p>T1h*f9UBO)V-=nv zb*;e6VcidlYz7-i2E3skFZL{j004tUxaM)+3=TlU3Uw4c&@)gsw8*_hM#Q+)ALjII zVFT4>AA^P@u4%wkX|bb?YOxPbdLULP(Xpa%jF;`E2Zdv|glL6h8N0c?NOSm{)V0E~ zh;>i9!eJyQigY#J9>OR>V#eyPr4znve4Q6EV9WtH!wLgv-*0mAWgG}q*=>S9=&2ZK z1$$ZsN2;gJzVt?8Zv^BTmgFA_OD)NztfO=FIy!k9G1`-m=c!WIz~g&dIz)ti1X~=0 zenfSREp*)vwVK_1aGNId+b&CQNJ~WMQBud6s5NYF*fve*H$tO|AQ`O(wUml;yKS1# zivgRnIIm}$?ND1jk7k^2vn|Nw@{@lo^ugWpsfqdmQ5k={e#Ql>GH^OJjI7~j<6>0Q zXxXQ5@rgM&a!ZhA`% zWW(E^!#P(tY(VT-H*A7+|7Bd=&91h=Vf69zJ&sJ%n)lHuiF z*TX_;(6P5$iiOk}?v7fx%7!7WrKfSG%nqb-BZiZ4Wl=4L<0P|?n>fUVs4S#17>`PT z7L~tZ4%Kt25d1WPXHmf4%m#xNR5KJp#cyU$z+|Mo@+md=^TL~i z_aSUZWg(ETGHh2x;J;y4A;oaJ>=~!4^Z`t>=rodLX(^_Wr~Uo`PWD;g)x&NLVuRk2FH;jgdMyHv;f^wpV$lKHU08 zkLVrWS3PhEE^WX##Mfhx^mu70X{XKCU)Ta@SbR0U9^Rq(`rSWJMB&yp&D7MSBsiC* z*RpoMrl|a+*+mtDLO9!kJEwBtGk=>^T++o{?5g4DHw zaFKPN*=g5aBk8hJ*WP{r-&uSAcN zL|u)I-ppDds;FjA5Q@iBvRTGry2NM2BJxUodxP4k$+}YNTCuo-b(gwgVI+%o>b0~A z0Ti4zW3|yzT1!I$biA@CISibYwTh~jNlk-K2{|G_vwP$+UY21m!7}mmfF>AyiTC3j zrINLjdRtEQx;;aABX{YYv1b=E_WE5m*{;DB!&urGU!%@F>fRaq*x!b`G;Qy8S-MkN z8XUR*#b~KwO;QCm_sA~2j=nQAsF(_))lf@mV_bKa=J7j#&AE=Q!Zzz_ZEIs}0MyzQ zL|9n_QIyZDnySc5os< zz}56pscQu&mUS2IvKeh8*}F8Ow?H7AjIP0b;Zt`wlf>xw?=qwHe_DJtPEFVq2m^Yl4;{tD|e-cvOdDRm(~7F{)joqVj6cl|`Y+g#ZLW0@Z6oP`W^C2x0Br zf>Y?V81-uQx)zRFPfb`qp@|3b4;R)RY-(3h(Y^5SjF(E3)hWvK-n(0Gk?+dOc^tRM zuSzedjJ|{|4rafks&sa5k#A%lpWm&SJ;r5eq_ji@d6v|%X6h!kH*L43_Q=qvA~Htn zc`c)4PMLF0b}n4dpgfFR0JP@?VjhQGs0(@#m1R_>;86p?H9h+MZKayxt4aF1s5EmGIw#VxE0&s)Ci-WwZfqL$L$7_3@*V>8}i z9SzzWLmK!SL7g_RgSg_<%tj&{x}6|(xs01F*v+SL2)!?U3K9+Jdlxm8x-Tw?!>5}R zWqQUTzBb;`d$>C1NLPr%%dtgr*t;B}>s(OZ#ZE5SqxrkvWo56lLj3(q>R5AgH{1I} zN1wLCdtIX%Ef|%S*9-O#cRdkmaF4>5#QMAqn*#-Fb!{AP(@fpts~%~8+{X`Im(p7UIqQUothkosBg!gs(L?kzb-A7*Fj?$xYKk-AnK z+OsZv=d6$8H^&H??$tZs`w+5g2mBy+M=jg|!;sdt&^S{IB>2Qo+gl(*5l_qZP+t(g zzb||QY~%e!aZ!m0M!*s1+5|rD(co5CVjBVVpa{GyQCTc~lHGcKuV(2$scS{xG1l!z z5fDG#M({QYc-spGEqrDuz(*ICV4myV4&*crOC(*o6~TiiL69LV*|vWowK}nXV3^j> zS*mMa*z1noQ|j`$BwFrh0kk}bsCchiyqCH8oAiUY`7^dSxcM{0)XB|f*u(P>0^IDz z?i0C5R;po(u|nLuLF(X)2*l5_y=(UA+FDI{#<pFU&9d9??V6BjiTTkx`^0YdK0+?Fc1Mlj2 zb9_7GY0U_X4>n?aC=Ni;IH8Q~6o(ZOn-zz**}o^D~&uy;Q6j`*>(jF$+cu&JfTg+UWX=HEYKLHs@-1DBJXFZEK@z05mBU%uPv5 zz{hd#DXOpHe=O{+o=hoYXxEy z>wa8p6V^!96>GvC0>Dnfj^V!W#s>_KChXB$qV<1TbTv-RD;9LssDPPuJn$|beAhCS z)ljpd2oPIEBSqjBiOPz=B=+olv8HOd{UYzI2xPEs)P6exM&jMCsd_#HOeBdJYo3-ttkuOt?BSWn=|bew3@`n~?Q zwP`h8eY0Pa_3yz@VRR@US8JJ2;N2PBKg2VpkSr99;`gA&S^|nky2NP3BbR+lKA@S~ zPU>QIhU*h1Y&V)4$%Vj(rnW#d8o{8}IA`Twx2PE5x_}wn*-J0}xy1 zf_ObUx%q(R?H4X9pGqsl+ux;*H8UI7-p@Mrv|0VsHLB5qQE5TE;Q(>g6Q}%nj?L<3 zHU|pUde}I=_CS!ca2S~CS6wF*)${n(1CJc-iENFHN>4J)UcX;8?1EpdcDHX`xjojG zd{A)E%FpfWivOVI>wQw!ib4VF!W#$IJAP@5;EscOtJ)a>ySA!D+#R)Ws|rI}TRG!Q z6OiCm6=)hq=r5?E+L3RORG$GW2r*^59U8F5IL)wvJ>XIcG>`;OoU;Fa12FK0#T|Fo9D z#;HDsf|QLh0in{W17c_kmuewWRBeLM0Mf?FE)*w z2KMuVrLwq`4eSNIfo*hHZ(wgc%v65hu%I$A@P2G@aQS}K@=G_De_?;`J*>Ih!)57J zX(?+mY+$8|HATO&xdDeYm0t}FDkj2c-K(WU<<^Ham9qewb7g#yZMN3h7L^TvR);l} zD;2_3xmt^hDtY1Qp(@AVY&aQigxb0hKEt=?BM{v-#}b`Ac{EnlTNO?;p=eyJZ?lAJ zWv{oKzSCd>IFDRDBz3LOTw)l-hixt!$)3ZS%U?qXoLs(w$JxUn2;OzEK{r@zHg2sw ztl7M5M^QO-CR+o~`h+gi`r-MaURUpFqw1c5OE_N#|D5scFUmiW=g1?P*>$C^6`Ls5t$DJInojp>LRIQ zO;c627dWEXof8^WgvMx%(^A^^jyj^*{Uu;?vOAV-jzVp@?={X3KN2K1oE^gr%T%qQ?$6%N&i%XoSNdpaCP(fi#YkXT69*Qn`V z?{}MRf(16b_WvU6cRxDH1^Kvig*bZzTO?<_M^59X;*NZMIzey{^*XUy+ zqb)l6#M1>#IWMpZb z$mDqVLd=$W@S+OF0-#>O#rlmxK@L2DUxY$V_xNH7-gJJ_Ld$22(?NL>qfbJm^f0&XOk$Ec`!!J75! zW5#K9OmA{wZU^isN|CSXV#!2AbT$3Tx)g?4AVLp?z_EMn4r$Cm~btysMK|G zNxR(}i=lx23G;}L`2F`7v$5WB!4YC(ZETTj^wd_KT1BoWg4(c~HI8dW-tMw=tF%On zY%g`JIk}(h-G5wH&|5>JiXTp+RYOZF@7o{kIj)J>^SE6=+q20St!zE5YXDR^9waB6 z9{W?%;hQ)9ZScmM^yCyMqaDs|@2(jdlEGWAlT#)YLsmCf1=oKpfokZ1Gvsj+tCg!A z*|AaJIxddqN?j{1kFf6S<2Ff+WX5q#(mV)&b8-9__nn~wKRJ(b zigmwsMZ`$HIIfq(aE5`IYb}Y*Si@1;$_w-V(kDg9;Q<*IS9FQ>ELS}t_=A3mT5&}VXX+c289*)S1ON7+3!B520sdSCbu}D3Ek`j6Z#qH5D~fywm1mgMYX)jP3RZd z-A*Soq2G5|8YC^{d;(u$+tG?rg53 zHe+$w`2Oe#&E>DYhGGNnbLo&(RAX|*ZSbb1v;-tGJ!J6dH%?(B3f0*Jcz<$uQBEDW ziSeMsYGv=6?A$(ZANl;X)V1Q$n{_`wVe{EY&YjSF{tJTO3vaTvh<)i|kH z?3cP$9NuBw#wYDK7|Bg1HH&Mgoa@~zHe>D9_;GO@{V2wrHnzQ0%j>trsNNR@YyobI zyPd#2W;-lWbs#(ZC=RIU{1BuYu9KTl)4yIPdwzk^JoKby@_Q$l$qS_~7iPjWU2Jd= zIa^1@+S?9gN9UZ>MBXk9(N995v_zHpgw(NSY8cx)a#Az7Ff^(NkI|Z=rL?!5b&}}p z`2%JHLgwuwe;!A%*;%@S#b^U!`bm}L+jduEJYIJ9d{a~}DkVA1yom1IKXH0l5CH;w z1zoHvb~V$h$!eS`IddnnGcl($gBwd-jE6uvo^|0cqZ#C-<+zbvcS^IkZrK0D= z(m8|sqXsUWVN7d{X}qZd68zLxk1E@0L}3KrgK)%Ojsd=R?l-3l-d<(Ga934FFD;=+ zbd~5V4o_q6I-SxSepBjNk(kW7z%~;J5ho+>UIcU9K4M#PWDuwT zv$Fa&_zHt1Auuy8#k~DN`a^X4 z7F#57z28D`og3Ua?CDn!3%tXz!fBDLWTiZ|7%N2D`clW5nz?MRwi?_Tf?xi$J)lv5 z0cn5x8Du{0Z=0XC_qPk!6lhrcTjTWEQ%KT#;5&SJ?Hri|57nx!n-BF+K+!n3`@kv5 zShXuX~JQVBeBym~kxssjfcv=&+x74*_u#|OQ!x*@TYNW56)Pga5dots}@Pkc#obYl187!WTqOs6l*Mij@VY6XE+3# z-~nf0X#qJAYA1N-Y?sB4<2rU3Qi^uJr!~dsD$%x6|LdyxW4&swbVk=&-x=m?!Wo-w zO|iwWjc#*ns&cwQn5<&Enf+~aM)USTm!$`!CF1R~QU|9@;NQabx}4F)_JPo-V(N@m zBQ2$3d&3z`;2{9cxpppKn>T1}t6&)f*PcNV`_=k*n9sz-)C526gW=Wb>8eND9X(Z# z`rB$m2HWA$kMwla^TmU)YPBDJo2?!_+wF++&5=N@Jl?}j%>uV^&73E7t)T2+-H*=L zYegejc}A0X*Z(8!y5p-Vnl|^QP;#k40wh2J0)mwELJ!!HX77p}6#=^l3a=F#M1><3 zBzCc)zVg~d1=17{>;(`-L|UjK2;a25cg~!Id_VOc!_MsN%(MI4**Rqo1n=K7S4!X4 zIC$DK!1c zo55kF`1jjS%;$Qm)KWA!EEC;*0UVrU&riH({w)@vS~hMhNQa{#DZq>uc3lFeGy6iM zNFFX)k`jwO7D*TDowELwc-I-NbF%ID6DQjUHPxAH>!^9*+630TC#_=kj#?$`yqQr%ViSo1M@>LFeZxVib@xW$aF5K-Xax$3CLa+L5 zI9v^w3y%{?7g*u&9m+xZaFY6OI!3c#H;7Yf!EGe&KCNr;SSPxFuCl~+lAWuFxNweG z^_7eDA(88)>rRfHc)OPWHoSEXtzH%7Ej$4TL1EgVSg(A$WH_?cG!q2C*;uoJAak|i zp@E=UeCx5AIeVnmH4tnP-Qv|20w)=;nmOCU8$C{bmDFN!W3A@c=_U}&c#onb`Tig& z8sIHYD5u=$gkEkvR3mH`4==+Jn75a#V&0CTraF0B+coF!`YxFpp1qpsI%~Di^*!wi z(e-U?@zE7Nt?NE=H@T4w_!EY6)vEn)a2 zvV9$<19!_!)>zK&7n`rMw&ARc;MLXM)RQ3DzA_jx2JDvIHRt@o=(pxiAA(88isrux zTdr4!)YOYkB<``M_GMeY5kHf0*cxVTvDQUsRM2sv+uy6c4JN{b;iP@maN0c?VDRsq z6Qn=t=TPsUqBd70U8rb9-lzr+MfX1l zLx8PLddttu)<+!kDJgb>3X&Eq@Ry-LoeH4<)A16-Zo+spQ#8*d3p~ zB#j`#_9#RMMCKVvqEL88M`lnsTs(UVW){ocrCQgZ&{cHdKo5t4BC3}?DnbzczFAXvuWo5$DTw1ph?|nT~y^=PjL~K5*{m6&D5gu z_WLz;mbdAX?~1W5#uNC9D)P)mUUmA6S>aA=z2)yeIW)9ZxO&vuSTB#bIs{uB%c#5^ z;*EYGm~nH&-$84cuNMa_U7#%yUvJPlI7KS{T(Nh}TF$r^#70$9<+KK|lrnBV*!&@J zA6{!SZlT!h$J!=Uxd@8ZB6*KVfIGMFfG*NEKBp)LzL9n6H{-msfxJqRh!Qxeb=0o8 zj=r|rjG2p)BX8+Q&B84fuU-egahqJJbqy;0MRy6z+Zl89`EO40=~|}lDu~`+-wu?% za11xjAMKN2?}2}teX{fD)wP^(&z-y^B{7o&qa{pu^qvi0@B)HmU-Or7quh}97l+5vtKM6PSW@n-ZJlv1*(>h8w=9m3yTLQ6`@Z%Q zCu?Cm3cd8bRmqr;Q{!x>(vBr9BYSm}W(A)kZtVugk0<+cZzKSd+c+4Q9~@=@;hlMbuO$k83M}H{1$E@XNn4d*}Ts z>|LgPA@+WTEk5>s#)z0Ac&vC@@hh`;YrxVbZHd?$URV2Cy;AJ$|CQOhDK@IY$7xlt zlv48IUzx%k*I5c*B{mncwxO_#;1h`8F-XbT`MLR=k`r?Z^0M4>8e<=aq#TpMrRTgX zeoW*2d!S5;c47hDzaOOIG^_R|@u}ZB=I_Z`7gw!{_IlAB<&{>!nl%19>F{-&l*d5) z{{8fg(jPT&KMiA=eWvrKXdN?n+#OraE6+sd zJ0_uEK0Szow~2$F;8J7ae)KC7cOEtUW8!X}3AOJwj7)CvZdoVfZS|X?6Op$CwrKK( zTl_|)r~>P5@wBNoYQ^HyB6$HL+1d#4_GqnRX67C-H^f`B60pza@zh@1DKv$f0kdHd zCjG{Az2rAr`c4;9pkYd1=W~PKkgCVVXBENuoU(a_FRw2@XAv9+_c*Z82&ykwl{)%mbEGZoy$Jo|{&H5fc3y0Z|208gFt!QYstuR!2_p3ai~ zsDV6%F-_g;yt&z%`aRUWV;2G8I3%WNQDH$ZxR`zwJc$7`g?D%{T3)^&@(2fDX+S_Q ze6B+?FgziyRlvMr;k#Dr8WDz%Z&~+mOW&tun_RG-6K(E# z;p!RMCF1I-*y7{rsq5`!qvyoglh$*Rofxoky|zMRy;tj);GY+Jcde%+8@@g;qSJs8 ziLE2oGh1JRfM9>DfP6`8freqL^LiL~jfpj{AO}|Cs>k6{RSx{(!edieqhM=1?s2#s z6qCiH%vzS?FA#gui z-;lnjfoz5G%p!K4e6n6;RgS0mo3Pt;D9m0&bcI7%2_cjz6ez1&388Sv?`nM;6y6i> zn!?ExNZ7-)u0i2{qI>A?76m8C_?>sfO}*yTvMW|gz>NiQB3YA$A>vfx&i6)@FX>rx zT$EsIjBEHoeEmRtg++zD4Ij6jvTHbZ{lDexLgDPB-jOyVs0jzG22S#`vc%Rus6OSyP(ip^U9KTa47;FqG|T%Qp&Y$j9}*SZ#dPO zc5ltI@EStX4YjY>FT|as4b0m^wXQ+pbJ0!TU{|b@wA;YEE!<#vyG;6`2J#lhGrV=4 zG}sX3Ej&2{;WvA8Nn5xYmzN1w$AUw*gFvG``FDZyd7z+a_T4NXwTG!P2`(9jo0GAbS zfv5k@Ti_e1=^t-_|Eh%Abs$w~-YoE73`veq#Z^0U}$0U!3e7Cv1c@|HJPqF>Oye}w`rC|kID zNe|TwC!E7wpyu;tBu7rtv6+RrMZ6jL2Qzbw)-^c%A-Wg+LCjR^!b#5eN|Kf&&)iya zb!alit{=15B)!k~7B*WlI5ZML3|u*O?hN~b>3P#$xN=Of7J8gl83?LY_y3NUl@KHr za>yUPFau6z{RT*C1cb%oIzEHNF7a^oA57BMwXVTpo9Mp6Sg84Rk{AErygEA;s6xz* zHH@WnwF&0^`0rsO9QE5x`>2OzwDdmMgcqD_v=r1g2XXXIaTJVGQeC-$lj;W>>P)J& zU1!?=BXBiwBXc!wqj0s`M$57;*y31*w|>H1;7l<;SNDs1oi;L8j}2HkN?ReWo~d=r zyc`gFr*7o!?@@sfod%3ZWbLq#ljuzlkbnCdm&8vofQDhJ^Ez!KGWA&4(G_IU?iYSv z;RqrsR)MCFHT(i9(mq=O6PcZ9L{!zx){&Xj84+)0g1@-;eMRdU6dH)`yp1-8I>~bz zIfs4>QTzA4jifJXU=D@xOp-b27{)eyFGw`lWg6{X%wuP2;DdkA*E56=aHL$nb8<|o+%LE zrOb0ILJFkaCPfJ2Tq|)73==EcY-Co(ZLE`(b=<{io#YkwgU@7dVtO94N$7c{_J)$+ z<=CR>8M++KD)c3`RB`jtP0Y^w14i!AMu?qrwT=lpP3%3ki8JXvG@$xfbPAWE0A5-j z-?UNq!c9!jk02!fE;n7wUC7#Im+PD#y$MNr3|wExf#albmrE}VWNn5kN$9GasGV0DaKR|m-e)T1D&l3G{x&I08mUoH~>up0)nCIX0^Hv44L9y zr_D^$ep=VS&_i?!Hxmr)rcVUBRABZ+2ZMF9E3N&=WOE5?=jT$k2k+f!)0^BGhmi+^LyWB zVeA{)7h>#d*rFL5ehm=zC)7gm^5xA;*%bjR%d{1u?5|qK%ukWnTeF!H>axIyP6I}y zg!;l}=4-+hn^60UEzmFt)p`9aOf5dG_(zYjByV$rGWZsAVSb+XT54H4IHnP=E72jV z_cttqCl;L~4kX@dZ$fdpp=ViRZ%e}(y3uD+J8h|b%^oGbb=bnxE!4UOlfj~!yTwx1 zNwT&ub&m%O{OR=w>5CeeUST|we4Hm~TadJw9A|Z>GI$n(5g1f{yw|LWLjWZ)1jb~S zHSxwZaR{hxguoR#D#O}g;@PEJn6*>2u0h~f(VZMXz)2=%Q=#7}`dcM#`Bh;z7@@H)~{n>o4OxB1^D*AtTXv8OL#T9K>?7L622)nspD&ob2yj_xe-rewh#n@e?oxJ1=Y@CD)(e7*6MB{xMTYgL2AxuSaG zR^q5K;w0C36Heq}HCzJm15K6EXz6|(LMRVAUC4i%9P4}cdzpVPxihj@ z>loH=3oGY$Jc*YNxDyZjv{uuz5@GmgZ#T(^>Aijn)BB4p|CZk4gx+ndncgYYLht_7mY998 z#SxQg+dkEn-dBmE1=URNvjbMn&{l}vu&j^g@G+;#JcL=`BGX|)Z zK4M1K@N@{uU*BFY_Hw}9pilL~fX?&G>L|xs$LD8e@bHB6qUH$;s*)ow>kv&2nj$W}0FSHU2Kr;IYv7n9x*t?qhC9i-82+^I zR}i^B3EwPT->v2(48xfuOx*B{K%}aV|$|C6CX;Zxa#-kdRYj9a%sy z?9!nb815ARw!sWzotv~xtv>_9t)g3ho862!N&GfW#bC`u>BfO5DHX$fkI92njFTq6 zUeQ1tVP&e7n8L|Ah>O$2MO;qE*q+tQ*p%uz8C%;msMJE(GM~GRd3x41;pu<06O=%2 z!4}Qa&@JAY>wHOZx_CEf8`Jd3fRQJ(5u)jvTE|St46*mxHqOFN(17X()G16tffTtn zY~xJ45<>D9xetlC8(7;Exz71(w=q+<3@B?IpOpvaXnu4-8GMrqZs*X+Z*xXLYAN&! zs*i+E>1`eeB=xs1|LT+E$Tl6JS)PxJOPj%IWNH2FwJ*=vq8qo}E>9<^x1IOOsoO10 zACp{&ps5n;kZl&KFytVN$8{`W={9+%5w_Qxb{_a^TnsWN1QBem?G(F_{8K z;m)Fy#DQei^~_LsWx&_&O-+G2t_3?3?ablz^565V5VSc*Eykvo{8 z=Rx59O!`0RiyBzY!gwafI8QQn_~{vum_k=zWlJbfIt7ZRG72b(q5up9HA2C)GYV65 zWCn$W;@zYj%+Z-z*P!se=#~UfaFY9XFh{|fiP4P%F=8H#yo1Y*w!?49c6d6{(&s(R zEwELl+#l4t2XXWhaTHe+X43`mDGfa8t#o^x*|d&p$8gLvz18zOOfwR8-3}paWT#qb zMA(Mdq6r&n=q-HMmsiWh&%~X~*B${Q-Lw(n>j14|Ca6N}_1VdJwHpnne#V?aA__RK zhQi*|N0;;upR?1Z)z8IRn3YXhb-o{fsTS5Ic}aIcWtWv*R0LN^Pbf=E%+JoncWCLQ zyt$*`g4L@RK)Dl@$D`aU`3XKJ0!g;9k-FZa=2f(eOwwWF8dgz#EsoycO`QWZZ;4hl z2(1v+`*zwLv6I}5aL^6f@G}63zvlf?y5G%^&#rz`*#%M(XgQc9xUBdiP+8tv4aBR`c4-emEQ}sG=bm%Uo{)B*)E43A( z{;gWa1pb@YyJZ)r>MH{yIt>_+QuWchI8{Fd0r{)mKg1Sjm{je&K4KS>{=gk&De-V% zVV3vd1!e6MiVEpMO?uT>@0HoGh@+A?ka*)K!Kse>?+mnWoisN&vQWona?}p-=Y8-P zH`8BfU4z3`(fwkV&D2h^bQfpp4G_0KQ*V>LsDYUp#xq&WdGgLKX7$_~%i6?Y_{Eo& zrAqkpXjJbxkhLg$l*GcHd~cwg!f&)&t!WefUU4gNH>c(M zlb*Gexra}I{qxnknUv#q3n^!5Cy0~}Vv8na=s`q4Kco~F;k#%vb~7j63K)4q8zD}X zX&o~e@nY}O-JFi!paIpdrBj%}bFpk**CcP@e0Mo&Jp|=1bQ_4lds*LPWas|0-BEJ3 zh9g(tID-?)+Qq~76LY*}yT2UA)Xen@rhW)t-~(>LH=3nG9CYxumMl$)B>q|Z+H5W! zh5uw~rfOXSM`O`V`O~gVCu#X7Q?vJ6nO2EKS{6J1P+QQd^02rZzGURM6jt%{j$$6pHH2|~}-SYwfILX<6^8OjD zVR&k(xN#2f)KiT+ZFd9j=ILemF`rd1NKX}JY&!3@9;#8=iigv16fSe`*v)0`cxw8` zWp3{WfTsV0dBt7xfBzJkey@EYntp>Vnx^4z09k*Tn=W2{`6u&qZ@|i*+6wWs@gB8^ z&AeoYy@q=@cm5d|(P_YllslKha>u(uJ@?q$*;#CXhRL1I>(60sal=fxGp`7~M|_}R zSz7(v!W?+r4sLTqvu9M6Kr)p-t%QDehw2E;D(xj+9leKXdY;xbXml6dv-Vh;I?3sK zn5Nf2^!^OmL;9iy(iFxsG1qL0bQ5e?(c; zN+`0W2l2K*yv4PJdA0IS&a40Zv(CI)$2o6(yis!=@WOw?R3mf$+9S+O|4Z?SnA;9p zG;>4kyydHX3AVqu+4e6c?jU1ic#^h3ygfmym^m6C=7#^p`L#cdr+&_yLR%C_xtr{j ztc7y-s=sV<9W2(8S=l64=lUUkF?*XXElb8XWOMU#;f_xloQVwI+oSaQ!J4wx0SV=o zCd+D&RF}Yk<}-AZxN21pL&dLqy^?iM-9DpL4IoF0YAJlr4bHAmMx100M$gsl+kk+- zx;<99&tU|px`nSyB6Oy@bv{k|i&^~I!m`#01P0&qAT&zuTRO}exDKja#z~0?j{8>D zBqBV%)j=9OP7p8QQ*i5CNxNC=8&HOe{ssm`m9$Rs+h4pThEJZkSQT_`ylE_b?Sa#h zXqghBj}}6|`g>VQEnyz`Jv!?O0SdF_UPU5wTMc`XxP1r?%c;28U(D*i_WWB`pUSKr z3}<#As|W5CR$rtYB37S|Et=Kg^Y_|(e1^Ds?p~(#?Ex$Q(N>7pp4KrlcBa^Sa4+ZM z{{%*K8ZaW|<1_biK3)I;`D@v8#TICoeC)hFZEuXx@X%^jrZ+ILyp1>TgR+G9?95Df zvSHcsaUQa|M(M&8P}L%{Ym`n+e=<4prH<9)q)WxWuHFP6TjfteY`Gg-@d^7-BexF+Q29I&#XWM<8qjR*bp~&T;+uNJEAAY0o7h4g?NqeAla2O1lfZb3KFx9%J z?QP)Qy{N39hM*}bB=SL`I^BAzerYC%r?}QIKcBppnLKcBolLH+?(JJvHaB!9#wKsX z-?mRkJWo49Bz_KCd?bDj;Pr2+uNN1e-p3@a2v}L7tq_TS&^l&vZV-Fl@Z@a0A)!%t zNnli`1*0O7Lvy|5dzQ%K82k2FGEWklbN3OM)nq&GANS@rD1(Z3Dew_qEXenY6U$SW z%Q@Nb3}kwb6~yH>37LLz7^>aT-&eIpD#IfgHFO=7w<0;x_V3!4?(O1T^50D5-dfjC zd8+6h{kfJH?#KfeGR<(zlJMR&fjPhz}Ggh;5cduW6nWbyI)*;9DXiCC8pc*zlEt=v?IjSjo9L2>PEoR&(w#+#oqw|d?vE#ezhjaN(5V+6=G_J z)-kg&Q|z_d&)evTm(i&#aNeuaf>9~u{tBxcOW@-DmZh`B9%z`9>pcG%W)(|dplM1% zHrxZsiSaZsH#aj6-;Kfhy^wX`GOAA=k8*Fu+EU88a43ym?7FYHZhEUE9kf}lPl}Ug z?q{-Iqje2Hb3}LieoIy-8M~j!dKZA<-&4<(zGE3w+Ebs&f15qE^XRnw(fpf|n9JcU zUjbWX0fue?!?rq=fkBbN1gHz=(-0=Q)99EcYAbvi*pXvL))-`xMBf4(~ z@Nkm1_VbSV=~$%d=gEzA8cGL8e#SLVyXiTx-89@hz-c$p0i|U<1cF<85QkqBhjHCu z`d#%mr{D6w>m+m?(C?G3D^JUl8es?&l|iQV1dIwP|Cjsuq6Z;3t7Fzj}o zcRj%DJ}jjiK1EQNm05)BhUcE)9LH>a?s;iKIcyN4qBszFAMRe#+UwTZ*M|gCFM=nacla9+^uvnb?9i|qahYZ(i zSnsk&6XC_6NfSMT!N;PzpD<8s#R*_TjB91e!;6wafgs&T5F}mQ>WW?wecu)Oe$=?8 zu<4oRW=(2|?J(=F+C7(vzqqh4Cm)LL$!RrB4*XjRS0aUbdXx8;T^&B9o>v-LIW$yn zLG!cAI)oxOYOg4@UWYAF3dgM+9jfOw&#lmp27fN@UR}?d+PVDH$n1cTS=tCO_(iQ_ zer}hFz2{)0uI0tyS%DFq28@{T189t^=Pl2#=ohZ6=T(m=)92N!5L=)z;rz0iyuP9y ze73K$x7Q^FW-2cyAKo}2_Gahd;Y#!*N9V+HsCJzsoDFXu?OmDTb#3kIf$bA^uS|*j zu46OH_6PCj*LvRkhAVGM(y9iAZ$$O4dS3BqKG&UOcRg=ZyJdHUTZFs`nPvJ5x!*}& z(5SwltT+tAjZQ7s;X6luhDkdaPC!TM!lTIf`QGS1;nprkPmgPy4D^giqR~H_R^Ha% zOu=V|6c0`CYsITxA#Ze2`O}f3wXWgpD$yO{l^g}sG_|gi4npbRFdFoS=Z1ptN=H`~ zN3KAiiL~FuNZTgP#T$(Z_}bRjN!$~*b?O_zFGfn$P)DrarJ*8 zChAWCE8lA?MAWTX$IQ`2u?Me2;~Y_{{XQ_N(}GcntZ%|$89-L}>c-X)Wn&bQTg4nG zAXnAzv~zsEw{Rp>yOe12;h1Dev~XArJak1HXiBsJQO4T)TQXe(BHAeS3fI19_lQ^B z!`_;P%O*yKXk7!yPSG6*ACK@QTPNrj_KMrBoCeRJ8N%+Co}fU4h0${nSFMq_@ux?#G8nXdD3)e&8H#^~DGdQa0z8MdadUbn8Qr52X3=EIsibmdTH z7}dNFhw7wlZInK(WBJ_hYIu6^IQSX(F)S%HE>5j2qG~;C(Nu+$nsqr4$ebtDK%D#= zo>;`Z+9_ZuU0Wi$=4l%v6mG`c{P+?0b@=&O4#JiT7jA@+MKCgN=61uMYCVhP|Bv zq4J)N)S%K%y!~GsQ+v7AHK?=^-OmE3I7tOy3)~L z#1_r!@R9L00e2Sf2FEj_FV$8ShD(PhX(L4FiCV?XN*6JA9SnpU<%_*$UGpP z$^1yXC3APN1saCT&gs7KQ8ME-RCvy)I;FgQ7`}je-rP^dA%)>0bF@9aARkVrT6i@) zX4SKMd6GA1IIuq^#%>uez)MB{)A5-Vnj=2F8PB}^OzRpfdW&v(yydNvERJX1u7L>s zyX7qD3mTMsVLX$coG0^P;)Jh_y(>?MhP0+bc`Alf{q!e9+O`rZwlfkLcf;o#UKs@c zB#2xG!XT8O7L&oCkNEaC_=E{KS?eMOie>qt+rlfozHD#}f~F{do7=0Q&JD!qMuHe| z%N&OJeq~5`LCjwj2yoO*wl9)?);pDc`iXa77pWP74dcyar-nPiwA8Uru8o@K9aTOz zbQ#7Z+v7_Tgr4_lKPc(mjV+Fz3y+67Ho>xUusC>U0<-hwfRTCH2+{LHtz)KRh}e6V zQK#+kyuheV3q~c1-kQJ^U6o)ddbHRB4MS1q`ILkxMcX96SLkvwDb>P97W2K5neZ7+ zAZcoxuX)fcxL?$}A53RV9}fA3FWAwogTHlrW@(NTfA+wrCqgZos8+Fo;&@SQ;+5Vn z)tp)xPMVa+4DFI=89H40g9b4ahBORy&g_E8(+q7A#*6KjLajnLl_ z@5?oWk3e5*L)5jb*KNifFqOTO4ia3i8rK%iD9s-Ks?9?Y4lGE!qn4Hom@D ztSbET#9qDnoL094Msyl5B5}4XkvV&4eaqPk#TIB7&N{CbB{FCGOaKn%WEJMi_82~u zk>3kmxyIW#157SFJ*0 zjOdW)@RnPzBU>T?PUc7Dr_&k4zC~+ zK(tGaf$&aE5(42K9hd>(8u9K<@Cq~QT&-(B7%#ey1we3;*#IThwrI`ITQ?5GNW5Ky zi;;LchI#w-jlQ7O>>f6;1_=eW_#n<+C(gpkBKm&JOhfvHUh+mhRW`h~g!=!uD0L&T zH@u@hZ-}ewOU6xUpa@0OZHX{^ev0BAU z)nqYuWCN~pb7O<5Ut6cuoTYTCT;m4J;xP?~#Y%gs*lf(&=21x(K%)jxCa1zR#B48P zR(WayJTaM<=VgpqHV$bV5Ud_wnd0@kimp2Pdd&ae)8xpVI#9EI?-r+SZNMacOzRp@ z?hxIF8(0!M$;<|vdtYl{tJ=Gy?@SJ!s@hxmZ&TGekEXy(Vh#p2bG*%8hD*qVL;C27 zVID9!jR1rhEQzS_Z6-&@NW&J_%t`S=22O#Ui8lD2xYyCQNZf%Ud zViHuZMergnUX#jiC}cfLyFp|<9a}V6!>7YXp#1lFW{ZQTG-RSq3Rt;OTOp?2uXW6H zJRU>kQn6&ivKtDjld3>Pm76EG$XBtYFG4{cnGF3$A*sw z$nmaEK1|L(tY)X&57q3=7?|veZ)zlTE!Bbz#8B z2igd+b%oY3bFx6}EoJDbn*AU!s?&l|iLqWIX6$zO+=Bnk?7LzQGz?>%=MObv#!h;> zymew;L17NOcZ!^i&&w^y_9m1r9`AK~r@U=YRPyZN6z`TAMXNy+X`WR3GW}HCY7DP# zKL$muRyBxxB&r>~`CkQ#S|{xQhVUkBpCn7ykEK6o5M5zNvyh!LjgpwI2WCU`gagyH zARE6FO79N6_Ca~7Ljr|yh!Fv?^`-K(1V%3^AQ;Zju^F~jif^ZYPq;ZAr*#buOGNkb z7!E3}Iq9V+9UMl3ezv-yAV^{>O#4rd16!kU#zGlB2dL_Ar$}a6?-Wx%6Ysz*?S@O3 zVN}fC)TmCj)=|tZ<6`y`3{GhKQPP4n&tfsFog&t*#TLg}DrVs&dy`~Wh`Xzkn6`-# zwN}YW9JV+sMBCO{2Pa2`zf$bAjBt{Tga7-}y3>FWiLyT=F=Y!Qma^Z7EzmHObzXm) zq$yjJQ}Lggng0B7OL zD~KL;qISmM2_2WgV7)l^C^&_jeN*ci41N*a*8&(g$;*HN7PM&1Pgpk&gh&PLx45jS zp#6~x+NQ4oP5s`}GzwKrJLZWVt!H)aM8^;vrAonkYCwM{+i0%+ejN@lp&UzA-0N%tq1 z+1$)RxH^327vnJfrUoQg_rPK4z+){*#6I|hLe7&dBaiB6%^Kb>o_UR#$FFH!gUnx| z`x2Dp{s*L-c-6KJzCcw5)$2=0Ysc+8{mos?&?^q zY8AP$9zyBhr1m%z5&N$wvD@k(RD8f~pUA;N@pWjT$b>$tG3$%Z?QzUBFSC4QW(Yzp zUkUH*VZ%oWld@~8Zt;3mZL;@1h3)h(uX=yk(C~3hgw^A$K0h zgfDKw)c&}MrFILkdogQ&)acWiqPU<5Q+q}wTzG;r|GkAjmbXjHh4wPpV&b@D&Fvq7PR^Vgz zfXmb!u&f0a%Gn!tV72H(F<=Jm)a|Yd0n@FiTKx!&n%s`!XlL)dr1EDX1GK8arM;;3 z@g_vd_1#@3C_sT6Ox@WlO@_bmx2%TIzGW0xa6-djE9+Mc2Fa4xgG)vwOz96Ao$4|)l@HcBu13Ml;mM#)?4(DVhx z&CAn6k^gFUh}N%Ti=*}ERVzm`9_9(F?&9jJO_|hR2JC#H?GUMd(>i8~4i|fCc_y$% z4t)_DS^%E`aBoM)?efpukbRoT}q;vopQ< z8)uA1I;ScDyl0b{-3y-Jz$;tGX(gjhGd9ggiF9se7Ovu9p}3UM%q#sB>SV2os3_H3 zQO$2=^R$!XG~+xyyqVo_=SyGEzzugO!#gk4hk)~=eX|&KB^b=W6ii0-jNu*m)QW_Fc2V> z$1v5s)|K~xb6(*EPTGH{sYJ@w7|09OIkgsx#kuFb<>}=^L(ee5=yuU`Y-;Zfdgz+W z+DQ5TxMy^Px3JALFZ^{g-ea$9wjgUO7RcHsV(o5hajc~Rd3Q5gt{yGk?r6rGZQEQe zQnHeQEzSyYwuja+oIOVD9R{0I_+6nyoZ@Bl1Xh|~3#SPqQ=z=I8SyoAyf?o`x&5Z! z@nRN~Os(t!*wjpMHZL!)AQ!jS?c$2yc2Q~CSL2woMlk3Tcn=T=n-*_6Kzrme9i~~W zCyPH9H|Gp|i`F%ej1t|O7!s3#o%Dw0Ue=zK(=d4bQNI(V^9_jM;Lych^DG}>og){( zJ7jnX8gp#|M+wUrYUR8XZqt!*#G_}|bmnfT8Vw_a_|Y%SBe zCjQez_tRMXiY`vNkfq}%_H7OiGhmcT$qjb_uOvLaDrpn0ZrV*zN(s(@Ec zXd?Xq5{-?3BHV1fRzI`nh}W>L=#umX_{qde(ktP|_21RVqnW>HEttP;TF7pCU<*sV ze%RuuM+ENI!V>sG@w2D}5xCX4%1VQJGeh)&CvX1x&=7BHbwZ=aS=uJid4lRe?|LZ| zE)wfwVO+eabXH(|rvc*=jq_S?+AV2euXl|RTcBY$>|)4np*UQSiJ!7V4#OhGrysM@ zrqf0`H6bQ~Rh;i-9X*3s91yITx+FRBst(UA>0BwgAGNS~*Gb-Q z!Fl%^2+)5kX}t6W4Z6?;*J-qxiK0{K0EnjSo>v(9rl=(S;j-N5d~W{){PxIw?GUgHoh%7_IuRb-D2% zO3J=4;paB0C^CUkJV07F7Rd(yg_C1lRIBwSaS_ZCXL|$O$k{e9G5?OUHzQ{s#@L32 z&pAX0dz*HJa^+NP(S!|6^`@R0EPtnpqc~`DvG+QoPg%D# zHnN&0r+G6=sr;P?hXmpKeqSA8cglB&-HEJi%3l}7^@lKR|L$DT#G6xDo)ixsnsP-j zyua$6yZWH8qM4Dy*@JNK6+U}4t7|PndO&A~4&E%{>Eh(pLzu)3Th_ja?-5;itnnmY z9(96nOD=@ld0EE?3*q~uJG^;wDM&wpLU`6?_rtvfoMTf3JGV9+f{gCsO;4;4V7UHc zV5kai*QTPmk;j1XX7>ka3|8#TQbMM`j@BSEOWZAL$@D%!>zXC>faneBvE$lW?r%ndz@flG<})Phl`V~Jd@-685P#ugv-7c)ra%GVrm_LG)gNw+Ug zO9~iTrwtMF_i7z8ZBK|fJhT;Nhic??v4Pd>IL%L3O3eSTB{M&@m1X`@V)sMVHq3WH zyw@_yeEf)I9{li+tAGn#IYr*Ml9KTrFdnX3`vnVUm!tsM(~SQ7StTivqE?E!W--4c z9_6)Snh)2yh>A)C&x`JHt!%D#lA~L3u0Fq&y_P*s`X24gKgX^2JpS8U%XS`Rw?c+z zQ$VvWs(>mP;@>>8WVi>!PE9Nz0HOknA2|(Iwh@?UI|1+?9h3p!4RP$|R^Gy#FP}-$ zswVzdMfJfz{7wQNL!&F#@Pq_LX|8O!p|V+u`|U8y^_{&SSNoi%V1T(Y%l=^Aw;rn1 z_+RnxJzQTyLvJ(3s7ihco9eETYpbC9XI0D%{{a}`Gg|9gNv>{^tX38gHVIpNgiZ3Y zt_3Vio%*hL+8~*8b+3S>!?mUP{l2`EOxJRH!h2$_pOc%R)oSWsnpI$WqIomEyw~p&p z)fxz!s+8k%v!GjX+sfp~%^D7~V#~#$iOEda2eq#GAzLK6(-{|2B|GW8$(){_!}xWb zyhOU+i?I(5O=JiRVVytM!zrHKE3!BsT(cZcb*st|UWYanZ4wIz7nC3@2mms+J;D-G zr|_5PkWBc?#HUY^IsN{ibxrtHqWeuOd^NL9`Xx)LNd6=iqSAC@UQg0lJ^CiWd_Ov< zqL1@E8W6CS=Gg=kPEkZLPJSUyhR`@aQ@I~92W+uJ>+zT3pWj{@H3UeTnZl&)nIfb; zQTsxq9f>VI(vI{p;Hgnd+Hb_uVJS@7s{@wCYfF@7Z`V5J2lZRAH#LQC8;_5Ts=#+z z!&pj;JvN0?>@z7g#r`NZk7aE`R~NxiDNNU4SHk9c>xC6b2|3wCnK{H+c)AYWZ)kqq z%5mObSHkY8Mseob@GS7iakYs<{{<3%qC+>Uc%8WUVG5J@8?9?#`dM`0I1h6V*-4hC zaNgaRV)O1V(swz-LHCe9#J}|wdgsi0;LKI9sa`d_A`%C9cxy((Jtl&q=5dDBH5B<>blZ6u(}PvAleT3k@fd#I z@9|yia>KpHKuqcXNm3}qd-a5hBI7vCY=;wT4(RBEIJrffJPJo(9uI-#i9GH}O?BQT zuH!L~ZFGq%bS;KCG<;QS;q$}VC*t!=Z1M4VCc+Wm^G@;jf!56D{{<}lS6d=JS7;qG zO}oV2VxEX)c)$3+v5^(0o#q29MNWtA_loa;j}FmSKR2|ty#7mU-_Jb^uU#bfwD$A5 zG2B~$Ydo-hPRz|O!i%!CWa^fi{Qwd)2GK+9TU2~bX&1Oo7&fOTvL7yBEAi? zx}DZFtUe$CwP|Bn?Ig)A$B8iY#2C%m%lF7x(0+q(LFx^f|HyJ&f_Cq zXw84w%Z&r!(IZ~>;L4<;_yAwJ{`>^EbZz3Lz<}Lw2g(8A3+!I&tXi}YarPc>{u8bu zz6+PSRK!P+(q~_)qe#Bby_$m9(A>%4QJ=xZHdKd z(WZz!&@fl4o#V^eL>UaP!xq6|#vd&}_7>!1!5a{CwHnw9X~>Dn zHcZT_QHk)GrDHbubQQ-RfY2sGfvi;xJe@=p>Ii^GF~

=4CYFyiby1p({N%)=?~_ zJ5tMV!4j?0ys53OYU!=M5O!VXje{*pZ7~DCYuBKFm)j`R8to=gz)Ga+-Jih^EMD(k z06)idT<@-}dcN;QxZ(we0KOtuyu$n1O7iZQs>nwK?SL&lmUl?CEblEYrloS?9vrYT zP+KX!1FC1OV&*MV%#HM>ej?R#cwk^qrv-x&%Uh>1%dbhbEYB5tpkY|<9B-A%ET8st zMeD?Zf+BeDj(8rITU6+E=&@qF*JLUbQm#23n&Fs$S>>(0`=6T1XD&WZm{0PH{!iouAv#BtNMi9EHD%rdD8D7@DE^Dr= zN{)Q3qciE|3~^~i8mHrpTGt?Pis-ISvs-8<`8ADcTCbg@>1omzG>E1!p4neIPnM-c zX_^*>V5;A(fcLo|es~PE6yHMp@CDdsGBzk**V z-rvra!dHszC%K0yg$bQk9Met5M zFc)&K?lSA`uaYBa?Q37Q*NacB+cRymw63A;)uP+8y``;_bcYA+;eEu=kzVN!!OHhq z=?_{&T^Q3)*Ll;beU!RwT&$RMU>BX459j(h`r=dMxsr|$AVLAio2okzb_B#lIyl4M zo5i`&;1pKB6Sb}ZVxs6?7XZRZt_C=<`bBI0>er0}AyW1G1TIF}CST3lh=RGQ-u;yA<)heALu0G*~*1OvGFg=j}PwR<;)=S8HFY zPlMtY8#Ix_o7>w=dxtprM|*Gndre466Tg}fZ?K+RJZf0_~*ts^vx^&#=*><-M@>$I*xV}|Hng=py7 z*9pdT;9Prm2V46-AYI{{Nd%8--?RB|Q~NrH&gkG}y<3rk;m}1X3Lnnp7~wVD2D=Ih z9|f`KhpmPUvA>@IeV3wF#BhTD@giCM9F(>crMda* z#yW$g%X%J{)CiX}QFaDXcFImSwf@*XTpMVo*nYJRtK|E*I1I~)lJ6S$vBczC2|ulM zB;VSq*dG@{6${T+#aGB%#Ld!$t@-JeX*t;9m_{!m=FA*b5lFjFiIDb>1i={Av!6~ZJZb#SIwGJ%mm@!aF2AR>s{$K)jlry24Ca6UO*v%+)Q+?mh7TDUK0BpLZ|6X~Z-c$G5Hi>@_4t7A2bcfPpxWIA*AU9D?y zd0BK9ATFA_PVi+%CeHZQmb3~ME1qXU4tMN9x zrcBZLWO(>9Q8*|gB(~`23=;nn7yn4-lpCL+RwE*zXz`}#*2|#1hguR&0-qznwL_8q z5sg$Sy5XK6Aw9(bE1>Ukyc-M?Y{G)iw5^3-tXjhAZe3O5yd$o5gK_9~Qm6}akDljf zhOKqpQL2r~)hi(Bo|eH$_v8$r@lDzrN|-lbi>7h-h76l^KN3H$&0r2c8nE)PwnAz5 zWvyeTXrb790Y<|5_Tj*YP6I|PT?_SX2GjSm44Z8iiKz)0HrqO z2~IM&BX5s0JKCt+Fc1~hwJ^^k)&fJFtI-fzdoM4?HymgNbr9nY;@Q{Y8Ca#{dO4tr z$@OHIhdPpL9hL2OT-k;n@5tPIq@!^2Bkc}x^L=dbar6C-#7%|vkK*V%-l&chr$tr= zjQpsL5H+`H9Wx_8iMh=%5K{9;9#E}Fr}0il-U+|ek-6ETljY{mVhc3PPS`p9Mn}cX zg6zC}IQ3MxnV3`L%dK$TutvGdu&Hr1^`^{{*-0_au=Ee{u}3Fn>5*C&u~AU}Cc4Gm znof{E%wEAs2Xtblp5Dna^>^tH8pKo>(=gR})2$OTl|#lg>)>!HwmpUGlSC72uouB_ zqYll$uuWXM7F@!b_I|BvVAw3WcgJ8*AUWxsEX5=nMyvkX){O^&Qf>PNE=k%b{}$aS zx2q{cNw&3w_@;GRt=k>qHmo^f^lKfN(T{YjlhL*1*fxK{cKK%vRJO~jItiB(4pmF8 zxD<+8Y|vDOv*4TM`gUr6iGv3^ahC0@ZP4#QM{R_tT%dIfmG_FhoJ0B9tB!U+rvL*| zO}n=fGx^j*Et3z3DbN5Wck^cKugFl)I?w;?#B^@osj_uqVPRo*7JM3o`CLD)04^tQ zxus;BSJ|l&E>F}TopBg!mK(RIMVfW);^fG+I$pDe8#LobGbS9$RK8p58f@Z4_l`qt z;&GB&4`mw9In>fPQTl=g(HO=vtJ`^UC44dqUoI@~3IvvjfwFB0ixDrCkMIU1*B}8L zvI6Q9{s%fF6Mj>1>m6_hDZE1Kn(&iEcWEGeC#eDu@v;+;!d*La&ONlV@btLOil@Y}qp`(D)T6!9V}f;Uiuid%XJ+eV0ZW%?OT^YmTE|RD zYq57jXJ+dqu~F5ptJ69HrGvwRIx}M*>uk%~G%+`b&6r%}obTT`N?15sC#MLmKmlLV z67zD4vUX3t2uyBU zbASU5;&d-@x<8J{&r9}!l?wZ4_?RFz{p0HPxU|Z-p(`+C$-HB_2&1QKe~8idVvA;U z_}(tI!p#*=r$GUZcW_?~Sb0fXAvQ16I%c}^#NPWnEA&*=OMy|H7K};>`1USL=QUky z0xlAJpkcPs&h!6tiBh?3d{G`AzzNb+t5hlEz(`#)oya$##(R1r18JFr3Lp&XGU6 zMCqH#aUx9_0C+=TjD#3#q~Mvk9DPhg(I2Bj!sr#3jup3#@TQ&*HSXD3)kJ@!sGc5( z-bqgB%DMK4t~NF|48%sc7AE=m!y(twWX0U2NSLBEMsn*x+#4$HfoaOOw=k(F-;U{0 zXTGg%YkW?x%DLhBT{+#p(pAX0QaeKAT#hY1axU*`$vH|~{JblZb4S2RwYEa!Ogzl2 zM>TmTh`q3vbp<5R>cD_b0R|*qR=@-e{Hi~kv}aC_Jw+^mf}y4Jc}Z8K<XKI8(&GV?>G73~5{rTw1j~Io zR0GS!;_Ec<5%S4x`&8F{3cr+irRo*d~JltJXGtLpVx6>?`Rka zFIeRVMsyl5BC)w?H_oz`ce8Z9T5N%ap|kTk(hcc6&>J}tmT6vQL1uxFIv)ACy8sfcVkk|(Ygkb8$|b!ZZ_XK ziPw$u?duSz|JlZg(ib#{(J-D_*Uppwbc-^&>8#_UaPZn?IOq{(pmmzW%NZ+*#OKG? zAR#2a(9szrZWRwd2hWhlziC~A#4Vz`Hh_eatOh)>&P8i}{PU0_2{jw32g*Ar) z1a^}e3z9-<++A_RxOcm_2d0U-4FPnd?shoR_1{tVt{8R0eYuzh_8Dj1vHe+gD=liJcio*H%Ifd}0Bibn!!PV#2F8mU{As8jF6;DWk z6LWyTY4Op1iFwcuYGwMJ{#*xZ*6nQZuA)0Lc&*koz|0igRoyLvo#cn^%;4SKZQ<)l z-yawSDts&WZ&Ua>kCt>dOy;ne$sC+nv zau2PGkf>GgnCQX*X)}EVuoHAf0T;kwGze@~-Q7@27zrwVN8t=m@jDZX-(+vgh{`qz zu{h#!YB9nTujhcuru>^86Z>ZVgoC*Lq_{o`$L2D4I4oW)gWzwkF_ZR!*n@Xdac-y# z{wOf2(}GbcLC-#%8NTyyo1kA7d!S(wwDWw{;qVSi<#BM;F*DCA`5rF5-f~Q3Vq$() zei4wgx~$?#FZ1TgwniS0a&PJoI5K+n49MOyCRf6lGd>fnvJ_Mzhx9N@TCKCU#6vhl zb6!PzZ&~7^vm=LTeZ%zEMgPzqmg!EC(Sw=ZuZPXmZ%SX#pj_Rwhs|Nmn@A62cru)z z2*EvZjtg$;wu+Ws`p6hQ%?Fha^(r2MeRvH@3Z(WkL1h&reFiCNM}c&f4jOr{Kzd&s zKMg^8CNe>*8hqXs)v*D5oaC||oWV~EMDK=y=qZE4+W7P8N_ZO>mWFYerhdl5zNt4V zH1*y=T>Vg7g<+_Yevo-dmGop-mUU$G+A8T+u7gT?Q4h}HANLS`uh)(czkkIRAHRR? zVfnpCT>QBQ^SeP$wUWt70=76S#P7CR$MAcx*n=ZJ-h|Yg(9;g+6ktH2_D`^gr$Hs% z(=xk4ETO{rWyPw#aXx~cMQT1sG^}BcK9a|jz7Ebtdbf}l5)X(B;*IvxwVF4q@ zX(PnpbG457gnb~Ca$&vtdXnrVOIVfSNAEdj_A!?J-)Ya z^(yTWrOI*G;M`sJBYx z^g+>E7Q@94E1^$mzWgLiu<1fyp!`_}XjW=t@#v@COxE36*MQMbbhr1mWOb6Qy_u{@ znYK_)lD=Cxaw?R6;=fIy>^%CuHA@4>xc>px9#)#pAecv(UXNqjst z{o|5&!%I*SKZLPLNnDaC3|^r9AqKyREt2?nK%`*J4Jw;_BM#sB@n3^4~9CgVEC=VdZ=b8~ax z%xBKF@Yt_=yo1Oal)>X2$=<6^!u61tEItn(7hW?D4!-J|Wmc_PiQUB|c&co>D}noI zeZ%1{q7Mh!n!~T01n5NxcO<+9>rc3cNng;Qgxd+uefH-g=S_N+;x5O;9L1PQo`w6v zvBpFU6ab=UJI<(ttJE=>0%5!k3aP6=$P&k{KoFjZ+^$tk{5?f=Y9M|mxjBoo?G=IO z+%OOwWm}l+W8Q;oOLL9!`9dMC))>l*2k|dQ`~%xm*FMMOqPn&O4lb!9>DE@)?*9Pl z+HbQs&3=_7B;BVSA(HOF79UCXWLdrxiHp0kn51dhYI%~CHrV2<5J`J!9YfMSVh=7g z@2eOL#}8G9D+6yfIVBjBNV+YHNE(8ZfWwvcLkt7NA}AT2I^Vaz6fUY98ZIjG7G_tq zhsSRU3-R5eTS~@yKvH-yodxi05&Vk34oAg7c7>;&b#ulmD^ns@=)g=yIa=JfG@Enl zRIO`37$Ulp5rjZh>!cImBW(C0?@WwZpDcN#bf1Xe4Gvw(7@ExL{J99e5{eh7AhTki zvkI%=GolQ@sF%u*_f|d2p`suL08kTNSSM|2r11Z%Lo(qH7oXDu{rNg_vw$xYS6|Ly{w~(K2Bq^v_hYzR=KnCElYE%NdG$NE%K>>+0eHUj z{g5G{<^3}MZ5Zr4nwK+kc~!QHY;-~uq#nkEURm%CscKiFFdrTx-F!$@6jI%j;P^|2 zXyCY9+}xGJd~TYn)~12u646b{wQx8|1E_4EsKsX;aMfU-3KBQgJeCrVVNFb0UD?5F zmQod+aUDPgzLPO9;ULlFS&!9-W5r|mghx|IDBs`LJDdfJ7dOeN)KuptxektxZ|+S! zc7_+qWs0AdD-^#&J4Na9R%~$;r!T79nroBr)#C1yTxR*R0V_{wE5!2uX&p0R*NDA0 zVI;gT^;BR)rvW2U2A-756#pjIZj)~iTcBamuk-rGTutwytn5r+bBx~E`T2f&*P_An zu0=@ed6y2^tmmoX<~CS~4VO)fB<0nD?jEZkunBzMw(dW*E#;C6XI5CCy2OZ*y1B@S)L{C3~_G}+!n+1{71mbdToV>`?uCHQ&J-K z_P|I;-1UJGod%3Z#9f%j#BB$+X#Mr=OtA$ThPck_5AveKZ66Q!hM+=qw1x9rvI_W_ zjvx0`)-0t581nuONZ|mPEUW?PA%?#Biic*g&Jhm_ptwfPj?}tuJp&-RFP zI6j|dp(i-*FTo3AdsEWS1>U@m6{ zEcMiuh|7buj+vlW#NGh-20U;XZrnykRrBDq8nKiPa8E4Ya`=32`Egths}8S=*+lMO zw%jg=xPmCP+a+XYXJ^5&Y+bK(&aFH{J7PXUAO8zG}(q9_b0xXo@C6SzJEK)DXe0PwMRwy1#l{FBx- z0DK_2-vt10lCJ?q++;6`1*q1A8|y}v(k2^LL3MIfpP1*-kdkq4U0X=;g^EMyrW)o` zaWf8w;hl9o7zKCM8}O&(pFffHVw~z2h|`k zE9IqP4L)y$%7($t_hSl~!IRTrO%~+CSyzg{nYo$p%rsr#>XlKeeAGiTT6&)!S=BBf zr)C55r@;#mi*(>-0e>T|E`*!S$l&j^t^sMK=zaxHh58xnBr6JeSG^hT%leDvucYq^ zhUC0yGw=&%!MyDJ`Jm7neQZ^Z#KqYcF!4T`{?#yVRRQE>j+m1bqm@xum0d$KVbG*V zt$2gMD)FsR5tF!+)-@P>FS;Gz?QK5>PLc+-5pJo`n*TP z{k0X@$w;f+7P$e?*yzY&{l}kRa(bP)q1g4 z1|#8CdqH4CrvW3Udf+z6MJ{afvgVhc3PR@-@fUs06J?Go~GGT~!|j?Rg3 z1x4B3s`>CCq|A&ecox0}X~{eAwjnXOCh3F)aBgg)KD965o#J0&AEt2!t!r?p7Twf7 zb_qL4>po259QcsE|DMuz=?fZE9K(2KkvmV~ywG^KP1dV3{CHtVn2Ygz<7{|@gUVwd zafdi3AcP2m(~r{~sGXueQAcD5yidFu0p4Iue5uwo(f=vB7Y3qtlF@)65*V%dYhpJ} zTpzB9Va|*CR`m@;0jKKptxEGZQxNwb#IgP27#O9U^xd!saVLFE(ZAhEhg$IE>i7CE zPv7n%JYA*TA)fw#Ek2(9(8uyLz6C#I@ogXG>4AWiecB4~w0U2(cFl|=h`q*rnWy^# zBRUNjk$C!LALeORU(3^mVhc13Po39a^ie#`FU-x!gqOJBCpSAU7gpxN^s2iPVy$on z6kPv{d_mM~A0O4m_E|abX@wCwF0(3Ih%ZC?GAA$8x(0(LqI+In;-vcRc9OHb;z?5X z-q6=(*JjfFY;Wp~kWXLwyJPR=5=J=slWC|uX7Nj_gn>NQV z)n^Zba+jvfAI#EW@GIkMr|DdA5D!zuL$FHxTnayd$j`Uo$MWA*y6uIZp?=KI{e6X> zhxSvfA%13Hi{>Ys{#NoJ1Z+y(3~{!7Kj!EW0ZYZ&((-~umnLZyGdmr{+zI`7dt4kF zRLz0Yf@6o#C8~7W_Tx(TIxpkFK&9J7%(mqYW}ob0Na@FnZ9Jyx5N}3$RilK$9Js|q zw2jMzr-(*9a{oB*gBqmaOt_;wU~!7qXHqR)vyS;BIr5N>+^pf=;^K^cOyU=`u0iQ= z(S4?$O{`AxWIwKO-$yibh1*lQ!qL|cLWMhn0Ws`#zTDRjD%=$Bqp?*j2#*E&&9l}J&y*}_codAnsA}eTK8AHLU+}0h2m}s z4##`tmi>6IydQsC{`p?H@A!H;SkGe-l(p4XrGeFqJwP;m+upa6behr%TE=Op}Ye_Q?z5o_nNvZ1x} z{jB~`TDOlc%FKgTppJx_f!PHGc)Si(zQE}kL{#(wqtgbKu* z@ZgI~c?=$k@oek2TDm8T-)G_2Oz6{L$zt(4gqr?w@q6wyKuDjl(fj4QuRAkX)j}G+Z7pu3i8x z;%Jm{dGa7G zUL`JqdD?Ez8Nl1^y9WH*?e?{@-Cj13nfuv5VeWSA4l#Etw)mL4b)aSL4dUpgfy~@P z2B~FBR+?dpvqH@6taZ%X+$i=k25~NK<}F|7Oa4v)1|;JCK9GrfjpA$AD_>^y$utyvy1ZJlY5wp;jThfzSr#0rQ^Keuh$@t!&@v1ul*v$JLi5()c$^J zo`o|hFVKOS1$&2hckUqO@C{nmfbt*Fy=D+`SpB>^$po+DQ>l;d9c0t-ZPI-LVk!59 zVRwRmn}qC~It#!ofeM*|;*1Mm^n!=}=UhXXoNOb8uN}oHz3Is^*km60>6(Fvsw1qzH4k9X!kL zx&rxg^Xa0<^Ey^svuYhZCH_6_&HuLYrpWtR)xh$EsJ>ln)3B4gRm^F4IRxv!>|82+ zL4(rp)5SI`IY&xCqXh07aUep=T(5WJi{YBJMoa(zYdgeK{IbX;{%ReRiGQ9rwh7~x zZwe+3R*TSp@T};E2U`%FuuFVB44_25wt#7=gRiyS9;%!NJLEG4GfPh$EG(U@ohY5YXm}DfXp)8|dRgmz zN$+)W?)t&Z(Z{t7%Ce7WBa~%d)jDP(-Vl2)4(2TT2o0!Kwo|ws1%+O-2chB}%rsp( z*jBs?#M;%YY${&o`}o08sg}*Yp0l zHIV|HeN&HOU!)VP_i7=Ri}&Nv1FnC^0_s@*o=Q#sN7{MES5-WJ-Uo&aJOuEtXJ=>coiisP&x_w* zgfp|dGqd}?vvcYx*S|kJ3%a+ov~+K5$#lOYZ6PvWFh?ZbQ7^RAIkI&>N%-Tyh)x3|nj{>;C#;U4fJ^GM;-aXk*XTt2CinLgmc0KR z9M1B`TUxps{OKkuE29y!VT>u;9(3cIJkx@8802cd#klij;PZz*ep3 z581+o*I2|`OI;Hku_oSS-Im^o=!1b9RGhTgH5T)J*XVrwKDUPkP z3GNFT3TJ2apVw%db5hJ>O$KM|jd8YW&*g89_aZPy#3%|IWj4eW8T0yc!Z{+dO(&+k znGk=o^i{3lKiR%X*IJmDNL>||Us-p-wK_dH$-HYV$a&Xlkbmd4&>)a8o?7D0k_nha zfQ(bjnRp&?Hm)`8dLPerv8!R2QTF;2tiR)D;yM2<$8ZBksbUJpi_%3Ej?lUGmV;+u zos0V^V+*{fOIq3Vd|@kQxqU0ma$9pm zvK(sbm0XOppsp#O!S=RlWqBSG=xL*c8SzgK{}Up3tDNmo#eGvmhI15>AiS0Zu^=I z20aY%l>J-n#+^lvV`ksOgNhsu%DN^T?v^cN>v}O1DI%U|wjPagLMn=++E!uC#}e z@-lNof*iH1wNAeA)KL?25%-6OVNLw$EtU@lMs->kl@jy( z)|TK;TkFJp8TSVblbFR4aF*ZUO-wtO=3VjU!CEnCsW^Mpxn2S8bH{T#UZ;_`#S+v8 z1oR1a;Cimt?9YRhbTj%YeW*>@D>a>s`lq!eHbLqtVpCZ6oHm+RCpo)~CHB%bIvb~P zTWC-=#&`%qL$6tUjdQ$sl#XI6=xq8E6Zsx0=!j!o&MUy?6Y*$>2O!22bnx09!}Vdm z+{TN-0(PsGCSB8|C^1ets_<>h#@f|32RZy~6w_hMAPSU%L&B>-We@=Gez){M{ zceM5jqYCiIgPD8dYuFcpw@PWgcr?ZHPGVsbwh+BjGM;0Rqhvg~b-Bs7tP@}hVhi%3 z9&KZD@UAwD?px9jLiY`G#E0%1Z8W+q*~DVp<7V!U{x#6cPqG(6w_;ndsujA|aDOr0 zoc2IB<;s${P+(A}gh7eigKaFi7vniR|1HvOxI1X5EwwZJ)iyTo&a4Yy8)f2-4~uSA zdZxWbe1##|FQ6-<52OZ;)Ahqv(mS<0yRbPe+FEA&NnI6*4y@bDMnY{HoV0se%kB8K zn%hp?9vZ|g##D>gS<|#F-RE&;m4Z6aCIEK*ngGz{;UgIZb!`B`0t&$QRSN3)^~wL` z(kJDAZ?fX&B?@TjOrEOU4$ukLTOI^JL5fr zX+Y9^>B|Y80W~1meLilKUM&4nOLZLEH2*q_YM#_pu^7d=8?V#p)k)S}XEA*Y9{R5$ zjp4S?AWSiyTFK6mJFat>norQ+^_p{57vLK!RSIHl7$&rTrGrPXmL{c809icvP)b`0 z$D7hc6^juICorUu|3O-L)earU|XkD zAIL+Zw@eSuZYR)DR^QB4W2q6tahMRp@Gtm_C0~vZ}1O{{(7?9}g z+0N4YNIOmM?c5hM6ur*qZtVoUcyc{0lj%*vgO|IzzRdJ$NtbbjL@yph^f#%}`{jiA zV(Fe*t&7>DgY7K5pG#d8iutU2w4H|6Nj_?4;r#;+`r%#3ZJ|N%Vm!5;oh7ffi@RaTUtc;ZZ$_7zVu$%tu`>~T-AEE zcT0QA@V-D#FUg(=;INE733uBuySRz4`O78|SPJ7UH|wdjr}PG`4f5JSlGHCNm-+ zN7iZM#4_5=#@%HW8J(TN8wm+FQ{IMV(cyB>P?f{+WA=RW{th+;zubWt{ze)`41Z~k zNQR@n?4Wb-lWg*59W1|tLipB}Dhl7HxV!3Jl{NSkZ8jIBZbv<) zQ^J^(hL3cx)Lzw5r{QP0J7}mh?Ck!qgH6L{5tljHDfn2&nrn0dH_L^6=Fw3M!Z=~$PdP%E~P@zyV-NPyaU z{&taIY?BVEU>sxvx4*qgJ{Adv0LMvp8)=Iu)1e<-H&nNdb_@NXS=zLP z-osnyE&Y*kOZN{f<6#eTTU`As|3Dk5Vp_p zoh-X&bYga|=p?8kb}u(a9Cma&<>j3;M{lxum*8C)X8+tN&`W#S3&A^B>Zsq=!`xqg zjAS;@?E@n^4U9rhjMLgDZ$q|(acM3w6$vd7U`l|vY)V78#-BjACtN&93Qdn zu1-4LI>|$wEV~Ebq<<5Agxf-c*u{8iMLSFG>g3q1{=R};^}xn&THQ+6gy zVR0lJAh=Fhttlp7Nk3IgzGhoLgN+8`f26L8$>*&5M<6Cn@+%^1(y!^w&#)Wku1=QW z`eqzr_@fBJ;aM%kOK=<%%b7o~v%pAM{w-UMWk)R6!^{|#&%hj>BFlqr0?S=GTb4U^ zW|k*QBZ%dR=7?i?@FJALoi)lQ*t&6@Ey}9{o#e_+2<078M|t}r_qP=z8I*GaBRUO? zNGOl$Y*Butvqt$>?h6_UWoPy9&KBj(J8{d+pfLrN@Rt58eDd1>jjWS}yZPyzv<)^F zR4GG_S5_u?O{U@Wmu^WfHvCNbs@Cs+Y~PX2mgzsFu8PZFtouu6&9syJ*x53DW*5!$ zKin1?#5BfJE8JP~VP|5x!PbIvq`ToI%`u_3b4-|7fT#UUv;t!D`pUDn`9rFeC^`+g zh;^@`Q=zK8qvMh;mhKi(*F;C8;V9O{lRuC73S}o~Yy{cfgmqWNc_*F@mdS3g4?Ei( zHWtQfbFjlM-9PhQ+Ci)TKl~e^Z5BDYBHN6ii0d0MJBI6yn8$LsE@z`1=j~ow;Dy#2 zpSfUO)rBE{T3SSqKVgnI$f;m{!iGo{%xAH^k9M)7zZ>Z3E!h*1{;kweb9OfO_oba0 zDwyAjj4Wo?X+CPDR50)CVyTboste|Gx!;{uTNTXCiwC{jy(pOTb{5o%PESwuW-Td5 ziopfZ2=My21HFoO{IP;csu8W`OS+c5nrpLF7j(6(UoCYN>(yEJ%C4GqC&}t+S?}6a zvtEgj?%J*5!s8C)-hs!OL%i3e#yB2x*{jN4IztfeG{a4yU$o^%HNMxh_>Z%j- zWo+s1cr%{aW7q8_7AN&m%N%jN5UwdwM@`A)+~4KhY+|m3fBoNjaT*wr67$bpEux*f z>BOAEeL+JdW@q(@uHnRt%SAbOUA)c7I3J5g|6NYTZFNp!&RMR#85fuan$#U>LFY2( zB;rBCand=pHgnjZQQa(^bEU2dLZa**lH0mjI=yb1&Ma;V4Wbj{snzQ&8Q#s& zi3-p-8P1;}yi2s#;Z7d%uLYF74J(90an?3uXn*5KIG&U)s&F)8GarR{2GxU7SB2v$ z);$mihm-6>Pz|c4H$SRwoZ;Q<#`=U=*R-+DsA?|@U$Fycvw|+rOd|uknfCea(RBZK z5}RAF%~)lWdcVhyrAfW-;Agd*)LRz12k*rd;v_HsLzi*ubZ2~9cGuuFGe;bFR3bO) zu3>7!CN}AA@x39?%OKec;X6g@m}wF}Ty43(iN-{}3u{ndRHube3E`aX7U4DcD7gP# zjt<-(G!(+l^33iQ;Ywd%qlAB()-p=k8=mSz$g{CX(zHCFIPIo!!p6(Xv58$xBWbV%G zp+Qh%OtsFPH4k_HFh=^CEav{#y+lZLVyLLa8e3p~M7>NzW=5H*SuA>xtYH8iwo8&o(U09=TG6#Tj#=hmURNSL(Kc8WqxQSRCCP zFe8dFA{!BhcWEstB+aFpDkRg`)+RkI;ytCV`n{XVy4XP@BqCN$fD>VVBS)Cq!J|xv zpj>FVp-$LvtoWkAg;7`&eP1iUrypn~D90SvWjc1-NsPUXjh${rYZrA37A-P$Xo&f5 zU3`&!a!Oel`9$}PBg-k2XW2sees5wzLE75H$u*+x>B*QENSg@r*US-zIc4qFdg`ow zJ6pTIr-l4jpqFoCFGTr&Qb$eIT<-5LJ0o=O^f!S~ofbx=ti89VCA?lQowet4f6!1_ z+gbi%&oJGf8F#tk<3<*2^R{URc5NX7(<$DHPxFas+|Z<&(9&(vOAxA-?h3Xkr9%wCSDLqwD@z~tkVW!F18>Fs^$|~0NC@KO~ zCs=I+47BOcpSImlnZ0bmj3qGh1Kc9wb6vOvp6mLBKCkv@OGOe~$ChFU%GA#p@_K=~ za+7p9ByY4N|6m;DQ(oWoVwBJ6Efyc4e6~3vQ4XE$&8d$FsZ(BC*xdNu7U#4;PglsE z2!uTk+^DT$t%nv3R`qzb}x#BZ626u+*!(gWJ9eUc%{bv(|;28s<%2 zkr02o^jIz9huF56y)E3H)K$^Bk9Ak|)>}^}S<##54n1JPAYYF805@G>LeL^KlOyN9 z70TH%y?2;z_6G^8Ci|PZZlBqKTeO4XF2Ckg^$gcS6p6&^(mNH2$JoUEy)Dp3q^^p@ zF4p}Z5D6!F7x6?*9oir9RICU$)^sZ^zN>#+oEeVx;`c@N;%>f$|KuPDm!gP+75WI2 z)UVJJY;>#{)IQ-9)!Ww9-{DvJ6gT15pFmxW&yHP+$Cw!8`K1d4xb7rYG^T z{?OX=@Y;UqrCPhMu{nGDSc*T8x+)^Cuo%C=YOY(8!d2Mg@JGaO! z<^k^GFuR|8W^Hdp9KHuZ(NG(3XWWZ@2+HCxEWK+k#O z3i>1Na;4Y2g>QfAY+v3tjI4bOg6if(?}`?M6;S?WG(<8UiL+v0w>CW{A>`O-Iv=Tp|L(@!s2C#l)b?zS`f>D~6{+!h+N z+s1gRjC7X7dV^aRBznNsxrA&~)jQHQ91uLA*xnoaPf#8S2q3N(gC{Any>R15JbFkU z70KVTon2s`*=CQDx+)&uuHof`x*lwKIe)iPZaK{xbnI9 z9V*2In((1z2x-1oXq(0AJ6d zm5)k0i0qHd5lME`NBwlk{3~1dem_ff=z6hwsh59cFDFvp9T6v0%p?hif8*}X_PSh; zpAf2;{|yZ4v@j@D%y0LzL^rx#SImELf6!1Bvork7eqL&=qExTN1(?9BG<+x-1v3$i zcVFO5i8#@ny0LJ)mtH3zk1=w4a(79cLR^3LwYE|^``JZ$td?+0HG7{#hwClU!=$c? z&S|VW#6(Bd&rUG#dQ0@Q>ow6)+!Pu_G=@`a+!=D+^?0vIVP-VEF{Lw}G`3No%gXzb z3zNeV;eVa_f#c-)dg+bwJdRCT3sVfdJEgAj{B+iRfIJrq#tH7V3#Ry)*Wy9}*W5^O z%{)aB_oi8rgzsry%4}3fX7WpO%e$a3NgXG*4r^1z9_dUr6$^{5PL<#{)LfnVAAW65 zaTk5`A^;oR-vWDDe+Kr#{u;IO%n=D}=sd5==wK>7mrYE<=S0lKZi3T_t(9@O~rT>mm5_~mD5VHQo0YMc7IFmE&X*auFiedw%V#Jb{^E|Z|SYmt*|ye zxt*4gl_L4g#DyvVy&-R`SJ=bb9=F|YV$veC(uPJoGUSX|-rsPX z=;d9DA1)IauX+8#TG(}BXVwGXfoaeRKUx0c2t6MDW#cbL8 z{VmHsOI;O#^I7+JAOcQu3~@B&@%s@6MHJjv%dOPBaWAfh8IOprV~PH#UmZ|TN@`}!J1Tj8XYS4mXUH^&efnAeZUD%=Z7XC&tE%$ z5g#p$qHH?C9PuGO!polvB;)?@4Es#AC;+v$73PCFOx6W9|mGXkf$YOe& z=1?o8N_p@ATPZ*1rQYJJlry;7!B$yS%Fc-a10>}+S=l*R5z3>}aE`a+ll%#ccxmG1 zU*+R-Dpz1(E2;Tf<=`2G)#KlnzN^K3H5>W%0E_o=sjK32CF_1?0k5juaM07OOTTDCfApv6B&>MH!3vu?&f{R8MEX#*|(NnYw4Uoq{5dDF&%ifOEk z#cd0ll<5?B$Ii^Gn4n7owV7fWw`Ma3n6bF7?q?>I>uS6}Z0@Pm)ot4&n=c(`>*_^M zPMl}z>Rr+lBK;wA#7Fu=CLV#hx&s?}|3FK6aiFIH*%OieiPTZ^(~WtquFibd3=cHz*Mfi@v_qp*|(7FZV z4d6+oN>5yiTgSk6-3pnhrL``33y(u44Jvy9_hSQV53-17NL>}6UaXrsNH1U~X*kH@ z-FA@PhWFvN(4cKN#xvV+5m;wQ4e!MAf&_2#wP2E+3NK(AlJVy83;BqODpis>P2>QIhlL3V#$G>DV; zFVYS|`bTp_A|3VPAYD+8Vhev5WO1%GSgcy=E7Umc&+A&TcljH&Y$^4Li|wav0Avdu!VyMTb8Fu zT@{_ltcx=$CORrzJL#msmgi-IHP2JIJv4}CjH#Blvt|G^Miyq8t!L)i>kF&L+E}Dc zd!vK*&$7ZKJi5Y?(@EmuaBLJZwi9t93cZ%Y-XWbVfArQ;Q zNuRaS3DX)^i88(V8Fu5rNh+|vG7FuyW5T^LbA)3D|bHwpSPh4bq`Huz@ z^L#cleTXHwZ=k1MvL_;WjMPyRwSfB@Va&AW#_)pg@W^7)oMyU}QgTiiVu@ZdL?`DZ z+;582R+YB%qQMYBb$TOQaG5m>6*Jxin~k&Hbc$@uA^;y2AxU9#UAbpTqSt>IO3<*t zwV|6R?w1a$RlJ4`+cCs~{DRa~!O3Oa|C!*(Q)5o>6i%AeDP9ou#t^;bUd2tHGXA#+ z?XY1`RkgEa8^SlTFvEINWprUp>t?-dyvg2RtOdLJEKl&jun_qC|4I6!{NKoi{V>E* zT=5366qWyXv2Ki)`#=666AQvgLsn`i4*d}EQ)s#|w^=EDHwIIG(d@#jqs&FNu*c+> z;Wy&3&#{IlF?KT>+rSKBAH%rRvPX|$RHeiJ*P1$?YwGKb&+Vf6+`vH3l7>-2z0Dl) z0ezd7dN5d1Z)dY_y}<&#CD7AG*%JZ1Tk5DeyPNxa$j%B~ecl)uS?E$K(tu5WL!NXOi$mbCbpf0%VoyHW46o#dYzi0M#u zZ_kUEE_E4t7q|b1V-PN-zqJQcDeX-A>IO@=@y$zKjuYS<4>|!3#*?F+M1+G74>u9f z$d(?eXgtjprr&4*?;v%}ViD1JoORmm+TRSfKx7>uxebaJ4+%ENiZo`WJ#VFykDs~G=HrB+Iv>BneLmw2e#4i_obgZIXt6!Ep%C91#Mv*R7GHBp#}_E* zyQ-TvVwE}xUZ0wYP4y#hCU}GP;9^H!eqmf#i1)}+v)v1qRgF&{Dri(|wTP`s8EVOG zD|J;=UT58FhiY=2q{UF1jr$MPJL&>%3k}*)V?0$MJ4+gPbKXIPeD&MrBsYAD!aZ@j z|Hi$ZyH?^}Pxfo@9l7nif>KpPT%LRMWPMOM3ohSher4rB8ah zKSTn3>_%HFZ#Mru^;)^ZJ>dC^p|)23bSNj~Glq$kM;ul#MkGnb+oUrVuj4?9P@s9gY@ZXSvjfZr6hYAEFa^6>4bm^-XWEfYF|wPwsBe{(i)#9 zF|F;pNp6*1tJV7*TRCNzC3~6FRT27%b#cPPL`c=kPC9>>rF-izP4_q49vVb9##C$E zS##4cZ_guzSyA|TJNjrCYU>hSOhQoCizR;}3L+dpx_+sR>AfT`Ngq`_eqtM+hi!)D zx23L%#}BOgMkF3$JvnKyl~VC+di7K7#)HR(>iEA6lTf6j>MpyHyPua{s}+3)TlvgzOZXd7S4Ak6b&E`dWFhSY2Zvj@zl6*FCn-?Ay+;$${T6a-*hue4?qgVRTdHKt-v znT?AcVX3YybxjNe81bxIeT3e>I7u~}gfUmBqrKF>v5wTq0yh@iq|;%|O}vTdSg(0z zQG)mI_Cor(kBctFMKE1YIPU^O9=14%)#tF)SaI}p20rF(Fr?=wFUF*mgLFBUsH-K= zCF-aNBW&s(JA%PpB~1z?ZtWOn4oI#;D{Pd^;~C=Du{ztk)Z1O5uy_2UvLD(4?2;W3 z+WVxAnzS0+-JTJ4E557LL7mo8E2XXY!V$KT{@mO1SD=!v!`&{l4b<5&=fj;N1m&II zzy>=rJS8axW7e6s|oJr^p)Y#L2X*v=o1{iN|r>DtctutNKE=?mw(Y z^DJd`sjJAY&$?B;<`oMA-_CK;DkCl4myguv$$wy z9!q|ib4S&@+3%YlJrk1V-|g*ScINe?P@VW?h)9BGNH4u5MWwy;)UYmARs*&aZ;-EC zcz66@sj7l<39I5>6c-fHk(1)SZzIinVt<@*Uf$sC#`@bvf=-xWHC*<-Ibl|+W8gbE zDDudw`6n^;3O4mlGm^avW$p;OCm&0P$~|LN)(xRwe~7I8xbczCem^pj;eJQjGx1Io z+U9@{?!$IDsAsP-*w{lOZQ}l2c0_dlB6}jbD~%EhUD2J%{Z$xc>HZ}$s+cdQb;wGI z?m~Qb%3PJcbd)Z%ujD=pt+qnjdGPv3i*~~^imG}OzCoRd9r=lF;RK$EZ=}-|t&h*Z zFMB|tLL(@+i#dP)hCO^h1-Ja854xz+MutGG>XvLSKL1$1u&!5JVPF6F{!(9stSRgF z8KtwBlk^;AS)Vvcr}F0978;bwuNkFNxwEGEC@=S~!pq64=oH*#W|Fz}h^}pA{EgDu zxEvPxBC<3f7SYI+-l=F@#}+O%(YQN)hg4O8XvL~q1A%aoEu(D7y)@va8wPGt$&J-8 z@L1v1r8={wGB1FzRQPgG8z`1-dp7WOvk>k1@B@}cIv@TB9X@5c>l{bL{pTo~wtpMN zWY-xjU?U)Fnj=26YkH{-@Uy4T?#k9Cj<#qw3G{TO?1|9sBz4sEbmRWo;f1y49NLwU zQALcLR-%!%h&p$)rF#5mO?5Bs4j&9N#w)6w@s&r1sWuNTq^ILEQXKIZh{AjadwScU^VBYo9906f30f#Qt77JfDU527LK;5daKk`A-SG)H;>ln zI?0C77TqUC>oh%p+itM_Q<}!+#l%9TX=l-$qYc7YQSb=o&uU`PA_hOK!4)mQTi<_} z0sv^khkgFPC4Ex<4`;g$jkX)`Z>6sC{|46m()wR(`Lv3>fp(J5(0a;{!E5kjcU-j` zyBRqY@lq@tH!jj9E#~+4$Aw0F8~-!s&7{M|GZ38Yj`|#{GDgs1j1>cnWMeCv0c>7A z6RXlx(!b#cww!HuSvk3HR8d}3(=nFXtHv<3L!=!vBcgU z=w+7dg@|1(b=34s;Qm%%B=eTfS%DFq21cX`y7w51>tkbd1wEPjf`+P~oz*?Ygi);< zlbMZ|5HYD)nckp0?5ja)Qbd4x%gRK;OI}B2aEwLu zOR1}3aVzV7I!2@FBuBffeXX%#JuC0;V5<_xT2ND@u3G!ES@&`;zol;#t>0l&Mz zbm%|z<%WWLlwC2^#Z`)$M3?3a*sK?EQ~1(T+b1gdJJ~*TOsBZIBGLxTt1u_02x=yhj>BaBeq8d~j|bOK^&xk0oqkzBjQG%HaKhPF|Ls5S#Bx9W^6M zxjSsjP2lMXs+aAcA}&rVf2`$m(^$*rA7eG2x!fN#6raxU^{75-6?Klr*FwGA+C_=> zUaia&JU`UA$J^t*>CLb$+V$D;iWRc5)0|R8y5S2-Uecgf6TPvui;}|~L}Vv!d^IsX zaa`GJbv;{m?l?>86F)cvqb5X*IIMRtC0wU z^6y9+wLD7kbAz^BEah!%JC-4x_VO&6blPjq*m5y1=d{-jd)h1Xs_~tHe`Op4|D80e zc@e5(bHMRFC+5Il1WLVT^FB8Bi*Ys=$B!4Qn|?ITFh^V`#Cu(-W2R2He?RwEbG*&P zXW(D|i#?qNMx$vKgO48YZZ0GV-y+qEDLBi&*-P(l?5+W zK_V8U2NaU-#3^iGZXUrEh!rv2RCzzMbn?id+WaNx8qGtw4O z7frAr&z+!a;Mcjki)=Tl26o1uKf%C!t(Uhe|Mb(-vQyKtaV^;}jXRLDGBO)xdb=mB z7;C6b!kyYI!%e!7c~wT@b`s!>+eyl7J$PJR)%bkrwMtQMvYDGE*zEm;)Kw8GX5B|7 zXr`TH=LF02YZG)ye2ClbwBewVc$58GmBh}X^%KHuSMz&lI1R_gyl%))o^0b|8IHsU zc;nU-86RJ3iqALFXBD6K+3qhU*cASs)K&3$n|1#R#K%c~N0iMqt1lv+i?!v(T5qLv z9vcf}Od9}Cldqiv@VqR7PF*ljfMpC71AWMbo^J-S<#I9>Fm~mkI68F7C%P_ehmyJ5 zL<@Q6i46HvX$vLTN#=-zJZjQJoismXD<@2}fUgbovP$+sfZr>1)bxDD{cXocret0f z7}059L`u_RCR(}=Ow?)mEA9&#Dos19M`9y)BhoZ(t;f5kfpqN(DLH8=4O6`?M-Pnk zc6PC_fJRW)e?$9 z;mA@X6oV^n602Ip;CHs|vYRZb*GOGOz|XAP%$vBxS2R086C>cF*>vbHn%z)vlF~9J zJFhP&r3sC=NzU9hD?FhQ2{|)L8z}aaf3kt-nX2Yt2)L=5J7a3fNyTNI&Kl4kRr6iO zFWyA2xrzDwpEQK{e99d0@%hwEx@tZx(cXB0t5$cRYJNY^$vd(W!t zpHS2>E@a0PVR1^2-((5heUl~h%t@NiSnduQicn|w!#5d1JDJlMR5jPeEyJ0aUeXp6 z%)ql=EFPEeNmBnUCO+{1q!ZxAZ(vwVcmI=P>4L{q_>lF&4hz-p@6GyG`LDt@xx{b zQdL~Zt1=5!ajC8mv=NC52>G^C+bh;*BHN3#MZ4$+EN--mUUO5q=$5mKu9;}xQShPh zmmz*{5<`62WU=}P;(v^x4&vPQD1|5K99xI&{d1Ddu}OhW>X;+06M{HR>X`Ww{@3OH z8sZgxCdbynzy4C#X<$UkvA<5T1b3aR39iq5K|>Mjto~_|&9NETIk?q>a%@^^N+#~O z9NZ1>3#xH*5iTr+Wzmp%FUB9L?p-|;IVmEDF^$$X!i&EqNY~7=6^rdMHU}s0A9EG( zJgKijaS`j!nXJ>SlgylK30^l@6MPA`g$5BkX0j&OSu=97AlSNev~N+(D7bn>{GpDP zUjK1~Akm`~8#x~BBJi~INJSuxt$N%<;O_WBsj8fB$f~aeoOhD_lWooWc)&F`3|yn+ zidn8WtLQ48Fy|e4L70}}#m^@(EuBq6w}j|%3lkyw9)45H$*$!fnuUv_ZC>(1Q|uPF z-V{S;QYdbUhO>n^;<%zRw}n^oe6Y;DlFe;8#S%I+(9;mv6A^l|)KN3jnERVF#g@5v zCee*57Q54GYNRcq8c(s1dQ)_n+myR&Y`alqt}{Lx?H?@aP$4@Dzp0J9)Q5{|N1Hcw z?fi1@1aH;`7@-@w0nxpw695B6^v_G_mwG{ zQ773u#WMQQ6kXA_;-uM6wB(dy+w7LU%R&z)u2!``)+SX@1v#2 zs1%~`af-y|M~dnNT2LhZmENgHbYcttoMIF0xl_d=RFP=Mx@S+-k#LguskV0gGvcFI zFm9}et(0n4%=%Ti*cF%J(5_sRKmOz7PL4KF4AF&6#M`2t=c+XW>(NxL_2|$kSFL}p zLe)Baszvt3shm(3Nn0qP&NoLSvr+S>>ipJ=t-NEZ<@NqRFZak^h}UPOj+&U>+}~3e z$z;@f0wX#Nj7S-E_EZb&2UB%My`KAmhRUeU>KSNDpl0V}W~30P<{Q}=_Vy|wH6p=X z?x`8>zA6iAL};7Q9aVoy_tY94$|n7a)n)FUJo{#~M#Tac%(`)2^TUPmzGx??c(aA| zyqk4Gy@8uT0|~VSUf-y8#LkYN5JXe9T1KrqhDGZR-A)BalVT$hUlc5;5uu1eOX-=4 z!WcHM>CKkZ-cr{r2oZ%5tlOQUP>P_75#V%baavpm{rM|bHxm4$x0HI-uB*iGgDe5?I21I znj=0+58kXPoy-=#db6eUhd?ji$zF)k&@E*z%_-d9KQ{Js$@ja!s7?!`5~=%cwxlNC zqDj4#`-6re)mi=$+CEs+312d5<`AM*5b>?oGbW*$o8Pc_FQK|+!bfdvTDpg-HOOQ&{ncmU;C{_L5l2ZV*uJ)GP z+N(_!d@g2Fv4&_1{DK9Gw!rt{H}wCu1zyHg>Ivg2aCjAT(~Wflg9oCq!#2siSi0O75=(Mlv}yH87&nz=%X@rCTkj!*122uI0X< zp-6RBpN_T<7IlnH1F8T0T2wDO1xvNd`eow@)fk-l6~{Zb$E7ml(t3XN)Hb+Z>JI6W zTB%#ujM=wZR@X^g<^BfNU3076>p98FTP>##!72a!Qk%FfG>B7-r#N+%%s}Wklh%uZ zi@ASc({Efa-n^`X+3DiTipKTuadI7yCXwsm!{mB_bVs?qgH3uBrWi;+k-EzDt*rY| zz;!2i9|1Iv{+izWsnd-E$0&7TUfmRHV`x0^9Akcx#}S zsj?R$ak111k`m;Vc{w$7fs zqGE-dMj4rS@GbP4sYP>Ayn3|`Pw+Z@hRdm?ibLlgPV_$fwG=Vl!JLxi|$BeEK1dby9`S>K1>!i7|=5QVr=V8;DbiZnVLmvg3zrLXYa z%eJ01-Qs(Z)KxKgfpyQDu4CdPNz-kWdX_ghu_$o6wHpgw6T(;!@$VJkoh!=muwS#^ zQxk5&67j3UNo?K6wqgt*-7bWwFhn=Pq?JQ-S)1V3K0ui|eY)lNmg$^PH%l7`I{BaMgg7piI%;ALa(@S>+p|jlqXEV0cM5mec`=U# zg;smXHSzm-d^(XVl#98y)mB-ZRC2cGPB%1njLk^N!8g_n$9T_bMv8j@2T)GJ)kYTK z0y^qhdIJX_##04hiEBhJV>s)!vKQ*RY*nS(Y>GWk>Z*7gX5D(X>4oYfwQsZVX5l$# zKfG^qTWAox7|&!P5g%vC>0T(QsJdYnr?bf+qSgk1Ub_KmlY}Tb90UL>1+lgb#h{n; zOTl`CZR-Y`Os*XxbyW;LVBHac7&ysLMAGD1)0;onx^Ygw&4P-#ZuT8cC54@gcmhP- zbPDgula<;!5yMZ|x?Hoy>^%_6@QK9z2k><_96053N&kKiNMF3oLi*fo4C$xR5`y%I zIU*sAI&z!NwqLQ0AKqpujh-P^C-rigIpTUDN~=j7H6vehe^qAKY6u!Wzp^!*W>_{yNL>|$A6fUt8JbNe89c+X zdD{%l=Fi*~8pI~XQ!Ce5(tbubvErjiX^p%Sm617&GY!}6>uA!cc`SgBJOAlhaTET+ z?%zow?r)SXDfjpm24-%0LA5Dk{5H$Rqc95_c6>RVwfc(N(3m^!7>2{EyAVDxw|n8~8Oe`SUsaZk}TPY#b`i zi;6`p{T|ZsOeXWXPZD5*UByk%f3=a z%}53AujfpgJg=nz#c!2UsBZ+g(HF@xs_sln=CqkQdsgD^>RN4;J)QBjW|}(>Q@pb( z7URP|8R@g^0>WYjrCU>TRG{I|- ziaR?}&M2;A9i~m53B7R;4O}6pFnHJYy zrLKxa0_*-5h=r58(B+IeeBScWI!PMY0zncZ<|flXD*Tw*e!W@^w*QM5lofDWTpli?9v7;0-;38pj`J>QP+ZL{*E53hz4E)*bk+rYRRUsY46Um`2Hw$Ra7o#-S1~RVasjFhsh;_4O>)1F+`fQ7HeJ^!Tu!41C!F$TUgUmco2EN=o+UL@$USVbYp3}-sAPHDl&ySlw&na#ppzom332|J)KRn6jQcw>+h*t@8c_WDIfV!9 zq)~Z$uXkby%G;PZIzeBig$>1&c8Sh-HxT-3|o}pa?)>%@^D;a@POi0v8QP?yeuMGcIj3}-^{^ah!?ZjXl z@8%LB4pMUR@~R%vbRvZ!8bMU8DH@}thl=m+Y~^rR7x(JjaZ*(Uqcf}C76^uu+=`Hz z&9&*wzqxk9)S6>!UMzqb8O2S?^a&`J5)1NXhc;0}v?rT*w^@BQQE#1X6ZH~0RBoa! zhvYuh?Q5#uoMTZgnZqdmCaofre>O)X%27Yh(K-8iw)eyw%W~rFV%<_NRm~CC3$c8O z)KOE^pZmMucAK-S;$MFe>@+YU{h$&?Yama%zZ&aC2VK)H*+k-A9XIqZSZ*d z7AH&raC8>#G~V6ygL6>pZlh(a4D5%o=<%Ia*(mAzMN3lUS+-||WP3o#Z z3}f9}Zr9*C$&}kIxGQeg;Ev$7&>(Ozo?6Y$l0moIH2v!Eusd_UE5gSm47?@^d#)+! z=pAo~VuPaN7g8j4j=&zjGB>Y+})_ThSU}`n)o4eVl1IMu~9m5(W`Nxxt7#rb9K(0 z$$h0+WtDTC;aAKJ(^@a4QCcHh9x~ZBJ3GhiuKPE|%%y7)ZLJ8{fQWWf4@xi98lBIU z-8Rls1ed+BfFuzD=RbZB}!6)Wgcq`o@R-_8dBG#>NhYpOBMBibz z)h8l;i?!s&y4y;rO2%TC(+3dKWCy%6rPL*3PVQZbwpfg~f-SznjA+yFa92n4PU_i>fH{W6F#g71hR7J`P^<~(#YuilM7JtB%WZSp4LIr$UPL$zqPvq{IW+{|gN z3iHZdw0W!>HBT>EC;9IVOLNV6IstFxw$PvijPX=Xa+Z99NSZpC60mhAvY4&A^b9Sb zT)G^mr5R-8Fax18i&NJPUFssjF7VJ*?X<5ECb9GtXvW)0;mFyK&$#)y9*} zJW*|&XKUlleZZ@7foJ?^pW;SZ6!C7#Ni2SdEyhx#j64xDVlr|+%w0JdxtxvkF5XCQ zn`c?ho5w7_BF!O|_nIR+N{}6>;@D^*;J3?&?{r^C1VCi&J9G=%?p-p^VqB@Cw!yCsjzvN>9nb zlX_E&YgfQuX$`Zy)Y{9(dRH$fPR5f2T1FM%N9+9!V@yLYDdSK=eCC~kQMGpWuw`j? zTAtfUT@{e$Shw|^nrA1u=1$A=z&mwzeu3Lw?7NV9*N6fF{mv*-#he>bkU z6z(ccb^*zqSzN;f*Zxaev;R$jWHuCUVLUmC_$GHa1=e$L|j(PNP*m9Eo#?_3dH3q~e9eC8x( zzs6=`xe?4y%(F1(&HKN?T);4Yb*F{-^E(;lxcOrB5zH0M5g*JI=WCdY+0fYe7Us(W zy<9ANA()#;9W`Gi++PkxGB95p7}059M9R#e`F5|}f4-*qF!u!wMYFT|-#a5T$EIZG z;MR;QUO=|ZNlU|f9IO2Gie)(_EQyB1+x6Hx37+9N*n}R;oG$%SOZOwT>E`*C;}ud@ z#o|5IT{2&D>?8~4TaLHGL;uYiA8=b}P+rD(DoZ&_CeO!~rZ@|C*Jq^QT)<{?yOnj{ zJaucyjmRPaI5w@gey|Y*;AQEQ3c%-V*o!d8l)~>yT@`?%ta~^R04F(wFq%@>^yW{( zZXCErr7)&CXGQVV!s3W4#Aw7v_Mcq&Pn#!x0l#GP{x!c1cI*5XQi|C+e@=%^dF%Yw zN^G4QEU<)Lx_}Aoyg(D$!5oo&K*Wk7rwLbr1qn=%00X-~rRWN>I-I4_wP$wx|U;+Jl zfljo4aN9!bJSAFuS<^&K)xyrArxzGdGo7pX`-^LF6d2U{u{H=s5)J||O%67pFr2Ya ztS1$Qs2cX(g4l%?)4Ebuh2dXzrRG8%1}8~eXmf0=H}P;V$GWkew(e8Wi&>wswYaIB zaGyhfH9Xys7?4BPXd}hSjA4gbnn4V#DOi}q>ZNq#lv!Pj08^**UeZ0PcZHlscs=;;yJQ{LDg`-9{>3|&0WPkaAp&0WEycAs0CRejbnxnI!71mkB;vjSH`s*S?nCMH)8?b7tJSs@fQQ=-XVRyH!-Wki+XaA z#rLsAjPHBWD8lz`b421B_4XpY8NP_keRGjT_s>8tzsX)G*~TvxOIgj&#oS-T#db6N zTVO<|fe~plT)fC8+sha0&G6;i7c|sn*jZh$$in*JCs=rmGP3Y0i{g^vx=~oO<2U4u z_d1pYj)!hKnBaZ?sXo4@OHpE+^h>SL47R1!VvFcNsjFg;%DVj)6QW{qI7x3W_vfO7 zHOF%&MNPub5%$4CsS!8t?UkHB=Aks(%Koh?J!e!)Z{nY*XV-s;?X8Uh?TIrQr8mSY z@iv3l247(@M?}#Oc@&9%_7wVcyZ<*?h_vitX9%kCeGncaFz1X09pZF9uOZtW$S-D}v+ z8cQs@O#{7LC3_)uyGR{1SJ!fX9Wat9WUmU0=rk}Qv0H74Wq0Bd&2C%n3mS@DXZ1Nt zBJ9Rwq^9K9IyOBe9d|QRo&~*lcd%bTmx~O(fhLq@mP_}{vK3r)Ws??rN6sjo9=~0x zsz`KX)x0G-$vVlVB{s=E1^@hIY-er@4N9_$m*^zx3|WBQ4;N?0z(uZNt@D&)iC7aB zpNQNCv-R<92PGo^-;qu!Z2PcbZ!Yn6KZH|IQdRligH^u{`0pfNEU{S@ovAH^8wTD{ z6^nUp`!2S{+Fo)6eAW+0$dhxI3M7QCGU*cLZm zYT3McDYJQ_G=$h3Y>xQY9K2MsIhaixu+%Gg95rm9lR2^zLUXOuQ63NB?p7}K20!^~ zi%?)Zr-1Q@%)S`cd^hNcrJBrP+!ZtonF0`Jb1$z-&EgafNwt1VW_qJ6bGA6q8&t8R zLbQ1W&5HRY6TQwQxE_${mqy`s^*K5F6HR(8wdLUPxe4)aN;lOK9nZEEwdmeGwLLtEVYdO15f>oj^(z{AVx8sTE)(i0`z_ur<$y*d%i5LX}nyKvA?5t z*;h!N6ajaboF_UX>J&0^yv{PQqLt%Q*`ONBY)Va&y2|mJShwLa?YNU%w#=r~8eV?= z;y`ik#)4}EXs@N-(r*E1&=ty_rMc4kB<9`1=Am1HvpZsJvgg&9jdHSQSzvbh9$?JLpy8)RJ}TrP29H3CeBv_J-s4(%0Ga5RjQ~7nZ@0`z0B6D zuS5nFbUCeUR!a5imSvXGzn19}O>?==Emm6Sb!AF5Z{m&8k>>A9(k@xrKv1JX>RV*-Ll{TU>3qWw)W!RS{dj zx|c53OV~*+T5j2Gf%4wJJzm6ZFY@-JU~$v-xSIJ}-o@&SIcK@4V-vk2e_+Qzu`#T& zOXfqoYwMNN6mc=qXcIIFN#CGQMq`NdPyxM)tsJo20)4a8Rnb_^x|0IYaFPj#so5hB zAV0;Ta>JZsgFz)N7DdTFCgGZ;;CJYq`o1|9v7qVQq>Q}MYY?A!j<@ms)VOoP-!NLk z)^0Q_(-yevuzXGaolA$xEpW@ge9gv^yr|cgTgneCXUe~qHWB6Dnj=2SzqQ^g$~Ul~ zUoE$kpS40PUg{~%9C1BS4o;FfW|~B-H*$Zqy@{=`@Lqf$CyG~4-Y-SzD{B%_{uxRe zlZ%_J(3IzKm!DZ}MY(g}=<+b-^`r3Ww-f7%LAy!E>9`{|f7Ocd-td|wc;YB0AS}6S z1(EG<7lk_c;f2c*;|EB0)e63kZR@+j@;piEs?glcx;VpOLZkd}(lIM6)ALv8e0&eL zhX&UIFwoV#lru}tFac?1ZrOhEtKtgAv8GFxbp+K0cPXM+Q8+-g7KQ_I zk91N6WEUH`4aS+%RL@FX6_5v6_o+xg#3FIh$Bnc_lvu#rd2>a!$&wA_+>fDWB1$=;E3fO6$ri}IPdjB=w~ z4Pc5n;sB%vk5Y2=PWmafvO%uJxLcr?&axN6c&OA-zqU_ve}gfSsd769Msyk&k@nJ; zDwdVw|f;oF@1$2M0tIZ@SD1xg zQSz=73s42%RaX5c5CA9n6JazbmeHAV&kY0j46gAP8k6V*)k}PWYIc46=Fl95eI=)m zka^z2$H}RSPGV^hTZ*Mc8|?ECcC*1g6BAU<2D_ZoQ-|#7sU9mWxLsE=xVK1aD05CR zM||K;S*gK2%y!=rqiLxMwPA+)B&s zYb!Ok?{QzyP&KeK8lSlwf*N>cXKa{~8epMjr{IN4C6|}fiA4?EFvBaEUp(G>=yIT` zC4(E{shQL4GCOR7>_#Htn;O7TSNLt_sP=toz4G4Xu;>y3#^hWtE2Z zD7S?ML5uO!s&pU|b(LUJ z#o`;bvB4^vaa&1U6^k!ex5X+Q3nyv1%5I_?coRoslcFwJyRqOcF+AGDof!U@8E)UF zEdQHVK7@x(GTd75J2>VfMt{dfk6vj}9)Za)D0juQm4k8_n`m!D7E3L*~BMT+4TFN>?yzUYaQccM?~=tQbkSEPu$(Nt8A_OUSv?Q zL2_D8S}EJ{!-aBMS@d-?-05t+v{IItO;GvYFT--5N-nM}G~{wJW4%WM`R| z-}vSEuU7?-kosCYRh#CsjGtYH#>CoYQ2`7r15IY zbcvu5g(RAF=LbUKBzGXNrbfo+1B~P9Qkfg;LL+Sv zg~jkqtCFU6o~6;`(4f|C2}lw7vs>FJ*5Mg!<1Vuf?SA^9Rdzq^(V@M0a1KiLT21{cg1t(a!o`R)>jB#trBhctIj)rf>SCXL*Bu z!8hRma}BRq&ytEkdGn8OOC*RcrD;Ay@i$3-)yl2I_KjO(VV*B_Rcvao?%XvRW+$1w z#=^W|jZV_FxGgj&Nn<>dq(xkvC8NERB`5`vqmyDxD7?Y@ORB}CUY?YSFZ!itVZ%b# zfsv$z{EV>Nqi6u+niQ=_7ea-i@;~XRipu$H?US(5@LVi)RaBB#_h29@PVy>ZYqr~_ zH-B~P#u>fFR>xQe4f~W_U8>RK7kIX-pi~v|>sM{7i1CGN>n~B$%7}059MA~mRS!;N15?ZUb+o{|Y6jYh)jJ|TMMS0me%+!h-Omfb_clu0n z#*0r=y*+(inc)35zXUaOmS1voz$=N~mi47KOBwh|V*HcRNws9JWXm31Ye7CJbyYwz zS@!_G3ESKEq=l30TWdi+0zdsFayGYx27!$6)S`Bl>{@H{afi*=ZJJ0#!(Xq<%#xZh z2t*_MUY*J#O3n)(rvOnH9-fB0W#U8nbetk^nkN>Nia>L=>~C0Ppsgl#O#}o8O<1>z zm!FRmYkrnXk)CCwEuu_^es0}RaFMpySDIkc7CW=1y^mwX=#u18{F<<$#5~0ubgZ#9 zR-Bt@$;M)7QJI{D(3`z=GA5~&Tdaw~7n>=G|D()h_QX&&Y=yGx`+l#>^lBR+N) zdYav~Z0nt#W%t2AFZan_h~4LUH@R@2;~1M?@8j2#+A0=$v2G zLaf?GL%|z-V{u~q-_l*RhI_Gjzk8PADtC$Xu0qp|bd)A2TEpj=-`T~u-x;!(<-({Sd< z-#QYMYo((qC?x;-f6Qmzeu%UW1vYc=pL7Ue4B*3(5zv<+D7ZJcJh~8Yt;~?8CfrNiVC4zGZev zUI-s#dDsE|z+DV@i8O`)FEmGdfEV7S0UyR@zJ8Yl{Dkb~L~m5lvJ>JvdR^IzcsO_W zpPiP@&mNA$=LyxjIGhs3B)s?EW$`|5oyL1KcLxoXpPk(=-zD;M$_nIX^U_p{H(n2$ z?&THZrjX~Rl+>-z2(Q}riT1p4IKjeQTEjU>TNC1&OJCJGp3KHIS!dzyDRs>{7OPvmnIQ?!$GT4(7VwN4k#H*woe-kw)@sfU`_zg6k%EV^=?pxpR|Z$#t>$SE*`pLm-f z$Ni}$Fj`E(LEbJyOwm~+Jyy|~&Q{;K&QiWb>Z<76%(@!_(Q%Ty5MxtA<3T$U164!2 zv92`I7ExFee=aX+TAI`36|#2y(uCyGzLVHFgYCosCUb}OSPqHl2k`4$PWCQ~>1S7B zv;EULyV*Xzj(JX4FEAsX&oxJUJfFK>vo)7Zti0axoEhk)k?e(lZX;}md6;mm)aUvl(F9y4Xxnloc#&$cS;}CQq5(%ZeMRf-XL{VJeIPq zw_bznB&*k3kaxmMf0|y-ZJ|MF8sn*axBDWBX(<2 zBudkuXaL``H7G1a(p43fyV%^ZyHVAZ-rR&*Jj6%Eb3YZL2FdsL+9jAPY=Gwb~aP|g^ zaK;8kxSzCx5bkY`_z>>BK_i^U7WUX+5uP6CR8_bz)QTRWZ6}`m53@!4H&}L$NL>|(`&svc4Vqmid3S?l_h ztZ5a5$Jw~b8!f4qNL>>Iv2otbx)*r6zd zpLf)GkD)H0i8pRXT$}xFc-oCXxYkLVD>hC~vbk7Sgljv*-xSLkn5lBoZ8^pAGqza9 z`>_8jPFtHexkl8qjm&MHG>Ev}WRCc_-Lz42`y89Pexv2~#Xv95$zF)tLsCc0)bre5 zp`9tJm7fcY>a;K_vAcGoO}{^G)bPH<{Xs+3%Fc3J6Zjdm^7X|fc%@2e7Vgp`cFo0> z6#E1}u^SOZL*yN8_*#O6R|zKE33w}SDtq0&&KAXQvhZFYbyYO>vu?6?^fzC5>;!c; zS$1f7(6!E3bU6a%+2EwzAT%P2!Mis(1Yq|()X#{T zUEfAPA?PFBQs^FH+j_t#lVrz9T@`{t)*VG55KKG4a3jd}W?!2U7j)8%1Sg5yRc7fC zx%(sJ;`Hgz?aa-Z z+Ap{*G$`X@Je7-_B^@`1u}!xATL4V}PHf-X!7`gkk+D3B5KzXA$ncOnT2T--OUG0Y zeqiI)!zhF8qf%D|;ak?-83=-tJcv-5y|L-dpKjeaaFO=LnCeRJ;_`6mz5r96&PV{r zm3L2K-U&7jT~kqe*iuDB?F;x#Eho#CRn#7QA1A6#_vV~i(k?1y3&VNo7J(JPd67Bd zxS}^u;`aGECHT~7?`D+*QNOX3=WnrqUKi-8wd{!qyCqnGowfU?Y?F zc9SY%9-Q>vEyQhTuZciyZ}vO4$cw+x+y`DrS*N50uDj8csjht zu6(GbjRu{iO8FD(nxYXAP&5{mBA{S=Djih8h-c$I-eTGPUFxb}RAk+sBf$`}?W8BH zbi%a8RYD&}d=;8*Ox*rt7B@W(fmP7)ThzH``juZ5|25~<{Q~lSyKi03iph>zzn-o(p-JXd97N9I|cmj`-UB6}j9^QDe*z8d$39b7U-Gn?fQ zo`7{Di>Yv$BdwHp9-8M(-2Yk=Ea?*ZeuGf2!5t4Z>heh*=fRM?2+X)RoSp8ixcpFE zJO!MZ=B0kWZ@lOIQc^$4ceu+>`w~1uver*dDo%+1Sh}g!Zhf}qeZ2k9JcszR)Kwv= z%eu!+NTlUXa4gT}-irB@dxg_U-1L}@QC`*karQ5TurueKya>Y9r%=YBS~do=-!AOn zf#CB@3?hdq2H;m6rU+b|FIKsVz$I+j`T3UKCQ?^L-~!gg7d6^o>6)K1;iQvhTB)Ho z%Jhm1EVSHs@7Mqsa^r@WsMFTDt~YzeA-qTPpOWNK+yllm^AWGfy&Fzq@?~uD5btP4 zNqz5!e@oIr11)(bBZu0W<8{4et0$+FMe9jOUeo_jUI@3zw<)m|@3MSO%#TTv2;|-7 zhy*!mcfQ`lrn0dQ=Ua&14D?bWdm)IwkUDC<(zw4*?2MSC990q+)oEc=+B)B#Z@11B zw(6~OCie#owRLuu-;*DP7xz}?;O?yCt8vS0QpH0RaFbzbraS8lhLdmx$FG5J?cfYG zos$I2y1kXs`N;FPmc5>vvW-bwEzvnr*ThF8-^Q$)u~l!Uog{6mMY_XQjdT-ko91Z%yDVBML47&ysvMABR<8mYZ=!_=`Mpd^e1@bTG)nkp~J7to9M zV4FD?UXm~Op2WU3Y#%zN?euoDmU~4l%Rl9vbpAPq@}l0_YR@gdv6YGaL)t*Z{%Vd$ zVne@LN7YukBU|{>R!eP-ZDMuievMk!9B>^Gw3kU0H6fk2yNkBjS~mgz`fssx8b4Wc zDC7RH)k52D8$m06aJzATKUi(Gg?7e&x7C9CSCd0{! zxhEmUU496!2q;~F?*ET(8teh@kV;AO=#hw#(si|NuV+(-ZnNypl)5TRy;*nKHqEY+ z+`P@QyK7YEE%%RCgNvW9Kuu85wFeu(uIW{ifGreYy}F-z|=!{ z{@CAx2+JeVRTY*S*xZLf0IotG5eW3H-+9h~t%N=*C{ju;8A1G@G2g-GVX^9`AsEB`jWHH-4c#v?aw(eGR!YAB>Dz4$y~5iw*jGbO;BIjjhjBvv05~U7 zw}*cKka5y8ak4d>y7538u9@z-@$h(W*VTv05QnBB!=2R>HK%G_!L-K3sxG^iRgHgG z`mfgct!(K1+b#ZkrLKzA6xMyg#!6MyPWtS2`UwcVZDJCrs&D2#o;87K5xU>TM{UWS zQTJ>Q{}Lp{7!N6lIp0p)gf~gIZHY}wSY(4XF%ehM!Tx#Cx(S8jH|e4Z$80w5r|lN| z_`AhIRpGdebt`(!NBMRjP7rGZyiNHj;;2|tZn%4#v}s%=V;%hfObP!02eYQE` zqa7ban;fKl0UJBxZcF>NKu>wHC!+mvsiUTBA@{f2&J0!9DBj)3VrHD?3@attZ@t^n ze%Kp4EKp-F<*siv4P>S2e3*)l$eH^>knQnQL{3h2b_90Zc%3P;JuY39uHdqLpa*=z zIFqyePci^%eXnIJf4JM?UU5g+>w6{Z#&~mbx$+eIcqheMV7k;PUJzA#htBw`xji&Y z#t;2qL#bGI7JY~BewmkvAnW4-4tbyZEiO58WL&~8P3Cevu4#qaiFjNkeN^$-#5QK{ zu)KGXx@z&PW8Dssc!&k#q}N#~RpO>se=rh5D$;pLyU-+yC6(X(&7o5+zrC?-fjM~0<@$T;4o>O^q&bB7K66B39<^_W zuD|bQLtolq5&tUC%jdEeLi|suqh@Ib_xG!v2dck64~*)xFe=sG&*QVa<}D&M@6q-5 z{oEfkRQ>HN|KAP^cGJ%IJvQ%tOl^wu;AuJdjKiLtZ{dT*^RYQEzU)xNm@L2a=)ME^ z7-ARQYVFf+CB$dnBfwOP_E9z|{T>T(2dQhqAu!#^x^3^#TXrXDb&myj@IAWR-py@W zd4rd`Jcj$Mm-~{PGX|Hb7UTBxf4U5Ual;@9^SFK+Gbhm!o8 zdu&PmrN|5?gory%ypIfnF|^y%5ArrH-1Mz1&}8jAU;2 zx->AN)4+%XaP++v;DPwMssA-1`?)V@D1e>Sr`;O{I5{>aB^#eTz&5;gOrvz1?X5EP zO@VMgoboijJPw9~4MUIPW2Q5tlWMgVvthU1YcXCabyYwPvhK2bHO5Y|_+E?g4!G&R z?W>U6LW3%AjHilFXUSB2`E^Ngf`K?W#stDk?SqS06o=gZN7{AAS5Y->?oFX2C@2J^ zcWhvKu@bDW3W^P}ypg6e$AIdruD?qKFF8RHVcAoH=vuot;g{ z_f!8d?99%YdCojLXZG%%?Xj?nH_)(G2?&7*akZ3CSRf-)D3q~xbKsR}wAV^qg+dYQ zmIY97l44+a_EPf|ITfNC1|d?PUCj(b%j{)lnccx&peqV3Lfi^N3woo};Z2D?Y zJ5eh(vcH#qZCU(4z*1jniCFxi)G_gkCDA6f_nh&Nd+WZ@kt@)=+)8)7w!B^VlCSM* z8!h%XzTSE>o4v#;&#E=Aq988(IzsA`yfdCCtQnh`l7XG}h}hBb_}cQiOzJ9#eq-Gt3z2H6oizVz+fr{cPy|}) zZEPc-@n~7QiM=&G!yf1~{!9swb8p($5wgobBV`+}?*paX=MN^@Hxd{s6@m*F0PNRk za8y!)E8!c#5(U>^?0)rc>;<5O)KzfpV%;WQx9@zb5GOdv2)O00?v;#dsNK$a z4(srTOuXD~_n(~dy=k{S=?+~0-Z4jf7XWPMV6ahl)eo_=L%*>XfXM+%6Qm`&04$a| zYPt@yz4>-lsNJ3r9a+qZ)5I=N#xH8O2jb=s*5skzy#8YX?RKb%eHvt-H*~tM-F7j& z{*9miHR4iJGVtM4a{<817%ArYvE9!O?PD$h*dVAWr zhN_ROJgaN5e=#HNMWBh)H86?mZanKY9I1=Dlhhw+i+l1&UEFK%xzM2Ej`39GbDmTi z>F2u(D#BNXO0O4jUk#O>C|{`-0R+~!Vq7C;1VC5HpcU=wvg4P-VN>_-kh%(>+N|3v z0Faa10+`JWc4N(dgWZjT@KN~99mi>dL3Nt&h|ex`3JPS$cSigQBB(dCqauw@WJmGk zghlAO@ii{P&g6GKZEp_z^PcVkJM}Rli0^n zJRH?_areYS0W15Z6(ad@qeP}Fk~d;|wY;HgxXOq32S#;T7?sxRg(K~Hz2hjoUT?~P9h+N$>0+nBpw`YHja(%=EXCGTRIEq=^a|x{4mc_XNE9Xip#Nw-^j=IEVvAruWlIgh54UFhCFd{Ly!D!3i2S;lLpT)MI zp&0DEt~WZuVBE=0&BSh;5enlLTC&&g;iA4C2yFIml)^X&QMl=jZ_oF^?}|>&d!{HU zai|PdW$gv*;K0$AzF$gR1xzQ_{dBZ0&Q9{lXiMFx2-n|vcjj}ULB$#4sp{lBd404k z&Y&(nzJZv%+)oP|6BH>=6m{`F0&%0qB?=&J>loh&6#g0+k_!JacB>Tbn9{pb>ZynwT9)>U+&TEo>f)>eIrE=s|*jBC7wb z;ED3G3ww#YBEHrI;HJ|)Xs#3gy3@Y0iTxG(d~e(iblRQ1W#--~JtF4bW{&und)v2~ zxmUBVJ-@ZgeK}y|1!;wt`>xb6v5O1mHEi!46cl-#<2}ChLe+~>yw%fDX0ns9T5nX;&{W^pxb(~%{78#$SoHM<%_wZ+ zm&O{Y*P`#x2Hx+L2=g8s+90u12CGuH7kgLut!3^usjGmwnRS1$z^KCOq?^CBz4cK8 zgzc>b8vkV*&>{w7T*YAL(Mn9`emsfs;T$x=Kn0(Eu2WRc>$Exo%g_wmLF+KLu&ojc zTwbe8O29N9BN(87>CKKd9%DJ3E_D?!x3ezxF+1d2M>s(TBj7F?cbWF#Z}qF48xBzu zw|kg*Aa38>#4Cu4Inf)tps-ElfhH`hL`s3)pq&>pat}L?ETkLZ*O}S1%`}+#kIQq9 z#VF6Onz;F8te3_x%STFQh~@t?MJLH?iVme+j za#cIFdU|$tP9}C6YB{5@ulMGj!WQuv*?yHcQt|qqf^WoiD!}|#D9&w!+vbhOR-Wn4 zu&WKm+DkyP)HR5SWO;&hPams`x09SQ))wyzu&*SFx4`fzKKB%FKtdstp@I2Z{TqGJV+Q)))o%7H4D=K2 zyzt-^b{;R(nJmT^An}Gjv6g<@#%IxSxXQ=YDtqjF^jh@U%g5S2d&yY70_>9h&=p|2 zIpVtlY`2K0E5JbZb}Q1u^xAdCiM%FDwapP{iLL;xq>h@pL2R$tI9jELYJ0mIAUDmZ z0wbrj)%ry2-!j&&);o`*)wst=9`^C? zDCi{jkF(r=ZJg%*dwlNwgzxa_DG3&6RRx_(J;pKnZQw4c8JJE3u@jjke}!@a2HbDM zz^Ky+n6G7^3YbsXSv=Cyyzq;}8B$eY@-eGU4PfFVlgC-=qjH$cQa8`tP(7@a`fp^$ zS=$QFbF;3zr{KVMH|t7F!EM$ai&_7iJ^smLr+q|q(^$K>UqXleG1o&o!1WWxTdp5J zp1GbeUNbb+9B~Y#?Lkw=>oxs1?ByBbEzhqFSh-4CA)enQb<{kKWP7(^B-4#w6&TTJ zU_@HapElm|`<3y!8y~~AprID@&g+xMN4VW0E;A)PJ|~ZG|VM@s9aUB%6wS8tWbnMD8Sq;PrAe-hr^(FbK;m&cm4B!G{ZTD+&Y5bQ9?!@bE>23^Dg#qlS;F3I`Ofn3sMJ*;6tM0=147`rb|>BUo#o_- z6Er7__t&I~v6p6prt-xQo{@rKpV%gdGU4`;XHJ zghAQ_!8V1#I`->~36`0cNL|IuRjhl#1bt0%l3e`AX?~3|*8IOlxp5F3Q4{n0`|(Ac zf^nSW9hXsrpP~GLQyljn!?z9W8|+edjBQp7ooFM3YcMNSFtdtBPRi|#u<(ZyY}I^k z0uywmbZO|+!mbJCfRCR)OwdJhGy6Jaf-RaGr4eHJI%$Onx?Ad~dHI>`ZO2HaXs!#4 z=rk}Q70rngEJN!~)C~QNZ9zjZ)OkIA0x=YO=cM8{lRbDz=ehHW;$qU0lf9lZi~HjR z>LR?D;1h;%V|&Q=%Nr6;E0Fb@xV&NF851kd(m&X%(&3s%laN_%TNfbJ$6q zpJX}w(Im~`+I;TwgyXP&%MvW0s)cnf^_di5acdhcs_jYGZ)|$ z8U`oqH9VxdR%q=nD#H6>tx#@l3PhuznFgIJ4sW0KS&Z3`eco$Q&-Sf~*`c=rXTPVo`NGRiA^6 z48UG&TawukZ?}~%>f^m}TTv4&4x8sinuEc=RU#aEEABu~kx{C`b2@uAak4GLE2OSM z>TZ^ zD0Ug_EC!&;oP)V)xU72!Q&+``y0SaX-~I>9?!6{DZgzWr&rBX9{h*TkhB@M6@*Cgl zX7?=i5IAkioJ^c|Li&;K>*=3>8LhA~vdgR$uucAEl_wN0!N(5v_$s}SH>+jO&!Hoc2~ zzKl(!=$-7(c~dP}ua~+iMQ>%@Yo=r0Fv#%#ivy{yaSjv!=sI*=xb<`9+!uBqjW*c3UJU6PC4X1U2k#-IrH_fv4 zo@u(reS*y$XU(V{*EydsjhUO8nv9R6gSq&UV^(%r=J4hV`k zc6B-4Ju=JVEmBuO@-plG7=Xk{HUd~f$w(Lk ziqx@N%Kech{va4-yceUt$==gk*zUImGS_s!f0)b5KYv2wo9EE|p810%ch(PFi*J^` z5W8o=rk}O z)#9tM3y#@!U<{Vo{+E_LwgnAUi=ER~{@~@khvwJJVK@zs808n?)%jP8@DOHpYHF%C z?y7lxy^RkSwXR6m?fw->-Z_s{EUbI|yrjhCGEkGpVs=NcbBn#ucy}A?N2#xX`H=ND z{GjRWBx`@L^!^*+`g`Dy`CMqwN_z1RdWGq{S%6tI%-;SuelSWyZN`>&#B73N_5~}u zc+WfmW(PzBM#q5_i3p0M=_1h;6koA>CwSfF;V#x`QdObw8LPIRu2FE3Hq-4Y`h@8^ zMmG#%q*XK~KYIv%HmW$5u|se<4~Qt1ZpU!&YjzOEsVH~(0r$($LZkxlWfk)D&8k=`*g z!<*e<@O_4-O}w!mV{I7Gh$9Uz`GkeU)JnwVjqs|&2{TlJiYTVDZ^zBBWw^c6HJAuq zPhs8G-tI!*^4AGk%&;^)Ylf!jG(Hs?L{ki>8bRks!i)$_8;g)FRShU!{-!xZ)ut7T zTQo0f=p_%tjjkwQ;%q|XMj555!t>bG?r_mm;eJwAAu@|~?;}J6R8DZWS9b-LjC6m> z81y&4ZYab|v_%@c`6-suG|9qenq;t6PO=bFNW-<8Vv-lIo3KyJeG4gSmeWs7uade| zG{1}Oaym56#L0K6X3tdu;a<*50rX_ML{_p=xh10-@RCU+Sutd(8sfk>`wxFSi?7UusnS2k=Wn^Y$ zpuSK8oScbGvb()Mh^j5kVD*6b%FE|QSsWCnT!QaabeBP@oL$3?T|LvX_&%wt04ZhN z-ZOQbagsY`S{gq$Q`2}Ap9>A5F~(CV?L4`1rk}=6~0XdDz1 zB&fQThzXJrGE4sfbP01_wp7QmV(HjFhthut^`m^h3K*fas9 z*JeO8T#CnWI2bO)v-TK1{=`1QKHbDBvy7vgShI26t)c{1!Q(C57T26*i*fv{$^Bn3 zZSgG4zEjK*$3AL{Pw~3_8ElJxV}IMtvOK;#VCg^767l#JsiWp-E8DwamTimw6CG7t zcb!%{Bkde+HOo@@nOV9m-ofTtSu?6FcFs4)c|T$ijY?8IE;}_FJKhkdQ_|A-S*tT< z;@(w65CegI)M}vbcr2YjPv?9nV^lf2mz{cdmZkAHsjKk#lXXYW(lmCGZ)RB<&!0s! z7AWoEbHA~{(>~eww5ORx^+2!lXqflhemuf*&RjgXK+#fSQ&jY@)rz^es}&JMVR)t# zcc!x}a?w)=h@WL}3Wy`@VEHUd-UCus0datJ{|*4*B!2=<(+QVX7@`|%n3Yl|+}w;u zo$#Ob*WZKN&^?JPFtNBOPx8K9h-Y~s(TmA$FA<@fbKV)OjDlh}`6&%oyz!Qy~mz=C-V63b@>kA4cj&J!EmiPn#d>c={qd|MCA4MZ*_mmIkg58X}VxA zxfO@p@^_SE0;5GQd~y|3Hg6gjFpMM$hUK!75E`e>5oxZ_Xv{9Qn`5bbp43%nG+^Dc z=ICphlVsz2Xr>MuYpBBlFE`E_8$R8h#>~IEy6C+4Eah}B%(dHwYq z!`7?uo*UjAHav|_$-%c7aRbY2#sj7{8U8E!;DC5QH$0>>cxF)}zZj3|<5k<|Qt-oX zySbHTX$t$*YOdw%SyETw(Sdcd=IShUlJvQ@@?J4lFQCuhbD@zpaam`4T1us{bELVK z(hPkpXxca$kY%a~DDQ7A|}zA`{X*=%<5UU+Ag&M!(`1x7mS zJ{JJPNuCCzhO)+*f9dSTX$~;VdkC2Nb=%PX(%hO@WjNrgnE5CYG_~Ix!^1P#Ls+Ng z_e&(0X?};y`L~PabDG&-epk)4ye*l_ygex0A>QsYM;vc^%|zonSJSo=`?+VXrETMR zB3;QyLvzF#A=-A3I%;Ne+1@GW%|Y8xLoalyueLh{3`nfqJ=e0f%RJ563)vJj6ltd{XYrwLd!1a7R`t(3|vCO`QITHXpn>d`tfyU}0~QvIZ1Db+&N z%zyXnJch&F*#haD{*5pFu)a<B=2KLD6|G|hp-nvGZy{IhK$h?AU z@mUdKt(J6pe^FB6SQ(*8)qB~iQS&Wp=Sy9M#$BvCd%k9^lgz-zf#z4=)rismv(Vjq zE;Q&y6~~eBK;!1f$zg z&wB$d_tm*4*vn@ZSeAYfF!HH1LM)vub<~_Z$@acmU<)fgF@*s|li(Dd^>RDA9`;Eu z_llx(LSkQ6M0Jvwg_f+%7HYD-%;!SG zkTta1;-Jc_^JWL8(GfP*#N-v!DaMDN00SQD?mq=@BA5aj6Z;s$gLSV6z~Cg8FSL9$*8Cl;8)t_NpGqqxy}VU%C+#x@V>qh?6wKq= zL6Mt7*}=!mAhv;hc!AgQ4>YjmK$Q(_6~ujqm&9K!w9Nf{Av1T0^of|e&>WG>4KG}% z3#`Z9&Rb}yyES0t7iop4dr0c2>3Ns!?ZZf>!2S{#(P>~rDzLK_+5+1I8|nBT!T6AE zK|>W-=k@f3ma!|(#iBSXJrgg3*#euLlG-uZ7TDwtD6m1_N zk`m8cB$%ku^$YeZbCG536;fB>k;l51Ez+!Yl1mm@*50;Av-UGS7aCMzF`i0j=LsH0 zz6-tVxhYr=+fZ%wG2!%`GPH}gG6f6bs3hJ53V;ZNXD{%{1PCw4z!V6h*tuunl&P`r zN?irQ|5*2(00>Sp6i}KL)>!k`ST|1EBC4?o(@pZxjpICT=xW@NIMk!KMSON8v5n4% zOnwv*n&277@b_Ex7wJVS;;Fc7nzH*jF0fUU-AY!(-oY#^iGN>YIs4lp=Irr{MV1j~ z6U`CHS?ng=?Ll9)oxtAJTLe^r2ragR?X{Q)E0m|OtvIW!%B=G{jHi~&?sXt-t5|#?F~@Q?EhWp87kcH7 zIGYoZ;pLeu+^R}1ZQu>=fE15P;`yv@-z=$@_^d=irRyAa?a9TKv+qb<1<4H79Rf)F z`_?$gz{Qrc|68n^*;#zjD>Qms zWJ+!Sz<^Ez15&BIbcto|mrHc1EoEEKP^H#6eeseAYg@$UB;(^i%-hr)?BtG8vVKq> z54>$9h4?CciZ^8HvIeHo1||I_FKduEPll+{bR)YpYl&s;YN@N>Sj)O4OEhbpq;QF4 z?REs|Z)Vr?xzM0Wi}6$$a-K}b+?lm8*xJ%XO3Y&zT4rN)47#?K!YB-&YfwTk)Ltr5 zTfwk}-K)9O*4kE5SHbWj>o!}eVQ`YhOD$b%dPCn}x{4>6+*k;ddRol;`X0rd;_Qr@ zP@~a+s*y>JNGO_1j^W|2>>(^ub-e(f8OQnvQnVoEJ;ZobxPND(D70fBTZ70UO zS|1wh4Sg3~?KZFF8-cF&Pc{f0Gm)y?I``jPDv6t#oP`GQySvyXKfEz?=+Bn_5X@}@4+JH8OrQpsAPfQb?A>QK1NFpmtLvYaEC4 zrb#|qZeLqUM8>BM&7ptW=+BXt--Ce>od!mv>RY_bR^R01y86~(ThLI|*Lhul zTXkm5-27EcWLjoQN{+YtVRI)r2Ok;Evc>ngN6_m;W%%+PK3}}+cDzEgp(07QJ60zp zc9jvTq&6XIrljOd`&%QddEe%DSHeV1J|QBzY?=Ykydw8{Kq1H;?hc z{t#HK5O%83bsoLB!d72H-&hlu*YXD3R%SS;&o%4~iUmfwO)G8jSh7i<)kBJNBTl@jB_ENS54OL^E(>Jb+&=va-;Y$fk(U(WLUu}F0e}A zm4CS)DRGqyPo?M8>{9VcOV#aCS3z+F>;ASLNCBqJG`Cb>Z8%h54FdSRdO)}Nmw8lRqcTE=FrfOX1Qvsq`68ti1~;&CP4VqS zQ(rTsuEO9t)=kaV7&yrp`Ie(iz4GE*8lh$JMyaFb=r*>uHs3b6xbuVo#Wl<+;M2}#im1u`%quTP zlY7);uKwxvE;a}qqpwP>bALp>;cl{be*sTrY_@qADD-V{(|By-l8t>_=mu5(OkPDr z<#-q_J=+`G1795NI4dA^XVZ7Mnif=^$o<&QlL{=EQ>Cr~=|0x&SfCTxNlq)Ub@!qI zy;{DX&xHoD8RIE7J5Q1d44ad@^>f|I(O`nd#?1PVf^MFTpN9I*D{gADUyBKo=4C;# z50pD)po-m(va`3sNyF|ZrLF?yLDqdV0E&}51Zd6b*;wwSd|{oAhhDQ5S|0?Y1Y1tPs81NF6mv&#}E0g|;FekN^AM^>Z2+kt*`9 z1-2qzP^c^Ni);%Tsvk}U>l7quPy8AMMy2gW>ceH69zSm za#{#uaIUxe_QeenZTV-BM^7{ixJcxV*-?4;E@hJ4wGn%jh=>HKX6)bD=?u z#&{;ZMbDnN#??hgS#oMZ}MHEcH4{A_mP+*oLP;h#;SQ!o6Q?S(&{h-NqHeI&Ff zwWGplXj_iq?r?S&8As*%M_gS^xn73ra24gcvPSrWC0JJ1E3!1MTf{WZDiQ>o{qFLv z3Fd&~A3X(`UZgqoA$yln>Yl%JW`+oz(Y<|DRtN0Ha-gXNt=f#IA2 zh9e4hz_6wdeyvDTIFC(1!%$eHtaJHPFRyxWimA)3;!?0Rb2^b1*_x7JKUH+U_w;Dg z>`kS(vk_GQyHhgkhl)^?TL&ccIi9a14k}l_Vb4A*vgG|i>MB6KWZmzJGcVSRP>xM$KREbY5 z@=jTU$Ezv`m|_BDD@220I!!w&x|;9UQ4BzgZI1~sjIE2Q`iG3&xvqFbsD}wW#k;cY zdyT@^6*Fs}l8zAL9ydpPw0*o-({>8G_(-uWz8?mxyeF-U8-;FIs;H@%%I3bYQ`58A z>V!~WOs9k~iMtOJTkftX*4&-J=Afa4*e)O#*m_5Jy zKoG(7JBEY#>>!LA#)j^*Or!Vfufr5o!P+X?;v!x+e_UcK?gu5z-PzJ5;_eJ{#K+wk zC7QdX?Ci7>%iZ#Tl?~DgEu8<9I%;;x*xpWzWNu|`2#n}7FknNv#zZ*5S-O%96gIumcBvIrDO9x~3{OF^ja_`C)be())KyUY!n$t+ zpm35`0jRn2{0IdpkZ{AC>g`T1?i|Ln7aRd=qYfw9FjMY+=!^$%_WJkxEXn)pcU+{R z8orPw9>dM;>?Q`GdONPf*4qzCs$_0uE94QOk`dvbN-bYEl`>!B%S4J1Ut`P>A75jz zH;2FN{FB|QR%ZFyE?}j#v_gE%mO5%y{$hLS7|HOpbznrNff1?F9xAnjy}pbHE2e25 z+d5khXPfPKx7fN_I|$>Fdn9x!`P@pvcu)aaOE33;PZZNlJV~2C33C z)WSZN@IaYm>>E;70dkmwc%@7;)=6G0vyA0)&||Fa<&l24NbUGF@%4)KwtFvTl9=1SeSzD9y^)So7CdHx5Fi z8jJZpvu;UKZ^scgseyQ?&f>a^Tre^b&;jkFNVi(- zfBMxL)$aKq9xo0)^#uN6?%^-$!fSi|+m(3XlUG^hwq3={y=;|a?q_qlCYS?0;$E^! z6Sod~d*Ldt*N^CJeKsB#(Iv6BG(x<6TI#47s>|jcU*+xo2~{*Oo>RbhMBCg|mbM?^ z1pn&?_1P3ORCDWmJ{J$r7bklkpI6c*J~=Br3r|JaTT{uXr7aqlyn{#X-9dbpD91~F zz2qcsN~e-mQk^6zgG(ADPLqMDG;PM-OkQQVnlE(~2#r{G*(%LdCt1A8a&FloZRROQN$MiIQSDPdg}rRsyfMWYb;eyS)-|%!{v1G z12V$F&{fFrn=jxa82%$eQ*`aj?p?UX7S>y&u7crQ*1aJBgOhY$V+*UX<|nHg2SFOL zCca>jkP1~+i($P=>wD8%mtbwAqo&9Vc`J_W#bbDT0eg!CqfYiYOFHUg?^*qi3A`*D z>*4WhY*ihzhRItZ9U<}-nj=2)7Ov6cy_8*CxyF)rPr%9_(hAkp>T5+#s|mV{?ZvFM z>)}5FBRUO?NX%Wj#xl44TFu-m*cLPtbDh_V)&?LFy_$w~2yMnPFg7gKDJ$rdWeVvWpV z0rs{FNC=5RGCGCCf7!#=*IM>|CUq4OH?r<00VJH{L*Qvz*w-mWQHtF#=X$x%6n9Qs zWRjA&drgG9tz^t1E^s%J9Fd4AuEodjwHNz}6r;jB9~Vzkc*o!}`wt6m@@3%d-nEvu zf30QSHd-gxM7(Waj`(=nV4ddeUF=@Hb(Xhh2CQUBE5zH&rH-1K-fZs@jAZ)QtiXs) z10xb|>#Xx~8?QJgv`*9ZJ~jmfMO)`|?R8Pw#-^sECwtxY;%ip;*$p5{vJ_}sH^34_K1hj&b}^VRVn*0JNWWCOWseUuEM21>wbV}{f|C6 z$-C<;dA~!r{w4B*d@eMo?qWPulAI?mU>3RVg1IK<9B%+I*9M&O9-gQ|@gD`2CjQL-3 zLrHT}a6#Ir+wsP2%x~_OrAgj1nSP;&>A3ZRGRn_q*iVc>ysZWBO-uWixuR74vOyIs z?Eu@-p1t0ZIA=YR_`lL4BJoY;h>yfKt=A-ek$vs4-jev)fR(4D6(aFasiR_liR}%< zNQT5u1x9ol7?DVP?Rr~$$F0{aevNHGLv^*z>#Mxn_tDiZc?6eN>|vjt$%|%eho0*7 z%UIgiYko&XqOoVp!~3Weidyc)k3K79geqg-Vy~92x76J%brl+eSa;KUO%ESB(BW1XP2zLW`KC&1GJ&GGT6-v3+z;48m?p+v0nAOM&B5$cQE97S>&L{_&;S!0 z|5W?T24?K%(j#JQo;l)UY~BXV*gW?2;|-Rv^Q4u$b5?XskVc5GrBX#r&Zle+&-|Fl zpGjh3^gNL|I*k*wQxqvouWwAyGn zd(KA9+0lG1G?HQB z2b?mM_5rD@Fc{Ce_XjX=l6!%qskFwLpRR5kgh)NEXOfTB$s_GLxl5mt)^W;xnp@(o z64Tut&RHF{}nGIF)x3XJQH$9J)@`8=F$j;r!l>JRQLX_QNj`%3M zWuvC-40iD+%({8BvF0X`s$?bJ9C22NvyG*Wnx2_#ufZlNve+WJ|6Fjl)AgNdiHn-k z!l=aAjTNWfrd8x^>72!&5&WD12M z_U_|Nmba6ou0mlY>wXtN!AZsfOViz=E+Ikzf*a;4Z|FjFx9dz=6KfYmSsV3Ugay{N zi_u6>RO^r7X$gCZ#G;D38dpqHap&UNT1CaJjIp!c0b>)&En{nxGh;iJBM|<5$Rnn1h@1w~fpbjxx}){d{0w2j4Q`!c*bua`89&&a^5G3Z>)x30&0i{9tC?j`Y2 zd90Cpv!>5U@{S)9kh-(;S`Dq2__2&srR#6(-uva2wBJcxh04#YJEmNd)=5TTn|`yY z<3a@MUmpL$=R$*)#~4o)BIk*RIW)`Tnd3`Zh?rXrDrsb6?s*a3E!Z`p5-B0lH7_9b zA@YliQX#U7J^cwDn!MBHjXWe}PM4V&~a5aV3So0TNHxA;Zbu!Z6hR;jRt}tW@ zs^42KKMWSWcv}4^SfhOWgMEa3qHZ(HfT3;;%vBZCtzxmf$F{at{%ASeIsCS?5^C^i*92*VDEx&~QDN_Ab9orZPsf8)JO>uuTxnoX*#<+K!6OqM0 z=CwG8O&&pEpM=jM`u-%NRLL6O(mrRg@kdMFeNtB;5@y}Me$@1JlHEUA`X>IQ=^M-E zLWAgw@l-lHPu5}jn7(bXXF0lsv1KJm-Who%@f=j{ppttDq_7l5u>g77`$Q6q(|;0~ zuE40xPM-XeWp1w2HDHMPS(A0o@$$9>n_MS7(?~mqjX^(o-B5^@$b09H-i%2l`1G|e z;Al+Xu1$VWlDXN^x7%h--vvZ{7<_LS+agceRmo$#0@adj13U6BnjS+=i_@J#%V59FZBT{@lmA&c% zcTA;yS?a3j+p+HRf#{v&Szu@?t+D1Os~ZQw8L}pfG>J!x<>teB;=b|vN$7CxjQS#S zq>ZG4k=n3E9mCbr*;Ql|b-4etETazht)KoeV}DCYlZ$x0)0#91M_o*{Jwm^WaHz(ZKfDyWMC^3 zX5D8jIwQ)?sVf3?(kFi=_F}g%AkoBoZq;M*t*3L@#*-FRdNlcN^S5k!ol|%IY*~E8 zAuNL>0OqEZ1*mW9UhW}wzzH$RN-h2yjJk(_J?s_FHLW!NXXmXxsjyQ7C z#_8vI-5LeSb_IKQ_7+R?TLYH$k<;$og+|R52A!>uf7E@8O5D zw|M2F&>nB0!Yq`pVUuWd8~JkC`JS;Q!t%Cp=^5$Csa{?YZa=5tsYmyvgY%+9j%wiD zH~c0_JLC(ZYdP)sKVHVH^7v+U@LNP+Hd0?Gbrn86Sax+lRd|;NU(pYJ#U;pBQd9Doh>+SV?zel^M)K>YF_>W0Q4CILG%ih2qnSx3Y7?| zgED*t)$JU@-Yu5$b$$_vt0>=-brZdzSwYG>DK?TcQlk9cC>$bx+?XR7Ht;@-l-ar+ zowVh9g|V1`L3)=_8Z+}LjLc(re3xh$NDv09H`)r$pI^dpTF2ELE^8Kr}rbQTf-|z_g&VUAnsRtA!zZd zUaLRGr$WQD+Mz!!5b84EoY{r>eL{%S*S!Sb^tu{7{{FVHk43#mD>w2k z3lDAn{KPNAx|g0`5ez0!@SSqSFZYG|9-u{k2?9$x&bUfjRNjxPAsQvG*nC3huSacP8@enhIM zX?vZ`9kA0ut@v+&L7f%`rFH$BUu`Si>^I$t4`O@JPz!tK_{?7|xu-OrloBI68hNs*}n7T z5~!$ECffW>bGmpZrI)slNGTmcWX$oUc$tE*QeuMTB^j!M!SX)q z4iCWMByR&;)2JJ3{zl!6lkuCqtA<3Fc0ws$j;P3M3hHo{KSe5vY}PTn9l_pWB+{l>hmyH%th@%lJ(MDjXxoHy*%iR=Vr8AX5ElaD%q-5rJBZ^9z;yYK^(=zYvA$`3%O-tLU z;|1>yN%BB&eSFMogOU;l$Y@m_Phhv6-fHPRTP3%j>Pul~X#-Ay1aqc~V$u%{-Ma$Cm6#BTbl14Fr#H%|lzpEvC1TG`9 za1ktq<#>k?I7S78%Mux@!etu!xnQg1_eQC!aGA`yYooY`iFZ=G`eyQp7VZn8!3s?` z<`Y&rWJ`y3VI)NJwkY6!_bDzSdIdpKY;oHJpOnAT+22?*PBU-Q-4A!bMuzY%)!Q^? zNZar>T%@aDd1ZzBxAvtY!fD%Vx1KzCz%8a*zfSr>+`ifz@p1cVFXe{d5`8XvdgV6D z?MDKZ9+Z}d+pkI;6S=rn%wu~mZnNF`gV9mNJUFc@t(3a;%eQ&s_Mltern~h;Z1Qri z{5IdR*7^RQZGzG$-Er}0$yxZ+yjS@q6~!Z)u~j!Qh?|Ok)X=krG7xJ}7SJJ)U0L%#`#9f)O#Has2Nh>f6N4J z8}NsJ=gR$obcNXct~ugk_q!G#^?27Nc68Y9mfh0=mcEykh~3Mjj+(e~wzt?$4OQ;% zqazE3JI!HMN(>+RyRF>Yy}G>vE%?uDdZ;}?wcsw0LBB_+-Zm~ZH6tCrcN58R)5%qC zJhXBtnsdLlq(Oo#3SHmg(u+^$PuW zJ{20YLdS4wvFaR&-5w!2o>z&4Yw2okzzrNk3v|4RK{!MNu3lGo7U6J>j7^bz4?B1z z95ZY3yQQweVK?jEK{$xiaDrQnfLm>2(7!BqLm^W7{cMm)OCt7GN9?8*MeYi>OOHt8 z6x`rrIJ}n~9%M4m_S$clJntTQn2!A8UVGf-Aog?&+3#?C^Tf z#lJboVRm#4lED0sR&9sKT(WXlS|L`SAa%@4iJEJHs#hg;caL!hA=ZRd5-c1z*rxoDQtvU2cQQcGbxn9=S1L4CaucLoJlUOqQz_+7!{ zDVN|Uvnyq6Dq|DapUZbx=H4N76%N%|x7Q9`q@CoJ9hSO}@6gn($>&0YsEhGbbL~9& zk5@hr&2`u7(Olc`ZHglN{Exxfr!PXwtOO=}@4OyC0mc8Gj7i0R0{b-#{usu7D|J=; z$Fc4=f%u)|E1+n)Xk*P!S2xaocGxZ&vwYc2=%OnMxqOG`x3?ovlxP8+kmtBr@;GU0)7*HcExovT_`a`cZq8;K zTV>TWyC53w6r9Dk(#&IKca~z)+N|s}uf-?Ww3bM#B`HVpEo-BKcykJVLZchs!(_ZF zaZhH)hVHb){YL64Y}&Bymlhk+P}kfSNW)WHffKq6C}jaq6uDc0;pN=t2QSzyxHL@biZjXB6lsdGkFjJY2i*TI=-_lV?Ci7&X5 zb_rG~hf~<$hGrmco$DL-xOF~?OK=rjuWW(+cz?9c7w@vI^97UZ{?D||_efu;c;01> z_!xedH~X_->zu`&-oDE+{PlpPSEMCk_=i%*L@vs3Hrso5mu;P2iH<5J!fD-ZrL?f_ zxyzR0AMm>bHvJLWXS2nc3O6heOpk8QaafYK*rze8;&M>%(*j zUn2uld3zx{Q@YDidZ*M?VC1sywq3dwJISxRES+P#ym2Kri#;S$!x%b81p z%yrTfD<$SO_v(%hHpy;GY~5^lE_4Sg+n%iGm z)b0KiN#2kOMRl*o4Y1~aRG!VZvS*F|uzXIJx(b|ISU1_*z0gNQC+P5pU0PrAhhAFu zqSovuMrw{_Y zWmJmKce87^!zHu2ep>1(1nywn#|Z(E4NmZg5pX|j4Eh(?ZYab^4}W9AAAK9ex1wMM z4sb~j4WDB9>=^#t%l>_8^31lspO{SU9(s+A{NwgFcQ~kv4d@qw6toZZia(gUe@S$S**5KOy+1{Yl9jsVh_gbxZ6|fi#E8240NZQzr)_`h;{X1J z+i74#YJa!>Vaa+C9+U8IviAtvf`)2;o!7to5g{smGs(=xeJk)ZJ`LYz!roQ0TP(w8 zhl!3k0b#F>gYl4+62_V{y%c!XS)b-}p+RKDc&ZO}o?rvlGW5Y4@=9AHdK0WkRtE%qoC$1gPZ&u_%gxw}JO5L2 zF^ilfKo~6pQy{#|&V3E13|;3)T?NAPtUDtBf|E=Gl%^Rr*8E&`V|!@*bCK_nD4#CQA%24! z;v{eP22}AA|6*D_+2z8|t{U;Je`JVWX# zblzp%sTLj85i(4Y`#iQi`%lNpN0FUeon1F9)@?tO|0HcM($VZ6>^!ngFb z$k6V5Aa+}ZjVqKx26b4RWFaG9{*b{cU_N62}U44&8QpM{}ST|;mzPLF_wLQe^ z(2i)7BAMJ+pIWJDgkw(stESiK`_kNKv|_GNj9rREW2KNfXg9?$U$C2}n_;*OKE=$X zZG%H6n&Vw7TP>RhJ}Z;eoQ5v=#yz$RzJ7AvZqo%nBVEb6wX|!3IpAaUlU}#&yp$Ei zb0quu*dEL3kEJ0h#ve#a#Okq9M@`Qtwl`{zZGu0Djw;Y`T8~*NHNg+*d8lD{>fo#aAT8L|?e$UTVsRX-uSk$$nTBo9S* zY$l7kM(bJr`L#hdu9a#&obGDf6 z?f%=cd{cB(fsfOg?)9%x+BrPsZ%gp{do{tAv$-kOjB1gc^OOFLu)J+7y=58djJvSA zUN4Qu!$0X>&pmm44aX}K=5AQkz?=RHZj)4SX5NNXNr`ED1#eY8m$HLr?6n-fMCvMR z3R(Apy*i(rBo}Wbm<D-fBYgqu)A$VLJDxQc3O!Aj+&}1Y%dcdnGF!y21axm7?FDEBYQ2YZ`h|eAf3t33001Xh2^dWqZLIm* zXg3bRGq=2A4(_e#-M6!}b0kFTZ~oZ4241tJxHPK(DUd_jIl<9G?A$?(vR~i(s?MgM zq3(S-pF8chTwT?)4DVR1$FedjGdnAl2#dMQ!dE6vFY4>f+K=uyDv5!_tGjAm1Fyva zpTM5dEu$zYak>mqrE4AbYs!Ah*FveQ;7DZM6$XyL_X3@C>3+-EEr`^=`PC8>=(rt>IdhVF2P~Vz2Xx?W7z9pi z?zF$Aw>ngoD}s+k*QmWeL!!{obmtz!$CKDcBpclq!)7andvsr{Jtpqo-4|=p+B_)Y zg$~&Ad*1;j^IOuRlu>A)%>f^m2Ol6V3vM-MSKmBftM7PeglhO0X@$ruq)4+&SeP6{3R))=+4`?>GVO!8pY<6D1bU?E?$834P@pQ%1O3gC?`TkC0KXTS@d=C@IjHmhSDNsJFs&{Ov*O%^5f^D_~Ax{Sy!B zymgW~r~zh8ecC}y>C^aJXb`231Tx!sa}d*L$}mydMrHEWMTHGJFZZ%qyTpzv2tcB& zj*8v+Lr+>=KS2hmu5;<^=*0(ZS?(!y6(Gs1ds6@qC+Ts}64_Yumt{8&!X+ZVbfBhp zPQ9|T?6oTDw+Jgr=cw3)MU(yVF?`KrUy*Ny(BbEit0>Xo`wskDGUpJPhleK|v}_)C zkl9=&-60|tn*3n^ku%)#c{im37Oi$0})y zm+@{CxLmQc{B`^`b+L?7CGMr{+xdrVfxb!VDoie7-Rlo&COgTsxWi?b-0zU?jxXVJ zuk}J#x$gLUue`gjJ9f@=Ius#u3lX#{MA%#{X)e`he2jwNh)M_!FuA?ODJmc&hREm? z65ZItHxF3~e<5`h5?xp~FMx!Td<;BISNtZ$C@!CFm`)Z5^BQx^l7lt9ymlzZ6-EOB zyQEOzEIo#cSF?*qEn@CMTtW?V$KhgIMH#N_?)5#Vl#K}QKV!L;;sqO2+_5xR8bRh1Dm@P1DWcZ6By8GU_hel35P9R z??0^RdJEfvhN7!;`uM|^t|K~QW>V8qKvF~3n6w-`<1@3kpV#C3pkV0t%Nux8DiHLa zxV%B)n=&|+nRl^6uO7A>&6Bzch}&5Aqr;k`PV)X?%h8Dl&%c1agU^KqRa=aw%8&Ep zCCr+sws&7#hPNCD0F#;oK+Ac>UA-d}2nc|iE(xAN0F=m}6ae?LV+C-?G`(A;t^(j5 z*4+{Sz)5}rjHc-|*8J7gjf3z~j;!ol%M3$zt8Vl9Usjf*Bc*_z$%#yL1Of`E&Jn>2 z>Pf^jwcr6PT|HQmZ05_Sb~0c zL=*H$HU$kuQ0MbCN1_D9&w&|P-mKnbP4KX67QR<@{J{l%iJ<{W%X@KO%1~5GhWE}( zN-U7ksSJIQU0Qy`Q1rEwSK#YEtKF{YvgIJ0oRT?{I zmK+f*H7I0zEpI`aODK%Hxa`3=eUJbkiYf^K(CDbhXaj(l-Z$8*B(LBZG_q$%Rh9g& zumDEua^A6i9#z>}!&JB#{G%z9+(GQPWj_y0EIr=W!f`;O# z^ZLD`QI6t!YsuKFeRl7%#`tVvc2=5cU(IKVsgOp6u}0{n^jXQ3R7;+_V`YQHq-wRI zJBllw=CNBRRP$!fEqx;KG^wlL_=t7eSMzd@E0bH%I7u5Xe_-ir;q$6_y*^oelem_B z!l$;W=H-np&7wU3!WgsLGiCB4>&~0wt9iT9%g$mH3`g+ARHp&D6C1OsBK z5)cIcm0>9e{>Q%ESk3Ey*6Pm_ACkHXg3npEpM^j~=p=n$rEgho7}iv9ZX5(RJG(45 z;XRXiR82p!)l@l7vr5%e2`HlXkKyGv>?Jaas_AfKqgm=ccl6)Vbu`m;Q8jPqtE(;z z&#yLlT=iAWLy6m@JH*#t%@M~}+O_^yntVCmW7*N40ZFsf-4hc+B2&pq4Rgdt^!Hj z`S=#<2y<+p-xT z>1mDbUjIB_tLmJ&CghE+x4MB>(gQ6g!C*_QL1FL&Y`J;Q4P~cj0fDfj0s&$0xr|F; zFrR%J5whf+B6Sr8vsrgy00So(4=W&VXaq$kAaKK6V>leOt40r^O|2cajI9-B z#wLd~*E*OZj%)PrWCw4=Xx}U^XYWo8Tf$x$Fw#XDA;R7&b<~usV0*XVe!n4Xa-YQs zG^W7b>6~f=*&Y$KUDy)!dHCTcY9U*Mh9au-y>-|S_1gH1?DT9DPg7%2Xj1T?P~Q(m z^z|AKENfSREc5_2seig+S^53Tk`hPAFjbbWWv4!byN0O~rLKacjCIEmB$BC4@@?2M zbunHLMVS>)t>$yTwNM$RhB2lpM9!P{!j`JjpFs<1!7zzx?uDk}*J^s;V#9r9CkvUm zjhgBa7U%YC^|6{5SdI>%2Ro?8Gu4la> zhUxmSbc9Od1LlaNYxn`Yem1&PF3h&Fi+#P68R%Ju1&q8UjSyYGk~$`0kzd=`+-Jta z&f&N0c%n=?g}x*~mua@Xy*I{^bzzJq>rS=@4MkSxc<&fP*6y*%X?V?-shXUUWuK1% zRZk8`=usdLH7KFSWPX<6spQCNS3&U?>*Be#nZd5rN&k$oR6Q3m)KL>v zgYErF6J;04;j+N6P7T9G7RaHo!;4DK2`9#BA}6xVv9X%S&im1^hRE09sq`#76Et*u z8J>zt!RrYr_Vol%xxJ8~&fp>ZUg>xS5LA{DcUHG=mefl;HBP0jfUQ2e)DF%XGM^`P z6(n_8_pCUbyH1iFXNi1uoF?*#d@eMiM8=?s$j+VCagxXujon{S)g?6Ol>|%Vs8GOx zvI~w!MLs+plrgG{TNC!PZ=9{XuS#8oM?=c&B!RCzJ+|N9Ed zWJ}?w<02+d*iEs7f~NS}W4PIj-NX=7fWN^7#uVUpV*f3JTQY;!#aRZgj$;NNmF^IO z51Av5!PMs-qD+u0w>IqPeqdty+~)BjZ^=p%bHrI83a3aNH9u|HUWa(m=Qi=gw$?RD}x8wKNzA{vmwyEsUy>Qjg_(iF!VCl%Z&k-zg0-WUO zcuV7Va#H|9oyoy-2!-!uWD12G_HF{coN4Y+Etk3qg$&kR96-TI7Ql*Wb0<)IqTIV- zdRq{v&Bc5-nTnNjG#U!?yuYxjIBt1lN+a=8EPo!uzq8ms7$(;4#HGZrc6D5ptgWp3 z-TDJM+?LfXSDRI5u3k`Gvn6z6nO^3r3f0ug^8-<3VsdGOI=Ng)(XJ+8x2}{$goOH86 z&hWrN+9ah*8Lq-nb!?K7lkPUhnIHpHxp@WqG8SGMhAx)63XIEGcRqn38R{f+s#}Jx zudWMi7d{sn1X2DQ`36W;ew;U>s|$+Ss7#8+*`VrnT6~!y=_#=U4<)Zbhk!V4vOLab z&>lgDWoQb9>)5^h)h$I&s3EdX!EhDp9#=!JH=HD)hOMu#rUG>1AV8|GnCKzPz|Uxm zF_B1~+ZdTr5j=&GeGK=mXZK*57@Cfd3`3h$|HllyWhEGTCvL@>yT-TGV1~XXouE4S zvN_^o=*u-ULvLaCUZ`Oi`gOp{m(mI`behyrv+-ZHH<@OG7sOu%hIMKfHcHWFYgme| zg)e@J-o{p;p(yJ7e+uUsie{$d;5!ADqM6A^!aGa*dV@c~)M-iGnFUE6@iZ!lNy97m z`TG_%NZc=DRM~kSd$R|A8j>DYQ)Q>90=-$cme=XHGWoKO6I8EhIohhG=IA|qDl`bA zI?s+szzukn!p@mLY6y5zsT;=6AJKG~p(isq?gT=hvy4h1@F2T( zZcWS2?o!uegg~G#>t3x9aDppg#4LYdOvUDgL2T5@K4m6_TG`&-xUcY=Rz>j;Pon|@ z0LAmP_EGdV53`TRA|mPIxMCQR-d3YZl2*~aKE{jRk@)zGq3i!@GF?|lcZjY_%@Ie} zabKZ*rHPjp_9xlTMKvv3cLa=VlSYWG)oN9qolmj7LuPKW=_j7>w!o-P3!_HKIy%^osZuKKF7j)C54&iug?XxB3)|^C+v9<@227LJYiMqii7~Bp?C9%6`x63|l3}o77RWC| z!xdKtH&&LF(kdD0@!0ON^C}4}$s4wtXIw!-fz3IFvv0Ap7+`kypDqKxh~@vQ`EOZ1 zj9I>`mSy?&TFmkj69oB)<#o&v$8uUW*GVw6k~Dvp{j8l}X`U9ak}Rzd%`cQXYLeb# zd%4*3(EXGf#&_=3uucubMtNQ{!SehL_~I|hAF)+vD4sk2A zah^Su5MeiNC0k^Mp0Em!PXQT^zDW*l{)+js?w^Suy0E@vuuY9e#{ zdg&2y`&x5EayxXbmv^pj**B40y(-aC`>}wLhoups_Ulqdg+7Vxy_^`OHnz1kql(FJ zT2~o?{niz z0A9C`OO8k|nfTOFw%6_N5%mnSPu3@mcnEi|7RgXmS(?j!&4b6LR(WC828s;w6Wx zqcQz=C#|}mf`AH=R-Gjdi&!q#{)wbp#{OMq#;|YfUXo~8j8Amp(7%0ScO{qTCu&<7 zKU$k<{E_sEX#Bo8B553czqYQGh3v0a+wypNz{*rZtiCVtY$zez*r@gj3oK2IioKy?Vvo^f0Tnfh zy^D#)t{9cEBr29PjY`^TnmsYasELVyvb!cG#>9G!>BiqP^UPsqPl0>y``_<#-_PeY z+%wO7=PC0{IcN5qMuw%S_fH3r8a+%(Bf`%IDb;J3_hL8KuWAiU>qeri#!FYYY-kN_ zFIGz$*1*|1zJ_+TcJjI)Q94`8(5Pn5sj5?{2BviXgu;kwrA~<UzmN1W;Gb&-;7$RDz$?5A{%Rx0TrzeQA8gG2ZWyk8gp_Zfrh2}KSG-j&pfSK&h z7xaOW7Ld<|rkrhG*vQxi%%1gS=y-$c2z)j*uYpm9?yP53FL%vtc7u9f>%yJ#(HfY> z@7LgI{H>@2OJf(kqNefjyRe^Tkr&r^cer*}zzg(Ql3Y{hrwsB)gs?2GBg$wZa+mXJ z)%489@*`cdsu(m|n#FQq4P0njYicw27fuBU%|ct%|LYo_48}mgn^BWu`IMYM4^8^P zn__7S8y82<`V@26q&RSWkTOU#T+?kIauxf7@^o$;IjMCAHt-lmb^-)Oup1bB8G;l zO~K4bUBYH(=ntvw3pq@fg!Y_7VG8RjGpboh=_d;ETh=yvqYy+;+22hr!@P1KNp}Iuk1mXftf59MqItsOS?wo^D?nPRwH31(ZvK|DQ*PE2&uaDd$4u_w&og>b z+|snR(D^lP>ByChsEtY8PL$QSr5%@zudUr}s3oyLp-CM<7UzQLnk9(Z*4O9^HZza* zCrM)p!^o8OrJX@%AIoaJTbONQwE7DDtuxnmG;I&}&`S|KGF9*Mj(we(ssu_D~w<)50}YL8c9yC-4FWL9Ll+k|RgJ=~j;>%? ze)h>i`f~~DCR*lk#g56auhtYWPh^SKX_9*+*Dx~xlY5aUtMSB8E;~=>3AJQ4Q0V3v zXc`mMcECiod4{OJJ{3048hu$zUtH>mX{m|KlD%5(guXe7Yqy8?HcaJw7;ETF?N#hj zxv6Znd!9D~mfBwhU;>{H;0gSzs0&Nr`}B&K!18?-cX6?2=UUzcKhW)SP#vL{GD-lw zqEcA$wh(1BF-hmVCUt}v8lrH}Yh9p9L947E-tBO~4_=$ier(vQj&`Lzjx%otXjj^* z_BR4ba~58OVu?w>l=Y3JH?`T%m>^-BRZ8>}`9M+LR7_a7$6Z>5UMKFSAzw2^D>c0| zn`@K?y3%}|C(3F(GKtI1VjdBFua-=&gZT=nojQ=u%W3$xW};Fx8cn2k zV6O}r3wN=ZRhY2g2=zBiohHMxC+-UD&fFD{u(|^D#X-?NjW1?%9rxA2j6EgFYJ4%B z%O2DDLM{0KD0DjBXK1C`)@Uqc(=o(8Vky0iU21JVh7O%SouL|lR%K8-88;c^Eh%Dx~@qwOvm51qCRmGrHmauH5jSj?&T?49k?~RvoDoAMd#;W>} zfu$K6o|g+dKR7)doyaCyUsyw0N#{Z5CevxQkzwhW6Q2apxmH_B*Pry1W@^FOI?6uL zZcVRU%Qbu%bf+17OqA95XeF0@pZQ1(hFWqY5Ht89d=1b0m;S4HU68;T_fk7QDNs8b zsoLy;&lS>N3q$%wP`iETney;o;D}7lx`U)E^PVQ$I&k zXMK&2`uoufV&+Q=Nc5LpbLNX&&ACCC_&Y@go2g$EA#A38LzK}3Z9C^3U_s-{>=#+9 z!YW3UnoA4#UV0|EcMESTD0l>M?u87PP{I|yJu7HoUNza70uN2<9%GGo1iUC^on)O z`|-NduhtdM(hsj>oOZ|`}+NSZt8(h1%x|q-XMOjVPIKXB5 zpdW<8FKS6opwMYLj-(drcg<>BH_&=EO+(bHzE;@H$eKy#)TmM`ORbr%)li7XTU^6w zv;|yTPk|wZF0MzgOXV)E%Sl}aPu*R0F?Dy;<*9pG)QY9u33|mVcTb>KH2dUtxz0!H zVgi4!BYi89SOWhh%4nkW9_QU>QQ`><@5ZJ9p-l_!QbmtqDVx3DtBbRD-Fn(IKFY!G zp|mEARWlCP^`tSJwx@Tuqkk?8_KitQf?h#C77kh5!dFwkK3z%ESXYI8yfUtyke!+y ze1@wP4GPmt?jy=-d~=G+_JB{-!n=8d9;}vht%p$ymtCiG zgj%v1D0GhuG>wI7J76K(BSXX&ybmjF47SHeW(rMWT?sSgh*mwJV_x9u9j09k^Z0ET zT4)~cV3*3xW3x4P-=nbRzFrTr_gX!kz18Xq{cHU*7yA3r3tq_!KgIdOYvR4cb@Z)| zdD}{4uo0lS2w{2KL6p&iq>%Fx>wA{mQgha-;2Bj4ewF;krNq4FV1ryA6ZT2a!+YMn z!in$}CXi+Ku!SD4>i@8wkg)O5@zL<0kS1)b1yc8T8+aoRop#|szFJa=mcYZ+hzQu3 zvYhplVXf>Kcqh+X(N;}Y{hn(!6Lh9IyH1qV_~j~>UB&z&=B!$>yguga?)ut|@^`%M za`ZrWRz93}q`uJ1ysAFa>I+GWR?+^fTFicR%+gk0#=OB2*Hb2VDQu6a)lPrp8V)20E7Bui=tUOWIswxJpdN#@38(`Mv zgDT!x`v<3XC$*{OU)f}!vO?!l5Wh8gg=^*8(Xsf1=%FXcD!+W4F&De{gti~_@a0|{ezla&D zmYi*X8T(@c?JQe?w*wNMSr!`A%t5L;hZ|tResc$IMRQ-U8HiaGwdHgQnQ)ihzCwdB znFVKjrYRJ>QKg~K#Wdci%C+=uh#4Cq%4)n(k;~R^s9kfYB|$);Q!UUmW~%LgnQRx_ zg?gRsg8$*W;9u|48<=|Q;H+j48TyN-hj_fgV%=4%u`ovXagDo>Lv;)L%AFcu4!3Mj zZVrbnSYD;{C5rGD&qw%+DGi6B8Ws^byCF`$PdDV#??zD>md)$w6|Zbw-%y*){#?zq z4KbVF(oqUT3Y&mG5@j@js?B*PSfF6x{3=YYx>i*wXw{R=D;r`q{{X6Z-|`CLP>|5v z@>11b*3gsA6%*lQ`|-r`b0M71gs<}Pm$?5-AEjtY*c;1fF8gW<*c;1zgUvf{7+0x6 zFs5>SQI`5d=n4(FEZov-QK(x&sHL@oF`e56YtuP|*9QqtIzz*ney*zYu%RcNxy2E` zz}A=fg1x<+X0xt@`GTghu7o)wMKn;8$<4Tey@N56(?nT~Ga7N(r##LOT&0$dq@`VC z0BVd>n*t-*x)}mrbic5xPG@G#;9p8(?(qP#X1P{FVNKV9YY1pM{Yp#7lvag9<)<6| zUo*Eg%UtOlY8(G3(wo6Ndy7PcSoVHHuXtrIyr3H5FHQxKT-C3j7t$w8f9NQ`iWHW; zej!4y)?{xK=T#07CgWdq&8lM1tS5cX1!MZQ4$-D>ET@8mCVf@?KMyWVU-r8Fn0P)J zTj3xvyzPU)7X|pWO0jTFeb2|CA{d*K;LZJB71(PbdW&Xi`fCTSP$pJw=fCP=`6?dC@YBQ@V2P)`nmbzbwjX zywHiu?$&uhE!hbax`1BG>=QCvZKex4f!@DTKBt|OO>T+J@JtuX$St%Mz-vG{YOgV? z&X%ERcdjY)FqX`pVDhoIZ@n4(f6eG#I2ZpFf^+fjAv~KyLxmh;+1!v`5wjU4#l{O7lRy1GJsfTk#SAq$2#l2gU)wpUfm)*f!C8oAo@7A# znQfdmH!RvIcMik+ek_dVw_VhQ<@XqRMa*w`Oqh1I9>=vD6^6O}td5c+QVLwKa~4H3 z!5PnS>%)Y}I!D*4Dh923ChOs0nA&fHD&A}DNt_B2n#o#Ke@GZk){xim0UO6NuBalnmv&p#D)!R} zNM?9J7xRPi9HGtE^}Ievc=8n*)^uf6CI5)hd_}YF)hU9lF?B@eHSjh)nylIa<_Mar z+5+YXn`oRSQMYpCMnzzv&J<-ej>zM(Q$3Cl+@zLHrlnnE0BQ_Wn*sybU9N4k6S6h+ zI=-ep_m~<=kIl?9nz@Fiy`WWB*d@Qf)rGFb(snb9BJ?KpGvWVr+U9gF+9`cX4dlDy zk0W^M-VzmIS@#pY;+4BUu?`>(_Pe->*TE%pcU--Z&}A8=8oi=YSnh_2GMe1o&3O$Q z;e?wT(hT0HkfUG3tAfz5Cx5?-!2IphNSnVeb1q0|@>jLM9Z{OU&ES=Y@hpAeJ0Q-Wws=e4s*1z-_&)j(G99p0{ zhq-{|ZfTL=gO^0RG(K=}-F7v?+qh49NQFs98qrmmUDyp zeZ0+8ljJUk8{bM}0-tS(C%LCcEi&-*`W8|Pa%@fEcws0x#noxrnC4YO68=1?Oa=}t zijo^Orh`g1a_srs+LA(2Nnr@FEXrwJ-Rl-PnetfscBK92qQ-O?=9_3ufaj`gev7xn zk=$h$CX)f(idy=3Uyqo)K8TDMV_eAwh05T@!g!(S9cQ`Dsf{s1vP4-;@A!nvW-|N4 z3{gw$jWI(OHr8gyXS}YR8qe<;rQ+Y3jistl|HfosucA)OTI>_l3+v-PP9YC_6}8e_ zXI^-!x9&P~z;@9njRP)n#kN9-=xbu%6lFCIIL~Dd>Kve!><0=>kF6flLf6ezA9<*4 z^%vV%f9GVfBK89^ctlZOjK0TiX5apCVw63F%*Y}UN);Cx{)Q{=)y(1-w%W@{fg((S z`9 z7drh8CiHnG#J-f6)Wp1x|HO5Q18wOn&|j3*g!l(8+lT2d_HnhOC%h+!{&FU*iFOJ1 zBd-e*o+TVKs#)Qv>cljm9XyGe)`S|%K6(jVyGiL4W+rrM&lP6tGot>Q?tG8yun@dW zyE74GHMZX3vKw@^swKHVp<61TQ6q#NrM43z^7UQ0<+!3OY8$fzx^GYVKbR38h!r*6 z^*&cj*ImsvN`H@sjnbtixKX+Yfm!0}<%pS36yPu4)pgN_oPG;RzHtRQ3g;L7RYR7V zYQq`S9G`NlawAq3&8Z>#!=b;m&XK~fZ}G^n735E>qYsfm52MIocIrPr{(>$u!+2@Dao(owkbQB3M)|C_gnkOFMt7kT|FH?>?*n% zAb-f*2HzMzHZ5H6-8in_dreD+i^t@{O-aNVXFGWhT=aJbP!j!)ld^@jv8_^t3R&~# z66i7=NcgIpkkI*beC3N@b)>a%?t`e)pBV6$azjLMNuB5CK%E*NuUuZ(YokdNR z=f%qfJ+`OFE1Qv>&Z0dYB%wJ|M2aGdKZUjKq07@+n^|6#GIxH05pi~N91&+UrvnN+ zH9WVg7J1a~#A34dW>GSk*1EX4vR2gK!uegP@~Y-^q-#&6?AzlHZ^~n8&?UDb+D+(i z9421zcmn=nTbCSi^#Pnyd7o=>M61Py0q<2I1Mk8_emvzwbLC5&Cg(&=j{F}qS%I2V zXo3ECsMUo0d>{M~*%7n|Y9VwD=8u3DfKN%VMZi-lq;V&E3r8^1H6&_!z!Fiqb zUHArBo4E;c)s{HARB9=7QZ~Byw8YWnVx{7Pa-)_w%!P?!Y;^H!iNhR-7i@I(3^HyS zhdGn7sH(+B&V+Ria(JHz@^^z+&|{^4#0hDx{h2|IKM5a;a@z8 zgxhkelV(NuKgY`_T54B3XEjy-@h^T={*sw2E{`vI#Mtt9AG36b42m%$pVt{lS2>2O zy5prr5?dQ*d0noUMEq40Ko%XZU(wM#u=r0&snkmFCrhJRy_8l;4e>HdBM>C1)2as> z)W~fe-9`!5){rZ;B75o;H!`TeGBrk9!G|_cV5?GJQ^Pw`U8M#KinC>eNw?nFpm>%% zycOox5Zb8MGUD-8EWh%Ci;v1vTVZ-l7NuBvjckRJ_v0kFN>M1u?Ks==-=tV}DCn|- z>+*uw3d{8^s0+Ce2AO!6EAzG}#+1o#MWVa9;JJO3qF{3H^0YQ(sZ!1$1kcdvRQ_!% zOnX-=?>Q`o{M@*>3kiyX1;y{8B5VSE(8`mck_+`2xN1imMGOU7P?%|0)Ub*OLLdbsEe z{qz$I!%}!|p8PMa#~rO68$#i2@i{S|M%yM3fhujZ5vbTkhyYY)W0%-ynW3LxEk3El zQm8PTiwlZYE%hrB+%Sl3cnl+<@x^09GZGTw;?iQ`W33s{R+}v|&2G;~OS5LiXT)36 zGe~s%;y_2vKQl-AhQ-0*Ia^Y^J;`p%ux2F1B--LLqHWRk=opyR>>2O_kWF=yUm)E9%r*B#3#gLBv{j}HhWB>L2hn@)%&3vIuiMHtUgtS=r`XRg^JuboGNWM99vTs;g zQgmWQY-UW7B_`1t2eL64F}C!iq>Sja^f)_wI<4}oIu3WwS^K2WSeVBx32BLOX<$)o zB0M$9%!rPS%}BCYqZ8rFD1Da%Iu3Q8_nH)5PSbW$@cArDxlK!dZ;U2kVQUgwMq4aR z8!@9|ZI*-#8#ojkZ-qrgT2e+VD3zF&X^Bsdk9UCU!KgS(TvAekH6ww3?k~ei7a<9D zYf`i|Cc|d8#yQrzXC9Tp?3UQLSX;UsEXc6hE%qdf-3p)@dK$dWKP@I5`W6@)4ew+9xVR4HU3fJ3Bh4Obx5Yvf)9smQwpeR= zyd}w&2FKW=Gou~0FJ^9+!ZH)AX^Dxk_L%q>n>8*bJuL%Po-yfhnF(>}aLSC>{2@Ja ze|e?|(zDFA<1p{aYnJ6*^U}P_NRN%nh|kE(j7bOeAfwU~lQLow)8avgH0UlJAWb?C z+VrGvNNiFZ98*)N4A(*B#4o*12B zw6s1)Jap8u+qJ?g!9U#;9a?6acG^#)NzK1k$B>Q_iv2doNtyWuXbXsDjH7VYjkQr}_vBx>`pW8IWH!Q{;6KhY;%#4jsw_0Oi%(Ox{ zVbp`Qe}dhXM!RJ_N3DJvUy(vV?U*>LB?cm6g?QMaGc7R4WLPW-(Fry_*1!m|PYNru zVM`24y6|#Zh7W~LFYeGTy4l3(?Jbse7E7D(@aRZuypVXYnduf=Qer}EVtNt`TG2@f znQ=B7ydojimXVpp4YXM8nMnx{!gPBa4EGs{Fg~Wm*=;bIM`zM^jQT^MFz+(Tj#P|y zCY94sE#A`b^{KMFXH)Yov}~iu;x(IEhr*bj27M~Yk_l;-8JCop1Otj42AmieBI6yF zku)2;NVCNxWM-yWX*}(AOI%u9TxNQDI=s9pI(Sokhh@$t z=%ew884&w)7<`~gOdO;pq$rHT_RN_01gj(edC0ZUvfCsFKc5v7R(6xoBzf49XtHcg zaqEzT3^*?t7aNn9kZDbWaUea`mXKzJ_oFApr)4<&`>p{4Xp&^wqZ1P|!OFNad!ju$ zArbs-Pt1sepBXX(c3ztKvJ_@Zg2^v4E+!TjkhCzMX2yaHq$t!*gqOzoZ>s0G>pSZu zDJ-tcmJ`Ump-ZB}%5It45q_oEuY*NQwV0U51gns0Y0)rh+0$%E7OTYy%Z)Uf4JNsC zds-|^;F)nabBC6F$ABCQUK7MqEw1c9*}anoM%6MqsJC=EF0`nr7G91~FxpqVJd&(^ z9A4etYI|{?|E)3qx5oV68q;Va^uIM`*-Kl^oLBZ*?|*B||E)3Az1{!Tm|iQ}|E)3q zx5oVcaE&=d?$gHecuY827H@bfl%7F3ROxbt$r%*Vy7J{MK`+sxK)UlOq`2~BM-Y2z zrY}4H^^RnD-CW1|ZF~Dl@CO-lX~&I9li^nF>R2-Q?OTDQz2D_<`OJJW%I|WV&#lE( z$hKd;Yb=j#LyrCOUGvIw;UyQV8_XnI(@r#~k~I@fZme!=Cr=d@wXKr15+0o`;B-05w<0e@Y)OBK6RvZ@H%0{Jj6>THAxCLr z@`y8PMPW=HnKB-{fQ;5UMvEwnYZ7O)pc2}+GCkUDN5&I6Mk+Ac!O+1GsiufUI}ouz zhnUONSj8E0O&Of5K#TmOz8C7>7aIGb+Ky zCFoH4z?89J4>BSw+R%ntFf37=5lSTt!&0~x8GUq&o}4j^GkTgbLS9D3G#z6KXDsH7 zDW;6HSCH|7jS{H<^ZInV1j>o{kpz*%R?>0W@G_jH`Yob!pmIc&;V`37>X={Q%T zNx`U+RDp8UlydG(q*Ra5#;O`Tpn+wP+%N{yuo{&xij!1_-0O1rj1sRy#BxM8j)*lw z$iv@3HAZU~{Uwf=#1T)LBDOmav0Q^lk(Y8t9%n2yWqfxS83j7V0nRwe83#-mE#5^& zv5o;>%mR<5f=O&#yJU)(^d2I7Vzoi35Q{jCP#S z(vcFyaB{?1BSgVj7)VZ{7JujvzaoPC_H|JVvFy9tQ2Ese!iJH7r;yUfs*P=! z6$eKP$^Nb=B=5(%O-atqfNDw@l{Ad;rqjskt7G-ztl=6~FH=_WN64D4V`alL)WtBI zcx#nyN(wuJq!)Fhtz4^p8rD`bmXuENGht}?NQXMfQ5Q9+lV&LS)lX5aJ37`)&U&a} z-85z0{tQ|5;GLyf!v|@Ip2^qXol%H^Tyk3K&M^!bLM45YKT0;fUvq5Nx#BS%{1`bc};fMHN3UqM7$9imkNs?nY^ zTA4AVw@B(r7*2-h5RY?2I!8QihLHboq8f{IjQO0ghBM}yGCI1E@rsVImowhsjJ>9e zXRjjTf{yV8XTa}=m`lGfWt{nzGS2wv5Wgi5+bkG35|QwmDWUo`)S_{sHm>1t;E~={ ztJ|;`2SPTNg;P1h@DBPON&R%B-bj*1aBX^whAmVtY+MWVt=d5%>z@-A0%DDKZr>3`m>55fQ0FwC0Eoh-ht! z$bN{3p*qA99Fc*DCrlCV{6kV-hT%d-SilKuk+8s&@Yf?$;#D2uC5~_);w4i=XNgFk zUH(}4QinLl5pG1BGebyA^FD(d`%4G-odc?p{FV@o-^~E>r#`4dlMb4QN)dUu_hx_y zT5K54niUa{q673{fRU&{A0xoMt}sdzTmTDZ>S|A8wU=P+X-2i#5V55)Horpz9Cuvq z&#J$U)n72J?yQ2<&xqC82y>bNzCplgQ$XWt2)L&M+-87B2)JzoNd2~?j^u~+8$71< ze_c`#4}(jK$8dSERAvz->l_NSEA(DeG*O96tVWN&O9tm?fVZ0H6 z#UY_4A~xv|&m&?tM?7zem|qJKALwn6c+V7Z+#eCwb%<+-c)$_YOc9j=DB_G? zM@>BB>K$=}3ni&3kW$sDfMGoP!pukGk)%V!b3{)>#G4{=0}+uXBH-t?JxTpaS8B?m zIcExTMw@cJ4nocGqCq`Gyrn}Fa0Gm=j5?&i6fwF!B1&|KVvhJ3 z5yeJ`{IM`d*dD+jQK^$ACXx@ajes1f(+P9LhYA?RdQleJN)myDwyv_TQ|sDNQm zvfxk#MRe04k~v}!B9cuJ2jTnxMNHBmvN&QMBC?DSsjFaCg(uaNkf$ST;DkL$*kD9p z9W)7^-ciI+9pZhCIE#q)O%V&>`4mO`s6%|u5x*khdsDwhr+IB2IF|8>Wb0*mzQeQ-`>Wh?^X7*%V=Ghlt8u zHSv&ryOLD@E2&afjE653FpLM?9#AbTIz-#9IP!JmjJBqXpF1F9xQ;P|Gsbep5L1Q) z=3c7DGdjj1&dBAAMW&1yosh9l$9RP^j&Q~+ri^!CaH4u#)G;n_#h@G_!AMZ$}ZRl!`7ch1nD3Q7$8TLXx2>|*T&s&;Iks3F%>Y3>k1I0hygl8KaLoM zh<>JsFS;XQwhl3aBc4OV3{ylvPekPF5ZgK8AR@M#B8K%s#HTvM#~e|Jh>y(>(u?F? zPZ%)n>j-y|AWPjbP3{^YQWwLB(Fc_X?k)x-@=AYlJRioaR=j?FT5K4O=KT=R-3vhP z9d$v(;~de&6frRc5l`z76A&?00=nxwbv6mw@nj(H3fQVx{#0Q9gUc>HN ze_)DepNfbZI>Zl%_>CieFh%6RtWA4&?H*!0=uV<$4@{77Vmk~eR+9=CM&$J4h-j}v zByvP=L?oIbstra&x(;FEh^dIMnIZ-ZA<4-wROkpRIbjA=d1Qw53V-WGR4)G--zT=25O%dKpi3l26g%@_bJXuF=edEK*k&$V=bcpL5@jD`}n<1pfNa{LRTLkpc1VpMuB5uII z7tse3triu~2BhE&3>ec;hYmVI5)%4wLXr`I4HzF!M?{7Wk%owA9Fb;lPsf;9(~_(q5LiX*Ne;ww|coW+QEq(l785!K1PYFGLx zf14scd& z%rZkrYl!qF3>Ld}gq@sFfP|e!1lvs*EZ_+(?V6wK2%m65F%mv8BCy_FcLgFI=n(%x zgzS@oL)O1c8BeZ6MrevAAn=Vvsos@TxeZ4&qymNk$zO$to;n2V$tYqlM|3kq{ID7k zQ*;QJpD1D>M@%wBv|fvdEjmOVB3|Z*JX6G!b%;2jLmWlKd5$=0ig-I05kKn?KO*7} zj`-0O@#lI()akE@i0lu0KDyLu)E}ejPbCaP(rE)p-4DZs4$+Py`f@}&Q^b;us79ua zVdsqLoMAU*e6k4{>vW9Oobe)OtTtuTAjmkZW4z57A92Rpri{loBjc)$;pB`v@C$}_ zU`Jw#*t`W1)dpyzQW>_6N(b;UkY#JwGexTHf| z901?TxRQ#1i>841d<0Y&s13(M)IqK>5R>Gg5hJ-Foa)?#h?ZJ})Ql9ghcPFC6Pi&0 z!-yW+jfg=y!~jH$;fMjIh>Cj=F;9n>jffQ-G20Z;=Osk!(IN5?@diianY$$@6iyVfn?s+PLNC68di|Jacv z8fM5Vh#+PNu+;V^EI3Z;2*)_#0uqjy5#*_dP>Gv5#0`%46A?E|5sm^x1P;;!M5;|} zqakM+55itin+g~PJaIOn86Y0rika>MntX-u?7*_ zIbw|w;$BA>KHfpX5gp+jBz(*X?-&u-`mNSsM0~45xDaudBV4A4!AB6`_qZk?auv8K zN*4?DAIFGPp%R7>+4?RrtU5+CXLR9=Xj6s@PSV_m1&0nXf+Hqy#0XPFlMhgh=X8u` zIb$PdJZs7r{~KOYu;{(pvZ^}3Ti#@t9FVr!<=8PXW<7-pK{bR_Gp3sKnA7n^1 zi8K?&zJE*+i6;=zN{49v1P&RAh-gj)3a1~ zfc*nS%rQaKkv>AgUL9cuGI>bms zOaugd<%TKYDhwxd23V#eEJ4C1uEY{E1Z*Mh^(#4}9MTb9N5Y4k@VXI!y>G*XIuv;k z;C&ld|2nV#jZuB(hC^-y$iuX;c!Y>r!!Q<)Oc4*RBBHexA-5QYi;E=AXh9{k@nmYW z`wkgT=oqQMpfB6th*VR=qHBm)phL{%YOLanxu%R$-y`EC9b-3Vyu}&2O&L|MBjcQo z@i}LdaK`7RjQ(&Nh<2^tb&LndkSY<|2QXwkFhy**fryCVn!w7T!*SG$LPRJPFbqoJ zPb9eq3>G> zaL9H3L`1v}5z7(X5D{yN82%R`Mr#oLB~F-xgeOf2+y6$wat#4qqrnk*h*)Zh`0gPh z3Ur7A9B~v82TTzy9+7+FVW`j%E-^wX*1u$0e^LdKzoz74#pg*)G~mo|#BE3p|0gjy zDo_E#XuKgIqKyvG5)thcE-I63015rVxu13vyq1M-KC@GBB3kHUcbYD8co#X$J+ z7ezE0rHQE=HVW4T7S0Hx5{5zDR1Fz@b&Ot|F`P4cnKIxjAxw|yI!5*=_NEMJ6v^)a zKSnhrgjGkvi#ozquEjpC#a2^BdJSZJq+^`qjEkIc(vZ3kL(aHq%D7z% z8TFphMkVkm9QWXBvc4t#lt3zA7?jxBh)C8UI&uWuou`P7rij@A6miB+M;QAQdj$s8 zA8T6wgF2|f1|1-mtB{X~TvLP`goyWbh$9^FDI$)TB6`+E#P>SHw;XXF5#O33R>Sik znj|$wYs29;8p9Dx?$rce`cVPHa9pU5hy)$N$`Nq7k|L~T2q}n2hhbqcMn@RM2~Q(o zlo5fw`yv>1SfL|4#|Z=p&lwTeaIrH45pU=a2RY&xA`Y4&z7IvjWgViBBW@s~&=k=s z91*@_H1UumB88Ns%C*PfxF=Bo!+1=NKtx*|q7@?Ab3`js#9NIJF+_)e`+`)9bdGpj zgGi~F@>R3dm8MOeG1Z>2F-v_7>i)*aTcqR7N8TFFo3H2H)$@FFn^dbnlFx)Tu0mg3 zJ0mS?8ae)UU@$q~zHsv#ZlT2l>jc0i1qovev76!`qFDnm%a?{r@Rh z851TaOq~`5AKjo|)vzT++b!@p3;2di2K~B*-4+AiK#8#?re&n3$HB)uNOH}UbxHBT zTQ$k}Yde(cFP9nvf04=GFIrXC>k<#oyHM!=!=mw~h3kJ<6h}7PD%q}F6o@4Cma8in z^SZxZpm0@<`MYDt&f6tfK^Kh6!ta#iD7S?&;{UEYB?MH#FZcGXhmXyE7Dc2Zt~!oZ zcS|Cr>VFH@tC8c4YJ`)e_ewS>zBaX2z6?i3hq^kDG5;!=;{)RO!A7wjk?xm>O*SxS z6224{LUQFCiy|6A{C{>%HZjf7`(`>}@u%xe&E;f+;-qjR&jE$t$b|nk(X@k!4BCX$fHOgWCr(}n$EEEwmv;m&b zMq<^uHj@3WJGt&GLDbWGs*!sswHr9xlCzbhAlaym(L(!|)p~P{awzI#aJR@2KJ#3V+QoO=CH^`7NgZHF)3;Qp- zI#hW}bnUxwxhx}f*>hB?2I-cx6NKtFrJl<**>3U8;PD9u^_!VeyKmZBpC@Jp48H@Rt7P8!;$1> z&4nfMZFDfXIk2Rf3^8E7y~KSBlI#=eChbt)2APx{vpCmC@S=>NB_ZV47t^{c4b!!H z)JvxyIqvBg5aZliO=?GFquF>MOr@95^n`TwF?16CJb6sErlXeOaM9l#AOnYeZ#R&( zz`j#}OS9pjY%!{d_W4q0lEoWH8gbWH*jRd6P;`P$(Q$BEWr?eoBe>DRZ9dXUDjS?9 zPfMv&I+CZfkr2BqogDwh73k>QY+-d@X&c%!=E3uA1la_QY)Pwyi+!YhD4QF(u(crD z)g#NkkG_Q4J|!J{Kd8oR&k${o2zQS#vOT3Kr){^F*?*J)&Kc78f=j;Dxx|&uz7~a@9)YsNLCLaT?XifBl;Trb3vp3aX!gfuKt{0 zDc=lN%XV6owZe7JW>|hMlWfU$Zq`)G{i|v?d1@+b3U-Rs=>F6P8X*4t7tU0~me}T3 z@aa27K80iqbo@TeS?r@67O|`wKbqz2rW_M5vwnX#lWd>ujP&fOXdliM}Fc9v{sgic&0oH+cN6mLI<$6FurJbUp|#bG@9B zCy|2T(<8~qMa~Q*W-O?x&ygtMvS3S8j&nkgahc;#jx*I)=`B>$W`&zORRmyGh*yN> z?kxqE!B1VmW4O$*Q@WR9$BcDEEOUM*NsBy=oi9o;$Br9|i7{p@F1bwFV@ocRvO_DK zJLOl$;xhWBv1IXlcQ5k8D(5N*PAJaPEm{8LwjLdeo29!Md)tzIYn+`)xGkqTS-8eI zM}iYm^I%b?S-@0~aj~P;T)5VmEy3{-Dymt(RQ8Cn^~?KXNp`EkAu_1P)-9qbY$y#A zuXtPuf3Y<{bz%#cUWYu&buLkAjf1Od$IvVRYV&qQ8Vh7Oe0UbnY+G;A`TDfRa@%n@ z*tMeVc!jk2I2`OQY;c~FdyK=uuB#}?3~*9$Qm5PEc_U=eeK+me1to&(q>a zPWYk*6Wlt`^vWgP49ENXomG9{{cr`__1!Yp zBg?ww74D5QJYt|P^Tr3FH%yn+Q%k+^?{qPEy99J$N4Gbe%O$dI3v9b!yQ1m7J4=Z| z7iWXJNgsOuE$0@qmBxg(odwG9@dC-S(ikFK7P{oBcVHAXDN`KIuazl6J+1N%uDn+Hj~RFRUFR}#_+95t=_Mx5HXXY~ah7@O#$)C| zHMYz!X_#hSUE{K9B)rDnVAA{p=ikcNGK{@oW~?c43{__}BUOYLiD zv18gX=QK(7$-+UVLYCkeX6j9DD#({-s#!!gpLD*dw4!8_(ey_%Bh85IPdjJHJ>fTQ zmE1O^o2WChEjf!t)3NO%r@thR;kJzu<(O@~voMSx&jwKAP!YCTG%f?1*u3$_rh9aak5lj(3uFRVJH0b#9b*gAU$9(j#v3&McfBL)!0ZO9pJ;Rgp~j+zGdS=p4C2 zyf#37D~s566g?@7YZZNPrUXdzS!bSn3JhQC94SaB9tk!Qy_kg)B&f(nAki$`Ylv4o zox$<$IcJ2d+$$rBb$L@Fpv=7d>`RDZjR_b8)u4-(x0MDx@cQ7!CCO(o=tbF{pKTe?^jW0p?hmV)?yYw0UaXOg7sE5p(*W|o>I;{`W_@eH@^ zw5T+*?ZgD)f8P~FPJZirmaNHjS0^XFb>_-fxs^__0<-c{ZY5MKFDuPd`sW%fRsAON zel!uY(fWh)b*TxlozN{+hjWu7CSorB-F=HE7Zoxk*Ik9|`@z|mlw5c2hi|t4Lbqrg ztzp!<;oJc4AY-DMMQf%tsvtk^u&LsJJ|>B4mlPdTGB_Nw}SKY-8U-d zfu^fF!+qd;&H$o3a7OxUgC_}h-&oQ}Rx;tGyv{J6He;)iMMaCAkRKnfme=TC?8f~*`WL&y zvY-CNww15bzt~#n0R0PcoPMx&Q59+&9ER8-9EKS7n{!7M*aFc==f&=6-EPGH@%)4G z<}C%!KOCiPvjGYI!t)Pam-r&)ODJULAIu8b`G>)>t2yZ8P5rL+T}+fyxN8Njz7N?t-(o8ydu~RMHJ=a&ysSrN3~!RMlZ}k4cU{tGoJ0idc`Z2cvee2D=~AV-l%S%XQXUmObnA zSj100h>8++BbJ?fSTG4sJ}eU1?Bv6|NqF+XL*geNyh!ZigR{14rmSoc5p>@W;Hk== z;%}OSCm)^{L_J>PCm&*hT+1b;KoCLmkBC>8`2~~6!g{V(y=AHSLd*Qj!|VS}%M}~A zo{^NxVmsjYr~JeVv|%3*!LH;bt7(}ZcesQt2N~Op#~pNz^71j;Ux`;dF2myv0Z+pf zp6=R2O2&m=Em4GpUkY>ms6>dD*(rmT;uU5r$dG%DG-2l*yy)y! zdWw-OJMZ8n%QP8nBx`N#it|>4rAD?^)`x0cV5?H!TUe7DT}_U<5wF#-a(%o9wZ6N<~bC=ayp51c2xzgQEdD}q#gBGq9-trnN z_-PHV5SN~2kj@gD3sxQUJcBU4_B62k!guaK$MdaRH)N@VR%(xjJ3O7UuR$f_!I2;C zxG$Q+9Qc=bg>^5G!NVP1!t8KI^~plNW*L9~X*}HFC984ANYqkH7+jsP6E96Cd+tRE z{upIY34ZDk$PakLL9No$E*^*23~DjYvjZO8jhmWOW~IT#m9h;gl{GFbOmJ;fvNite zN)AnV(JxTADvTtH6J1$BPaBs>Nvc7Gpdg1QI=m`qg0vFt5!<6@ zngbne+q)h~@+;im>_~^l->VI3F)xT5!KOAHUDM@{C*wx(6xCE+oGfnQ?khnf^hC$< zPOjf&**zKei6x>K+gE%t8TX0DC*$tPq%pSJH!g#Q>87slKH)@%*gplu3cISVw7%*Aw#RBY1#e%S56C$u_nLwp=q`#e z4@AS~Jm{Gg5NA6plg8K$W0SI^KCU(LY_7-*u?42c)F}=)bD>m|H-bj$y<%Y+{}dy? zeu{9bcy{?Otol+be)tDZ!J-`NJIUFs@4#o>B3d~6 zoAuMOx=!ast{L)DuE;ZD1FY*T;)-m~akZ4>?Oc&87o{yCwf`7&2HSSCbZyt08mi$XCH!@1FQ1kF^s@peN=H%o$GluXJ@I z4^ngLk<%+djp-{~A>`t~oQCAhK{*z3Vqi{f;$8`lH(pu+Cj1A&^~kZ~(-iq%V7zxX zw|gr=);^vCU$fb4}_R^2Ferx@7O*oHo_lgg3X3vpqdF zWAv2qPm}X&z(03ZyWqV(|4r3e3pOs@xOn4&jhN~3RF-6(K_z8^swM3ap~O9YMqBxE zHoK=HoyKdOH%_-GV!GhAPrM=|M*UpZHYI8*Tu}#a_WZBY6+74$_gx8(c0qV=882nkZJ#;oJ5^8srR>dXVEO z|3(IwWyhLLuATC_so3#XPsN*LC-Yp7FTJ2iNQ36sk{u2W@boBqJSSD<+M3*TmcoA2rjcNqi` zdP^t8rwi8%{;SapOsPW7?{+0B!^ARLt2&j2`&*k}m9sjY z>UKnRgN)UsJLCkCGpJQ-v;KH{uWN!ynPc)xt{)|3si-gW@{(6v?UXg*W#;9j(@6bS zT~Xc@sM?{P$U6)okB=*ibC@K)2J_cj(=c-jXq#S{dte$)q$#Vw;gb;SAG+X)(lS&Z0nKMVe!*xTME;g$1 z?{$M-=YY^8%GI9{s_{FFL#E{{QC14qOYbmNC9S9Dq|47tC;9KYaul&H{=lf?jGST0 z4zVf=3sjIkbj|RtpvjCI20F6LFrD4j+}_!VoUgbePW}iKq7P+H(w4>ikdBeNbDdF+ zQ^#D{lI)s}>2XCAW6QfU({Y`74C7SZ^3G(yAXiVicEZbsQdhx`Tq@0AbDN{(*_>sP z+-Qb&a`WMjV#8*z$<5LAT+V$-j-8>Mzp85FKDdxGNrLbC++FJw_Xf2Du^mOJQZUsb zhJ>$P-IS^#H7)M>?@wULS+E0KLhZ-~jp#Y?C%(yf)<<5Wvm=-{yb?<2<|V5*=QkgD zyUq^vbj`{c4v<^uBOTD1(Aq<~KuuUCm;hR^EsHKEOnb*ab4~=4Ay-^?lq)lYkp~8Y z;mS3yD|F%l88)SQ$-;f4CggFaD^~ecTS2}83OQXV-f&HqPT&T4Da~#~`XI@d_KK@@A6dH(mX_W!Y@NemQx_sKU-$uE)G9 zXnKL&$d7bhbd0<0>L@9n>!@dD66vn%wsJ-+(NHstsAWaRbq}I*Ux?0KO81J+t(gvZ zXg)xam037YR-Gk?u+Tif(A@ezhh`Ru_TSrw9Q%7u6FF%X4&U)&b8LGaI}7{E)ZbkD zwtF!O@y8^ ziV(y-&~fr_*B?I07Lm#t8$BR9M#&d1v&Oc}A~Pj-s&@rVW6O;iqun8_>k!NXA3*WFdV%ERCk#aI|VdwJz!O_x#$j|7`3iHD+ry^qY-mM)NDXw^Wha&i32~6t+0|+)1rw3pWCr z&&C^p0dSGt2m}(FX{yjR)V{#Zj2hh>+v@Q*V*i6F~mI9c%t<4w}Tx!M+?Lw!j9xs5z)f8+k9R9Q$)k z`igQ)lY}|AXpJHf*POk~1~#^*GjYk9HtwDB>^XQdX2u-688ai&y_fv78cqVjUj_1d zXy5y`jFo$S?HpXW9*J^)Cds?zXnS4k2Y0`&j5=mNjc8{0Gb44;mF{a2Mt_X;iH{_dj(9T`lx$+jSNS@dNQ)I(j z9NE9@>Q1dDzYS{XpYWtC;BkPryZ3elvtQIo2kGDKPv+xD+;6O~{K`?l>jQ>oV-JYanDg+5F3XT8a`kR-y&Rw zdVB$;5~}%#J&2m2}%N6G1NcK>aV*|*Ic{q}RJR3mF z^rvq;FfLO)Y$X?9Mv`02$LXy3d^(+-mAgXI-t$*GZffWGBzu#)3#qZteN290zBU(= zJ!0%w#^6Qnv2yx+Z4&nOh_S`eV?d=p27~rl_K8a4T|DuM;I@N{-RG3`^Wlm*Ih1DiVi~kIgmnIXb9L{!nyeaZ6kfIoZS=(6SV?(X+lo)Yd^iI&c<;9g z{NYhagB@yuh1Ka%UtfpMGWQ3Pa#jQ|o4yvWuszP%`DDoox7}OTa}?^jQH2**x*K^{ zV7n-G7U~b93X4~{_jp%e+W0LH3{%AEZFhQm+!1Z3{ zM)w+NE%A?Y;rkyvcYvmH6IU&8K%&T!w1Z0VL+Bo{*`;FmnC{O!_XL=InJ7Di?h#$& z5oO7;d;um4=<**Wi(}Xp_h4V;iWoV~G_dkNjn9kQ-LIS7d>gaFy)DT2pfjE^2NU@j zb2z+A&zQ><7LwJw+^u~SI3vPNmIu!y&Ry$0+xTYv zzCbu%KD5F@dX60G!oR_Aqh>`Gt+s+ni6_egKrD+*U3KVR>;O?9{fpgT45ELrWpiEn z7jz0dPfiVi0R--bm%dyte~X8p#cUO)6FW;tDA4P{7_!^J);lKAFB01UjkUbGXB0?g>5=(6riP9>y1hqv~>}m~)+7nC0p4dvM z3T-L1Q(D?uTT1CU$yvl2TH31ezh*h-%(>@IpXdGk{_oq*^Lb3>%zS6&nrp86n&qB* z#h3a?i|`?~Uf0eUl_$qw|_mNh$BEp?JZH&dUKo`bJ8gPnt~ zJ_CA%D?Fy>;H$v5xyTKGc9Jivf&+;vOvmH;_fgmkeDb)ytu8_&(WhFY6Z$2(I$|_= zQdNP3{G_t@6M0nm*vs^1WroaPJNv;xQnh;R_dTV5SJ8DAlCYhnCY*ZCDxRTIH3z_v+B$clhDq5 z^IQFTUA`Et%E`Y<=a7?j-m0_ut7tQ{@0`AqZo5dJ{>0W9_^pfj+PbacFSJ{Wb*0g| zgJQHbgXKGYPGuRs)5`GA_xd!A41<5rzpJ~Ym0`4A-&)X;I3|{jTuU|xSp+fD3nua7 z^WZW+qwNjF#mBqV)4ddu)3YGxIdAlH@fT~OV_fruu|nGn>EkZx-_vQPkJd$LWoUO< zpQw>x<7IspU9wgNRh#RvHvjn_+I;aRui*XeKkDJSlb#Z_dmiiD?&2@jc1G)li_x^9 z-Sbw~DQ&5f)8}2+C+VhWq{rb(X@89jRC^X{WvGWrJ7{DmLZx+dMOqm=Zt5FqWXLkL zkJjzc%5d+d{x!!8^w|ALt+Y>W>ECfoOXV~7S9qrXsFgw0P5kAd%sh7ar?zUU4G7m~ zhrvpR`38f2t?r3ftZJC^7mgfq+TMvkRc6|kpaiSJ-xU%w?T42lb|B;f8EohO?N+(5 zh8Y4Un7u9L=3wP;?%c(lP+jeU+c1upfi4A9>K3_F%}d6KFW1k~y*krz5b~qqZG>q1 z(8q_%^{aK=h2QK4`QH{}iIP`=bnGC%Lk99-5M=f`tGZYoJ;;w6oZi|2jiqvHzp|oX zH6hQN8hPk*L8RDg4Iz4ByAK{PF|Q-uab{~2%AZMBEnF9qS~G8vcmzp>0po(u0w|U2 z1LQu??^MvoGwH&G>qm}B)6lY+Y&HhT>AHn>>Fh0j?cc058;T!==NF>OGugE4!b~&CY*tqEyFOLq z8GhG)srq{?JCXYjd^`vCkOb6tCUYxl`%}G6%nDU|3;X|}4^~HdIGmw%n?=`71nx8& zm(B*wGudnqL_p80h;m~~Ct{4P@22C0f9Z=*i&;#7&1O*n)}Plrcg*0HE)7$fCNxY= zOh{^!lF%?Qv3__`Vuh?V zkNDr@ANo=sjwVVvwc1ues#96Bm`;IKXzNs%woX|`XAv8n+qiOVp~{tscO%1ebWG~i zk67V{d9NO=V)z4Hlw|mcW2)xW3?q<1YRG4{RM3!C{wss{$B}dNSDap9za8X_gIZ}f z&R@H6cwKcv5%QYN28{b`yr=p#ICy&sd*buXhEphRwpv|}vI1jg)17m=M;AStNfxq` z!rdH-!nrNdn(c4nYS^Uc-kc4>v`&i}_BDu86Mk{&>rmjypC;=@h)Ky)Suhsguqq6t zRS+Fl{=+-7*>+@+yTL<2GiIwbm%jxB$>>Fj#b5inASk!n^sB9X?N4Q1q0HH^RR$k z`_VVE)zr8vvz}1_;kbUL9zFUFgSCueR2S{ewIC8;Ab!|QnL`K9BYFCT9vN+%<{Jz@0IH8uo-P8V@4zH7vklF~|uQ4Ry>9q{I zD)}j)uAwQ;3o|(3PeKeanu$7V#x}z5g&N#+Z>j4l2=qRyYYz|}`AEUvp@!AEA^(#8 zp)I|a+cj}uaZuI=WMF-$z#ixC@a|7m`!nf6X^&ZMNJMfAipX<|`ob!7G{TVfpZgBB z?@8Y^iZn$27k!tnZlBP1Pb=%Y(0xR6k`j{|$0sJmCsx{tt?}uhOB3+1C__!nK1sr~ zJKu~pG}HY3UwiT+bf^-iTC8e7{eF3&;KR;Gh2F9Pjb)(I>y9K;y=ipv@zDu z%v&B{SQlxCB?HP2pN}=@{)?XZL0#W4+o;M=_?d69cs8tp=lq9m0g3nfKNq%MT^YOO zyH^9z^u{y4)z-GhJ0P|co!h}*7lHk8;dHYXEfMC;kGKfI|$t*84OYCUnAKj0O> zidvK7lx6rxJiN+zrGdd4PfIq0sw2Gc!32X2#m-?Hop$kh@CruHp-)Em7Is1ParJSl zL_>~^=7M*p7$PhG$&btl+>|+Ncht_dzKd#Q&vC@oz&D#1+##DoVKp2l1RdwlN1V_H z(e@fs?=4~ueGuTge-gv9u&BP{Q;d92=HLCdjCl5{FmG#(lPr`banE3dr5<_Gcd zvZi6r)`s>tzJ;MrTykTWIW$aY*fcpICAofha#BK4!<2+ZjT2Iv^1qtEkBt+Oo8V7c z7~XPoNRQoG8rtGp$e;^*>;GMenW#Wgg~nX4OW+qcfTH|_FV>&h0Ee|QxYn@QJ<{y$ z|0gYe(aO+Q)nb^5yiJcL{$DL(DB2`xWDCb82IfH*|6lFgk?jnf{-2c694EGi0lrrn zE*#(wV^% zUJb}!+05YPYle>%UF=-J<05XgU{n>;{fdZs`u5!1zBqt={Uty&?@EI-hxhj7VDrC&v1<0dFcN`+y59W*+m!OKNVc zr)%;r8RptE5GO|i6)}%a572A#)IP$8JTIhBIY`!Oh%#dp+BC}0yawr;44Bx#?Hb*{ z(|kV45F_+bn_NR0>%N(}hF0tc+Dik}?GSot5wD9_BJZVo1}Rn9w_oH#D;ih=%yf@dlkBZ_{`~Q_Wwg(2LZy6oif|7rJhu!9^An9UA>7iZf!X zc;To2lR>aYT`fV{Yk0MGNg}fT;vk~`yt|N5#BMzypWQ)M=CR#{i=+nX-Gv|Kv15_f zCmZ@yLHFme-Gw`jNz=f0DyXLqMUa{v?-r|LgHHc1HWxB><3}?LpH#XPbk{SlDZZa) z$kv5@C|Eey!C_lLVYP&4d&v-@$6~)=pR4$Jrr}`~w|Frr`*vfir1g=yWFej%+9BU= zq{*$P7$@VzS%%5@kGWvIL=2`|iXBvdj4F@@FWtB|uF^7lsj{@iq)Zh5Azt;NAx4#r zej?+}hlV)a2r(NyzyUc%%{TPbsMRzvE#23JvLE1Ua2S!i%lbW6o7aP+)6 zriYEtV#6U)wPTA7%{2 zr~`*9(v~++{?g2JMk^Ct0qeEgFilruzM$ZCVR?zsRJt|h;}2ID!ra6RE;x7Cq<3^t zVq&TvkeKXM3w1xIRSmj(ysL0ZL(~KgdRbp!5ORI5m5bhKw!P5smx4M#HtQa;knN&Y zHd&G64A!*GoZ^bp4@3k2;X z8N3MDY9Ha^iecd}wz~K`<|hpio@>AHhWrTCCReyz5^7=VB{&yJzY*)d)$oy`tL;$k zX}FVe0S?$^=%I@gf1nLpwGAvtsuLw@HC z30=Srd}ud>9{3OjgSGjh!Vv$)Z-2oK!&i##J+UquKQ(mFO%P*1>Rq9B^cnzl(r7$+ zw;@XRp*lTC>+~+ec@6X$by9}*ufdjRp#a?QNjG0Sakrti?h|!l;QqNAdcmO{Dz$xD ziP|>6k4s>4@>`G{xkG629z#pr52^w((76S;_FltM-8u0WRX6;}OE|;2A>fpdR??>x zpBdg%biWHp*fFq*1^Cr346Ae%;xDR#{^AAQJkFOJ?13*~_eg(0Py zpZ={SJ7NL*Pw%j0=G<|G5lfF zQ;1@xO*0p&A4cw4RQtndgmzu5cZoQ*fL!qU-HMhmqIYpj*) zzjzomryn(<7n|)^$eu;ph(y%SqAgG?c@gQrH-?T?(aDAEiFC{{X&U-uA$uZ0^8e)% z=?!-2#DyOWCfyyekLV@FkHr{b=&L{)YI7XYQpdOIB0+=cQ{>J<+~J}j)sd^R3%&n` z0)@Nr;VV&vc{oa`hX?EeuZ(=+)U^(&gj%REiZ`D%@8Ysb`SD1H%> zE99W(q(q&vf%#NM`!`5MpY$Wi*G}Nd$8H7lUtA-1*suZu=n^ zUKK8mf$GzjS?qgh8DqIvU^8>2!EgUIgQ3J(Sw&K^l|UhBfn(B}cMP?imF*;H^TM9v z!i6Vpi8Up(F5ud0q;Bw4>$7vXu&lAIQMfanq z08}MziZN7uAPrR?hqP4H9;(x#9~Z&1*U;IKt5ToKTIvJdP{RKFzYIgG>AV+1RjsEv zs8YHw#)+<_aXNSL7wR%l7a&@U<{9V#SUEjC0Gpzbo*jUdGtdG$YGt4YVC4+t04)CQ z8$CUqVXZwq`zoiUXJ6mdg1@W+$8qHh3#-Cm?&<0bRUjdbf4yoTj;dCgTv@h!bv8G` zw>p6P@XW1$x58bWN~acfe5ZyZget}+b$$fhvZi`zZ^yK%2k(!(vt1T5kFmNy5p7lBw!O!94j#735)dIo z3k2MC>BgG--MmV#Rna90N$?}z(o9`5F^0-DX$fBISK7caEq#fy|I<mx1zPMV=()Urx66O=^a!i?qRxe@C zu7V}ZC(tgO%~G|0gQDrP>ksA=WQ3F+(_IyXr1DFj{|_6E*ax5T+MQ^Ee&-E;WX`2N1(rMncx4L7`}r{B1Cby?~lrZn`FHy(1(2e)*F`HJ z7rEETp6;qD-HR2ak7}bW&^q!hK6|>M{5@#kQGK75&-5MYLAOU81WnHfh%q(++VuS? zJ|0};yZ`0k(m_afQS4)??@Nz?zW*#nQ+pcg(lpe(fNC+= z+yS1jzg_&pxcYuVwQXQN0sHsL)xragZ^CF=0aN731x%3>zboAnf(oGuj*1+~Ww0E6 zA&NZiPU+~7!iD3U(Kg8GsLTUZX{R}t-LK^X7eZT|1}4t^&}wpblwHu9trR4RM>f2bJ`@T1-{;2Y6(%ksiRb(ia2ohkQsab*j1fy>}`>+=XI$#?bqglHM? zJ8k^_(t2fqus|#%RcrZE-WCzZv|Nml3wX}7oL-gJb{W(1bW)C5%UdjCTHd)q*=7ax zS;n-ymt)d2^y)HZt06gcRkTZ|u1bLRZ!Y+-X?ziy3nj!~e+>>;(kpMzH!8d9ii#l8 zQM28hm^!Y5Ux;RBq?cWGMJ15SQLEEb>9%z#``85?gGM=;=;8Ks)I_gd#!U3=Wz0m2 zb!OTt#@OU$Gtq_Euy36&&hAxK{2z4Xccv>Dz02Oz{VDdeU00q6(Q;Ai@J09LKKm2i zE{k*0IW30-R&AqCgOZ^OI_liTXfjfe({fyAU|Ez#hDigVCgBeyyb!ip=>5qP&?22xhRU43r>Xc zIY}y=duv~vX|pvgbtIHiB(3Og{A5o?m2~}brle3C>PLu8U`i^+*d%FF(!qGZ##z3& z=uX+Y|3OLDF?C)NUo`bU%(aaO7rf~ekE`D+o1m+@0t&Tiqg|gBAzH502;6#QqA#v- zzs%s~EvCdu?4(E>^q{P#E?9^c?hHBhpzPHukcT}3#LV>45MiTgq%)JaSQVzIVvJn5 zu}owM6=jRU{(aG51WS3pqUvf9;i9+SUP z@W?Okr#d}_L9wV7_BwDs6t!J}-+xlpYz8S|K7qmihr%3ne$ER>H9v3Vr}YrPW_Zq*Q=-*wKG;Ii=4)e8b4;x;1xNV zMT~+2L%8)fp;6>5v)q5m>L{P#)&GF|syMkn+pk8V$@dt_BzpOp{pIH5s2c0Fm~#0CK#ym7faz6XN%8R;f} zG>ymn0Tsu%ttl8S;4xWMAZD@77>F>7S$P;DGMqpnTX>QKVGuJRH`oii?*bw0;nCT( zAbQEKHNAMLM|gZ(J%~S6-B=Ty<1yDrJ!s4|94T_L#@? zjfR*CZ?iXg$zwi@gP2?&qaV^0vhMgZ7-EWCpbbGhCN>^o1b%HE|FsXq=Yz;mBOdc0 z7Gm5{usg3wI*-5P0r6BW8HLy@);Iu%ZX4}^AN*79gnIKdKPr$W&&?QshVq!)nh^8M z4Qeuu$6O0BM&k+Y#vnA4$3#0r8jog{NVJ5P0}zNN-~p zDrYe(UxkQ=-o{Y$lqdPfA7ZGit6(PUBP7%F+}m}KCyzPd2{9{X-1bHxJSK~@=e93M zA&$pvB5m$*{*|?$B99zU8rK4*&T8(W<E7$9@B%UL(9hHe&{rhSr-E_R5X`)%-3Wn(PH#GrV|kjRm}T5Ce8_B=8YW^$h-O( zj}NU2@$n1FLs0cqOwe74a?v*V@|eD)R#TUi2crlcbB?GvEir+|csGC;TF*2dlT^*h z>BwUi1VK!~_VP&d29K#qh9l(+T!lAAgZwCB6#sck9r(FxgfS71Tn+DaR`@H`afOSq zI{u9qFVFMk>1aMrY9L18!KyLMaD$&=q!jY#z#0&}p{%?)+RS4Hgg{K^C*?g+36H5t zY*St|sN-R4nn;NG+38Mibe6|VO@NrAF~%0?Dvw!GA7c8~Ha15_9upG)F)wNxz0f0Q zOkHS<+t9@+v_3Unta5o}?7#sl6@055IKhHPnU2 zWDv9Tz_dAoYelcscyu+W_^PryDQE~!w4Su9bG)%N8p~tO6SeRE{7zSt$79+MQ(cr` zY=jo`m}|rucl5m50j;4iE$~+jjNUU2RD~z?74qm^PeKL~T1Y|@9|?UxLXjl2fP@;5(5EESoP@TMP$v@FLqczoP(BF_BB5du%3VqBL|R3H(@10? z2`wO@Q6z*(sDy;JkWc{$?IEG}N$3a(9U`G~B(#@=u947u5;Boc4hcObq1`0(l7!}w zkggCy(;+k?Cx`^clgQd6G>C*6kXD842wqp&}Cch=e{Np-)KY00}K2q0=NZm4q&n&_)u{lh6(lx=%tMlh88~ znn^-4s>49cSwn)pB(#WxB1kBggc3+-EeWNO&`=WUNJ8(C&>JK)nuG?D&?xg2_$ruguW!9t0eRe2^mRfH3>Z; zp`|25>`2aB5^`M)p-m(dNJ0lmD29ZNkWdl{O(vmMB(#Nux$}j`$1?%j_YUsb~HvSb$=f-e-R4)ebL?Dt7^YxpT7dGvzy)5+|;F!v#U2 zLw;|lg2ff5`Q8h~CAAcPyr3zV@!&PEg<$L|G$ddR-LFT! zYj8n#cy2@0DEH%Lz|G*?&f45#-GKXX8gM&E+;%c|Pj_Qie5ScE5l!aYi6VE`36m=> zYGKSm<0RVXN@&kp8q?4=PTL~VO6mjc*H*^2(ME~3L8cYFYRSYMTN_i*6;8V-(q1An zm1Ppn_fcx%DQE7updTdeIXgEZ3AzLNiuV5#q5nsO-nREYoh|vSW!e@Vb(?iM@?1+^ zxM?EvlG|FQZZq1MYLYJM)&i3bLWfPl3}-9ao5fu|G5%vwoDt)r92Zad(9Y! z4shB&k=E~pwU)=)+^vO|b^#UrOyZWv+-|=^Eq7xoW=H^NVsF@_`jkGH5;53B8tH4syuPGNvQ9b?UxyStm)A z4yoL+&Z z^o|UoZElb^+zY2pE%!icI1)P`d7DEpB=pAN)5^Wj3JG2y!)fbVPA^YFXE^ti$nA@* zBcQn5U05r~ajK5H^fJ1j;}ZOcCcH0xaH)z5p4!{!fqv&DJQ7Q=3IlEwc$=(yNZh+J zcfc*M+LQYj>!XPEOaVgI3ks08yBr2WUt>#DbG=#t0@rIPKtFtBS9KSBbds?@;w{f*wJqXd6dhC}B~LsK|%k^|D#WhG`X1I16k42+kMV;EBD4ok=I ztju0kr6zqaD)m`J_?K}ps4fhYLB=$k`@q8qj*-xm^amIELrXkxZMofI($%EX>zTz& zSXUm6POeuQ%VX*t8LYVIp*!H^ao60eQXff-lTEe0I3AKVEWdfj26ZTJS3u z$}j6}hAd*4F%u6PYOI6&Hn9Hl-oW~gBJ;bI>+rL;onvwTVW4Ur8`Pbs+rTDRq zc#+V-;k8XVeCM`nBY_dRl!A4FHL#XX2KVjJ4rg>~`#A0Sld?pC z%+ECxXWUG2#vUDD;BS%88|`T72*HRXju1Kw!)cJQB|e$LJ=kl;&hX+Mt#-vXra0Ub zoK)&@BQv}R>*xcO6*>AqRG#l$a$^h1iYp#{+S*~x#Z0Jx^Txq5jEzw>xUAfXOgaV5pxMN* zNGzoy27H0PXF(|&jzZ$PbHFE>FO@P^E(Ls|Ox()s<&3lD8iSQXLIDS~3pjSw+lM(D z`=kOslMA5c?~M zkgT|QA)k$cegHcSd2UqehucP}L#>jig&Wj2JHeN8?ZkAESbPYaxRGT>_)K|scQ2e+ z=B2}F@v9~uoZjVbBwlLqs?J({O2QtOv2?`DUttVW{t(!| zi)=ap$yy0d#77eGflO>&Xq=%$G^h+R?WCUw`>+$429?T;^4855Om z0<5bD%Sr*yEq}GK4SG!?c9e;rnK{aI0X9X1LFY!{Q9pTB!^hUbK%FEJ$7>RMV#_+v z^_>ECyM*n(7RLYC(_p!`O4v zS^3nY_v~hlM!#)RTl0!dHuDQhAz8?8GxO;nxfi~((HM!m;XH!l6To9L>lfW-eEc`? z>8#5ri(7g{@=0r|h#9fj*Z?I(t}DDXZg19@D}OtGX?$+1eC?9D3Gu-8klrdg+q z{`mDKmS}{wsC(-rr#^>&31!wN=1`p14mM1!BKWp<|q^|@!}xnQ!shf z+?FrA0&wPuawjFzA^XLjjXpSTH_YL?NQ_Qf)XR1Y@blfq5;SCspx=;+w!c06E9%*T zJ;oS#z}i|)-mTpO+a-&na^`E4W7-Sld?c0wsjTHtxkC%--?21NOI&TBuvSF2x)r0n zaJ*rdb-l8T5pr?AF&jmRc@}2|8JRxxS30@UP!CP%w*zIz83T{!u+Z!)A3cB51r05R9pld5p(q#(hataQv=k3cV z!$r!pub`WUNR&aElw|DQ(L0n;7KxO<4#8}0zC@X;NlC#k4;zEgZV@o{2vp+}3GlHd z0DR1&uxoxv1UxtjBmKMt_^uK_+-~m>-kncG%;@8Qc`RWbR)X2S&l|S(p=*>t?B#3Z z!d*6qb&hXQ~l9egemD=F$6NBP^tOMU( zSM}D&@8AGUg#@`@38cKWPdICsKW-iD(C>eK57qJ6rtWvoZLHtb4Lh0X6Uj(T)uh?y zp-w3hsZk}QB^Qj1l|E`nt&1?v?jO)1q{n8cNhOzHXiSwz@5`i_myH7z z@K+oK)8Yy&cN9ta*U9;5k7xV{56Q39kaItR+MJLeN9_=*&7g=@ZKi*NHK%{y;LnB5 z6PUlH!1Ni_*v{~RK9ot#%3-1@J{H7|~9Tj`T&#=@~$DYp{m;MYEDMrc|xt(=; z*mlPU;h{Y~)4a3JulUZwIXZk+(nye+Rmw3nK%?jtn^t=k5 zuioKH6gQSC`nV+Tw@bmySv17k4W-Sw^?e(izLOQ}tMPr@Z_j3KV} zy~`-Pu`RT{Vu<2`!aufIsy$?u_>mdBj9x+!Zwf`wZIw|LSRL!G3C^knO!ocKhnlM4 z!?%rf$@P&|Q7E$o`orchYhF@rY_H^L(x*An$;g2Fo2bq_wd*HcOehNW4ZwMKLGDL| z!VU?A<(EQX3HOYtuy3m+qkV;`%+-XMZg-q{A4YSzfHDgx&j-dXN|`1_FI4%aUD9+N zA?G2?ar}3%C1jr+f=Yz^3F|@6|1^daM*G&ly({2QoaYX;Zn*7WLsP)Qa(yPA@d(Ur zTaHZ^u}eCbYT=5^yZ$);kI z4XKoq{sbvs=Bx`M%PQp-=z9rvR)Se&TOD_O27~Ywd@%!T)juMT$hWYkZwy}e7-sCx zB}d33V}0RQpdoaue}CW4 z+0_z7jx&%0!;MJFOkv|Vai>kTbYz@-0n2QI7&cptwRTr99`&8C4uAU6=&kgnM8SIW zCK2rOlBnlSoAn^}ZsiZAT1q~HFIK~?hAtTEO94)f4Z!?~R9Aq*g@+=X$_bjFDW|?w zOg_rDthCeW(%h<=Qk9bwFG%Bm6uR$4by)8{;%@R(g4yr-G3HP~ z6agf*4FWQi0#scsh1R!VVfNcQKGw5!y?A+Vs>`#knK{GK`rSbMg^S4>EI6$cDO3

4Cp-1A&$Bf_AA3qWjoO-A%1vUqTDI%?72if>vnC>dr%(tjc*&W~nH0 zzya15opJUAzaSj5soV>UyRA?`R(h4JntGd}6dznL6q@I`OR(p5G3g8a0@=#D+b*?1 zciF`Zdi7nRWX3A#jMzdXTIEp_=P&j1#)sTtOQM-XY+@%;u|S21SYUO|?)zM4574XJ z_xad^tvJw``_WZ(y~*KtWg)2opB?7*s&(j65mC;mzxsJ` zQwFUfg4w~F0T^#gM_9>IKYx5b2wJd>wLk!FAwas~Lx-y|7>4Ur2D;(^BHPhl)i>3_ zmui{<(M3rVKX6f;vkUilJ#!}hvz94FsftHW1_Pkrf(hVE(VEd`CDg1I4s-K#78dVc zNa(+1H1++0!@w9eWatC|ZPkXBa5qxJi4NAU4oSu>icnMfAd8DIMJoLm?rj?m9;}T_ zu(Dn3Srcb0HM%HoshMy5JJS_sMwtSjhp7lYw1K^`$8y*&a*sB(Q|73d@C7TadV0l} z#wuSj(ia+}I@q(Br#IagQueBuyS170i8w9RR9`U>upe3(h>z)N#o-G*;$4L@e%%kw z4RlxlxV4@^bjv~cRb9p}+GWra89VBl>Lc&n%wl`swq5^QCJ{b}-IBF%0Hx(Dz7X*4|FMy4ia z%PwYlH`>P;)n5Nbrbu*&mvr7%5>?+eaAr~q{VhWSilXOm^eh-}WI6fW9qb?_OoCJJ zqy_=j38_~Jn-Ayih3b>To5;OHJt1~2u|4K!KP7Ysu==r$N|;BUSi&qgV7xK-o!|;w z^sKG3yIS!jY6~7$!Yp`fiOqu3M|5UWQvk~5+`bYwH`Xf@w`c|iu(yQlDI@9mlfG%D zI%qLRE)bDRL(Fw?ahO*PTr?;k0;hdk=z``++z(_f2qF_NZefZ=2RV1Y$gSuI<{&-@ zmhdV3r70i?zt`O4g+7LK0d=1utW3cl(wUeM?JejgJ>vA7Z0=n4^`J_~Lqq zAg^EuPxZ7t8mA2U1_t`@=hz^EX#=n8Lgu8xH_fpac01dHn+$)8j(6`pHWi~MG|sg* z)rOTwnt6deGdyTshg;@IX5qO9H_MT#kx#gznNT6Vt3!45en(TXa*%=c+d)S=nX=)v zToq`KBZzhf)Qq|TJ=t%031%+@t)_9Qwm4UOM{kV4;jT3sVtR1-K#|aE5GFJ z;P7uFtKkcSW2zUvZFWI3CH8cgO|ABs9$>XU=j=Tqd(9iBap+SCv{MGr*4FF^*3Q5| zw?t4yPt$mGLjqlsL0-SW$wTAbp!&F|7n~Gv#|68X{(B+U&xBs+*xNJ#Ie(_^fNGy< z%kSLVppa<-ELDU-XLQFEeM})JSt2G?LL8B8s)^J4!#S&xWo8d$n7|$^vRe)SHlzzh z10{C<%GoIjy#8ow`Z5)9G+HXb7F7Z}G|-f&oDg6~MVRX_sNT|HK~DJCxe$J6<&eZa zPzhTZ3{KBOfqhS8pB-!(j>;vNxe^$xz9pbqpJQdSsSQ{Odg6?ZIH=!!taI0rs^!F8jWd* zk8TrAd)nTV#d{AJJK|N_%cF6DH^KCkusRD!a5(lEQ|X2`9eX*sU}^Nc(KmUcDavJ-sea*!V0aJq zP_Qe$@Dn`4uQOZ~SZ>9^hmGlUnN_)hBTleYDN5Ws#*_qST{oVvjz5<#Sf5a8-dO09 z>R+h)r0N&6Pt>eG$H7WRGlA7aWc`!HYv}P0ymY*KN@R81s?g+u8cX(lGW)DRRVjXW^cBz| z)hdfOiDgUtYJIsf%an*ZvQl8rh32-GQ#{)=RB5BhY*jhacMeRR#&hNvHS_*;kUWSd z24}m4RKagb|}Yi+PcrQ3qu%|K)@v0Hocax zxP>&XC7wN0uztdY0Kxm&q~_spFktkJv;f@tmQj2o&3C_}zXi(G4d*O@QQ3Sy9zEUE zhGgI}1B^EYk1-PKd-&AH)7~_D!y+^NU9}+CXuqS^m78yBjD~>U2@e2RM^+)>ArOa; zdDlv$wvgOuLyA=CW?vG^x1V}LrA1%t;4(0^%Q-$@jfaO-94__`0Uz;Ru#?Rn1GieM zoCVtDP%o&;N^qx+@p2BU%K^UviWpui#cnXc=S4OBqY+*meWdaU8>r7O}LB=|xb-_axW|83so= zGqK-~wW6_pAh@p^DG^t@ZMBoM-TgM2hN86+Zk3Fqt3H=Efs^$EtJ^uTZtFIi2BU8z z&es~8Y#3*Lej(vFcOF#hZwC8Qgh8b;aekdz%sQbb685o-r7F~Q8`$bP2iRzf!H*un zq7-dr&F!XPN+gMpmZHK)ET20<57Q|hjAA;yOJu4B3%Y~q zwTwe}$Y)SmU6!0S4ib^RA&qN2;C36>qo!SzW2=xWK6MpNt+S($s;&ZW&0d`gKl2wV zly@|%Gk{me>OWJp3+)~PFP6eAU71f%ZD7kDn!-0Af#{84x%ExhyoXqE%_Hxi?O{Pz z*Mkqh>iTC40qZl42zaG74u{tYgqhwqAuTIpZQRDIFg~XqHq`~6d~_9Z7M9)!qty$LhIt} z)gewedxohd+}Q!YOCzr;iIpo$msHa6@e{ z-4i*j3-!jWa?CpDc1nLopu;QGZ2k)HX3IrUiE%Gh{QE*pl zi6(tvC3JGcq~&Q-1i0yxeng;WXTS>M4`JporWG4Ls4co$Uul-}WhLd1waj7Pm}0?a zr{&xg%CRb5?ZQs*P78S_R=KSSH)+G^0_?i8umD^05VOpIxY*mOE=O8gW%OW8j4$1k zL4JqSk6>?ji-tUc1)a8H-SDs9!Ass9Ir~*LJN-crY@}HIf7C`|x02a(4c_@Ytig}x z*f9du)~$uX;nfQ}!n|md1bx>IrB4(X>eM7nVgRQsO~*$fjM zjiZjeQw{$#IxGl}{L7?6y2Gp=Yv2JP(2taq-qjpe*diuGc{HkY4Q>!9yQF}=Y>V%tPMfdtJj8b z{vd%5YpCyl=dD%Cz7iFj;dy8|r@+O~w&qjcEO%L05?=5f9Mo8>$y*@tz^R&oj&a^$ zfk(uNi!;Ka?1S#0CKDzEDoN6ooAfa6xX;0N1TZzv`AK2$cKaJ)uxsfP#$K}mXIe`H zMs56h3%s#ZVhr=Z->(KIE*KXi!ebx+kFHJn`dN7_n=Pfk5f)C8>2PKhm@@g2-^It3 z7akq&s0MU)InZQE0LPj#+X+l+D?kfE*;A#p8rM?7QCUD`6TqRSxX}WRPUv!9gvHy< z1AOF0RmBln%uM`KIT*{0j0vyB+M2!Qj;Xf-FJe2kbCm?4r$vg~eX8L*1H$UI9&4nT{shMo7qQVnn*Qu4I{C9S>+WRo&T;NG7#L9phmVU8mRI4>j;f3n+GWtbefAO-pT_bsa@A!}Ays%p z1mpAt5qzOwq#B>2ji=VhafaC}l#ajZ?I6@Ra)IT3x& zd1uu;s+7m-Mbspn5U!k2lTT@rt#wX7&p7!HH5qE!4ksQ0X%r6%;^zK$HU5z{p1N6& zoy~Pn>~W?&(fHBp@YJXJZQbP##}(7=h7(^%i6B2q5ByLPE9(rMm_)e38;?CWy_-M> zV+zY-^&&#C=hPTy?0MhhqIA{7zow0+#;miOxi*@~@zVvoz49fok>NP;BUophqKTiR zjfYN!dni22vFKBd-)Y0cWzP+vD`$9`gWv@Nn@H$B$NDU=eRPfn!-u+uUlkIBRoXa|qnWr1Swx z9C(7Qe*wb_KWGj&DZpWJFC0GJCyK6cBEJ)o8-BuOW$7HSzQ4IHtcg=x8xgl8#M~N( zy%z}s37kOGN+LBs!5sRgup7wj6g#L9Xs)A-VZ>1)QQryn4Dts=1>jsW9Gi69V18HP z5109LpezbDCn!aXzfR=8K<4^5cUL5Q9eG}uV4BcsiCrkO>F_>X%UmDM=1^&TE3!cv z{m^NNb5iEeMYd<5!1;@Do{F6Q8E{tz%=o&a-y~Rt45QlLAOf_%_DME$qwwg#Fm!2; zd+Ok3ihm-^8A>>bl}2m`zBmlDMCc&e$evN=1k|1LvIJgw_HEtD3+8Z~J?m}^&Tk8* zAVU+}Spr*I?S+?q9?AE0@^}%`gd(i%PbTSn*`c+`nq^Fs%Aixa)3N4YAGn;*@!J-= zpr|Uh+Xw~S+7GJ?plopc4%vKx*Nrp;v_&d|TC?)HV9l=c+Fuo*R)Htu^qFuvf^NKA z(Ij7#$l%(IBdaLm!OO0S4Y}4%yjb7d8xCSZ1nWO)US^E4niuFiYF@lgF!SO8N@Cqg zL0};0^s|DQ515j=;)s)X==75w61yKe%^lD1fww|lCna+i@a8wx1k{ zp(`ZsE{+OjD`ewXBSy1E0L&Z1iNT)Wc-tBw_(vm7*$fU1cM~eKlL1g%VEuO9{=J zn3I%0SqV>s5?oWw!<5IGxQG9O%WGgp#piVnwDn!`Fr7m3(OCQ>{5TMMwW@KPbE*;J7TJv9iu zFL5Tw9BOV7(#?s=Cyev4$e~A{pikhOVMP>QH~L7zZkDmsO&!?=us<{GPa+o97vZez zxu`~LSNgI4ML%r^zMa!)W@oG5hRb1y(yp*q)bnYS=z+aL60u<`X#77ipFV2u zw>Q^CjW|D1;M4VyBOT1$m3TW)P{%kDD=R#mEQWP5$DnKu?JGd7u2C3~1-v49Et>B` z_tq?ac#&9}e!=BuovXKHq8>VE|CW2=;~Az+r5V(PcR>U^K3iEzT7Obz;kM@bY#F zE_Q)8%&MJX9@va-)&)6qM!g{S^0a#IVmhw>y7@Cy^NigND=%@x$JR;mbJkXBi=W(Q zwwNCK6fTs{;3Zc)xD$;!ONDlT82(Nr717CRF_CPRI_eD7PW0{>W+}2N!1%(>7)*s1 z+>K|adxoD;+l(P+Y$lj0`q-Z4WVD*23Pltg(Tl?sgJR-UYk+9E1kDEl5JR;1jH3lU z-OJng*o9BY9H+B$kgtb)%;YHiy_3(@+L4tg}#9)(~?~VIi%9 zW*P0Y%b*+h5rg1-?_^G%D3G5HGEaiVF|9g}*5*+yfI6q5ZJf77;6Y8t!@`&rZ^OUv zE)6v&p(~tsQQ*Ou(w;c6E?a1at!FLpxqktNvNYQq68vU{Ci2cvr53d0JjJqp$NRy~+v-~^0H@9FdCllS0x^tJ$dON7z$1ax3s z7-bGZZ%EkJ?O1BoV9e6#~Gg*FBZ z8f{EFYBXEo#ks;QFXV$7@OJ6wub_MB`d<3`*7vRc`BrU@pM9%xP05SaQ)|Z7VXkQ; z!L)%_-5Y)l1DLLk0nHohCz;16wMeYEc^h=r(JrP;HaAncFhnOc!flFqy3(E^ghz8* z62Xl^`dOPLqyu*KRCB8GKEq8=n%tF;f5o}240zA zo~;zCad2s_9h5NUZ!psMK|>v-dKz2H6Y znG$z;<=nRDbB^4jLe4>-N}!#UfV}g~ZIFS3Zi%2r`Q{JM4GDCu640z=<`&5PJLZ14 zekb%tpXKHm$oV^UFI0mwg_ZO|OO(bzsUqm)O7kp~EP;|L0lki)M#DI0un4NZ3TiY^ z0`-?c)IT_|8vKKm9JEXXfujLictc{F;F7XBY@c|kgk2j%{JD7;a(243=! z*&9ynkOm1ew7lD&1-9H#(^SQP8-4wm4V(%ik99 zg{8|N_SyjoND|7o9JY}WfgWqT<`$8Kqc&iA8cZwOEra`n(L!Ce_%Gf zJIT@k1B2h-lC#^~1n%`6{m4OAG8maIjdzCaQ2XLcCf;2F^T^qpmnZP79aj~%>>XDN zC%VKrrQKGK{YK}7XqW9ITQd6u zSgrGT&mR6dAdJYFidj79?0??YG1Ro^zcdG+mgiZ=q>?YM{N2^ivHxkC=ne zN)B442K7B`PKW(kT60zX7LnLCFutLF^ukL!?gYmjRpX}LwFJWctQPKogd>-H&pT!g zMGrado*H*-ktL`wtv)QBo{V?Lu>&k#a57R0ZdSwLiqlNI@`Sl2Sl7{R(2O9wv6`8? zqNI0l?x(O#v-VeWP5gbI`kpxM4N!A`l1SX2^&t_=trP??z-;M`i%!9IR3`>+uZ9;L z0(kb4VZS{`AfUlBh2!mId}@3RdZoUL4!*dyLW#F+qeHP?lUzvai}E--lnSWfqOPe@WA7Kx$Om)_o^!W zyC$4UO&z5_E!!;mid{-IEi0h{S0Z z&FQF{#OW$=s3M%b1a{>E&Y3B2tTrV87hi_y>vRb?MFPTm;N9`LEATS<9uE9e0Al*l z06Gk^-%F^5{}^xaLOUhwb_q-CdFm%jb1(-F6u{Qe4|`r;CAi{@>0r0|Yts8@(y45(-vatFPG2g}sUbMlr@kBB z_p3QTS)>V`uL*`~_rzs-vmZLj!Eid!CSF?YVgneh1DecznoMxFy5sUvFyr?)vs_@3 zF-k3X_?IwF!w-VxO56vQ%dA;KnPv&p68vQ}hohj&Oey?vw>Ya(*q#wkLRG9cftB+i zKT9g&Nn#}xq3{|OfVb!Hww1ywEC5f}gtyRyQ~e7m2mKq%;kg3bu79_GsIS8>%i)aY zNKJZ5W4b=9VjfwoYJf^wUV(9!D>9?;6DWL&4=KO z{H}?6q=}=Qm+{2xg4e%j;DTE{g0twcxM4Cp;-YcG<_;?I*c=ZBY9LZlj8GCQD+W0* zp7xtLLg~SX-2@{2TE@`@7B_t1VSTtid!@x2j?-wtU(<$@4_-mV!cakQTo`vlDhdE05lyP?o-25KE&3`>H3~%sh3g`8{flGVfW=Rc+z{S2A z5}`(K;$PsS++gr)0^Dx%UTnSViu*kS58_8n_$5s^ojFYV8)gp9Ke9ny4IA26dob@l zJWjekH@Ah`EFo6v!k3y%YMRD-#e3kUMHUZ~{3HETnSiC5oE;b+fTw%KJK+hlpc@-# z7EqtWN;*Q9Y?FUWtcB0NH0#hnUi1D!5%5u%pq2TSWVm2ftKz*hxpdZdS+UedOQFtJ zV8&w?1wCF=Q3R?76%WJNsSRu3-Qn@oalf4~7~!oM4e`v?E+yNTg`Zck#G^yJ;s=Cs z@|~>yaq%|zkXhby=+J$dba>51LpIbp)poKpLgk!p7U=GqKo_9_f%wAIhHg0B)S?Ei z@M_6hQKnfAyl_)lIfI-nDaijP=F0i}B)D>`@4#IS#J?#Fi?4x?Hja;=fE%ZVdJqNg8Jc7~g!70Qud zLnRoM@Hux&B3jR3YeX3RxY5YnpeQ9CmgWdc#1%4;*t}<+mI!o~6VHf5!RmQg63{7$ zcw8dF5bTM4eJsJ~4^I5ufk@ng9d|=vW{?W|*5DbSM-ugcM1?cM@1f|cth*zw3f&DZ zVl3{r^R*TqRu__hG>na&V~EcLc>89UP|ca z5}MXHIl>Zvk~q473T>Y>Q7_0N(&7hK8AI{nOdswu9xfYrdY#_*y^TB_z7^e{7t}{p z5Z*n^YBNKZgSA<=0@Q?j?F6nhRuu<#8*3Ct+tM@!M#~~z#C&xTbfyksN`^NhRZO_i z*vdrn&$9(gSPdepUMPwG4J%l570ib$nE0TTui!`3jrG|zOZ&RB8vy9ZjKAIBWX4r^ z!jrGj&gfAd4VO7kylSoT;x*fn7+u1>UKh;eU%d8Dh1vrHc0+$Q2N#~X7mSbm(Wp8; z9|xj=8|58)qC#lK{cE8Fo{merDsIf;}FFXHM5cjo-?q1x5(uNlR)(w0vFzv zdJ9#(p>8*L{?>L|Uwx;~pWNOy)ET^i`VRp8@3*SPJRQ&ceK<-OE_qu9psJSU|t{ep#+*E zgXp=E-krhG`ig_T6hZLH4}9LPqa_*N+H=rbat$Hl#FyPz*5_+A-K&v>rv0{+x( z4mXK#P{n?zR091fgQ!_J*VWPt`TfG4vEF#&NAQfz{oWLd;Y5ln-j!+T2bTjttoZ2D zkq9=oL4x=wFR+^>3AN$8Rs!$vc1s}6b#KxNw|pI}cyl$hsUwta!Q5bjR~R+4kQ?2> z-Z0stG}Tk?^IvS532P3c&@a5QU@VD*sTTtbZ%nV)Eg5a8iS?h| z^~T>mFZWWw;dK=FWue9w;AU8ELFg3Nx3{G(s&SKbpcCG+#{my_HoD>&t1UGP-?r3O zs*s<>o_vKw@SX&)b%;_SFZ4{c-qxMM@r~4Y`YG(Sqb$)lq%TZ`6DeQVTZ+FaiXjuP z%dxoN(0<_AW^-g;HPR}O7+i9$sWYz8AJ#&9Q?9UB)RRQ;*>w**;B&U$L?54Zvf&F~ zi#dIPnhrMwCt}ZiP2F(q0Z`$2YVZe|VEVa<1&5*TSp&guJjm($)pWS)IuTbGo7TWB z20^tySJU@s(y24i=N(HFvT(3b4YocJVsQV_souEXV9;xWntn@@4o+4toHxYci+pb} zyX|$0*=?$S@STi6c!4Z65T75PS`7~w3J$vaEwveUy~QR$c3Im+l0OVY(wehdifk&5 zPotaFz|)3<{Z5mxsWO(VbAgtGqxU#*gh;e2$AvjC|H~f%wH+p52TRxi?^?#AwVb$0 zB+@T=!0Jd0{_arI06gUvFvBY);xdV7Z@)+1X08t2{x`gwuf=je7M;-v34Bxra|yWM z$GI?0o^aS>5oQ%bOY~48-jj%QPIBZVXs^>)(D_Kb=LD>GhGFFltd>zFfJ^?tY_3a< z!WCmdvucr_q$RT;5-W{4*lX{Fy~kU8;LCQD+l6r}PTvl}u;3YkACI^A!@j2$vb`pf zzToRW(GsRiWytp#l2(;i_`=EHU+cH0f^#qlsyjiGJyw%#9cwOl-B-kjDj0B%E&1K-%lv zXBs^Bs_5A;enl?~W4nRqyAKS+nlf0b{YSHmXPRYDD=}dPScycAj~DUOO5}atGzb?R zO4Z?md$ziuIKA3R#Ol>nf>wR%OfYSIIkvZmwbwfPAglp@zZbTAr_X{(SWk)FLtezJwtWS9vn7+6hn7&vwF%7vI)II2IQ1_tScz7>@@>_CP8i(1<2YrS#y`2i516l+^ zNR`;h5}Wp5=o09`5ga>A#M*oC)`QdlwtO~N!VZ+Mbd!gA8oQsTx!^AOAcR%CfR$na z#Ecdez>Ia7L|rOTsW$x3zqu2B7}lI^9igu|^@KU#CE_882woO^c58(t7Cq*i zhav}NYFX%>#3`3J)|z?Z?S){@;0$#+*mpR_a@T6#p-L(E=;6E0cqs`^u zE7^DIV}82IQWwrwQ!bofv2m^5Wd}H4t%Yo>jU-=d0e{B@-&zCPRqr$I1c7U{3$5Xx zwH7y5lS{qU`|B);aM+qw6%Mc1stWT{c*J#X8iBJSn)=}jAHjp8SQ8H4ebphWF2 zQK{V@^=V7^s?HZ+u;7MsLR}_Ot)h*=|9sriQ+RMMmH3M!KHW6yxZe_^zzqikeN;r- zd^W3us0SRsQ#c~gT?Sebc3ICqRw;Hb)>~XFoyuKI+Q=f7PZI;jt zzp~_j)jsY5D|SJ+poYc1Ob~*L<6tQ)>kw!O9P+MV5$Eu5$h(F`9=l{`4yLRT;CfSJ zdq?E|$JbQ{Msaj;ZV5pGL6$H8`!1>zggfjo7&bBE z;$u!eaA7D8hsDhy$C@Ga#U#}!Mb38)=51&qb+}JREFp%$#^#XgBuKZRQi|%YfsEJz z4}1(wkSl#cx~-PNFtj-?yuD?Hh7e!!aGPbz_t+T68$jM%#oJrHTK^Qw)6*yK7ROl4 zabKEo`KK-G|B3yah>=s@j8nrIkk1C$KTNneqiSSP( z!l&O6`&#_)ug7`pV1H$R;-)ph2>x+CxXR|DX)B{csKy0&5Fa!n@AHk!k8b;1#475p zfs9Mm1Tx<}ACzs11Uyj!_Hd)`spvqy34ocv7y4KW zI$x6=eGK_+lh8Ly==;+qN*si%?_!S-4GYF;JMb#I5 z!kzO4*O|V|8@zPQU z@7qj{N)-dXk_69})kzwpTwYH#=|vfqYTQdNDTk1u(%S&-VFvAa51?Irf?{*m7iiV{ zcgHGo4ZPWAJoiCeW7{V_L8to$Me{q*>W4ULOE-`YnvwfG!g6JwPte`(0cC>(Q!*vP z0KH`fo%{sNzwQ(CPv4+$NE)pKJB>XQd`LCqc5{8#)IH)9qv&ri#VvStw}=wpG+XJ} zoZL#6`!GLDKKu_3lN%bi^<-RrapC;u*e|YaL91y+<9-eqFTl#72HId54Qv0>1SJik z3lF2S(xl#apEcfs`;iBipNCDaU?_L9m0d`H0h#D1?+*bRIf??(Kq!OpNIxW(-)?B~lC zf-e{ZpLGhefgk^@d57blESfGZMbpukRkKvJS5e+sa9&$+IBh%Q{w_$=Ybq5rvz*Imx|}6~pyd4Bxh%9Rv%R>|*8u8e096_cTdUsAWw@cWPSa2#KYOs! z-GbZ2CvH3XB8$C|GT(qqHXs-I+dC_tS}sy}KknWtfM@d)iuL+Lwr<(zG z=7b;7%{{#CzhEzE3!=F0cjdR~a=G*h_ar(Cvis!uIW7gSmsxGiK{{<7$Wg7z9pQwv&*6^+l8!G(b~-as2CqrpxMpeeiU z*>NROv;6e5usu{6ZNVMk!Q~wbBIo)ulbsLnhw@}_$5MNsnxm*^Nv{zKB8HkZ)L|ik6p>BA~+!S85MI~BS3Z1f| z{*cMCDaTS9D-ywcwmeoE@O=&VUKV(ERdZwwdv1yz+#;Czb!ma6k+XSL{axhl>~VaJ zHxv6BZwa%B-NjNN-}1g+)?QATZ&Zj^*1b8zr|4tl?5*Kc$+JwYz>DjqR`AIwtODl6 zFAdN`W>ECrPzwLB1wK*!ym?+4_Ak0-(TaG>6fd~5>P>avL!-Xxh^mA-?ih9a{r)<_ zE8EMk7v6m!UlYjsY;n(+Eg*U}TTK4aQAB*ij!*u>L-4`4QV(>kUj40GtBXG{YjrWC z7#C#0X74~#9<<0u?K;{0l@<^5p`z&neW(CR2vw?PZ>hvQFpmulA9(kTieI-XYuFK^ z4VV!!48O@6>Jh69wO|c?ppP^0*vj*~^4^Z{IU8*J*0h&b))F z16u}D(14a9v^EMO*>Xz_OW#w&ky`e;${7RvCmEdYSFf#Y@2;G*pnYpa%$=_ za!$)^RIIK&Pf{T!l?9j&LKC9_oTLL! zF$43h^w=1CE1Wp_!u;5R>0#`;CiZM}q_I8Fwo^ynW=7|{#bX6=_~Z+Hg9RNFccjxz zVZHpWWBy{s>_Tv%xrcc8 z65CsrrSUB>Am^m%OTD(GvQxxLh)=@fTwdDB9;P%hKd#LF;mPN`743UB?gM!5_5Bd-(3-SxK)@wEWS3X z`&X(Cqhe`VtF;QIU6)#CrO3``!#`$bJTWn&=m++)aD>0L30=4Z%xH5L=7>SG@G)Td z)du1EL#7^GgrzoC3O*LB;j`t^7Ojg=-!8BqJL^?+FjwJGxPC8Mm7!cOTj4VFuAn^D zXFaVg^>Ec2)Xm-qzVW;jxMIb-6}UeXhn(H*y=;?wVvZM>ocZ98oB4}8BR{_R(-RXT zUTkBW!W`{g2k(*>|7rop&9v5VLUOzAvN@VPX<`@VXvQw72jOI5s0}Z+F?7t%-st65 zLNS3}jN10Ghp^e%2PS4`Gba03^02<}Sk3c9@9IGmyw^*@xS2nI+V-<|!Dpj*mWj|D zER_?=d4qYH^QJH+1UBXGm?C{p`$0%XQKi!pHruP%g+xJlk=FK!=!N`1<7|I>F=d=V z*Jz2Z>oYRo$@mtA;n#!hxS=@UUN9XUfH7l)PYQ?X6b^nOG>`6u{BOP>nu<403{#@GufN1p1v;wx691py(1Jetw3OWU$EGy%+pKd(2%aNu=Q ztn33%j9~(2pzUe&ID1jWX&~Q~kogc1oq$;zZoJ-jaM|^R$4@KgerzwSggw(K4W&z` z-IVI*)#L3=aIS<@%Qi-CmTDXxNknqZT{8hwbyEX0Mgqkgf=k?6v@J~Squct^9Ne{N zYv>cco^N=*eBL?GjOgHsG~Hkm<;%#KH&%ZhUe4Zms9LTlr;wYDhVEY zngKL5(caXy+$ZQ#Z&2Pzpc!1t7V9$LJD7t5q#exEBzuT*?U~*`GIF{7`|*MfW3Nfi zetqWAvuXAO<()z0Yn@6I=a+5ax|xNs#i(y#oQD7Flhl7CQlC5%D#nM-Co?c~R>TwR z^r0N>I}erM$o!Oc$1m-2Q{YW43thaSVGnU>Y*xBC6EkXQio5F7@k-E%Uop5#@LYN? zK7sVQ8}R6@0)EdddlV*e6G{gQ3h!Z0K1C1v)Igajq3oD#uZ6kVgo2N-nP^!*$DX7d zFaY*S09=XC%7Szwcl&%)WXEV@@ZMzx#itidpxj^!n+JpKrh$A-LdJP)0eUbGruQFa zD13I&1jSuGiZ8I2P;x!jMUjJU-EhyYTpsSNr|iq>wJ%6P3o({t)t@mAlQhNs$#+wkFNR;h{Dc@|{b zQu}D-gaLZg3<{w&w0-Rp>aYchyXW^LdxUb|z|+il{O-E;Yp`jwZo&$D2|W~Jl-(!% zZ3{d%dIzk)7Ez%Wx=!S$;Jfbb2{W!4K6bwEu2(M%p+}mx>^YH%t3YH+1EraS;zgf7 z1>TJfr4ec9-+E&$ z33C%cD=a8{Hd?eE1I`5l<*bC#@^gDl+bJ{34;BogDu=UF zuK|{ecGeaMpo@Xr*^KOw@16`T4~^Uk_zphdW3BLPD}2E=7-TaI_-ST%Zdvm=V&r!8 z?nIx+lPt)*ckkGN-o4jA-epGSy*r@by<+;?YTJDxZ?Pc9?Xr(muHoA{>_SEpm)*PV zHE|~a&oVLiXA2rvsH1zJP&r=eqJt#g!aCxw*6~ppT7?zb;|>9|x^g?bVYwH5$B#WE zyWZGXf?+*L6C__-9NveuMJ)rqh8Z4~e<&T_7Mq2F?r34uz9#B$si*^Ybb8lO*>@eh zXPr8Lo;ARzBhFk0x>o^Oeb63Z!{wpgpgnzqa>YCQ1r%?Q0lLr(>QTIlh3@5{V~3%5 z^UUyb{saDMI^d5Q@L#_lzHiHRA$0UG#?`}S_%D3J^A3LfOLTC}fVZ3B-Mu_F?fuGL z%y!$1{6F8w{Mh5#*Esgb|4P@FytF>I-EimN`hrcS#`r!qPc`XZAWQY?;IInDD9sG0 z#%3sC5YXPcT0y#g6fDNeu&h24GTwtVkhzr#yOLX}KkH^8w^EBI=~gPgX2B7PYZg9v zrCX_y7?SjlGEQeO@-lqtD`B8=Tj>0mj#;VTx3JYV8$@rAhz1Z=a$B($zxJ)Y4!iEr z2dTK<5v1Ziu=Ry7JmCD5@3NKr9*eUp2IfUGCcGAn)nSJ{9rM%3cO7%lwt8^wIp?zq zT=nQ(1wS^4`2j~7nP6J85&Dg}3b%Pw5AO25$bRk^WMPlmG=S689nYS7(Ls-{6wPIi^l4OXQe98~6Y0>4|Do&j_1X~VC@8cf#0AtgW zKfzSjFX1B)&Zg-$oH8TRK z^=11e*w(gE;6C3xz;m2@yQfwvw@=zUDETv{_d2-Po>h1x-C=Z?C>_JJtgHS;oKJCK zrY-K2-`JM!`9{~jZmeJnh7>}4CS3JDdr@*N=>*^ZUoiTANVm$^)7VI4&DQ2{fXXk!$8KX?Scb*paTbr(Wt-ddD%&ZH|Q_ELHYYH zORm8#$w`Z#IkMiOOUS*FmdY~e4g!hy)w=kNa zY*spd14lM>^eUpftKjaf_+}1!Y{yN^QFyuCy9&I`{$Ev;#R&wby}u9OCitwi2@Y?% z%W!DxUbLq7D2@Ou+Yi1M~IO3MbZACEn@XE}UW-ND5-iR%m}oTBt$uim-gS%M_$X zF_^L?YI$$j>w<$w2Lm+L49fS~=HJ6!TWd333*UHu-M3d(5)HgbX1oSAT?}V0d_I~pWS{6nRn}YSBndn4s zdvhxG2f8EQ%qdv7OBK9-hqLG4Omu00y`7}5xieAB410_cfS2Lsz$Qjl;ID}N{oG#L z)>KD~krDYpaovm$BA1=~AUnN!f!(`?7SwuHRIXcvUfRpqM(d~}Jg7zK-b|Mv1ivW#QsD@9(Ild}=_>lp$AVb;K#tEI^4? zAU-$c&F-kI958_P%0M@>JNhWQEI`|>KzuH08{jCb+%$l$$w1sIrEpG1tn!Bi?N<+4 zOh<4Bth;m!VPz~=t2-Lf%_h=$9Cy7frsx8=&?Uog*etA=1yDfo2!Odtdwg7D6fOlE z0UYlQ;|3re4bDOjvpe!qzlS}rn@xUMsb9e29C*v*;s7r*r#7!HMyaWIi{$fQM-^p+ zfj?Bj2P5I58Q8rHg@<&{rtgstHlxOSP&p&e1kQ+ja9U%GSO<@FVOy>Zg+lEz7?INc zuEB`y7DjBr?cduRL-E?s-+3Jel@WpEeC9DJhz9uzIz6*jGuBSd*-fM1KgT~c{$ z!F?bxm}xjWN>;)$>%7IwK|^7&@Ye@WKA3Rd=7%`b;i;xoVQ!Y%82!*TPG4$q?XF)4 z+TGNE!z)4Fa5u6$N>i1>jyjN{FU)!zQwhjSoRgrHHI|wU#I(xC{!>LHvzaT^%*@oW zs6)jrJ^i@Y>W9_$!amF|tp zY5|Ej&gW^|8~4t3$(wRl0h~l!RLF%S$*8V2S8~M;3?w zQ-Uv0R?;Ufa$JMWN45(!-1=0`&)l&}`*}K+kb65nePnCnr;ls^fX!LP(MD;>Q;Jis zcfW?wp2itPC3>52@EE1BpQjrwcZ^ad8)y?`G`z%!cd*Mi@=?&hUN~?X)GM2QkywJC zdBhxJ#pS2EFUvbBDq9WkO)@xM>nV}3q?mdIE2zBA}{(_p0(n^X!)B=Mjl;@|^vC3QvQL{Nwc;jZ;9BFviUJG;9 z5d-Ec1E#~CyG3YPZAU95-2!va2Mk_VSkyWv<%)QflOEJ@1S(Dg@UBc3x08EDISNpR zTKBNY+P`mBI#%0}L&>mIa?4x^x4)j(bCiRf7?I5EM1Nfjyv1&<3#OFLeY4TcLvem| zs@AuSL;FzVfi%G@$qUFw?jF8MngwurJ)6;o&|8m!NYp4ZqumzA0;R&=hkFl^@qrldZ>h6@jC1_6zi2tz#^?{D6e3FHCAiPO>@fc(tpGEIK!@|UeucAnN^jxWxRqsUo z@;gi7taIOTul`dtD|KwGPXm0HX4l5g-Mcj1v+9#=7rL|ph78IFQ}kvS&g%-Y=u7kfNn^z%MrdPYd{!}Z^Uaf! z?QnnTUITQO2bABu`qkS0MQKlaU~cz`xy6FX74v)t3>nu9%s)JsgjvdymWCBG?Sngc;2S)BD{LFnZd&nd zg0bA-XXX%X*cV|0+?W;yEr0g%0_z!W#0-qztP@CX_!s0kMA!ec6C&tjho!1 z_*U3xgG(zLDi4iaZp>E!e6 zHK}@jma?=b=BzKbxr-M}!g+b0UXF6Kdb?ipgYDim^M0P%+fj{9?{JsmTk9kGIO@>n zJH2Xt_MV#A`QE|4jvDmyE;k0>9!%-ys7L#Ddtnr(i2Y!`g?fhZTO1~--}bmM_~?4{ zBS$mZzE`LI^!#Os z$}te8*Dn1bzH5stUeQ947C=4Q-uApsID72C{B-vVSc2SMzTVZXX@B{w>i6uP5upKA zHhZsT4W;`7H~K5K9QuIpmX&Kk05Z01bE=Li`2H|bEd#=f>>j;k>m*m5EbjLdD;RKP z>C#~o+;N;d=PLo*Ur@S!8; z6{UXtvt*-%OEYKF-?i>!Mu!ucH#$ywI?$fjj0k0xfj+~G&Ts7G=x>`2#s+D*L0R>W z>m`}drPFz!uz&SVLtpf4ObmHkE)d(2gE*SZH&9C$BwjH3iLnoUgEW(MXxX4F_% zFE+F*PLf-OORHv|7-2IgN0Ju}_`L#olBy!1^1?3tVax%2IXL6Q$HK(4%~ye~2w+UvO2- zaNx(s%0L6DzZr>-0~aS@A=S?(TyHZRms{ktA;DC83K+1&08TLjyXDr{w!kOwTr)72 zTf?bXlpZ%QkC-v}fWzgs?j!$v)Is&nN^QI2a>B2CR*~+bir#epa^@T~rAJ1fa?hv- z@2`3b&&?E^aP-6*nsx}{c(_TI@{fYv?3<$EJ6fI|gf#Cfz6BOD)p zpNa7|Siu;|(kLR`UPs^STf9m74s4~ljv}^Wi~zmUEZb^)lT`VJW6L{zU!s2Z_JDgm zjHNjz{<=;)it|f&@G9uYc>y#^Q%mWK!apsv|7OsBl^$M3xBHSt|BZR!Vr)nNJ3V5n zu$Ubg@;k+R?;<>xK0y`Qi8IC`6mb)Dn8 z!C{s3(WgGkvN+?`(JSHy!+6z&RmvwkRu$XIz>>#E!xt;k?|3G>DT^HimFWh}9gf}6 z4J!(}Wv?UY#pGQ2lscadEWwmY0xeiU7O!D~NDH8QubiG5_-@82qlUFM%`n}5(4RN4 z=DS>;DbOuJ1s_Rad$sVA<6HrT;lSVe`p^o}yAZcozJ)da(<|a;%8gvY#)FYHO39yF zN6t$p?ttGMnaxzoK6l_IqDw<@z~tWBfQJU2v7iUCRKo}YIyYy~2+oq@dd+;3>z6={ zv&6Gt?}~fZf;1Ip@f^X#h>p1hBQB*mhA9&bN^u1iC|wo?7Vwj}?dOJ-pwA`_%cg6` zSf50W@(_s+x5c=0n}GXgygcYAu58A>-*87`4>aH40d!t05$=W3XUFFT!#TrO`&avh zW}fPG*E@ z((s@4hTHI!%s0j^5W12r$I|tV#&D4c&fw=6ei0RDOH zJqNI6jrU35M-qX3gT$aAx{Pf(M_lSb`PNelcp6R@FOCc&|HF6u)4yZE&hK93ACx)aC|9Qg$pL`S|%Nh^mfpa(@B7BVTaP$O;hsPSDJ`C(c>+BgXv?8A2o@sZFNSYFio>6e4T`ECbJW0vuBPIn{-gM$ z;iFqpBd60}Sz%yk#~qz;hlUAb$$wxJ+Bmu2few&h35Pn%&>Ra>yHkG^Vst zgAV-%+Ntjx^_3e2F@3&wMBDx{6N9hcfI+_bG5I8Bc_oBNwkzE~>4>nsGZ%mDUED2Z z&dxo9oncBTqj>KhF{~F4F%PZ9LYRb$(TyJ+u~cZIGmz^2F8DQ8SitUSvT^brD8@DT#i<~j|f;&Est;`Qj!2Fb7qy5NXb&WGr8!m*8a zN-Ae8H2=hD<_CGxuVh5go*ZLJ8*W$kjFOGE-wC1T7ai5xmzc?BwA6o#%dH}d! zz*jDqlOg(Ccr;m>uI?`%Qtt!7CP&i@s4R+HuJAuU!6u z-O*n8$5Q@@@A9u4jRaG(Lpbx$kr?HHKY0)EV?6K* zOpT`Z9d%gf0si$qj5gTqCeaP~4`9EC0RG$qoNH~~fK1GT7PlhIFGde?P70^p53%#M zR<0=Yk)yGaW~pe!e^k`yF)F(3sYtny7uV)NhY)&N(C&#NMmcK%KBWUI+aX0}EXO6B=-Sw?thJLjWNAoZ%I(gY5x$_A%p56n)+_Wvu+SnpIouqcg6$Wb{jfz?4CPnUG7b93$~Yl&A2D*NzytHJA#+hLH+;&GLueIO@Zq^dQ8( zbu_Vk!wX0Qa)&hpG=@kWEqBBOD=0C`+5%IDMd1k&aMA9nCMIqFkzq+}yZ zD+%A%=0-g?Bkz=CR%Ta>0}o-DNllIp)3-ln(NjO?UVI^$Kg2dz@RjxT{f!3M8i@1& zn)#dL)bhK(vxl-Uj27K+bkz^8=J~8=PMFY4eKOB*R#tZLa^2{70cQ;i41zvMBev+N z+(h3PCUmpvJ7-_zqES5HuCof(+`fvR_FcSVfODzx#3&w}(>V}sw7!bp^Ie>`U_tk( zk?sjIKWl$C3dxPlp*;D`BUBJiiBUkmmsau#uZ~fc&vj9jveol@^KE2zT-4XyC^I75 z8Lo7(l<92L*CD^)7pK_O%UM{NVw9a5;w-LAw3Pk$J!PT6C6u*B*>*N(IVH_fcEx+j zavS?wqipyPXA$L?rR+C)S-h@i8w91hnLHAnT7xk5Y-C#47#9$FlyR0W6~5FvZI z#zcR-3{+IQ`f)^2XMMaI>_J)U1WNW|&IZan3(6c57no|{a}J)uT)lQ!%561j-{j2- zrd`-M@f7D8cHUC_jPK%1!E8^Z;#|odS&HBHUA*<@GfEh}F|43IxMwm0I?M@f*r8{d}RgjSZ|{%Ijbsn3et&b&e+U<7Yv|A^Jdkf$jaDbz=f~e z`a!GUf?V0zLAhzczUIN^tVAn0D-&>l#CT;_q!rfN(iy?FvNU?C+oF9J;9g*rDr6RN z@j~AG`YU8^6=OPY;SCW&J*zqED@`pBF+3$kX;{dcbGM7ktw(#RqtB{lq`(@^7Rn$C z(t!6MRj=vngwsK<7GZr;)7eFtYXO;U1?hMgc3y+Hxs8mL?e&HVp@X%YZIxXXsO?rL zK89Ya?QDn3(Y)vhp;>jDA1D_sAm^+gSY8jq8!M*rE$U$idSWU6&|01oF}3Wx-gLA+ zG^hZUFU(YeoI|K+1LqJWUtzPH^Y9d_kOnk#PE+d301X>CKUL~j0HWRlkag(126R0d zWc2kyiE*}4dRb7qzXzpH&iN{xZw!i~ZHR^-S; z{Zg?E=XS8U+vIHRj8byr=un6>t+lf*oU*5{HcV5=^n=q9OXa2?fcW5mF3ksrVukd< zA?&a;kmee+AWGkUX>L?e@0fcty@{s^+4?OaMhLN9QsO;@@wtxYa6J7l119bqhQ^$E1;KY;Fcf|$x_*i=5;o89X5@?6EAc3>f=S>)aqMDPWDlc ztuWCboe(O})maS-*+rjwFJy}f!C>DoYFRgDemE_9N{#8}EXHmHKq*NgxE0`YEZr*< z^{$v3Hh5)N)X5AR98Q|*>{wKspg|c%;I%SOiB>(GjhL^1cYULIeYjmMVmqp3<=HWr zxq5CG;kyi?dS)2mLkyMBRVAv$`>Wx z%TV@>4nY&Mw(u^RiKYi8ntuLlNqK`N>}%|E%dp}{&L|ur#~t#L29D$o!E(>Z)AhqX zhG!ydQGd)gO(n2810dQMUP$Vx4dJ(8_&;#&1jNH+A0QQ55|3^XXQrW#PD4+L28LwN z;I-3n|HYD`M%$K1xLXHdd7fg%UBGdfsJ$?l{fHY5J)B|YBe@PpU8CVabPbf_!&z>F zALuGP9$kdfhUGTzm3)QMe}J^yo;uXo8E;(h3Tnn<3+TC-vZvHE6=6YD>!!|1ot~PQs$0b$F>GUFv2S<)Eqt=9zP?e?H(a+LInjMaJKJD`!c=2- zQKNgX@zgl3$19^(wOE%wx-d=^f*$2!}vkXxv{hW%r~-TAx*N%fM$y;bk8&n}YB}NI1&>a96(ECVM z0-w-@$j-@X&>|uLFQhDQ!%qm677-GEpG?7KQBzBGF%e!2UN+S^Kp7{Kd1NZA zmeH1SBMdT!8e}pYgG_g?^ytEaf83niJIxuWY}Tn&HbhX+bZ0jfdi3DLbY~xBou$6j zMtwddSNMgFFSh-S3a&)ZCo`S#3PMi>jX!a!%0){B=e!v~eP?0&HWPKcfPt3F>)|YC zBjt^y+)IP7=LRDf&U@wc`d?Z<+gSl$b^xxvAISIgmB`{$WR5e2g&s=N=V0|vvA9`7 z%HhuH{f=7t)`N%1U0#6+k6N!NXAGo$O?71MRXl(a+pPG=P~u*4RXOH4Cn?=6Rdp%u zr5#jjzVj1Xvc#0o1ot(VDow%j(})DFjCax6c88YR%l61+(h| zuBXryRw(%O+@gj+Dw<2hU0hMv$O|nYH9Olf=LjXZgjp|g^OP7I5cpzn4F$D9JqplX z+sYuf4&W|D>>McFOHc+mhiC3CTGX69zOO)N7#)vXiO&x##}aC|Odxx7V&;_*1`-fF za+$Egxl8F{A+U1^VOVlI;`fzUXj2JkOq{dI*;`4q6kMdYOj%gMdv=^$W@U4u{;y=1 zL93mem2?ZtK@SX{@j(yks$dwjlYKcwD5*RT3msKv`q93%7;Rq|Tzgi6%CB>FR1kXF z{_{F#cjd9A?gvKQ7{7SkPjySk_DHvm_^T;t7xhbSIddlUS{ZEgz7|;wdr8@{&UGynN&~jLzRn<&ST}66=Je{84Lp&fSHr zR}IzoeeX&jTXr}nC>a)zTOJU%)xbfDezd9$^(%4PA8%#EyoQ9(_+Z+y3sYLwQd~^Z z`pAzu{v+9jzsIKG02jVM_#~RAY=b>mQkT)oO2$MZoZS7&?Nx zKLiC?_F?C`wFRYxj-o^$Wc#Lmc)x?qR1$A_vrg@IHpEx+Jb3*MIGZUGEqEUrc;@nU zN-Ioj4x(vmC6G4<*|~)UWW{?xG9SW{;#;YF$|3BI9!&?jGEFCiapWiy%YEJ5FR z2`VjgmGg7Y51_ohj8XR+Sh2Xr#~UMxCkPBLRjWK|bw%B%>nj62_zB$r-;V*1q%PfY zW$u1y<2H5EYWF;nB$tjo<}3?Ao5+|bk@2yqDPN|qZfy*>pUX(Ek2||S+9sql4-$@> zV-%-uh1XftS>|`b;wT!n0jX39Qh8e&^Os?}-52l-mImn4o_LcGO06UhhEoKZ; z*CdRC7hnnhVaE8CW7yaiZ=oZpp0?Otd-Mh065uL?j|Z@B$7jz@Wu@)N@XMeNmUv-^ zKC!ZUBeEzhD&mxTN};me?VNW7EB0tnEQG>-2EQ8cV$w)amnY~Pt_AHdd{=pIuXGg$ z;{7Fv^s89H_cPbr8?W5Sdn)UGfgEN^#cKbGab}vi=0s1;?6VMPjlQsDaBM6GHSXmX zr{>0Q&W^VI671aHon38v%&urdTUeGdQOESLFeS+}Vh90$Yj($ma%LFbXvpSBlu za*xxT+`*PVH#lHJWn+-IT2{A=AOg5~{^e{BKOIK2#LElbRr5g{VqvYZ;lz%$kc+qb zFv&Q&e|tl$QAN>m`rv$Sgxz=r1jj|Cy`-GKoVS#x)w$zG8*8m79@NNdFQkD7Dui<0 z#5PS`4kb}rizn!kuTjpM*Q#x!`@2p3WTfr4oYnEwX-1TU)WaKzw;P1=cIVaec)PQ; zy1HNDM05y)k_{BLaJFV|~;W6iC|J02z`loy{f9wXG}R{=3PzfipKQnwh{6q(MFb-@lb-W;R19EBVu1Y2Ha^3k=1k zwxmi_EGqAg(t@PxhEZBmMwymbtF2VC zphUh0WvQQ5U+E?TRLG(=Rz9=^Axr zSU~6Ev#D~AoSr1mj z5Xc$Tb7`V2T$&O?xfg+dVXcnRT83Lu7?WrVGh9<04#hbfRuM)Ru}2PL|#)a^&9<}{Vd3(CbJ+=RrP1~=!vuS#HlQ> zsR??lKMV4xGg;uLPGCVMbps2ss54klOWnePtZF<9Z0Zpf<#qvx$* z0d|>LkXb#*0-HL-FH;hW?qE?x-K?kXWIUI{`)NL#XQm3;( zQCI50d_8Xz3o@&#Sm37)((^{>d875bp?cl{1W9eOtHW5-U;RQ4zGgvobvO&Msk2yM zQ$J=w4)w4e3}Atux`G9P>SrtnQ9ortnEE*jZ0c7m$e|u(fxkM51=-Y%dTa>`GONc} zkl$ZDq-T!RGuN^pi#m?ZhigshGVSc0s-DO0W*pbN-l=8Pj{|L))Pwkm=jz9jzA1$y z7yG%7pLnPqrTFJBg>%Ny5nA2cOlbfUQAGhvJbf9V6;>AbQMnUMBP%g+F^C?|{W7V& z@DtC)!;)%`$&yK}%YN$PCmsT#2d#VM3uRJZ`NhikXHp~Z6R*yv-o>@B0*ucr=hJP- znZthO;wN4`Knsd%`;}R^r0qgtp$?2m?6EJ{)@?fb`I7y7&3=xspJVLj1pE1p{hVY! zKeC@w?B@*oImdo3u%Am=XlDtn1nwBIMY}X>&Pjb zd!E>$!TRH@Bd4fKykbkeVuV-{E2uxZ!Ygx?SIl`x2W4Fz)qBP6d&M4l#U6Xbo_fXp zVX-7suY=Y|m#c{KiVgINF^ynkGX()LB{K6E8!NyIuh>Jc*ki9)Vi7--ODfC9krXwF zN8PdMUa^^8u~}ZR*OoPi0ZLhUNP1!SV7iJQh5LH#8^l1 z#P0m1$C#$3s175>`VCiJ$jXwGq&~2usgJEm&#Xx=tVyq|NpG!5wre_>jIbnwGCwKJ zNXlwW%3)2)WlajQCgrgvRpd#~Kb>2ZjVJV26|Yz|uUHMQSd>?+HeyRd4gYH<7#*&z z*F*KCSW=4GP>QCg(O$8}Ua_WLvF2W}mR_;eUa_`bvHYd7a-CtbR7z>JkQ`Nudc`8# zvGo6y)!N(eeVJBGoEtOld||VPbpYI z;OzJaBmOq}z>~6f7*APPL5ni#8WDkcW={IW3R*c^si&0#GO0f>t$v38mZX+rZaroB zFJ zz>K{86i`)b1^RNQftB{+G+Nk0>hUPf+2tBO<%=GkzHMJ!+Y`R~L(n?1# zI}eYH#9$hyGHZ`b!v7+so+-*E{^L}jmR125!!@e~^L#RWTuYlAHPCpj0n9D+Bbb`% zuV9+m2nLTj4j}Q|C}c=OVLq!3F!05zL}h9NDUCYU*0#bI@-^9462o(xx|8bF zMX7}}sIFGG1Tz&G8F!tqSR5LDlxO(a^b$X(-!TJbJ$+wStCCx{U({d>>Tyt4rJmNU z2D2qu;d>*Xuq{S0qlMX(EGcRnk}4)}Ge@ue!W33=6fLZ$g>_+;CVTA2d^{Gj5I@cF zf~Z;wN*d4YPnLOWJ(B+ZoF(Ztk~#t7eVocHQkMS$F?H1r{Pa1<9vVuo>S=|O*qDRX zG7A*}vrrK*3l#ygP!X`ckAPXI2oCE3vrrLZ7AgW}p(235SfCqU+(Jd{sGi6yRK%Et zieQNz9ILE{%tA%#SUq4CDq`b!kdQE6QOEL5t3=ZG^|gp31w%?=>ik@TMU||w z1ywR%PbKr^R5D*pCG*8pGG9w2^QBZWUr8nNg;X-uQLGf}UCC+^>sQHq5tYo>P|17= zHHWXDl6ha5!`DyAeEF2jS5L_*>l?|uYb5ifQ!-yUC97+A`U(Ea`a?2XHQ|@7nUeXE zDOugg|6j;|r?3@eGG8wxb8{t`ua=VeVkw#Hbh659lVp{xl#=;EDVghOGFQ!Hu9L|s zTO=j(NiUh}Uouy}Ib8eZaOIoBbuXE#-W;xZbJPKBMLCBn-W;xXbGX{g;aZo>m2M8# zxjB4MG>2>49IkN5d_^>euZQMvWt*ciU7N#IZBBw3fp?+W!2e?@!bJ2LUD3+U&)a`k zeB6j(aUWIwD1JnL>eooC9?n!v{R)$S`bAE(V;uZN)rf3}?%)&NYC6zJ>y*_U$r&w0 z;-j_RBIi`JHdsVz$7lme8)X>&wqp3{Si+5e3;!AT^XS_ct)5YE9{Dxa8i`2j##$2* zNo}mP5|NC?T8xNPY@)@A$h0O}TM@a^L~AZ0;Z3E-#x>PCh@3M`rN{C&)7pp}wV9NY z-b{-%8inCIlls9V{N#odb*9Bl6OBru^3AoH21*hQY_2sFksZyo>LPNxxmI69%C^vI zh)DkyS{D&H-a>0HBKcZs9YthBORc4d9BJu6Th>ZzU=YjnT>a!SehUBMCU)O%g4k5* z-%5)zKvHQP3W`WZE5YYfs@Pgc6B1t+etK{c~`R?5T!Uq*9@_qG73|wiQ~DN_*Q1(WO$>SizZ8>K!XIDV5gBkz27^ zX@iWdl)Igl--zs^O6>%J`)EQtp(6X}Y&)TF`>1ext+OceaeJ+qh!q%(h+PK<_K@3ak#w_bXm-)ueH7SHYnMl74S%*lWjs3@-^_?vr4?V+ zH8fwYxG{s^-(@^PUv$(y5ETV=(&~svhfWf4X`Q6j-R-2+6_1teEHrx`C3MzWh@9^_ z3uf=5>>r5Uu#b9vAo|um+Wmp_*i-qj<{xTp4b|gq@o$Q@tiq4pPntJFRBuNL9sW>| zkwRIz2==E?_b#G^DRi)lAR~qRy9$}7P_M3{H{dZjlCzuE&1h5#4eh3N7m+jF#88z& zb-Qc*4JolrNp)~Hkk_C)jhdvDpuPX(4WoWlZwKdbQ_LQT?T$wRdr)v!2(nRdSZEnJ zw^9$}{?^mo+`+v>bJx-M9zt2x(OEeX(NpVd5V($J_tg4`h^wa-X|R*o(&{K!($ZL+ zHbmerqnKWz*DRxyUV?+mNb9A2R88mlGKMl`9Euf5a8o()V}Zi8%7LiMRw2wukU0-dyh@9=KO%Rbb{Um_z`)OlEPQy4U zayU*KE^;buB)#gDFjx8{qM zE~3r-wKxNH5#=5r>RUuJ257@X&a(l6;6*edUP}-;&UmRzpMly4k#l9BV9X+FGf2ug zK1itFB8nWW4HRY421_{sL$o1AI~FmK@k(quuh zO3NmT#;BBKiq_vCOr?=igd9}*V~SK+%S3H}T-n4os4VoIjjB$ADm+ZoA_PeOsiJi% zO`a-7QI&2^74qX0H_W1BQkUaL?@izOBdQONdni6hO!j-|Sd!43JydF%fZRiKrwNMp z(6edMV?C#9{fzF&mQU)CV4#1B8)s)~EofR;iEKu5c;>PYWR}Uxc~_PC%@CH#9$GL% zsLLLDIzx1oJ=A%okm(*eI8*Csh>;^k769TV{OE0)TTrxZHr4z@OoX#(=_f*gW|M7} zXwGaJHcRx_*>r7|7z<}phflTMM%&n;P_0t}=u1k_x=*xNTtD>KJ=Dym@YzDYXVZe& zqHE5kH*$_TM>KLaU78~pJe#7DrJU8tTAa~HUT>*L)SHAKy^;UJ{=6Z;1S&aKP@h0c z=ZZ-wfkNhq!8?H#&eJ9vs*^xL^QFfY%olT40tGD4CW*)9FOYI_EEHpW0?k+`dT;{0 zkaI?TCdSVMa(pHxvIOdxq7610mB5(!dmFSOp}o6NKXnj|>Q9aoZJa?ye;TkznBp5M9QX00DDrk86v0lQf;<~{2)g@Sf+g{a&9ftri;iB z(moN9rzGV}SuS|opWZIlCW^l${~{-K zY@_9)zS9y*7^oZQ;VNP5ZlI_%u_)R=Q`5AXh6FjrmBqklw%lFCkQJhe8T5OaSQ*Wr zBCCbbK7)F%7LYS&(`sRj&!8u(#iDBl)n6mb`582Oji6};om(S4mT#?u)@Q9)#>}AI zYo*7Y%a1i$C($-@omjBWpr6)h(FP-CP~dvO-Wk+uz4X}n^%8Ba^;#oikeIDhi5|QUVm)c)wgA^IEL8@@~2CacyhwD7*h`UI) zwxN!8e^m@}+w7cz(HD`MQe#tfRfQL5#)jlzhYL1i{cISHG@ z@@@wGut{og@Mf_nok4>)ORYJ)S*%uOQ0^^aX2D}ygqbjdzTYCoEh`( zw325bK7)>K7n=(B;`0tke_HR56fk9nB$}%`BxNeFQ|#i*p#D20fSo&qCAfvo>=c@{ zh4Swb>!d9-e3w}KZJ}ek#2R!9h3pozZJ`f$3v#y5s@+-zLuupb+-_0N5pwMolgbh5 zyhqe?gtqPxds|1ywpZ(6u;>WWU@C_roHzC8=xMDO1x<=7WuPCS!+V8EbA-z56Z6** zn!it2K1b-;KB?Yb`^6-1gwF35X3!C;eL!n%j3>O_(2l6LLZ{5eNcgNXqPo_m)7Arm zG3oU3fLQIN(}xEI&(mq`LFuta2gQ0homzb%n3+y#UkF~L)1xnhx};OgA?dNyLlWAZ zLqea^DLP$iYp^VxvFy79(0ck~T6;*VMQhc%+1#p`PPfyw7V@J7C*aX16Da&N`tGPx zwR05cpD-ZKz1_jlGEc-K6DDP*>6^5o%O>5$r`xvH_V++uIV^f$I+g!YsD3(4{8DPz z`7fo075z$UCzEj~33YroogOiY`+cSPQFQ)#!jw&?b6;s4<>&op;`xYKbm<%S^KU!U z^K9#+Q{vYW9cRB5LrFRn{6^y3xNjt${_u??p`u5GPNviNBT~+VBa*z!AC;PzbX3@e z>2&j`R8QSwVvtFvmB+;TD4pIO6Xt6=4LB|oGM&yJ7gk(4)jJ`fEj^)ik-4$y0JyRA zi)H)KL&96viJ%Mn?uL2<)csqnll=J1LwG#xu+Ho^+Zy6MRkvd2{7#Z(|L>%>9sW*? z66uuXdr2?5eJ=@i>-Q4hpMNj$z1c~z$COShPD%i-lVZ?Hrz$^407*ZHkv^SH{~+do zbSm_tm>bjSqaP*O_WUTe;nL~Vk6L57>Hfc>>9c;N4kwwquZ#AhX+H@YCY_f5B$dth zNvb^Zl$hC}4yUwcUZ{Tq^~b+if2&06Hb;ke7@GIA)>3|S!*x6wb(8hCsdr?l2`rlJ221T35M-Lyz$2h!?DDRHD7k=pefAFgmN) z@l2;-XT_jAnC6`o#?W9ob5;mqFa@5|Y8k{0rr2|0k{L{k&xz@CFx@|=l`$S$K!wi> z=s8sHyw<6bu2}56Nj;78TlH#jKVv}kD~YI{&Aj>4O87ix)p4-@E}qwF8;Hj#@Pg=u z$7%2d!J^}I^nzHG9j77}g?Nrr{6#U<9jDzF1xdT;+(psZc2V_9q95;~g_lGJ-9`5= ziGI9`+F#bX8szMvU6%zpyU72F6zO|K)H9i;UJWOW-{aFi=NyQ`8@VKa=UR zKg3utnXdhz^*82PPV4?e(3*ksMSa!rB|FB~RbwCx{8J1s1L@G8LIVa;&cDQ5JCM4_ zk#&CwVJxO&e~Hth#f&laakQw8`^;TgD{MX+l@V3DCh&>oTod#Y-MS`5Mxxr+1viM2 zuZv-l@PQ_+qtP;Am3{F!(Cck-R~7`{0Hd-r`tXKeeHyL1A&lxYR&Y2@Qq|Uns6z(C z7kE>1ukO>R#7)s<)2RPVQF$62z9|O9Gn5xS5yMCtZTp`PXc|5LpD+Q_sKMV-Wai((QcR;C{uX0O z8u?|2Q;{@kmLWQQ8hw%>0i4bd@=v3JwdTMkyNSoQ-O^invCzFxqql&mcO+uo-jQf-bXSt!+`C$gA$ZO@ zx&y$|cDLYPIS|!VdOSV4E9R^5)X*-b!tu1oF61|w3ly?boH_=#^7)dtKk8-5YJ;8}hH29wAVw>pLJ<-KBQP6!U5_ez7aSTnn zFZ6#5UA-?x$}v>^foRVdn(;swaAW9?2ZHJ`RQjPX`^PZ$+-L$rzck^z!(NHU*3+I>Ldn+Ct5?GHU_I4*Ee`$H)0o$y1FWZGuZ7C4r`&HuOV`t& zH(EKPk2B9O^=)amVR_s}eqdhiy2!V&?1g3g^*-Jscu=?@!fo{OjbO?)YW!Bvw~ZFQ z6*K8J`t7Y?rgQgO96)QH!#VF+sK4JSC=S|~YEG=4g5 zR9r2LXPLX4+8l0j>gBQSXZJHdIh|1}DLAvs?IN*~dS!OG_bukr!pttWqrxcKmD%O? ze;Gw@GP{}>_@lTWJ_X%xUr%HaB_fif=kP=4J2;#6fJ7b^)bj(=6L_7%lgrOb^|Hx~yooqJ z_2lw{M?IGx*6qNNq$ii3)#DjZXY7Rkt0=4%<`qOYk4C=+1 zf(L{j4d@`^Xuy-pclGsLz6-k_`~9BWzeBO~)pNHn^2#Fa$!%3#$UL4?e+F*Ip6uk3 zqA)HQ4G`3)QzJwSf(J9$x0(E;asz7!Sms@+_9`OhCa^`XP7+@PzwpZCYhXS1I4g@a zu!Q_;15tKYeU{w=2_AwMw-(ua5tSElPcC0W>CgiyIHzdNVv6)ch++{j+Q!Y+C9n}a zAlz!zLB=xzraI)@@ij%uh2iNb%k56RtlRFCkhL(({d(>gE{p?6@D%1|m!7?bY`I)v zrSu4MGF1a$KzSa$=%L~uHNc}rbB3@-x4~%gJjzWU9cTy3Eeuo0lY7$x#5}mwVEAu) za>M5eg1IfT!7G=WGCJ}?-kiL!Z9IjSFi&qidkQ`BG-o}lr>vj9^k^N7hQ_1YsZwsy z96s}5UY8!_6Q7RC=QySOL!Od>{iz3eF7 zoOVd?Wb;{0&t65hK%*g@K@908rZLZ>DV};pP?13KsC#;n9_@@5B8*ChQujbtNd@lO zNrA3X;R>Hz=KI5cHhviQ)1IGgQ2dA?BL>7zNL8!UqVEG;@qyKA1!Tg@8R|JkMa^1N zJIEEDuMrXlN2%t#5kY`&T8mPHT)lCp>Ej?*gFrSv;n9{TF*|jBcN!hysz_?EE7G=_ zRtCG;W?!v85L=5L1iMBdwO@#9GJ?NCT%RK7pU1Tb!LvNB1qfz_y4vBbj?1C0dVy^A z0&*`MxiL-uT`5473%bf>PQ@!Nad}!wS0U~BSA!BE&8*d zs~%Fr3c1=N7*xpB6v56yu2=*w3%Qyhh%SusNwl>v(2^*75!Xiuh7|#!N%TVz{$yxT zG%$(!7j<>O`zi;Ex@rcpi568X*V~CtESGRKL=#h~PBB-voO~KSkOAQw$e?1yUCp@r zy&+RP^q?3RkV>)PJlGNL>V}wK1P^*gxcVY?B*N7NL1=MTF9f5DgH@??wYaMXf+{6k zLlLBv09W9iT9QB6M-RRz=^9{5q=Kbfae;|Ckw@G_t}o-NN?(_91>%7-rCdW0)GX~9 zj$lJ+ASO~^8P^B|Q_DaGiFCV+t3+0Yp`OS_;iX(Hz|5OS4a&MoX5)`^ z2(ZyNU4jeKtg^25+3-pV6g;<$BA4Oo9RHMc)edAy;MgBJG5Dzap~M1oZC7wM>Ql}Y zY@17?%DJKg=IT$~z*BU5hAZEapgvjkr*4*Wh2W_tp6EKY;-&Z-!(u^EoxWIRT$YrtGPZw@UWUI3Bjo9t_cVn)&Jks zc?MK*e0|u9N)yChP$`1FVMhgfzg`7XT)h7J(LFz5UEv%x}gyZj9=s3GXI4P6?7RLl6_c ztEc0K=3AmCoDbFuiK0#QBIvkj;;SZTfHYC1DLPe}Sl$%vkR}QTqjAziT(BMw@gNwz zBu#W~rYA$3ZN_0$nseBi<{V~e!C@0y=mR}?LD{MvI!dd0qFAtQ6E#EhqKMfn1Q#Gp zYze`@PZN0|T+k7r`Y8B*2*o(WC(|u)#nQz3mgt^o!nGB{*j5bhw9?1O#QCdV=k_9~ zsa{0{jVR+PinT?ZX13Pr!b0p|YrUfzEnCrOS&S3T5?R?kRrQ?MA@6*N^G?5cNmqc3bhKMzi|;yR>?kyd>=#2;3a zFI9}|hNOECwvck>DwVb>&?EJee_+Pl$*xi!{Q&+sjk?X=It)d z_s5m-?yEP4Enc6#dYIb^S*#y|#eu&1LeOUY^lcFL`{`RDru9dfD@4EmeGkO70UQ=T zQ2!jh5`**|5XT3xZ_r?UBYbZM>+3xzQSITtqxdLYWhW=>st?CW|J+kjZ3mcNhvVSxk-8cX{xW zNaMZ8r14(SW|+QEEKSxu5qfdB{sn|K0!5!Jibt{USQIjwEP6%j8z5drvu{a^z8SvS zBQaT=7BffcVP26I4yRK(q}+ajn#MIAhzqV zdVe>1_CeXpG!tQ~^m?ljCKMH|HqX!%^FFC~(_zVraA;Br-I;w-_6# zdmxSU(P;3)Vp$w&h)-I_=xZP@jnM@}#8`bT#M`lGVtnBmuWyox1zkj9K^Mi=czw3$ zHWe^nqUSD@tf8z^qPUQ#C!$yj#Gyoeg(rn-J?|nV{1f4; z(CjxR>s>|0THRTAE!Lfp%&jCn6+#=YZ-H=6#=>KP*qDq`Ef9?-=qn*EPe6$mh@lhN zmpM^i4Bw1N=u-=X+hq2oPR2@Qfe4&}L9dBzQ}nK0^w5W*^_E4OBhsenBZTh~zse|| zCQ_#A^PyQ}n!Xxh>ok28M5F2YI*9Aj8IG8NY&G$2hQ8K=64NffM@=rj7h`AW(`1`y zqWVmI8I+FCME;uSIE#IEW??GP#K;uA3(QT^QZP-?Hcosvj=}VnOYe+rdFmL>xr<% zdYE&3d=$ldx`g9RS&BsDm}5y6cUI}W-02HQ z)afhK$!8E6>wMoT#Z%Yo{ZXZ4acwmwykuctgXu3>1f}9Qh-C3sD#LX`KMY^DwfZp# zr*-T*woc#Y$sbj=Y=i3JpRjlTU#bIKV#mhBQ_7wjFl#1@lNoAt7=H}>7Ek8&F!3;hdz-F!1EA=xKG%PO@cV*Qo_wKy4d3?d`Xz|C9V{B{)Gxx9w^P3Wab}nPEkw$0_O;)m zpR$Zd-K(DfJGqxUV#1gDX^4jV^j5HaPTHr3c+qwS+Oa@$o~(KZ|NVLowBcu>*nX^> zJ`+>+j-pj9T7K9L-)*KOn)ij>R~++qV^FioKwV#Bl-xbyZ<<-T3iS%_oj#%WpeA0+=_ds z;Q4EMd0|}98(Oeic2)1~enu*6fx`Lg`Y`e6s_u_4%lBxmGh+JpSQ?%YAHK)*dPdCo z0k@np!s!}r7H7oTYgnC~5rNk+gP##cuVZ#UBijCm$?uG~|08C-Ga~MWKGBnM(D<`F z{KNMxD8P9u!%dI~MzZbH|G1_w*s+%bzhC9OC%TXdQ>BejDA#AvWCR zn4WjAE_R4{cNpg0VHo!dhPXrA`vt9v&-{MH64)V5{;E%asDGE?*1LF$aEQ|PIL$ft z*q3{c6B~b@OQTB>^?)PXdcbM6`HfXh{l*#9dB~bO9->z{gwG@Pr9R>s7JtlX&V7uf zx+^uM?XBL3zY{rESRy5&Dy>V5yOmKxNuTlz$VTk#^Mg;5IN5|V$2H+V28N*LQjw}uKtV|_@^#;6R}mteCH5*bk4tw zf${7RDFz0QL%c9J$B1->-=}kGO9yVxr&k<)t=ICR{b5YbLt5}1AXrq|mx^bw z_ian!HZV$5dxIU9QDWj7EOADO3vaMP=B}KpYdRcMkm-e-swE3dkTa5nmV)9$PeNoy@ zhVmp?5aEBhJwB{@r#BZF_(TgzjozVp=f&Q4xN`V>Di?$FyjYiuS>(Lw}ES;*0hz~dc^RcB9Ee`jK-S5#T`$g3cczoC|_IyA$+b`;T zL>JsI4tzxV`$f%9EOvgv>^60cr_t4oHm*_3jV;y;GoryR8Z&XGM<T`9j7d_?i_qra&AmY>b4c=xk^Z^PG*T5CvU~B#4PF zMgqj&E*x*Tt1;P0n=1ZvHI{)+aN}fNx*22O8{%#(fcVSZh_b|pZbgjFZZWdB*II~8 zMT`-k77t@Q!~_px6vQJbI(r&DahT!;Pos&~N*UvxY`DH6&C~D^A3crcP-s@vm{deS zLHhw;BQ3_SlveBJE$$RGg1v~MU7pBjqgSQvt}D6~GwO>&9lCj-xrJEdWz51kww}cd zJH(P=sE-gX#f|A6oMOYxcsbB;^O~DRc@gAgbQ3eX+PrWmo^UQ>1`6W@CjpBYuW26VaA}EA;SSxf!6fa{m6E7G2 zUCK$@C^nTc214s?DI*eMU}>W_#KF>>kaHPh0DQyB82uqmlre@uc$YQ$%k&OkM|y{^ zW95qUh8eb!l->_zjXuz-T+RrCNGfOag1A(UOH{r*CzM#;7!G*5JZDnd+ZY7jd~c3$ z*V`BjUy}-)%Hj$f;SVWVR^-H1Ry2k{C8Hu2+*%1L6UFvQMu^u$*({Aico6p#7krG4 z;?V7IYWRtwy^k>(numPQ$tH?&zAR??8j&6pPg|db+N{qKJ$#G~;{4t4@*JtVpV18G zjL-K&mzXJ&?Fpi>%Lv-r*4BtjKcl`Iy->lWv4)6R{zfbOitlKDBgl(h zq=1IWsBJ}LWuq<9-yvT5qfvK=u*xjbDx<-7h#~>#qdP==04lmeT$7?!AnLnA%nihN z+aYu*dR8%p!k1PB-FS!au8M};A*M_5xT?_|XW!JTX0-51l=+X7`S%f-RgFrbbq%AU zIF$av2U<6)83{$!l&g{dlfa3hU3H|DD0Wsyqa}(GHH-*|#2OeDU3#JSo=B2M0EP{-)tMz4YpV_ArpS;t5e zt;_0#MNS=KKEh|#MIDcd`*n?eZbzls+7QvA9-1RoY^i6o@uHVQh`dQwWQ=H2&!{72 z+6*_brJ7M#WVroPI@S9hA155?6A@%AM6~BY#%E4DLqvRiV~=I0DBr;7;6<;Akjj3U zN*6rV4fYd$4UIx#Y(1lxsFO6jxH!}%!r8J@w6%Ch^1n1FmhNbZUmzPEEP?fVX9p!PBb$nLey_=w8n2$ zBsMqdcukWz+><#3i?9|(FcP08{%MXuHBGc?Vf27l)&gU4nt0LzQ`$CBF~q3mMsKxH z&A&oKw-A(gn^+ox7~90N5ThML^-!ZDM0_a5?KW{S6a#OY@NJ2HvQ4D4G(s$U#krP7 zGq=4mnOyuZUn`@NtN8*<%&PdTl!$6&1iBGIMxR2&idN{P_-v#Vy80f`vNdL*Jz{HX z^tL^zZP4}hh`2Vm8|)Fkv_b9n2y0sw=h~tp?h%3QSY>%TV=R21+A)l3Z^XiPy}c3T z!Fd-Qh4)iMM~Qmv44YWg!6=E)Egdl3%n}(Lj8HFn2Zz#B4wX-TtDemB7F`<~p5k09 zqlid&p`km?5=%Q8E%4hAS34TPZuDLbF=~X0BAw6*>qS&2wEtqUqmvQpMz7@%7!)dA zbTYbF5=7(9MkB8TNgK;ddWpHslSY_glm)_u6M>nkRa-H!9ds`7Irb3 zyU~XxNUvq6xYot!2U?{ormhWQNmmSu4fxS2^uLi}pw(#YK2oZ72`wUS_Amm)@)84F z#E({7nvuez8)`gO4C#hO7}~&aaSfA22^Zm=;{(NS-Hdvcal+Gvd32mirjJw@Ar+?C z&?Ux+vo_p^$BBB~aaBf(_1%rOUi4iF3OH1%Ec$NP$i?uLhG)dU06w}(*&si)LYHup?qh7#fTYqC))GP;oxYs08{j%xD5pI^5{)N`YF^9cK|fbX--j z0tg|G!;Lu*F+DL%j)?m`(IJnB2EB~>5K+C*EOFv;FJrJQwz0uF& z#I@eIFma-6AEN`rkUkvaLLcKZoPyk;uQ9;un2fkyR;i`9xjeCq_@=K>6AI~l(L0Zc z?)@;fkBPJWjP0(Zt~qBpi?BN5yNDzGjW!aM{D_^uf#a)-zyZck*Hff5pqPtzUwl#n zae9DJ&x;VMen95aQ*0Y)loW@Y)60l}fkrL-&RdUxm{d=R?*|%7AqEb@+8IraD-9cix6`9Ugp$K=JeP(y__gL z#i%P|TrA-t9?x4+Pq+>gesO-YJvDL)mSfjca9&NOiv3J#Q5ykcx0peP;F+rkB zHC;rjkq`TdZ87LB6Yxt1Sb9znV@G1DnjmhD#6oI<@EK+Fk!iX&5eMUNKg4&ebrA5~ zC=9RTqE4(a#EXtRLuuSw^3>3hN>fVMW6`Taj-V6|V=?g@7d8!jfK;`~?OepNzi0Lp zJw_WnC3+W*^5xBJfCD0oASippq3<0RedDk?J1+Lb84*%%0`wvSpZkh>V^ECaV#pX{ zlxq|vS~`myiwh2os1hSs}m|BCmG(NU4l`?nL@ONVr+sj&4t~YV?<_xAzaz>Y?O$AO zk?5Z!7va@$(F8F%*$9)-TZ#+G#&HyN$^_#AM94(rBt*_cV?V@>Nm$~q6F!qsKrFiP zmB%BoZL-nBi#%wLk+M#0MZ#30tSB?ZsN>3NFYWn#ddd{TCQ;yA7cnk%Nh48ksu5~g zCfZEJO?R0%J=NGI6@Imj$Tvqi8?fXeK>F zZi(5`jR8`*&n*}6z;#tUQEG-!ONQ&WMaLON7a9KSwu{i4uBs%C&M+ECbmeaTV7U@! zc!{Y~F?j|}$AYGs-SCwf7of3i*{Z5yyxlB8(gX2@-LQFZMMpnyDX`eDuQ->p%1>0B zX*860?nB@*-NcIOtILRSGmWaUJeEgd^Gsu^%Uo*8I)#PbEMuG-dC-(wT8j0vjP5eb z=^rt3tWjH3NHJ`Zta>iuQ;bE@GuXgOF=Lzb?0G5nd}eHxo^3Bh_u0ly=_&9^-~dX1R#a$D2SU%UdC_TSsiy`xjucgQHt*AQR_+EO9cjE1QW1mds zk9RI&$eibO#k~bagbW`K^TUP46&W7$(Zx}Gk>O&I-k~3H1rygz5$hKlDMh#-2k;Y< ziw6q-WzWlq&?UwXGLfAHM6spDAJS9B$?<-v;bW1$xIzy9<%VZ|ia!=~71t`R?83;zdS@R-YS@UgSaXn#tl}U9lY#@RiSvs;;c&)6!Ke zxb?ic@cqJQE77z8uA^SqI$u-zCT(Z^w~;^ovMm$P4Sb1Pj?zt z8Luqj`8|0aSZv;EEkMJ0=&ajiRDNoQcNtw>&rt?pQ(VQt+Rti>pxuVQ7a?RYP*yWU zjBB{Pf|$D72$0Gj;#|d(SfiS_w%cgo!tv)N2(LZHG8uk38R2KQhl%VxMwkrupCoL1 zjioZYGcr5<;(4g>`_ky=@)hMDS6j^Z(ir4L9^^b$<{T!j@5i;H z^~Qb13|IC%pM|_`@2Doy_ZgifimL4{J7LUzqoqU>=evsV`d|BqtNV>`iIS?i3+srl z>x4>pfhOe6H4okI1y~Ty2=mQ-728njxYcv*}j~T;V##26>SBtb`Mr<+i zAcy_3uKnwYCqvi!i1>NqoN*S3QB@?Acu~}i&*Id|%y$>z-|T3DPpXU_uAEARr6>zs zqgD=#0Y-VN@~_c32L>b~ua)ki+c!^Zigw41;S#+B@~ZWFbMe=4TwKu~TKF`PzCN70T5CqW=BAH6O4Q_+i3n>?KKjR+oyd2B zDosa&BDkvwIJg`6Hc>ErE05qFCg9+3(`VOyEyCfwOrj-tG3cW}N(l!26xd&Z!2kv5 z^ibq6hyZ_rPha2z3^f5~I?VKGeQR*=@TNuV`4MI}V-lrQF4!2vDDb!kgHZ|u^kkqZ zFr^QJI0YsQW-wNPw?h~tC@{`Glu4o@zeO+@uR!)N1``xmJe?Yvmn8iL0KQWKPKQqI%mrEJUQQ+=s2J;kXv!1~M1r~k5V37iMb~9L_ zz@S46mMO6C1b(yx%;88LUx&jwwYHL0~o2jSMCL)|-Iqw$b!y&UZO@ zvjRt+G1w{r4rkS}|6uaDQrYk)gY62;_=~|#1=eRV*sXwD4uic49FSn20(6!s%6UM6 zZn*$<9CEJ6AMaV^umYt%F*vHgB8!C*`AUJmofsTfpi3bJCl#3M%-}SE>C|8yJQoR;8*0--X~E)cR57hE|FyZjcF z$~8&my980C3cgCEZ0=Gbvq=Nrq!M^w0xtMN^3j*4+GQ^eeqsU+{@wIxDKhv^1gm!B?=z#p=bWfY>cGy$jB8a}%WUxGIQ2ybhKYdvc+Xs^IN z2|6mEOVC+?-nBSNR|N{!X3$N62no6?u%))0Rl*c;sl%YB0(8zVO4eHeAwgdSevzQR z0`%1`q6}2PvnhkY3fz)lXfWOXxPj&dv&t}~QaXgea0T8<5T(GEp{x<3z{XY#Mk!!# z%|KJ2K^q2f3Iy2OF&V1}eHDztClFXpoq?>@0Fq3=moC}#X=OWc@I(cE>&#%X0#mv$ zn5sb8t_-FVuyY=DdoZypm8dWVvlN&Z&fqfzZuMd?M}dod7|c_^qaT9>3eds9sL3J) zY%o(GvP6+OI2ssW83F#jn5^;uR+@lozuNR^X%QTpsz8h34Av?@A1EV%^$L6$!(bzU zwRFV1whQM4LuHF3`S*iu^f0!>#k_*sDu65LTBYZYt!szB>C4DKmVB9*}d1#p}v70domkssDFd91*N zbqt;=5VwKBGX>~dZ6xxi0<*U<_*(&Yn0!LxIf2R4o5%(fz{m%7x%zmi!s%dQgl8(? zw1>ef1!ha|MgjVm8⪻xFx|m1xoH?jXVYV?`QBK*lw1~?EsTcO6BN51{Qo`EK8ny zltDoSqK+{rtiW{%TnNwy;o1}jYq*<$`?-hd)0`Y~{Cg?VRz@hHK%xYt3Gj#DWF?Er zmNNk->23P7*~dA!q5|~cIP`rKa6Qk!PXZeM-$_zgsia(Bl|Th1(KgI=%PT?rwptL z-29z^O@XriFtGPfWR@i13eaK8s7)^d{Ea$UIRo@H0XIi~)2I3C96V3~I&>NOgB7@* z!(gZaVfMF7hACos$6&YuTO^25pi3TW#3(?Y&Lf*q3efq>0Ga}UpBTg`pcQf=jj_#W z{BhlWmLx%`(D}QN^R}7GB0~52GbSTS=5Q| zzjj4ld$Gza1?XUAWcrx`bQm+h90lm>e1Lfh)GotdfdapjWw1zrJ>?iI0kF%u(SgiJ zWErXO*YXu{Bs0KD6L4i$n?CK43{F+xJ3rQ6t3W4z2J01gE5Swu=p%m`f14GdlbVs~ zRt3J0;By6RRaj%Y0tc%y*r~v zjRfB+a4eKHE-LV}C4@3~<*3+#L5!pH?ZHgMTAn=Lp>fGI^v_u1oMl0sA1<_+5cYgBkpx zz;y}!QoufhHU3c`FoMAg1>A3Xq)!Ky?KsA7xNe zfrrN!)NW4WPZrd{q^?pS0}dn-q`=sd3>qj<>=c7W3RFAIposz_&oBs9AnYuI<_g@l zpJNiD$c^(1S}KrufkA5p+I_>Itpap*HHz9^fr8&L=%|3-B?g@p=yjPv*XDHp;|7>< zl}R_Hl6j3mcLnJ9YGf0p02!A6^i-hqZ3ev+Sa63yUj^R&%Amgj_N04E1}f6|0fWH` zJbB1qr~-!`GZ>~oo2LwhD-iJqgD3^aVg*HwQD9IygHd)x3T83U6lnE^L7W0)xq?K- zDnMsj10?(pB$|7Hf&`{0u(=?EX$nNUF_@vi z)FKRKDzM&@L5c$DMH$RiAgLGw`&>obN-&vEfQ(}JSQr#!kqLP4E-`)D%QCFLOaYrW zgB1!4t-xTF0znlStWm(pUWtiNWPW7^>j;o7jrI|z&!7|=O~9qtOg^@AiNJ9*2;OD_ z4*tUQY2np4c!vVFCD@e@F#b#8;B2I@N2$8p#a(NpdhCRIH)ZK;c#t$vnJrmo;Q8k!9E=PwF1xk zGWb@3D*YK;RKQ+r43o=>6op+6^0=x18TtVHpg`?-2Gk-*@F0?~;Keo|mq5`&)= z@W;{HNc0YmKdu`c#trhTQn@#Q!94}&3~p#VP=HR{26(8z{3#3`EAZJ=22T~JGL6AA z6WF!v=}i7KiFRrRgTED^L${I5a|LeAVxTKP$819*U4i;@7-T50eLjOM1-2|;V1KPh z;36j33S3^s;H?57D;VS|@Z~B7?-i)JhQUV#@=_TTfPsYULaWy?aLNbh|06aqDWp_h zZ)D)CK#8pkTov%%!N6UCqI(#4DDc%j21OOfI>?}y0_zVGuxlk0q2syHilzPsjxi{s z0G-GUjdBX?JI=scfg2|nR8-*1Nd`U&gr8;LCjsq0l>3%RWu;R0B7;B$Y?m2SRbbl{ z2Gtd)`aOf13Xu60idtKNM%NhBRbbyO0NQ_0qy-GP5T}6xWYGoCNPz*j88lJgZwZ1G zn0SXZnkzs@c_WPw1=dK=k^w*e4EmK-S}T=bC1|U_h`X%OUV)1ebX1_mJ=W-~0G;5C ze7h>p@iBvL3jF<~Aiw|Wu88yRtP-ZcFB0@rfDZUZs=XEH{U?LI3Y7VaL4O74pl?JO zsKAW33!oC!0P#B^<#M36K#RpNR%A#RRNB&Gczk zt8#KP6iBEc^Pj26<65keqCi$%2D24d-+;kf1C<9b zbMP_+?EY<;tWcyuI|i#1=+S|}8U0Ua~hrbhGK0t0T*j4 ze0CXr$j0HHo8j8gUJSM?@J(+9I~Dk;4};wbJn73|uL4#2GuWp<$AJtEDDZS3#vjUc zNRgC53=S(m$CE?jr~=alGx$mYF^s`+1(u9pa8iL1FjPPqrxl1oCkHs&f}Vf4ff`{G z4CK60DHhM*YX!E$s0kY1D$ofV7XTL(=sJnPWd$;kG&HU%Kfh5)~tfFt~2`m{kv6~TWg&=KE(0Q{qXbuEJz3Pf*UU?@OlhlujB1wDUp zrgQ*0NG7SU`5>Jz2=LkjT#9Vdrs^0G*DGG&~e&bd5n#0K3fh zl_bTK3K=^hP6-9Z{m7t{0tq)5lu@A9Ee7Qj=y;ofw*trRFsP`&(O=~F^HJo_yR71; zK-~unDl1U~ss z0na}fG*Ey}PDiSZ2u!4YOQ%i(G&KSDm}aI=o2+wi3k6cr3-SFoRFOYkvPvrjzRzIL zMgcP0L>}!F82y?-2Ldyx6rX1^=xhQmMOX5zq2N(D9Bj)6`S0I)kQW`Ek6ot>dYXWv z_cndngFKGjSAheT!ld6{fv!#r1}gB21cMbAQBvNzGai6GOk_osul1-m> zz5)kNRG>gD29p&CXv|=$0wC>7F;NUe1G>T>* z2w>{N$FDfU6bY<10VlALe6bWvN1P&fiwQV*8|TmAKjWZygnwa%^Lg+9I|zJ9Da@SD z8oN!vDeN_UT7j7yypO<6(r=5SPm#bu6R>_7`SwvTos3HB|Dz`1@UKjt)_yTZKdwNJ zRSZrlaAOUF(+U*d%HXU5J@+y=uK*n_k1~BtU@1yr*9Jdl@|{Vz6qih&cHuM!Us0gd zHw?a4VE<(X*A!TDjlqu!SZ*-5slbMx7~JCdkBXsf`kBdXr4sXy!7mE@@QlG-0@EnU zpR(W&Ouz+yX!^9jah5D<`d9(W8wO7m*q&RM=f7u)T=~Q*e-hY6dC-}&NaPC_6{`-;w?(nu zn}Cb;k$ih7n2x_iumwha3^=%;>C@)dt>>Qz46DBT72GR!Ie1`#JOcS6Y$yeymbffm{6z@UNxDT5ePQh@A_ zk&UkcbPhg%KY>})K6C&uKp=pf2{%wx6;6lYBfL6+^%S8NPW=U_Wdhc(WBRmO$sAmd z02Y%4G(+k)Fahf~B3}Xp(<#A7t|@?>35PdR;TL9bcnbwS;`Dq(2ql1}B);yzN%{b- zO~47XHGNv^r5xN|fevdJbX0&&(nkWF?L_c+AkQNPv6_IBw3$BbDbCtQa1R1wNk0`w z>I3vN0qgfBAK5e0k@^(e&jcJi!1QVBzvSRSoIghxa+JvsQW;Gt+`)(aNMV=>IECS+ zPaAlegQFDi_>Mu00(AC15*S6`2&K69X9lB9fD|$RjxoL3j^8*uL4g~$86+tH%V0u&*O>j54k8k>hMM0cX0|^l1nG=HP7#%+MKZSDqJX8Qy-jwPS1z_V%;2D8ARIEBx82n`dF4jNfn?S)Z z^(KAY1RR`h`n1?;E63ttt(3HSBN-}IZYcw|jCmCY;w1&|f+)9DXF$~%&0DE%EqJsjkCMVFj zB|U#~9&^Vsu_~1>$1&)x0IbR>PPhWFDJRfdftC{(^iyErBnAT&s5+Iw5CtCDB^jp3 zuxYF^LV?b*_AvyoF+-NF>lus!02!hKtW|(a&;d3mV3B3tOaQxOm^BK!lEyXwI}>igFI2eGKb*o&1y((0 zut$Nx27`SH?0L!HpaR<@IIKW{SFCYN0obMU_&cu1<7`$rrNFNeoK?W{Eo)p*z<9^t zTLoaIPIbGa!1zL3*{ce`P@OccG2r_zY}JX}P%31p4sc6>of6zppo$Y~+*Ke>X7fM+ zn5$D7j}(ZK8c!9dg3CbmKYtLx_8(cTbDY0Tz}MwD`A$+W4A&`1!vq}s()4MtTBqPF z1=f2qc%#7Vq72?DFwkCxNuDAwU8h7oD$rAESX!B-fblwM6jA`D>jYdBfZ;j;cLLZ@ zWV3Ywo+jXedy&u1;bgUr@DgUY23vIkr4@jsI)QQuz)qb&1qEQGPQZr%TZB((&cNRU zoN0jR(T*;LIUi+aJfQNIE>OMLTd$Jl1`wV0x(D?&`|-HqZ8<&zyO&?Hv+3DQy8R^Mh_Ek zp5gG>WjL9mBfPg6uE7$Wz<-R;2@D{ObCe`Z& zJpM;2;y;O1GzDOJPKk^mfZc4eJ9j6LU;@rG(e!EGO=JCJ1z>JY`jZrZu{nXMCa`O; zH77E|BpNKu3CvPpUUdeu6@aZdY0M*#M8$%oIe~>H;9@N{eHv`bDR`LzZZQm2wxatl zrvUSEQdy%^$haI}tpYGBC$NFQ7RnSxKdJys#|bzTfZ;fSlM29WoWPlUP_=*tt8pUd zl?rUe34EhK>(ydMj?u`D_ZJ0*tY))r2)x!IAI;zptEIpTCi3Ae5s8IT9FStS6l8CP zu;o&0l>%>U2&PIAFU27#$Z7^*lk;;rExmaELUe%?czs5`gHp_sVuloWPex&QD@Ouv zv`FAx8Hq2XNReWf6wy+gk-{OxD6*A8j3v^Gw_N1I>lqUJrI;#3j1()Spw~-Kq1Ox$ z^rirUw(22hOCEwY!69hJ8G^QaA!rj8g7#J+ut#bqNjsqsw805M8<`Nag$F^~auBq0 z20=Sj5VXMrK^rd+w4DM$yCe{_8v;RF8W6M%0YSS95VR=(L0bV3^yF-Zq{m|jdSHd1 zhc^g%LW7_uA_#i&fuP3-2wIdw&>|OtR(lY%3WA_}E(G0MA?Qv7LH7;_nyVpb_Jp7r zZ%8>9K1(kRSx_2=5aUH$E{;1pB@X1`fTJ-&&o!F5h2m6#W%xC}W#Zs_qfF_BK@s)q zCX5}q8XX&ZYyS!oWAY3Sw^sjQtIq6o^MEEc-TtjvY``iv@k5?b1ji>K)v~L?4!V+B z%YUnt72fZSB5uw9%UT~;#i}9y#R;U^=D%zMv1b2fmEBtW+l#~V-y0rYo%0zr=JLgr zMP|VI3OLpl=l#tU2_JBbnAe|zYtg|}BwWW08;4w}d@YZ_^{mx3ADC z5r=_x&-c>Rq0G|U(<_K#O*eC;dYOSD=#x=d9Qud~U^kL;nIc)p$StgjEy#c4geemD z{5P)ShMmj*Y5A9KSpR<)ug8Ca#MyIOxb(LF;vd}884u3K+t-{=FE8Rpe9jb`oSZz< zH9gWj+_0&si1(Tq=_M@`=DlWLdJ#A5Z>q2=ZUg`2^DfmiBFOAj*eF$M-r|#cx~phu zNiSkKC%RhFtGNx!5B^FNb4ssNx_-0&#l(Io$CN=r5B-`;Ir`t&Pdw`KwKH|L;s3@p z+@k;O^()c9EDrWu|CgxGzY7}mpO95OPVt2q@gE9(l~Uw?Ld4RXyBr}#;jIPJ{X}}e zJucpu|Kg^H*jr_OQuS7$$$l8Cny-_|-reU1i9=Aj*{d>_4|H8?YNdMBw z>qV{)&nI&P@$OsDw#Jok;-;q zbxrqmrg<6%L`Uv6yaB%wOI*_fEJ-5GHQmRuMci;r_jcih&Ei0LB+jRK<8b1VTY5!4 zKyo_nD5AYvdN&WM&vab&FVP4hBi9IOpzVjVdotf$phtHX2)esK(A@=s>R`rNTyE8@ zedWuT(P)xXK>;*ZR`JeHk#0YTOtmvLgwIE#UMVv!)l`LS{e%;iu3>s9nID~QR4UZZ zlJ2A8QDdl(?v`{v6+*W$71Fw3dc{hzvzs~6{S8H;`y0e~F~3N9C11MUa&wNii+S6K z5|WQK%N*YpN#ER|=$e?H3-BM($MtOEYbhh9ho@I5as%yW9cw*<-wYJR!zcNB;(?pc zdE0Qyywzfbi=}Qs5aH1?y>TlFv0bp(auAeEC4G-mdgOUN3voP;bZx}BJkoUu2l7bQ zH@@U@%80 zz?Zd2?h1TamE@0sFM~vW<8s8%Bc|Jc={yXhJjX1cz@89g#|Q$N$S z9jEe0Rt<;mXp80@t@6@wv`WUeUX=2b#u?RpxM9AvK0{j-jYy1+N*)m%5u22hOv4a5 z=No5KA>F?kXEY#Lp-DzXlFgcARQKSf+i9^~rwaT3?dHuDUf4vco^6s*iBx}UlF^E! zPty#pSpTLO&1KYPg={+tQCrRSsLD|5;Bv9MB_O+fSIT#BVC(u z1`oTE9nXU^>W`(0RN5umpvA6?3gqvWX}dDKNv_?M;p5Kjy2-i~)thyuXj$TS zcV+mJ%tbsuu1&JVwi|7?xM=&x@sar1#k&7$`Nq35xZe!iEmNJaJHwAt-gOjry{)~IEsUs#nMYFOglN9DL-)v(r|ik7Hi#Z- zw6%ZZAG`i}Wx5XH>>kNFe=uDWKbfu*793&2G0GG)UEdZmU6owO<#@j*<1F{((~o3V z`0yyBHI=>9CW$3{fthkS1R z0wG0Yw20_&Dqx58O9Xi42aJkL8YP3o(E=SGmeE)&pGirs>bEVb`hp@;KO`LI(igYE{GhL^HP1h3~ zULr$BwIP?I%(ILuEh*0@l{2}Ho&lMi$=@#^vnR6zs(cj^UIVkB4^e|Hc$F>tOI5IcpTpd%&bKbKLloSU#(gtvzF|mVHR62YN*=c z@#`}96~XeE9)-9wE~}E+m?u!%6pL*t65Cd|tS={)StYaSNbcZsEH?ZWmzAHuLOC)R3+jM#MHC;XXnXZfdP1n=`rmGW&Z?vx3+hndx3MzfUJxXPW_4WZQIJkr`ZzGudc8PG#vr6Ld%V zvE4*;#MrU1<5kDMM^~oJ{Bjkz?XIlIAa8WoAQ?OIK#rDxFG2 zt($-Xvg;oV@s`urQ0qucV?mS4<3|OCz3`-nclT$uC+T}2vw>9FX*~p` z3tvKM;(<&b*(gV>=kpt-&_tw4yBylDGfh{$6mmJv9>_eJ-`0(-ZMg24FTA~l@5G9n z*RH#n++F{=EAy;#FO%;@k@qs&%C@{|eTrz+McQ4or8Vpo-`?)u%j{W`TkW;2jM;7C zaN>wOn`8ry36ZWp1i2jj?q^>0l-;|LwaL8HDHUsa%HADp?TzHC3IDhk+?tF3$!uDB zGS#Kpmx#))aX5EFo9y`YpUlGPleVBV>jPxXuJt%BLb{gXoCtO$Ym;tral$V6*LNgz%BtCevfG%N zRZV86S!W@;s^UT!|B~WqY8DTtcd1!5Wbkh5BQ6aGw_fP)!TmT)WN{Z*F0!~EpA%W3 zl}GlA_1Uk!4G?*q;4cXJqvFh_TVJBS#I7Pvqqe zR)T+8Y}uq!Sr+if+N|QTG2U8i9=MN+Sv4z{7JsbGD(OobaoQ0aJRy&D7?Nwcp5WLB zO>>l8mv!G)4vs);T|^ysvT{igvC)@%wahZ;BId9dc_mXOs`jsWK%4(Zlrmla1|f% z!0T0Y3Ab2p1N!|?wNgtSvA^0ZxCp!)pNta?{;6qTqg!bepP5J7c(icq0H*Yvm`QfH(c$Ddy8bdC} z-LO}8xM9=AzT#!>-LbDK$f6IhMxy8?h2?$?9v@}nUvZ}hiGRhj#t6vLw7sjjPexko z8Zd=ij!p5e9uA?BPQUgl(34wpvaJerX>U>Azoxt|{BZ3RFXNwId*$1hbZl>A_vR*l z40C*GxZfFe_|g>s1AOT+V0o{7;b?jN)ghi|Gk$wjE{yZ3Z|#I^inQzAy>3i=;>5^A z{E#LGbg{-EpdbQPj|#U|CLd=scRiA#4QZ|M2Gdn?Gr1i7AHJ$lS$2-<*8b=mFW)!h z=ZiJFU(+fhUV!^HR3llGnB5dS$D{ zb{6ZEVz#DLc&?hTr z_Ll3MbSK+KOf}p@X|NEM=Ev<|8Z2EeVG}G}%V7*GUG7~>S5KJ#N;V&MztXk7yXmS6 zLtpKT!?x^oJP+ox7hm&z>ixynJRU+Xz2<&D<>AYHbS;8mv1A%7AEj#Zz{{sF;2Dx6k1M;&wu^|wogkzze!&WcRCqaG%5(*mBbQ^__&4kM=`wWjo65d?!FpNea6Ijq4^-&w zO_Dayw-Bun+N5^~aBN%rMr%fydtQ7~O%AbOYZ!*uxz-)z^f371n>zfwZJlF1i-Nn4 zh#!-XJU%)i0Y44Sd0gO?!QvwS3z#HBY^5x=F6P|*tSSmX?~SyDHB47-Ez{*u&vYGa zV7eMM%XcNaXra}(%;Uy%s^JK}^v0L_=K$wy9)~lWvw5Af+c~?2oaJ(DMdU2E;-k)e z?R~zgze_gXi#oYv2lV0#GR$I&H_JG)HFBhvT3Se3)77n=>5A=Ox@LAXUG`3<>+jCw za-4C=whg5Q^@z#lt63{wc8$sADPVR?c0IYW9BECQClWsIT#2WO2Qk@gg1J3cTkoQs zU6SHs#*dNH81}0kSaSeNwi$^Z4IUXeKK{RpebHxRHZSRB=F2ZfX7hw{Jzr*y%;t_5 zG%A~)!Ul}Wt}Z+8W{d4IwN*V)KcOp6MqiK0ZppVE8`e36Xq|KOWT%qCH#WN}cPg8U zldUQBch51&apPmLR}meT-y1|!Y&P$I%#Y3HDdj?Jb}9Q*YSEZ}XdiaX?{B)qVAGX0 z%yfN&+o#mKfnF|Mw5XDsMp3tkBJ_ezcRE|u{K4O>rb$Hd$V?PYX@k%$BrG}AbxE0sCYRm zJ(`?drXhz9w8rKS&1tyzN&~};*`}*MwqPY&g3+hNII2&{cJYvdvmD(cld#p<4=*O! zYA{K=3?~L>{hqdZj_Gr=O9e>P%GOX6!V7!i{u_NTx&7nQn<#}$g##vWE z$z@DrLP9Lw`O)0+cu#g&IeL#;pCGX4i1@hp|0aOW^~_d?x=*Ut~mFY(m6@$T)MyaeBp^ax|7i#T>qkUaXkoD;GrF zDW{rjsT`X-)um{3()idhku*;wN5s_U#^_NghbP+jN;&?rgLkvwK>#JGm(!!PT<+Si z4>ygFZ^1BDepo4o))=WiIez|BR@)kjZ5!p_#j6Y|ZbVW-T>j0fjgKtxAfKEHU0D5B zi|sL~7fDJUj>nIG?Pb}1x7czis6_N6q%~qZZV6GbBchWc#>eDOpdT!@Ml=9tmFO-v zK%V%>Dp-7T0xEL)qnvCBG#K4SBqc^n;6BZjZS9*AC@VR`$+nsjxllU1q$I-0wwp+1 zo9?A~^4aCfl@wQebL6Vi_N|lc9_KthoHsT-{c?C<*Z0dQWv7?=+PtHA)Ahv_)79ge=_-2NbX~h{H=T=qG+hgC zn65FmOxLj6rt8N$%JqxsDsazqb$(#Fd|^{53z)53ZyuT~=yATQxpwP`312=nT}7Um zuIhi9t~Aq?tj)#aI|g>zfS$gNjs7_|_|7%9LrxVrB1T*1QKu`_v%K^#v@U_)zjDuV ze1YzF$l=TI77=>#ka=Q#l|SvQ(vjUnx+ELZP1mQFrt6Ok({(ho;3vp^<8!LZd(=QYe2AM}dhuRfYI6R#v5vA%N0;*zkyU&7%GFRT0rve7V~l&<#0O;;8yC?%Uy+H}1vQ;3}N(kA9O(k8zBBa&vJwRhk0)9{VE zZ+StId-pBhQS01$%a3Zk@4e+}%)IxO2h;X^dHLR3evtTdPsVS0|1HmVG56o{^+>({ zmhYxN-k0(7?!V<`sq^41uV#8Zkoir2@V1_ub)sEtsV@2b;~uOvrCFyp%rvDdw6W>> z8HSmX)r3K&biIQmrk3b<^WbecUTAq$e8=TzRq-9yE4Jc0`M_g+&Ku!k`O|(CoA5=& z0^ZgalNzs8Ps2h}nsR2sG*h~AVUsCcMSGLWky-KGZ|$h{ZVY=@o8N_4_t{#RNrb@w zlfMbly2J8PyWpr8`ECn8A)lG|E`RJaqMbrvIXqUbSl#Ept1IsXi>zPgm*gePETuu_ zz$xT%^qc=Kx0_rn23e=kBpe~e?HME|NUPoYEf5}(t7nxI%WuDPqw;OI{jO>NciczT zmk2Hyk&qaV={hN5L|i2P$HgYewZXI7@A$H~-+9NkkeYYiHI<7ktHm~fX8ejG{D*fH z<;Yof=N&!QI1b%;cjX-AGc`4rqismdKeE*-RxxTV}p3BE1FWjdSA`|H*$BQtY z_p6B9+A_1^7F%h`%vaPGxuwNHr(AcLV~WV-?zb~vUKKLK=OUM%UYytF`t#by*41JQ zrzBh>Xn!m=KAE#vi*5)>-%Qv(9ornB*xV6Sc$=$pB`=OVUtqkr;s8aD^xxU5nX?Z7G zb)w}&@fEq{WF7ae%WWcWcFmn^@pLCUG-j}TBjL3^w}A}0;ADG8LFc|6QjzDIxb?X_ zur{yHts)z7Q9;`SdR{9pE@Z#p`7C{XZvG&1Eo6(vJ4^2BLt!>64Qyj!FDqTo*O;za zu#lB34yLjBddJA+h}n=kVh&yQ@BQ+)RdW3Dxc5}@&#Nl$1wUCcP{>C=4dW$!f`48h zubON%EVw`@o7;rgq-3g`Xpmvk0l2$31IgaEJbqICi(NQw;o0TN(=u(Bly90&zd~GuU=mx+cI}e9>3!VO2sxIV#cTD@%>|C zY92p~-AT>sDEGV`SZu9P8NQZ2I`YE<1ip63HeF})OxNTB_@UWpj&PCZAMMK1K?Cbt zu`M;1bKdekkEibI@ALSr7HrKyX;EVqTQTn*|Gd`Ohre{ zk9phIQZwAZ7YZa_roNZ^YPR6@7d|6&@Wc9JwCSfDXvT{^_e62^X;=G*1tiYFn ze51A%ce445o8o<0kx)IB8~>_!&v!A)+V?y`*I4_WceMwueJ{6mZBLzSwt}KKzG9%< zPpy4lCwvdp@OV>{mt6z!RiJd)+nKJd_~cKrR`|S5x`OfPoOBiIW4fB+12=7tquILm zC%EZfAA4U{E=e?6Tw&69x&OVdznnCz3#}*la%+(=yXEghlQfrc+*n>MM*BLJeDyvv zfLHw1O7uWZ&uJZCam(M5CTUYAkScBwH!qH^;5d2j{cs*xK7~K<+}*P9hwAbkbk+Jg zzgyjheXX>_EjN!`jyZ)t$oslI^aI@j#MaOcT=KJ_AGp&z4*gK7G@hsmXc4fal{UC7 zVM42IaJaSn;99B_cRycivMk;Q7|UuS9aVaMs1zi7rmq#x4yn22WHSgV%HpyjZR&@z zmGhe+$5t6L19$slFpia0w3A>ItBrH)O8Ky-iJXEeSyRzfFZ38wR^EZu*&5T#V?K}$ spBynhesnbNxr!AhK9mZi4`{V&-yt1#)qzngyOOn+XQ<_plZV&+KiY4!?EnA( delta 925553 zcmb@vcR&&J1&_1+Kc3ZmE*?7eqU5xb~>y$3AVQFN72Y*?{(9Z^y2J@(jQ zizYEv)L3FH-F{&c5dLF4J~q_pY9OD?Rh}y)+}Ie3jlqBjX15 zNeZtL)hjZ-Qu*@bt3*|;RJnY7ulULlQGMfkSB&TrRkcdxsPd60M?`$jc{h8@3UAs~ zkE!91jUF{7a?FSdm3B>c4iQKrt3_0)78Nz$V@oN__Wv7u!EE`kq!B}V_31re=z`hx z!-o$}#()1BC%ku3uVLYAmZ#^x*N-jhwX+XOn^|2qD`R9I#_B-9>mee+>|*Tef?{k+ zDF3{=~f!J>)7R*1+$g@i$miR2QFYA z9x2IQ_L|va-6}E$Ft6Ej0~-?RV0GO+?4)9)7#CZ6l#Pw+CIRK&4)L&Edj^XKB=+tz znk|U0#!e{{0p`CQ;tOAFp`(>; zz0S%k01w6Hl7iV`;Pn$j7&=`E40&g+gc5G>uy;joh{})DD``aHa5kxPaaLQZ7%S|m zWed{GY|CB}q;!0@juytw)?Q*~%XhUiHNiYb@tO$43wG>i=m6?&O~vfi9!~a6SP3?x zdpN6(bF;5Y=@`PQ0-GEwWzY8rVxPuZfSPDh4(yoiF2}w?`cEmN%{;ELvrN}WHnL}F zwtr|@HX_c#_`r@)&wZ#6F`M4Q$F7b=nw9afuX=dcp>btdZRa{{K}j#;0ktDc9+a&N zIMUHuj=dc3VSnjW8ffzC`LNzY&eX$tdw?fD-iJUn8=8c%Z#oudEa2g-rWSOmG&s`c zS!uz7+2CQGFJf2evL#DlCBV=ISw;}@c8HTrEoBG4h|MJgv$^~I{!)V`5hgS1?BZk} z#QNCR-CdjmFU5P=?Va`Wdxhb6`Y$7Ey8FQP23cm!?2zFjh9?aj5I<;Gc>IXo1CrQs zaW>t5d)ETuulKdE+A@_STws857bjQ+oYy(~B6Ab7BgcX4Gfq2F%natu8e(O*s6nBS zQa{T9<{^a`PF3tO#tI&ud2Yqg$b^FU$QPju7p)=jrLcYfKf+vHssuZ!S23W?ujj=U z!ER!!marFDl++hQpfDD>;AAg(Ehw(c;8OQzMm9Mv90?KN?aLwVLO-#Sx>Uwt%NBGj ziQ=Lp+oG40@rN!~Z*cS%8EwGe_P{n5|Y~Y8({bv0;0JMv*v0@rNoat}Y<*#SpEaFg8(m zGhF0@S1*Pb+1K$^QT*b-#No_1!Q~KCadh1*yOg~v2~!q|{_p>0N)I%f`1-P1lCXeC z?|z;{q$5N!t(rlkVMMwcI+sX&iKOham`K}+EI1cT12Fn$ywyS zohd{-v6&N-xQn8dCw_%3NE3*}%;BU=B2Alllw4ac`o9!Z{M&mch&YH`+?0QkNHdAl-~uP56Gi5xl$p}4@7@w|Be@u1 z|C2~diPT~oCuI;RE95=7Hj7A|hJGMYeM?s{;L@F~sm`Hnx z^fXjOr2RzFH{zr%L`n%R7D6s=;%+S9q(mZhlB>zJd?M9;t|ihTA`Na}C(;i@`a|s` zQVx+aD!7R>l}MM{bJ7?hjoTecuI(Yxmy~8x@S^lGL?b(P$lxTl(qc86zc!4$Ke&uABVibuxXi>B z43>lB=%zZh-pYaB-^_}Kv|zihvaubLOQXzv36o1BHDLRFos``=tQ@Ny8pRq@>JU_P zft^3pz}B0tW-pDDftZWRAk1w$+hSN0GYS8f@8syu_OeGtn!xk@It7A>kmE)fX*IhW z;#!aWI$X{U9H9}+E{<}!xx(}*^;pg7`skXAU6)#dslk>XTZx^UB4<{z84DY;hLyNb z4Y+jDph7)%(d7j8a#|xcYHB$)du%XUepX|)U{rl1S7$$rt;0T^5RQks!R#*+YOxhZ zS7)M7k>x-{ZLgFSq*iBNj|vC*9l~^2j{(G1xDdCuiunbOnc&yifQfH7wfTwUBou1 z@VaQIUjigOH``JEG?c$LTWMMsw&K(p?1oD;n#$OMsSViVsohbgOafYOdLMT9 z>SFV!*F~q+BXjg()8<)_c{m=CvliN@nVb3cQ6-_Cf4~Srw(YpF)bvPqMKF zG&CEyxDL_|cUM@u?qKDE)Fy1&>^gGXXMK0dnqHTgf+9GQ*-a`--Fa40NeaU^e{FFo z?!3?~?5nx+{;T3to!gYPrW+Z52?oSyG=hpKsz0kUDzo3?V(XX9ZoytkwzJVWR>Twc zfS8nzeK^?6b{V5$ma_5l+e&fohfBuw`riDqQr!O)%Iy|KvL{y*LvddmA>h6cBP4*< zU&nQ0?F&NK@iQ%~Vo5lAa!FbC#ERlfO;R~7Es&u&#GNGv)JBTCN}SGK5r%+pSBZh5 zFct7^M>7W-lGz;vWgT=I?m4;Je0&_0WFV<&EkH?T6+0S~k>gGh1E7foFoFk<+sJUG zm`|*Wn;&dh^CH|%l}Dyp%x+xNkx*QdQHfluv^WZtgga1#GJi2XSsP{C&vwrm%4}gT zXAL0P7Y-?+u!%H5t(Iv(YEoAzTWeWa!R%H<+wc`OcKf2%Y{RrVOnGA5#N}3mmWXO? zB_{u$_w}7#S1|kgT!+{e%d4{wmepZOv9*`EL4M=7AQa?<&<^GY5~+sSYH%mAR}edF zHJVnUR+A5L5%D_qkzr+dR+6283eI6yu4zX+zbVN=&LjV!^HbT0Yf+QC(jvvZHMa4q z)qRno7PiG&18U=X7dG9vny``~&2bCN{G%05L@;~U<|}Y(k6RBrY8gU#2tB$sn4Oni z6NQVK{kB%gMz0HEW7DlDZIk1E9=puP7Ob^{xyJ@d*)^%!!fYrgaMzDBw8ZtOK3ghB zfmc?@#$3S5GyY`Jpb;Pw8QC4}fCTPw$g%AQBs#IoxR?A)wiB(Edk z&~$wmdt!-(ExX=<&aFiuZ$fDUP>*{q6Qi5I55jxP>LMa|NPvl?v6?NtLG-n8YOra_ zXf3*ehX?q|w8AT)2y!*sbmLGE^Lf6UJ-IOn^jN`4*u<@aK+IHhCTnxjuBc628TR(p z(O_Hg7ZNsP%V75PmJ#fsjiW$81}i~vh=&9SmVLNAg`KpkFNoN&SOZ>`cp)#8tc3{; z*rv#mqg(LU0N?U@#|!~Sl)bpai`YzKC+z%z{j@8U{j?{A{cHC`u&vY!8M=Qo`}a;c zE8P8F5Lt!&ymKm22M;2!IwQbq@v1}+T?S=*3x5}sufYDi?nU)7fvgHqtVUHf101j2SB||5Mf#@+uXZZqw*~|+ws6K zQH993imdmDm+8yiIZ~e4PX13K|96uAxvcVNcL^R&B}`|B9IeGH+_nAaFy`Ms!UCRe zCL=rhk`ipK@k{|OjBO*|HS2gY1_9nYkuLrBfNcB?6BB$u#2lwgOQd&-(U%cWubuQ>j z3BsyA1n-*jx;aDG?0Wv@4xhUDC*)Jv?+a7?KR)JJcl%877@9M}sV`T=q%g2i$n>G4 z4X=opH5?Z(O~&k`h50OJhH^FpDZxzqzlVV+Iv#U|f|3yCFP@WH$87!gV8lRhqMkX( zae^&OOim%Vh1n#ggB%W$$}lq6-Nm$(fhB(^4e(@fW**P9e`$s?o`*vO+nHy2s~p3} zHjFCIY~(x)3o0>(Ma0=KzdG|1S0v1dW^Qve63%bHJmxb@Ysze(P!PtqX6}lJS|Fzl zqhl{UvBK02%mN98u@KgH@S~!Q1fJ@~MDQGCy%{5)3{Su&#BB*=hcZ9$%*T#mVuR^Q zL;dxjrv^A}3UkcHxh5`~5mHj;!Sp%ID&EqkHZl>sD`eZ5793webtBmE3sVoY*v@$2 z#of&Bg}L`JEqRrS=lPSt`B?|U3N5GLihKAs6l3@G4hap1~Fzc2e z1pbvQkO(LcCf*Xnz~o^9ix8x0I%{CoNWmi&mzr)dI#fJ+XXAy~zqb

7+m|<<366AUMe*9Jwes&nK5(7N~d*dDjHfY5aaEDta}N+c
zJ9o=uh2!asSXYOWK`
zrDZcXM|gmTsk)Jd4MYw{lRVPtE#55L#3$Qt6|Up84BjbRLQAjFE@3H}?wCZOZm)0_
zuiLhL!Yo=2PjiK{X&P0+!E{hKnCGzYkZ=JlhqH%;!PIsbb=2SCc~8*$qWekVdTI_i
zXM`(wJ9IoRTuy6;%nQP!)V}!ZqHqMyA>|6aFLqxQ9;fDD`AL|=bGUp{xR}-sird0n
z)V_$jD;&jh`29Y;9qbQ<=c(;5ry=7gs)!;e{*uf!RJcR6TYST
zRU@M5s}NWhctb1Nz_)$#^rGW@vaeBuo^6oE@u*p(;fE`aU7|C5hC?3FCVrqWwz#OX
zlFR$JqUfQFOa4?-bbzA=SJf7s;?It4B8ud}@>+|o@L<_(MNRn9{%$WS%O|UL5}_$F
z;UMiI8cXwpz(1mcu6R)cerPnZkLW5tnCmiJl)-E9_ZU$wpW(z0qBNdl>{QWf3CE#Z
zx?lOqb4A5?g%W|t!Sh|ZSoEAvE?z2f^U1TzMK$=OX{G2ruaI-K=p29c(^^p<-cZRK
zL>m6={7oV!U+|F~qG~*|;JqR_pDeatBgfM
zxV(Gci;nUquYM3E^K{#N7WsIr>EHYrVj1yuK5uQIcp;zncd2+1%@`APTgy*1D_V%9prB@L9Z=VGCO}mK
zF(V??6Z~3FtOMI$O0BSU6Y)t(b+}R>DrG2dJZ~FuVHNz`Ry={X*vw913Gcs^-NZ4}
zI%RnJNx|3J&tx#Umv|Mtsx|zd9kq{OT+lC06q4
z92hTl(A0e5qHp#3&w;;97MBupO=j2(aoIq?l<@vs@p9f1b67w1{tLy?#1mSWyI9?pO6P$RkY6KI2Yc)k4>WVCJvb|FN7=C!
z!3KkRKZ!l?&kN!@Jllp>#54HH^6;8?8-I4?E%61u1x=G>?ySGFKo=qAs2h1W7s{)aw%^B0kjfk|otB?NJX7
z8Yy{36EKKmJ$QbcWFgDCe4*Rnh-$X)B_QV
z5+v}eQaX@lI#weswC8Z0^n;13L*q+JlX=o#BBWb+gCC5PF5;7YDoS_o$>Noy`}omL
zK@ET2ZMFP)JH`0(TI)!!@p->B^5;F&#GkicGk@NaEu^RUyn^=ryhl3t^Cooi=PlDk
zn$73E+ryuCX-|LN`n~;mrG2HF`Mk#m`SVUr^ye*;T$oqTa5&geOWF`5SCYCxxxrE$
zOc*My$ltwfwEynJvHrVF;|uSGw4vucVzZ~Rn$-k|CJyys^~ck;M%GyHj5%=hR0
z!20v%E|li;d1o&5=WV>)pZCoQf8O0IrFZ#`Y}E#-l(J@YfDzlI5fn88qMG64LoI)=
zG>Z?afd{1?KDq3ObQUEm@&LLcNJvYV0TWJ3=V}73834SIYG8;;YGL5TJJQ;G9roPw
zR}$L;=_|gH*gi@t@JhseL2k$l>!O9OZ_;e8V(hsjE36{(1+tF36F$jh6(|=Oxb+d3
zrIwmIkKMGMYylcmogoTw3;#W;(rcfUF$YzC`H)tyalP!KLM7CmCiK
z>=hw%i_mdOMOjsRJXA$?6CXiM*)W<_(xPIfH3IPPro_ol=tcffuh#3Z|w3pF5
zw?shQVEYa-GffvpZvMNIEL(sGERB^dqKH$1akQ%}fu^pIoA>vWjl=}X_mR;&V<#BR
z`pQBnh5-=W{2rIRXpk(ER{4X2W!_>`mA%6}
z4ra?%(eik{QZ|k{blcA+jLsby?N}cWKA3%RKn{Z#QMFP@@1V-;>?I
z`9dDZdf@ZPk7P%c=vd*kY@87tw@Kv#aXy<;uG6ApxJ%w!j*bgT$fX!>X&E_f(;lAL
zRfhJEMar*8k^Yz0S2lpB<&l9NG(e{pRFl`D>@o;0aDSC6Vdoh6TGV^OZ%yPM)#&&!
zR!*#v-%U=evZ{wXT!PMD=_@~}K*z;H<*_n!d^c7uw9o}yILKHblY?>%pGjf=1@elx
z^TxgfpO(pWoNo7)%YUV;R^OvnSS9yivK=>aO1U<3N-^8yVc0drcgb%e*YDjc|AfWA
z_sjQT5AQxC55XQheo8(JAFEuJ$07&71vlkCsc3c1|5auN$dy+3`FD9-NMSrDe~?$9
ztT*WWD1-@-8*gFOpO~PUI1Z~wgRlqp%7cgle^CSxU1jPZtSfw|4a&pWR+xiChy`3z
zJZKg^A5ki32o8i*6@!9MZG&54f}UdAEovNe4Tt~Wra_nRu~ze-Jbe7zB4`IbZfzB`
zg;s&gfie@k(lMw#E~rG0pxj7W>yn6CmJ_4`)gr6t;6OI0Jyzz(vY=t|KrkV~oQcg<
zVoMOCLdQ}Ef|}uaGU{B=IUEypuX5%wUk|#D&GGW5phNh$`1|?EV)^PL3!9fIf8HY>cm!KEe&+Z_F8&~k!Y6Xc8
zt4?u}V&VWb21Pnnc!fpr8XIa}2}KlUe5$g7#8=yDif7o((RCFhp7iw<#9&VwD2Tx}
zG~$l^n<%PagRg9oDrtO^QC)KZ^Z|qu9!F(UkT^wA7+F2MFAYduDG)f@>
zH`Ku%SYHub9d}_9jlpfPhSwdzFKLDn$etrXVu-K_$kr;O;ahL;UToNnp}}{to2Hiy
zzDn<=VNt=vP1ef6q#6Y`2)5vARIGh)DNMR`*I?qFtX{#yJu&@*D`7W`8XQcjRkNgE
zQmwp0f=RV{IFvhP59f|?BZIr({QJiRkEV8;d!;NC+;|*hg_kA=kJl9XZsUSN-_2PV
zY^1OO*Gyq_SRyM}j>9f;Ip?gYYyT(CTCeh&oCV<6{~tNsPN%C`l7^rHzurcuqSdiSY>?l*O=~Yhsm7npj2^xgkg&q?Cb~
z^5*DEO%Dc&VV7RYrHBh)@+}4!oS>A`3_~$6M8Gw$R%eGQ$%uOXa3vX#4IiZ>1G21f
zO48vD`$0(_r8S$ZT!_1aU(%Gja66JYN9o1dp*Q;$(P)Qyn{p66$(vt{>C0_rPhsq3
zz}}-unz=lBsOSXhCeIXb>M>-L@PGMPEwE$77(Ma!_DJs-XLY(kG?|frxik
zF`)xXe^jEk2e3tPeDNnu-;_2Zm$$A#g?9Ro+mu$-Qyxs_R!xv`
zXERHv^68_6nAQbQw2Y%xGaiOSsupu3L2f10ENY|{pjA?w9Nw#}y2k_nLPD;6HC1;$
z5{}nU%?%Xpc}f7&P@
z-x0H`ny9V@%xP>h723~BIDKrPnje6j2q#}Fl`ml5-EX6c;W$H7oCHcL&8fZ09WrOH#f*>hpr`TS!@l*)sgR^?85-9Cd1hTN73hjF(zH=nd##0eo
zqk*ayl<`yqa(%E0y+w>TX+h^?)f_tC6~Rp#qKXXIPMwFV7V>ubHc~~|!xnLh8m*cc
zFsHb2s{TBun-f&&f!ax&qWUoa-$4}Pmw7soQ&h_XrIVbdx)uN(T;+W5@if&2p40M~
zs%3$4x-(0KUL+*7<+%uN8ktzx*{X*5x0S8saB2_!yV(+p7=j2?f
z+9(RlPGZ<(rRrjUp&*7!R;!k)=$N=8)K!6Mk4gjA^_{;-_QnwR(Dj~eoEN*yy}&L8{;>>sTxNa
zm4qWkh6s5nKZ5@9NOet4>LC2(h3XtX96$6*Wen!d{`$A7zlKY8SBBi>Gc*ecnb?#&
zd#_6fdPx}9Vz{Sk2zuj~B>Q&{*~=%xdxY%fi}-Uu$P0cz|0XeH44)i7Eaa4hyRBV%
zNQp2mnZ7gRm@EJr##Hc0fc{QN8+>sf4}3fmq64j3sjTqL*^uJ_L>$2Iu*!vy
z^1KpbFNcInIOh9rgdF5`pLQz*?FS?ld4Dg&#b+q?Ye*u0cJ0#;z@KgYI%EeA7Vu%M3FjBIs{1pvJZLG;Nm%>6#gMm
zcUJ~rC$&i(1TW~-rvk7OL?9Q;R3sp(lIZ&uWb$sWsBTMNv73Td5fTX$R#v0;gGsn8
ztg5cT$Jj5m)Z6)ZTpgo69mHiA-&DPl8$ZKxZPh*Lt6Ck9JOVw9Ku*qvd0o{CUZJ~j
z>Rft-ia=!`yEUq6<$I|saJ@Sm(O12KS1oLiy0EIf8LSTDYf_2f>aBc+-^ZvAP(FM?
z&Z(7okM{sAWhX*pfx-|N!2!u>l>A|^+CIvVY
zUpXF(TC3K9_3PC8xOS9?q#a$AqkcoFJsE2i6_#~et%8*|s)zFtd~mb6B%gf0)vt2?
zc6A7^=Y!qqANi0tyiZ*^K$R^p^^m$E!|C_*5K6Bkr?-_LvuWQW<>I=NCw#(|9l!HJ#1b|6D
zsk23#nw@X+YQolc)cpeKaS&)QjJdDg!;_ReQXk~0U;SPEoUfRdUaGs%^(GJn%OWw?
zR60JZg_JD|La7hee^pQ98^LOF&C4LFwwpY-hUmfdHip@bpQYPDKcnVk`G5HkJiaIX
zG>nsV$67&5>t`aEWzwicKwZYFfd_1wz5*^8>D25F;*uXqXc!xpl-JXQ@)>G1(0KS{
zawAP!9^qOu&3Pr4cSjdZnvhF2?5=ssXK30>^O51sw(FxQ!z0Y=r>Upq&i*z=bI-

xiueE#MwjTp=K?r5suqv;-ZeZ&LJA_l&qi}rjhf+te7ukn3wk`}F^E`s`LS~Wf&HbeUcpEu9a3b8rttF+PheAhMF z{rJ3To%RpRkJ+g0qeI7jdD`Rne3`@AVYs~PQ`*y59&ko`1K(Hsyw-$|oqyDB!RMuy zv=S_V-ec`21(JIgXshG=*>AL4 zusvIdbcA=DM3;l@C{^m-VLN=W>BeKd#=3PALeTMJxUOmtI!0F0xv(AEMC%@6KUQq6 zYb8g=v<|xBSf4EebSJQW!v^a_IREHTx+hq#_*C7h;=mj2XavYw-Kh0C%C$N-2=DPs z3eJsfgZi)yy6$pjC)~DEw^4wOUH0f&()FJZeKy?2FiBi}ZFx{f^TkNi1QrMReV@rd z(>&d;H0`km_1?OERK0=+B=0n|0OOk(x`ReHb-Jpv0p*8o@QS7fwmPcoF9LI3nl<3e zN!>;&ZGiemU2~{Dt$R;3w(@ZIuRg1rAmEskzo4U92J%3}q$;Idi4wnE(#_;aOuR}< zqQ^B|HdTBgcih&c^6q$ePdAy)9SEd7x031yrVaZ>!DOXWE&eWs&YxgxuZOZ=rn-vc2K7YyXo!j$NAC?^8dnh9S-P!{5^&xY)hw0UDw?}`0vc*D3F(58XuYmS2y_=p64|1cJ{xW3<5hgFj zJ(a@fvU(e391)OO<@Fkf<0uey2ndRyY|8Mt)Knh>zgE-RMSS?c@M!&bz5zN|n=)ts zh6M;#29MX#ccWCW2qd?j9({Eck7S^=k-jgT)gi(gNKd6DxKm8u7sj;E_oECQRDK;; zwVmEg#~&NDHmKD}ug0xUHBcf}ZwAfF>)V0sPWst&?NAXUX@@Fz(f6VZB-FcAgwCG& zL`7jcbbC-?JM`mVeO*4Jyvcg1{a~c+tq4#7Xc~T6FM;kM)NzHW`jJc!wM`Lp9);PX z_4BzQ9jrS+e~aNlv}}qVeLa&zYl(^a1AOw&NqV#-X^)v~%@Gd>q2#oqF^ME&`UjTaP}7M3Qm2`a3~fvgvWXjOsDn zf7qOA2N0UmJkm#joE?t_H*y4CDBaJ#RKFpt2rBaCInS z1l<}3SK1AQvp=uPu#k!b)+rA5bsPH78@Dz%T-+c5Uos8lU`Ci>Iei?|h6w2t)q`~6 zok}3XWl(~b0}T~mvkHb4^h`J;_(PPzMM)=ODyo4Y0}W!(t(idv!($A!B}@_=(!g+p zuXlAD8)niu?H|}G*r$mhky6!vAY}!{Mgo%C7|@gkcM+(9=oxsng<%M&0qf$9w(bTTZWtUuoo>tWE~N>mY4ul!gG(wTTENV=&{ zgcrLTi~+h=0+V|fehV;?br4mo8v!!W0aT}2!7Yh~Ta;ZJvRE~!9%E>XsuTC_Wnzi} zeKs2poIsgL0o18#FlMr0JiUU|0J>iV+NBxj#`6%V_9x%1M9mDKzI5fDc1@aPcto!a z4`P|)uPSRY0;noo!KHeQ?kfF7lc zk#O-ogI)k48u!+~L;DRQMO?D}VS|}!OwOT#rzhwlkH7u&(%4e4`YFR~A)y0qo;769 z>j)NQ$ed7j-msQx-bpyM<+{l+R}3RLPMJT^)pvpx3tQeWw5K<4O`!VSz`q=pezRT> zc%?D*fJg2bHjBV`Z65=ecGrMjoi1Ur!flTX=v5c&Ul8=0f$CuZp_?qW{-3dBl;QF^UZL%fkw0=i?j|O2l*R{!->Wys!?DWtXMRN?rIDIS!awD zK*)QY7+xA?Tt*oRMR1el&8;AAXLT`*7-@V#wH=(Ws|D26)C!PWBlLSa^++@7IXl4_ z)6tK}(FGatDuI6zAyLBYS;n2boqNqSqRrXF&Y|;+hl04|+a<;c5-vG$mGLdr;sCEy zL0>icQ0XQk`q4b>ZTNDl@q8d!U_5~Eq};yjp*xM}w+0FSd3%j$Gd4+f-)BUdu}N~l zA)}t}&vTC%qXLQJ?3zXyXx0945L|r5*qA z1rS#wd=Du24be@wRZa&Y9vabt$3tUlt|VZ3P*~%3Ju*%X#2dIEhzdem#)-8XJ~tlc z-C=)iObgK3hRk=UUF-P4$nwGS?UQi@AGq7T8Y|MncK}~s_Cnv+z+a00C^B8)JaAuZ zYCvZVh|DhL70(Pd)u$g*R{$AtkM(eZ&V+uS0}rC%CZmb&m3%Us;P3##lfp=gsSWR_ zg-+8vo^NHJX%Am-zJ!`~^2z*SrW|@LBJtGA1$E_25{60OHs{5Mn`l02NjB%L7>+*k z(Ko`BL**U^n=#s)+0@h(UZ`M77XbGrw+0TZWI`|8lH}tmrc?=+91(3Az@L3p+fJB5{MJ2`|*3CLG<&gnq#m(*~tmnHB{E1`rtE$4_c)T0>Qx2s6;C zo2e_Fn(E=Fj;6*Uj$ga30q}zevOK+^F{9qFaSzia&V`^>jiN{lZ%i~fsOqbqT!Wk;BTzUHv`Mo}vpFw9SBB{% zpM1Z-bU3gw&>-iPSq^(FH7yZ?YLDFps9t6IJustkm;hl);f6IPG#nr*oL+DG%5cdW z8%^bTGg-EpKJZD;PSYwem*E=p=Y5oGs=y-@KV(A7Fa)gmG1D=sH){RXtp!%}LeD|Y zUo?dadCjkyf&vS04ihXnu2#ZF*G*_3LCE&MX$s?$%Wvbhot*9cvk6TPNb<>j(}=(- zdoB3wS5pICkuHCj(6AjN1KkS~)w7-N%!Gj5u=Yz6dLfCB{ZQanA@7Y}h1%~;9qB_6 z_XVKS7t>~D0M|D)`)XSA@1K4`)Hm&-nvXc3TV(FTpyHF7bTz?cV)J$h(~sk_Fxb5L z-*dt5@st1sXHE_7b9EqmQI08>90RQ~MSFf-j#6$ksDrMW=ql4h!p zF8Q$_vc&+785mv8Ott&O4~7lfnVV}L3pY=tnr{6AtS)?9*}OywK9)~3fD^UM=w-qT zvlSkRHaF#6=cr?*tf=1^vo83%7jj)>U2{{a$Dse@jKN&s$IWInY}n9@zBoXFp(aFJB2xc_7hBl?&Z@xgFwfO%EGb)qgnh+ZxtVg{NM0k#wy{}tQq*E`DLm7(U2eA`oPqIq0X< z_?C(_uSRPDxY1g_%#1!?L6TEen5BI5F5PHOKy!MW!L-wiK3_qS;@#%fJVL)*^BMG{ z0%xe5Z$@9TAW8F4GukyslIM<@@ndqFVg3m-`jQ1ncD!gtU$P*{_Sei#x<2UpcCjv0 z-7*iS9EknHT?hxg>a|X70I4k`8j#(zb_bYy$BcFte+90?k zdnA_HbS*DdCJm$jpAMFmS*`{F`)Ty_*A!&YflHAVD~!=u?g%)FWsDZOsS!kFRH17U zFuhqY+-mtquih+x?$>}2pM`F8;ddB%02FEwi#cnsB`x{%4ujQ7Ta=V0!48Mz%2^Ka ze)$q%IUE3!)sYrUAWT+AS#I!5W>v8q4}eLfY8JXrN;g0;CoSTt%jD9R3tccrZ%=Lr|Uytatq4HF#Hc7BIU6H zbUzqoQtSO^-)yi510mo}L)%D) zwzpg1v)z_R%Fd8@=Hdy|x8olm{%$BZJkK&)0LsnpZ-9n;O95T0LmUqgd@@(pV5>8h z`rPmauDf8Ne7MDh)4fQW61d|+(E?+ZM+c&XRyDL=vosWdE+GR9aP&`>`Fx?a+ZGXR z4aI?5SdtP7f3}?GE5?I+mW#Z5^B-6eDb0_@GU&GmUs}S!MG5-G&h|r|O0eM{mQIxB z#&8h9W$~Indu_?%&7J$+@-u&S-6zXP%65YAb=%FhOsl&o^a-px)pQM(9|&xJ;?cvk zIxG5Nc~V)5nXU0?`4(59MQ-cwQZAWM!ix48kh5J%S_5Z_6>%*&Q>2^Uc*@H^gxi8Pbuc*Kuh%WgLdt0-LC*c z@|W>HCfYsOx{mrm=Zt4oIBEzo5M7*XziS%}J}t6#2eK5a4h&purE4;wdW3a`h#3pA z##o@_I^B`A?xW%a5b!wQ zR(K@v=LOczl#QGp1pKkcssZa#G-{BjHIxL+fb~*~v-Hkm}cb)ZY05qQFSkKZqY41jBFCik(dkdvYVCq)u zNyijIT(Q#5VF(R)4aFAr#|U|3 z`(#hB&xR{X*s4kp*IVUm^XWJeJA>@?kH4EJz&25~HMk`uycJb#=}3T!YuNPkEx~Yq z8A>>)J}wjT!)nzXxw!!7!q!Z6yZ1(wvKpWi4$#(8k0FYpeg9 zafHX(+EUIqP$x~`qF~z|wm#UDxxH)`P}>Zr^|w98^6){n@w7D?gZpP2Z-&{{P|h|8 zOAN%#HsaH4$(Z7m8MYxZbgVbu_Cbn{HL`4Hu+Jn*Z71>Z!ZKS0e4bfrOTqakZm{Ly zWAs*AITZRZahL50RN4I3E4B_%d#xXXJew^@JkAWjBHFSbn6BfPjXB9#7HFQIU6}Pdv8060&pOYru&o zwmVeg0s;vUUrR{U0S!XqyGHIC9cul-1%R;nLrkD?rA6zSEexcwqWsY)q3<$_%i+E1nJ zwDTDRG6LkcwJShIZ;KIR9PVO=(n$MiE~*Yx3LvVAaGfx|ikvM!TiDytcMrsLN)XZ4BLRo6I&>ge9oh!oYi~bHIa@*+kHxd4q40W~eK+Ok zl$h;7=2I<5JRLS3-W+J38UPY>jj|hrTz6M{r2YHuZsb^dIDJbp0w81^_hT9<6YRf9 zNT)P%ihV5QFpKDY5j<6a95e^KMts!hvHf=`NyR+3=W>1vdTHOwr7pj+`?#y( z5B4Npy}#{SNNP`Ahf_>$9V&L*;7(~iy=%Z}}2)SzWg8V7P zTEm4-M+|)f))}Jt0QyXMHaAZ}KOSTP`G25y^b92(l%G>C0a6z{Gvd#w+n}M8qpgI= zh65rTC&lO(QOVI#h>odM9jnAl-hURlDw@8~R;?X2I6KBcyN@R(-4PES9Co_Eg>*-E zaIvm~a&m-#62X?*XnaE^M;Gfka?m>nyDDqJ^hSH~TXT*i1fKh`mkvY|%zr-MUd z9cuWwo8x0SDr-RmBBL*#cOIJUTnDwnELUNEh9gGE8Ah|fv6G4uHcTR%u+Z^KfW(}z z@*>A7-cL`n98@11AbuixI^nRT4%$f%)(J+P#N1o(eHb!Y0u1 zh0<6>Af@*^j&sJ!%yaCbvsDoqIOL$+S6l=#=!j!4@4pJi1Lt)1goAc!gE>Luzq>r0 za_1ad0yWX$^NvW$cD&F;ilQ~32G<;D{~E4;aNti4w115xE8TS5qZ?#EREC{v^I-ZT zKVYX{9no}vxDJc}*@|N5^@FCibXf4hPuNg^@snFu*20Ic9Zl%*lfd%+cJyucFV{kcctb&t!<~s|m)J@>zPr@*fa~jo0{2W-nWRR3+%Yh*wPP93O zlvhsUhkmbhqCGt1Y@Xg3OF8UBr40XWUrfBsiT1@1(1i|XJ$g`NI{&^HU#K6nV=<>a zpdj7rKyxCOEeQ135UU2SvRoD6^s>&f+}H!2jda$doRT6#peB`vmvXCVeX2P%Wb6RQ zYTDdN&Z-j5IJasz>3&z8_%+GDACB932i0|*=^`?Gf;$^JNAdNfT2m+O^pt2*wCPUQ z+=({b5w{k!bfQgnBzdW|vwi@T177OvtSjVLm*|E52$5ZPbB8$uc|{(4(+xfAWZBWL@sb)vm@B>7~66Yaet$#q+uXzv|KUf<PxV|AhVW!r#nC=ByP{@&T*$LfFVnYwJ`+Hjm;0mj28Mb^) zhl}z>AA~p&o^iTpSDncHT|BO(n8pX6>reoJIw{OWJLw`cEG1m~F^y}bT*m{T(Wi`y zc6Eu+=ojwVgK0P-UB?2Tv895GcDhGs)T!k90n<2A#YJB$C&C8RT*q)D6jaN#pGq5u z*fd7f3UsOKqFjt5`utMQMfuVbSL^ayxx8fCAaL7iir|1It|ypPo0b7oon8>3(tU9g zZEVGjE4sfFT-eri4ZA9#gX<)fjlaW^cXCm_3`Ia-b{E$(%w={r7v-X8kzQeOF4`r> zB9K4hUE49CwY>u;RI4v)(F3*cmHw`+n9#(5lr`czZ|MiS$_LUnXODEL{&Vqe@Nm~4 z%4gri>e>6llpyY4*ucF%xVlg-yAdGw;4m$oc%ttuekk4xE}G$@`|34cRnmdW4qq&A z9Sy`_$v-3I(B#Vs)0Vm}NRb=K2Ecx6T(mDU5>*Rfxk(qSm*Wb?1CG|4U3c&ZqU=@| z`dQjk_+*<4?Ym5c`**mG;^Tx}t^+8PVAZ{@C1_3)i19T2nXLyNPOEOE=oPnF>d@ zbECbRsW7Lr8|~dpg&E!4l>?|r=##!~34RxBF#MyJn{qET*Ds(rk>ICUgW8jIzt9?@$!$2p9N?BGqsP0mXLdx_?bHAWMz$^xEpZrlya}TBSQ)arS9Vl4$%nR1eck@f5 z3F+=rLc}a`o||qN%MS_>=oz{yTZj<~)T>coSBtEogH5yCyRpegd#hjJu0l5l_CrGi zJsbhTv>f*Z6j-qB2JYzDPyPIwXMPQeiEGl^Vi93#N;OWNz_CMU3 z%;O$2*d~wf4ilfbM`ERaed#`ijj-WQ_jzozk?-9@CFuCaXLnnCzNWxalCIYOvt(S? zx`QU&J?IzD&j#>|=MDmU*y17KP99|JWMGWS(*T=#n#Oa4syY^;I-yzTp?sK8gt6J+ z$rd0w&CMRVNf3sDNJ+}6SP_#^cF!Tqq>{^XGC;$ecY7$GYZTGB?DOPeIRZKqi`&TW`4%~uos!LzXia?#PQGJhy?s54)*g0W|MxJBXkI$QU zj?#wJ_rzv4^Sq&MZodcW)Y5}q_&orWZT>gJHnsIoK7jZSi`D7iLGR)m0Pi}{hwJx> zrg!mFq8=&`pkVOejzjw0CgPXzp3&4jPd^Y-%!@wRfHx9n4D|G;nn9e}?{mC< z%=V1OgM+4PJe0FxV!5Kl*D~uoXfk{N{V^#myjzB=YX)8GTJ{V5N6kMRKXo%f(=@Byg4=KMhzz(V6ia~BOL+gH1A?jLybR^W738Y65KS?|7$%pS@TOPwE~TCDx`&`|T`s8R zRf?EgxT==7B3+vSF7@@c1aIqlT`;4zmvZpr2ccYobkFsUIEJ&zQ_7sxcBaH*p=AbfM3wuf~&UGP4UdpK!cmJ{>-bL6mm45Ntwwv%R}pf7bexxN^vTg+ z$9pN~SKR&cQ@lGcje3*3baP-1=Hg`Prh!-^eyVpYrt$N1FXfhH0@HP-_b_f9>~kn< z9Yip7aFF(5y}8r@{{#GOftPX$1urf3YH>62XgO^)K?sw$hlC@uy|f>hAs}juv8dS6qdHX>x`WQ_vJaGs$ROpzI@4ZVmdd9%+g}f_+c0?Juf)Jp*B%YVrlcr+VKX^wlgLB9KJCuPk;S@2d!hPb)xTLm zJj|_M!gm@URb_o>-joafj_}RE$Fz#R{Q<^)2>NWEUGm+RU1!$xk@~eF+DGbFLTz6; zx_LexT{SJ5N^)P~%xUJUKslc*go}dfTKmv^G8YE7_o4Y@F1+2Dv&*S&zR*B?nwV!> z4`X`!R5(yt_VtlUYU=Mp)4p7IZ-B3NAmFH>;l4Nt(HAE(a0x4i`kDuV_^P%Gt%Ao} zr^8ZXd_IiWVw`WCoJr$mS>>)bEd%feF9( zx`Qkh#rNHWP`YS>2(6%jEe(iQ`zYs0NZkQ|taqiZ@%5r?Wc(mt&@Vpp zJ4ow%^8W?WWN#FaZ5W)1l;iH>iz~q};lXv=O zALW*GLZr(*ALXnKq}oCgfcmMAf3ft@Bi}CE27@P*^_Boa1Xz}`@)i;*3GFX@=mVK) z;L$4|D&gIG9YuaErF!60}PEn`s*ArR6vx=*IS?BbyX!E|jB;h)^^ zR}pLy6}lw=BZ3t>pDID(B+pJbsAgytDRM2DEalbb2p47NNx&(S(h= zh0;#^{AED&QwFzC1%RL8L(xiG8ob>rR7p8sBB1$ad`0u6e$X-~^dem(0yGM0@t;$p zPoqMkDW^t-a8Xb;ArwuG(qLk0D4H6j!5V3yXv&xdOU?-GOBs3u-2chYxf!7uv`cMR z>7s3?PgaJaZKr9l^SV&9-j)W>Z4E{1ZE5h>-cYpOmIl-Jg`$a98f>>e6s@8_l*Sdx1rP%!tL>4W?1kx zw7UpFqA%>kfJ>Fa#BjmK(4HbDlPiS0JlgjQeIW%$o_S!0uc3CzCM{-TSU(WPgi)@^ zk=yIZ!uTDeO9Wwmqu=byM?Z_0BMEy-*8^Zoh%hHp1{J!0GDsc}rhz%Cu+`|t4>6rs zT^Qvr^A*B5;TL_Fg5J!8lM}u(g}p<+sfjuLZ4IOSdJV6l6K2`N>QFY)L^1y>w!m?= zSO)A67FJUU`c5|+;QGk0Al{e9qQcfw`w~rmjV={zR5^@xUS3F41(sG0(|}eN!np6U z{y)~cFNxI*C{%`iq@5SyJPIIogZkc=J%-jdNB?gmEOH*Cq_9?+_$(J%|@p?uu z{X8ZuZq5p(pU0%dw%Nh-^O&?4t`7F&j}>Tw?+PA*GYrA?fWhZq1huZgEzxfqgT2r` z*I;0mXY#tAdsX$;Xn3<=2VARJFv+7s1wk)c1Oo^2Cinnc(kdAGCiN$Xp-u2n&Pmih z7`8}(e!^Yt5DZ->pdgquerxW!qq_y4u)uW*QUF%;2!^f~{FJF#ui(2}MVh|Bz~u`w z+|K^N&`G-)1Me6ZT*@i+7!nM89sd)q+OXh1xz>G01p}wxKj9Aj8vK^S{V^^Wwi)^# zKGl0dFmzf^IIR-S@7`-a$re|i8oY(~DmQ0Z&;U2!d9#Br0w>ah(+1oQ1(Oe7tVI*u0PF;TtGQCp4fmj*_`;{PcRmRI)eY>=V^DO`TQ@SC5AJI%5PkkGcpfJ@ z^JB2BB}6H-@RD@o=U|c-hz%)Pd<`affmku+d$1htJ7ZA!)W^aHBr*Abm#9Lh=i-;@GYsB)B}k^%rZq50Z)*b&Xq`~`q>x(Z=!Mq)c;l21A09!j%?|klpHm5- zc-g#=%Ut{87lriY=BctQ~=cji@gx-YF!LDV1ZIG!F$E^IsHb+Fs{UayCE{J#P&}t zQzEILI!b+EkrF8eZdDO-mMby!Wyok>uoBrKNFbhNC(^ngn^G?|5_yRBL$_VuJ6jQg z+IfnAy9br-p}o*FUr`|b>?OJm?W{NmbY;gqbS6>`7V(vx=xQR;ZIu;zTNj z7=W7vhzg)xBn5F-ig;eI)ghwho>ry8YPg?5RMm$3Axahjw-GRk1l zAb&xFB^NOeZS)njM6L5gzM$sK$J26`@^A{0#)xZp5(@=E7 znh?6vSajP`Lb$02ykuY|G^~Z_6D8EYwdkRxgc`IFffo(TgvPZO`BINw+)4D@QbNCW z5&f{hqiHM%z{9$W6qFDy61}#R(2Cw7=r&-JX9wWoexi5OWFrTP9>57ht5Lo z+eCbKM2%UZRrZ9{!TF;5U{(w;4F9%J1WlquRL((;E)ls>-@dfWg4WNm4y+J?Ulnjd zb&x*K*BjqmEvmF49q;Ki!}#E8jMQ@Wj&b4mGKlmQ)& zn@u-SrC>u*5DJC1a1y8>a^%3jZH=8 zEGN|TylB708Vb53s-%QmuZnJ2YO*)iM8lzTT<$|Od3$$!^qwdfxbLR5JZzqDXgs|_ zpyoV0oVLRpL+&6rDFVuw) z#)oyGB;Q{to|7+JI~qetW}{LZ{7b04s|D@t^uZV2IG`|;oSx*|Pqhs_Zb<;Ah=?HC zuhh$8UP zsi9;OPATp(J@g2@M$HVJSQVz_k=sJo2w4XAFAvQ#x0zbMg(gzpYrIjYsm|t5vfZZ? zKi?9nfyH7>Y9fgXOYxVTp=7^TDZcT0XjkB@oCUvsWmQ;uFti~sco;r~4nQQSeGBY+ zHncBrxM>36nejVb3?*B=O7WR1p=7I9DPDLplx+1X#S`v^t_AiTqz1Bo)juc&r#%h* z1Lm2Sfc#DQXupM$eO;w^zg-yF*Hwylx`th#R+(5ej2YVC5k~fPmEtkg!pOd^Qfyl* zjO^f7{IqdgHJ;pl6lFyJ;U5juCR!Wmy`9Jbm9ZO-cLK~B?$k&kq+;(?Z7 zRe@obpppgl8)4CCSo^R*R8$xSTG+vBPg+fxwaN zPkmE?QQ-ElV#}mVM4NG#Jx<*bc8NPz-Cbd`|1U5R!SuzgcZWfff16|#C^9(V5WT~` zuwS{E7aRzi_kTuKKz~>kcFV%nz!~R}Z?mAln_)BYt7BnhR=gqLBPYT}ku3}8$@+xbS=#y@T?dOf4 z$-}S`&eiFexxsv>2z%gSHHmJ>t%=;1d3mCqn>?!1KU@=MrOdo<(sEH#R%q7Y+S_8q*q{@guborWfOB5^)_ev_B56sV5*ap=O4e!8qS>Xk);r;BarXY8( z@Fg%}J+RI@90R55fmis2&nK!uDgNQ}p#=KX2=@XL5Cw#u&WcE113;W zFT5WmP$&wY_TLF$V#{Op|NS|1J}0~}8f+Ehg~vpNXL}O@Y_4`UGyI^NZ z%bJIurY_&3b$FaBxi0S>zO~MO$D=M9hgz4st%l2|hhOqF(c85q+|kw&I7HwaQDC0Y z9&6TzSB)VQo81m4=jo^5x_863Q_9yW!?#o+*GZqldpncsH=Bqx_T;+CIbtvUU7IQq zJ}%@s&@ZAI{oRbZ5q+J=)m{>T>F@T(MI<xZO>C7w{O%8kAJ(OE}7N9>;;k!dmy z+SMk)3oWf5?vG2_M$7?g!i4UI%Q{8O@F8RihDQ{UK!6XAj);P|6SLR7RS~}EoV~jj z9x*AxvpP2#3Y}~seQ`y^S}UMRFhO^$Nhm%)7;&BI`S9_GUmeIbyFB844H#%FjjETe ziiHy*YyON_4Zt~nURoDzzFXmnHolB_3IK?46&tYc>xh*Q#nXpT(#MDez>3kHuf%BV zd(9(0McCUAWsLhfVmlBG6SN}`w zfL;Qbs6(8UJljPWv{cU&+jtQwwHk^`VEXHgTQw5j1gfq#zTHIJn;Ov2TnzX=0w$6~ zfQAb##J%yWR^tA&?hb9l%b~)rYb(A17Cy9txPTHE(n-7+N?=cC@ll}v^v3mih+9zt zV~QZ!r#{#lAL}K)1U5lxKXH3XVC4X~|2-Kfz6dr!^C5x;_6~z<;Ky+B12BOxqr}~* z2HuW_Yd|_yOtx?oqc`Klze4@UccPf22PsAmCyPOYcj^kYr-<)>6|sDpxB(^bX@(e- zIF=Gfm?eG!CQvpE>#Rf`1v<@B%JFXX>0&C#%CUH+nK(!UFfl1rMkH7>xu$X+Dp%~5H zC0+w<#dmg#KY&dzV4s+L0kar=I3QjHC6Ibh`~s|jQ%3{>dB@-cW*)bIK;UVi1$I3P zX@Nq2_}e-0aj*t_E()!n!)16BUU|iWASk&m45-iFggar4+v5AwkG|a%kAV77;C-KM#@ic4NUkfo&X?#)4z(nsQDZG5SId7Xvb2?KtR<(Bi>^p=}TpgwwEji){px+ zNUnop@f#<}T1sGH70E^@fl5~iv_Ec-4ek<>SgIH~cuBy$kN zmu!G);HEP%TKZ1xlb>Z3%ot{AXQBIVG?^M6wM^z&q3eC!8KGc|-~H zlSnX>z`01teSit@{b)%e8UYki$!=)fbK@mX!66_>A(=*n-<$+*0AG?NLn+39GzqvT zoUfGBrHa^>Dftbm2xpb#Fu({xEG)_q+JQVz0$Iys9nmz6qyb<7Q6MnBK(K^g0|~e% zY~4^&1MCU`O(f%~8CN%hyTa?{k_QyyVk^lQs2RVsmVBYE@K-y@N&p6#Aojs29VBdA zQ{G7ect?gv$J__obdfxyvOMhu?;XWGBynJaSof0Drvw`HkpR~}d*j)CC6B>vqUHcH zxF7`P43YqrEd{r}Hdqo3*1)=9lE##P?MMlD=`d@Q9e505I5 z^ky%d(7J7k`#5Qlge_sLTOt8W;4wjqrEhDtuKf238a-$AoTQ-!VTBkB`GIr#eeOS z*aD5*02Q5hQ58=;Ecq3HfYVP%CO{fGd9D+h@>DSb-#;bMIszP&AQ({o2ZbjtyCea< zWH%vH!!NH(iium`A-5$;7burAc8Lnq@44g_6rj69;$W<;kQCYzDjVNOc2Y|1|B^V+ zzq|h}+2;yH?h%>jj`ui4RwM5Q@g=uNQ0KtZMUZ^)LXXHG$dHR6ypkolB8^XSBpTrs zWrv1Vi-f$5H$g4LBm5(s9EeyGYe(L&BG-0xBO7`E6h&H91FVdX90PX7z0DH);$5kc z)gg_V2}BUwaohCBizGzggsez%(6JcT%Z~JP00_hoTX#)NLT`1EuPgv?#Xa*Q$42rUJ!x%_CzVp^#DQF)q;sZ!V1Vrig#Ej}(E`Mvy%4@J^8;u$qedMOHzb zL+#17oq(G49~o!Abao)B3|HPmm41sWo7 z-Z*A@WF|yIv}GX4T8S%mm>1a;+&oGSC04;NmqzA;?Mx6naruf!a&WU4A6Ok(PMgQ{ z(nv?D?)mE?!|3(!#z^u(y<)s>TjW(R*MPf;o~X<9NH6p{#M_7m?Td5)vnE*8aILb) zWXh`Pk;p%xo`rrqOYDUeCnJ|rq+4e#@CSnAif5dU%!c>_YrXfPl5A1c?}=`hs0o2Z zGQoJ`1$QE!)9z`^qsW0i&}PHn_5~(+p=RS_x$!=IiF`vG1HJejImS}l>N~1LeWQ`k z*&(Vs*t-bJBHYP6s=g&^^T7o^Q9hJQry5bceJzm;w~CFzmT<8}1i=HZPl#GlgAmgE z5~T&3@Jvw@3&rj5gw9cmsHX?_hywQwn7~QFPVO{6X%_Yw6r~3%haiy8zAs6#$A1lr zT2JHC@=;N*z}Fe_qr1G2&|#1-;-RC zdRTNM+IBPQ9@LEqN*_G_c2os*m_84p*vP5%qp0AjP{h~C$@VDKCpih{ypIY3&T$Ng z!r+&GMGbN##5&nTU!@9D+C^`r*LU{OXXy2yW3&#k37JJ=QbPthUn3fF8p8zOjhoeq zmeF7`v#vm~ORzw(mMEGWhAqb5LZf}0Ez)I;M#-)ytwC}mz7!W-%OZs$g0&Tg%c6JH zw1`qtzvNV0`b%_}Wo!tHJF2=Y*$26Qh(g%AVf0JdTx{A3s=V1wQ03GP(f6n-dv=Oe zdqa8uSW4>B^dr-!{=?uVCn!tsq!G~}j)c#a@zH-$UL_Nwe}~MRmVJ$Bf<_)9;-~CS z?uWZBiVlZt8#KYxz==zv>5d`1a(Q$FZO`Saqo2^B0bU>dCuH79k#Xeq=zNHo87=Z~ z71Zf^qz_tmEqN$jxik8v3n4V}P;@8_lxzQpo=Aztos51$E$@FddJ(;kZ$wX}_p|Rt zPlSvXSl#X}DTi>4=h20bl?jG$&o9Lv2mKZOkXqUHWArXMU*7*cdJpM9@L;Ey%WmXq zs1|dda*nMT^MfisHZZ1@C%MjyiRlaFj;ANa>~;dUI-^YN` zYIaJQiU#Dw)I>ooZ9Gufx9BkRQ5AEE5Ivn8^PUQFutCf;8f=YiW1drik~+qaEO=y8 z(j{gOHJU^Jm`+fEP|)&}5-2YI_Ca{zy7hR7 zksa+g$2T_8iCp^!#@2x98P^Dntxv>3MUq&^_>H*|!Ei%G1;mx6M8-a+${Y|AD+dbM zgfy_!srXnztS@9N#|RMw4?HkAb~-hflQMQ64Ti_Gu_g5Hj)vHeVC2A|snt>9;M7PQ z)iAa$IF1vT>9||t*x6P7dr-nL?PJ$KluMrLFn2l$W8+5?d!;lZs|up&spKeIw^%9l z{Knm5-_jPL=^aZlUl9Kq5IYn+Y@I$O)(?}(ZxnT|$;Gi_{=1-vO%4dqGU`&X(_{aF zcsUzdPTQY45C<)YW$)2GE{X-c7p4pS1jrlLSQ1OJKN3pIVjUocU~=tV9orP*KTIC- zusb?_CUpf?uZ?vLCtMm{jQtLt&UJef>xd#9(;|_}!&vCt2NM+g2tuV#)i^6^v3?$L zA@sV)E6$o;OMK#N>2;-FoRr3`>p^jLG?Ly8j=M|8e+MGtYC@;$xOrBb9z4IU**nb_ zr)%Tr5d-{PA19;TVSK~5d4T3Ac&)x|+yO|CVXiT?Q=Ap`ujyUm*wSKQ_c)U5su)N2 zid*3hY)5EeY1$0@_}4foY1+ttd>rI;H1jYr#p{BVbUo)a%~m?ca$cA1r04z*^wq#ox`Xqo;Ub-DIj=TVr2hX0`jS+Y4&c0Y zcu2=t&a2W>3fukszy8(L$IR=UpLC+-yd>47(;+dA`WIFPN-sE~uf1FPU{R>_6xbgK zPBlCwT-w`)H6838DgDHY)nm=YIx=Y+Tj2+D5~T-tv3;8Kgq3hNEnRw&7yUD(t9kK! zmUJU8PS2KphV=BTG2OlP!XJldr9;7DGK4g}w51c%8G7DO>V=9jq&&0M-9}PpFuNif zsSh62TsjEMjv>r!DIISwSTwS|R0gIq(nacrzju}n0n?!fsNSHQnmDSPv@hrMdvEC} zsJEh}{iP1rb&xdMRS>Y#IO#z!Jqm^hm;>HDLAsPXYu94w6kc?iF8yJ0;n~s@?yMc> zNxgZoc#-+;jipi>e)r`{=}canvDWO^UDrw1a2Kw-K{|>5VE-2L59Vz%dw!oCX3r1D zX3u~AyL2#rtnWT)f5?g`YXm)grB1m25oxxa;KGh4{>O#CpO9*S_UVNx&q>SBkvSe} z^uAoW{=bJdOvX940Rxd)%ZmN*ha1usR#szh{ae!Z_Ey`4@m9TuQeWivP`diRlR<3I zrTkP;4TU|Deggo+q{VkYtqbGrg;Cbk$I=7VR@*UpCLIcSsbYe2LyAWU9%$V~Sxa)3 zO6r9Z-%IO4+BpMkWfRX6d(`?Y?PN<7H}0DhvM=9+7Jy%UmuA}#AenXiOrY8@p=E1F zFxolBuY_WhIK@wc_%e~CBieuCMIci9n3Ut@9)F$6^vo-MEsT!c$jp{e82Yio3pba=uLQJHOc2J^BwA$otWGzJH&B18)f(z1 z6L6=(cv~;hrn>iyw{|DjqA~H^oyhghlz2}Ua(y!|KGd09{a3^vCP4w;SsUMtUNxKJ zCB(h(pdImjh*|NUzsF}2E?BxRzCQhXVp;rp`tP!%@wFVuwf@=ou0U5BiHa`84~O~8 zNK|q;ejo5z?0Pjm3DP|hD~-gTuf-=qA4ZRE#Dj7Jk&031t@sl_iP7@g@sLgXOyHMy z;_V!Wsoy`27g5)#`6gaMT_Nv%e1#Rc%09%C*Y?}7?Wg!3?D{2MM*ltOTRhnxL0sxb z{Cj#|X(hW(ul_bNvck0;U$v7Rrq_jzGV-ElJ8tA6J4>%2ZZhU_-92T!D9&9UnH#;n ztR{1%|NhlqmPW71wPd5|{jwmLBX!Xe^<=CYnJAJip#NSkToz3KJx?NIJeo$y7?1oI z*-gqLB2GruL`Z!y*>!T=sgRMc`)tRblVp$S^=_){D7~&umyw-x+i`i8Y$(0z)H3qz zhV8h4MyUR}UKU0Fb}EpO^~UYkrM`@*TUWX~XR?%)Gi zKfJ%4?4Spa69{#XksX>RKqFf)}3dmp~G)@!?BujfARHF--y!0Pc=V&~Erp zPy+c_#ddtQZbAr+8GnT)Bm&6}MyXF_E@)SBJ%2>V4#53m63Ag+&Um9V;cxoKZ}J3S z>)`m$qU~MRSS2P<*48NrKn_8zdA` zQ=~Ub*aH;?1@3xBK9Ss{t34`9t|x3uMuBY-Zkp&!^YccS?wL zC6qt(OE^jGad1#VEh@s@;R%<4BJ@Z1CM48EQ@go3VB-H1sPC|mdyR<+ohkFNQ=qQ@ z6WSHOnVKM>o)b7L;S?P?RLo9jL7C?+NZ14%LG;HZ%MxPfXzqMz!XK0>+5q*D{)k}J zK&dSn+v6`A6GAA}+S?MkQi@Z4PjIH!dHWJlX>C`JB*^LC?k5wbK&Z1BmgE|l-TQYV z6ZOD+%Q>#IN*wAWwcTw z<=X_v`x~~tQf^o2f$YSNg=qV`gsFh|zDy%;j8DB!$bvXIeHhLAk^njM%_`pWcR~eO zBy85o1K}SDJAwQWf$24qio~{$lDLf%V;l$q@Vj2;9Li}3aDYS zP4ruZ2b$(7=L=0Gu5xT+H5E1TkS~U5On}4$@)1y3KS>2(v5$NZSJqBH`FKkxQ7HrP zhidZ1kk&|uVFM%^!E0uep==E}cygXh$A2Reau@`E=q!u;jEl-vQ z^J0%Q`D&mDUGOHAyvUlV7Fc7}WuH^bana24E}E#J#wHXwO#s7IC0li%Yo2N%jAyHc1? z4vXcWv}Ww#xh3+>oP+yvIb@-O!8BSS2PJJ`55HVx=Fq8B4%jt>W7f*`kOMTV`sfYv zR$K*3H^Ei#bhEq+948xZlMl0=`?b&$J>4OP%*UA|aaa!8Wy2ocx=Y@Ut3k9E9wvM4 zlY`R!G7c4G^3j~bh{N#i;`9+YB=ax6e@yPndrZeu@@3F=-So5^lJ^&nIxF|&)vr7+ zFM(G7{(>Bo^_N*-+7y`XIhgtVl-V^Fpr{2k{bMO4?1HA7{`vjYjG4H(aMZTJg zGVvSSJFkByBSNSiURx<i9CyWjZVO*8#d4@RJ9{fYnSq%AGyRAF!VD|IUjd$846LC5B?o34tOFGLIEV5e z1!RLdg9)pnfcM>{^%UDVhwdT;xZ^qyssN=3W&$KfD9&>Z0g;L|P=Dwjr2u6KW*qEe z6*tKzHoe+-qIXgSBtt8M(aRL@5%q1k;t|)wg(L+eTQcJionnDc?oLyD;v5cVC?E-w z8HeC31teXtF!jgTiqD+G!CVDoQyk+EqEUd-2D69v>lG_Fhu%hbyEsyyDC97*1`2Qw z+OVM_f%l+GnkXPU^O#WYnkqo~gW1C!ThJE5)}(%Et$@6FU@%(?6`&Nt?BU-#nXS^T zs{)d;mBH-mrT}FTW)Dy7saVMM5Z@c_8RPpX9&nh!{S|$oL9b+h!j0@trYnW}hrs)D z*I|mDoXwOG3dkX8L9rvv(c|c7c(3X;Rsl*X%s6};PliW=Mv5jWAaC3m%#O(lP+np7 zux6^Fm~(hGT>)M|jhm?eWshVWyyqyoaSk((0=#&6eVzi8U6^suE;QTXkHre`8c~%J z#Y!&9!DWi>(6(}Sx#9(fxv@$CUNs9^qkyki;kAm1oP%+_0=!s3HmnW0dr9Gr^0!Mo@vbw99=5`($K(qNcgW<562k=XiO?b7 zE7uinU}jZ!D%?=MK^r%u_6Spwu#BZ9U{)k)d%7iV;(Ve!6F-t; zyrkR53DpvhL6Q|SP0?hAi4ZT z$0t4o1bfDVK<#!AG_*T4ksfcP%9^80Yz<1gMdPM&4{faRL|I=85|aQ2G0?$oi4E|+ zW{Jxo>ZK1O@^DrBzGdP?p%cN^3KMT}+5Tvo=nLAw*e$UTckh}A$@GE=shV8PFZ(2Z z=I;4vK;mIe@buusBuEQn()Jve=!{6(;&%A&5s61R_=V9h_hiZ^h(>^t$jigTd_XM4 zy=EnP@@6#~CC+mLx-+6Vib)#Y#5%myzg-7Y0&5!ttQSBDbcaJ5v~)XRvUF!6D0eq& zR(;NC^ut6@wx&_9Nz1MBJh3Ks3dKv1Q(%H~5aJI^C#I~z zZZwDUFx>ESVl`H2k+Iv3!z{z>+N(otDJ z5@gnGhQ z6`C?IY64y~KdBu+PnaNh@W%hk@}$q;Zo!UW&ap|pY3fAml4BuB z;SM%TZi-17<3h-2pFWI8^5R|ipR=~I&L0#s@O?Tf`}$xnEvR99sd;qPp-2piSO z=eP({^OCDW4(5~EI%1OJ*a*-zCJ(==_1{Ir_xloQ{`+%?JlEwPX^USCNVatq8iegw zvwm)kGwWyCgyeFrpQ1_0T5mv=tf%^!!gxeU^4~xdOi*q(3UptrO}@>EU0auY2sD{0 zO=-b$7-N#dcn4(n)iQ!W5&|cW;i1UqkK`IWoTi^hzQR2(^jz{A$W)Y~Ba($U5#PU( z44S!{5QIF&nB+0;&Kq>thuCsx-Iw!=ICj`43uuOCHXD@X9J>7G!`y zh_pl_TckLkGN%-K9N>~7g{1rY7tBk)lvmsbURF<8%LhTFwNutP3r^BboU+$VD8?kE zoagd*rKP;$2J^~D$@dg~(5HUNaHwdQh;|OLOk@(sPsld=cgK|LT%gCDQyy{ZHwLDR z;ElA)xRmQ$iu#jMesC$;O-WhjB1jQ5KczQNiUFwmvuLu9e|bt>fVW~I%6e{rmYY*d zy@hOR$~w;S?e-K?i@moqC6?c<$o(>5>Vu>m}EU}3Xm2NX}i*t$wIDUtgTGR;dEBMN#UC@vG@Cw3ND-b2eWLl zuPKpSwtmj3H@R$uZmF)kIKm_KEeHG6FBK|V3zQO)T3blZ9$hWj z0Cr4F4PfIsvfP)M8VuBW3q+C_lT^yu)H}AQERt+>=wM8R3=%0lisgn$LS$2uE^3gP z0aziS7Hxq^GUMG)MbTW!9(aE1)al%giS1H1@NoO7D0LdYJFjo*-{2}}N@Pq@A~%Bc z{Y*lFP#>~POCD~BDyNZ*yl#_H8vzyE5EF#2yh(hXk@|plE0uFoD|qqQ!qjn)F)tfs z&_u}eD?o$r==G_m1w_<(ODcGRO#o}*{##Q`9lXnq)E^M9r|dAvXKZ@GWqT+U@^YIA z$pzMWDPEC8snVp!CW?BSYFe`08k9wU^+6G9{DJD0`f_#%V=J6ZSAn)B7 zQyKDF%~t$Ss9M zICS@B+7RGW3(>5~Ye-gQPRZ(CS~T~!jHhY#5Eo{v_O0JPamJ7TO!I+6(e!d4>L&NR!kMPHztQn8pvAe)mxRDmWpU;jJ7AkepV4Nd=Q3;fJyNzCjs?+-sz`qEWKwjrattrdjZ+Tb#ef9mDqg&ls2t9lTH6%m z4U+nrE^F%Zl}ovOel%1b;l)cWmBqZ+tAlbYFG_nTf8)hh{giWfan3O1Cth4K)?9^T zf^xUFupQv*BIRv6q4;vSGR|I5|FtzruKu=bm2QwIV$vIAdlGqem~d3J=_aKccl$v* zl#nex1Zyn*W2f>6(D-9<+Aie??ttg^z&X^|rz{6^Sav|!n{%jlNI4DG2*%>hhm~5$ zqBc`v*P~_*FOMrBso)q)!b#;-upW+_R`RuC)aRTMkZ1rC4id_>%9m8K2( znJ<*9puW7MLU|0#p~fraHr}4@zEMIB%P>7i-zir>I!*F$N8Iy^au!bq;rCtn64)j> zB7)9u(=GdO)Ouywb+Py{qdW#^B^_DLUr2dAdD6MA_hOG)Qldr(&TafmzgD#~bxmbN3G*sl1s zb2t1lFMYAaFx7FYG5xib)l?kyOL})_l1RpVZf9@2rA2yMh&@ddXW_^;>7ZQ{CWI*D z-pSq`yR=V#$R`*-I;2nGlgPzg({1^vZEN@RS`aO;wnePvfDYUy|64lp7YFu17fkGS zpAXE23`!4$U=tZ;<4z;e*T(~bEO~eoik{cS9-rQk-j&A{^{({iTn!m}((n2SZ87#@ zx|%n@$=A|pT7Not&AX94j~CzFOy9zbJ8q|M=DP{{KQjL|{)zdwcb=MmyYzYbM*iDY zug$*=cx(Rcv3LBpo_Nw<>09`3wO`G@b@^`o?e-sL-2PS>SNWj0rBlWcfNC+(PO252 z;hvERc+ZD^>b5vC!=zis*bI|yt)&@J)dVeOXfsGwcc#$!#tf5g8~>7F(ydj443lmT zH_TYibuhAp`L}7U%)fosn*MgPBY7dcu1&@ru7d?#G9Vdus1E7}Smas5rkSPxJku=w zyV)5(xM$gH$WYp`)nwdYYsLmE;bpq__6)?`Y3~lR^uuw+0xo^nezWw?4w$8%anStR zUk+znmYEX`OTZg(*w*Vk&Gket4JcC&C4_#&e}Kryv{`1zt+FEY+Y z$=mggZPmSf&nS6(+t@-`OiYYCULi|}DQsJq5FOv4u$?rzeY`@R5Kq1m7~eJ;xz!!& ziS6}-59<|BKnf%w;EnKGh&ysJfK2ODw?D$H!|NUp;=XCAX6S5?={MlR&K zxPK$LDALLGMppnzfLcD}1dW^s0?nI~{>$!&z_8 zj7}ZYNc-I{5;^S3g7g|zS2TgBs7|E|`f*-b9lzO?)e^8^H!FRX*Q}<4T=0_pS$S4g zzoBz)dim`v%X(;!F89}|QN*#V-GDBQlAE=uxfj}8r_vT_k7vCDfTY*06rnpcRY~aE z(QI%0L<7@Wrf_ zpgAKKEFKeHWYXXoXz)SuyQIOq{*mR6|&R zZ?mqEJ&v^a>0{O~YoR#qOBUHq$nGk>X0_svt#wk769(+=EjQI4{0CdzRhJ;ApG@>B zQP~b3HS!ElZ3dWtwH`xArKgavmVJfMU8-?HO9NGqcT$DnD*ge+--1-*AiIYMLM1>D z@>l^bk5H|&M@7qhJa zu7c0cQDH9W{Q0VVT)d9URC{?*y4EbI(>k-Hch{>x>xw4xIU)B96-iOOPvwA#4UvOj zzSFx^A>gJ<%qPHN0!xkzGCOoQs3N@~D@qTm-r5SqgyX6_F5k>^s!T`W?vtykUXYDi z{}3vqvIZLQhS zD!!`7ppc1s*Cv}B_GiVgD%ro;3B^Yq*%gpoAtvAPLW8Y>yzs!f+2dT8%}`!sHkV8p zl|2mV^O*RhH5cNS@cZ5^1cg>0BG>B$8bkIJ5J zC%ARu`0SHV#UR#T378XJI3@clCtW%_JI`4V(558&7FW^hHQ7aO!rfjwvqAg43IARw z=WuqJ)nsAKEdNOMUO=R0L$}spmDSkLZI;`4Peev;Zpe_3?gY|IWW%eP?Vdk6cWl#<_@3K{34%I%GIaGYgh79MKIvah-J_6=Y z@h$szK@W4b=Kv^RLZJaJ(=n$tZrw1)-d@nqkmfnFAkIy3 z5W%U30`rXa_(UtSGo-Z184b`mCWuw+1WjjmHfcJodk(1m6R=TOR+K|N7Qi&OyLS%c zwJD9K#9|+_eQ@1DIU;94XRSu(T!!fEC)o9IIYT(J_7ihD0MsQg3$n`bMSDKx`Qypc za>8u|dM9V)>;luHh&T-8%;5A+&Ci((S>hwI{v29(Alqd*C#^aOqbJ|xIXeOU0UJGy zjH>iOPhMoOFEz2@llR;fYO)t$MNZ*=$Hc~!IgkYBh&S z44hon=Da6ux;WDVxo^zb@!y3&1gk&pwkZd+z{4I6*_tzy*qd_LwmoMml*6+fIiOEU zFb;2i&-smWSidI+kf;z7m_ZO%^*EC=La@cg!#PLo1U-yBkpme(60Gs~=E)p8Km%Mu z9<~u`uT!1_S<_;*w?Cf)O2W(@{%|qpIJd&NE0FODVlZ{DSm{QL^VeHllLK4^E%+&FLNBd z(0OB~4+?uldd89YYJY5Nt=4l(wY63Egz@Z*NmZjDV=faMjt2u!p-wsmF6=*u=s)bc<7imS!1;rZV+H&cR-xUIo=d zpG0*kSPz3z)U!E<0HqqTQoux+l&&5J;DE`)B>e*$cXY{to8h8b4f zf-Fz;T&D)@tf%g1$X8oI1|NjOAXKXriT4xR`g)`8)#`S}BO9voNuob89K-iot3fBh z32YbS-cId_M)XuWV0{Pm6OO3rrG5#SyHdnCJu7PAivDWyCWf)g_*LB#@@9##i<+Qz z!%fGj6CvFXMZg3h)=uab2aH$qesRSVwKJJ6Q|0ZSr3R%fVDx&FkPc~lRqsd~xLCa% z%#px^*)WcH{c`n1A@JeprD`i)T)si=BJ@vq{}%Nv$i@OP8;Re!Uu_R)f^;SmKX<=6 z2p5;BuR#{~Ie=lQ7lDiOU3FJTkRbzrCiur=^=ybv=);IS9E4Mzse3pJzFhWJ zEp;XndgFUd5{~|+Zto~Gxz%>L+qq+Rb;;dJmau3;l)L86<3G6XlUtYnz^6v;Wg+_G zzXNg;A=3ax!h)bloB*8HwTwk8MoHt5`l-zl|xH;X-{ZV%AafpX9 zWlp!LsDiRSc~uvN_XqQHN!AuRyvMZ~-W~VySQzCZIeq5+B2>F(k?d@62Hux5vdXI*+M$nZ-Sz? z+vpXtF*hVCHruq*)Z9b-ZqoGJ^}P6LM(zw~ zdqwU;pL!#)Gg-7uUzq!dcaDiAxsxFM7gGyG#BG-6lH-X?6#Lb=>v@|!{9CRgFW%ai z+X&odODae+_&Ful6k4sUQG1IhOkd8ov-hi26r!9e6VL8`sCU zv$lDtst?&TY~OUT<>8mq@V$W?KL-FT7Qn8Wl~bBHZU)?hLTAQ5a0fnP&9kKIbmCoYM0zxq~gD zMD-=Y^}gr+%{!22t2}HuuTty0>)_DGG(Poht}_mH%xi0jW4j{;L!!n@2cg+TdFGAf zF8fFIyxZJmw*};p{1VKO`-kN1=kBcv&1>x>+}#8OJE^#=oM_vodEXA;tbK5zf@0tWJJftYEioKwkMg8+4`P}U0P_xZW zjLP%lL&7)X%r+~Vkk^IZO`4jg=912yndemn>eV9` z$ES}|*XH#FThCO1D{6Eq&kdKY&)d(#?zA0wowziPd-8U3zr46N4|8iSJd*d3+jzzC zycPVhM(6WZKqeo|uxF)}&Uot8y!v2sQUpX0obZV2c_gl|G3vBid9K`u8y@75^i<3n zw>{14#Eas}yfxs#0a2kXDtVj}g2(@rHxkVJCk%Nz+MI_B@sGSq?gCv8cg>%C5u<8N zO?_^fzO^+6AsLUzRE@n3td4I-Yg$`bZA7*EkV7)#Vl~?UzRF&7DibQb(c(DGp8x<4 zd1XDMY@mrncM>%A!Woo^cnxTa*#BTba^si)nh1S)qCyjChYXiJJkX$2ka|pjh4?|5 z#s$iso~?MTIi@11?{ z=^+|WdIytTIOde$nk#~FaNkiHvhAMQ3FnU1?BqrFv6_~kp2N(&hgRc);$r3gxW;77 zd$Z=6O#L6t8K-Hame+%;&C!q#n=v7t%+qY+Lj1Nsvw{~}F4DMivkYCTAxSmaZ=0;r zBwAK`kYhy^ELx`#nFXA;;eQ02zEKkf8UULW$*Rz8)5LSqv#{ApO?PR?l$wd+w@0Jn zF4(V3Lw0quyQ)K)CA|3lu!gL5v%3i=G-LxmE83khTmQys&2G?Y0B6d&i$IikNwXf! z3|vtQwL0V~Mp2hF%l>=g!=w|l12kHCsuKlW(Kw=!f!ZkK7q9WgbFOOq0b%}spw#pT zWlQw@ipD!}9r(5K|3HSJvfG*fbo`!%uQ(09srhPy4(nHVpz(J#8~?k~{vYs|z(c;Y z^#6kT?TMzFr6v)C#%rHxhS^!oVzCq_z0~;FTg}3BE!dvPj~9Q@yt8A)9m}*NK@3$2 zwsX`@MZ3&HE7?LxMpYUKd8MONftL>{(Bi%(}cqSbjiH`FRbI~>NNE848m))B^D zn?%~)Bss}^kq3&EXb)Qe7>@TuYC(Guh;)onIGz`y-C!-SX(-hKwnkG;ajf6twV<)r zPlTy*?PAU*IY|o{=>Ei7l&rl4XlVbCCpAqwgtIxBt_5s{`v+FNOzmqZ8%&&MCnqvM zt%a=3|5VH6T%Vyf8LQ};hg<5i0iwcd~x7Cu@Qmk05llHES zP;~63Jr3yiG2!tMXpfO-s!r#F_xICIuw&G5vmx47oN%*IX2P{cYeoESlL^}6T#VRB zTJrXYiSc!^mYiB+#l2IscldAD&C-$q5W72Mj+P97STP)F$qNcrd^=COlowYl&^q(S z_LpeOxK5_6&^kcYiI{CRCTZQUa4tLqAUCdQf^LJWg{7>%F2JqtN zLuOe|95Kr}@Tisy4B2nvk82h7LUF`dtrfTbj0;)=4)2!cIoRyW57FLu(AH%PR7;@z&g81n5H+7!Qf>&OsXFs84$IIo({ zXhM1bxZmwjun&eX04igc%(h2PeXHG|cWnv1XF&A6Kr%(%T3 zX58Azy0Kh)SgET5_KcBvx~jN`Mpp#Z9z&R@(@D9`E*N!wT;eZ{bYnQlY0Y(Z{O+nY zx;p&swGO(`ko7lW`2XLK$+N%iFtT22RHIr0bfD1%O;b~zS?P!xey>-EdJoh=zTe=n zT9=9&3?haC47cdRXxCC>pfG#6J5&cr-bYZn2?M|l!*qw-(ez734>WSBZaIumUwmwu zt^(p8gh*f9Xr^v3NxDKgJeaK;59Q!CR|neu$vD)SuOka>j6=yn-LFs%M;GZHg7u&; z(T(C9?k&@ehH`LRp}PifEll)4w%RilbY8224D6UDSO2E#2wG;OuCR5Zu7s&j%-W@!4CQcmw+=J`VM-jhPq&?ONGa3JgmUP6P$vSo0%9DL zM|5Phm+9f?Q5|H`OJUZ$KBfauz_m~6DtYYzXW&60@2t)lP`#jm&*i%LoWqKXaBsYD zNe9}D%&d@bRX2}wxOZJQ5$XwUH+7f5foc40-44z{cTWd8ghLzm==(a*B$(;J_7T^E zC))T#Hvy`Ln@@F>U_Equp(AGmSc|az6K;#xm%0FePm-@t>pt`9C%@B;gQ{TXdmZRp zATvXckGj^J!`;uiQU9F-p7BN35g@(LA{T$tbrq_gQ(Zsizt=9HWLW9%0Gt3DZS>__ z_*i@Wuh8n7IOstib!P_n;iR9&Ih0hRwrQTjRnTL}->jn$WOgWZzq zL2t2F>-yoUGW{7ahfxasIL@J3vK|~fGgI`S>;ufY5~Y4R=WsRy-gduc>Jz|vxR!0^ zFen$!VNISs9?W5sPT!8};X^(=j0YO^po}=o7MB|6XL1e$8tWkk+{p;FA70l)4|{n} z2SmM^>&bV)SlhI1r3cS6q^*4e|3n`gTH` z!7T^s$yzN7i;;u%Wc7;`Uk=gJe5y29E*qvNDacr{@d*7F{#e^F`f4P#D*Zw6M12j& zO8m071|@3cQsIHars?b2FtO0`8G4d=?WN8iPn`*Cygy+Z%+YH&$1MxYQjS_=mNI>b zS<3e%W+~S#(+Bd$Zm!nXfr^HEtk>6a7L2uYr``tA0GTWV#}kL_(v#1;F@0~?t0!A2 zSn*VuK8P2;9?=KzV#EpkV_vL%R)3Wjoi6HC5Lt-hrQ!Y8^xqr>S<3J0k3(dkIEdhQ z544qU;~7yA3$xk4)SSNUDHw|eq|fk}AnoxZ?HC?b+cmy}P| z0a$#}q~=Egg%+?e!EVkSqH9h*&E8C-O?qyA4%h2^U4A8R6LXFEr}z(g|B?^&b5^lC z>e(c}3eIYhuM%PsUeY{&A<*OhiFmYC{vuAdPuqO5hnUHe+CJYDbia4VFXW;Xb!&4-;dqb-`kA_D7x&kfJt z$mN^*YyJt&xzm{ZAzY~U6U=wdPRc*%CJ423e!d4pC>9%sr&oF)|81)3SX+|+iT5E3 zmYXCSw<3QX#Bx8e7ab|Af)A|DZ|Eqn4cU~xm5cLyTYkE|a5rgpel2dU&Ij_BLd0RA z>BmK#H=goG{+OzQjXGX3N%G6({F&f(Phk;(b-+be^ZRfcy}yx9&L1$pa=e@G$%_#W z^PPDy`)Pg*FHWe)kLATvukz1=_R~>k`Eg!nkE{Nb4?9a@LO=w;6K$HR^1)R<=8v%x zboKmilddj*&EEkGJp#p@RtC_!W5I?*#<^Aoe}Q0-je#7fWeqOe(ZKr|Unj#piwL5s zPj#*+s;a>bH*+-@;f_JLGAvB6)(AXtg||Tg@nF_yrd2a|;x+z;4m`>@_?v{z4>W+b zkNku^Rog()nlX>yaS(;p%aQwY-sBOfc-> z@vlT-_}vr=lMJhPF(Ac2Hb5{@&ZU~~j#U~=BG?UrVZ{n^Su4xY2Sy9>?oc5Q2xw|0B8ycHeH@*eGE_{9==T~YNNZvJ>n55pJU z@0ay9z}^pX0bS8CmjYKD+0S6ZrOX&;AX{LVXwHMpQeGWmmS@>818neO)@h5;2C~P5 znd-!^CQ~gPZ-6c4n_v-vt%83{Gz{VmaAL9H9yo-(y7<%!S57zNgWQL90}NsROhW>X zS7atEhY4 zkPaOCr=cQ$@(r37f#ht#j~j-&TthiTW5U!u=#C+j(f7nn?;CtTt&&>#^&^8Xdb!u& zfWJO5kWF^ftFh|~LsPDsfqxo40mdSjbSZM7jo_Cb467l=BoIdI`^DTImVPzJz;Z^q z8Us*btlSF^ur|i?;leH}BUk532V*%vOuC$#h6y&}ZT3o4V*!{WnLE1UQXk_LVeW`7 z1)1oT)i!#AJ(R+t;^7)sTo`O@&xu|Y8SBD{dRBPj;S%E%9vXt;jNVY~p=bhz2$;Pv zsXvln=9rjh2}e4qAM9D-PO<$_QC@;A{*h+v$xVMG%cR@QD&u2Ibo;XwdrT7j^4D>A zq1I>(QSkky#`-8|hnp9UFEH|%J{nNp#I|h%BV@>d39N`W>FO(?0}uk+0S=t>W3H{|PC;D)xH&MKrOucYEN@FPit879oa z?2*!5?t!}OF#ZOYuRhuwUfT&D+G(s02ze$U>!auuHjeo49^)2kfz{ak#<>=-!es}H z*#OV|7oly3jk7qRMn{c+eOCX%n|sW-3DElgh4S`T!%d4^N^sG&w~UbN z<|bCD`0ztxf*acFp(IO5Z;j0?Xf&z#^9N%u>$ySco_OeIV;4YAV4@|*J%1SMJ2G16 z#CN0D+%ls-Ieu3lw!kmsh=6)y^38(If(5YJtw3x6%UD!))L0eUdlz`x2pW|56`Zl4 zJ#oO|>IFrdp=-?o$ZXi8$5>SUo-9sB#}zo>irNL_i%87Sm7Znp!6U{C0 z1^yN&G6I!dH#(!pbh1{^GO6H$wLr6TYC#%cW@4f#pkjhrYQy3HewtN4UL??vfXlKA z7TF5L?wW!dyx7=KkZP$M)p0~alS80E4GIL`9nqw~*HT%ke)lOn_a(dEDDQ*anPJenm#&-xZX za{aR}uJ0aGP!+%HS1{kkYPm2hI&e&Ck8TVqfSg;Tka*AF0tLXQaq#GZHda>4@q{r2 z zHlR9VG6rD7*#dG>h*H9HE)+Ne+8G1G0oM!0JEHZA85UTUfj~kc2uK-<2&kYU2&gcM zbVNasqKIHYP(&0IQ1lf+`Oe(Ay9wwo`MtyUJ>Ne(k8*GB&OLMboS8XiZlI$V%e2YY zn}R;dY3N{-(J1s(w4%wo zTHPl$w^}=xJ~v&1O>vwfNyX+&8^?S$jZ=9O`H*7+Ll9JpyL@}cN)?-kP7ansjcOpn%BfR2JQW`uN5zP!~vfy`6E2BDH3}-;M4U#JQ0o0^>tih2=_5C zY%U{WE_6KBIR!5t&i#qk@1#Hdmc*cf0>RO#z7%SYeevwigKt90~d98pFg z=pqnT&v$&Q>e|Jpy+YZ%$iY+)>g7rxnyAZ)z&)2b@>KLUF885dw$g|GW2+o-j1j_U z^jh=FLHP0uj!ul~qe6IgodY(kh_S&b{thz>H}~CiIPj1yj)iK#a`i2TH(>F+<6sF` z2t+jJBB+40(*a3hTZSbyLXG!2SZXS3VD;SR_%wp*ebeI(INL`t0q&Foa_g1bKTbRL zsS(TvXW3#EZ*MF!7kGCZ4NkuJ-f>6`PTsuYU^y5BU`@fde{yVO(GKP1gli7?Bt78^ zy8H_}4#pd7JayfdtI9SDj2T zhl0Z722Ln1SELXS;AE+5R=^AkbTWA~<>haKofA|Xa>Ceg*c|SxWC=0=hfGA`3w*PY zljRULBFsz-@x@xz)631BYE)6w!s*9|lN0TYbw(ohKt~VMTXwcUYuY+P(Z+#}1hhHE z$udI$G@TfL!gs9{e|)HovkyzOLExZkYk&7g1Ftq{i8pj~#;QZ|SKXaA7##wIh|_e= zue>3L$>|F@EKXm@VRiaKjz^uokfV>&7jpD>E@cTh6z;4U?wk=wxnprU@34dy3U>fb zQ+zDhS)$VNM7ocb4w*h$esDR*Fb;^I9e+V!1mVRL+&{|+aexxf{*dF-I~GJ4%E_R(;BtdE98;Ww(B)BMoIlfwq1iBCJXFrcU`)D_Kl{=o3=n4`|V z=-kev0DOFb^X&#p77UNVD;7IPHc{?wzU=%h>^`8zp=sNlli2{2(m-Mxb`A<8$e{2& zOr9GkoQ@OrI%SqYRCzh~fb*(WK_T}&=UO&ursJLOJF}Tl`1Awk%M^vDKXNkclVTu5 z$Kq=g2IxO_eoA|9{;88CmQ$ecr<_cc=gP|y&v+SN_|nO;o})l1{>mvZ%V5?y=WCP; zkA3T8h~$uhLgfXgOwH`?@0~UlzXo79`W^Y>KRd@qqYiM|Cr%Acn88Sy0xSYg4om13 ztXTb9O%u`-lf&&|5)NvVXMe^fB!wt2F(oli(;7_QuDgoN1&3o()s1_db3uI46`(`V%c34{EVXJ3rD?bI6P}Gwpsd@F zP(FgqthuEJox!MgRALbR@Q;M55*^j zQ=VLGpLm1Pdbx9=%Gnv+61UP{A2TGXoc+v{xQRYn(#!j-^CO8%>9gbgz3<8c6KBw8 ze+>1un>!-$efmsvB=)CR;nYNxpHtHlRetu(OzchdXPzhVW(S3{=;=hJ&ot>nlG5{@^0cb zsxxVa6A|TigX4+k=(8Iq6Ca_^`hSu5F4d#vUwNVYbT)AdwUO6;NZd|&G5*)YCs|@e zz&8(pNIp6kf#;@3Vcwl2R!PyNynI zmSw&IUT+|}>V%KYpN^7S;=F{Uc0p7*IwmHm%JFeV(j$y^M`7a??xc4pp0ebnv9~8_ zJ>|-;1xZg)KF%*qT1TG^oSvkb>gtLlp5feNGA#5%Yrb{H;04bljc-6*Nc7UA*BHlZ z3Jd|TK(xBOEdYxvlI&EwUt6EloT7bdQ_^HAB>s)0a25>(w3W#5Yt;T$RSX)X>5_zu zyOSm`I8tT9``YfLwk*>L{f1;2t+|yPfH&_=vaqO@7eX9bc`%73S_J?e6!}$B4;r#w zdoO8$zh*g_aU|&r25xwvS#X!5Nld3a)IjKdBI%A6Q0aa$Y1e(B^46zGgIG+f29=La zCtV|`?EWHY2O}yNc>KowVX^RB(#He~@!O;~S+Ur1A?XN9;HL0mLE@EYRQBJb02FC_ ztT7&RB`G=x@FCy8z!PpHB{P#p0Am2$B|x(rzxr2FW&^l}Xp*P+!L`yqxe>Xp2u}Wn zT&G4PkB4sYug#KglD~gym3)L;cf==m35M%;os&<*G4cm(IiK7X7Y$7=Z>SQ6mJdmW zJUisW|C0hP-SFD5rb!eO8z>^i(u8UWTw4XMI*g{BXHWs$%8@x&lkQ*K1}e=zmWWFGd6q`m;9k- zJI#hVzBsK5`s#Kv>)?Q3aEL|=8l^zOU(ehK6xl5(5ykzT%(6!@23L1QkquJqc;ubr zUM%B<4+3OX6-1z}ekm+#rCumddlixzhBN(BR`~(HZU?7)%)s)yp`jjfP%K^)nqp^h zC;tX(VMNMREuc3eDuu;+{|m_NjZ+q}EKSycT2Kn*1Mw-jiYs;CC9P5>$7r_WD0@oO z{fM;>@&XRSpFNUN>JKnSJ(kiw6t3e(ri=@N>yN1^Cj#NRlTYc{0IpZ0l&&B>+#)As zJNf%qe#-e^xNa>?DI(9?PDyzN*oU`GOKDAh|9D2q1oC`HMapgR{PC)k`Q-0Y^HS!L zzl8-UElInni&A0&;JR{o%KQ+xc6~ABP7t|nO6g9nDce%!k@nx?l&?tpgYTqd5I7I* zO>vOlOAn=7XmTIw#G`qSr!~gi&Ze9J)>3a6eLH0Zix(q;!(ez#2}3&sr7j^1+8LGF zkq~yFRq9oO_{sRxZse+IpNa`VZ+A*PLE1fKNL3hl+mfm{7`^eM^^8C#wQV$Y%lhRY~C|5c4qz3*Tm6dv&T;p?6 z-y+vDxv9Iz73HU%AlK}|)HlgBwm5Y=xqezge_u2%^(w)?e0pl@4)?)myU&+IA;L;k=4Q%liMwtzakWzTZ`t%{V5DR&ov5)*uFWn zheopl_uP_N7@*lio%^-X=^aoQPQ5?pUUo3mA6-EOA{zcy>QV-Jix;KIc;efjK5Q>f zM+v)A8KQrz*^>&ND?EPg@hBv}n|hF;cYrXTmOuP@FqI`m9MwSh^HAzM^YII zk7|J``6zW7OW4!qlhgv1aR=U;j{BTS{U#jU>IUchTP~zN8?2Cmzx^q7WCMEJ|9Wbk zAHCi4TWWxMd+KKDImnCvA>j9e(mGOk;5*@IBm;mvT@smgN4;IwIPLjx`ZT#s+NmIV z+oww!d_O>G8{W-#`$hLOILt?Ry0T{)d_O?B&CsX8_XCvMFjLxXwYQeN(nhh&q(OKS zQBnGpFdRD|?G2VWa1DgY$J17YQ1;o!q?LzKBtJ?|3sc$mqbqHg%CpDCw0G5~t+LX3 zt1QVH@8j9ur9PfTOirs*Ut2#t?Y}C;ugy+-Cj5U_cnr3BhlS3yOVU32-@8NCUru`h zEnk@yhayqh+l&D4@MUQqu&A}Sca~rk-W3sqhMn>CXVYe~cs2!s5)O8FK8BX3MQ`+d=6oSu_ZUX@!G_ zq)Qr20WKVxZV%Ax^$lYzAEi+6Dl3F@&8BBw@kc+8N&l9CS7T8Dr}jJ%BC zI|tn_)zIJ}vg{)vjivVwFLg;8+$u`vBMi~1@r zKU%nRg!I>#`4BrP9nPdz^x?vkbe4Ec!9h1I{Tc%f7+xOIfOh}t zEOr*$oSh!eGzXoL?m_ONp`qy9x!g<~{dD?sVF>SlL(Iq{G3kgy%T%^>nC5WicVO|h|uf#WA z%H{RPw!hOo0Sd>_OMj=ssVdXbqw#sa47LP=+MPt;OMw|@R0=*0&j4X46xf?&tW}?0 zZkYiGRw_>)i_Kule=fFWj8mw=(d{#qHl(_9(3CNm#TWn>Zm428D8nnXupt>QtCBi6 zG{dVcqU zBv~!|G^2{_iCpgV+D)V{rBrAA=|U z;$!fV|N0pH>cV9}qSW`yIo(#$}W^VSLzN=l}Gry zzTVCq^vPrO`#yQZ{OOa&FSjzYsXVsjxrVcdgE-2i+?7`7)-o6Djt9F|Qul~kN4g%O zdV@wcbFE^FO)2Q9>s?`ZadX#~s`1Wf=_*mj4Zqf|v#NIf+ScV&vqSA%ZW=UVdpDO? zlLLCVcB`EG)aYua>fvpx%g!=+2EzXl{C?8UwO6y7hV?yrbm)cxA9Jy+PARed-XX3a z^wndoH4LodTJcWge%uv+?hJ9YL<5KR9fOWHgJaf92f9Q?co^U@oz8U^GA#LP03ZRC ziLUN+N{~9tH6|F?ywT}8#72t(&5U~{y1Fxrd&rBA88=UHozVg+*V9}q3A8nU(lcCB z?+=y5Zr3{mmC=HWW%Z4qf`P~T?+=T=Jg&n8i}!O}8}CatJ@QouD9-sEAA@S2$nIw29>ONuA>AM>jKxN`$A>)Lf0;q`Gyyj=J@6^ zS9J)Wq9kT4d%^Yi{a8VBJbAs#*iEw=Z~oY&kB95|UtBi=;Ckw&>zD?v>uJUYTXv!R!e?_=Dnmo=zhx=3V_wxzvkI8j>5@p7q6n7s+sV1VLB49>0w_6iVnb8#GxZI7< z-Z}1QT$t~k#K@LJ41hNfYFm{m%)m)gC^xpxbgu#p!p?b=+II6PwPzN%-y>A5dB%O1 zTyqxF=W$Ejo5|nDkh?d57xtX{GxGO^)$UKo^{ut^I`;)P&&Y)YbZ$F*kRV;S(gH8o z;CA|X_2TAh?%9kCs0}mzb+<%NuXu~HV*f7p3i5ZxyHudY_uOX*DUA-%zb_qj_hQ!W zW5Sg<{Qk#oCka9nGu3_RZpTc80`BHn_hN$Z)8A17KKRi+wGpc)+LL#w1^(_Y_Yr_d z5q!^&Tf>YX0f#!bafhRdU@i*vJ;X&~LlBoi@LdqW5ktgB8guz9IjD-eIM?oSDB5G= z0`T!TZdg+<(mFHuH#5=%CI*-*LDg{DBiunE{x*HM56ShXzT6&i-PE6390b??!#Ks> zn~vaKBhTL*$?YfC%F*0g&EVSC!zmWgBAXlD0{)g}aEd=Mlyg~x3oEO*2IRVWK7~`V zkW>6l$3@&B0_WOdu5%zF-e&_R6L9OdaBni~ zgDUYU27{aAQ_#Y_+;rv<5+LDdNAJqWs!+ntPNW ze&Z|$*?qh5&);$<2|)+G@NGHCW@MK>PO3OkW#ksG6S9Gj_iC1{mzZb9Ytal$?;aOBaUg6o0 z!Mwt=2Fw-{K^^QPuxzjU01*;n@$J6CFN`9q;Z!Vs z>M&t6 zadZg$%qTYL^)!2i1%T_07Tgvap#{0=t?9yQ!6@9#Ob| zfW|B_LDkXa+2VI9?D_d(+5N+Qp+ICh80Q{Yv@I6*sZ6{vR$OrZc(oWWhW@`GT*&(Q zP>af5F*QPqCy6XcKlc#&_GFQ%R^}cs?rGu;m0!{fk!75}2jG&K;t-Z$r3TF2Uvmoa zt|~Do1noR*YKlK!BwoEgvv)t2-UN?WDjp4@{4j$Q5iiw~^OnFFpgnDKCL1)RMKJ9OlzGzMx^cXF{SD6&r z_dX%5S7|Rz_B{7>e$Q<4M+rz%hRED26;Q*KQKl9ziGW2INrv952a z^e9Wf0DKxi>kR{@NSOgtJtoeSk{AL@48U5cLu>bEq(v&iCy>-yz5V-HsjEs{ueDMI zgJALX_0ow@isompOJA^PF@P9E(@%BVq<9rIZifVW`3i@>-z&YXKHd7B1gYQ3)9HtN zlCvC@W~p?3_^I@ZdVBOMX@vS(w{NAf%ocm?;osWgxF4mFew56aKT9#p3QK`qmx@%| zTl1&1lp?upklaxvczS^BRjCu9ayf%okk{A1o_+D)HYol_DH^StD0V=ZKT6@qk~i3h zlN!k<;Ohaz|2)!6?#fIOShcs8>ry!WqlG-CAr(<-Cs`#9YkK&ovzvU>J!O~I-XC>k zkH}pW>hLFhWJs4+$T1F(huj}I6fBT~Du>BY==g9k5*Id=Y#LlRSU#+ZX~-xadDomi z@;asY$eZMr-)B@iC4~MJm5f~)gL-~v?1nzil3!vN>Xk@-<;mSO4J-Wq^Pij}0sr|=#^O#R=eAh1)!hV@{hH&4lk??6 z{+fv-k^I(up&gkEXipp`H)jwi-Zw%18yxc0)=~KQB)NSz2222ifT~`S8S0HtRJ`X2 zbnJ|_3*P#&yqh9|$~MX@OG65*J!iGC_~lJau7-x-?=d=?9@I0&)X)? zZ-h*fTEi#Kx66%}_V7gG%tLY^40FIVboK+8CGJ&lg`Oht)eq%e4Emr=v_Z!YWIu$DeJaCemlYjwoRQDM=t0z>{}*x*ELM}-13$~dVaOo2@xRMm!MMq7 z`fa(TdRw9O+){6!3HIz(A#kCd#Vo$d%bYl(Rhh`XEE_WaSF_Jc0bU-RjUH&^$%OC^ zut$bg9+p`jz#50;)}BcWTOSx+{z=uFh7WmIPAgZsAJoosiBV<7;gcOakm#ncAgQy5 zWe%d?Ft3YeKLZPh+K$6FdU&?0IJ~3xu;lS6VE!_AOw2f(vUuPOOoa~<>>idmkAeg4 z<@toc?@~VWd=y@$I5h6(S;yde6&y19dsvRN#ajn>daEw???LR{4<6z<&#aC|hk1%s z7K|S0VX3`PSn$*+PZ+ZpdOzWT3P?p2E<4%Pv3sKDWo8^ErFdRYap;lmVcCyR_%JrZ zv!7WOpSwKp0cC{`BF`?1)q>|;W*mZK&r%hK%~>9nbTWkxSF=598DxR?<$12E-R~=8 zXTj|v&k<%8x zB5>+5&pR-YCV@kTRUY`%mvVdOInNn-`_d0mDc*RGx0$;W@27UAEKnnR;8c+p|`^HSG1wP@|N0-}4NjJjSgLdmam= z5QxUHr4Uz%)=Hs7V%l#zeWj*eokUy>+(C8p%+ROvV-mDtpKigjSFA4@B1< z>DL$!?wD2JPi6UGx2%U4hs_$W;kZ(lm8030YoUyqcJ$>LNaqob?v0IS|o2 zpPA)V#sYViR~h^8Szcuf7qh&|cty%eQI#e!FUzY+hJvjAs>o-L&$_5~JY`ZAQ|Y+GEoN`;c8zhv8Ch{rbdDk}%%XFYqGz&LgQFVwVR+EetbVGLmoLv6sA}fb zm09npPv2Xe)j*~B^L0L6zVVWem#bdM(x`^L`3)a0CvWrdaya(!GWu;FFK_P1ny+$g z`FaK93r{e{Yt)2*{JRTUo8Hk)Y;N%14@Fn>Q>)G7Ov zYJzD!vRg2F4+0DUuo&FJknLS}=xE7?GZ+;7d-l#Yt8yCOKig|SV+LfeQ5$H7W;a!D zJB`Yo&g=`ebiLdPJ(`{!faZ0|Zj4AanseUTw@piY;7#Q@e%RUn5uyNOEA zlXCU|_4cE@>;RRB3&q(DSr)++(X1)_F$|UU3-H606SCVd#v2ag1(Sm&P0VhL@U-j* z)Ou*vG*sC?pdDoj{BWLOc^!Ed8cg`|%in1%ZE%UGt2UFTA{oN0ngwG8?#xy2wV%yk;wrquzPFvRMmU@{ATua6~}4V=RJPf znJwRs7AIy+|x%Li2NRw4{aRIIA|>nnZwvvF0p-I~u_C&Nn$zSRCYCeX!&=dI9u9Tioet zrtKr&=Nty4P~hd9wf8}{0x}jqaV6(Ei&+rNFtCs5>t0^62BA@_hYGmojhw_lporu* zzO>?2PAIT^Wk7CO09;##=QbxIF-7IJ41w#&R=JHqZ7?67``@tpAYT!C9J<^+_i6N9 z;$-!xKINR#%RO?Lv*XV0&I@1EXMG@APy&Yu?fok`7!@|^*a`j8Ggo53wv8osD2nk* zi9qLcx$m(8fP=51@xz8(rqY$WP>4d~&AAMFUhsL(+zo!3d~~E&E=!Ffyk0^N*z4Il z_X>;80SM`6P5Xj0+~D!tZ^8i;C7bq7M=oMfe=oQonxW7wCHFOeiNBC@TSmh5w+XrK zP`D<}%!R_0d>l6`H$M=r^PZxAC(g?q5CDI#T$EeV5Uvp~#Ub^FNA9(>J+zZ z&t<9oRh%NxL%ap&GMz>T#5G?OwqD)W-SRSXTYc=v(a?JO>uyo})G0Can2UP~16K8t!IfHI!$w)Hub z3#S{F9Z8BpJCEeP%3!hpYbtJfH1`Ll$qjjV4ndR(+~suc zObQI|`aE|IOK1boT*_%n7*1PyClZ}}F}W$;ay^&nLvUVT>Oo8Yy_Fk@v z!7w!h&TpHVH%i6+E5E#{>TPat9!ycm@3<^HFO@dMms{q&=1-q)h|7CRLvP2n$%BJ0 zl(rW-`JQg-k_U$tDNoz$^E$Vrx2~aia9)P;)HFQrpn4lJGH-#}_El$In%Z&ml)M2< zOUfs62cfc&w`(1vw4KZI52CD$&d%#ZX+VyGJfuGt1 zRBGOuowreKFn)gC`zpC37Uq2tL|@ad$n#Tq_xRd8tTu>vArHFt6$m{y`56DlYx$SeE^fS$-&vJnj~)4k)u%yw@_Vt2b2WU} z^Im>M0M+HxkMb|wmoDQy$MX+0pj0e7nV+T-p?<4fbi*!I27N!fMtlg8y=2t zQ4r||T+_EMIK(ij-3<)^v>tS>`DRSP9hS-AJpkR;Qd^=0&d2=GJEseK;8_n9O#gpD zDqg68#3woMt@Z_fg%Tc+?+}F>3fuvj)wsY`@V-A>EsquihrqS(;DVb?;o2*+U=n%0 zO(^IQ2-gca1#mvVYW!wi0h|x88Vdyla6Z6l9A8xMFoBakq2SXXxEiJxTxW^V?qP_c zP$2(JnuS!;UwEouCxhUWnJy@KQ*^AwSi_m zKKXjV>i`v3ZYyZQ=o(b8aQZMDxcEtG4_vsT;6+B2t%0SUWZZgJfzS}BCT;*7{;;4i z(tTbKjrScXC=3R)^`{DcBGop1411q6uwD>)yz`}XK?|w`Gr$M;kxR{LWSC_Nrh45?@6-@R|mp1 zdR`$MgR&lf^K>B`N3$MpUQpPZJimepcM$k5ttp(wk`h5Il^7e=tgAIE{R|hfj_A~R zL{7c}(tgYpNCk{i=;?;w1>@f>3_=6mE)*E_{raRU9Z}?wLNiL-3xVv&9fe0( zjIahwSU7xI3-2nNdmqT8(lxc7N~F==iey&K)oG&yD*oMj^F*e@I$H`cuj*M zIA5Je1{e7k!Q4@~jSDRLNqsG*VbKot>7~e`qA=PZJI43a6j#(9K6FSRXWfZiINMX4+s7+yYEP&%LA zl7^CeMp4!M@LYk_iWZi_r1r(e3iq*lY>^a1u{|}}$A$G%eUv3k_i>@ojH25r7vidl zyh2&|RFPLGr3-uz20i10@cW{oL+WeCR{Ge#VpY-7P}*_7SA0*yUM)JJis}dKWAx6q zeZX?xDY~vQI{&>QnDHx;xc;H9<9#3b+7=!2q2B#Oky*uI?CGLGs(d~?TNI=|z3^Sp z9fr{j)re}8@p2Su+@YNjZ~MK-a(|*CuyFMsMSc9Kl+ONDv_&O#b%SD7V@yPpOp&5C{kto!(U-9#r$z&vLjZgL~_G4ft4t}io*S6?* z(;-nfTrR!@pMxT|0a?XILg?+cCB=sW=Mw&s(d4S)5PWrVal=}FBlx>J z?mMj*mKGE!EoT=0?B{E5#X~BKJJR+T-WO|LwW8cT#l3La++u&VtKw(Ks|u7NR2-!~ zeP&g0Vu%l52>$D(VyKr;T5a7>JXpOA*;MRQZwogUZ&Z=#_D1nTLABl$-zh%Wpw{1y z?kTPauJ!ksL&d|}Y9`|jmy4g!z;)u4;sk%V9=l$=tN~oJek;BV&tG!>w>V6LXgKq1 zgOWe~_fZEQ^eeHzCqT=GN8zx>B^Sf!ZG-rdOMdkBcDs@fVOk3fUOL^a1i~D0_k*>> zpZ@%3?-Ec&<^6pFO5SWhZz~3u{Gr~?A71jX3hIl|CF|7J7ABT_p*EPBTJno}Tb5aJ z#ru>mf!u8cZi%PllKM0^wLi_kBOJ9Fj25)@yYeR3-F|YqUn~ep z)*ED#QQ%CX-pJ{7daKOKvd$(;b{Xj(`@AV0oiXcGO{{D*+e8~Li9ByIS}iuK!3QN$%4UVwOK8CyG_T7dV|e|ix}c(fav*DIX_aQWT(_LeZK2a4qf=ZXMhzG^+*OZ;8t!gwtea=Hwi(@!^YDb`v2_!L z^wUe*qiecS|2Vx~ut&nCW{@S5 zL2uzL79E(945ur~W>JS0o}17FUwilYxtdtL3Cxw#+YJ_@$!Z5P6?uz+Guq8o*+#VV z)mdJPtEX!j?U`2UsJCnVLJ;ebk0&&Y)0t&nvKvLa2udpI?7Wq;+w6MYDqA>_m#DFq z{XHQK=+Rjv*=n*HI8JA>NIFgipk=_bd|i0-0Qx(59oGa5dRY1`~KPS+D0z#DXfQ)VW$0R?pZt_2MyIz4cCc8J zQ4~y^f#ZpB3gCQs*#N%&=G{;0CVVYSLQ;!Gvd=DlPDfv+H5BHN#LL*f^7sH}RllWE8R4z^RC4477l` z0S&TFwhO$~VmEOxwAc)s0K~wEC>RU^f&o(<5bEuh4si8!s}Q1t-Ja66aYmipEEp|T z&Lmi2fV0`mCXN?GtHodtt(>*C?*LO0Oact#W*sP#0Asn0xJ}Sgo53iVFpR@M3~#ZE zMxaIppJK9GB)b_#Oi*ewLs$cbmAet*~;6@5~w~+F-4y%A+yopOr7 z4U4xMO*+ABff&~;K-6o4{~%=2LpTp{pxJJuP9t7|@X{{Hf*nRVlVH~B- zK-6k9VXifJjTjDGj=>0%0}F6or{j2?(P9&L-l7*cJMPz!c$Rv4MEg!Wudla16t#A- z9$8M6#&)w?Y7J|8qs795Vi~|+n5}sj5v{_s|1fk+@p6^IN z>#cSx2VO$pi08LML~OD0FcO-8Zlh7eC(2-^7N@gVj5@0gVkU5#22l?r3Y^g*@&dHx zZDfMegqYM*5O2u>#L`xXRIC=0NwC;pLI6`ES+9eMk0jC=0X3?6`i8m7#nLC@>h4;Z z;Pgacy-LGl^%j`U$h_W6q6|gxtP*eFIf)Zx@DK|lVAi5|$#{`Ba-wLoS&X99WP|?% z@aX~!1(HFAC=F(wtxI=n;`BTRFhLOkq)AUC4-Qx4b$UI-oO+qka&5_Cmj%M z?72TmTlKK_Fz9QUm_?H85Hsk&*V;`y(K?_Ce4nhB%%E1ar=P%Qjt2$eB#TLai3$h_ zRuW)!Ks3U%jZBi8;%mbv!x&b#fNXagPd%!6PwV=)2BsE|WW$nXvGou(re%416suWk zMc2MM6OL9oN{2pJAbGGr@?e3)w}kg#fuz2*nFk9b4;D!3SjBpTc;13rYWb5zn7GbHNX|v7+`1p-!=P2gIlhh81Q5)q~O3_gb6nLAbY}W;9+|K z_W5kEw=BZe9nvi>tBRNFZX~1YQ_EW5zgtc^cNJ1StfEcS8F|>fhowHj2CKmq$PKYe zuwEyc=tkV=7s&o7EUX&Mkg&nQq9ts+*hSa^;bH#(cEXJkf<1EIy0Qd|gf>`MHb}C` zq8B+y5MYPEEOItTY2YwquUyf@*VD5BC7LIXjN|0GyH)n$7Q~l^cGepWJ#tR#Ts*}mGv%0rfPp=Z)vZ<$6W#37MEx%{F$X{;|3NP^XIJ#dtRO(#$-*gmp?Ch?NqViol^6Wy9u zlAL1dRA{_)&aBm%>A-=yq-4Kmfw^uSp{eMqoMkITe01iS0i=PcZ)7_W-(MOY>2u6`dr}CQ3cYZqp;Y)FDKA&V>U zNa?Pk>;lw}{PN-xWvx)t56-qn>pnQE)1;#re$PCFo;`dv^*&&18qqt zYli%s@Q>389nCm7qj^LP9ts+L63SYm;~i%O+v)$0XBWE9Gd>5ZcC`;}b zuY(yCup6KR(3s5 zhPxh^@%rPM7xCHPne+B(TB5Z(%ZJ24A{)q<;|&r-opunoT_-|zG09anKnzMVQDQ~N z0f4*#-XQRhcckYy&Mfip7JLsL6b6miwnWM8nhW`|Jjn=$G-$|G6nO}DZF(q3kOa^w zi6lL6*3!$68&P+!kTiI(d}MvS>US>bfZWs1grPeJ%Y)+}r3(@<3`WR{=O7OSl3Rfg z3G%mK0s~PfiLoKMOOin6B+y34ZZJSriNS1=Aty}GOOPI{N5$49kf^6*{+i)k15`j* zC7=kh4*IwGFX#cC17Dj+PIN0|D#wqTUQiGN9vj z$Xyno@WKiSuaHb4!}R1g$XNS8crn4g;^fV9Kq~pp}>|aOGtu@ zY=Fs`*=mOTJxDx8+5bYqyzgByV5O38Y{E$}(t1c3eH~tab)vJ%Z8Q9q)q?)~S(qw}u&6 zT?`X_8I*NXg^oWot81*JH-O>r2AIwmNV<^S4s%UN@`dywoz03*9G(CQX*1X)@M(~# zYq7!n$wn$gB+ddZ4f4~CNZ%1miTbOjekSla6_qi1R$G!U!qA-Ce8jZYN zl&ylz08Aih>b^=Ga1wR*40)w6A&;%6=i@*u8u4d&TsNJqmWhG?;SE5Rj-+Z?$bh5c zIUPJQLWz@2B(AU6uXSBRJSu*2Rx`BhP z)&#DJR^iZ8N~o)_SOh4ZfDsoKhai2J25|x8Ai^L4wJU%v zRNFw@VS}7vrB+N$QWiKEfq59gL<=wod<#$pIknIaEa{20N^#=q>6;D&^>wWb1TQz9 z)iPF+A(2oph*0-qf+T)$a3WN)=^^J=hFjI~Lq;>WFxW=d8FdhFfIop$WW8M{Nnoi0 zM=gkY4G5}4SXQz?*02bv=8!lG778T+#CrlCXfC5t_7)EdQFZmL7UR^{cT`ci0c~hK zt7Uh+zP7z_1`D`r$aJ?_peRGq^L7JhAXpwRm_-Ax78%tY+!8P1wKxd7>JrgCc_#HJ zsC2h|*26U3JEFzaLljvH>>6vAp!!4^q(Gr;5Y=-!s|7*|SfYh!mBvIm3n^xVB0mvo zY9N+`iU>1jH$W8!_(}+mVM3smJ*v6OP@)16n4p)T(83C?3$llSpH}z_YFF>7d$ZKt zzYaa}aJeJaQfJ?2bjxx*`ugGWhH)gCh42?bU0A!6U_2zXreHrr8*LT|Lmedvx5)Y{ z1j#xWF-$hI9tJ>@V3aLp9?GwzyXs7#EC&=1YI-;`tUf~t9m(4T{eZG1vq>OjS}m|H zU7FJ+QU``Mf+M%}BtS*!bdL7IX zVQT;?6d{y=1a#OPfRYsh#8jl5qn6t+L8Xh?Dnjl#jOXAhA%B>IazA(rhG;#MC%t?I zlAP=5made?)z_`!GQJ#99^cJqsFk}6iU9f5JUBwYz-)via5LmAOE5AEP;=pphU=N} zk!=re!JAySe7L(U2h!8)(#v~lZ|dQf!DnanP=!wPSBJJ(&@P=tG(w6w%*CMg2uk~O z0!UbIggF9_XMBIA$S=+aMKYX~)XzXEBbXyc66&FB3F1yzjD?xhg_-JRPORPlYuaSE zgZU`b2tZ*e)Y5TKfCgofdNVrF92gb9dGQ$ty6Wl}vc}JjoHeH2o|RI@X`^O^$3Pi3 zltx)Voxm&WVdygO5PE{0!AKyXHFFm?^VU%r^)MYb+jukV8i+E?F(EFK%)BHCP+9|p z-{&TfniLN5{$X}X93lK`=B-dkC+MISQW9YSLsiW>I|cisJ0MV6URRF@MrS=bK514k znwmT-DozB0fRuhHV1pPJ24-G_tsSUvhB+^10a}##qgp5n`!Pm4M8UEVXaPn;F+G@) zUT=pIK0QyWH(KE1pOiy+I>eZ;uLU*J&=P6^q39llH>j4dL-D@dK!GabT5R3@qZ9af zL%g-_j;*v<;7M*)s~&no4`XeEgJ9hPb)t~ZI-xEleH2m%y4E2{S=lP_YgCF_HlU3ifMlpvJ?N8BCd=KFdbt z>aeT?bv$G(jHm(>tr~Hgk7r)d#MRxm4uzMMkAOyXcT0;IFO`R(uZw2|#X-#^9Mxb2 zp9xDl68L*qt&wGe1%fRI#RM`dfKq5thUgjU^92aPU_xhsO*<}9R1tPwh?z+3CyN@w-b`8_T2}WXhZQ@|6#=&_9 z5_mmWorGl=3)HoVFu+>%W>|{C^qc`$S%3vcsNgiffCe)F;5!7LMgwer!_akiNDQ+( zvjo-aFe;PtAb4N^&w~er_n}U`c1T=L-%5#5Tzy?D2cC+hE}l<~OiN3$ry+$$k8_lWW;Km7*+o4R7((2~!3+`B{oyPGsBD9y9SmkzZKR~c!-!z9TC7mH3&+O@5|o-k zl`||;Lp7Yi0t-2`wlo&vc{1SxXpmt6Ss38$IPfy0*byw4l0m0x^>nM!QD3)oQ0uiG z1~pR;gT2EMO%okhM*i)bj{$n$?RSU%DrbN)U%dOCz$7yGH$+ZIo-4D z0n1x;Dd;^3VPrB?2lJG2Q#h&w%1!GbO*uP()W9`Z@{R^+__2*2Ec-uL_J6SK4;xW; zk8cl_{kDp2`2d?5~zZeYk1XhCt1W zwMu}l4qFk?0Eh0H)mMW?hdvpO|9*ScA(pTCC?6w;*fR@7?3vAJdxzoTJ+reHYUf@+ z=N%Pi(L`5eEA+ji;xx*0S2jjx6Dt;>MqH&1E%<9$BXlXX;ypB?WmQ|$o4@y2Q?z&A z*f8{YMnzW0>IOM00{-)#oFOS_#-zzjHJ_lhNfnLJpN@*fNO!#ozWdX>DgZ_B@NAD* z8By2oU$(9aM+ULNquGR4h!yiRnzvD#VHHTbDh2hMGkK_XMG9J|n>1L{0-eaJjK;^E z6 znp!b6M4O*Vc~Ip?#ghXa01xnhITZ~;wbP)jkKA?lG&#DcLI}}54FG_$;QiiT2?oQo z9zYui(~O}A^_*VTO*>M-XgE6FprV_0rXT8eY)%!b7;|8m_MnQ}{#11SNZDY#cWp(L zMhnGVihM4ppud2>L3Qw#FH~IDXs_1B?WcR1%>8suu10%D#qGb|Uny> zeNb};Exb5oG-bUZjk3OH8fE>T8!CERwZqaV>x29$rv|4{)(=dhtnZ2T$(4h(-O?!A zHU5{t}4JmsG}JFmZ<#m6lXyY5s%GktdghO8DMY$I?oVrXikRS_y{N z8gY*wMB1cu$}wj;)ve=Ml}UcuA}G@%_VrK@r6E6^lDQ+la+jZW2DJ6*mg$}*f0tBt z_R}r|0K{q@ulZH6nw)fMHP9Wg8f{__+Unf5S^KVv#y0RD&rzG zUoD+iDTlaJaG$4B34WHYNKgx}EvzmZq}h$!Pgg#vO%75dsEI)P{s892fA&mIZD?LjiVCV-1|@CO%F33Z8XNhsHCph>{(jU`1O-zLc$-~aUpX;EGnh78 zGhuvR+N^y|GeW1P4efb!{LEOi;DfRl=w8848;As`oYH&`iX{O-(%)K}R4n#;A_*}#X%c+HF zuGGTuhYTt#{qD;6URwW5YGt`9SZ$^vBd||J2ns8Z_@#rV#*feOzoH+8oJG+r>p0QV~WO($Ph=_-gr_ z5B;y-LiQ^)zba(6b5XLPJH zH_;;KmJDk9RVa&H)Gimgs9i#9fHGJE7c!u|6GkO{NCkFKrRl~?bG{ALo>yr~4W~4n zRcXq3bI#^4?Ju=ynsiT-HT&iq4%KSil%|z6zbZ6+q0&UUBcj}|phIm?<3N3n&8gPx zKw}Q7lGNDI^+r_&wBY!-mRgIumK|!JfF6in+^6<13jVGc*93PhwtsL>6FRPqRZ%=y z^Q&Te!%3G(q&J1@Uxq7OhwsAHVDf^Sa^CRy9KMluk6Yn<@OLVpounnWx}WAe0+tT< zz0uyb6;WDvOQCrUKqewM8%|y0H43@t+6&PdXaX@8-hFk>S0UP9j*?g$L8TA?>04xk z>v3z&u25|>SBu1j_cS>fR+Zq7ssmPrW4Pt~wOs%fQL@)-8Y%*5z)>apNk#5Q1v%9z z=0s52I)RD@A6|w^W~K6dsKNsep7oa86_)IxWPaC7nohp5(=2wNjC4fJP zgrPeHohb@Bsx*5>Qfa=2;#XH8?XN0o*8nwNxTpz3#lKdyUaB2CLK#hiKT>-LM*Xf< zHKS3ZCWbV67!_@r-7Wak-3{mf*PS$wL(X}B6BN;F0|W&<%{AnHsp`D;QY7WRTcF&} zfS-v&t9+#@unB}-0HZgG-#EKV$aNLa1c9=BtU%cgZzy!83Y6_XMpCwK5YUXsxx>J( zD_Zr|-l_)SngjQcHZ_WJe=i}eDIRgO>b-Ey$y%hXy1T*hFROkH(_EmW?e_krlD3PI zrhQ4p=tTu1mGcv#6wYhEib8ExS1r}FLi_qv57V{~Dd$`LRP~BRYZ9qae5*p%!{5ZA zC0(rw*J=kszN1eme!i#4GP_wnxtlM#`>bW58 z+d#i-avB=xSIv5`2U_h{-8^(V>1`#M7;i`W{Ho_QtM!2V^ep-5u!tfrPS5#2{kGuZ zbPI|OsBRbfZ7pc}j@1LuIYU%P^K&&%Yk>?z=X%7nLWcvY-w(T9s|D)!=F~Q5S73EY z=*^nPs7+AyT+Ma#T2OV*&|1wA7gjy8^8rxfXQ9=Cwuyw=d@(sXwAP#VcBzhCwY%Kfy;_W`^`JJ{ zDx!_i!o;ZVXmWUULFi+(`uDLdu5ZoLe|f(pnt@BW=KqIA=+7P{(fHSh>WO|~skPux zqL(+Wo)XH}Jf=iTO{&wisS-NSq`LTDUgDZoj}0xo_oa5tsxv#19>()IOF#f~HEkBp zUOZzl(Q{?JrB?6vGOitMQHumb7}vDcgBrro+~(D5>)~lj%F~H0s%M3+uZ5|Pr%hj| zd0Go}Zp-T2fBy+zZdv`JHgs3bYlv&|R9m#Ob@ij62Wvgu+NpY^A8Ce)?XK8=zVLiZ z_3+To?s-A83k{B~j{j%tE!V4ig#Pf))-iF_WB%ECWn8r(^wvLHcZ{#@`p?#pef+wF zhRZ%fKzE@I=L!X;2Q&amkp8zZO;E2k)ov)=zq>WyeWT64!6ta4-rcK1G}{%h(C}p2 z>OcO8gnORF68hLb!B(}aw%pzNZu9O60(N-6j_t5s$Uur^KwE%+5M{3h#G^1nn z+|aaIKPd9+)u}o!w7Aw&!UWP>)46)kKbw#5Ts<_j{9l?!cd1@*ck{dP?ekB36?bIr zS{HB%(6x=0WO9h6rUt8$}SVQ!FQXT}x===DTODGXy|C~R@zx+C+%3SjxHf6%D zQ2lc6a(yEV57Xb)dW=$xO&Pe=lu}jywuI})`IcLiSP7orSXtZgMufhuRHdn^HFtrg zNd0iFPATRtuw9hC8)-TU-jC8R(5f1h_FSX67F3j(=kiw-C|uHCOaK!he){}3p{Uxt z24u)6u9QKP1+`KJi~^4?GlSr*w)*EJWfa#*vI>gogbW)6xd&&|BM6-vqVMffK4Gqv z^6O-#WX=9Mov z?{ayBI~~z{PYOvLQ^|nEfQPxH9PK*m110j65Y=537!%cLAu0ram8f38MzuHeA8Xx4 zD`r{vzCj&xEGfTJuds&Y+!_wt%4k3ukLK3UfD%z#L%?Wm4Nto1KPDYUb8Bd)f?^}I zDHQj?5gGvT18{_vD@#5?U(msr9{RtvNiXi;mj6}I%*uykhqXJ_6`-=DP#{X&m&Vlr64Nphh+xj?CC18xxSVf$Be~^B; zwy9Fg{awx&y)Qf%tRIUX9fl$Api5M>Eba6zmM@xD$o)F^`iF<;_q`%|!wpp$5uYBa zH)#i{ICV|}{sWZKa@^}(E`e``=?4?-NCgy14cB7c4;3;8#t@qcRGGj67v}kL+U38g zovlJbJ)e{UO-JZEGC=aVknGYC`VX`jDoD117?-FYir~i+^(H6YlCJRUGHmcrrf8&o zl2moGf)J-N%inGRFlUs$xi&{B$FDjeOPe!C>o03n;7~MLKVN%D1;-ddRlgx^hTq2M z!%IMyiZ8x>0au@o)ej`v+bXQ3r22i?h8XE=m+nK*ME$$khpLv0pPLi)7V`5LD9pqc zL0QqR8r351$FjKCib|!ja`gX@TUuPQe*FvLi&~RWRJF!B#|D)kU!!{aD5VN&7&ZkL z2IW>cZcWh#xoCAtGrlm0oQ9ENl&X{kmb$TUYnnd3EO^^-`4QS4<$(V^T|cHQc=E%r z!P;TvfWJOdKddY`TSiPQ2fVnl!3%UrE|to*VN?G6a@w?>t+$p1zdsvSDza!vq1%|+spFJUjs7JD^6J>?`LWF` zu5M}^Gz#zCPN4G{3&CsW=aM6$Px(S0)0gP~lx~;SM{m*U2Ga-NmVPUTE>o|Qqz9#y z@|GI(q4cb@K8DEkLLXOAm~`hE8DL#GP)=7Wg5}qgn&tMVtI{8{Dd-(a&1pIsero~OfJJ$4@MfiQx5MAhq@bH8rOts3t5Bf?droG?S3+<^) zbd+GP52ekI2uMBY?+{3Cb-j)h4wJWIIX$4E4H^GmRbsr-X{tmio%d|scs{1$hUE8x ztYvyP=(|+!4Rh<+szUc{{WP+CJal?Kd$h{BrU*BAgnxr%fL7wwH5d!=C_4|TlF;|Abx&TsP(q0 ztRbm8p|nUW3X)D6GJIg%Hhm^(i5O8ND#?KY#@@SBn806bJf!mQgN{p5b!A-A3!VIA z!;Cr(_nrDilJ=bmitVrnE@78`pf+Ar%4XtsCV*#-{`Iopi*ocGwJGI*`{&~BS{dwY zCVsyh@ZeAM{Yrx4MCPw}(BxD70@t;O6Vi7WYf5Y3*r)oo+D$4V zEOLtdOh1RLpP)oeD(S8l*t1x5C!bYHW7X^k`J?eG)0w;Vd9FugaxVC5Y4yQqT^1UK3US%Qq?HiBCS=W%(QAvger&i z(PhD>97codR1Ubu5&ia(;3b2e+_JX9cgR(9wxU+pepEk$jGo9NospEDI?_p)$RnMq z$Mr)!N%}+{>C97su}Ej^M830x;B333TvB2;q1-yCbqm?pDcIPi!p|1Pn*|%QZtE`+ za-6X-TBCwuT;vEY5cz)Rmu6UuhEps zt#Zu%Mt_ND-6tu?n8D2XUa!;ERFyJ=ai0X0e$Y270gj8ehVb4G`nR;rRp4ygKi@*C zf%}j8NP-Q!|EQ1hrgWBG^N?Pn{{;79RqFT=-=B3TiJ~j$H}~&KTW|SEzqJHe#jFRY z+Q?jb+|v&(30~4pT?r4)RWf03-8MbFr+Ez07mjMri4=Wjhw5!U37gaWRvz2{0Z3b7yHoMAgQwJ&iQ`yi_ zn_sp%)6I~eRWZ!=1yzH^L-aoFztH=u8be!2`?ZP)lYECNhE(m(s!}HTuamjOl>jd( zc~3$6?#pS@xWHfKom7Jut(+|j-5}mG72jr5GpyEDpRCw^DUanX2$n!b!?#wBBh?Mt ziMFAtE$iE=8iw)ku(m;dC+bQe_*>#qu+3nPr=gLyy$S=BgVYc#O$`2}G568-D+Ndz zP6my)p-X8f(7$VDpQ{SacEeE`cuc2W{@RI8A719Zq%m-mT1&2!H z)Nj^yRI6zyCfZB|g89wNoGFnSRT&dNCTy=`=vM|7*j`mmS?IlW4Z~jmeW)z-rFw># z7eHSs3w_Sd@K#yqKK_RJ+V4t1lg!E7fJ=0;q{M0oiP>H*F&5aCusLUNH!slef@lPu z2O3_m6}o9peS@U+o1)mcGw2DZqm-(YCXbUwgdIHbE*HwNsiC1J(S|D+_+)smv7v`H zMpc^rnX#`l1*}aBer2I=H8Bj)_ALjxsi9t3=$lOqUA6ILq31L+Of3uT*W55rn^G3~ zd~<`PBsA(twg0FSdQx?phvKRNMOx6OrC|nHK81(kK*^~>acPNTek((!8~Jn!55jX) z04)4nIfVz|OQxXw7IgC|mxu_$%dLa_C_^^6jS`+ezb6Ws9#e!rq75ID-=>sa{l|%} zJ(4iJ{6DL z@>B&%*C75)!whK?SH!_{DP6VeDNU92k?a({5Ioe~(6$O5>tO2D)m-08yI%#$>~Kp8 zw?k~g?66#t+zwwT!~AFYYsgP2eAD~;6n?Dq?qEYMAug$II>}#pwSns=rsS>*d z=h*PBAzdO~sipUwj+JV%<2}Q4LK>!)-gqih;Mm5~zbSm%604F+22E6)5s` zn$As-8k)QuVTl+@mT#93Khlt=9hO>-S$e;tlq$HvoP@5t+$x9rD8px@N{Xr(KgaTT zjA4g%wo=TuY#xj?yf39VQpXuGC9SFv3*A&+?VgZ{iY7lUnK{AmrlieO;Vl&hJuKT2 zS8nOvm4Y0LCK+x@+HI<~EDkbG#_01?RVka=w}ICb!<>@PC1=RTg3_i`9#gDWP$;6~ zYcZIVVtAyztN`$lYD_hZ*4|c?GRl{s&s4*kC80}Fej+FrzLIinN9r`gH$?kfMTB+w z{h3Ij(p1F+C}~#;2JVF;8&**@5DWL&vkXPrTB;Uo?Z0idVI$r_>OaSzFG-{%$4>>v zfBzRa{$eg#l(xN!661Kqd_!k#S5+zFn1XSRRSnb}4_38sa$J=H%O{1V!TB`9bkNOr zsaldMc0sje{=4Wx8|d_pAs7NY-u3W#fy(3mOp8?+vur4(jTzd!Z!l`pR18vERyF)n zkW@Eh@0(QxDpQjukLO^GUEc!=cFk%?R!-$p{l}Dw+Sz7K<<8dUBg0--vU@6@@IO(3 zQAaDShFDjlA3h~6P#r582R0-lf&foNRTk`!>m>jUclORgwHgBoqii&^9i#Kn9^qo}5 zemXCa3od*b7hK4+Qi5xZ6*Oph@XYX>#7-+cQS292YWqxMLCfy>#t9Nhm{xjnI8qV} zQi<_fG6ma|d?|580b_GR&uI|*?VL6wavGoikQvt5mXu4eODK2tB`<0|7ih7^>_tua zs{5jXabNi}h{I6PSX^9OJz1%EEO2mqXo!;D%91>3sCIQh~8Bsn&F6CXxpf2OGudfO5%+kiFbGaMUtplOfZ2pfm_sV&-4l z_&rI%!jf+--NhyFWMmL;y1>C9rdFA)=2Uj9s%va4kww!>4}_Yf8uaipo+V4Lb;%c& zfif8FNl!9iI)6Dgh(3y!b1LR}ysj!x3Dzyp_?I@HN=l5EQcgEWP*Sz#2Rc**3ObA} zRt{U!A9{bez9G4TdML_F(5TeFyxcXRt+yH)Lo1Qrg|>cGfiZ0r32j~bKhjokD`Pf1 z3pHlK15^>T2se(^DsTDTf~;^9SV^_O{s`l670^%)L{$O%BaP~V9f?9Zkx&?gc#6hM zZ3Q!;jGMG7>F_93RiGA^Sm5BB{vl~za5mcbNBJ%WZnQC8z|;CpzXE@^HEOD;4^BWq zPI_HOt9HgKt_aA2gt&|uI_;JjigM#S8E4VTl0!aK^unToq+=1bbvA0e)ie+jTae9$ z!q#(pK%X1BK;5YTeAbBLGYT&7jzF~-ZG=0IV!cAk#S zD~tvg=b>54`LyxcJ_>f#apZBw7qo*P*BiBvoMjy2f?k3jfBh%R7{QtA1M}7zt3XD! zu{W!JbanEZ+NmmJ*Z~IfdP#a8szBHpg&luZ=sjO&3{&W>xiuMYey%steR~<9*756l z;|G!x?Yxr<;^5zn3?@C#*cDozTJQ$gHyOLA0-tnYZ7MN2o@_GSl*(F)zY3-tfg7kU zyXNHS-;{iw0C zHfD~~907NbzblI-s~j|J#(81CHgcJc{oH7Lg-oqnrd=GyX}mN1=&*m1!c{ps+s@6u z%^ss&v71MG@#%AJ^e4YCTAT(o=SyRnT+wNtae=cUC*L?syG5bI+YUQq>;jkfW5`!V zpgV;mRNV2cow)~$LlsW`K4^Sj`rLu~tfCYmu_T!bBr&Ee_MEcV9l?i*}p!5%&W zQ?2SS8!#sP2}#1tZwc|3CPXs?L;LdVGhUO1k4zPiIjse2RH(UMnqyxtZ<(0l_vyx1?@z5e%{#I|5dbE zt~>uHMmK+5WPD--=DNgu!Xq(r80P)Lba6@1iI@O7G$|~e=aAtU;t~=U5Ze7nApm9Dynb!AwVvzys6rFgHBr3&Nzj zn4=xJPQ=7UN%X|3E+HZ~F$_}!mPotxQo3P4d*K&~nE_u+6!Ird4~6HSEv*QBn`U^U zxnQy~Oin%~wROt7_2#4_6YV%);b}n4J*^T8Ivls*Q{c z4nYNDI;X@0Op;3tP|jwE2`+;}F?|!J?Fy#J-!QK?rtc1q4#%wXI-0@COXMjJ#~j$< zp@}0f;~{?d7qh0u(_F5RiI~_dJ~Yu09KGcy;g~cj zGCDjoT1PE4k$R6r9p-FK!i1QKi8Ku;>kHK-_9GHAg++{{d9FsFDTj{;!+c#)m~Kml z9}{_idF=W%p@|to!sCN6QFL%{IOeUyJaHkI@+uUwR?_se;Smmm#2l!vpd7*zP3m4j z71MrVR@$xCLmG11#N>3CUl6S`5fcZ-Ml(mBo#TQb?zPZt%AiFXsC zF$Xlww2nzy6CxsYIK09`FpIJ?tr+H;4Z&PvI6RZ0M_}?+OaU7mf}O=w%Ogi%O4Si8 zCD1|1@1-Ja6stGiHh`+^0@N~!L;1r!MdQxFx9||L?42g#xNnME(G&*het4 z@#TM}y8ldd|C#E_4a)vA)xB(j{m)eQpQVkzzao2hOn^y{B7#!uN;KTvj!m`JZR zdcn{AGtytNg5S>9`fJ|GXyeOvpZTi^^{O2TKWP&IMHwC%>7*lgKt?YK_x9$!o$<6{ z7JgvI*aQk!+-u^xWUO`+tRI*WMPkR`2dOi<6VI{GY*0o!=?Nqa%IHdJPJx|+GFp)C zDR6U8#yb@U;v0YCB&d>guMMOQ&WMz@IkpeZ_)H3>SQjHU`hP6mkzPF36Yrib9{U7u z9xNVP6Ay+h9@`y{Fp4Y44pc_8ErpYP$Q zFf60;fBTDLbvNGAI^srV)QAoU4%a0_CPa@wZxt1W*9@aDiE7Bm=)@3A?ivviPZy)v zi~U~(L~k8B`mf2@sR;MMjai#9KYdaN=5UUW3W>lB!HH26q2BKmFbrSO zR*DbP(?$o6#2o=${D`plknrfF&`87@6%v^c8m>zW=l3FC3B@o@{5<0$O+ZpeG)~&l zk-Cxb@nJgLTNtUsz%?p50<*s-;o6B~d?ggacqKpMkH7%@xO+6FCdL%nQ6n&sbyz|I zroG3U)fg;ee&CT245R-mpy1Km`L!H7zsVRl(FHd{;PL8d-tg>mOD%Zxwy8cVDz1m) zYvNm`r|d~;JgWgL9$-pfPr)uJ^}+pZ(>@Xv2|0T$^_|Te-UChJTwKDV!oafF+zd?n zEluFPcT9nDQ8=_5f;cHa$9GMB@MtLh7dO;2sYKCt@>6}doo5MjVsK!ambD=(r(h!7 zm~LtzMMCh8Szb_khN%VQ<`#H6hRiU{bfLvX=APg`$J9&)c^7|kkQH-GPl#N+F3r@G z7Z;_Oo>a!Gslgt2v2D>}QxII}S>Vlo)t`3F+i`rcX^smV?pDwX%o(PZyt;t?V$~id z({F?q*0mx#tZbX$6b7*!%s!G1<{v&h3BS}@ve5e3WuG#Ioz5Kgar9qd zigj@b4Ic*CTTc2Sn)Ed$PekK!;&5-*$g<@W6D@zO6g)$=ZH?&+kx2_gjC4e)LJIx) zI@9sW5DaI%AbG>t%8(yx_Hhl53<`tdlZPfqF`$F9-leOu@0h$^P}S+(Y%d4dVe0P! z3(`ePDVX)g1+gy8KG#!f3+d@+eHc5 zg}#jY=nHkq))gPZ&X%bo z5h0Lw`>2oO!U5XX$KA7?O|6eDp0xVC;-kGuhsZK@oFt<4fe;UcqTGyO?Q)oQRLv}{ zcDD4A+N+r@(RA}Ms?iz;t^~N6<^+U-WU^u}BZDF!JMioT=?(BWa3!#G)#R^Ed6%jn z5s{F)*yQ6lR3Lij2RYFNuC9m_$KElMCn_`oI)#{fk}mjB;_lhy))&?_d%1Lp4uRN> zmVgSBBiRF{ZhlNK#JK7U?RKHdWQAd#<`jb8z&F?E?6)*0RpTh|Hpf+T zi9lkp4^K^ith(kP_B6TTAullXvgo8x=yW~b%h9}^d5#OK^5}fBC+PN@TPlD>{VYK; z;H*INZ$zom4Y0J5t4=mF<8XM~`BW|RhtzAi=z?^RJN(oH`h{tw7`;&5*Qcr9Dp?r6 z__UAXV30Z1g@oc1H}zCa#3Or~iPqjOk!6Z09`ssKcn`Y6DPIMgp{f~bMz1Ak2t15% zM5#iA_H|5*pxk%veXcH!W9D-sATFnH5_+Xhz0cJXh1l~*=2l7;OA#U208(-by&RWbH=`+2rc^b; zFHx>kr3^m!O*4*E^&qDniG)Xk)a}Zoa(oWfq~{&-DZj@0_@a-aLx0+(GTsOq2Hw9| zt~a9O7}5?nD_+2t=G-?jmx5IcYtBI0F*T!dHEUVc7s(C1hnRg`!19UtM`u{5GN@%uYlln=0Vaq0s6RthMZmjlHNL5D&l3yUzxq! zJO%tMD1O&mH?!r1#uSX9lB*C^dTnzjvVH}`r&-#O*H%KOX{IR}U(poH13xk;q_bB* z;TUUc$yUY*hJh~DJgFSF8HTo%o^{x(OcjX;gXiynsww z51W-=_Ar@B@|aRCqb1F2tf;5S~?MI9zVg<(@jR_ z3m%h^%EU6hH@30W8y%%bvt#9XW>HI7FYT9URpt=0HyI^3Zz4D!fzNN4*ONJd^LRE8(%hI8ZtZkH(<`3XfDxDUs?a zC6Y}Qk`EM5MKg{wnY=VHLOL~8F}+GHXkCI^v?#`J|4cXIN$0g$9#C|{qIDDH4Oej` zcUZ-hoSckI(L$nc(j|6@RY_fm^ssYo!sHl&oo6XUXll_4^^y&3MB#Fcd z%EAPJDQq>Q@1O4jle$}1lQ&m$jjTySjbIJZ2!ux-sX7w8nwbfyvzikLOGhFz1ra>a z>?E>{F0jrmFw+GVewN3%=5iL%H5ai7E*1(d%*X{j?zy5*Q7drYW2r$=)P$Lf%vy#= zUYd0%RZbUaWF6;Pv$zy8-TUTn);f1DF0Uv9HIOIq6=#02|I^i6t`?;!l`An~cj>2# zrit$6e2CrsT6DKa)!jQEncLD>ce2r3A7U1p`>7u)L%`Fo8PtjRCMA-p) z8?m3e^k%JS=8sDAmL*)O4`_Mx9G%JjxaB| zx`rgJ;gi-OB!;%?wpYL;QJ4W_#2PkNLG@FXzj0num=CqRn&2>&T?$5>=nyFxwc@atE z7~M__5X@t++T0V2Fmp37=1^`IrV_z1C_1@|n}qK#4zDN@W?T#ICP7CcTd4I-Z) zr!@M&zcgfUD-?Klfo`37Fu5$iE@Uz7k?%!^`fk7uea%^a=-A&WU=f}69b9(8bYqq$*);FbZw(eUVvvyCZ0vkVc4ctZ0+XMIW;TIgNna9jI^mn}lX_efP=c?#;Lr0YYJN zK2D*@MY_hA4~qScYkZ|K`MBI^ z1`D2D_9hdNnU0ECj745);IL5e_U{fPjR}Nym^X{<%@Z4_-Ubmf>T{a ze-WuD7E@`TJoIIdUsYXXhmBwv?+D1+XYR}xp<4rdaZ1^u8v%fe)0P;T79F?xkWZ1L{%9&< z=YJPIQd2o07)m>c3>_)W5G&2+rObn1Ge+MBb`CO9<4NZVR^(#K3HAt8csu<^9y6%H|g~*~CrYfcD zCH7EpJzskuG>cW`)<~JIJ+vX~WGnFI$6Wm{n1f{UU#>OL-;_LhLxoJ0i%14V$UH}D zrfO;hq!tQ=dXM#&Fc^wo&(|8m*NY%w5y$X|E?U#El1?%Bmzh9Q(W!asd62MP1)IH| znE@W1baJ3+Cg4B8zOKhrEW$86ayjB*#xQF=H-;-nj~YYK4dfgPnK8&jr>|$mAn8l& zj6?=Svt95~J0mEL*N^&?DeM?<-bebCa+mT+-^j4`ZC zmoWke*`{VEO^5won*)@cASY*d`BmNra&k7qN!<$yzCqcd!dQTsx}FE&!_i!*-HrYZ zUC&0!M^CbDgD|_3wDn+e47)<-t7Dus=X?ceKO)A%IRDX&l^;3qcN@6L{jH*0{b%$( zzw=HyCoAc@(&!l2VP4ASWHwhrH%s+@s%bigF3T zEoAmK=H`8KTd*~`=nX9%;IICza@rg^HA}8sVl8>VEICc{ERH%hKKZnBlu5qfJCZo;!}`z z6Zb#(m(3uzpCNCRH}Ux=NC36i#OI%mn|Q=BLJ(~SfmJMgR}Dd!-;t{j1@k+uo4CH? zkPiAC%_z|n%c<)DMh`z$!Qzq$=S>|j5}~hHpmqT+`D(Pn{qu?RSEoi-y~#X8f)miv za~AYnNRZAycEQtlf!NG=0%mb6_>n7&NQBNrn>O*8XrgF9%jrxs3;MZO29W8SxQc6B zGR45-rdNBx3i^w2a-aTUoE+zzXr>D!hw+(4B)2#>Fs!1bvUIH!E4=hFFQw5m!DehS zlF=Y>HW^8qO=Fq(nnu$J0J!8sehCV}`&r1#wY5892A_Z*^4OhnxA#%pMkP=89Q^knhfD=C+i) z#xJKsuD>M)dU;?23PVFk#Kr_BW1qB{Ym4rAQO}DP>APl1@w?T?*Z>x%rr9baJ-`En}|BIt? zH1)N#!cUcK;ZwiI7I^%FDNSkxlAk3-lP%~s$Beh~j*`@#)+v*o7WUV+RFaxQZWAn( z@29mUO%N5`h4i2m^&ok^`3S_;MeR-!w8n4YdueI)Ea}om6zOd8J`$pvMrrr6TS1u+~=YaDuk-fY-eVDyBK4x3ENI z-W`nB!lEp_fEE5mQFSK2Y~gOE&sILI6bgQS;gr~n!YDo5!d(sB5h3Fdng+D*wL%_7 zZ{>!XE@+-@fi&k*nghtJt;|F*X?9#o%OrFa1uc;%wxFiLn~&VeEs^bb?B<9y#e$7o ze5QtWisN>>Ey|Bk^u3&qhglEVGM8WzW_L0Q#LohThww~iSwtQQOkWF34{1k5`t5r{ zF;{pQ-THRm)_1r>{I+p>tg}tT1f3whtp)e1XeinqD`_Z-f7w(}tqn@0?KU0{;H?-Z z;P7osJDA&om9c<(UlamQ+Qx!VklI`Lo)xfS#KGo*$ZcFnb|ggSf(L?kEN628BN(=g zDo6*Nr<)p93Tqh<5RD5$_L37%cr>cOO5pMB0v~$HqmdJWzU;&#iOA4cvI9FnBTkHP zD9?<)=k1WcL&zUp5U_`XNQlk{H@5Nl;Hlt-mQz=QSeOES7v)>GaRqOkZE7IcsNVS` zE>q?>pBY1kdQ8QZZXn=gX5@!+w}HXb|{ zziwGZchtID#Fj_gb}^1W*v^J0ekihIHw&iq+0G2bt)f6UAEY-egULn?Mb>TSgLn_8 z3jsZFKz&B>c81ixvW3u6GJiX_kU87Ag?7kudJ?_jvN)apfkLo{?Q@)8XGf(+BSNV|i(m3n;;eWe{@l}I04cW|Td z-@%Lm#`hJ4)FQAsQ-O@`;dW{fo#+Od)!LhFU&uV*=0$7HLx&xlhdP3Xw)jl7KS1zs zuRl`gw*#{KTiznQckoFEffyyZ5mI7Xg`Tg=oeOvkbATm?lbFR(Y3d0QC?K{V z#ZRH24%vb<4s}2m1``INf8LBN(3f8ub_l(m-of4O39O(V0RJ)%@N5|Jc60~#%|8pE zA9irH{wq4LeJBF`i9*EXC&nCcL(yMi8#dzeu^)7Ev))cV;+qN%v7C)~M&JO-oa&Qp zK}0~-HPk2Df{1|pEf%%~5enI(3%p5NL__r%EYL*m{#L7WTCg zFx_`@jVA8o!@RYsoGKM@Fj31m!*=pv&UPXqpzpjwwi6KyhqhR}f$c*ekE08G$Rfc_ zl)yM2pQ&a)-pR*xm?&SWaOEbKVTyXnDc#T{*p6`^<3SFXvJb$-k?6h{UEF}saTy%s z*fnhgc9b3)#b2U&=zEwAs1~YekI^`a?^7~j6#ukSXxn`k*LKxiT-*4Uh3*{%M$Im+ za2@{r%`{lr#r55J7auhJCZN9C@8a7Ht$15th1ig4U8)FiX_gq0fcWWFL+^>$pyDn* zh-D%!ySUOP-ZY1i2uv&=h}+p?x0~q0QVF&G-Ys4c+~lkenUAQb;`;~|=O9_?;g@Dk zMsu|yGjvVYL)4lOH}&jWc5#*WQk7GcV{0aG8QaWVT;&J5m_sNp#l5d${^r-&1LLJ$ zu8CDJUQTjepeU6N4t$_Gzr%&2i4~-72$tmMtJr<|<{RNDY2Fy=G8c}rXfYjKcvd&F zPVWBf&rHFT7e>-Ghl@UD29iW*rtsHLja1=3p+QiEU!I9WJ0yn>?bbPtTvuG@NjY5C z{jr>mZ2X%&2OUk{9IoT3qJByaSMrB~(wuonX<-gmGFCEozzVS?8`?c{_|V>jnCWDm zAbO7FY-rz`gBae#O1gf}nr~@?OLTf<2-d{nn*Gr5E8g&s{hEM>2#zB8Un~i30!Ka) zr0Tr^1q+brE64}c?QLSp<%#qh{qre)Z^Mcv$;D!S0cv5p~giN(Nr=Up{%%aG$J#kMN z6+^Y#8WlpdyVro)osJw*$DNw1TEP{KENq664^u*#K$4NGTEOXZ`HBI*r)cFXhBsk; zOxxy=Hr^cL8X1g-8rilAo{ftkk-<>d6N4+Zro)H8Y1e$nel8iej|BR?R5*T1A02*I zx&V1gP(|msXf%ri#OYkFqVIBRY)XGi`72zhJQb|v~!8X2JC2dKZoTht?C5X4e8134q)7CsR?cNShTb_c4T@3 z_+^h}A8Ubc`Mb~`j^FoM@OXBFF4%cI`%U>N9I73#JY`QMPGSz=va+iX*P zQJO#ge2G|_wW6`My4Bnw3!V&Ag~AMqhQey7Ltk5tR)!59nOfpz+M1k#N%T~AOWa?? z*Uj|!IDNvJoZJE*$FBR9elFmfVQS9n={a&d?k%1uG#>eGE<-5 zo5}Tko+4%G1Nm@ud@l<mr8bZvCHcI^L_0b$X2Kr=Y}LQmyHxOcf=K*=b_!(RZz$Zm15o+cRI(u3+RfMYzr z6oO$Qm8^Iov-D~42=qgp+Lm*WoP^_n&6KP3RYS=(v?32H9IhT#G?r2)#l7*=sMP;x zIcLbdAwK1*cX{W>y&)fKV2ro*EhtE}xchFX%ul}@`GS7zZfOO1XDVWWBpQ6 zc;d&%IdVMD;N(>Gt0Yg*9)jL@%Vp&wcWp1AhK7fT)59!f4%FIxbVb5Y16gC&q#*`80SShEN9C>nVxYUizFor1jc38C!uIX1-L(sr`hSr z*e)eXA$QLq-%@1=Nl&g4xBYDTce^I&RDk04*4e~wKaT)%LadcZ?fpCgU=P0g`5YIr zpNAn=L_=Cm!;lL5`J5snB>UOyhWll)r!P04j26F-ON#pUFZRN@q(s@Ldk%SH+2di^ z3Y_inMQ_qyFnL$d>I3mztQ*KE&ZOq1C?3K2bUw%J=iz4`!IIn@S;APQv&%j_cR4i5 zT1V>W6c^)-@lmRb@sS~K^cCc2KYCvHRt2!p2rKI`+uG8iRm`5v+B^XS#rRPw;l&btE{n zG;geQFfV2A6}xhl0;U8vV#jdYWPE?Ydv92GQ%;y*XuzTp%=?^*qqwWJm4t`RPz2)a z)5-&Ehnnm`e(0jDZ+Dc&?gPsHG&#vd;#S>_yTsj;1=Y^9^a({bNLoqDi$T-Nx=i{@ zMd5dBPtSPLeQDx(kdtZE2g$e}EVVmL8e(-{>qJ^Z_oGSJL4NqKrJ#-FYzB*5@x`2cHU(A6^c zB6|;Ve-$qG_aOII>je(E9C0vzH5XrDQh#+_bZz)x>>3s_XC)Jyb&xN6+4l4A2uWA9 zodty_h?y>Xs(>`!nxJVfiYw9-;tzfD_!6fbN6wZwtmPx@6@7U< z3mkFQMR*j5@(Ziu5dn6PX=Xat3~GX}Um`}J57>efsd_f%arH=NI8W{|-Lw+c;R+S6 z+G0-zkYjmFGtxZ{!8WLW%wsbNrqg8fZjVBGe<8zkko z?GP&}5ax_SPNMRe_DF0#x0|7YRPTJgdX=Ah(ySSh zW=cK?m8Mwzm7rQsq(QYp5w({!#X1(nh@uy-A@=3*!HMS(Xqj>Xe|aj}!UN=r+QQHI zVyJo?;&DZ_L);LmL2w$HG(GyNnJ8qWJ;cXruz(FhJ>r!Q(&Z4B`6L0?0o9IH0lGA+ zI6N!YXgSt?121dQHt2xGt?vAJ$Y0)vra^8g0zoAX#&!~A;;x7I*rf{xmteel#a7L9 zu>iV{&-k)s1Gs0N@x@$ZmO0k3WbPqu5t*Dj2%3k2w;^kE6M;RL5hdmY0TYW*y>IK$jsHP3k(}=_tAg;dJQ&gwZ9ZP;}IxEEK&shR;;dLcoO6Svdc!6cP$J!X23WT<-|?76{I~1#OE1pK;5~1SQyR zskI)i6;*fixTs1LDXd`Zh!ow{3X0t+GGRMiQRBD~hPx!JOz|RL0UFT^WSM%AsYk?& zf|s*sr|5hkErU+WanfIQgirdL1@@&!_|)E-n z2o!QTqF_7SReW=l&@TpO0Tg!QH8-TSY>n5WEWmn2=*UfH@_E zafO30x3zye;<Qi zcE;z(_EHoXH79(bN2R^mfn{4c@BCrYG499^kTJ+wA%krD{^C)2`~E!S$638_TZ9T$ z&=nk&EaY8a%v@qL-EIj{T%_6(4y^#~g*vn^c$wnR^k1TRk>lLFo*xtD)#x}kuliVl zFWu=qHhK~ED}mYnI5RVtchuUKALHnJoX13ij&n!wwSauKy0m zm+44|F2}zY?XaA=GMQq{2Uwsc6y&-YMf^mQM? zGoDyuk!nHVWosRX^Rjf){3)oTMwq|yMpL2hjGiCk z{_4RAG^lPTxIw*sqV&E?9M(`pyK4A?{@oL*eU~98_)DYLLAr_&A09JPzcdP`H=5Zo zP5MCv7y3lMeZk%uxw6W~A0G0OG8nU&uZP4yfF5teR27sKBPF`f#mgej&bW!X)hD

wVAxY|EI!6z)OfWyn)SLF$7G5<{`EGLZ*PB05#8#9@qW><(WKFVJuv8TtOC-E*4 zo(<$rl-nz%xb+g0E})#KANg6ut-GlEUT`Zve{+J*Q5QHzkNR4?<&Gdj^pz5E(?DSb z7f+b;b!Rn) zx~Ht~kk_$->N7y_*6AeQR;hg2nor)w)8BYaT+_HzWxq4l4rJs>zP-{)sbmJ#{v7 z*+zqL7VH=b>!_+EGrD@e+u$lOs|vnr+6|L+zxzh^#e=$ z89H|NoV=%j?7beIj_o(CVj_ljk!4g@Dr3>)IxDXiv z1?JoQ9EKm!*Q4*fY$#I40Fd_ms#; z1f}j}WyxBY^fYrWnRap)2EpT6!Q&EQyG#xU9&-ieFFB7;G&G;4Mj8S!zh>5lzt`&d)Bb7m0?B#7`JPg3 zE>*C7N$w&m^kV{fN+n};k6;z4znIly=s!%?0OA+g#3p-{vs|E`xY>50|Bi2M`pOonxurl+W~KU+ zgFys|znIsrxLBo`DsHE7ZXF5kwrB}2N;}zwjM}!!#4LCXs$n}QNqDQSB(IMI7cy9? zmksa7f2smw%>JQ(F=maNS)~19W}j&wcR>CwdgaI|+ON;j^mbkG&R9lrfG#3o1b($& zrwi8M7x9u3qVa2e!BP0(_K4sS^wWF%GkdRuqMzBrjEhRg;yyNox>eNjaOodPoyYWe zpdEj=gS`45co5`-v0ikRdVy)$-mi%U=&*v<&d-%vgViouM9XvBB0ATznaP{y_z?3D z4c<7XdM~2&w{^_)x3mHL(Tlu;?dW*(Ed_eV-!_hnImfNmPpM?G?Mw-`gN}Z4>JTK% zxNLTga@h+kzoyiLN0)708jZp(%~JanX*2iGoG9t=+O$^YGDf_ zn)6~>$4M1;GIH10>XP1XLjLgMUf|i%c7oJA57K0uQU$e2=W!n?V}by6>D>=^i0Q2F zKl*MXkhbCY%R86y1_?ROr>NHFA+{onpqKx!F7u7lo}?!(5b3NRd0u1+JkQ)K$2iZ4 z_#G}kGUGh=u2Ye)Zq}QQ&LOrAwIwUXC%i$NV9kV_uAJ%Z@ak>*zBUHS2+hMIjyW#_c7-kzC_f>@6v|S2FM<#+#yE>( z)GeG5M;aG!88j$h=I=;cY@05T4p>U3m~_E#y8`YFCmL*bCDIRJsmU8k)n3Z5VKS4r z0&eq}N-gVbbOG-yQhG6KYgDXR1Zx=uthe?@JKP{?jXjQREa078SHL@q0L&!I5uZ!% z%~e>S2RE14dN@bWo5D{2dOtma+$vD)lw3z#82sT@Me&2S8zmS+H{2c#Gv9e zIigz#hykF#D?Sxvu(}Xh!IgdwvE)B7Mv|Eqzli%pZ#*!H@R``8ps%FVxIrS)@L zD;M%F;-PbY3%Rn851%W7%R@pSNRM&pU|gy_X;rx;+8*_!vgGlU-u~vE&~f+B3XV?u zY%3)ajO#_JNX-FT6p6mT6^Vtb4%p5*E8(E6J?W`b>hf%hXeHBfTZI-H$lqjyz=!wk}0-Bn-(&FC_+v4e8hBHRNS;BIGf%zwa`Fs3J&FA7N zTVFTgc9EOUK*3%`++CyQ<8qOk&qHLNnh&;OiundvVCK_T=?^m>Ml0qb??s!7ycdxd z9kEw!3th-N7r8fDBU%l-$i4BXo3$`N zEeqO87r8JZFLDmUE|#8zmnp2OO^4)H#mxhgH&p+8b}O<|2;!ImJb9koA8voOvNbs% zDo-hu)N{bz?{E%0cM$?BnI@4d7r7G(m{3te3!RH#%{iqR;_OF$66gw)a>>o)?^y7o z&7%_hsI~h+K=t?haSdq;*IZJ7uyK7zYiAE4noC@550y%_RgvGTLab?d5Ey>3rI5y# zRNk=xz7eC|@n1S_yg>iNww#1r;v**ZS6gG!?h+d@Rl_bR%d94l^~Bc1U3|l;DIfiE zs}4`GRUh7pqRM+}>q7rBvwtoaM6!%QnS2F^?PQOHfFtW8$<#~KY7+2W9or3tG&}URy$Lyo z4e2y{`Vyac5P}&tB5+RJM8@U|j~_MjgnrL#2HD||f2;D@sQNGIy_~br&MGijmli{o zz6RDdm%Lzg%#S{>bF*tDQsuHr_->c^zC^uhY};!01p9W0)MgOz8vklst_Z~TCDs%B zhZ1Rend@e-tGzwZUFP1b>1D@bSGyalWnvCg+A=W$%CX4T?nX$JE8N@6kegoN-X@^7eJ&yOu5fR&P^qQ&c^wVw*&j-z)fMh- z%t|fuHWjaMK7SD+L5hse?-`%!nQF4!@-m;PWMM6@#v|+Pf%bkfa1(GyHK+w(UwE`tVGWE(WHq#ce2U~oFOL&I@taz}GMP;s1$voK7 z#`be~Lm8Q=3-d?M7=V`_7-MV)9hASQYVHdlqK{#f;C^criLV8j)N(4x^tK3(-ewF)* z-#Xhn!-9WoO~|`fxvv;|EIlmLYcPnd?Ei_Y_ZudpB%^s^I|C3jC{c2Z4ahLEP(Z zKO#vE3Q-rbhE()~qMr8dczS>}aVJs?aa@H(z3dJd$i2}ZPZ-zR-c7=|ixQTBs`jye z&4F-3IJa_4W+J{}2rNO*-!Z4JJxIdCVG2hL6bPn1xeLvl>Wd^5F)#GSneoKs8rRxu z*SN>|tG~TaBL3I7$Ekab>#XuMt}}#UIzx<1XEJ8IqB_w2A?YiS_7X_D<6r7)+y>j1 zx{-0%nEILyg1yn#xUU&`jgR42e5SqzTd^_R6^S!n6Q%Tr`I`G9?2X78L2IR;_3=0dNdXBSKs7TIWTN>FcFIBr{vOTr}xrLZ$RJ=o}Wxi&& z;4@nY11T~-GZ~+1Uz4sd%t9L>CUUSkH?qYu?Fo`6c&xK`CXVu2umjTCp%MpRx>Dw#W(HphMgzYB=;>Ok7)8E;GdIqkfTgFHwN zY~*w&*OZpjoscAf@rF{)JW6bueS(HeL*h=4az_DCJjw^6y^A{^B*-o^Nx83DcZi)h zwL4U)xV$0RaGl%a+UwjV*IehGD$Z|_9O7ff==KW!qZ6OZ(JtP1^u_k5pEGk?p!>1eskWFC68l1V9jD6 zEpIR^urtSA2`cTjhh#3XpN1-S^hKR-aBLlJFl=!B6O0mdY4cl@i?1=qm(20u=gp+u z_9#SVgr>{v9l&KJMnWG5j0-tNGU3LH`D@MbeJ1ebI`P^4w^xKyE9}v5dI{n@C2$@W zICEcu6L06!KK~(bK6T=RxHZV*sAY(++D+bT?M*Jjr#H9lRFElU}CoYUubd) zXO4gw85(%>TMc)pw`Rc%d{do$2JJFyhEFSal&h@-aqH}(Nc2qzyg9qJXt5xpueNvB z@@)vOM91zM=LL_}+h-7Yq~RDUKAzSA&kW2BQGC1@eqA@(!|;2}j4Ye#r{3fvuRrJ2 zQE`(UUGN72f;#yDf;K`jC!f8=o-avDCfGWZv?l(g4!-+t``wCo_6RG*W!==AaOw{?4z}w1-7!O+nS6YH`$~R`6<_D!Q zbN=B1=}$^IbN<=q?2{^yH}Djg)A>J8KosZywrH>Q;Laa8rZy}0+0%pDY=djK0!qEj zegEX!+_EO#rZ4zfL-2LGiDca7zF&Wv8|$>&Oa*8ejQL$RQ(AJQ_-!FqQ-VyOt_OeF z=eW&7$4qPn0nJBwV>3E|Xj=FIT(9f;HqIxfKvT_eZN<)^?Z zHG+KC7|c3x*WL!VCz&kcHO0jAr;G3-Mx=X|g#QzQlkJvQ%YdgW?p}dOvqbNZSL6|@K=Ue+%5`JF^A@IwvYleG5 zwIA$lrLMdQiznOPf%QKi1p&k&(_TMfWIDJ6kmC_8<4`KU(?%i4{Epy_bQDUQa}Sl6 zc84o*&K<7AnRj?lx%j@_E|Fz-xE7b*;aW_;!v_*VF_(iVnadHV@$1utk1(h_A&?%$ z<_GO>LvGb2_}%E+DejITzu1RKkhKF`;qDW3twoz`m7wGA`0K9iqabMUtKAzqKAGnW zXMVR=hw*Dass(AzvVcFZY{H(!wP4sEb}yLUXF*N)`B!^2sCVXrTCnR6-qr_Vp4#1E zmxx+o~DSW0L z_Yj&CT`L{rI?tJ$)}6l+>#OLOdEVLgFvhNVm+RB}F4t#`yDY}8J`g`%)-HL<$o855 z`VW$y*=yrOVE2Xk|Dud?j?csoLZ6w3ORQ)1%8>u8MA^iDvCL8u?tJ>P3hX*{>*s3N z%nC~?yJ|us!@;B5NBHiJqRf((REDoorg}m5XZ9K}<(a+a|0wATwO4x847*$DwUmVT zv8yY-_S)PfO_xTwi_f_Q*RqV%*o7>E@3MIazLl0lhK@-Y_TKnO(}%q`W@6H$DHGyT z$4r`t4=E{AM+O9xtw&-Kxll#V5oB8`UVXE7bM#L=qgHia0#drCFZJ}n#QnDGX zpYB?2xXazWmC^OXX|z0VPY#I5`odj4S)a$|bdPvSwI#Uk^8v24e!!M=qW%^;LRW4G z!8+j2XFay>BhMXpSQRH}Sm?gwGvZl9 zqJgbACY3Wr?+fFOFK9<$+>b37S`s$yMX-+Sg0#(&6L{Xq1#x8R|6=dE!=oy?hrKr; z3FIacNJ0xKR22xjo2{U9sRoIPpop*)2q?Ws51=oB(8->y5D-Pd0v4_vv3H6cL_kEP z6F|E1ote4I&fe@M@B91y<#{yRoqNulGUuE*GjnH#2VVZi_@3l-co@G|5fyo*y|u!# zcqk1jPfx55Z)LCUo1?SZjW(^_sVy)%^d_gv?9kgy4z1p<)7ed0tz0y4{@C~&qsicK zn9W*?&Y;sf3oJIXO=mY)G){-zYSKF7t<6`j6>@AwyTfS4>&_hpC*C7zw&88@CWqPS zEHLXVHYcpuw?187etzChLT(LYjj*#}`M{>t5{0gf$~)&cTzU&uR-kv-b@~FU%VNU& z+HDS_PH)iYG!}XM>IKNZ#Z+Lm*&Swswx9qxE3j&HCXGRBaoX`t_X4||c47W@A;;`A zS{-<8rp~6->vec>yxnebxh%Q@i^*ixXylUTetu7=i6U%`U!u*fo*?XMz5uu3-utQv#C;?y96T8GB0mDlw_IdY9QtH$cIYRpcvQD0!gE8=YyhePkOI&2QJQKOfI z_ouuoN1*bh61BYV>DQ8vaosT*!b+~uSNyyu6Y^q!HH8B33F;_8(rj$^)*r~cAdrPaB3_T7hdw}v^q5U0++*}H=C_^ zd8=ZT8k5~=b~;REi`K4p+MG6v%jt3$EqV*;Tx*uco66S;*;*s=XSF#j*rs}`Nn=67 z)H`%|jjGnDcfpF(y%~yA)j-t(9Xpoams4W9l!wLSdOu{2&x(nps{qe)ao8w%%ei zxSVFI7G*Wq%ody0;?f#5R!f21px43HBlFYcEqBk@gmzgyRWr5Any8ZKpn=)@sN4WL$ua8tS(2LgeabJE3UI>U(l)ppDni zJz8$c(YbV1gF$Px=+Tc2R*ce4J>J8NhNRPApp;7z(JFIn*uPnIMu*L8z@FKHf;hA; ztybqWo6$h6fYM?U_L{m`$U)~bne|$YPHWQWwK|>6;c^t13tR=*%aQZ5uybfApNXIP zEOx)u({@o8%dLU76NC}v_vUCdE(3O^)&i#<;}bGraXHX$G#0$-+NsmY*1xBq92$!m z^9-xeVL>^}2D=Tj2)$9KEzp`ZSR$uwUXSi&w_%GS{{>o;9wUs^V6nPP*s?~f)rPm= zj$f@vP!m-s={8lDT|G@aEMsUg30JK=}jiP&8#gj zU=+XrhA{yTGCPlsQ!#En_Q+bT#cXmIj801dh7M#ClP8VgTHaU9C01bM)Tik5Y<8|N`Or)?gGiqEG8}?*0 zU^?R=b!K^Tjs-0VFZR}IObBnV*lYy_P6K99PQ2ONfoG>t`(%FRG?=W;0=&4~X2VO% zopy}DP8SyGoDPk~g`3GwObPj!vjz^}rKRX+HPA-;Bt2PhZh2C+*>2N1FWh4=`b| z-eEHu&3e1Wg}1Nkbq>sS@X6q`vn(;UdV(nJR#&+edx~la5&<-@w6r`s+l6t#g(l@P z*e#f$LZZH)yPTCt+PZ*EfBUxgOt9q);)!Zw~ z8`U=Jjb<%wfyI4wKbF_e*5LVWHWQ`<=sqUYs6nqcI9&xA9VP{4Crb-7Mj}`Bm(&CH z&l&On_ta8hj-&b(Qss&@n59AGmenfGs=484<{Bg`Y7|Nqaadw^;84nj5r$+amI9N7 zbPE=j!D%y^vlRV2BY4A-HgUy)LFFXa#}N50^h0CK;Oiit$NZ1ec0J@bQY@}9UPqvEfDo(Hel$` zYs?tZ3hXYe(nGt<_^h#63or%LYw;f(#o>S0!P;CF3vRO|JzH*zB`*lsn1P{sOfCav zmKa=YMwb><Lwg!8jS@OgG-~eV0UfCKw`l`s}%>BI&^J=hKVzL2N9=w%6N?x8KKoc`Owj_RxFXc z{#tpX4hBpG3QYNCO|EmA^|5hdoD*;Kde|eg;e}48!NkXogAP}Lz5v6COK-FngxXDK zF*$IYO*WY5H3deqQ{&KJ7hrVg%s43FlS)_h4X258tr|>L)#KHm#T$;8TZ2?il2qQF zI`LLI8S1?8?6SL&ZtKNw^&eQU4h+Xz!b}7 zV_g{S?XtBNn?{fGDr6jpV+1EQu)V-!EGW=w^%gT5+OoNj8c4ff&bO-vToZ^0mgT^XI%$<>kAffj)ovI8?OL@;6} zp*OlLt^$Kyi)q=3pRvcY8?b9LVwFbhMO<2|1C3U%!O@S|j@h(~x%7Ji-qlzwMb=T& zNRf4UBfcpovmz#(o4X3^p=u zHJ}xkag0Y&OdEDwm=>d_nhj1_+kNjEVGfR^t7|D!q{CHjqE^)`Ne%k5Vb53ok-Gs7 zY^xK;#N5s3(xYKw{5E2Dgp+sJFc!NO`zMXn?lcuBGYe>xW(=MV3+e;y(uC=!&WK24 zh7$dWbrCGN#AL{3*W%T0<)kX7SiXJRco~ybU55Hq753%c7x4g#eo2B!7~(u!iGVM{S=PWEe@P7a5xGqI)~P1a_F3x zI$JS&qa9f8kL$6k!(_;4v*F0oq0?h$Xf~1=N~6Z&z?{#F!+J6WnOg%@W%yPDRXWk5 zxgAH%E!mVE#&IpqG1=`}%+E1Pw&>A&FmPdv)9E!1#SryQ5-pIe0=rYMcj|C@6eohw zS4|ct8MYREUq+@qPv^E!VjD4>Idvv=Q#lbA!hB`MpO?EO= zPM7EYJ7s8mR&_fp!TQ|POp<0MBpEhKFBT zK+h(n=b!wfY>${Ix|fopd+F)EnQ`u%xP-S3Cf-t(5C3d9p@Go}?j2&u7m%Om?wjxm zdC>&dNKQ1(|6vzCCr=sWoZ4=JbKKYolU5fee2+!a7^}@WrXAe@HF0(Ezj&}wS(_7*zZtea0X6WbqzElKVyannHmE{7jxa$Z+vq@>KU{{IicdO-9Cxe<4o?e!)Nc$y3g+ z$@uqI@~AtQC?C3KZ*xI719S7-gYh8gt(op3yoBmZj{6?`HK2j}30N<=KPTITZ$p4g z5ZWO?YgpIHeUF%V2#OlGr@{VIgy=>g>UBOux4#dpcgrp1?dp)-ad0Tl-G|(~Ku|g> zC=JsPWi+dFB&+lZ1~F2BxW7I^tY#2+f+QikoLA=EvzGM(@9g-2E ztANL-QnnAXx98d0!wPSC2XKT0$%p>0Jd%3@2qX{b5jH&KZ&x$e$Ox{+-^*u`YKRE7!>}bP|KfXP*WJx zLidlhYAu5bC{QmlDEvvSX-{W&p7`~13>44)CuBcXK=F($!W{mj6@Ivh zK~*xSQwr2|28BN#l%xVPHiHSQiE+ ztb~KTu>r;?P@@>sbOmaZQW;+NPOYO{0b9wyo>stCDqwhrI0bu80ehQ)eWifCeT1q+ zT$%`ZS?(Mm9ah|nwEt9~Q9dHb-wO2a3>r2Up*z-vywRw*ls{OjX2Xh6s5tydR04?) zpqE$}h*1IQ#X#^U1?l!6g4h_yFa=~B1HqpZWY%B=St@i&FTE0HK% z%fFa%n*GI;Q=q`%@5=7(C-5pV3f5l%>!*M{qJZIVS{+_nLgA(=aFZ0cClxsSO>`*M z$J4^mAme}kEb$iT`dN1Kq$jaQpKL3h4?AAZ$bv18&P|gmCc58964(C)hlb4<(!te! z(qrSu|7OPo-LS`;W834`y*jH=i{GOeEJhQ4Ereeu<9-u|UV~q%;m1r`9YScVHrx;R zbOVrHJkb!cXSt=6wSQr+?8kJX7@uJ7K;Pobh@xAH1LWl^e?i?p<`lQzo#x%&evemV-)TPxhNC8&b6a3%H*h;=AwaXK8FpOPeTAc?ryDh_W-`z8^$ zxUX{GF1^6L1f+TwTwgf8HoUOPJy)0y<4ebV(t2}Lh;~HCpPOIej3L*AnOCF9h8I zsgNf@f?G~st|SbNPc#g*pr`BA0CWdCw5;O01#d|Xt~wf!IF8#hj(Litd&-bK74EBo zH~|y$9Cy$1Gum1lQb80XB4!Od-38XEb9=+VglC$I%Z|~LS)?+;Tc|VGn!mE2a12V? zEzXzke%9?2Wb?D`*@F1oF?te%^b8M7&w^NSjGP6LjY#CanM_^`uHK@{b4S&{+r8`v zg`vMJn3)s3vBK)7=WO1y$^E#rm)9(5y38NB5{`r0H@k~ty?cJMyPsHzivD`W5KhU% znUeVmVMohVJw&|ZN(JhO0!m%+t1&MfL8(@X9sQNZo4&?6Y%k>2zZO#lRd@4Ds_Jy1(X^bubr^E zLrsNe0~3SObY0Y39CMr*+$bV?$l&PNiZ0l3%H1CHU%Jbo^_T9K#3zq4bDPJ5QgeI! zI6Hd8h1$YH=3=!dvA0<7O1^fl6<ynFyM#-ZZf6ba#dMTfMEN zk9q1lznf7cesG+f8-iHm+z^Qu9@e!l9UFtD+;+EnnIN6v8-44F8F}#69(Ob85?`D) zYDS@W<~TUNbq|h$aO_+69a5bWVS9oQ!r1RHv`0`-h4zzCnvmLP?)UD`q-K1bG<0YD z;C@WHgD<85f6ou-EX__p&X4Y)DLhspEWcVi7oPvo-AU@qqfzrljBY=<+eFe)ad5S^zB6a5d0T+V^Lbp)kk}Pa8_HGATYW4>gWm6nS4o@3s`i(Jz0G51aqfN zq~?%2mDDZkhquAg`2E*G_pmte6TBN9&(M)Ri~ws`))B$zA<7%^UlO@v(4w9c{hfUI zh&xG;PV%B@>&?uA{6F1yN`LdkJC4jP6i=RDIZXrtF#%2&&7uavv3?l#?i} z5=vow<*XtpgD;_UQci+&!i|F<{*8)G%V>0HK#MM`((;9EVC!c-Jn*dNn&#r2Cs_+v z2%S(1&}(mvC)p`RXHL0)76+bWEpQ(XMuS-=oFygaSR*(MX3RgAQXLn_i{m{$S!A9CY_c zXm(@Sn}~Y6WC#b=FAPQwjKX;!XPb$1RdZ&=K1pnhC>nwONs}+1% zpV?W^J+I_BX}~GeN66Z#YYp4*M7}hbFQz6x;1sNDR+1NqpfdRqg~td!Xn5sIxCY3p z1(U@&rtEmy)d)-D%}j`gl+1UB)o)2xXfA@~tZ{LpE+WF+7nK+{gM zHlECb&=_Vt&0^R?r&%M%V1mZ5=uKrIj&vNn!5qD$Jcd%`EhVnQ%BxOh2QJNuA@E-K3pi$2#sB`JZ^XRSDc5 zFSb0Rjy-)Nfww&cpT~)YGc@$n4+ruGLtwDuL+B@_o?-G{QQ8GrqVk^R9>q z%}Qk`FO3Y*TMXKi!Q0Z9GpMCda3Vvm+)-Rf*px!L91+K|rs|;{gS-Q4`aqXICpH&L z&oIM$iqsonnDbE$WQ?j`2JLH!>rtH~$63q6QR`fMhFT}i&7g9!fE@Fi8J#}uWn;a& z)s123D{M{@hCWBGNXL3NK&5!3N*gawRQMaRNNykb+yg@e@j{j6T^tDqFZ$p|ApuH$ z0OkDa0j+1=&b9NZ5Ik$=17~Q+!8>_TvTWET&e0}w>ZegBC%UMi2Jyl8HovCJtAo&4 zkP0fXIMkYCY~o%E8mS{+N=F(6m9Tg%++78}Ib2^0t)#+e2y-joY$SrJYg((w#`8-J zum+QQCXP)S%vleM6iH7vMSuyzPp|-+`5r_K1%SWfR5MCh7Z&|Wt>b!zT4@c%CIPcEyYto_YcJIm9f?r^%21>_zt03?ZNXVn4u z6Qyla&$57=e3k{Mi)Ko;Dkng|Ps!F2d^V zkU?_@7}YN7+dOds62&Z%tG97vz3;c*@MvVc7vwj0fJYGLomD56twN}0S*9^W(O$2! ztd%>TW!k%wh#qp^nBhH1sSUM9$2!q%BV@mLcI4?b`EcxGcwc&xubTGFnw%*d~N2KNi%>9Z`TpWxxBh5w|;j_}mNV^AY0M}z3^ z65-H?8#)8MWwX&a8rJcHlpSL{K7UGNKW550>V~#igxqq? z-$HyqVY^7pw%GqXOIbg>*E3LneW$ic@(1^NYaBW#iF)Fkr*@LF8_gqQXdhm%3e|jc>0NvWb=tn&x#LMU5yGK2vrK=nYoi^k~I=vN{FP?|p?&)1K z&vUTh>e(`O_HfSxvF_ina=2%jRPS$&GZK5aO8Y34rv6=HrSeg$=OID5y_(wkDz&w& zzBaNT%*DTuV7$I){DVaf&u>z9H9-#b9)(~8Dzyl{gwxI=F3(h9IIMfslLgzqnb=br zN@|Y?HxK{K!p%D)JhzH?_dA8vG~95HG=+yHT@!u_WZmM)79NJQ4W6c;nK!L%M)X#p zHVaIcFicYKCaC zy<=6cWS-3u2PR{Gvq&>~rpJ;XWWersJXvmWVj-6(eWFxX5AQJbWXQ((p7#@kRs?b= z2emg6YUUzOZh~MWP#xjS2NUx+iBE?>FW^EHvT%V4EL>&Hg#E}3dC&0j#*8!D!}3;R zRr0?pJ&A%;d_m=BoS`NqvRKNS0JHHGt34B>X=>D*@PNNg6jbb_U%w+?e!krEy&$dN zk!dfzYU|AzF^oT?55Rm=Xq3mgD)nZK)4@_i-$AA z5^6Pg3tvqx-b6ku`m;Iy@sX!3sCsfa99gL6$fYXeUbsL5jrctMR|99(rZ(b==`FS4 z5P@cK%`b)(m>f2P45--Uc|hW4t=zjkd>qYCq~m#Ec|Ttg<_@1|;K8r%ebf8GLF=3r z;=>nNzB7oh6%iI6xX7kp5;l4^Cy5g;vMg*I4@a~0M=rAd9N}pm7M(Vmeu?pJ=vGgK z7`(`)Uwp_Bxx8!DE1ncV+=iu*3mcsjsb59@$oxyeYn~?r@zaay>9xBf;h zB1JA~6o$d*RPUCHY^oR8pvxIN%WM$9mxPrTQttgkxh6LBNW8>EioYZaZxLy7u^>{K zhZOQnFHvdWe4Ul;nHCNEON<|_aU==pN_*PaoA zbe6}ZQT_Ivo?+4zzL>7_|FqN7TRf{MIs!`-M9UP4r_g*z9(tUsDlC>NHieKP*d(o! z!7d4kzSZa4U48nZrj>{}8_5Ri)NMfJMEG+fp;b>UWU8Z44xC4ZS zUS(!DI%&548vR{}tyej(o_LvYGVU_VciQ~s*(Zu+SQ_ctZz_5#MIOoel=q0IUz`|3 ztjIOU4^(iYk9u~9;)^IJx;2*;eHDTu65&;5qb9c#pSsLuiN}$${t_<)_3RjS205oZ zhhy1$!_%I_(ov$&kegF`KXN${8oqq=QE2z^t%(x;3csh;{u@^kZZx?~rKi6j30F99 z`en?sXFYdHwfSN?{VZI8yUux9Mk1&@f4`y#o+9h__>wRW_(W~%Fzfery*#~zsJWsT z7~z2L_t0SS+In-~%+-l?;nfSC^YXJ7Na*f!MX@v`_@nP44YjCaE> zdn$y9Xii?XxG#(&O!SeD3N#u;J?I?224J$J<>j#D_n9V@j-OIK(h&k6_Ky&Xg>8@({fUjf!FS=y{Ke6RyFb ztE+6ugjGKBies*^iI~H!z0U~ZV*JKtD=zvjThvd?`H9vYibXjsVMQwYb^3Uv}JBP7@qGfV&V69<>yfG zz%{jl&QqZdZP6})En*W0`NBCRLKRBED`cYdbf5qQn2->4(aV1<^33~6FQb+C`q;+02Nb1g)&@8^= zKd_?p;_OIRn)Yw0T$C>jjD~QJ(c2>m!n;OqCuu}91iFhNf*ay!+;j>ks*I3^ZYq*9 z&E6zIT=);g6@&C& zHW|Wsb_i@9Y@LQV>zP7tD`^g2Eu9c~{VuOX5Wn~b&UErxq_6n*RPCQd=Q^nH@R7oG zVi)fWQTl^NS8=^o!T3$#`apE9Ltr1p;95qmF@ci)g_AvSh9~u3&dw;qb^eX2=5-4B zgnyZurJi1!Al=5Js~CP-!DvA%>?-Ebf2+(ng}|_4I_FeH#c;g0_f%Z}e{p-zxHfI2 z0X#{{@jcNwenz3+n{f<(^z|;UT`nr?L$G_W*bv5MIP1use%^eXKjiCGiLz0t%B6^6 zk1k3G3@JtxC0Fj&-zy8^@_*s#z245!N}ePYWodL#o>%BEqN22u8x(n8i<4g9(P5Y}mKew?2vuaH{2YQ=HpQvjRU-%d9dC=Q5k~DE~ zZW3{`!t8U3vYv^qtPmK=R8?8gI=Yaf^Pz)H;@&&h`;K&hXO^^IZn%4YQDKQk#ciTw zc}d>-khhKiZ!h)INkWOIDZ@s7jBL!XA$Rl+`bg0?a zS(=+X)ca+Ea2JE6D;phnSgQjUQ?Ii=6;WuP8iOcZ)`%=QC!pgr08kZbv8)eG{(ELmau}cy8QVMx^l3Uk+9n)db`#V)-h0A z4(Y;yCf8l|$y=M+z64ql#s1~qe_=iod`A~ZacZrjDPV>LsfX>x?D7ycyatKP6Cex~e62}V!4))01eI8YaI zS3Ow=vXAN;!IsLQDUywcr%~?VTVUM_>l#Paq)HUJDNPr_7u$VYy3o5hZVt+0D#Zl3 zgs+}Xu{~SrbxI5QVmie(WRbUD974nMi@aST(N_Fj(gGSS_7+G%9*r0C8oZL-zjiZZV)?p@@g))KE1zSzbBkE+MHTdDBv|DwV^OT81M zA2^EY(N#~SvOU#Trdk*d$;7t+i??yhy_2OgJVBaAKC|3AT)M;;Qw1U*SXW?j6oEk$ z$c>6sXTd3mHGA+U0~OPtLj7lfVYL1Bf!?QfK|#8IAuoO|Tjg~o zh-QJgtbvE3E}JL7j<&w0Vj}@c{`U6Dj6s#UY>anT{W#0vRQRy*6lmNSCP1EJLvO$d z$~y9#pm(<@;zUB;qiaTTIp;V<4YOg~es8AyjZJ704ru!@L#)4kHmO! zgBPbO*9(v~Fvx$X{bUFX`K#maE6xx=d)(JS9HGdK+;yF?zEI+2W1*NY3F|);7?#1h zf~NW4f8P6xw1>zX3Ob}C&E3hBRK+dF(_cPYWy`J>$PX)C_L^8r?>aQO1-$w@PPgXP zpWQQ=SMm7zv-=4G2!jIo@~1C&GXyb7WNlqbPVfsni-69Bscick|sIvLWsj_QO*o(E< z2e|jW>OC97Lgj~F!vSVa^u8g~XkA#Nz3@6t3qD1-3^kf{n|GA7lrNzkj4&|nivxL) zz|`kwWiHlB6;UyAcO1=v+&6IgD1ru^KAO*AR5grOYeUKSrfuXe-|!9=r0pE6I!vFG6#OiR%w)Jmsw(uLw{oC6+GX^CZUt+vl_=R`5pd}=1QhuD8i8gV>2u*Ni z|HQg-j;IE9lF5`#yvXib}l2kuIR0A9Db>>t{G_FooEz$#nG71pa3gZJ}mg| zc!Kg_0oG4#_BKK}WH01Pl^lLeJY->)l=@K=*!ulU8=SPSYKc3PDD$(cFh3)X#zq-u zSewTQK>|iUR^d4AUx($8zBqaOe(x)B!b@T4RNLnsx&aCZngL5s>`#=9hrQzkx!Gaw z3PE@;j0)tte~yeZjH``X-%nsF5$DIT?g1I4TA0RbA?Eihy_Cx46yz98vElO?pdPyF`_3P6V74Y>@U(4l7 zs#2I;2Z|n_+y}N?@U{?oLmKwY@cuUw@0RW+#3J0UTRfoq<;&a7c(2CciEaoxQhJmJ zqyE~!3Gi7N>sgSnP(bY_fqZ`Sfn6&u!K zp*5qHx^3&#VqJQpM4uMF!KlT$^n4zUcIl04G5-ST9ZZuye1dP0QvDenJ%itnS$ z=*5LD!kDC93yPhK@-3MrCr z5SCf+C7epPHu8O4LnJ(;oZz~(vCk26(BCG@w>`!RpS!7Vk2HW+0$mlmCjr`J`|gwO z;os1OhCW;g$LgtU^x_!r#^#_GPfcK6Jc-~(MCkDe^158#*ko~e0(0OcJP38*ClaUw z3*%vHnJ*ibcbcY&MT|IcPIN|)T{`R49CkeVX?^+EcD{{*By;jGBYma4?*VB$Urg;& zP5`UMHz^X~kjD3fv^yH?>ssH+NLbaF_BQ1JHJ(>$4K;9|4?FVP*N6KHeDBuqiF~CJ zGrH@2?=^^i;#?x^ex-vE4lYTn6NeL`@~$Er6N`8f-OjBGj*8b4V5P~|PyFr}95DIr z5S=F=+3ag8=AQqD1n7O2&zrms9lWgP4UkOO zpMqJzmUm91BCs(5w4IRCiwQ8LlkdJc*Rjb;i@(F;iAsx|csNFBaX#+JEiImb8{bNc zC(^%r@N4nX;xFjmSMWQk(&A0@?*aUHrnGoFuIZH)%k*zgS{rhYCCEDdos0aI789;Z zkx}xu6NMp6mKGc5&>t7c-|#`h^%BuD=;p}!m$b5 z7Qp9Sd;_Eoo;EFyo($e*R;&vNo-CHb?O{Be^% z9`eUW{shRMHRMl4BF_zU=FVzD{#mRoRB z6)7p5sGOZmUlk)!7-kgNi5Mcay5l@3f4c?HkLDNKC>WBQRJA$L$c3(f_C5I(j2aw6Jc7C z>~i>UR|t=%W~Kqt-lQ6tX#)LRzTd^QNuV9!Yn!r;qe*p|3n`bjCP9K!FBK|A_;k{9 z90bSJx+G{f(zjjWD^N3~9H|(rnJM{;QNE!<$`>3hg_{RP`zAjrVP1mZDwpK9B8DmHG!1zSm*7v;py={ zkJN?(RM(l!>TLaA)Y)jF?{%?DZP+yt`=4%not4ej=RvzkzPVB#zPPJrL!sEMHY82P z=8HfeZqEsp!(P&y{l~`($nTwb{Ozg2dxdo8>H}852XzQ3kv{*Y{D% zt6a@A_~yb3B^Z3)=E@mG63Qre=!1!T_;s!?A0D6QOI20F4&a;TTP}TFr5Yk{98zT? zO`g1(@s?2-C$oi_yeOQ#1{dJ;R;7v{-zn%>g{OEBbi{Od*^@qvAYJFni6y#Q`|ptw z>u`QV4e@$ySoI%NQ3U*otY-#EjiSNMS?Jpp39IU>j8WLC{4DUCsI5ctfgxO5nxlZy zgz?%UUwc99igSY}*LQ#cFV4v4uVVUrW<{>y_3x1If*H`qo`nDCqY+8_P2v3ZOZ(Nk%S1DJV6E+qjY&5+s7}nWu|$ zqQ48Nbu~TISWaEz!|&6&an(@kfKh9GEu_ADF*Oeagv#b(<0u%K3dDFsjUjeRhOTd| z$&P|>g&;hxMu;OM=oDH6Qz{Gevc~2`qzQqXz23K6ke=deRoRI@I%>LX-r&0+N~?KP z+L;d7=rc_a)yZ&bqpw3Gf{M*x6k62edB(%-7HXTPv2B)Sz^&V6w8Oh>y4LaE zN%wzq#{OKCiYrG3GGPC2f%d}JQE^^~fiqU5+Q z3*Jv^*^1+6OO)CvN6Tlg(&BFNXi~fq1qWksy4?Il-@l6szspzav75v629;a#6?po^ky|A6&e(w5rZzG zR3mh(mPq`{w^aC*@uV5Lwr3qRA)MW)SbvqJYOJ2Fz}cxPe?uMA?`kmdJh0ZEln&b^f0?wFuU}>1trQ-4yQ1|s;7e|(8E2KYUY&R^ESoc} zrSJ~d6mLdtift*>yTN;_zqRl^0Uw#XM-55s{5?e{i1B~5^D$}u$)cFb5|is{DjIQR z6MN{bWOun4L;L_u@?ZPDLY4Qh`K9IU~dWk07>Br5|~5a6MIU-Uj{| zg4j8ge&rP&7#0?V;6U5UuWU+fn93|6K9yO*HN_HmokLOCnz1o_TCUT?e_W8prE-Qt zJJ&I(Frcab4QUMjhW5sWY=6Eqk1wW)2?D~3VI3Ps!5H^OQ449c8bd@9Pv-bNQ4sp( z`UgnQsuAJ{37VKhFhzQNF47K7JW8kLCAGYw9iqbJ2mn!~`RC!}-e^){JgMSs){58IqY90ZhXktoM6pX)a_qUZ& zZ&f$$AE_|*4!28Ylw1lL1?iw9nNa}i((A`0+*jQ!e?6l@6rUGV>${L z%aw#f95gBLkIsz#P7W0K$KzZIhe&6mI7?okh{#vKG9|u*BlnNdKUsJdtiwXx+S8== zDub$uTUjg}V)j2HY$xC&liyK8(pdW3tt_e_22GS=(4~n|^mj;~cERhQGJZn3yt9M9 zcf9mRH9|idO=vp7vA(naxG0^k2KV`BxO9jgojI7*9Rqz@T^8t5>qb*na$P98YeRea zmmdD71o4i#Yy{d`4ZGauONK+U{MjNR{D11|J!XsA-u^4GY_V$}|32vv!bGUIr)KyN zS8_v`L|EJx%`o~qS?cE(gxcjoXya7MJ$_HhM7|z2AHU}w{{zwtuAGfWhJU>(8Snlp zDfBxf9*fR{akjiuX&RmjHeQ_2-~X^6ty0y@NA%s%aA~vhwQ=&kGXR@)i_)wwlA5dd zz^1y)2O8h!|6crDY1L2Epu`D;S6I6u25r|EH0iWLjCboE@b8q)@DkGK7aZtcAYI~% zY4kf&7iK=_9~g-gifv+~|rxSQ-o}MRt01^-y>yP|*f+wixS2Q(-}U<_tTZ^`C4g4#Z!$r-$?62bJ$M z?yIkS@cX{Mys_x2uO8$rQNfMg=l`~$IHf+@$`iK!kHc`(`tPmJtiNM@)%Uj2?IFx!$f{FxyOJv|_$x%|b-qe!{afpU|FZvIX)FImW&J`eHWTFO(&xpYd{BkvBx&lM5`Ej#`(qcylsVYYQTYYBq@BZVri+F`G z*~XdtuNstE{V_$Ui1L56`me5IZ=g+QCX}BZjiEN_oW(yX1oo$hh3RUGZ=|TPFTS~9 z@x5?AH}2zVP=NJT=?$=2Y6-UyqMRjEGZ9u#A)?s-f5Z}n@!8QB7iK_Z&p>Z^YrR07 zcsMq3vZOrjZ5)uqV7l5Bo>Xf0p}e>=Lw=%3;N2wgCA>r$H??stvrYx~Zi_%#lK5V_ z+7;dl!_nOuOc~<*bmj>&6#1vAoF&3)P5MY_V5QujEU z4lip0cUFamhT1?6Ny^|FCWIhs16?B#RH@y88;o+;bhcrEF7TWnwcu-2%{Cm0hFgu} zLzW@nmpbt^l5s?CN3P_CMTfpiDm;mw;mZ@OIn_hqiQ(=K)8QjyV6!xktB7 zp?on_(7+6M`GJ5Y5<#V)ONx*@dD^B8_!5q7n0;t+5#+S~xuv)ugE?vmp{$M^!ff}T zfCgUc5ZERLGg#d4sR3!+cq)UMpfDS(&OjDaY@Dvkj82?olF{GES$74V6s3=NEvOna zML8pvuYlPvUvfj1L|D-!FjYLHNcpRpdD;Q*%V0ZdT6Pb#7UYKA16>613Ke%`9W?@# z_OK%DJ|b=J>IAL9Byyo>av6v%GTG*fyiC%y_L42V0u2T6F8meQwYE}(?~uvnPk-+n zm?Mb&Gu82=T_hYF>l^q-d^D4UlYHnRHA;rRADq;N3qXc20_|f>nYi4r?m-b5q7jwX zEt@>$OTyZg_Z9}e6{N+PSQHAtss`-(zcyfSKmcNOjD3p&C#4s8YSdddaV25q@QEgi zg?JAR@z(00?uXr}ccw#+`vV)LkGT3cZ~cldrr!EdCiB(^1eLcARusUKXBNztgxQ9j z1JQ!dWimfKLujh~R6LnUdiW!v)POl@?FK3+YPNslEfi$aH$u~adklJXs2Ba6?0G2g zGG6CHs*lmWk3|!YuIYaFNZ`Eu=_3IgTX(Idg0aymAR)Vk2Ad4Rs^9toJz(+C2Czd~ zZ>ytL19kVo4HS1D9(XKXoT{j7k{Xt(Y&cd#RE9V-ABwIP7Sm$9>*NYli0c|K4_|{< zxTA-|a&tuz%oq{4B))|ukzQV=C_ru?<0{EaLHx3T+QC=d0HJ{Z&KG0j?`xpW7yMx` z>ejC{U~Y|EP`BneW^T=w+%Ta;`K!kQf5%Bl4P!U^##pVE8NEu_Iw5d0mRoO`82B;P zL|<@H;B`sIb3!Nj+H)mg#$m_g!04Rl?+}WHgEy(8%fqGwdI(Y|hU=u^`Y(+};pAS`cVe6-#dLWMGyc{Za+(_oo7v`Yo6|`bm;O#i1#w3j(tCI9k zOi9lz4~!C}PJG?8O-feyJl=#}&722;V#%=$W_?Q;xFcc6et%pm|(zi-yp3L*Tx|&FCg& z?Iu9k>_EG?;zf<%iw%Ls;&+YUj|~C+oL^8QrNu}A|6=v{m(*Q~b&|iN#!{?_{3Z32 zB0l;19r+vHKX#g^m42OihCI=4GAqdwUCTU6p6D{xIr2m&a?X<{Oif$gQv5f0q=poGl4uos?!*Mg}l{zZhfJc*qF>SXhAdR_8buvR}}wr{aC$~ zyfN^V)S^lidH+Kd4?Q1fmqfly!LP8FaXX0Kem?L;lF$XT-vzXA=A|WfbSxYD|G8)D zk&jR0K$9+;NRB*4@kv)oz(Y6 za3$e7M%*<6n|ZLb>qmn}K|3E?3UQ;AxHFk+%ZvqM>bj3#qS+iblahpSOPq zMT1T?gk#$Ro8gPGO;e-Q_4qr17Se{Ob&1m&%O~FnB;&Vj{CgT6TfP@COWXKj5+36a zkbR$81;f1^hy0&KMc8^rd?Sjf{ktd~KHDC+L)!aa0M33tpp#Dg7l3!}z#9Km1EO@W zV@IHIq;MoMHyuD=Nxsxi+2zZ(D;vJ>CE=Eaai=znl$tfc66#@SYh*;oRj6!w$>Bjr zKV56^LcH4yG|isQg0Z_U)s~Nc80a9tqCase;-Sy*!_qz<<5&WHGz0($Ai+{Bl{9>1 zv~}wK6>Oi(my*UwA#fqn7y-gZff2ARDM5u#cLDUR7WXIce;RoC25-$G8Bl3Z*-a85 zFx?tp!^=^~)_}0Gm8~xkpyYGZT7&b5Zqk}GY6_db3`~Qf1xs#&T`%4$!IDRVDZ=fL zH+X+TxOGWM12{N2*reX-;{Rad4P9Maj{p3R$ng2fSt;U#CfqiJFo(_AWOoFIIM`6O zA@DXqwjuNrs)(p#6+}Ri-mn2*61Jx#xUy$~0Xppr%$7FrZ9=2XI<6#)18sH%ywWS& zJDR!C{RVIGrA4cD^cR~b+YKV%RZZB9G0l@>+YJWo3H&UGd!p;AM-(jD@$>a?Y-_#` zOcE=b&>@3#iZB`q$@Czu<4xFbVaX4H?V?yGiw+m0#4HYu9(s1J2^+*7Z&F^lrhf(} zFb7FT{n7c5|J@rHBuZLRama@;jhrS~_!64;^i5vVQ`Ba`_+JCft03gb-q(ZJ-S)47 zR!0tg5{LD(TsMM{O7SCOs4yow>&P(;T91c6Ul%82sl80ur@>dj#?|E0b#Y!5_^DBt zpi>TS0$4-O4a zs1G0150=M_iD!PnnD}&haGJD=&<}Yjjfu;-lCX^OqKsh2IB3&yTq^w1FgPk@9S_Dn zahlL5sF9xM%EPuBhv2YV+bK(hM{~G*Q?Qxzb`?B2j$YRkK588NQsT)0?P0&>5$MPg zVGFZ@g(?zsAL6H3!T!<#9s{!qW#1*DjcbaWN06Z7-mjYmpOY$iER0$^MMStSC)hF) zfo2UGa)Q03gltZw3S)Aw++b}X5`%;)&c<(7Y@F9Wn}FDt7ralDviWMM23qkYlu&jy z9B&bv6bVaXubGDp$6iFBu{WY}BD?%$t6*C}Dy)Lm>$c$TI0R?0Hv&&3P}^t%5vR@J zMGTu5KG7LA9c=x~H%6SA&AfLKVIiU;8=uX*cV3&|_5^WxHuK&kJRJ4jC$ia`*Lctl z4=Srn(Mi)euNv6ui@|qBx?EQuykC^w=Ji5VFK5Gh#$fjpnR}zm6H)vAnk#31QSs)3 z$wD@4HU(R$u&BxYYYN^W9jJmudjdIIo^K9X@bn)3JvE9-z9hui^bWybB&@2f?v2(~ zboOg~#~=t&N{-5=Q)**LC>3r7TRR4uHHkbmodAR)i=qg60DBHs&J;l%y><>f(JA;a ztv4E)HYVDv&cUM+PmRs9t?CkNC3WYqh&JL7keO}-hDsgx#ZX5Eywx?hT^hpIO0{n1 zOQ_a|VM(Vj}Vvc17~`!X)eB#!~FV9LMOtnx8*RuuGI%SZ}Iya=GS|8 zIO^B$<*;5E;jvfNCzkI|B)3{aNm*HD1{bZl`biI6gMSypAy*K@>p85ezLvw5Ue;`1 zl>|NR4So%pdxIy1hLATaNcS(*536OIqLvI;F)NrMzdRtQ6UmrrR&Xc>HG_xBltmjN?ef^lU>JFO zBr>dV1PjHx^61K-6bAc5fVB&Q&7sQ^v)YT9dCVA*w{`lpy(C@^wk*h(aJu}-g_1p{ zNLI`wgZ9@}B*C^%r=`Kp;$RLeZ&;E62lZu1Ab&coE-M=_b9TD;R29K@E4ZXvFc@7TovY{qrJ;_=OJ1EW zN4Nu!PDb{TT*xgrBj_dKG;b*#beOamUgO$ z)@VX-NF*JV_nc5fie#OnX?#hz8S#n6l(W=(%9kH%E@of?K#rHM*DMUi?Dy7Y>|4Uq zmj@=upG^vu3SxdU7T4SGz%;HmXvX3?BK=>T=bx!)VuPD8;scwp?_+dN1g8t)c>IN) z!v*A8%4hkHLy#@llkHpQE=i zBt3~;@F}HPkMk`>!_r@@S!LH#7!bw8=B!2In{&-iTl9?5q6lA8i`HOmIw;z=191Ab zq}Q5$Vt#WO$I+ProKM3sbT6JR8AA&_2$&AWwfngV!v1gi2g{P+ENL>SGo*epF3y?2 zm4xNQC+ZDd+5W6#j5fUmcqe=S#u_pwr6WRI#Et^ROT zxl8fnmLl>({fuXxq=jGsO(c6MKubYRZ7Bdeo5<-g+rbE$hq2Y6M7TEAP`a9%+I!Gy#zs@Vc z=A!gIFF&21_>3UXlxnU8}_Q=6Ck#tlsaq0h2&#Rfe%z88U zMuQmk0y&)*XF*D%!!t9ZXWMY)t>BK#7;B_-9Ul7?WgQ+@ROvc=W=pu|y44SONWxLj;7aMU7XMoe{~)S zbKVTL2HW;vvk{qCQd&&vDn(rKHLp(W=SpMv>gWXND6WL74wtC2 z;AC!{+VK2fUsL(|*TGZ)&Ul7M(5_jXIyVZN2-0+}0_y!u?;|C|O+w41JPkGpxM64T zq9`roQRy7zXM2JRrR97v^`44vgVV)@Eg|c>;J1-j#0@xtDQvP{O)vwde;@oPWiwZ? zau(g_AA-B2SGjUFiBtE%mdQd(wm=aUr*4ee<=Q_5^@8*%Ukw$f_~+m}X(wMy#kq5D zaIpAkOK|TEZivKEiBm5IL3nf8)0wbuU(g_)XbJUx2^LDHcq-xP;A1Vh&v3$$D2Ivi zdP-s!ZuQz9{7_721=6pWg(bD(tdC~&*X}0Yd*!Z4gZC|uG<6>cJ}BMF1JNWdsTI{+ z{V+Y{z{vPk?080jL*a}L&jM`%Qx67bi)~uL#e*nSI}VVI!n4Vt^Ro^Gr%QVN9i`i@ z3SH&c&)aLJD>pnGtRqPG@s(1EHMwi1Ne}bIl-7M!Xep<8_OF2!9EMKKW#aSIe( znKMk9#nU8t7iZ_n(UjA95V{E0`p@7y(qg_iJWIEVFQ!5)ZpG#Lnb45qbvOHwqk3KVdnh zb>~&d4*xq`g|2ewU<4=`Ks4Y>!iI_Qo-8q~x$WRQ={m0yno3{eN;n)P1oouoy20tn z;7lo{waT67B76p4N}DC6H8eRF925z!(sFO61fDosg#YJU@J9i6)E;WMhMm>r{whU+ zrWb;_|Bt=zj<2HV`gb=FVzL1uDfEQilY7%cO+qIG5_*SJAe0aYozN^45rP7Plv}}G zKp(j_)F4$6iC7SnZUqDs6&wD}l;xh?yEh^D`Th64pXbG!+0*CDch1bt?xGO(GvH=B zpIDx!GsEC%H26aEIp3Ylr2bq3eYR8SOI=WBB3j5xy+}$kOQb967OWtoJW4uA$;MQy zC>zj+W7{Pmupx5-d-%hjv)1x*|H96VYaNHwnVx5-KK$gp4;*ared~i z5VowT+?H@-TObB()|<({+;vT|Yz{R}D6(C)yrg_hZBXZSHW{BnE$)cA-t@8LNXlh& z5$#C+f}2_TTyDijwI>4`)zw=gwJO7IU(2RI%-~0Azw-4MB@7e0rxj44e7n0qYm+WR z7w{azKJm%_Uq8!SNr}ReS=F3?TijK1RBQ5hfTg(yLlbf_z_L>5@4@w!Vp$*qS3;m= zqn68!g;|)31pyeA*R-_OGU!}dn72S242%i)I}Owrb}Hv>dt+69Z)oaVvIaJ4amliaNPZ z8y@eT)Pg(lrW@<2ZTPmyjAoYKB{{1N5Arxn$Aa9i4G%KVvuzV&-FFk@XZV+s9&N)n zCs(%NM?reGwj3ZiQ?0F8+*KRdNe~OzNWYl`q-*kxwxW(z%fiTat1VhuuAn zKgG>#93KVw^aZD$3=I9gHDc%&Y01zsu(5e4(vqv(!VGL|E{w7al)0KPKi;kI*X1Zn zi4xcrr5huD-DDX;iEElI`?V@`2_jyhiG#r5a!j=4rmVEbl9{8e+mh$wEa^&Xd<7!Y zoV*;LZC1MCW|iT8@s^Gr46u^Du{u)8Fk;w|V97FIh)%RbD%nO1ZzWnL8ZZn@vh-1k z^$b2>I|&+|)z*Nc{miV+$|HIX8N5E<5oGDTZbHKMjyEZr4H-IF`WrBe4;*7sp3^e` zcpcehiPqAybm-p2GLuZ%Xz`a}EzUak$L*HU%m?-kUX4kNW1YqFtWu6OFt(Le%Z6%{ zn%E0_)zfOyWyR|Tu)zxbv&ojZ$`vfy-SszdGwb>*ZOP@GmL6ILovODCRNVzam66@O zw@;B9v?J>y9oYfx+#{DmLr6P58FX7a)R#Qd1NOUP+i`p{V_Jq!joNX10-nn7DHIPB zq|@5VQY>e+<48FUYhWA9qubFv-af9-J{Bpo&c=xnz1Pk@cEaYT61YrntGJga>g*S7b>p>XX#rE?vSPL68D`{y3E;@bs@5)9pCeH)0K*SI-q0sRpz$iFZ9R} zo`ZeH=ooJ7FL=&2BnwGVyEDPAU)EUWR8u~tZmWeQ>;Dhik^So}*~*9b3PaHu)^S~x z^SD`MxbnCq#(*K?6REB8ixETl6P5@ghHrW`SE{!+FlqY+%UA=3Kff5?LkZI}_<-#s ze0o+31CDDxW7;ci3^{g>eZa`5U2SVMS32oAWQfx=Vwqr|V#2mj&6RW`hWVQo_rF@OwXQJ`qlUhrO1$Bi)FR}0|UGVjTp{T!1L6=0B@ra!w1_eW-SB5uh!cw zGnJEM*lw&S66KmKlgFG0T5Y{CZ zjTovsEL{y4W;iVEm0yh*ey3M7j1JbK{#*wR=9@%Nz*1u{_tq`Xziv6F+{P)uGJ}<8zLB~#ly8H0 zTIqT+uu8YC5kvS}mac)ALF|LCe#_!e+G377i~ZJ=TwPY`kLF=f{4I~}@Vr*ltX#j> z@_e}QjtThA7I*W|fv#cLT(*BQ7`3?b*){fEi%n8;(M7a>G8H$o5tkdu?Q*o!=>9Czz{8k$_{C9~I1|9}OQGbO*l^j%{!U6@IbG4)Eu!WvUz-#Y~wNw(f_?7*fYaaiorn;z(_*mG8BBxpwqZi%p&z#p-&g zn5qpY*BdTq>+1ctBEl%BVICc%3?eXO0x(uRwgB2pjm);*Q<$_2|{sR<>;3kZKV z6?5&+C_a~bE4uAW6rW45L;OGpZgIP)rcZ5RZoaM#fj!siu3_I;7E6HxOmI!C4#cUu z1#3#$D#K7a&uw<Z5rSC0!wG28~3lZL8+Zn96 zI{av9E-4RTscytvY9cROwzN~0;>&D`WVUR=&CC{H*n7p&%79^4=dwP^GkS(VDp{TD z7Lw8*EsIE}pJ4Y?qfzHfn2|HA`oiwHyM`oQvplRE#k$$-bp*Azsa@@_TYi)RPvMLF zY4Pqq!zRoH)Q)=Xl!+Yu+0xgDE%g^ze%$oRcHkFFl7hAAfvkma7n{rbZuL#eVM$TU z?)+lVk6^cz5ii?hz|!2#!!HJcP{%zrzc=an-K-XJ8#713mQ;_5gv;hQ(%?KD+jh3y zvK)|8%^V23VJZfM?aUkqo5AtBU!Uw9YOI+9p_gkxe*q9qHS-OQ$!30Rtk>VrPx8a? z7dE+Sr3Bhw_rgYLy9G44uW6@13_#v2SMC|Vm7wA zb+-Jai00=wPOQ#8!Tlm559|mcqx}HbB5GJ?%D;LzI9wS1GlZOC;d2Lf#FL-=tQo{~ zXh(PYYmDq0t#@~s)y$$e{<4OQ;4l;aL|gi01qL?>u0AUXq`T<|)4k)6tZdmXq`Ct&L?M zuPo!kjST_CY#c73VedurF|jtx8ZXHg;4kf%ctix^ESOA> zQckF6-7d+$cqGYM9o<6>tZ**WCq|zj#7)N%Q9`mEAD#+_yCYt-S%sKwo*YKV8T3ENexiS;2#$wZ_)*WPPt zO;kqWW}0h(lu(_wI+DUB){bOzGiyx)0aG`YB`Q<&0_4mXlHc6g*MQ-x=2nwZV#F}9 zg*9Evpqm+=7Ttn9<~1*F@r=QXBvWxrmv_YQ#J5xBn#8xn@Q16awYGMsChv{miT@_1 zV_5%G499w)XPIxTmSeq_YhQP;+T`zIIM!c^;d%W)l+_ouj!EWFtA6j{pz!%0Fp8%3 z^CoMd1f?O6dX$DowY0<@ZM_VoA&}zI@PwO+mxeJM@WB`c_}Fj`d$bNdn7Bg-1Px+huRl$FP+ zSamm=-hxGd_^nZbz$RI+Yh`C^XDQHzc*Q#GW*2J<X}tmQqaRXSUHO&uu}0W)Zz}it9?)FN=dnjE^^Q~-^&UcpSYP#P*bD`~8hIJ$vFwd&UtK;R~58L-gWlK)x~V-1v_kJHbC4cx2@ zD&W)_dzbBW_%B@`V=p;W;1(41F2eyTPD9+rTGPOH_MQhoiigSXBdjUp%_Y`W$_*TD z1{XiYakw}c$Ke9Yu29>LqpW30!+4ZwI-H0UerYAr!U?w^`?rpPd`gPv`4mqj<9w21 z;@SK`l8da(T#d&;R>>Q?lJy-wt-}+GHNgXS(3ykcd3FuNLfGWeDV|R*AdF2eUQDSd zy#o6z-l`Q#FqYn8zs_)A+frHLRs4)kwZN0IIM)?9M@AQ`yO8c1qx;eU>n_r&Y7X@r}VWz)KNo=sq=aW;h;hXA6_ zs>iXUtRB4a`CH-d#dwrgFSotwN7_!cCXvLEkX(P`XtU({1GB|_(kj7ws!geCs+}u@RO^wzQ!Rx`)}&h31YW8@s+oP{u?akzMqxUZO}!FW zHc4HHw87fPTV7X`OpWHim|c;;lj)%ZmQ3V$20+t43jjQlGp#Xqe!<%hDN@;hN}FUW zh5OsVP+GnKQo%!UyA$+jwN^_<0Hm(UWeF^W+_%ruH>zah#ujUuyd{BUkn|9BvJo*Y zS=#RIG3nhB@b8B3@23QmJoA?TC>19_-qc7$@n?BcEs^Do^b@t9F-hJ~Y`SZeuBpqc zak3Ikg?g!Ao-s-nc8aXSLsod(b8-c|&l&NujU$}g$f0(RSl7eP2?l?ZK_i< zV&8y_+52Rq>#udz1RwciA|J7zVLCQq%iuG_^dUr`XZY_$8ym7-uASKcDJ>`QA^UG4 zAF_b|;p8d-gwA-|T7!Hr7hrl_F66G-RtH`rSM(ZRd7!a&Ld2miIrp}8vY1D zi9W^Tu06k0$&+|Z0u#e`QfD{0{%+?vH$9sTLX!Aw0A{n<0K3R%d)$J8JbfEDJyke8 zIqA+geu%WPSX0R>yI~wJPeKfA94|@Y_zw&W|FQ6j)VUhitg|HLMJmwC82+WI3AET@ zohyAnLzS%@!j`hlkNsdN&7U()>vowwT>83ol5!4{vGh5b#M1}JD@&hBhH-WFB?b5j zZAyJdn(W^ZrBUIF)&XScCP04mmmm3|(E>$o2~>dmD18+1YF>D>_I_I^d4^bfa;9$Y zSVK{r!305DQ#qj{n-!3Z2edL+tpW5m-Mv^61-HS zz9X8@XJI9O0_|e5@aXkQLerRsW-bp+aYvMFGj>C=x!#9ld#s}_*`(E6J$>XFZgerT zYTuj{tyEQgEB+ycWv^OSDz8&5UNW$~2!U2Ut#5G)vht7r0fc?lkwe%g*nXCRA9v&_ zIC77*l`Q|%kwe&JOviHYi;leL_?U-y*Xdd9ylJcm#@fFLBf4%U4r3vmQ2s4_%X(2Z zLyNY`=qdb-?Bs${cBv$%cG4FZX?IBOz*F5#?^-{W2X)fdse|0444K+>;>ZM+R1KNl zE(1T73qO{0Ldi1weMpwc7D$%OolrM0WZKw?BNH%G37N>`1J)&8rgL)pfOV(0eZ@Bp zT3-$I@~kI&-WEV!JZ}q6hO*~vPj({z9I+6m}!z!=1>G53MbioP_JE3ci3RPgWIV zz`glZ1zmuDRRNWu- zwiSJy{$eH14f=}}Mt(ojpD;4`1Gx|hvc7dA@j&itN3GBJNxr10x=np;^tk`{IBvk_ z)`p5tXVA%puTN+CB<^D&r~xjq5+bxSeGqqwmrLw9+(*B#ZdOc)mu(7%c0esi8hZ{m z;@FOAu2)W4{or->h>U+?VBQ7mIHebEW@q$TUbLpmT|1LYr>#F}xoGv&D3mhL8c=;k z7whK-OuAZT_Vvl>>_--7p6RFLVGZs(vRR$o&zB;h;yGMTp=D>RS;{;ti`~8*c-GpB zT>i`IFGFxy;Ww`{zj@*|v=%>!i)HfTEUuDs)?<>g6-#C35LsxPxY-?=t)0p2i`IB8 z7reHqIXQjN8l$|9xtKw~F!_?TtCj(bAF6zyrwyd0sQZvjNyK?;Q&Rd3?8a+Mr2SCG z?OqUfk96iIZ8jjG?tE~;NgMd;*A;Y;XF=EBAq#HeX6EXZ->n()mChvo2Wu}amri>f zuKoK8wX<_Ru2DZ)`@+*PUBD`JIJo211UIv|)$2mCu0UCD$2rXh--KVRvy>HB8GEJJI^4p%TmkBCLc(fjsh5r2sU==AjGV<;()E`0VJ(*~uHr4<&xu$(jU>5~nRlrD4{JYJIgKdjhCYg` zcn$a$mB`Y>Rp`eav+d_F+~T&xk927>Z=xb~MLA84aCcNB@7&wiOm>)e=LaxpKZ=ek-DgGYwKuyeu{j2;4Qs`^juMEZBvGg2^ zTUdGy?aFU4XlNPavqPNKboLIj%xRmv_c&14g!=fjxF-@1`KzHsu74B)dm+9JRQKNx%cP zCzbQ)8r$q)Pon>TTWRc|)pE+=&3>#10(MXl%9ddl35 zucx}yw{`K6GrIBhR63?(>#3w}d`%DZ>??D|y7~QPFW1_K+ctZv22a5?WjT%k>**z^ z#cjFke1vVWtdydQyjED#%r;%wjGGy__iJt&DwlR6_U5*DEf*WF)mqqIQeMPdY=D<` za|O1v4TCK`e2HZvsS~Q%ceTe#InjS_w6*>2FaIn0?{7@U`tN(ue?ZUnWV~o&Yhf?f#w6IRa+_qn7H*l$*1}K2 zC+}d53xB{e_yPCCe3E+!$UM{*>T252wnCBzC$p6>qB?`ANK|LrH*!ugTLUAaZ&ae7 z!8X2!B6m*ao9!(Lw2A!_Y&6|9n-PNg#~rmz-N1<_gcGI7uJv8*;gYf^87S16Z&~=k zbmdjrqDHzX#Wq2Dl`2a`b?sGd*sf%F_f^?&<#P`iCp0oXDx0W$k7=~Uz)xJ-rDP(V zD@&11Fl{Id;`%Pyo=D!CQOjR?fkwBB?3bdC{?A<23!L^`-dcYoNSOUBIXBE^avkky zt1T%lQ;`2zW9_(n|BDN2nnKDhmMu^^VN$INzjMlj6q5OmEd@nNT!>8}DJRNS$^%pM ziSP&KguC{m!8zN3V1Ef-$2eLOZed4w3Xx{-3n8ug*}hi_u`$%{;5#XpE{g{jr+_)j zY&(>PFs;_`+g$xp55vWUk`%fYOp&JOY`UWZ-uFulpYTUZfBD&D@>aU7RC&&;zVvFs zv}b7tiJX2)TNEfBDafV!0ugp*718qYp-+Oe2EL89Ug|x($B7?dnOW#jHGE_ry zQ;E6O{?HK97^AoaJ!1>i#I0NOy7bVlcS%eG2gLVzlk5?>|KVupA{Q=P+6CdD^~yeCn_)|pL6$Bosul=KQTV!&ArI{pQGo z_{qglv&NEcK?z|M@OU_WP4CQ|Re5?7;ml7o`vr(x2B3m3JWHRkwtEDTw%InD1m9#S zfo(?iY2EtW1(GCp*N^`$wB^qDr_*E?c(b-G6(v+FVQ0tg97HB~2pOvpLP2CErqN(^ zdTSwWIyEqnT%T9nUmDAFqV80Q;AX*Gb+&{vE%RZve7w6JM$`{rz%dL;tb-BN{Fv_K z{4iToz4g&87G2o14k1ZQj43HDK9Q6Ux77t;VPuo|3;eg~hbWB9s!7jwXH$9oY0-cÏI!xpNGY3AbcwEC%4 zV}YOo3*e1+EuK;R14oKR6*=2kIQuKfSZ3R))a-!?tTcdg@UNg%mZZxwh=J1R`tllv<{&W?N!GYzu0)HeELyb+xY%Qhw ztoa@xD6$ypnCu>WsWHBXfS-r4F|7PpPFpbi$jjlK(oj<%{OKX=T+)N%&rT014viFw zKQ2t8?a!V<+^ao!5##Vss8WE!CVR_Lh`FJApkLu%uUBat3YmB zdn{D>6~{*hIO<1PZuH=Q=!@Xk26nULOJh!!qga$(j4}y}LA8xCCPWwrtbjZSm~H@Aw|82ugrSb4f9hm{>Y z1+094O<=Hch_+x@kq*(I;i@J}7`MMCN0lEvgnXwFLQ&;!Or!0-Y$5JePrm&Bj_E_` zt`h9$y~kEY?}2U#EDd|Qm|7YCPtm{uFo zDS|YummXZyD}CTyo^(GVrXr4qIJhif zK|*<}YJta;Xe3$r0(tk+Mq0jjO(c(au|%o@J@ft@y+`iiWuEY8FC8Fa@$@DDBwal1 zU~QFDF5$-T1DVUtpDyHIsk+jOW6ck}1lH8*jdGh|jY3;6*2qe4eF?KzSbKkO4mMF9 zQrc^zP_RkCG_*V2&My(-x{xOSgFc~4D7n3dQk4pnvNEPRD5q$X1%GSHmAJJO@dk`GKOSc`(PS*cCxKb1vKTE zAB2$GlPi>y@?}}DvIGY}m-}mk#S43L7};AME2KH!^Kb|$neL9EfgBc} z!`NqCe4Y@N@9)jA;cHB*jn6tk3ZL78_@I%mUih468C?&`AWs(oRTD&j)*S&d)x?I- zN|JeERxo+8s6tnYeD?*DA1kI|?)vmWBTox&8-)vyrR-RPxZh0SG zbQCdts0&qs0rWy5Dc!j)fMo51O_Znl=qnDJkkyZq>M9P^@ZNnG4%ADc1;=VsaF}Bg zV`Gv`v8>_SGxO!dkqG=zK;MZVfcUwJ$&_&?!sWV{oLPMZ z;yj5hVTiMdwqV4OH}%z*9~M;-M_7`gGSx^)XL%lJ~Wb-Q1%1JReZRH-`sPa@In5UA$J{TS#pEHu-*Jzk>9 z3V0M%a{k7L=?!~SiG>E0vM|sw>^t`;)kbv?j+72|J`%nTfKbt8&qPeCjp`9Wn!}@t zU`M?&0j4{8V|ai&VhDOvRWiTI);^Gu{f^oiHRxVJdU*torB`Jfp6L}5;N7>6g>PUF zt9e!dfI`h9&+2>6yDR=51MIxjkHgOE{RHfs!8S11IZazI>`14H`I2UW`%GAO5?=OC zZ#>`j5b~Es2t}RRX=o^EJMwcOPD$g1&RM51rB=4!EhoR7c@zO;$rRfWuQ$p6K zoK#onsD_vKBjpR={#nz!{dKBGo8ryziloPF!KC)*Hb0IWun028#E{z76NNAzHObo_ zTp?Xn-%msDhA!oq6QRlg9130jUljKDOXH}LgK4#4J1a=Xr|G9%^~#tuzV?}$reFJ< z7ra2h);^$4SNW@k^acuA#1xtNJ)M>49?hbNJF%;$30t}IL^=R&6*y=BeSm|M^~7DG z70aSWa71*``%$>{1cZd5#|xNN8@+D@=`$YDQ?Kky<3$Sy)5S(r1F>PNqH>z;Y*loY zt%{_cx{T4f!IGt766WbAdh6ZA$rWLJIZbm>oE!tRqwAvAS=&7pC*#foO56wE*rA_y z_$N)EM6>>A@G_K$pe-0BFFT1%vxI((}hUDb5-^2qL0YeSVMa1eAUexG=e`?~%dAfCar zG+^!|`CB--gJk@p!Eg0~y+6l?xBKhy;kIA}3Wg7$O*aNqJJtXN;Db~|j(@s8#2tY< zlfOGsDbefF-~&yS(y>VOBH^Fu<#|TxE9|{4QZ+=RPWImM}9r zokPJ&4xu@|_R;AK5$dvSahL}0?DNAk7$1`W59N=x)gcjq_WLF4DgUioyr>41Lw|BGS=#VGNOcs}+AZw9+OX1n505PFWbU=Wg@8=x;p+6#l99>7uPBM&JbXrz2pHYos; zXuG(Bkan8)B)d=Zfrn0&3UsoX#0k173jGUzYikm-kOvgHnnbnRHh>{eg9Ns)zp&|1 zb;kq{C@DJLoERNTG9&Eu{9|ES#^qo8}+O(Z}gF3 zc~d!yXGrYc-Rv&hgw&_?jkKMC0X@PduNd%OOB}dge!6V4G>}&~M+XXU`5BwTz~vfk z!QdiY<6%qIp2+Vjti3Xj0?dej3^X2?pjx!$jv!j)G{-dBF779!MP$$_CsoQ|c!v5= zCAh+kIerdi3D8X8rALOo$QdA{eb0$?MUHCuHv{>yr}1O9km|9fgt$185n-<%NXL3o zbYfy$Obo1f%t7x@BS#;zg&`8wt%8KCZ*?M+G+XPPAaggYbF#7Tx}h*!m^&_m;>AKu zD79f4EGTDX=;1=WG9!bRD3507*EvH4FHo>`4rtTW_o^MEfdWbs^1*srUE%eF7WOcW z*O||Lm`;X0?wx>z<@pK-SXiE~AS~mA!B2y;6d~TjwA#3g5~Oc?#6`XGMh0KifH0lc zsv7W`?QncU2LMBc!3-J5ha2zotw$J`m*Jbd6EH8o)m!dfxK0q3e?wDM6c!f%&FJpN zQP%d~3X2@Rv<= zL*89_Fw{3DAvW486!W_v%_ z8>vR-za!U$Do^8J=wP5&c;L+BWy9N;RvWk(g7o!FJr1Z>Ud!Y-a6D6w12Y9LP%s<- zb-EFu8e#(qxYUIS+{ zvM+mAi^SS44c8{ z(-w>f(tLQD2g*!cDe$1MbUx^c5`0lq&n*1l8ehe@?rwn0$#8mxx~ z^-A}_92(4n88jGZ`G!Y`Ehq|U|FN>+F;+H6a2QXMLTm}4PmRimn8P#lUbxGLEy9aJ zY6&kNq^ZP~WgjjLV@;J*58gISyJgsIvSl!bh^>PKM3iAe7(~27TQEe(?+n%#4K`up zTZ1_~ocEA&Mk6J7-=qLcqU|@kkale_uNlsG=u;^`AFCN$pqJJRb%yA-A$AH`K%v`) zP;LGngaC>L9})wfLz#OxxJDe@226|*D+TCHs2HN-Vq@arz3OHD>!$hiy9>f5Jr4!n z72)pC(qP3r1Pyi_FuWuj=rDu>LoZCLjoWjAGJcjS%E}=e8bFvX5ULso1XK;F{xp#pDm=$f!Kb%A zKMZ`KUXxAl9B=y|hqh=i!e^)+BlZeI?}IBX_KgVe5YkK|gjNuVn1*(s z8x`LX(qhT7g;1`r?aF2zI#nvr$#CLt=rW2EBj9iCcI7@H4=8jvq1yci@V*bHEQ&rq z5>_ML93P()lR&cmvegeTw~vTVh>uH%iH##d&?(0JJiE!erp&T7P z#kAT`9TTL-S*TD|pkDZhXC1rU0rGUgP&Gj?*s=mL=lPlTMp9pv78M1BdwUmjEHVDn zd*FWi#izmpP|Z-`H$XFr3g=(~sAO&74He$b*qTgC56+t)w;sj;p~Wx(2x-IgfY67w zXaJ$lFg+lg5;pc6#*2n29#SS@DM5))G++`fqMsJh<`3gV!z2%VDh23cV2}cO=~7}l zxv|PV86CJgD?|Z-4hvM1yFvu$M#EN8KKjG@)e~Z(O)+G5guNlff<$vtTufqg62}6# z$)P2o!$2ibk)Sdn*4=Mm=XJ^by)fA|jN`y@OsfslB|&<0n7&F-uN;B85*}5PF44d= zB&E-49&!Fw@B zAv6eCHK4r@p8Ec5S@l`glGYs ze~$?9=!3ALm^Pe)L&0zX4yD)zRxLb6TQuPC*l;~K{4UH}J)DEXE)OX$YNXI|VIQW^ z_S`KY?w#Qr9bWWMs8WDJh7ON_Vp=L(fWNh+!rwv`Q0U-6HTpq_0fz_k_qGPrW8)K| zH)P#)JZD4yL7Jy*=u4!i-I+S_nlzjSG!)p= zl%Vnu{dKL64|%t{rm!1Qk`42v08q3LC>UPpFt6l1Ll9|__6U(*8NtW<%Ok{i{|p<$ z#``CUwW*DUs8N@LUc?bJHXJ; zFDVg@PQm|(sp;p1aO1O5y7dA3L+^%ecb)yAN>3aIU4}Om)~Af*5HJeUYGc+|kPaKE zhXD1;;E{ZRFny$cfe;~hfr8ZppiVaiR71J~1&n@qejG8MI)y(=~!T zz$>LYt~6dg1K>of{pWSTx*ni1-IOe1YjG5G5o;q{Sq)*JnBc^;+K9Cfr0~HyT{)m$ z**2160tnN^LsbLuV3=^2rZ>Zc#sU-IG@EBSX`Nwdau;;W=_B49X(t?kOlBZ)0HBP5 z#LIyBmDB=ZULH*+6Q-WE%D<0f;2_;3yFajpyG&{8BuS}13XNL^5Mi`M1qk~7OY+D` zm}QbTC$~Ulxmj2lJc?sPM-Mp(8aWgr`ePc}d+r^CXdwaxKPax9L3;*e6QG>L?$G}n$3x^ zQRW0wY*L~r!5lH#Wa?;&ZaKBM6a8U=H+-35;E9f;*l0L=xqkV+X=F#By-EA3Fp?V^ zJ_#i?YF3r4+;k*VS&bv88!O#}vyY78=wijR+GuwYq+40E$*yDfH)JnALyK#bWHXO3 zd-2z+#D2jJpUghJwV6A{U4*R7qd3}tdfn(!4SNtM0By*dLH4HYyoIc@L7=nFA4nsE z9K;dfg)kt| zl{Tu?gGTex#!gb+D6dPd7nb|_0v1KX%S_k5VyhFP#VNorQ*3k$dx~CyjV2?OFhdqN zWWiRpUYNY-VNZR3jDw{cJY$4|ACBhubP3aH13N;Ho*S*7%hfAikLK0St4ZhE?ie(}bkWNZZUv9w(9;3aYNIz^khTF*?Z$|DrR5l234t(OY*aN68-_N6XeTkW zfs&l9jxvo?$uML*kGybr4Z~pXuH^~WU?{NKXy9mG8zn(HRDv&+ETAUw1=O-Jd;zt1 zi~yP)*cb*hcG{u=8v7VM&`c3_TE=jo+3z8xOe2K?&F7d#+oMy3xKGA#pegfEs8WDJ z3N)m->rHqY1=-E}@*no^&Dto>es^BqW#;6DzKZl44CU z=9pO6L=F1#=rp(+PMJGYiJ6ow`zTCsMplV4mh39p7per0^*(^+3%_f_7kla3%-djE zZMbI((iUU&14zBnbS#ITE@SoZGgt5e1%n?@ryF9bA%Q?a7hg-@JG4)H)_^2;KT*Ac zc)1bD9qDq{M``j9#NXC?)b#u;*giuN0PKHWSD$HbclX>P;A3$Rb%?c8L}DaFk*?il zVp?s$7YWko9syUcOc~1&3xw&ysj7i+GQ=Wu7%{|}Ef5Rt!9prlH8c`ut9nc}d-rp> z@DoNDgRc#M!*pr4c+7u=uZKB&9URNy>;16;zJ9>QF!=hGwy5wG^d9X0jMbypN@3Gyvg z6QY1XS0t%6e+3bs;I)%vy!B~QlNm}NGyGHWqRwnKN5dc-M0;rGyS9K5DuT5Yr+7o-K_^x&mlnK+Jv*Ya_C@Y*1F zfr5b-sMC!$)sR6zL2IXFeF-2;;p%;u{r+3E<=}7?FrLGe-*^F6 zk>mA9(~h>>K^l5WzTJ2|eC!lsHmZB4*5+U|Wyh#NDW<5il6LX`p( zGQ4UIis|jCrSP}*_SADi7EtH_OEtO)#DD{ql>IpX2i&a&FiMK9u-Y<5N1GGkViU-^ z<@*W&b118+YOIkaa(*A2d*RGg)tm7slv@@YL)~zCRXDz7JV&foF|9Vk(_W-~|eXSfEZf;8a5hP;kUrmiBpg#~L|VP_>v#@a zAWRoWRSm?E0ap{Mh5^^hcYuqgVTZeqsu~&z&M5(ByDD(j@7jr5Y&| zyLMt4t=sPlarOxuyGlJ2suZA*Vb^3(OtI?#{H?{VLqZl%=&(yQIv-*{vFmA)DV=O? zGRMcon&Gg1CB+upbB8^2b0mB#9!~H|u$KzVkyT?RH}=><1#8vyvcszvaTIl9>bP+I z>;#Tpw=k_X;ztGP%?Wz+Qm@>Yz|l*|(xcZg!3z`&y+ECA)TxGi1r!v$9wZUICtI}h z9xOL1KhM4(6mKZU$HT5sY_tjXli97ZG4t)+yb;h+ zgdC`V;Kqu5!OCeIJY7y*6$XEi#fR*5OsmbQ9|Y+YkDOAk{E)?ltW=Gd=R3v*yARe} z7OX(PMl5L4C7o)=r$7NCmMku@C)c^N8V_CCUH3OggR z`3OtGwAyG~7o>4OsvTkKmFR3f!ax{x*8LUcbXCo#IM{ToHNdGMX2Ah`?ES#T9yzwG zBG2QN+q)S?t$gzSkN~|ijXJ9X`#0eXR?j}NS;_YAAAE$&&*md!4tScoqc=(K|45?r zI86fm(``~U{^h`Rq{%!-D4E`Oy%jc0b=guwCCa8Fx(T@+RBV#hKs4`+Bv9lzlIS-q z8+UVeu83cOI}K}-^0o7c{3$axO%m3Q_dnxD#;me$kggh;944&!k(<0W;7kXyYqkAz z={B<)-TZB&r3_qSUnbQgWh)(H&`@Zu5;5oc$=@-*hRNmk=29E(Qr8^b1D$es5A0fJ zUk=CDcCYa00h7=VkA$p*9ym~H|3R8W3Gr(?;s@54)^4pxHTQf1H}G`^oib`fm+Hbo9*+Z3wn2k zt3<+`w}d-j2%Se1?bxU^*I>8knkACd+-hH}Jdo?oN24 z?j&NGufGgBcAwpjA$6{i_59o1i=Qydt32GDZ^Xd9RXxLD_pc#6NiwcFI+0Rat@bFY zB}QCK&8`<0n&oFb)Yyy|=*O+YaL1q&AZ?njYe}hKQQ)RZ{fS{N7~Ul6fuU8xZ!OZCT1s)B<&d#@|+@3BwOGQg*?hbrrgXdiLe+iGcbz4^gC z_U3Wko7Z2rw~+SmZhG(7te(oNI83ZZcR`qFkKTU6K27?Vk#6c)oTePbl&nWz&*MD` z9F_HGC=NEtj4|~b;<=nZL~s7)?#+kq-*{W%&+(CEORPyG>{WX!rB*)TXC15L^Nt19 zd+OK=C{FwJt*#n_d_ji`{5T`Uwuzg ztB&i5efHh5G8&O`z%4ppk5+PUGs~^f`Q-Kih=_(E>+5Yz$e@GvRAn}1V4rut^1D?b z*ALoT%cJvM^$*$SNm^cAu3Z(mhHdA?A#U;X<|fazfzwF~*_zLhV;eO_gB(vnukC#@ z(sk|w`?Egs>-prypsf>?*DxK+GJ8JHGN2EN*`6M1teb!A*~_)De{anoUB8>vLjFdW za{;SiX@6Fj^JKX_+*iIW%=rt`F>}5X<^VlQdM_&3TRn}hsh!@4*z=ZT@Tbz+P2^bC zdLqTL1d`nE%Ow#eSpCE#WyR(v#%ISSnRAj7;iWKePE@Z zx^j<+tWH4nXp8E+B2R%UbL~w?#MI(8a@UD`D1jZUlxr~&tW^_vcfi)vP1Cm4ZA_OB zqAyiv!i6+&nMeng?vjgzM@18PVcPJl{dM^<_(QvHHVMAf6IqSont0CMK$0yJ^;f$C_-^QLMfg5xe6O3T)OxL+HnyrL%uC%%1%H1S8e1*E+ z8X|uq+`S;&jr`WWR=(}wZeJn$FYYcG_?`V%sTNt**l8xEvr5_{R|dLC;eobLa`b!q zOetKD1{JqMq{G~#Y$xQFa2t$aZsR=UGaYX6>`XXuMtvGMi6>=$IP61LcN4DI*T9ki zjOD94_hGy&VL;v_UTH45YX1dZ#$x2wL>=iLKiP|?-tgJSHi>Q}HTlv)pdu??_hu#my|Yf1gbD`#Uyh8FVS@aGlW%=+lL z0`hd2<83X2u8&UMV;`L%<-eStE`KTd=X2~ftBOvD{&~B;<5@}mS@h2}Ovn1?bO9+p zVQDP==kEED52A)sI3U!Ug8FAF?Vk_B9q@HkUs&NqPeIwl22s=$K8S$po;v6kK8Q{< zaXcU?W2t!5K|_^1+`{^1>=a^e<~XFK)%DG-d+Zz7WrPt;X18!$Q69mX+3ImEZeg}O zGKDm1TL1#BfG6*i1HF{X3CzLLW0^kc54}Q z%KW@23n2sAJ5DJFu~53j?%tL5H{zswCzZ@{wTbk^g?=QW)tAlXi&Hq}oTF+q3y-fM zOX$L5UX){%ul)BEjyZo|I+oMlOyQUV^p#;w7!IggpC9QvdyQ3YIh8D%<4A*NuGD>s zMPyu(Bb8K(fHdwr)y+Uy8YfNVY20k;y`^y!xiO$5gv{vVa3~Y0bd<$SNVm?8K}sQR zW<5G_D!J0xk*Q_S^=Pb7zp(T<+{JNRQdVH8EKS$p7N%##RM(JX#{?a*PEov(qPs|d z&NKn0%X{GIHo9H)D%Gy(`&|%P+V|CZIL6BI$5VOVAH{U6?_ZzF`yS{k>-$P_5mc`)axj~?!05`Lw$(}|g4|cQ+#0-9<$)30f^7ddydu0*kU=_7# zfseloY~6=A#%T4h4U(fn9B(LVF&A^?v!RYHl&feM2*t|yJ`9_ootTSS=L3W!;KrbE zEr%|p#~H=qE>aqHO*gNB*KLh(ycynsF1$tWx$^~niA^MS<6-+q$4up8Y$WVY4p+Xw zEi9-XPa_|Va>Q$C!RqehTy&6s_))~*sSM_ONG;de(T-NKat)CZZB|VcZewYLK}Pa8 z$0Awz2eUFmt50`3NtmJkOd|`j99ddgmM(tTfMsDu46kK7ELsL8yp0iUP_Cn$mX_tn zpo%7V$ebA$Xyk427mm7#@jNyTrL z(PME78!kf&Nm+?wu9lV!7lvPjdIld5%JEAhU6;-OyT@#PlV|hw#b=vKn`rd1l_#hL znq)35)N<LaOj$WkZ1S$?e$VRz5s+&2rmrkMucjOWsgyQm{XFlR{s!6mlJ3P1iKZGf?_y zf%?Kd_V4$+f79RE(Oe!ogQL|bsz%en!)NfDO3`Z_Ps?*=aIl(%$yn!(pTWTj$SVV@ zFdPWCI@o6`Eg3`x90l-n3Uh2&59{ac!ko+N9ZvaeVa^+vjG41jm;>aMnN!Jh`8S^~ z$82!CSzWnE6{&-mO*P%OIPA)0+{~sL+llQ8N#5#M;R7sWca~p0Ew65fN;UZE4o8M< zVMpK=6f1$Gel^IAYqRQ*>)Rat!lO;md08fNt|=!!KNik0CMD)4=Eh{3a^cNSaoHwU z=FkTVtA)qq*>K!7&YYB;A03}(&dW>6i;s`a$|vhjJAz%MHW(M7cRGets@uF| zu9@^Z;;0p#W6ICZF~ciy&E~vVc-k^MJ32ZqH!CmE9G?hZQFoO|4}mWUc}a1m>|Ap` zXphZ{i-+e0v-9F}bK#rErs(JxSJutB?}8gS3GwFa=s0tBeo|~!PExih&K#GMke3~w zmj{nS5$XB4!LFshZ+u<~uUKmy*?n|wbmIzjg1C?7nn?P~jz;16ISGk5iCOvCv8LSE z*xb0pIQV{hP6C*ala-U5=K{sxL{@fIY<5gyVos7NAvP-}H#-(yQ=6TXmzR?eo12|S zZv6CMU6<{PIZsRBIax6|(ecqaF$wW8v5DE{q?~+n7JNcJHX$i1*93R^zj-j&wX5gC z=cI^Abi;SnY#YptD^XpZ3jNXNw4-5%7?UYIHEPz_rX?lqBbp}UC4#+KNePM3(eT7s zeiGd0%8iN1H)SP7XD7zGAThwPN^XJ?d*25`_VjpYwX~$-4oYkaD*I-P9G^b0N6-G_ zE6GZ;mb#LVWj7t$K7tHAGA9I*sY0hn(FMmCvaaK&A>`7#jyqQ8P#?nuIVpc@dx{U7K6M?>T-Z;N zLpzhKz1x5AZC~Vf-+eq181_$oOMdn#sN4#KCut7QWr!#K9U9 zN&fgsw0vY5$@t#UOKx67Hh=HvJ&_7nRY18`74!zWRRxrKRlyNhM6W7nPOr``u=(D1 zU&)5n1>NA!0=8q2On)8k3jd_gU+g?%D*eR{<#eaN*#2b?`U^@0*ZKaZnn}tq`lni^ zEW3DWfCPd3(~%+P7Lm-Wjx=R3B~Z(}^%GBxq@HG0bJmedQi$Exc}Q7;MP&WrNS7B0 z8IK7Wi@eI%m&#>4;~`_Gkg-R|*y&Y9jUHS^xrdBnLdIDkZ_6R~hSjaT(2KqL8w9M9kzdH47OLl)^BkpZDf6`g_ReD`bokGWvRz(Ez?(Py1!I zhm4s*#)Cq}Os_H~z_+cb42y@1twP2NLdI6FGT?jOWxt&|9N-~hzYy`65V7B@2>Kad zYQ}XB8CQjj+d{@wuQH+ra2fSx>ANL#7Vnl;vv}8rQVOGPk&5AFl=HBX>LH?=5RoB7 zbn_-crr-Xeu1xWeF-gdnFJw$Il9BbqSHTi|eus+K;2~nY5aAFa)*FeSgI4NJG6TVr zy&fXo6e2zpBHr{SLZ;sxpk{pQA>*QuaZ|{+=vBr?L%EDv#rjTBig~9rD(0P{Pzs|? zk?EU^sU3+PGU9}cUP4BkR~ht`s8mLlhm3JTMxl@~&Pc}Yyi>svyg`wQSnVNVg%Gh> zh*)7HfauQQ4qN#2s7JnJF;DJDL|_4)(O8j|EfN+t|{!XuJN1BSkywbl|3Z;$h0i+!V4Q#Ccgdhb&>S`&j2LHf4VG zs+zK(Ix^)i4^wUlQ-;)ay2uL+oPN^%@NnFYM&w+_x-AH^=T-&wd{$+9KF9VnpQF$8 zCUa<}hmgSyoI^=e9cLi@l_k-aTWXAILOD_9;~@F?Ry9b~d{L0nJ&funj9S&m`MU%! zc)MfD^*YM~0xGa%c$F;~;Y(5uH*V$wg)d3Ibha6p92!)cl!ZH&4VZn$F7}H$zh+WY z@w6HA{}Xd(MvtGCR~VHTmlK^uA7@UCONvi0XXRuinBwxYa$`+-u+@|h2hT&t<(RUv zU8NDu>Tr`731tt^G=2!Rs4;$!w$Ymc@G5G0jyk-lb9^;rBch~trP3R@>BMFy7RK*N z`L%Lxl@%vuWjl1o+c*~~&*NscL$|H1Ge>sLAyPZ%9-p`7_`#VCxgKr!tex`-tr)sl z7w)#ekMGrC3;gaQ>xTt(Ab}m61W0osKp&c*XSGOxs+DWpb%XaG~`{0L(3CvKtJaYpTIYfWOy!YoKFP# zINjN-+J0y!tG-*^OgV@s2pmRl^+d+aPV&CF1UBoVpGdy$7hGHoK;Qt)(qzw8Mt7) zhmfwB&JTTl0}X7@Lu;!+&cOz%_UAKOmKGc0S;Fazq&mn`iq=D-Qe63dVTB$#*;OxAif6Q3Sn{>>u4%*1pVg# zm9&rk6GeNuJ^g1ey^ulwxsU$y4{d8oe}%(8vkMZDxRnJ|)G8)sB@?j<*vHT&%Da;B zt#t3kFzpPln0EGyX@8rVz_c^uW!hPHGVQ-p6R7rrdhz}cJOZNgb3mR*Q7`#^|E(Q6OIxaQ2I#`Y)oJ_ z4kI5=cQ#hGQDfLVux%b$GIYzDP}~C7Sk?3LJkn&?mI80r?8COilO7{3wk5a!w=Iyg ztM#L)PHUc8N3eW0?;S)fZux$sTh7ACp~e?oFBLhL`YPuTC$9irrY)>e2#yv zs<+sgtF*<<>~ui0`Q+qc=W;CrMHOU3eQrc}S(a&Z7ogSf5IS&EJyQ z$RiAz-eE^)aEm)2YNs|KnSU-Buguh&gCw`*<`iNQ+V8HB4>_YGWhriFhbCq;p4eVl ziJMs*m(C}hA8|$*F}$AHT-jp85Viv58cz)oEAyKxFBmcWxdNtYPX=bvJ4OsYu5@-W zU|<@K8!?<%nZfE^ypfOi+lOHF~Ajwkl7^21#l);dQ?O3ejmG_fADN;^6$p}3j$m=6$= zt~1VL8*nuCwInL7^&Ejz^z7_{jdUq9i<}?&bu04RmF;!Ngd;-&NirEyowR@48D}7m z#k-?ko?LSQ34FpCp=Hp;JDEoTyGvNS2QARYJJo=c#@lsjgR`C_XD=`eb1wrf{=EFP z?QP_l9$E%eNWa{Jevkn@9lBninq+NuZcr>ZR_uY=gAMUMg7bvop#y_i1OLB+YiaKNC|j_s1>d zhlz$QW62y0B96g z7t$mD3FP|MvueAVyx@G)AKqvJ{AP0frN`Q#8TT2UB=0Pw&*C;EroFS`<+m2nx~^l` z)1YN`!E;pJrKC_lg}>=sQB4k7#2(5+rvJmm)?7r2zJ4;qmH4i+UUj+YB7O|+ z&ODM{OVZMv-0z%LO^#l~pUQL7HFeXmr}6?8u_(yDi{88@9KWJ-d{iSNpMO(*=8y7L z*v;v&@NSWX!DMM!y=tyQA3D29O8z1gT{gE|_g~{nl0I@qE7S2cRubedA_qTmb~NDX zaLk#iEHz^I;F$BEmVts!V|P4~L_DzR%o#6Z$hGvibAc3SN6P%j@ms~sNZU`GO_XO* zyL%hQ2gv#PGR(&o@W_-NRWya{I^pauf3S$(es{Yx&`1uOg4i2sPI)j4Hez7K`lGIe zivoW{K8e@I{EV91ZpuF{;;)Z!+cMlpG@lOX>tlRN^u~`gVt`pU*mdX&XM0~cw1m&P zbQVCd8*9YI^sx8GwDi!k$cTZ?8(}yTAU)Ml4)0uD-Hpr`Kkor@y_cn#+_QvFA*m&9 zB7VxXTM3^+>YR7>l;m+G{50lhOveDUcL@hjpl4^bjTN(FwqA|O@*`GxWeF)tFH3_j zhp-2rlD=_%r&zE$_Sn-_FpE9{`)~<|Hmr`FboG|;&wuB%OUe-{P(?zz20_uccnhW% zk)-pF&e`&}B7zsOscaHHCnC7zva^;f|0^Q+H>P6|{9Z&5=-B~M>=Nn~Hv4+HRx@jR zGV9firRST;?HBV-ZL=7$Gm}~_=AHV+b?0PB?zxzEYAU8YO4eJYTMVNltQY=OY{$k=ugEoZ1~=|>HJhF!OeWhMORP{<7S4hC5uVXZ?GWp zWMK6+F=80`yK|tHL5HtLjEuXp>`-tBDoR4~&n@RFZw1n}Kb%*TBiKAv;vPgT?(S5> z`z0yLT9_SbOyrvPmvfP%TtX7~vohxvlY##@9m+X;g$0$x=r`QVf(i`VZ#$Q08FVqa zBw~bZ;aj&)|Lgn^mS9Uz=c6SUZf44AE+O&qj@bqbZ+AS~LuqZm;F{~Rqp41X&b)7p z%;QTAQp2x8kHoVsfdm=YK>`N^EJC;c=xs7@rlQW};Fbdf2 z(I{8BvSX&Cd`U&C{C-R>RoiTmZHmkl`T)z?GMjhv}@;Ws1)gdL+8Ds5Wm{`@9i4|qsfG`;0hiB&G zQoPuHX^g}yG=qo%clqm#NrWbAmwKOb zgU!B|jM&Xt(1>+p#ESGvanrcsc&`$vXI;YnQ@UDCUr)!E#_}#FJ72TeYm8K<)_5?o zj-p`z0pWB)wUXZvF+glj`mg~%~UJ$@L{S|8L3_}1UoRrxbe7T z3Fj@IF{~=i|9QSa-jv6jf5JI%BUwrqX;b=tO`C09;Jmc~Er#4>A3Rd!&LAn?k~{B= zRJn6D#rcQLo&m9u$G=VHd^l`FMylKa{(qV~V^bk_c911oxdzOgP0AASO;=}s`$;n7 z7-vI6^2rcjuWa6}B!A$lNnascTrLB|JV!?oL}#`el+tLXZPy1+f@ho z5qmM9$KYn3D={fIXq+NM@26c2M8pqc@3S?OzekIRMw!*ZtATv4`507S*8D9U{{Neg zuY2+V=VRpwJaXyw4D zQ&(erV=V95AZL4Ft6pN+Y^h8u)E#94lA70pRTrt;tJQ6*x%P?n}&C!Gj#GAZq-@l05<>J&`-pKVA z8;V1doB<+#{lz=Q%n{BRj@A`Oa{7{lrIX9{I3((ggh}U#QEK{oOiH#)f9*%9>FC4 zX#-9>+-9}E<}EC05tE#yj$il)c{ZAV^Jc`+FQdeU$<8=y2LneZd<(0h`;%8qwTA^eW=R=gt8I35hWr&>jpqj2dJMf;ca`H$b zrIP98iu$<0nbB%}cM?7pDUZK|1L>>6+xyNsqVYT@JbsetOtb$8G%I@aCmybWu@XIS z6lO~?Aj`SS?*EAiq2DQ7ns@sm5E=3bLWtFM{q2Nn(z^zt-3K4Fw*N317k##qs;%}< z1EU?><}iAq8TZve=nln*U;POYR&z)X)1yRKZ} zY*TG!#^77z< z`p~ZaWLI9k^CO#mGTAkO^PyeulU=}%3k%=6@#aoB2oq(6FnMn!OEz&0Xvu~#YTkUl z*tx@g68^AGl$~fikAaDDTfBUi^A4N+n=$4j`ILt*xx~52eggt24}JC|`3oKnTw;`p z-V;BKlplDBvUIq<XSUsO$5?363jt$}e2vs{0jk_LKInAW95KAF zr`)&U%~hbflO)>@j1-l2YesYX^L8dDRi9={+=c)66%MN^dYm5K$nHN%j63b@9M~PEg^Blww6gD8+DDBQHO@F6d0loL zC;Pzv&;kDUhgIOXzLIxb-%*n4dHQyt32*7g_?oY(KHb8S`orm^z=a5r)7%i;g{vD&vze}Ahu z|E060V}n$R*|uS!t_|}V%}b>JbdCTFt<` zg&8y83e>d5s6fjlpQB2E&Y9s95%^bGc(C7ivVkv5%hkT;gZr@DT|% zKuvtG%I6X{{_YI2+t-a_k0pB2wBYWtk&dsp-w2e?S&OHSNV(~pfl@RokBC<8gsA%Rl?P4UP?vc0|^7KH+H3IdLfwJznj;nhRF}aN%=? zzO7KpiE?OD0<+(>y~k`C$Ti`TVt}$qd|xH|E4ZZLF=`@bMWY6jQE-IU|Bq3XgzaS& zHhcnb8#8e;*NY}@1QYSICPCS6*lov|jYl{y+PH&k-1z@zV^}$X`=eI&`f{^;`DbZy zA|iN%zqnaDyO*QN1Q=&Mv0|$GvldSd0A_%7|+Fgp+AQ-i(uJ=mhogFG~lU z+FJYK{W>iBWO>4qeRUXEH~T4T2NeFKFW$-ZvS(X)acT5q{pqWOmrED5*I_@@z1v#W!Ll}U|FN= zNXG(GfWH(Vvii5LXYFE4B_F66fsdzJj-GCu9Sk45;9}9-vSrVCdQUdWd802+Ek=6rcut|?3irZOC4b?~=-d^`Q%eUN=&BPLGBj__ z$(;69;YJ+B`-lTRgFo_APA!`~VxlZ|?Pp$#3Se{hWM7@+J1Di!jVOrL884AJ67QI(RpME_L7?&?Vr#bS~$fa#eKWJzxd!kdP|;K(y$yv8<`l z4?k)0cfx#ld)2ESey$JHO}dctj@2|6o~EMp#hfU|Fy2erhl=o=LyI#;%%}SfU&yTe z3j*?9Da%Q=)tJR3)2COCT*_(gSissn&xQH{JAR4K!TYHguH`*2hO;J$)?eg2Xyx_f zT!F6+cYT@jfVBe-&@o@UO~1-%YB*3k_xy{FuQ@Z04aOMEaeSTA*DBqJ*i0W0!^MJc zxB(Dwu`pMZ2Kdzx>6dffb_7jg@bGA_GD$rCP0rnpDx7R+&n!oKd0_ATZO*&)=t=6z zOKT}u?|ZPqwwR=@yzKaI4!q^kagw_7(t-0~b&Z{*uDk$0Ug7ZVYlTxwv&;w7_qhg5 zQj4N@CaG&0c~^3J*(bvva809*XAzsHJe>eG$!ovMuIB8vFPwx|G#J-*H`k?WIo<4Q zCaDX)9x+9326;WhK6aA2!4Jye8b+reKB>v?7M2&smOti{InMEc@nq?jycyH_+$2%> zQ_h<{I;12$dcWfrUmbq>Ij60U4&8r&>8R>tmM{ozFh%W9EH)X*a_IkGfp=2o%uiNJO3Lb=Tnnaa;8ebJUMNh#PuIsjpY@@+Tz|na(=M) zgY#nKlMQ`2E9U1jlhv}hlSuth-?XS8M;ozW_h^OR5USsaCJV>SvWv->r*JDA%t#Vz zvp%UUs@}|b*1mSKnXA{8v3>>aCt!{hJu1 z6LfE4`DAr(VuotNdlTF-yzbVRw|M!J;xAH<4h+c~>6g3S=J=bB9}I6wW4Hd4YV`1@ zMVx%;wq@SgfZWGze!)}tCGM~(pi8fRG4Jb45&Np-o^#aU6a)%h2DqCy>kfDsz`Fxp z2DsN(hvC(8W2_ov8hYl0lpu1Wmgs%c6$K0S?!jRWCdm^aeEByoBPjQNo1+)wP*>7l zoT4rpyvQjY*uTS@r8oYPQKTjHY~=9n(&el6O&z1mE_TpyttR+m>0tQdAb+0w|L{j% zviA(Ajszc2b+_Zq+PQBzR&sMZP+vMlLtK&U3Vw%AkQ;!)C0-V|-po{oG{uln5iL ztznlMWlbFq@@B-#y;H@8hPijw;2mgLTfI?k3&&Hu2aYH%YoS|4quhIZ==ru$Zd1o= zyqDI~r*UpyYX>6*n$s|H&s1{th{)aV7{-Mf8PLK<*D&i{Op9E{Jg9tuH10HIaAfnC!Cw)2{s-%Q(t_V?THSq&9=efdUOFj{WB;-JyVFEn0+nr)!69QUP_33 zH6}hbDK`2gIDji2&UNqoY63L8l&C&2TPYWQVm2cKF9frq_BcfimKgP58k7$%h>?xJ zkO3nWHn4*s_?^Xf_=tF(1jpMO6f_8*T;-(bHxR*B{K_o6O^c32RNY-49{#|`G~Syr z{z=iR^XW$7qlVLJh=5M60b*F^(+>L?V34;UJ*DPpvhO4efLsIZnJrq1$XVl`ko~KP zMyaPGL`3fq@UDLs*J}HB8S2)gr~eB^|I0#mt=aW-T`?%t)k{Pini?pE_izQ;|Hx1` zEDI_sOgfQ}W>eK|m2&c6$y2V)_PA+k8xuW^<-kj? z#zn$8|52|d_I?>o$$zEyORvD;_i$EwTnrqP|7x_#fl9eB2Rco|9AGi-Pv&(5iu*Ie z9j2*Q{lE@Pf!5O)C@W5ZH{9;hhlYodPajTGxx~#AJ(xRLj7h;Q@5MTUVyJU z+Lul<$8?01Pc(OqZ?Dn;$Fy+|*K77o)69_^*c{!av%&YQ=$@G_y1(Iya6H4w zP{f*wRd2Xr9B=VvoX4R-;B3|K=3aH%Rg zc#B7mIJhlSy)Y`;T^@M5y=c0sK`yDoQiFC($LlEK>onKX_VbV*a+`XFvtbR|HC@#p zV8_cS<*3C6SbWp8>pR4y*X9d&l+gIo`a^bcHj zIU3Gj#>$t2ZS_?rEF91YLB+MHWaBMN!ua=HnKn3b+O4(&SNp&Rp!R0W>AM`gz0~$# zYM~S6I9H;!vb@EkR=a%|M_hFI(6!JpQEJfJPh64B;4Lzb{eVYYzujKn%IsP1E%w=? z_igPO`RMW1Ojn{~li9;QafawV%+=o7!C3PgFE8^d$?&rxxtjBB`^6b5@y zOO}*w=^}EptB)gbCbJGREl%-crUC!|Ez=r~0gbOQjW2VJN5{I7#fy=UX+yo#e!$d1 zr~jMU{PCc6Ia9lYsh$47b~wyzB3uso_H9s|@1=S>Qw<$`CwaK<7*`b^eL22C-Y1h? zTWpT+q-aZa|HxY~yMae#w}si0-2tS?aFR(m`un)&LG zyk$WnYX^j98(+LbXSfQjyeJ&4N%7U;=1f;-YX<{s{`5)>53<@Xou1`7VRO97rGm1i z;^J&ql%pSS#v=IYEb-Gn(f*?Kr>>@s;l6sU{?r9`M>)kXQNNaJniwkn zoa_4BA$V6~>#SdwwRFYZ6K`QaJUHJqy1Wg|8w*@(9Gkf|thyUni$@athE+F2y&~yc z=xS+m>}IU$%EjNAt|uIacr#`mFsiMtrH2uhFd8~;fGW_u#bc6Kv&i+n{g+v4cKlH) z)w3hs-ncd^54MI?Z1!40O^pu0Sa52*F-uL2*Ji1yu^dHMl6}*3T<%b>GA0SNFNha; z8TV&3wmDvuIyI8h8}CYSJa4gLOG$5G>tB#4+CA5>lsOX(B2i4cQ0sbUoDJl-YG3fTvsKg z?A6J>jPDH5cqX%T-fOE|)oqUb+`Qi1v$%QjB(FpW*B7oKj!T@^a3z{}&kK?IS7tJE zQd7b4T~d*rvRtFusOi;8CrDhLz#Ie^U2*=#Hg z2ks-m!LvnbdZyFSobwtEBoXhOz-x6tQ*NIvPsL2OgR~|i3X_>xT2HYuy4P=aR<}c# zyKHbxa&$3uvVISc&d#zQ-ClS?sM`zis!iTr2=krg>T#oTXovG)7d33QO8gIJQ{rcF zV=(a-$QF&zwB*cQwgqCuh=K>%06s!i&Yi8Y-sL4^hee3Y`lFo3h;)0BcWAcC`W>c1 z%>W9UYlQw9zvl1d#1w(GFJ~du)Pe{kbb#9Nggw z42X?OY!xYz+Z6N@?ROePKOl+qCiee`;At@J7|7Ms#&Z;c?ww=qZ&Rs1aM*@Jiq@EeDar;>8&n-Q1{H*g z7KN@5TdYVfblrx|re8XlB32rW7=fRSM)bWKcSfR)In#}dc}Du4?dZ>04Zoiu);B$V zGeMf#M^WXxV1LHTGp!ChOKV(^Y=;s5ewQnfJBNOx?snDTjp)Zr(>NBg7s)sfsIGbd z{_(2EY+OYC6I4#z11s4==??7>^XCvUzvhM@GQW^59GUhn=7{tW1$^SsCn=PP^r;2U zIRZar8HqytWQ$vfL}p#iV+_a3}cV;hq|mVE~!d^;1>a-sHSSRNf-q*JV`r#Hb0ce5!Cc{8JN`Z&O#`KwN@4 zSvpuWwIQ8>L*la64Og%qI4epUK!s~uDIG<&0fzxrZFM6Ef-I!~*4hEF@lo(0T&$+8N}-xY#wWB&5~-iNhWl9ven1e{ zH)bMI%j=dCHZ{aCmpf{t=_E2v%vEq*%Xy8Uj3eHabIpaErYxJQ@LDw2#Onm=3mk}7 z&}U?^wqyoyXuSH%V8~Kh-#=Em+k0bX3S!kHU>pFcb?n3+DET377=SOiQ$_%0kYQ!u zlw8UF#(9kZ=yPy>_6mTe{BN#W$$~V)J*@}alOPRhB=z7PbDYRIC&(+TueX6!vc3ku@KgfU#=cj*+SWO0-;0#w)Q`BOq1W!z;WftQnw=jJH{|IB%f@GK_Y>+?(mYs!^*3c=Opn|sNn)c1;t z1@0x!so&*Zl1-l4qSG)4gycGY@sY8j(Qa3LKX6N2y1ox_>}hsKLYCVA8AQd-qtI+V zOL-#-Ib_`(^A(Km=e$M~RuS*Lz-!%*YD&U<1!IsVVa!rT>p87F#|DO)T?{@iNwHyI{sF&Jtjf) zOfCr*qkYpN+n0np?pRCIz)TedpWxd3}Y`O_IT0zwD%rXQ)3n=c5kErX)Au@DY1V$9wYF`xl&cgNvs^@0#T%`ICo z0&jDdBwU$G2g#(qG6LC-k2$O1{a#`n?(v=p(o{J6S;hue$bG&1)9S!KTp`2Ye^a9% z(qc1?Xy=**Fej1UZcmn(=CR4{FqsD;vDRk8)FEr_l=+p`+VU376KfY_!T}xN5bb4; zEg+!&&J97J{wiB6K>c-rxtBdbCjKN!Pr_cd{z8_SC?s6AxP?fZw%|O*fSe?8cZ=W) z5b|q-1FGA@7n-w!=K2W+LvCiTLFgq`pIB&O^(@H)4g;&&@E;bqu^M8JP7jx#9M^EGk9u(OXUi}69gLGX;t7Iu8n_?NsVh` z_=;$af;&yy(J6rHttJ7Tx?&p2(E0-z3K@kv+5aNSa3^~V=Ffk(IKHM9#|<)7d99a8 zsC^*Q1YBF$;s%^7uWd6;0R2d&CS|Jf+S5zQixw#owrQM4juCVHCz97MQK(qF7@ z134LKP?|KE0+(i*7le4a_(2!(K)?Orjy2plBUx>9BGQUX1=J$WYXssi3PgUUx%|_V z?U@Rxr!q~X-lV?3fk*{?MlNehmI8;om9nFy_U3`#T=fEF0OaMj=qVjVyH*9E%27#D zvB3yTv=BTIxWTSQY96PDN3nX0_jgCVK}t>u;17O@4H_TE_{ zeaga)wk*QvC~gB5#dO)iF=|T}S$}zNVQZ6x!?F}konDf%ERrNnH*y|haDqu*ZkF1@ z!btp8&_r}dDrn9oR?Rg`QXjMr0p${^C$h{fY$%BvqKr4Tu-f?dp&!BZ)_~}kD0M#v z@ERW-Eqc9Dgm?}0v$mI>FGRG~@#>MDvOmo66L-?c)<$I2wJe3#YKzLx*80R7u*l3- zO|iq_fbs@t!$l@u8&F^1ka)FSQ&BKBtlF9%AmoJEI{q>Wa`_u74p%P-2$Yd%6(xFK zf~&;<+z^AVA_Wl%7n54SlxOX&s2G*|xTi)`?jUQEz*C9guAJ9MlP1L5$txfWxT0+URW{ zLxOp24_G0^B*sOl;u{zf7ZoEfiS~ePZSypkr9Cu%NfWLfC&I+x6i9A&CnEHl66Q$y zjA2w}E*sW1WK^684lh)9Wjk?p84t#uK~?js||_L4q^ntf6{d(eg9<{tC>VtMxvu`D(IJ}&z%A$7d^o6$Xq?@$W{pK^mZA~YO z9^y7gwpef*nIN4a$sc_rMOUgYKDY6*1<2=SVbtHLhMejQxQAech39@-9)l8ri zvFi`YC3btk-_~_=XA%b-26naKAYEg(j(<#IJiL69R?r|YCN?%wT}OUf+>-{dhIcH8 z<}Yb5tsFz>)?pOg3ojuL<6atd=Q%QKh*MSL>73Vy$Wz2SMMi{gb2VY2Q=xW=(?snv z)D<`owV=*Gtv2L+;E+s`dO?&LYLBDn4xm&Ir=(civ1c=Q zND~=Qdy|PE8#lRsBffBx`wdK~m0-2JWpmCOP+lXmRe5chO)!0u+kr6cB3mpl?UHT6 z^mVc@C0oICpqG>Z7AX>@qdAY^aUYVGo~`QZ056T212iH=9|O%2quKDc6{ByFEZ{IO zs;zDhecbgmJ}DZWDNrDV&0VV)b=er}t2ZqzupmTM*g65;wB*yS5Jw^R(n!-mWZ6#m zmZW@Y@D%4YB9cbD$Fj{uv!;}0E1Z6xZQ^tw^#u;ZDd;n@SX;6UI3!M$Gcrm2V&L+x ztH=IMsOryz*3I@#c?4Eei}_u43sft%r-vkL-)Cr9XiLnERRWi)Kt z;XYCSmkR=*GDE0>OA0%Qx5vPJARj~w)ucHERYd+63YF0vLzT+iH;_Mv>`wvr<<|H$ z&TE8fCh@+cLd7bhru1B*ke}j-0E?B@1>Y%@@xkr!1ewOTxSp&Q*N4UzgqG{;)p!lS|ZO@Ryg6-?@;S#jr(Q%CKMzn*QWQ&{8!Q{EqrqR5Zg$H7fZ7 zYE`!#l_`Ipz4cNo;*5DQ8Fy4M%Q=8iwdsdN#B+sFFa_Ki5E&U6t;={qVp6MEk=5it zKk@fS7|4~23u^daC~Yt$L{0!9{_ehT4L31KlV9JYzYSKn zL%|s^6aes06$(jWp_s+pGeWVEOq>SpNnEesyhbQ;iFb)tC^W^nR9*4{X@;X(4>*dO z<-;;J5zi~!c&;LbtuEg^z%&aDbFb7inPu80G8x|Gd`d(408Bm-%6Y2opF+9iLV)tk zr3%V_E+r`cXBmSSLb|&-EZ5`j!r#{Qcp=FG4r4v8tqz4gupS2-*YS&sjm0V+q^fvQWP)Ci zYbe+B&4cSwKyw}cD4#NLZ90wnY-I9&vUBn>1?nZ7*N9IE@qV_<1huAQE>oc1y37Ri zUg`@R2x`zLbDbrfwq%0HdK<1s1E$F-cOeRlQGp45a8E~}fvp1L#e;zXY=@}8c+oL1 zXSuURV2+Z(C&5_>@oSvd2+Sek{oX4un)2;31#ysOKwRsY0I4KjSAev5VRbubrJx1Z?YDwm@@m+hFdJ90ZZB_#ZOZ{fKfGKaI(a!E`gLvu zBKj5C!VztIMKl>=Db8ofy58_|uY5LZjF*s679kSQb2yLT?KzS+bGfR{qfjBsInB^p z65us~@JE8=i^USso0pr_xs0TBSIou=UEAIb`pIqf(mnDrc4Sg?tSH-5(7-P?DqbAk zQ8GYu+AFVNTM5H=!gE;z&Oy~axT&C~znd5cz2f1mr1YGk5XVXGsgbSUl5IzqD;R&z zd5x%iMZDiEH({(PUoBTKzGa2EAiqp~zoLM3>=C4XGnV7pp2MJHTS0R_@JL+zx!|?{ zh*-h0+laz7vaZ1jh1odHYeeCD z;*A1c>qc8sTCGsa?FR6a3T-%8>S$eumH+riC5(ORe88@kPY-+vLpwhob`hFHF4<1* z2@Nu>WLo}5R(6wGXi@#_a#e|wRa<41xRU+$&uYItZiNEyCo2fRE4ft&;AOJK0$`X# zWMqu}_6@RmF|1J}iuZd-+GCL+DEA5IN|X9fRrqQ8W4h)L*uv^ZSM2aKD9 zoH|8ejs`2s&)z`#JW1V^3d2#H*NBOocw4T->}7G#l;)!M0@zpAoURUk+Ne-av<fMES1KU)_ISu*p>>5SD(;&X z%5=nawq0E6R2V8!@?kdj`0jC0BfEx4MISRwyP4ivWcNaug9z^ZrBq%N{G|NW9MM{n+- zk-4{%N!{V)H+i-DJLrACa$X}4`nzpgy#k>rn^vjyGe|Ss)Ox^8TtCBT!?*Anh{i|2rQg3O$0dNR z8d%e%uS_#pZnhwozLe=k#rP7;Epl7DPqqD1$ij!%GVOI%E6CPfO^}UWZK5qkwrI5B z8xAq6&24csnHjlSVfGm>DNkCY$okud^BAKOL-Jl(tw8&vmqyJ28gX0P0yN9QI~M-7 zZi^F07H}BbVr_LZ=p&16mmdJF3DJnwhJJ89qewlqtG`$fTzG3>bb=-X00HhWM?DX7 z^bf&>!QQ0g?pYy@#oRq3QQMJ8i&iVdZsoj2DB2Ql-f9!EnzDYiLhPZ{CSvcWzQBQq z1%1X2SX;7CT;BjY;0d8_R|&D`ELPkaVTE0IjY|7Y^~=r4g%e2 zUV({^k%=H4H@kO&L2|QO8^-7#Zgx{|08XDb48U@q2UP5MDgh-gK;ylKHbRl`m)~IDN9FhSF+4Q9u21x>JcHvUAJq?sgq#jsf z)>i!?!ZgKg)K+c$+t82DDj#cy#UT{eh5?Cj39X_<#z?5H3lWuWk{^)7^%?Mb!}o|} zE1@)UPnhF7?xc~S-O0(zYZO>-SzCUFK2N-VdS$4l{I*7cHDs;1&($AU{7rd}3*^h{ zcVmI9E&6he$nq;}?k{6NIjo|9&t59LqO(YZCnt0q6k1IZMk1DbXGG!^@-A|%!s=t3 z*GP?C#QO;FS{E9c^59y9Rgh*(N?OmC%6r`B!l)0gQW)j&mARwP>eHS6rim;$Un3LW zmTIWBz6l|fwe@M$R#|PWWTX3rD4qO)u+Lws!29W10&hOI3c|12- zmbD7KWnNOwTck+z{*Ut*L)4GtU0JJ&?0GMZngcXqk=+QIC3J7iF^g;($pQ|e$ZD(C zfeeCea9~ViVpMdLhnVSm4Bwq10KFmPuZMz>0Pu2(B@!QS?~F*KlZAu8J6UNbb6z779}(|( zuSjUh7_c5rqOuM0_{gB8bv08|+~BU0sfZig_tXY=eic|eQ6?BZ0;2V3ONzzE^%dCt zG1(2thUIrH%rUb3e!BJ_m*3xRE6lWio}&697v!42pGjRmR#C^YohE3Q$u)p2_SuP`(C$gMQm^e2*9ZemNuQR8PM`a72I_!_GGmHOXGV|eeYTD@QCFOOC6j}U-avo!b zUqbQ*uT#bUbuW#Y12kgsZwH#?WHAr^w(hW3kSyRZiodq{KIrpY;e+rBK~j<``%voO zUHQmVc){`4=U}q;P++o$Lj@8Y{JNaih(jLnhO9T^pee!Y z)q)+Q8D45V;3YmYa-WPh;u%)HoeJ+_mb1|f5$!r#qQShnzXD6QlckVUSmf_rr;2=2 z7^i=@$6o#bAoZ>F3aM|bC!|i{MqrVjC|fvEZ4*UKU=g3{3(2~1>lIMfcnMi)5h8)= z;ylK<6p_5`>(w56B`RbSs%C)Gkphd<9@{orq*W`r&wgpWS=UQQ+GxdW)OBt9Na!cw z3eR`I6N{>fN5>_p)9~IFH=YAfdT9Q!KvPHI<=+kiYEtmjw42;TBTY-ms6W;#xQ1+C zDJ{dnygfj?wZ)}iOWZY~#s-DfyEm9oom7A@3>~;@Mi@?!eGhL?Xzk8j3m%8 zA0W`!VQW=4R0wc~4TFBF6YQ|vzOr!zpt2w^e?G3j#xrE&NU4M>>u{JuWMzFrwf)n| zIxMv?(*|qu;39e(YV`)f>@jW-VzyMaaLn3EH<;D6j7&YaL4o!sFDch8QY2^tHyT;W zZUbH-dG?K}x?cCvs5w9*R@c3tSytCOH=5P;E0P5qMs?Lz?*f344VsYX_g#mN%ZB z=e))=_Fv+CdZSrhG^OiC1>Alc%_a8t)VHh1XhAt`Yo~rUz^g5~58|%NExMMq5f&2> zojqZ}2f8GHtz;G!S#o_5F)Wj~t43IUCUeJutFr1Y;=D#!t`qM9udry!+>L6ZJIk_wFdm5c=ivhdo95PC~AFm~F1k-2s96sVK9q}1ViI|W$; zNlbU-EXI`kH;H>x*rGt$+OLlXdDOBY(R_6j6*tK+!62EL0{)5~YT;2hx&8^O7i ztUd@2CrglD=DbF5Y7*}k7#x-=noy=v3SB>lt}`aBX{3q|LLBm8#5+){F%f(^H+7aZ zK-_zDuEr*YE5qOrGT0$is>*GvCT)z8V7L7!C!5NTAE*TI;lfpKqOiBwqyV3|i2&b& z8-{>?LAG$f+h5pZR`B{{@^hOM*oS#Z`OqRoqJ1joks)9e{5Fy|ag(axA9`uj9H3EF zaNAQN`5|}!sn@p2ciGoMn{|)enB+aR$*khq@>J+U7?*EZBqYWo!~|a)421=nn_!2l=4sV-)pZ=?9vT^ZH(9iIlY;jboY#m(Q{uh239C2D zPE9!{y&q@)b(6X3zLUD1gFwo2;X$3Td(?*P1`b)Y0o!o#7oFj$Eq%pH;{a@UeL}{^ zB;)mQfHhnnchjp9>?tDQn_1e+h%jGTlc{yY^(TuOiTwYRjB&K!{6WY$gALf`0Wv)7T7kt;WHIC#Zk;=A zQd{T5O_i4K@-A}CeQ{ws^$GV8n-!8j+Du6Pj9Y?8&Xg?{Bxi0mk(@v_&flz%T<9ew z-y%gK`8ek>Mk$fxm2Or@&iB%&IY1+>#pi%#S*?GDzpW^4OR|8&Sc_|`XF(rAF+7eL z4M(`DIxV+`c$^p1={oQvu9bp^SpkNxXj!K;B3a$3f_@Wd5IfO!C zK{A920|H2fXFRn4Hw=J`QF)PjYD{iVkhRZ&r?Nb!ab6=T9f-G|S5!2m?-m7PkY@O- z^?=X#SP2aO-Ls%D`?MOJ0`Rh^csV61FtigH3Q7>Y(_wazceg&;{EyLla5h}{D&C@i zTd;+I`wce&f%}zgu>kk0EhccEBJ)0nSjdO4t8Qgki&6q)i(85WZhg*UjLXv`FKnv< zZopPkqvimO2;2*xSpxUottN1vCt1K@09RXm7WytMe8@j4Atss%Z(MXF9AxFHKBb?y zT38q;QZftSflZU%d$c(jf(RUne~)N?OUWy1M0`wjfnIh_BXbg z_|=rxwkrIlZ#D7Ti~0fw;`b?tk@X}XZA>a~Nc_e+wND(sDkxELM>>igC52VQcBc-C zHy4J+o((9*sChGBfU>y9Mu6TRtKk6ZzD3!Njhxj8&a1?l>lGYLS+iBac)pkGS`E04 zFotCKa|yt>9JA4{SC*C^9`x&61;)Nf#)2Y*@+p{MB$Nwa{{46RXt=K?m(|s`DNI+{ zMwo87%|v5!+2Tf{JX^E*HWOiKWanMm6sA+Sl&sybhqefjknYJ@j4^tL#J#XhLHcno zg_;8tBBXBz#S+rP;csg#evf1UhXHAAbOiKWSQsZd6&Av?@(EFiajF={M90R7TBrB- zm$0tmMR8r)A13ZA@0`snI zCYV2>zQBQC27LyYwI#EFLxTC-ZrC}<7>G1@euRp#3`DDVwOs}pQYET;Ws ziv_;@x0~>tOm@DtUBP#nmy{_MDH6X<&SUsJh2&*!SNNUcrBQQ$M%)$m5!c7-U2ze# zSus4F+!XV>R3a97qVdc;pNtnb=k`mJ?=-?&qLRSp2|lxNGGGMvG`8E!|$NBa&1x(Y}yFI4F2 zYZaKDO{PO4BGg~nuAu(J_DZ2%-j@0CgRtnH0Uzs5nESXrV+SETj~jsqUoTrM2w%U$ zMED9aFK35B_(?A*$1GAL!oTG_#z?Isd0*{N2tVefQFDMstkA1Kv#ik7cADs3OR|8& zsL=|8zOi0R*Civ`oa z?KCl6LU#TFVUZi@2Kg+1QA$18;+7&Y-HP)VL$rtFHP2U=u9t6W)EuA@G5tT#EHT|F z-^BC*k_8+FrnS{q!5_kOEjZ*34!XSzPkBei!mEF9aIV};1DwO$6n{w(hZn;cVSr;# zyY7KoskgXyMlCu)7WEOfT-rmYb9N&bM~MBSd=tc)G9+JtcxJu{;$zeoI1t2rAUxJR zv^M6|d^d<|1SG}CFaQecX{T`etTD_PSTq2@;TR>}5u>qzyJtk>Jeimyqmk{{%UO*` zoF>*?UXjq0!hD6?94|k$8t@a53xnS6Dj-)o%KXrvKj*iE$1?$~RYcFAA~@O0P4)w_=>6*+ti4slYAaQB?)~QRFh>se(Wo*%l3lA@ zs`T#Syhc2(5^sUaM6IUmbSc!Haha&SPJMv`Q49JE)M`tXyCiCxlcN%M%9RJAr=-Y| z8}29LBilUz0GL)4jcdEZ=$rKmf2bbEcJ{4{6f4z1!e#=rD}l! zD@Zfk(|W)?TtUZ5n{WkvRj!~zMC&?5@|6;A=K#B5ZlBq(##LbHpJXW{6+$-3r67A7 z3{WMIEpNem!LKOO{&ImrYOex9>L=U?EQ=q@77J28E-;a54^$6aj3`h@UF;?0Gm8|7 z)J>en7#Kg2x4u9j^)oMxngcZAmUyVhI-)+!`#Xn~1VZTSbFp?c9Heo1Pz z+#oP2DKZM)NXFypHCk)A$^McovbOEP0*hcZiK%bGD)|@gq>-t$$*BJoD5wS%mY=B( z;;m9>W~!$67b>VWE;ON9lllS&LKXBGxvVX@S|Fj?0=-m_lU^p*DnX!z!iP3wcsvyJ zUt?AI?;)c94{)EP|7`mnPIk2ssbA>*?o*uKNQyed-^D8invzne(AuWZ^ib;p4-u^& z$Z_UR;K5hiUwM4d9;962>!nHA(S6ryz`kj}QZ!A(ITw!l?OJDxN6x;7bki6d@!{i4h zzVXtiIY1*8Ru^cNg|%Uk3Du?~3pk9zs;%Au(yPNWs*@WO!FjKcpy{oO8u`PM)JbY3 zT)Q<4Sxl0q*x}YDexSFfwO#eV#ZsFh=9_`imSj&tkwR$~&TC|7Gva-s$V928JXWMo z`bv?B(tD^ca3D%SpMg?sNo{6g{KCPm>G7k4wde<-FX zl<@}uzy3n;DDIQte=ONG0(_G7bPne={EsBwnO^>D%CsVdP>^PLr}cn$xcG%pzS6WP z#)l)%-U0Pfj;{2NyRowZ)8ffA5Q~W13R8tdWHwBjl@!oQwyE$m@F2K1^aDJ&DK9vLbHZ!u|Ts%u?fw#WM}na1tKegHVb{B%3Ks0!aB zg9mEmX%_%bZ%VQ}^iO>$z z7dQ~1Lm@!cjjA^0gJO-)Q1n$6Me-F-{Q!i9Qg|3ig#ln1Zgx^fWbEO78DU5z+lplv zvK<#Vs}X_}Vm;#(0!=wttUy}q<)Bsr4kAcly!XZfNacWfc>*|=1m zPm+Nk9HDv(m?NS3Uzj`p9aNu@P;Ds=CzTAeNAFU2ZM}=|`ZPBQ@!D0kSn%3)mxM=^I+W-VJcyiNwXcB$HWhVvSMd6{@m>@tz7DMxoHBnt;c_8N`u`BxggDOQ0oB)C35{b?5Zk0YBr>S zIMu;De9}{oKX*Q6AuxX)tH8zqWMc;iB)raGe`J>eZ)+Hwe+S-ys?NT@TjBQI-Gtju zxiyGeAzLiC6}wH`zDIV>*sXB8#Y;+_MT*4je$Hcz&HE&;WVga?o|i_=0UB|~I#s0B zhX>~I(dO@=&5GR*N#4}mX06qhPl7-^lNlx2bS(;B;NRr2GsXMV1DZC=fU1yhfBp5btdzW(I3Y-4X@jm=Y7j zBdITNAc#Sqk>lDDzY+!FHA9L*wC6In;S)wOELehHc($mniW;M+3cTDW3FGi2_su}^ z1hTI)_$C+1eK@ZXhcU$aidP&orFV%!GDtJL)Ox^6+{#XpS&3WO5o#;D_ASqFa_8`H zwVQAGjEP!dOs>G>Nn|pl9RhniOf|A9zq|Y20vmuJ7tq^E6tFj!5U?+DYcf)gbPAFU z7F?ezF>yVe%sdUzk+*qnav?Z7{ArOQaUHyeWw$X>Ge};IJqp)9z>dOpPw|J2S2(K?m-)onYmbR!P3gWzA$jl~ zL^4yekotBPr4JW35Ch60@3eJPzxTTH#GPz`pbhE(X9df$42TX5kYR}yGPC8`meC@0 z*}fD3cn%B1h;b5z1MuvFgu$52Jv4%`l&qW~gF!DYtm6DeM4ZIG%qt?AvUm?-+BU=E zD~pQO*FjO&9<0_tef;H!Ojrc?d^fdyR0ey$ogu#U`@F0_Y}tO+c?D^BV0{fPUCZO0q?Y z1oShU#~7v@lGk;w0(7#MM$G{l5zzHPvjp^e@VB){Zy;H~VE|fN9S%Y806Hoj7K=^l z7B>uxf$PVBWxR6>1v<>%P4br{`0jib;+PS1AG~5UgL`Ncq8((_)V-=8FXOyMG`0|L z_FfalnzCrGg7NmfWGx$+{S?2y0(n zgz!lC-W&thrV^kUUt3WGpF@p|iG_C<@Yc}ql`y7oP`W`&T?kjS4*RBM1(k$2PIJ$V z)ICcE9^a<`e1-EGQ94Py|J`Q-SW_ z8K<`Bh*+CiTvyDU2n!79GQwCzBXwA5N6~l^>>y2o48_|%2pEU|>}QE@#Nl(YuhD)5 z;RMcW#Nh(*#sIH%Z>%Yi`&IRABr13l8om-DBh$|M*~R~owM+LaTp#q3w9g_*;<}9U7$fx^$vd}S;d-A( zD~pllg0G56n-J1Yus}lkmIEfFuaZpo=x>i={))RcJ`2J@Kn{U-6Cz_3l%d$dDX(~8 z8iDMgK(&oY(wC+Y$lkPMd2zbYf$|gh2ANg=fC6$1=ape$4*x{Ftwm|y;wTZZC^MKX zgf+Fr0R`qq517^X7wQijSdBraQK_^w;RjST1{8-}p!|U8P1IRbYwwDhmAP?odMjZYi-oc(YuqbKjAVtkD$OyKBRKruP4?M*!a+XX- zTtWY&R?xj9aMggSl?aYCZjjfkw?u`!M;8}WV79G_dIBO#W+0u*vjAosiRrPbt+I1@ zDgm~?=>6#sINj~z!M$vUrTZQ22M$ox{*haT=)NXfIJ)iE4wy^pDrEBy5GJ`-u5*y3 zGD@i}TijA4vhUzL#?VzIc}+ytK)~!Zd2VKHkv`FTt)MwUGcK{e1q%S#@PQNCfZ{h; z-aAMnFc>RrZT!~K4OSAz~8YchY3sYIQFvs%LNfwM=tFcCg536&WG`*>bq0 z_smHs)VkH;;$_opmU@lIY)CM%X#D=F>mi6d9NK(+v2CaG-?jeh?s2! znq@T}4}V*?#mz_-a2TM~R^J0bkmY#Ip`xl{-}a)KHu!A!;i7t?_1L1ofY?ZR#ul7i z-A}assi?Z>Q($F)oBsgU-%G;82w!A-Y^2E8H96d|l>2KWa5UNIJfy(9o%0&8X+^x7 z51DIAP1$%zmE}@6z7^KkEUuB%7dWsigFd5JX-l#WDFpW{C<=#gq@IGu**Z@u3RK>1 z$Vd@~jui!oD=HWUSq7ugaUkDUh_P~$-NCrd9W;WGL`MDq4$8f9;9-`MMlj-t*M8Ux zhNj#+r1r`n&2Uxg0atOa3~A7MS5cg|x6+*+e|m=A+np8_nAnC)1o60Gz8egZSF~=0 zQTm5hw9b|Qbh{l^(0%qWLH8qW1QyI8vV}v}Hbew3^e%wOWa9gW6@2G=N&3_xNy2vx z=P^d*L6W!Puv%1q>e0%kQO)(fqIx#V1HlZ5gN7@rhlC8aIdg*f&>id?ZP%<%*F+Q{3^WZbuh6^QMn z<>zfj;{DqzZ#CtQ!wSSp`b{bp9~kq1mFx$L_-+e%@~h(?xPWpXUNXzQibD=oY%;huEhH& z@LD&_n(}a|+Aza0QtI(C{y$t z89G2JqTO=8!)j&ytZe%?yX6-=i)#DAQnh8Cmv<>sZkY?XQHbuHvc-aKcw<7w#@I6V zAd|P1Ds+GDCF!C?l0^4UoW~feo+R&DsY3Tfk5(2a%>}PZOPg@Zya_Cjzz#WL0{dl> z35OIdwyaRK@f#o<1m`+|36Y7hNwE^q;o{<MA}2C0VAS|2!#`{@lbS8>(dN3FVR|LGoJFE0W0dhj_7o!nS~ z;e*IPDX zrTs&)+jdle|1K{{O)Zin_>(w~F@Qr!UYtnXDyQMaRp5wBt(Og@=Cdg(7Wat1LxXHE zXmW4;yvWJ3?5#(T;J=QT%XIC+??*gSfL}s%jIe!LRA1vCK4?tWzybf^HXlU12oBiy zNyMw9?{mM6Bp*lS4LquFKaukqF&a(0V`Yr^c3TrhA647!Oc?~P?e-Yz4ku*Fz+!zL zsD3xT@-|t7N3dg?LaBStDaOc@O0@6vq zzYh|+_=jmW+c-@lvmpm@`~9oPD1hzvC78Sa;TnG7->`;nc1*3|?>t68f8v-4^v7fi z2fF>SW9IgIHd)vHm;(7*UQ*t$NRc2P#(Cr*F>mLPydlTb_WKPljhX{A;`aMN&@3za z0{Gjy{hm*-M+GA!ga&HN|b*Un7ARlZ~5>DR7r^UL!V(i1)xTbET>&dylDt{?#$F zpgXBAa9}|PeMW85mTWkt5M8T!F+4m2;ZVg&MFN-V{aO`Q6AP+Sv?Q5D;$VZ~An}7Y z5hD?BoaLAiiB)8w?YM$+ea>q{Vj1y<0k3t^(yjvY){uE17Wdt4kEwn4oiIHA5VI3%7iZevKCUqP=5fMo z1~&qW^JLk=F>9NwB4FI4-asZ!IIeJ;<0WaeMUupAA?GnhWFyJjd0ef`S9`Rw`BQVj zIYe?)Jp1l3V1@+o7st)z`4$p9hIKLa-P)H?5FSEvn0(nO?Qju1U=kObB=?v-;GlYd zaCOnCd9lMkE|%#2k}i6kg{Q>;!@jB4OZSC2Y$wW3-9obQuj2~DVVu_p)K22P^@N$a zno{e80&(*b=Jwk~eQSy9Kj=dBmx_y#;M$_!kGsKKOp>#cSD&T<2{ z-jE6V8W+d;@Ce{sU9^iRu4$#ATcb@=S?2C1Q%6ZvjYO{|ms-I@g=_FPWz)aedmr*F zzwPTzsJ-{vyo_(;-unc%2@!r&wpb8;R0YS_dmkZ-51&v7|HVtvj}}Q1;Z;wvB$tE5 zB5;)C!D9b+*iv2#vsF=dwtn=e_rZQxQE?N#A54)bzx$+#@{=TdzvSlYR_(OjYxbnJu(GqZm!3Zv=9s|UHIn=1q0Q?kgXH((cQhx}x60#bMqgbf?y71{Y}}i*+EG2*PoX9V9Kn z&rtx}{_&dqx%RMTzwfkKv)_A~VB3q^fw1i^TimdP+uXM9;?ixqydErdkd@s|E9{Q& zlJt>9lEm&b&SQ98gXB#1QS4$*}<9Q15Ee^>vuUcRmf*8mvTg>?zY&rtEey z_DQL%qrJ;%RhI9Se^&micqNaZ-6?vvFBbNZXB4)FpCN2#bAu4ui)4!h+ly3ejQw~s zGI!w_h3#T5Nd*>365A&^k1 z1kYt%3~Xy(Wtgim4+LLDinBSty5RHvbJmxELo%CIg=+U0P`SmW26@c z3s4X4v;p_~$?$IAwA`H!0LZi99R5szJybLUmP;YzAgnCDkSthyp0#+M;9>O63er;qi z95fUi2}j@qx*PgMCq{`8g|Ho8nFbiPG-s@bqd5QaYEIq{XM}a*{>j8;mOn+dz>*?i z*N2Y&oYe?L7h-+$oC$1A>2pp2`(xNCTHgfeN`3pN@FB3DQNJ6&)&@O!PV}Br+`?bF zFQOhUt`FbM0{4SU3R6Vwv9Oso2pE8#J_s0s&$wSk2wouD7K+|&cV#;^aaJP)&l2l; zuMlWT&N&6$g&yZvw6&@y6%~s#4EBHzVBu|X6TLb60RYv~jJ{kj4P*+slY!@DYSGU5 z49q4Hqi`~kY^!YNTpmyx3O-=C!`L8e ztN(M}4Nf>^F)mJAT3p-^4(y21r`iKJ<+J|=36C@ffchZeY32*LgGO~pBctX*^ySy0 z)^lDX82yNM?RgWWnzHJ=LTSl)^Qu^X>I)pWH3oggu2EYu`@BM@bW@@;RJ0pgT*V)Q zfall)MC;kTX&41SsV^Fa;T!In5r)BJ-k0E-EV6%bULy?e67O$bVbGLc03!q7%zlt& zIH~o3lejg85r1(4AhaBJ0H$H^4GwQAI&}L5h7iNZA!H;d!24N^!6ZPcy&8;ACHJ!` zSxA4R7SgG(KayvLb-F-!eV1E<ECIU<{kG|2)E1F+ia*C7b*Y8oFC6%C&@laPh) zjsj%yv;%~!hvWw&5j6)sD1(4C2*I=9<8EJa_l!K9OeU3GP;mW?^BSQTPrN^0FyX2x z|GS{zTH~S#*NM~@I1sL&&&XtL$@vQsuC4r}@30XJk!TG>FC!n=tLkZh^3qDh7|5dP zlZt_8d6DI}5r~;&V6%$~un%%x83E$W~B*xP9epIc9&#vbjr@e%nun3XR{f_e(!?b|JU6vL;Xg{I! zvDj#abuc{efmQpOiwe0xWhQbLktpCWkgIK8c~K!ZbFaLJ1>X)$RM54-iGGXrr-=be zU>U3%0}|upTUKf3i^Ig4&9HFx@cRKtbeT{P=4e({ezvY4d+sPxu)Ux28n9hLy!V!w zu+@}=G6mbNWhQKwQD5Ld*n&O-w%U^al*!F)xahLI7!C_V_ucq}7<5^(zq80cB(F~y zM2f|w0(d;C)?ptEo`}4|y)^KfOP0P3Udn{K_^b7R zzj(`OrA$EF%`TC<*)Z{d%RQd%0C;>16`5<`nHrf0ZmP$@RTUV$o{WY>!|T(_5O?@( z^y%;nbR}3WZ>3z811sgTWg@-%!j85wLhs+)3`FlAvc-blKcLTuf@FrKEo9&gh>U!L zve6}$zbNH4+2WQW;Ty?$j8WQ3@>*O{+u7Sh`efS9GOd~mv?7Lo0`0Q;cDZC?cqhpN z4gTH$0TC+b6z6|`-r#1D+roW zd`WF)*LmDyl|}1%T~To}3!@$3f~7Kf>GmW{EL;PtWE^V4o&Qx}VkwyjVzJO(fhj~T zkWazn`VYamzYxIr|494p_^OKMZSGB>B$QARLTFKXO)nrNp(r8<_DZp11MG?g?1&1n zaO{A+BQ`9kfRakJ>(>SdqI47y6nLN6oxOL?oP@j|et!{m=FHAByU&@ObNB3Nzs|0U z+pJ@D4qB&qHIP~yuSzzej$Nn8`3-y5Z=EIQxys1M1Zl&Ru~$nKH6Guxxykt5jt;pV z7wFJwphLsULUc^Ld>H@tuZn+QThLIvbWZ0X1hgtfZpFzXg@v>x#`EJs908VNUyVd| zZ4qCXQRsxRB=nMceq-oajc8y;{L1^5L`bt!%$N=A)qJmLcB%bvYPnQb0a?rHpRLm@ zb&@6PEK7e_r<3e@z7`rL$<9ZJ{AcMpXI@~+M@bE7(n@l@Nye_i5?7Jv)5U^w!t{n!q-{~+MTwbJs&SgQ$c&q zdM57O(i@Wy@1Pb(TqZlRg&Gz11Z&T}Y z(Ov}woYt*YYMvC|3=fFL->)|`7TSB+=FL`H{T}2HOhHhH%A=a%%+(hwm*HK3T-tG4 zvW*y>iL->V?LN)++wr5{%paFE4zrYwC&{t9G|vu|RwpwX`2LZwRmKU|w>uX8T5r>C z!(Y`T7H|$Qoci9*1zh8aRfm(t|7uB{{;MW+9qtPnMC#CA6c+ga-8r*!y_d9hS?>_e z`sz~J!pqpR48I52K$vZrlTu0(ywg8gmJnA+p^9pWfP6wa6wTP`R7_loBvuud`s{1J zUu`BnMe5Sj5pjuQ-4mj5sYZIdmC}ME46AfI6I!mnop!32Y>bKV&#%k!WEcd%O>(uXVY!WGuiB0@>*bD1~(4OGHg14jPv86mzOlsanAnzFfn$;0CCAGSX+ zpPfP(#)>N8Pk*&EZ?{2b>tr?s4VA5(&x?PJP#nh#W#nh!1OmhEd=$OeUeb5VFZ00e zRw3JtANz8>HIILj;(^w9;vBhv1hXIdCMB`o20>Fbb=$E!g&QoTPmsFmu9wETBRA;0 zI28{Rh~J@7dtmQX68 z2?2;)ozR5gP6lg?DX zY2Jb!z`CtoX^R@sfyJ%-s12|shj6wFJBvwWs$P7?7aTKH?+dv1){>}es(NSb#lm{~ z2AiL^Y+$N3-6-anp=x7l@lmz$M!mA`#U3VZw7EGeV5PUu3UPI?)KSCJo9zwUXqVQ# z13fwo^k~Rh4?R;(J`ex*FRioL7Bm!Do!4<2qhyWA&BL0xS!t>_GgKNEn`1t;M?0#) zR(!}eC^Wl;!P-=PmDx3Ws|2a$>rw33%^NLkJ*le#Qoy?lWx@4c39QKNQ(G-h6U!{-eu|_g-I%tr;`pN*jBAp@{=gx0(x0 zD5@kp6^cRZVj18Ob$^k%Dii})_lH0zoaDQWmb$Q}fVzGF)U2#A@~i8W=2Zs;JhkKP zhiRb1|0YPH+#AB~!L(UYhv5vBz*}%zJxr$Fm{2-5ob#JyYUXdu)KjGshN&k}i(_hf z?-k>{lCOj7=;7?(=-(_?uMOC_O4>1H@N}u803XNp?)c5FqpyngDw4U=8covT@CbBH zbbaYJy@Vdc=0;dEY6& z*gB3KOx$GI+EMDNK%B+8>Cp8D!b#e0vJb5iz0uoB`T4hZJte+x)ck6@(R{%%S^vn?TCu)&I4gd7Ju3qn8pRud(A5^cQ zKg0wzMh^Il(2BU3)KMh8lg%~$!>))A*bYVc>NNg`k)iVS8;k>yGy4y{BEE-hK|`&G zozq|bPQ>i(b;`p~;ltsXXOy;$&&5IXy>e}OU3m-^dKpS$@=5z))kw_QE~6zpHCZ2I zmqz?yIeLNARiT*4y660%Q;L&}{loI}hCjR)3ro)zK`P;Ep<(!m{?s&fo*es!H*XBK zU$5?idlP`J8B>}TOCj)j=YBrI8#ba8J36`Dg~kNn(dr~70FOyfDgckMW3vH@R>1S6 zt_r|x)_o-q04I47&eKn~u%_U-egMxDuV2zEG{x&oZ^^il=HBA|cE|~@4_D&>L4kqw z)gfGcf?dUgGNmids{+AH>G~mVqKCO49$kb5am;3$Q0r`Fo_5--DRv~a_;`BcW?i~I z%^tSjY?JBGfR#Z$D@4@Oq>dV#XV~6Jn=MfX1$uNE=+O|hHF_qZUWfntOV=0J7Bm!5 zo!6-d0uvP<`Y6Ee##!5N9{bd$s9ke2uq$fnkgq0sU@Kl<7qS@0ylK;BrFfugHKH{T zCC-*8)pUJ>J$qoY&flg&DxzRuS|!|)aTsR`{onYlT_ zSA0_ek;w6W=~0?$qp+X^r)7e&^ifpX?jq3Adu#+2z`kaK{%46upe{SSzUtba*e zh5jwp-4Q_VBwOJ*krmbyHrEfZ8M3BQKZdNYM#!2Xz&cPV9>^LH7+9^g2$CpQ-)C1b zsZ8mb49BQ+t%KpIg{ieX9A0GCz{hN{lpV5#DSL_Z#$?5ds6|pXge~Z8%K~fQPuSP< zw^-WF2w1w?XNhS0q|{N^7qh)bx7bDS-O*mfO2}!QPtxM>cyvz8{b-9`|9-~i##=LL z9qF7OgLn{o6E4MQW#?q#v-hZDQw)8v;Q(KRDX{7G-D(uVxtZST5%XGl^)3ruO~QG{ z&TEJ<0yt_lHs}NPN`j#!4$4>J57R%$kZV+(LZr6>FkGOeRQkhs`_Q>o*p(_BER@+!tsz0qC$*OnAlPFWIa1TP=?Z zrLIE1nssxb>n~)TBx|cJWZQe=^U7o)>$<_|H#Cz?A&a4(aZYJ&H8?h36&X$k+W;A> zof9MZH9I$kdf)}}nFt^)kcZf|+7`$)Jti(ZAG!9vt(Lg=Y-QrUA)PVAeT`at#C?t8 z5FqXk?CQ%~Epb-|EUl21rp-X{Dpl05{K)2h+G=^bBHF2lkJEbDN=@J(zGlEp%n?Tzxj zO-^jTt>%gQ2Yc9hn@zvDQddQ2BkN{v(-YT8dTq0`9kxxU-%WfiG)($Me=0>ePg1uL zU320th(1p@p82}rSaCp&dM08#e6S?VhATUqyp0C*?4 z7LHT)g*64u^#f?8pv8dSa#d-b8S4l@g9DVc<4DZ{#k1NoF(vws}c6lx2G1 zTT1b9Pu^qU@@sY$ZRj&U#lCuTDedC3yDY36wH}>sS-K*5_ANCC*WC9-a^m?CteUBH z8`!-T89W@XsZ118SHk+PmIuvu!DddoVkCe_p=S0wZcj!c##^y4two0VV z`JOv0NgKXhnjD`|kWql|4yDg3Z5^MRo1X=Sno}p=n1!k7B(Ws%);zT)*-Lz}-Rn5;1?A!A@EH^)qx+*N~S@**oI)ysPdpm3j{bGk+`5wX7zGq`#R=!wR zQ1sNw*Lm~|f=?uUU2W`~D_?zQVlr?j>SNOhPC_*wri6YlgNdA;CRY{t>?I04o4c5Zjx2QBF zJ|ieJFt0p>+sCrom~|#uPsA;VlJ)5ry~9k_g|8u5&)a3G{M0U{@@LWsL**sZBB>l& zLXnZldK7#2@h;2cUjs(gN+YAcMCB`0)EJFsbGvrgT#XlC(4QD|r|_{IA}V@AA9$hb z%ld_r|J14aWVZH!Ri;!eOgYyVdQEO9%kq$^Q)3FVU7F4+$i}vd(c5vdEU4Tv9?!9y z5XDeIHom*I+GJ|{%Be0guUzN+DX6JvJcj+s_|wvOnABAfIfHeF{HbZ|B*lMP8lU~A zrtw*PEi?>`(VwER^Q0#SL&!Sxt#6g|7Fu{r$CQR13j8_dk`Z)>Gn+g-=A); zU|Y~o>DGDu-=8+!w)qdw5VP`g^76f+_GPWX!oqxSVC6Rxy~W=m*G46HNK@$j{L0J} zuSprI+{hJ}pM|thxrn}KdcDM_=I0dl>FU2MKkt{iDi+tW?md4Qeu~NABzJj5Gg0C` z{gZ%Cb%(`FL2#7-0Nml=5847C(pz8+!4MQ>3Ggp@8SBGT( zN;j4QyB*8@hw$!p_70X!`rM1V1*OmRxN9C}`Yc)lYIfgkso7;WQ*-2QP0iudBB>b~ z?oEEemp<=d?~d7RnR$7@$R$1_#LTHuM~%e{ws+%hn?Elx9g0cm6pkT5fj4Vo?}QNg zCT`B%t@Gzhwl>%*t5VnbUbI{AGbcMEzrgSl6Z(9I&blq3>;J*WNm~4Exe9B2J&B%l>9AKPcTYX?7O1NG^wG{jJmN z3+(WHe_JxY6|nM#&kB)wnbc8(^&;C_^0!U1Zv=XD8tBoa+3Dz+sJsFH_ovxc*%mZZ znsr{^`FE7YvAG3#Sm9=swZZ(%%E4id=4T(uvq4e%W0ftuHv8#ew7#l{GHuMBn&<92 z?AF1*Es0x7T@{W6tlNB#&a_UFW_g@+Au}2g6Exta<8~rg8IgEZ)Msgng zhoHNZOSrN;n|4e%T*_?~7Z7>#e!_Vd#N=vZCLYI0jEc*P*vDglk@D_%sjK4g9_yZM z<00~{lbo@~*0aZ0#OikC`T|mudocmLUC6x}tVKi|t_jgyhw$=a_7c`j{=E(N7s|hv z{e9T^ci3*^-*@&{&c3;aIs2`2!f^I0YLT3!ug`q!%fFwocc1UEl>H}QWVbYu-e%=R z3IB-ctcGM6n~VR)reCBR^e66VP63~^qd92G*OfGD`-QvxqtkB%Tf?WTNLi&{=X%wi z2yb!Xc_t30`J)uH&C1Wj=Y`FeQ4DSKoe1k@Jg-_Z=4%k841Cst%Vs7g9wRZ*6crFY zXRii(NuQNXNjzJss&K4i)zkmc*~Upu!CU8FEV(;8`5(PFUd`7+!z_*mBRu|h=ba-( z(6CHRGx*o+qMx=1^u*DCfY6snNDBRT?ACpRo*z0rFZERjzGD5S z10isdIse#%dtU&c>k9x4K{3*g$Cl+QkOm8}vsx_6wQpi1|Hr;n(fr~BTaH@>Rj+T_ zw%QVGP1Wm&x@B|2`~I;M-SZDqw9Q^Y9YfJp)FLSwZnamZ)wS$q%3jOSegP|ed{!u} z9xrv&kgQ{S!}r>>+9%MX(?E}uRzuCa(cd7ij9YYn=kP?d`BUpgw%2U0POZ-KCVMSK zyJnRo$7dE4=4av|2})R$Y5CsvAuA?%tJ|015tEY48@U2|85@_iiuGSHZTO0m#QP*d zl|{C*N7MJ(topRnRngeYx=-!ZS=C7%C-l?9@9xzU-O86fjzCiVitZFeog;Tb0~Ga^ z=b>t4m|Vr>=VEn{`3rvi8PN>OWP_AT*nH1KU{0{zMBrZ%Cr zV%^_t1VkQnl3({)io%)#==uRbLs5+MoaD0n>R`0(8y(^ZKm#OcpP+?u?jLpzhE4ix z2v;b5?!k@oFw57`so>^-ect%Nj}H&+V``oweK6DFbyY~}vF`ePI)ysPFZ*l?{db>U@HXIUaiAAP%T%r_?cZuC=sc=I;F+hb zY%G>^#O;S-;SFp$YXor=PufhBNaCVos#ow-%0w{I{uL8k1)~`|newk?YKGKR!D!67 zJ)rBaUY(@tzm}=6Mobk`$MsWX17NDxlPU0~daZ{A5$^D-`ncf?paXqVbx6!epQ0TW zowi_yPo_>=dsFAn$_VYV3HB)4R9k|rrGjmlV1Jjr{a>4Er~S)(enEO=`1~xjNIr+3 z{a2^jH1>Dizn0Kt0V|*RtPr8UlR9d^TC=^c{A$3(SIMd{42Df8HXEN+3tG4a{Kj*3h~h|WQgiO4vKQt>&1y*vvjDf3<}byY-qu5ZZB@6;k`9QvI= z%im-R*v*aqSr#Ym7ZcbRsZT8tBgEpiQb!F_A=_)U-?F&=eskXt@pl>=hhKQ_0{Dyy{Yod5YhOXmI;l_hxH`<5lfX46BM$zPVWj>9u4B%}q~mQD12 zzo@LCw{37)L+oJnN!R>|6CC?Zs6iT9F*iB!EQy(>u|PDGojlD;Pb{C3I9aNy@D#J^ zW&3qja*~Vp+Z27re!YYq%-2H0ETKDZE zwcqCIc>&C>FJPusb;8dy=S`k2raYbQ^&U|Jz;2T<;MGYDzF)MzV!)4Qe}AS~$;I#w zxam+aTx#3?kGc8;CV8U+mgETsnBI#-{}4tGCbSw1>oWu(sv zvHV=AqXz60wm0^GW%}vyHDipN;iee-}$*G@8@@J|m{9?+~F&zH_eD5)?;cZ$`{k;kCHtWKj>9Sxsb z#TlIDAv5@l2gyoepU8sDQWQqiOaT6npi}@ZX3sVP6lLdwQdb4w0@nT420+xsPV&zI z%V1bj_*_50XX;`M^?PGb7gq}eq{XA1X5Yc8(o znbpPPQ5TM%Bk$mx`URL|4LmIi5ppW&q1AR zo#d~BHrY0=(P=ztr;C`SUZP&E#wqn@16tI;<=WGnIZ2 zGmosm&NLGP5}44K7=W3o*~FlCo%(eyewUayTt||(3_ZA!jq=Zkz!S#i2IZzzTY8ivQXcC?+JCso{V5c3> z2u1_uV(p;lU^+WEfjZz^dci@POGnwZ+Hz@4B)$Afko1u{-snl?$A%tWIIB-NzSQ-h z^u=)WJ!u$74dOe?^vmMb8kT%FZ1lmqrweC-n6UBFA~}hvCRcmTd~z4c)gA{@64*+ z-oP91z$U98C&xQDxU3D%qtEb0kHtcHYp{Ltc~~M3n}Ze8$SGJ)`7c@wVPf}C%`^5% zcB?ZS{G!Ju0MUtdkT%vZws+@JS)VS}{bA^R>{J_EdRM82ybu!#C@l zCmljw(iAL6wml6`< zPFTz_L*D)5s3dQAf5=-hwNl>cUS)^(g)DK~2duQAmWUN1ZkE)c!4Uy?jqUaF(oY6q zcU%|OAlxRbdv#jqb?xMeqVV4#OWG5{hO}bVE?|4m2;J?QtHpSUAbUGs_805mt}`e3O_Dg(g#Cd1x)dH0YwwV{Dkkr;?lg*t ze8AuYH-`;rLyyirrTlCG{yn}B@+I%AEcV8o;k(@VFd^*cYa)lCqy$f%C=9(aJ@Z}= z7~4w7Y={tumR{vEWr^O(TTsy22-2liY$EZ#M5iLLgq?gRY^l3a>Z(Y5#JZIx5@Omo zL7AO4<`Mfl8n5dKc!|6Tf71LmqNcZiLPvP%mzML1Qte`x$3tQ? zkBg}#!a%BGi(@pSD%jTnF_y>Y2dtdqvqC(+R_dscs$_dtl8emaa{|3OE%a)5+&9MZ z*o)CTUdi^Lp?K^(FNlfoxS{tiQV-7S&(9++x4}o+^Sp6ytT9y9!Z-+f<=bNR*g2TC z{>vsWSd*Oijzp^F?>Fq(0{Bc!u9UheDqpZ}sf~(SLOAKCF*XPP1guy&iy8G5Uk?qF zgVCo-P|lmzV)fBYgawG5FGB7q%iEUMjEZj(hk*+pjH1RkfF{*g{ z#6Iqev3zb8E9N7`L*V(IbsNX(^@x)s#@bX2YYM6B2S`mSE{Lh`RXmSWTrC_hSPr}& zPT?V3{Dob_^fDyQHJmetOtr%})k5T&NPfdhWphIpdZQ+l4-cOg%gnt;x?wW#UDV=Z z?p?8(xf|KR+hZ+rUk+G#!Doe-yGZJ&G5L+{y%%ei&fymVJvt5aXjnTH|9-i$pEvdD z@(E&aH?tv#iL&Bu?OeXe8+{G#UnAZC>k4!8P2z1E&dTx9>sCzk_AjL$iG1y=>sBOt zBNot345>cu06xOEPhwJY@-KGf?^w&x#&K#+3g>pPZi2V^CSSUAf_ib5o=3*%!gd#5 zieE8jQ9<|p%7jp?nYY5e^W{&k$&~UGZ{N2Ol!l=>*yfpO7sxl4fw49KX1+q?nFy?| zMqpwvNa9j4_?Mj<5NCOLn$%VIsXeTFl8%8BjE=K~?Es5Z74EL9KQZ#OO1>$!zPI8% zP}7W>A4~r#AO08uX|UX^{S#AbKl^tR<|s02_=Z@sLR#25bw|bP{NW@cAfbBpqIjK4 z8}qf$Fu4@{sSM*hDTueZ)KJyJF>{zA(EhHaBRmilFBVW_424Amz*Hf@NpKnV(}QEm5D8x+(z8S@+RE0GwoYyiK66rr^1L0MD>=Xp2Y{zh zNfgPa+B-2DTd{XbX?}4v`w4D8RL#C*+iI(3YdQO^jkn;52lBm)+pZfI-WhMnyDgr{ z+q|xzlOb;swMg=Ylj`bx+Mb*Blg^au)sO^wUT$j1vW#8~RQIW27LbK z#y$Ab2fV3Il^2K6o0`$ikDKZW!dftfnD`R`Fi(t4ZjFkf0Wi5$2}}T1NKh&Ox$Id* zT}#<@Qdb2alXZVG0T66)g8$ixLN#m{1{Frv6)>72wk~yLir8-6+HKf7wY?HsDii=S zv?kLkfk9TUp5TeP!Q`{Im{Vr?8%xgFGgi0Zo>R;6w-)yHiLy78=ViX_YT4|1%;3|d zXNJM2P>YYjr(m_^emT}qn_!_e}W=dJxxV)S~JUun<05wdgPGo+P z9kUld$?A)W=oO#}iBiqs;q28i_)8@IN$RSI9L>7l+lZ)zgOh$!&oX%zaQf@mVSGI_ zOzuUWYMMK5me#XWKJW(?ABaP?O|d2rrjEV8ad~RI36T`p8upj!WhN9&>x)URLU97S z*Qmawb7!fm2r`m&k3{nH{|MwH?d#jMawBieQr{iVbpwnh0UuYdzW3cWBw&Tpf*IMY zyk#{&4VV#!aPTB{5Oc~fc$guYDPXfPK(#QqrULe!omehUsc$pxb@iFAPf0%vUmvFy z$=A^16o$abjc2fzkJPuE{WxIhL!Tw$>}si_hUHAQx4gbxE`J#9Rorr&)+1JGmdg)e zxZ14h7pkvU%VXK(Lspq4y)fkflz8JmF3<3Yxp)$R^T0|5mZv6U_h_G)n_HMsfNc{d z0TX?r^7;|Ew|Emu+_U$VrQt(tflH??_^f$iqXsq4+>6-91`RBUkCeKK#OJYYJFln| z1ENUmq^%oR66ZJ2B))*JhlU|B`cx!#-qdXnAu*2jKui`7!Oufeo0Z4Kb4*N5CMw&Q zMC7p~w=p3yE2+EMgymETRS|k3yLw^+OXy3bt_sT~tb0*3EMl0Q^n8*Qhhb1*c3lCp zA$3Xp`VaqDo{!P24iu64P@o<-grk$$(Gr@Eyt=+0cPv_6UuWBDTV2=0?)ziP=Y|#& zM1H#bQ3Gc9dg+j1_%GBV86N(nfzHU+va3Hfujsf*j2G2%bMZ;1qVg2x zbaqxIb|ILfrod?-XHG-z?R@BS!|9gs_;tx$FXU@7Dv}dVlz7$ry@P!`9^O-KzDVk- z*i2*H^AdDIa+2|oP)&Sef~NFsd@VE#rO}_7-p-Tb5+an2pjwcQRE+Z;DIn&&DG(Zm zVGv*v(NT~b3vf9gFhO`i0#iY_mz{eg!IF4^)Kx*an{{6c1i?vOPOx<`tSN}DA3!t= z{<=YZ934=eS1l3{n8!Q{(IENe5Z>L--eF>yl>CKZnn}qY;dWa~O0H#5T@qbXhvV?w zBW%zJhZC8;T@p3%I#Nr7cythCM=!KFn4lkGpN~ki6h0lURO@eNlXsLWdqR!Bdvdy+uTV*tdAT2RM=hWD&?95zmKv8+yxSae# z{0y|@n)1uNMwFbjWb*o1%_%YCP~nIu1{Zmw#(bWf_=to`6IXzEn%#QHoBAvEFux{M zRaBm0)t3@Ad7b2WNQk^k5_Nezm#=-^qBp;RK4kw^&u5)OC5cfIGpZ#+%JKFtQ2lZ` zK12cnV-pL7h}tg&S@f_>!3IxJQwkO(U^^Z}A zBId5I5|S1tq)}Icy!{LsnbR5AOMb)~YpbdE{dU}ODO{1PT4YveB zO2hb}nc8Yg!?iFPn?WKExsGjU8GUp^X7pv!HIqs&rWVQQ@Wl;vdR)LxU)a#H`M!Xa zdwf=i&2yxV8m>3l-s25zLcS-^qtif-CLy2O(6acGhB_g?%eJ7Q60-ApTtmy?>rbF1 zVF3=hF$~T(Kb@FY?K_=Vjil%+JRZ66#PXEDHS-e6nK&6M{~S#5`9aC}rP{Xk^*jSL&(|EM?t%)V%(p*hz94S@vQJ zLqdgo4CuN6K$CsPHLUObo>!h9#wZIQqvzmsj|{t(WUvvZh5=EtM68`>X_ zj>dS^l6q@eFF#gT{!(~mBTLPD8!6J{YFutkc0mrUo!i6}WMtw&mZ^k^szFia?{k}bH~2*{xXMc(hc||fXk7C={ek^z z3y+Da`BInSA`pMex_ETd2&14D3{INS*rwd!jWu7t=j)+i_=-LiU!6B;jiY>Jw9|%_ z;|&872vhzNVXF~QAolu2(Lh`x!70M7XXh?#YzaG6>Z(Be%(^#510llXq}P+QI1Gad zrRxePiL?pN(Ofj?_FHdfUU|^Fk|1*tyrwY|dyjO_5c@A`k;D%F)mZ1;&FuKj#+KA6O~fQNR+>{w#0rtRtJG1X z-oo}eHnBOkc@y2E(?E|V=WcCm$vmuy&bd3-7Bp1Obzc9`IGS_g@-s5<`oY|5%iG50 ztqtsQg*v-1vHPH#jNv?*3 z*3Gk;XcF(?YoTFCjQ-U0cAkuDB1mkJ8WIW&o$j+lOuby{s9~wk_AXAc>G$+#ui`H2wDPRfq~EM0%h>yqboy<` zHnXg@N?i^??}YUXN4D6JrYSkSZc8q8RL-P~IAW zi8PuR?3TDx4BD`7JCiI?8#ER3PsJdWb>o}r7&u8xQ@cRMClF|cs#k|xU(b=WIE-Q5 zk8QTnU4vobE#(c}2>XF#Xy?R4Y{$;^CgYr8djJ$=*ks#QTZXM^p*(*gm^!AZW$Kwt znW@vHGbR(>Of5d9-t5ggD#+B1?CO-JmZ|dsmY(uiBBs72b=0_YVtezOTBbe~?NtQG zX-%i5S-v3 z<}oq0RWr@lOuiJaozeIi#^Os<^tWQHbLfwz#MlfAmhz4X!j3VehOc-%mx2>%H$ebb z8+naybU}y+izo`S%kx5`EBI~toer~%&SWxU-g^o&<@dPSBuYxPyB;knJ2$)(aW!{kq?MKU@3X*07< z6=5l6pBHwTUl_J2s~Wss{7h;tb25Goo}3EFeJp_vCZ}RcqCs74YNK* ze`@LIJn7w>nAUM{#!?+bi@kFGJnEBRN#p5IEE&+P%1Q zIQ2LyrA!>ci;d@D4~01ncv(zF^0^#Otg1ZUa`I z*Qyg?16Hy(>owH7fvbvW2i6pcUCrpr*tKinG!c51)Kzhsz`FO^IJJLzZjuO#lTN2l zObO>|KpGkNs6j!l-i(6Q7eJ)SJj5XNk6yJ#Y;<)XlDbEig>y1uCn2n zTD2-6)ZDB8OnJV>Yf(*khaNm@zy{Sp?WssP*RZFUUFOO2zqoZ_Q61iZ+tOi{z8^k^ z1$9rX%Bl42mdtz}m8|(Zf?6b>!y}UQZ13h| z`+({)+oOoP(>T`qWirZ`p~)r%ho1JvUr`}nC7Q;TprA6a^LbEmgs}L2Ob$+5{uqTG z4yf|l*R7c3fvl=|Ro#jd?|#{gq?Cm<8NExiSfWx>^B(qPQL<&}S5j9+;7-=Xw**z* zagvpgAnnrOVOOBmn)T9B`F8c)d_A;G>P4R_J2`LOPmXXDKTzjW1V%5Q?HIu1-X{W0 zQTwvQ#Kr^x6pc2EAkU z)VO?vSN19D|7wJYMY5OnS@l8_i;)taV(#nglFjVznuDF%8<3l^50s>%KCc9x5OP*7QTT`Ubmtx0g8+W$zuhFVW+w ziS*z9bJ_b=bnP5k=#|WKW$)W9Ip2OSJu~F~hFT=K!{4;j`SxA*`OB7;*!u!j_V}z2 zu@h6pG*`r4$oA@`+I+hw(4*5pkLCxV)h#Wdd!*``_d~V?4V7`7*DG3DMz8p*9On<` z7iM6iE|P9q-JC)s9Y^S!L31g^r`jng8$K^yj}>(ELKc~!K32k{87$`2XYATgZ}g)T zQxeBYRTYuNta@guPCZU?8YEQqUYV-dyp*qnhGFy2RLy4R$e>iq<{S1>!nJ^qf#~b= zgw>FF`)}o~8LJQ(D);`nyiKeLpOBa+JSd^5C{(d~GbsxEAA`p*VJ;Ux1? zZ3#Rx0Mzvbpe6%j=rg}7FAO+s;8g67&Ib)>seCJmXs3qX#_hJ2JX}lV zyE@9=@PDaxrMx$lncJ?F;FDo)Yig0q4Yl@476dEbFWBGIR+ha30+x>QSt9n1mOAQY z`z6~O;Z1wTSNR?l?Ow3Jsi#`0seD^_^Imn8@8niGM}Ny5pi(C|s`7PknzoX(F3icr z2Z(4b9iN$&~@tQkAchK1rdN9)7Qtu6%#y%b&DSFqQ8N`dhAAoIiKBlFYVv zF{klVhwx?$s65{L@hj}w&=L~~@Va$CVnXq)gr`EWiT(SsmCesvrLGFaudMrfwV`m* zjaF(ZUugWVjHW*L5az{)hA6=L{osY9?u`M;CxJ&E$$Nm^TAgNj{JYdu(b&hj8`5-cc9M0FP;I=Q&EROSg5(sPW^iSVkULergfj5Z2S~u__4)znCryat{ zy6hy3n^O6tG+Qe7$2c7xT_0{-F*kf?Yg;Mbws373Rmv|(7YtdSrxr=p(DOD5s#0#q z4nBj7P1`0b0+vdBmWZ(blR9ct8nL}^TH8vwG}^1Ug*q+#AVwo&D&;w??ZW!s);bF} zWt($ITjm_+{1dG$aqD-lNQ=wL&E;oVvDuk;M;`~{%)o;UUmK2u$}OJNWIQ&_i~m;RN{Whdy|#xA0Z+vr7fDqji>LsE37Na`GE+QyRf{)7tp zNGCtri6_+V`PG1oiq;$v!%-6vb0E$e#nnhm49=0b6hV(*=fM9F!6XtCcvA~jCxikZT~7dM=!r4DtZ_wQ6sH|sgXPD@6*zm_1;7dnlqV12UI%vX z32)jrD1RTtEr-hA+vval=km9+H@fISFI45N{oPf*CE*xOBQEKeJ?6%*AMNuU;IWHRxzz0^@W?auaEx3!5ip{?%GX`n}wSbuF}`8lwy zE_{2lEoi9B>bzdtCQ8uQoQ%TU*>x-0#Ajz07T`mFqqkRH?!Di=qE$o^OA@dB3wZaS zQ4h>*cZF@A*ALIG#z<^5NyYpsV1Lf==B-7wd!Wl&3m zQndLIr!?)wElVZQquJA*?JPM@3|JcFvqa=PU+SnqIfm_xZ)cO}sA#WZnmetYR%*)G zuHMeSTseD3JDo_6W4m4L6{?(dC_1%^khOJ8UQU+fDt1-ji`eG%gIRSc->@V$oAz6+ zsr#wnYUBdb{O~9+^%)6NrIVA{p*e7sirDw0t_sR%)_uF3p{fXklPnqmd zzI1`bZ3@^q^tW70IA5MN0Au@`vnGBXYH-%atwRhiMr%Xkw*e0rCGevMs0_?DROvT#oW-z-kSZ$ z+$Xf>#Co0d#pJ}Rsl`X&tG)4!DqDN2PgvPWMDINI^osU|z%3pTmg?1cIAp%(4jn{ zCx|O1a0i!*D-^XIzDwFisGSyuar;Cgv`135|uh3tTSm0@Xup z?wLD5R4Acds@)f}bPBtF33bm8ur8tzwhypECs6yynx0Ype{8h8*=F^}(rsz%EzE3E ziPHEZ>65uBd_XO}o5BY+U@EImV~-c6+pPX$z|!|VOLQaHE_KuZ-pckir`xRleY95* zC#QuU&1eu!Y5Z2YU3xb@LTB_l+2&iMEwh<({*83Y_>to)@O-KOFT3VOesapDV^a;~ z4~(x!tyXF{KVVcv6K~A;iU!rHn746y9#QiopUFOUh4+-?i>0pO{tVXb?@eyw!{Y>f zkFc~q1;-osm*e;GrO+^SGrCiCvvZ`=5tiJ8>nGWp>|yXHLcPU-=HaK z=stt#-tfkXmTqW$FwE$Wx$#gS7aYRzN7(TJ;WAQz4;h`|%?+ykElc6cGhg)8yZQeOpUKI<ry<@?$E(j{~lpV*k`p6Z=Ot1r0@P=kqNcEwP_^2`lN| z_gCPHz*(7w+^u6Xvhc&rlKiTP-iViLkd{1&Hza00f?IaBx^B(Ds^rA~ButvQ0>wu5 z?H_nei|?dPVwNi|uVdYYoivx7qyZ$v<&K>+mw)AJp<%d;{%9R4#?N`O+uJd!vZXit z^@_%{yiQf6_{h$h$@|z; z8RobD(`U}<&pHVv&v^t%HV+@KMV4+Io0*HR87%HOlZjl7aC|T96akOv+lKO@@t5E; zqeT*;n!hoP?Y@Y9@R(S9iquu}_aI|9p|fVOlN=8TvH0T7hQ)%TA@1jRFEo+UQ>dT) zTkW239`)&LGjoK_u{i~K1zyoTC>kjsI3IBQJrx&5TWy#q5@0g6y*X`er%2o*(Wyu@ zU=Q!?Y?(Yq>Z(Y@v+m=8NI1zOo$V8|JEIsyG+bYOtkgU#`;4ZhVe~=CXd3J=s$KS+FE+{kOz3dR4C$i_5Z6+@-!F>y*bNCh9lWNJ!H7&B2KaEB9pTN6v_3%(< zCU9~WK`TSxX4K*cJZ&{9<}RAQP1(67T`Yg|0!Ff>5%W{@F;a(yNrbr>+Z*gTPZ%`!W&i_OLtb9CnV^?-JoKCSWE`ZY2K3XW{ic{KQq%cj;x6 ziiIeaMBcb7zcK7>;=TS7GI-=dD_sm};++zvnz`-SuUp|Uarkkmt3uM6bv+7+e5~gL z4|TB=o)3`zMRi-g6dEQGqdS$PoFlh%iBK0mu~QgKHZoWbw!%Km*YCmXjbe>TDH33B zQnf-8h*c7t3Pfl2u&Rrt@UK!=1>#87{lx@AOd2QnktYo;q+w7&bzK3fSx95#yS<6J zSfMo|``DXq$fH0FmIhq~Nz^T-EBgn-Chf+PJLYg6e7X?#(8K?Q>zB8|*MhD#uJ>D_&T|0?s#wURNsv0%^sfI)v|R;z{GVv6O?W5lR64<2HTt7)jq|( zPIu@O(4k@K=&qKjuXWW-&0$l}P)v1BkL+rh`u)%N!8Jd>5GT$|yAnG`vI?{5AzGfGe@re?3cyTb@uStDhZJ$sF+***sn5g?cH1g|02~@L<(8`hpsx|I>~pCP{RES zK>cj(%hy7~u(hnKp2E(V&+yYez5g_JaRpw|%)_aEv|u)X%(=5oHdLg=n-E!%i;;=L zs4uXZrtrzj%pttZyNSuIh&q^^YtqdUwX4)sL>be6`Lskra|IbkMIVwPAy5bmST69 zm-JnQ7rKeiaj|?dMWQ zjm`)*w~{<84u53(6QOYmkKv0r^mX9b-7IN$bHQDRG1b4Tf z%tYdJiB55MJbQR@cgx+&rLKy^*{pkUAQDb;VRu{c!kWVA`T`GCm)*rYGdXvbp`9spZ|GJlm1|lb*ZU6nc4>E; zZ$IhI?A;*!Fzj7NEk5?H>#kSG6WGI_yW5-_*F#KMV)jyXA0x56$7r*&Z|$hn?r&c8_ovFVy129Yf%3yjlwan+==y z{DM5>B-ofq?m=tw zLd3nfhc0lh=4;Qj5i~o&M%%wtf$KaP*&{;W)cAtT41!DywvZbaR~+vh_#A`|h)gt) zc+;c^dtOZlO+cQKAXPwaW=9|EVfp)()KvkwfpzBx0^%gE_AvYnJr;#3);q4Rkybis z^4x?5G|LT*uZ+;Rl>{P296a`kd>Fqwgx^!yZ%j5*<$i^G6;-*P;67AKLavF$tvBPx zVSG~WLzjnRdoq)|_0$~fOf8OsC8=x1hk9xv-^m_!z?K?%JL1@Yk)x#%Q|g{2b!enS zr0-&Tr;&$z%+}F?UY!f~^fHCJ#!99^lK7ZJsOIfM?9puaN<^M7byYNGvF0)XuOiovD4hZ%q%M# z;f?EAiQmTk0)u~UT2Nr%ua}S%{Kwg^pL<%`{v&l2e2;Z;<{IFOS>gmc?JO}r62YKC z=(++zvs}hV->|QuPuK_1AUTj&nWiBcByD>MPNWn(cchsn>3 z{m8P%^|D!ZSg(bnyRAW0E8Q^Z@ltAW)I?P~E_`V(&CO@n!3n)AH)jT{-0QPKNp_yp zQGlOidr$VVkCE>U^yoCuqv7TGy(}-6^wPY1k!?Xk@zQyHPOk_r@$nG+7Bu;sid1j$ zFBS240gaBIG5fNf+Evl2TB+HYLkz7}YPKK!EV0rw6*FuB`-ksluHg#zFR89V^BSw~ z=%q8RlWc{AGH$)znyK^oT4{eOJ#gaPENkp z_|?xQdC042)k=FW_$npMG9|+-jKeUdz`1S!&J?yU z(CjlS;!3+B{-iA^>T}&7qGT(AV4xaIFCN0tZ`e`HER$@XHAFMX_Ws`gSMq*u$Q%AT z!)DztGMKn~r9+0ee^ZN(xPNEpwEH8w`e%ksyQ!ICsv0ZF)Dp2m%48B?Fs_^{Ax;JEM20O{MkWlJ< z0BZ&;l0}yPov+0y+7wb#?4ED`R>iLK=p1}(Fv4VuoQP?0x#ezOtKmq}d}iEXU=X&@3#vN+RLxvxhtifFjL&aqPZH8)`kO?X4<-y)=T zLmq_@SwvS4aO)wQ{)?T)oHHr;cRW0x688(-k!nfFDeum%SLfo#TSa4WVs%*;+RT2jVQ>^%NMl91jeFq&Bx`Fz4l`(Th<_-`bl|9Z)9H-ivFu{Q^?K4reX8V z+}9;^HJ$4c+vNOAz{*@{W&Aa3E=rIpYJgg@xdqv_B%T}S&}pDUL*whQ zt%+#-6&^JCm({J=7Bo~|c1~ZD9bqu`rsKQy`O#%{Y)(#ghBtpq$=z)h(?H>yC&>8o`&{ zyZUZ^t~)?Bw7!N0%+NYLLThXj^d&Vew<^O-YVBHU3gf?CO@{?iX6`W5AiKS&eyGD z3vvsPct%vVj;9X=yCd`3j>Qw$h$sdkFXPeWDc-mdnC_W=L6h0bQxXeu1!ZX>3$KdV zs~m4Z_bU5d!w9LaZhie(eORu}O-?ct5@PrGT%Df>^0m+~`5CWVDrP%paIP4boylO3 zi<)_3udj@cr6|x@c^AbOTAUG4Gzv)3ZESS>LKBH;5}Jy{Fm~@Iio|n?v!$wv!Vp${ zAP@y7nVD-d^i2Vbt{Y%9kGnA7|6Wj8Se?seRKZ;y?P~BW(oTwz9nMaENb}7eGZ1>u zkd6vyoQ!Uo5BH>j1rv~-|H!rJ`L|r=Z^Jw>(+qzbP>bYmxIvyy&!gGXx_LG|_Y7F+ z=CeZN9Uyho@SMQ*`r?~gsGY;z0zEnn^ho(R6yufjsp1bkjKyXue~vzd?Zx1|LI3t= z=Xo8J#>CoJ9;$5O&Ah%6+aNRWg?gecCM`Z;GI}iDH$3Cv8l;oY!~2GB)FfRDY2r;1 zuS!N^*}v=IIi=_aq^^q1nXG$%o*}T9FHV9ZEc;YV4?hpE{vVgl=1XUw8~UU$x>Njh zj$D)H6+K$n$s2IBi$rAZ;!c)NyIs~STru2RaaUzhbxJm7CMpfD0i8`SBPOiWM5R@@1YSG^{Dmt{;FlgvMNGd_4$Vozn)=E!Wem zp!rc9q)@(~kaF`Pb`xEgT)aQm=HlOQAF3r6*YYI$60iN7>0Y>Zz9n>zd?xe>(i=nQ zk^JKW{<);S>Y`#1!W zNc?UgllTYej3M!N)FMe7{tj==`m^zi?B>^nmc{=CtnBq!p>*7+kC@_Wh+blQ4f@#S z_1-{_P6IufeEd0HC8Eb)z53{U{2JSWhRVmz>s5s|AAj;Z*qD)vkA>S+b$({PeXH>D z7lH!wM&Xt!+?!WDkI_|^nfJ_&lL%?Tih+HXy*kEQGO=n(;&`d5g7GG+p4~@t*h$WS zggAUP-k0+~?s}WAJ;N)ynICtBj>e0s~7h8X>Xo6&~lc zT}`FNN61S`3tw4B;7okZ{uueYdNI9j_^?E+0`w7kUP1xlLp)xV`YKBAv;OloN+Q%w z@{IS!)p*cS5`{06Tz5mPlzyWMV_poO4|4m1VBz5F={bd_Ga?sKF^^d&l>+eC{9U(P^MZQ!e9kPq(>p`O3bU)0J#5rLX3+^SpWA2&eIY zHn*@KkJEA6Cx_#OQb3)-?O`4_qFMHyVO-t`I>b%+o*^_ z*-19_wdonw6lm8EK%4Z8Sul19rDq>*0cq6|T7Xp}H3Qw^C_x_O<`3*9x-bk*0yN6X z|I!Vl_LmQ9DVBe>#qyw|ES(1)#dN+vdNld3H6s(K!LfP43G>E>j?!da$DWQm%A2+u zrLr_(?g+O@8)hfgnK?M9VqSh#N+NNY$y2@63W;If!xpRZG0^>471Unn&i%tRruBpGrKW9 zcY1&Q_^gafVDpl?SGDlA|5+J_6}X9xBY5i=pBU@!d{irR!vnRGymqT*25nd+6P|Yc z1RYd(_ORP&{Vcsk0L1cy(`hJ7F};O~ z=@#BiODY?iiBKb6@ZQd+>NE`4GY$b@F9X2rG~7SsD4V?pVpI<^dw2aB+57H(mhN}- zW4ga0oiJQ|ky;$zX@7R;MT(IusSmPu&-Js(yDDI$TpB5<_xVK$Qbmncog}-p;=6vf zq%Jr8iDcyzp0k5xO6qxD`ZFl0_xIB!bu3$(XO-1YRL=FM`dQjH-cI}H^9r$nuAr(V z(=`Xb&=k!oo#=h+lh(6T&&l=%o?MwS`zP#rtmeY>$*YnR)B4vuksGpuDg7GD@hMU_XCKGmP*B=Za=p}5v1r1&R|jI@BvQ$50#Ui$`Bt+Z4ioTI%Kb2pj2eu}0e z*Vm8Z7Dk!;4%>FP^>x2ZVDyUqmeG~{nbA9>GltPysYNn6ytThh;jP)tKQI;OZKx&# z!~`~08d6Kd3a!VFkUDCx+OWO01MGUd;Q-yE(?E}-TYp|0>Th#+@c^B})7jKUjGh0N zE9dn3{t+_ceIMEm7ERw7besTog{H5#jOZ-nmh2?=);zT)8GOc5@9M8EsyC~7;y4MH z=CK&%ZtNpIEB_vf?W?7#icBX~ojgEO+DR^lgeX0IfTna8z7`sW(q|3O6Wuv-`T(Ld zo_!lYQBE7UWACXL>75ae8DFiKqG3s`#PJ+V6ONZ8Miq`s_VYOk2bb0#OMMlSo~-{t zASO<-aDb)ua{Fv4i; zxX&-Z6SF9#vof-B@$0L3@J$(7C|FLDf;Vl%O3Uf!Z=K%q& z#y^m{Dole|_uYYp(jq=i@)pHpdU)kP!)T!}gfD%|hQsWfnrHu3kI$S#Pho7q>{x>3 zjb4ZCjvNm>1wW2hP48k@No*t#L}z-VLAIL^Y?H852u8ARe_$~3K7THuNX$qTfn!}12G`Y7R%#xOVGhi%Usb5QreXC!VU5zD>8f26U5sKEak^5e zOT--q+C<#gw$+x1+t;vdo0k$NCVA;|rq2$aT4cF=QW10c2I-bbrq@!7gtW)zjd@VFgYDRx*4eC5u zkMW$eJO#KLcS9zk$l#3^x9Z0C6isN7x|R-)IU3NbQ^MB^IXbaWsbfN{4Otx%pX_46 zTos>7*zexOb_ITn)K&4hkaY(a>-acHQL$xtZ*S+OU|H?@LIg~z#vECdR@IJYK=lC3 z6d1}=pn4U9@$y6XeHr_W{!G%oxX32$lQ5cxnY5?3t(qHtqSzAs(PAe0C(;Q+^hMMn zi5^-+p^??}mF(U7#g^wkOCu$tKOdRkvq3c9DOJ=UUB%|M7TcWtgXvG)2%Wu(ktvU{%&t7;XWQBZ(yA{1{tid)@ zrw4j;8tBnv>V1Q3raon`&eRXHEoi7r?Y!PIC_-M$)SL`F*1=l4b!>JHUdx)?XVye7 zqoArSHv6$4o&@-fc60}P-~65eXhuZ#n$^X#k`u3z_-L+*VSS2yn)LA6);OU(rd zkEeQD3ak2wCFEnQe#c-^ zR0q~<^#otrRwJ9dV|fd2N4F|`6h3;P2*pPdpbEuv?BDwc1sBSnOLa9f=CS(9Kq#D~ zYOrPQ`vIh`D6nozP-S{!LG@&f8kC z+q-s%O|uu64#gyQ3b=zdUe2ZQ0I#SyNHcEH{hh;)57D{yO*V-~9CU@swGO~hLj+wj z3+X8=(KS9hFC(v4fw%MM7-<43~A z%Q*!X0x+due5;1q4mSlKI0@{&WT<8LMMIh0_xqgbRW>q#8YH>HGluF6T*+SEJ=C)M zb!o)p@mG9Sh~0~&jvB5iwzp`g&A_h&dUP7-(PZG;huRGM%TS$xSFtTB{DqnBMaTmZmzuKQvM>AKC2_df z(PDb57<|dPjgQtGc9KM|Cy%$BKgY*&*4i+SlCWs0)>{9HcO0x@g{Zv3-`>TG>?9Sdh zXHG(XKiGLsrt+Mo42|Yun*{9CGw6pa5 zsU6d^etW?hL(jT&#YfM&UZ@-HR_e6b*wgHWjMLg%j%EccrTZ)qM>|Lz8XggZIJSqo ze+Tq-^v<~IA-p;2dM-!vG%F>thHJF9nRQ5e&DLscw}#bLY;`E&+Z(pVX5bUoUacSY z)c2+=-%|w>H65=)ndLHAOXsc&DL9<&jq-{TO{T4&DJ_`iO4w=!pT_RZg5$*D)lyf5 zs0QoaMy{3 zsuwZ9eP|`7gbsp6%Fol;&v@#@vO9D#xn>X3 z{0X z?8qXCPtDXz*r~VSF7fs=sjFgf0qcI!LFZm4`4AGyy}tsYe}KqGwY!4CVmMhc@l06NO9SSQ6Vn;6M1o#q?Hz$Y2Lg z>u4!^fz(xjNM+q~I_f|;$(bE(3WhZW)Aa+G=9zLg3b-k3aftb2d(Np4*Wy>@7zeQB z9LL`*_O}}*aRF; zfwt>V&}O7%ry9b>q~oXv^MO;)wYHbPeNVM2DcOFp`HUx6i>FgcV!m~GTBnL9YA5!n zMkmYIbEGasLflx|u`WKiI~I!(wP|^8s_E>!iSHC)?P)&9 z%ua;FeB2b&ZE8am6_{Xvwsk6KXhL$cgsHfDJ-gYXljZIxsjEWLm34kU%?cW$|N9oKpv~|qNMLMae4`?RW~KH}q@3>TAxs;#F2fy(o-N;vyG=!%cKUv$#ky_uaojPa+RgQ|8GGuK#&r7ICD z#N7r`M{&0|+pF8zayPcK?$K$WN5kEZJ6Y~#ch=nP&$ghUxa++B0BzUp=~yK-B_$K5 z+fcfVK_>C0?cP0-lC5DcvZ_y*_q5Hp$i%+uZ3=fMCiIZl)HEH;{#*}FDc25@x+)I0 zvF@PGI>k82ZIDo|oz_{ib|ANfhG8xGQ?uB4(ygKA+vivbIyeQhT2zVr^fkqi(7b*i#aIDnCTHQ`YC~jf8>+cx??`X* zhge0Y`USb|@t)2fKY-!ov}*In-o%6lC0;do?_s}I!DC|bHmR#(GlO*>qu9u5*9kUv zu|$5oi>`KOansEfzNr9L*}qk_>l|8v0j0(B)KBqf*+S;2j9`?l-P_r__$TDqDCVft zM5O;AJiXHGOgO%j5LGx9v7d*#ST6r5byYa#vF@)X9AaiT!OwOM8L)?=V1=gZZUsr( zhB5qCl!4J^fEAuUfANiQRBA9a>naGO{9M9*HlO}- ziZ((+lN^DBQgZcfIwcoyTWFY+jQ&)fa-MvEQDg=;rfrQl7v?8Z-y#}E`@X>h zCcs*1!T|y|)dCZR^Sg<;uA;D+y*s;`-hbuaCvqu?Z2-E1y~HHFdj1B|Bj zy_KSEYTq?p-YkLj zieyc`0(X~pv)oZMYb z;viDQORS4iv0e%mzE0XA$MUsnj^^tt+#VW+ujo_FW#>)PoCse}i=t)HA{r}iU1B(k zUyBH?5k%tvy4F#xqQMv`0V>MA$qo+9v6P)9byYBSv+lHLFhr=FbTUcXhG9@4bzK3e zSwUme=l-&%Wx063Qy$kSP&2TbwSOYvyv_c>u%YM%+=i&&U5Z=G|F(QC~V~^!n#&*6=Gj<=_f`($O^ZG~NA;w}Oeny66EWSg;Zznj$#>YA-{=nNs zv@P8-Hqy)r%x3hV5}cZ)AG1RP;VMyfn$%T+c%OCe#*0_}!?m1bA|#Yv@4Zgb^+Rq8 z4MSJ-rzWxU)Y>=4AkvK48MMDvbrzJiWi!a#6t=Cz` zzAbfCEDo{m>w#D}$*${cl7%&e)b#_ThOQX$EmaGfdi~1G?Kt4L8C}C$Gr9t=8Qvqu zaq}y76J40n_x}vdOzFEHx7PoSyWcW*8++3~blh!tJ#+Vp>ox0I(Ul16sPx4f_J@O| z@AvF;%j+$F`v)xb@mV7Nj*&X*=K2HM8$oVz>DwpTv$)YZO`O6-eworY<9f^GW!LM{ z_ZZv7$)TjJN?(T}?RqaKy|68%kl3s&ERpe>Z{sRy$t`GmB#you?wxXGAu7R$ES6+m z!Aox^u4r6{bC+Ekdp&0;9${^jXw@YClfBvke~HkqOI;P2Us-o2MMf6BPVmb0me22B zuM6Mbx#=qwyr~7Z*uPcb>m1sI;iP5rspl5r-F5@3+fREMhH=_{>r>zA>fL{CA)Wz5 zu1CU9&uemNVeM%AsF8@p9}=I6MX0vjIq=K%me4hB5OY!y`fmnQ{RVw=bCRkz7($1B ziNX|f$Mv;|q;10(_R^+hZJ}W@FZxsY$a(T328I(uEk>)PRp( zC-mOY;B|xka*0TxZ^B-+>~5)fz0_3`pdssa4WM_DPTg&;g*AoE^#g2_YZLCI5itdA z?b=>hTug26^2-Zrd(F-)MB2r0D`=pq8`-GDfSY(6hnum(cVfm;MLYfmyIk&vdrKuL zx1y5v@ryywjomFl*L7!tz9XG51bvgP_z3!DcTLc<*}d1gTY`QUu=2If3K8_bQb&!? zIc)Fu?v|im2YPfG=+O{#M|VrmM)-8Q|A?#$*cLR@0@-=}GJ=p^*a^GGQ?k>%X2X#+ z((ncl-r2i!mr16zy&c!0rj5$OcrddqE01Uzka62%JC@W*XnCVxpqj5O*slzDOl<8c zbtxX=R-Mec_%$%LD6lYa(snmm#@=$HW^5|AhlXJ+`oyfh*t;U3!D(IsPHGgDne!{{ z#t3&$llYUy7dB*!q3iJG0XSSo%Uyhk$N`}Y&`b$h1?WCjEhRqo`;jUn7>2R-aJEYr)Bqj|DVLVl0Qxi0Y z{h0($iNW_uT@{DUth=;_&bLmo2olP-j{u#2A5~Xw3k}0w^rz;p^W;v9+Ni=bFpPjq z?_`*2uy-ix#3Vcs?>a`x0ogYhG1^x!seLn!+Ne=X| z=@!-$G}jNHnRFYbeoVUU%;|RXxC&tX8x)u^jp-?vpZ`*me>#I%7{n^tlJuOqm1uTvBSt6$1 zBXtP5xJl-+y&2>t7qz3KJ(r`|#Y&g1UlJecX-T`Gr><#lW3wHsvZ`qvh--UBh8jnlOstIxBI>kN_caMs&D{~~(++q`#C>1ts;~@U z-Tf36SAha+8?pDhT7*yJ|OC0ymesDhQ)lw~1HK3RAe*!}+zud~nj!t#rq( zyjo#cB_azg*Wb$&fwp0c_}~F3XUjuG#ElAkh}s>;%RAUhys30v5&wL9l_8xeXfL*x zD=TO#*-v#>ZSy)pXaa#v^_G^7YY-lL6SMg~>78NoO1dK19A0^o&bgD>@8vgHCO;pr z@~qDaF?o;FQKL15?Y(Ko<7gs2s6p=}gr5y`?NrgVNxn;NvONC3n{@J>!A7B>>Rjjk zLN6x`ljCvZ-na}5YbqsQY=&!*)`GrDOs8Y?!-aBWWsR29p$u%Mv2BJUW@(K*Z*gKm zwO$oZ;sxwgTrbPyCQ?_0We)2$^p3UkG1&>~^|DM(?WHsDJZ=gNlY!BlN>k2}a4%wT zix}Ydc5cLb^E*Zt#<>`nLop1GDLz5Di38}|)Zbjh;yQ^>5qcRr*`=2y^gyYrVzHQY zZ!xhDEOmnZB)|j9S8;C-fOS0qtXVEEyvbWMuJBU7*ABD+1x7dViv_4f+EKA&zLy|R*1(nZx)kV4blT_FTpFwfs0Wd{}t%ksiJGc<9)phk3-2`oA$UB?s#!}m)i6p zX8XfC+l7)^M>_;%y=*#ey%bMYvyxM>&z`s(o06TG?ycEcI@0@bDHdH(3AQw6rsDsYs+4GkqEF=?E%_sxdT zp*tuFeZ(x^z|DJm+u9ek#cLb*C-6?I^XJ-|Z6SR0UfjGaDlDHHILHOGw9elcg)D_8 z9*@n$Q!W!k5{YPd5}}I56YS#hn=PBSNL>|;M_KogXfy;^CtYu)l%7M&qlks3>k|o- z;$cpy!&KOIPa(Z7h)EEDHuO>g(*wlHQiLk4Rk=hMlatuD2utGuOzNr#yv4dd*a(O*b&~HegZJ!h8wy}^-2j^@g%hb8 zb4TCFrEu{*xGP6}kB+P5X;k7+)$1e3p*$^SPcf6s)2iA)N3Zq%?d1$8I-y-uOCA70 zukK?A8fv>e>DHoVp@c!w1;fwV=!)cL=r(WqVBC;Y1-y?P9MH#dbZ)@XY@a3K=>1Yh z0p8E{R^qo@e3BH$S4Vmk6V+)Auu}7rZr?t3+5AEuUH-n$Hv5vcEFYcoH}{F~v|*JN zDJjXcgEYhcy_QI+mR=6@wV4V*!g~^@ny#O*Py664mA^ko zT@{m0SohmL`ni>pd<6+Tw+i*u_3t5W`<0E9seku*wZ{13;G8MLATnW3cVKI+K$@jE z;90z5EyE>|4UvfhQfy<{%8E=RlKP4%t|IX*d)TNAf(a_u{(FX!3Eq)&#&o9T+=ad>lIooA1+ zw;TIf4i^QiyyLS{v~y6rR8fQU6Px?c4nuUw{7#@}r;47%Ob?g?6 z0sSneCrMoui!kfn5r~D8jO%9~Ov9Q&>iPlFyrW3heZ9sngU4p<{DA6uOJBw+L`w{k zg5!91GJA*FWmd_nX;SwH&*@v~3b_&%$Jen(YLxV|Yvsaz%;BG;H-^JU=!%cSNBU_F z*I+-tMjy`)F68Z5o8_-wIY za(d|3F!-B(mcdu`*9@-B7NMaS?0o+cl_ZXH_P}6#H6SHBJ=tioI6Kk@fG11pwbc`5zyG^^VS zg*Zh6z;mC??@UC-BfFr`LHs7hQGKAVE4()61!h}}eqV<7gDkGvTrH{LSz888~t zp^>mrLRQHrn|)lHYZLQJQdfm1opqnf)wQvc;1uh%sEtc05`o${lbb(-uBbLfmnvg9 zXYvt$<~E~BIlHK#0hID44#xqln_9Gy>n0RnG`-P4VTcG!1dd8nDgsxqTi@r}bR0K8 zOhpxe%UCxwKrc<4ExU_pX6SnkAQF9RVE|8%zD>UXeQz3IE94uuAKO9|^4-!0lTRno70KSvL@(#b zV1?X{J)AJWGWfxOrTcuAh{2Cb9W_Ah+1};>wnDxy+N-#oI;{y-YAWP018i!K zr&4aQ1nwYpX?}>Yyoq&jR%l7EMs`x1Nx)PV}D0_+g?JgJZylim2af~{?E1Y0K3W#Jw$N1T7KXb&d58Z zSBBHC&=tw)@GH0IjC>pW`{FH@&xZq6KJi(pvujYiR8hlqJDWRV2P9f8e-h}~siJ4I z*4}=L<#X*@^;&xf8-<2iYdi0szJ&;#?Db75I?XOHv*<0kyv0TJJtB2XN=BNuHD%vO zuSWACyRycv_kc#5&ktbd`#-3x$`SU@+?SY;a;xB}n$~04&5HnlIDL)ORkyv7tlRch zotK=XH6+C8UbpI!c{I0$hDpolPo-t&$@#Z>+d@TY_&!8hD$d;mKTRM;XYA|jU2+tu zR|yRMqB=!&Z0(_>2td7fiAmwVi~X8#tEKf4sjKi$VBG}){7y0#zK`G2CJbu|o$Cka z4re2C-{L(MSJbjxEKREv(bqA2=*>7ja~$99X5TQWOp&~e=5mkl1GiL~gDWYLr*e_} z`K@*_edyNhhg6PAS9ECv0V6liKyf?b z(ZECj{;3@nrSg63FpQhE_OG~Y(OUZuIy=F&_JW2*`QdYKx9mRac23M4Z`bs0M^_}h z!|iU@iFpmXclGU-+Cu|Y21zTmvXGdiin`(Ev$=`4+e&#*phKsD4o#(uuX25lO8Mvw z`_A=7f8(o@*RioSw`(dpuP?tnN@e_l5AIPej?ci694#`_vgqx8v%*F?#_^0!UX|ru z{+9>qQzGV(4Jwp;e6W7PixRI&Mvt+J+i$nYxK!$@*lc3m!rOJ3>?Anc`g@egUr-4`IU0=XyO6JQc z=%!@e#3l2O^^lMi1cNO?V=XlRTOY^iXW3~?Im6>iZ}&#`-`69A!8}14KXD;wJba)n znTKrO`3sfIOQj1YNiU)+lEtA#HY(~z<(JsO`2#JJw+1Xd=CededY9Buqx3S{du5<4 znIDVxDsH<@Yrd6EdonjZG|=Ye&j#v>c_*8^hm>V9bH2|UX!-oa)kXBNfeh5RR571y z2%DXi>Rpn9HxK(=gV8Ndy6vVV^}P8litubV*z_L=6HXdb@f3cCz56fxriFD~sY}5T zu-{G{Q*jZ@C>j; zR#D>^!1E4|D5~on3KzvzZGp(7;bDR~4B*u)uQQbTcPB-{KJNYGIYXBny-fG zZ!ptaUsiV4VIM}yt9tu|6cZgrZ+vVxMO%4?rOAyWC;DY^7^`> z->E;kyeL2PB!N!#w)WiBFf@pB_kQV$Vg0*w#j$?+gnhYoqA1S4&u*3svYh`VVCN@k zXEbrX>R>?u#rY4|Ud&+2`JbY_iji?zC04rikuLF}L6-C94Az|ggiY?T%IY-=2jHzi z5#l$FO-{k_mhMRz?LkhV*`0F)2LyonO)8KVbl6kZThIbGjPY}idn^FlA+d!$!O z>}raC&5pJK1fqX0sjK4jIqTjySZ6RNxgHX#t49phb@i9r78)jxqd%3$ohO&$U{|I* zcESOamvgkRp^HbYwr_Xzz;#hj|!ATwj04lCwO+j@10HR6ZZ_zY0#Qr==Y~j8GJ-W)SIv!}D2T8`fNs$@o)oGzu^MI`85KHA@ zxY_wj>%Z6@G*oHrJU<0(uPjOS_Vy@h8k?Sh^DJsjMy_s=n(6kD%{4}O=Y0ALGAXRl$Oz;(NIWK^G`B-Ow(==VxU z3Vl5LRYK^wdj3Z0s}NLW{Vz-iL>Qgmu$?OX&wV2v$xe~h^#+WFw5L!{hO{Tu^>X_a z*Y#HP2Q&SsExPae7d6uYgRaI8_Z$Onugfw@>A~}hj z+B4MV+b^W9ibiABJv3C8&Q9_%p`RD}ouCIw=ce5JV{}EOGrCk$+d16b30VQAoJAs44bOIFX5*2}1p0Vv4IEoXeio8D{hCMN(G<;Y`*& zZxtSNl1AK)YEhB4lo#}u{F5DkzfW5LxRjO&l%+WG7n%$nl3>rnfU zD;wig2}>(TtKOjT$g9(bS#nMp#^hWloiOAqpesId77WwmOlJ2U8fMA)TENOqpA{nK z0jZ-#B8Ba}JIs=EXP`%?fgVj#y?>ZZs=p4?Nj05qK|>`~=e38nlvFJ@voq4u(`a?v zI3^uup7-BchQr_Q#-xl~kHdAWmrYW&)KqOoZ!1eos54y6N|6mNXP;_%hdUHES#flC zpM>+Ix(Y{2RzGXFo|sP391>a$w;HYs;mf#fb1$Vk)+qg--4}2FQf07n>6GCSg5qTd zgL(AGBKqPAfi@|&%Sb%G3W#hxh@@50qe6U&1wk|c=_3)UJbN{JiI+_~6t7PhBUM!} z+OX<~KrozS=y3aR3va9vWCAK;@47mL1A?+Qj2ZCBtfE$Shy`4W34CoT@Crz)j^pRG z>?dp+%HE4R5IvWkg1gHJQue_)pzIsNy*97x>lhl&jQv*nU>N%qU2%-9wF9NCiGwO_ zJF|bE54W7HHbTr-W2XvTadu2;d%Dz7>&R^^qO*~RW~o{HHKQddQ$2kQJ1 zA8UWbWWAOB{fOqEt!KmU54TULcH3(wSkQW<_u(m3yjL(3kLC_tdS}D%$s@NPE2XM- zq^95nbR|MTs%kG7sgv&z_VnD5mdITKRyz8uQ1b0Bb!emn@}X=GuL%xyRc*&WuTBfS zngo32NXzDFBXt5E$@ZY360q|;32lkV@vnodshR2YJn{7+ypx9mqLUlpf%MC-;|{C@ z&64me`iTN0=17BBG|2R>7+#o|@Q?(krtO{V(EV_gxcijURlyj?x=&CrWKHV?TSi*y zz6o^xnsx#=g@&Onx>NJoIpU49)LpV251R<4w{3e7-uVI=oK9qx#ogWk(1^%H#suJs z4XA2e3xWS@iAmv~%8q?L($e<7Qdi-h#Jay5{9=|k!7p}}&;#}`3@U`KDLxRty~Tt&d}v=sa?O5^@MMfqB}uoEYIc^X zW>KsK^e7qesN~gm)>@037cNF(bSROF4)MtcfyI$(3k($fq z3dqB@;ia}eQ4czW;iD{L2amFheSMT>>_RpL4aHdJ^X+IGVQh=E#=PdTf;CZNg~H+vVII8iu#%Q_X7U%}01^f>JJc+bo7+K>3z%rc5u&@tQoRt^$2S zZ}U62$654F+n~R2w3yZk{e$e$xuY#%+elqSfmN*AYP4Q#I7v&K-9$w!tSMZsAK)@Y zEJpdR7mF_UK{G=Lawhq%8VCcAuo-H zH_@;%Hr?N#Yz6jNojXQNOpyehWOvT=wk_v6wv|*@k$9Zdv&ZPU=_DDD&_Xz8jILw1 za@!0q^boB|{zV;Y{!(?Ub17*|gqwIZ0l3oaYS=_#TV7sg4=FV%RtZcfkW-rlnwVIO zmf(n_A{NiHgD5_iqlCRjs;W3V!>Tg^ad48UV{8eFa-Ptt64rH!m@{Tr;OFC zb&^St5NlVC)w#5Y+d{+SQuL>Cj`QSp1Rc3_1^voFm|_X?is|@Y$%{pCRVXMIr+8)C zi#o6Pv0N1!HxrneN3f40XvAum*gPxos@NQ0pPw9Sv+W+Kt77vm>%JL?jg!1K)@EB+ zQ^;LEKyKE?M`_ZVwK0BYH^26*PAtYYvOq8d(pO@6hWNuJkRH?Ci(A%v?EO)irCj6w zFvixn2ko^Jt#R`|LyglD4KR5t34k+j^YN$)B*NmyNSj z9}uw8&u4{l@;IqO<0g=Q%JxQ)hy2TJzd)}}3%#1WoHfq!{oZjpFMrPVprP`z^E@4G znd^1ED}F4B$IGJ0-nJUWIF2?eJJ~z-@nS=GJgdmc_KT7}Uu?*ZpD(#d6>36zFX`9Y zCnZibm%nGf9*4)o^Eaigipe*uyPIMnOI;_}G0xKbLxA*`y5DhAXiPtIf7{SFJ=dKd zkB)OJ$1^I6vsS3M0pr2bhyRCb%nR=(Aa_)Fe+;gN;CgIMaD?TpI8n2V+ zU+nI5ugwnBy&D5Y*7=MOm7kY7YTW+I=AI!B+lJTK{zQ13!u0W$#goTd7Qa7Uv-qS$ zyVn64ip9?7yU;em;-jY&SBpzdPtHtX9;dg!^Qz_t43C=zBzf^TmIpbzNtI09Xj^R@ z%=4QBsU~tY_Uvc)Ogv7QpeC}w8^^jQPtf_=N#Y=(eBEq)&Xc3# z9h0$iK?LlKMFcKR0gZ=8uHi^+M8#kShnqU=q;5q9`xO$8!d{box@>|aad)XplR;ol zVBMSmb|>jF!RBLFQ^;IDKxV36jCF_DVpPA3P9OnQQUCg`8yJ(0nH{pF+T2XJ9z{D(+ei&lDO;>!xe0zdUvh~@+HzwF5`+dO5 zw>~Sx%zvbg8jJ>P@6QQ#J^gKv;pUe*9q{qYV<)&IMLsaoq!F}(~`YtR)RRcqiwLDSxm#~r4#d+~RA$FASs zGd^JCVxJLW>XlMQ4M+x?Ykj9Ty*t)#f&QEV`ZGkWdZ#7oEok81!`PBdK|>MM`5cS3 zMAT_lp^h^-G%W+)A2d|0lAfHIjQ0c0UgTd=QQRm6Y`D#&#d2w)*EKCDcJ14|zq3xl zbct9cl`GlJ$pAnJb*0o*(P_=P%kI>)b&@5J5N$UDw0~vXhTB5JBvkaL(vI`wt~-gY z7fQe;NgBYXwtc&^H#ZZ{nngUKViS);<%oUpct>JX@#w&Qz5y@#?qBblP%0ePubLNW`W$=>)#LKS>sZaycJ{gI{U}mtU7qkm@$u=DCndd z@5GK{0vb+Znwysn{*P`Wjl2^rbw^!LoFBr|#lPM9IC&y-`$p-E;r8`(#mDXICu(kA z$8L6;Xw&e7fR(Y*O09wW2gOSjLM?8V*R#1<3V*{N!Ep%!K-f5yG_#+cF!F#Yh zXefd^$J?VV6C8WzQ*hjS?m_(Slblu@7n`1nH`og<#@Ur%cT!l&Vj%MhYUb4=X8T3q z^i=Q2tljk!-jG1m6z3wXPHFn`jw*1StKC?#oS~VHl0> z)FgL~ygHE>ogPOaXkiw}gyYp|ySoyVo5#4TQQ)9(^l}9BsdtGvtw0ZCZ{qK=i{mq; zt^$1v>o)TWs+RlZ0hd`IW1Nq)!~!{p12n}0XCG`cd>yoR zV(C7Zy@OS=KEB2<%B+u*F&HP9bRTO4a^6XRd9TIzyO^90NM8&&SJ4$8Ial4Ki`S9t zwUV9*F9wV}=QBcyw@B)!AsNNy-X;&*hM%+jiKsY*6?a))=G|p^`NLhBm*dzJ zG!!qL&x_HPd5Ke;@HKgF+T!9ylp?aQ%^;=L?%_nrrg0e&8D(26GCSIA8X!at35Zwuge zk^z%!UWGM<&h-OyCa*50IcM_f#7JIkTs|;x6Ih| zI{vN`ChOs@SRubW$*z!Jn8ZXqB>gZ%{g|%!i2Cs)okbV2haXI`S@fj4#Vj>e{`OfR zrk*Bs)aWc?do}L1#q8gK9-RhyG%57JBumxQyERqw*cLPtRh`#+(Uz#%XcE@QHG3Dw zn>{{;uJ}Gk79RZ?x)x8ua>ys9kK<%{Q}glRvK>88>(bUBYG$vGI_r(Zgl-Zg%~!El zxSu`i9?Rq> zdxW00TjUQf#*sI)H^@#|1NrDXZ*=x98Ud1Oi3!H@)6mdGN;ESOxlck=5h-9dS5QRO zCp<1yRWw$!>gGT+oMhwOwya$d#VLaCx@vEwrmV$8=+TdItPiY#^zUfgt2J1IXWwz0 zT+2?vuvr9`;?6{c?F+c;RFY#Wc~ZQ=t5vnw3x_9L{{DM6^Y^UDf_bAK+}|ahF8Ju% ze6ptRCU&#wWN-Rv6u8ocVQ*WX5n^u-siTHwGn>19vR7*j3fw?{P67QH@}54~lJ^eu z?=Ns4XH(EnTh9pc0**7oC&XRn=Nd3x0p=IIdWh~d~kx*~~+lP7Xpm&khQ z4fgQXDK^c{4;YyvjTCG}u_{#*;5XUaswpPRhUS?5#68j};54z;$QpElWC#Zmw=HQE zerbxKs!-m;*7{pz^^=}+y^oiCC8`6YT6}RjGb`KX%k<=|G%uyml93*0+Dr?Ql9m{T zCVHjQz;D&e>_GlN!c_BfA3JscE)z?SNL>|@Qr7*yDTbv2o|Ak-_^}RHy?AUmW~$D! z?{fQZY!FPIJz)P<+lri5d%aM*5*&s*9E*zxJj$80R?bRuTauA%>-puhUPjbRa6sN9 z6BoCvguuk*jHzP2tGIl~zBZj|m&;jFSH$aGx?_N%lGSw0n)`++wa;~4fHV!7! z_L<_nI%p^tsdId%)s_Q!R_< zO=T88A)PTS-a=O-i^E%{>U8@#ySZtqrEy8XN}=+SAQ zN0V^ZPqhg*G)*VmZ`c+zRKj&$Ka94NaJwx6g|p2!$!N)&nvUabu6XC*NN>oKSSqC| z$)QKV;idULNfl~?{M@EbLEZRi6;IS-?9=J+mI&NJ>Z(}$z`DuP^h9-%iy)yi+isdB z?-6c$k$3Diw@5zS{;d|t&ZGL%ykmK&ZwajBtc7IW-23-gtej08EGtcfOdNh#2D<7t zc7w$riA@pqclPhrX_l~)rLKy@e^_^7AP!D4VVYeY-x@_IsO0*pZ>2{!?vAfcQ_z&T zKiD$&t`~|Mmk+Sy1vk(#Di-0|<9PiidyP3}Qt%qwnrOW|54W94*2@+BX1i?_h+8(z z61R976Zb#T2}9gtbVU+3bc~?O^m|f0yJO+UX_mKjri(dijMSnl5hKLgv!#w2qY&F` zKHcWuT3*>u%sbk6DMrF+{b)zR9OL}mG{fJ}HD2ye-00}Lf~Q5kD;URSzq1Y0c1Q=} zYnWgfb3YM*<|3%(o1Uo5i>mEXac(;Z_M&P2L*p zRe$_sNhF>qbyZ-hv+j8OBI*C>)=9=d0utl!Fa$t;QZRv=VzckilD1f_n2;*^I$!!s zC;Fyal>g48m9jy(qwem`-rvt+C1L_2BnCg|8OqicE=;}w|s=e-+;s*{6>2%dacJ^ ze@zpQ)9)9!SAoGHd|HsMRhE7$ISjU8J^RI!#2J>)wP!G&vu6k@=1hI3OFUhOFp>5- zX3WrexH0>ihHq_ujj~tTFm%4rXN2fHRO+ZfYr^IR&ai3t#z2Qo109+)e8~)(h8N7x zX}CGtf`&@N&gl!$*6}wkBRLiC;&nS%j1PXMXJxogrI<_{mEm3LtPK0D6qAXg64%On zCuNhws3!3R?ALmDOe}sy>Z*90!@4ib&@6V6?T}C^eitbH74Lc678<7FMSrRsbe=ps z!*G~GP+EwcP6np=G751xATggsAr1?PF91JDP$~ea?AVVpyf(*B?9LSPPT{|pRbysq z{7!PxOuJ@=F@?@`19Ya?#c1FBLh)t7V=>!MrYYuBPhtEhL8{r= zj@|kW4ii0NW>q{ruVUSQ?er9paFYKL`b4kUd%MSlX6eQ9HQfBaHUg&7{m%ZaDqZK) z*IwCDRJyJIjUX#2EN&PB%wF=FZ+7vD{-sB(1~LgmFkb$Uel?*eMFl1nnG&ChMOSt( z4KI^k`S!YmPEuD*j*hI`ZkDF1lUzN^QWe%zdF%T5+JZObEe3u`A)Zb7T{Z)|CZ@y< ztO7GeJ1B-EhaJTGW^-L?9Wm3U)}HoSWvR8I1#;&SP&R*-rR?fiOxfMi8AI6}bVX7& zyknNms6E)tmuFedejc!L$Y+I8>Mv49jZ06qcWjnTsfPkRIt}z_QtI=wY)Y+*uZH>` zCHH1q&`>GWdHpQfQc5Md#^D?XoTXw@Y9`*ZP4l+(#gUERD;^X_WO#tlqJ`K0!@c-I zFc@1UON)+`?MX~Xn=NRlrs-|$)+KP5DBDizs&M48?p3q(G2WB=cw61u}Nm5ngpqa(!KBrCXnD8DE{|p;;g2t~^$p zS^+eoZ%|~gZ9k5`BiLU|F_UVa!cB<^+ts+?oM5V*ei*#{a<=8|XS12NC*LEcn&E96 zUGecY?jFtCaqM3B9?RQv16I!RSs~uGlsam7#p|> zfyK>Y%4^+*-u}5$Vy5XUZqYN?PrUu|WXYt2MN(CTX9}y%yGQfbN$!D!cwBIgUKvm0 zw$Lyu<8k-swWD)nG=ly?af>PjZHmVPrcjv2Qzev#DG)x9J%kAaZdy(|`v7OBM5cl; zkG*@Dg1|>O9+3Jf60=$V-9RLqq~so(cwY|SbbSG*StDZ#{B{)2l*@+%;^HllfNb;y z2kORa2gRr^UR$1b$q^4cWHSPIxES1lh!&L4(M^L%oP1Lk> z!N=qdb2O9l*xzgCcm>G^dYUE=R5|ISAHpA%j)N9W*`Z0^cAItM$yuRuqR$5paZQ?hU>P2N={ zsB1H^69Zo-nt@M@5s9S`2?qNxj@^ql>%m_B@Y^1~zNT5=AX%j8@poiM~&LRTa^LrW+E@&WSW?A^k-HqAa6F!F@Y2(j}usiOwt z3AVRmuB~aGFdd2+=@b^)u`oa2&h-xOMNRt!?g##w_9?aoV>ECo(K_E}&$R?S+5~k> zT4pK=R?AP^TIpLu^d-*`r{ESaEu*AbISMJ?=GXC(Q*kqnHjYh0V=t+Hequs+Ud8kD zC3f&1xK1psCv{b5o@3qG^YlD*lA4fEioIZ-rs)gZ78*p;&_6aHYMJc3`3r-2MoBuj zmWo#s4O49>LL-YhdqXoyngm5A2#d}vp`W_Bm54z{iA!;HH~V(&Jj>PoQdh;`Ro3kt zh=G&bG|whiSW{K4>*p_vy<5*#@u9h1zq%!9W?-X!SD~@Pz#B+a&n=;!^@EV^(Qb-K z`Z~Kgo4Vo@I|H{OO0hW3k*-yiVk@d`8`lSSpPpyAyKNqG_n>sfaCaYFk=zaMo2N6~ z9(J>Ao+a;Z0W1IUSt0UPn=fXw8l6J67l)6H&>HzafgYU(dNga~qIq_WeBOMWS4-Iz zG*oTtynY95DX)UIIKMGH(_4B~3BD$g0s7Xg^WMlPW%1I0Pda+z8;ORmT9EuGwl`iY z0jjC`K09^gd@pqKfl2XFRmEaItM;6)+3F2qMCObZbv7Wi*wEgpZ}O|`TXmA z=5wP3f@Ox!4d{xG&kYu6K7YgRB`&ahzARuR+h>LN+(qiB0sEHiby#5eoE_-VX`n~L z=hGH=ZH63Z6-1 z*A1cZMAhGH2LuTVB|@6MVoLqWZXx~tg$lPos;Xf8#Hyn2nJ`=8XY`obh=8E<^sjra#!TMhXkUPoe3vALY3jlL{0T?Zg6HcXm3}1gze68-V)i9V- z2amgCY@d5qguT3$`|5a$qT%NJV0 zUb>J8n=2hLgzZaLe1z@0P!l$;zTJLt^FmA5=>aQKd{&6C%cYKjT!rl|!RnY2@RUH0 zP6Iuf;uc?cIu&o{)XaJ9+|WWz+Ujhs$3jh7=lBf^iL_loQXFPr7R~tVOUA`nUhbsg z5#HT{O6uBMF+RP@3bCZHBD6Ho8-5in7Jb*flyiy_6Urn)m2YaZOGR*&7R+BsT@{T} zS@$!f6YRMVw0DwE3H`kApTOrYYin`SPtgsPwdhWjwa$@u5bE~W-8XF*7YO*;J&uwd zPXCK3i8FA$!<`Ry_G%2rPeqiN%F!?Z`KMh;QaISy#H8UOG0{~_8nUyAi);?QMCz)T zB(m-Wi}YR0NzPqlb8w=U(y-J%WfsM*>kF`n&+#`<{0*N^_1g3;NvjCkp;5;Pk3rb| zI9@kmuQA;Wm2(!_yn87|wvxPC$)l>K^}T}c7kk)sV@|-Bwut$>L3(5Oyq2y=K8My) zgk&+?oZZY{Wa<1yz{qZ&5u)>ZQb!He8EkJKJ}3w}hj4B*Iu!HRDdgL+GR5$N-myld zt-`-A(#7yOZ0$j-tcqdh`+bXu(OvN7Knr@4fHE-Nn9s7uUrZY0s$eZP2S0$(^vZ#2 z7{bQ^?|;2PLgM0z=Wa4Pb=qRf=L@8+3de=4d(L7#cb()+NN7pj8YAi_^u^p38ivs5 zPZ8RAa_VA5Xh!5#)p1oQ9_|Q?2&uJ}jhYDyc#YqVOjsgDTx|MDyo%SE?DNfwEw9H( zT@{-&)*Tgyjgt&tY;!cMDdesnAU6-NFa@&umf$Ez8pw#p0#Jm^6`{Icdn)E^HhX#> zO+&7YSK`h^wJ|pE(Y4BI<4QPvS$(^u>aE3=)UPjQQvaWH%aHmTy5dN^ZS-rop~X5! zw`PC8Tx>}lzeLPtW8`GI;*6M6A{$E`HBwiwy#{!eMmhTACAvqafga7G`tV{~B)3|k z6ZBPV3mR%w?Y#a3ZLci3+UvG9uWHpasoR+y>j9T3O^=egDj@Ayci0k5YbO~D3DJ7i5>4xl+!h*!*62@7 zZs*Aj2sh_xMr&qvw{|5}Oel5^D;Z&<;J@C6LIDQX^M}H(Wa6<-VpQ?Cf&I*1VyXPR z)K&55#=6f0;^8DuF0oXGHHFso1GI+982(|SKxH$$exD66FuB}l7(kyM$H^PnNpxT` z@`t!bQ6>C3?mv}et=56v)O}UHcN`!K>7xJQ|nnu0Z z#q*b1;&uyI>Fl#Y*?54|p>Yv6u0Cw9FS(fIl};EG9}0Bpl+dZ+?%7K%cV{fs+|6Zk z&`{iUj-LU^!jdkrsoD5JGw+m=`d-b!C2>_!voo^Y*ZQ8g3)Nq_V)N5)t3`NtS$^|2 z^y6>7gsZ0P5ccmucuo|4M(V22+|Ih&C^T|KPP$6|)0jXgxCP4lSuvcTXfbQN{UK}i-GxG#v)cs{F zI|=JV-B2^~$sYGu9m8~j?Cm=nW$|@+Hsf~9W9E*RewbuAhOS8FhHzkPAMi;X&ODL5 z9GPd?yCPs|na>ijccau%sPAHXYxC?{dReqrF-}ekU$!8h%$o^A^DKqm%+o9CDQpuT zQzLD)qIL)d1F22I)Ymhs1 ze`3Oy5}}%?bJ&~1@RJDpr_@!^n8~`o=INa4BtJt!Ik(0#!&nic+1&PLi`qP$K5YM1 zPp6$npCIOxdku3fTrjtxi9_quC7r#^Yr#z=FmV8BlWZI!4NM#^UMA+Zio;^|?|cj~ z?UKAw>Z&-*XWiDzbR3-IvSl{c!Wywv#KHCR31M#=KZwF@D&d)4t&JsV<>E1%)j(-r z2WuxqM@!jBeA>H@TQT33XIIQ!?X~}L#k`zX%-%A~-+Pxae_xPp8UAjkE0VwA?aOrL zUC9nVz07j=gMgKTJ}boC@1>3!C6DcWv&=4;4+eU48tBoa-L1mHrv06eQmtyT^ZC+x3Fj}bc&4sn zU(SY?#MstSSH&QobuV46XR4EAK|+kZe!0%E4|7{+m>i4#ROWG>oUvRm)dD5rF;M*c z%Q-e6GQX9Y6dM&$*h~z@N?eMqkFswgms_^ZmAWbh8(DW&AO=n{eYs^TtSN-9A0RZj z6{CFe#u9q{fJRw>G)N3jqoN3s$B*OPW9%I)nG`j8$I$b?bj8s#_jwew%QZWnVn6>_ZrR!NUNJ+Bkw$dI88HQIiqxS|5x1wO z+1^E7?sQ~9^A+nx_v&7q7J4-d{bjjjXwJQwq0g~BXefp{&wpC(9otvZ6%S(4GjTZZ zq3)&i;!`hdmXe;Dnb87o3grzf9qD!5Mk&=CEeo0don4Gst8sHmP8Q8<}H(vi6@j*#aP-Mb!#j_=6*kDE5?4&?EC&8&eyv5Ev zeXpf%k&&s@R0#s2$LA8#|#T3nnF;jMWcp*)40HH+(5>P9Uvbz#A)`N5ls2~SJNYQ}!T zE^dYMMBTTgt_sfwtou5JN7l4Xuxo{7?Z?3DuW3KxrqD2~MR#gGJ4YTvM53&DiB|?hkvZF)IDvbn2{6+L5;(# zTVthOc{oY@N}F|IP2qI?0H@(CX28NdC6^0_BS;AhsGB5Yu@nV6s#(Wz@N0Gu#!W%n z!f?(UCf5XGbb|ElQjCK3_LVl{-m;RZJ5TyylI1;gMN&6}ZR{IBC{@t@z+TQ=Y3aKu zU}=NT64CcXsiTJFN4B?pr7dVTM0*u?R;Pux=g22h&`w=xDg5C|UC{o-Hm6!`m989u zyH^s8bFeEtrG-hpUh!^hHcG~3qilQfa%be;D)>UVPay^hUbBrjEgi|X0&zjB-H8c* zNYrZL{>2{t0^frv?nt@!jHo0U3eY#nMT*)OiHSm6iA+Ty+`#S|xZJb!?ICs5Jo$%_ zTpx&nlXUYeePNC0D`t=D=O;qnHjIHU{TNx-jBCVOGo)Z{WJn_tgJZJxP1uiR95~@{ zgR5*OuC$fyE%w^~SlL!>V1EmG)U!l>#A6~COScS>_s|td@LQfG@s9y3 z|L3zpBtB_X#Zxq%?fuuYmF@opdUP7-(d6IPJWJkYt91T7m2E*ombcMH zMq*+xN8(a3Xv)6LTxEItpwv|{IGuG@1!CYND^^+F!kR+p`T;^pyYV||QkrK|b-dg# z_WK<9n4TR+AUj<3y&ccvWxy0AF}QXe$JZqG6%)*?o?pRziB`{#;GR=S`mLn&J(Kx+ zbd}}r5388JweJ(GGW@McR~&z9g;{J6m z+iT;Eeh1mrl)lM4kQe zG>OSf#>($K{Epk_&k{QP+g^^tWo*MTzXJW8P)bLs`6X@W_n(;(o0_ZX?8{VmNqk); zbyXZvSQmvL#X+qboHXw~%h@f!;9oGOaeHVO&Z18>qn$T*-)A{{q^6DSa^%?M_!5MMqPa+x>pc(W}_Y>+ZK4y)$5C zyw3`y*!faNjmp(*?;diIIXXVjtJ6ZShNE5Xw;bJkzvgIrwg(O3s2E}Ac}H*CzS30h z$9PQ9)QlD))8h05ywpcu>H}Gmut7a2HD9X(W1Fj{acJtk*!Px%t0wGq?A~i|oM`*8 z)K#JB!n*HMXk>}&1PAW7j6DXde#Um=rqD2qMR#gCJ4bfjA7v~fHd)r-iBMKZOpr_% zz}V(OAVW~=0Wr^22ySBEPIH?=8viXTwg$G zNZav#@4-5yt?l5Mg)j}dK?BaZA&&;Y{#@JXI3C{29>TI=Z979XQ{ARwcutVDee0Fx zhwpm8Ce=G0V8*VNei+8yPgf*kL!c$aK~=Z8?4|dBW$nuWOE35=5o=4NjvAK%Y;Vs4 zwz_>G+N)rk)52<;d@|MTavXz0+4aZ+y1KocZQ{8%X{#*d5G;LwGHgz47JZ)$Yvjgp znHj0rgKu8bHMGr$h+-h}YF%_N(W4w2rvz7=bucmElm{!Gs3X~-Y7bhjHkZ08AVXQV z$%A^LI?3sf(2_XgK~2`-+!h*!tmsdX)p=3{yGN;zMS8`zttkRIeM=h}m`BgW9%f|M zGt_kh-!Rp}k2EmwZXz zp|inJKR$!QaI`!edD=HI3-4s#u+Qj-t6~@7-h&lz=ni}Bf2?9B@hbS$2Q6V=dXNeG znRLq#_EWkd2^;?OL7if!u)`lcXvrF0E#|1P@~_Vdk+qK0QG+v;?bTdutJr@7Jvt5a zXwvI@*n~_ZZLwOX*O_b!8fppbyxxyFx(^2~SEc&3=D#H;$7QAACw0fwEIQZb5Bvc1 zQaN(WWbEA9faB2s8+ zlv|r)^d68nRZNz%uik1)=B-j!#bgQVZVAN1Nj9yvWQH|`*!2U%rnKEpGu4!~b8Tt6 zw4;Ao@coE~{er&!VHW{15D!SVx5You(z__3-f7<5Rj0+*jvPn2g8j!#H0AEQxPei* z`x0(WCzy|qT#8k6tT(-O8E<|JJ;W40=OInbGwF(t;%7djDgFSvnDmgP__YBmSNW_E z#cz^2G-To)_aNKrPA>8)`l>*$P7A#nnm2yP(tP4Wn&$az4;qT*&hv&3MQDyE64_Z< z*=8Y)qi`~5`(v9+acag3-AnP*F)E9J%qyd>-heL_PdMrNhb+B!0I7csy^-5P!_XUjs>$xWS&CRtS_Zw5mMIcu-r7in zuEX&eAT|=Slejq4^B(UNje}@o;&4b}Q*qeJzJ2tNrSmURSH)oq>mG~7LChQ{{gI?? z!!W2ox~>4yq-PBL=#G@0HJU^Z?2U}7K$F{{xNiI!K@)Yqd6FH3WwV5?N3PhyH-yot zgtC=9p?b#V=1_ZYTQf)AYt}G%he@wYW*tmdeB>RxMw9nB_V@NRmb?oCR_6Jv5P2Vx zI%!dNt%7u*Q=2l{K2YFS9*ps1n$D-p||FxGa@YG>%oqZpTl% zmo|yZ%uEr)Z5|PX={1wr@G$_8HhPuS%}o7Bf>Sf~4R+=|xJisXCUsRHcCqdc6bM=H zI>C2qELr37HCbQdrqD2CMR#f*J4g1fiIA0^u@d}leM|9-%D{JQrN_!n!~v*JY_$Op z4NL&e$``X+1)zvMOUk!YZ7FpX6W(UsjC{QsagwxrTka-#1zDIYs@!#b0i(&j{V3Qb z`|gTlUz`xHk<}ySmXECeal9>IZ~LvWyzOl%mc07lIUx+x|Hj*Qc}=}I->#__$D!V zQd0zP#2bOMzK$u-Meqk~bEDN(Ny{Nvmv58rl8L3X*FG}^pC1}j+BhaFJJmkF`ez`X zQ2DQ$ha3;xg*rIeAPx=OQ>&zcis$g>>{Vm9%^uFLC3Y(~ z=_Li0$sGy|lSRA^bNfrYTAj-pd7};`pB-v!|L%YGfwP4z=T*Z3Vsw_pJ9xC}g4O`fO;WTZ^kTGH0!aF(dvMiL7kKoMIqAjvVDCg9whrxBfUj zf6qRzqp8Sm0v6yVMs+ieQlM*<)y)+>lzwpxmeYF)ZO3qF0TcUI>5C!u&veB{?4K>} z((8)lMEHq4Jz8Lio%pbr%EnS{y5cN_roBEWUaF|U`kBq0>4iFQJ`UCP@~*+(bVm`x z;WUqm;V=aMzQ7PX)XtmUrfjfi@f+LzUbIjocWA!Fw5CEDB*#uk901E4$04z;FWoiL z1ILrFi`^%v+5WXe4VN38yQdfoNzYO6H3Xjav zPB89a!)-c^?3yz9sf2&H+Udt5QFRlFWU*U_0@y%QK&-Cb=J>HyDfM< zK2+efngJf0;fsPcsK8@4;1P)d^xbistj11$OB1e%cWChVi$Y%!^HRMlhKxTeR7%&o zR7BLB%O4(Gk?h}Dct%}+txeB$*D{MQU8}j5MOPg6%&$sWYxR=)RQ57`t!41d0V_Ry zRwy+OmpU{wA~n=xdxO{7M_xSxJvt5aXqM9{I4*!v@}jkRIbDZsK||HT&g+ZUMwp66 zUMosZ#4mwXqY87`cq46=gB(6V`%9m60DuD6pN%E z_8R^+=O9HTCJvx(P-0^6ABjuF;7s=I=vqtLYU{)-RJ3izx^Z5c(Y!zroOIH#l~OJa z!>U5+`U6r^6k`TVzqj=A@*#n@zM+jGHn=X)zKVH#Hv0SC1sxApaT z4b9H0P#?mX>MboD*C5<$9g}#Pbjc*p$#g}M7~j}T8p#<^ID8>HeAhZl0_O!L>JSBB=h=!&Fyc-MNJtJ|}`udcTg|1x0ZGoKZr_-|52jamn` z_w#z2t3M0$=rquy$<;5ew~VfbP1XKSE_7jA&``PBdHvja$>!{oG<={4Y{nO~ar%b0 zGjq>Kuf{g4v$P~{H4d7vl-8oMEAYjI^bLZiY7X~cuTtPIak_)lRX4orSr;E#n;k5l zo%G5Lme+kZXkK^c_E&mID_!}Fq)UIR^4WQHF>E}8g|>xdl9P!=^4fPhM=2c;n}C4P z^m+pYG1}0?V~WJ6;?b9VylaEy^m3`I;?awBah8UQhv1Hr;`}d?n#vjXeuq|Qx;`(q z(rD$32~q8Nq;8GE;3Gl@BnIE}+GlZJ?$18Mw8`4f;NC@9dkyYOm1OOT7TbGXM8*6y zq3js`VgvKH`bIJ541cTA70F+u%Yr4izpF=Kx3h<_8!d;=4_G=!TH5v|DrTvo25BIh z%kpY1M`yIrGIUO~V=)X)GuBE?f<9@ZEtY$GdGme6@=!K=l2umu*cR3n(zMR(6898*QzO>SKwoRvyDG=Mwg|p$Rqws#bQcjNM2S&WJM@y`)-Y zb-iw*N~;(=DQA>+^?rD>GzsT3Vylx+W?}#iCzadML}Ir@ry?QLIAGbvD*WSMEivyus_d2Rks!#Z}*HwGlsRlot_$>!0KJ zI+=a_o9-1{Gyh546w_6eTUrlw}4ul%MIpJ2$&OvT;^9PxgSUlL0a&wP0u6mC$S z(0qOURf$#2-aK~fMYv2^d7so(aaqK=rH|;9wv!Y=LUr>ukLZlNgxeO`XqlDvi}r6t zXXnv#u<;D)=SVQT(MRd2wv9##FSXAwaWWzi4zL-|yImB8)WqZDO=700c&uVSV>ekg zHC%>d!M8EE8UG0;M4 zkX?BkZ|`Ss+j=`UB7e4i#6HA6kN(@lyW-w)$rYttdj3_(>Uy!ST3YTY+`2L zE4?xqI*+bMW{2}O=@oW9`@49PW%bhmE8Bclh}CaM9W`17Y;Ttx4_ibxxhg&s=-Fwa zXS33tzsb`2t4(^Py`F7CL#?!(_j5K`UOy3EMxS2D$V#)E&Pu1(nR1Tc+h$Gvq}1a? z_{kz2$$RiVyd<7b77$EtSeTd)ySd^C{5ZRG(q>EO22xiMdNb?R-K+`iB&R__guZCA zCiE6=dzzQ>9B#>m&?nK~vUGON{O#?0x~!fzw59`OCN6$tGEp!uAO2OdthtQ>PwGe* zioVCT5eknGm@ssf&=ilKVfWf^wmcpnbyXO)v2Nc$7@Xwh&GrZ9_6DFx6|S4VF#+i4 z=s7e2O|`t4tK~^`%9@prYf0D_4Lk4#*xchdyPciI#4`It@CCsa%6f!HY^rosT?vI> z-~##C%{DPVwVCPrzVyb>_W)gy^bH-bvp_AdUuIwTZnhNuBVg%QpCzJj{G(!SD+<5D z_NscLi*ds>6rT3a>+#XfMSgb5d#%(gvP(8wCSUNVPSCs9bcxkgt853PaI;`@dRj_q z3$VFyTyknE&RR7mdNli!-udwh%!vSo%(_WI{9APr+DpW08t-AZu7<;up8HB&6`eO( zx0j8M`pwx%dpv3xJ?2r(=(o9j4=?3YS2SO3|5in_^Q!HmUafyhvtodko`co(Mup4p zj(GO6woSmgR^3BGetjzdy=kZ?Z+u&yf9ey5b}I>E5>Yf~)Wk z*wgx3EZHv)Sh`eN%02asLGe;W4cdonu9KJa5p{N?cYL&4F(^*2zLgr9*V$rg=}}(6 zUSBQ!DI2Y0l@-e!f?8W5EN>Q@m61xz@Wydzc*L9i|D>IFm=(p+#yMvLVHW{~B}k5D zHU}}Vm_-oG;eudBMObqN%#onNm<7FN5mpc+=NvbZB#B7QDuRUXt?ue`YHD`b@A3MN z%T!HuRdxTSx@Y>#(5~%)_zeXgM4$4Py@7Z0fG+LP9w=i}gLo^u^ZNIe?$4#J%Exc4 zi)}`~_*M{3@X_~n5k20^UFlmy|ITOPw+Ab+h{oqjsQ1*Y+qv?}_k?to4Uq~iz7&iY z&1bz)qOpGyp+}FKk9rfv;slo|ihhNRNJYPg{VMw2BD_=Ts_1vH?p71M=zb^IY=_D8 zj@@~fP<%qqHTH^)esqJm38C-3ZnX=rhtn5Ps15G%ciM|BMW&Zcs4}9HM+!icm;2bu zTGR;N#6F1}Gy6D0f75m2U#*y%)GZhuZa>l%=JQ7~t9M9Oz-s3NI^aXKhu8D>AgTx1 z&u$|vsxK%*of7-|EKyw^Ds?DsF$?;e?F|`e7tDB*lxtOVfz#?{rF)yB3r5;{{L@HX zkB_j)n@L$Nn4Rx8jI@wuC1YZpot})ZCyltipkaJ^T5_^0#yiWFnRjp_59jNHbO%4>mws|HICtPH`;9VIBjl%{Y!!C z{8@~A(Dv)m%?q00Ha^lZAg7?dONXh(FJ)jVYD4zPs6wsH!1OyPGwEpfgBbEE9f|B_ zy&o*ZDN-M$B6SR!be# zS9RE4sqGCj)gFCatAt?7P7^Jg)$%7lSf&sEpjXTF*(Nm9YT0@J;SUk0o5tp(<1V&k zItA~r7z8wPSP3@ zqB(bzp;=rZoASBPFxy7Zp4v>|JgGG*!ZF^Oor9-w&lQ{+PhlbhW~IFRG7z5TL?Q!V zxJ8)Hu!l|jJ!MP^-_zNzZlf%|k4aq>e=F8~C=kDs^ciIzEW?_L&b5Q+%sTl)8hVC= z#;4k+%3V4Z;2VZzLSj&=t#s0Ro^C3N1>X^ z_D=Oi)Wv1hpgOowYdkZZcLi zUN2;)Zic&5eIJs#DlhF=_d%N%wH|iT`$t=5UmmS1@cDfH{Wg*24%f}}x15eRhi(`h z!4_}JHeuE3UeLhAJNUsNojp+7B8E~FIc(AZX0e?yqA$|$r3_7_;Zk<(v(XmYNm5s( zp#$rVkETIP%A9npm73M>XC_FYJ@V~7kgEeNIt{dF2tF;}E_Pq^3K|yn5-Gfv zO+i5c?3`|uZvpP|ByP@jxu~EDo)o5MW}2cKo1TI98m4TS)yJE5PeJ{%#pcsNw>?#! zxLIaFQsQSaS{lbKj@_iD>8z{$^&b z$i^*vKD0~){v==5DCf+F$O_G*t3QX8AY~<%vf?%Ss-U*lrAN-C6jKZd&#K)x{rs_UIM8Bi@X=G^sdhm zA^(lkQ5Wb3*dBJ}WuY~*Z{*!*%K{gtnP;VRuPfBs%S|gx@_I}j*e1N-N4<>h%eH&d z8M1DtV}O75uaV! zBEwa+>q&NL6P%?Ienjf3)I7?%e^YAYgC!^UlcIkuTyu;r-jDN{f7(=;;=RfKtrpPE zpAEbX3cpLqz=@b|~q$~|lhSMJHu z8-wx$I^silf=!5eK=ms7I&O?b`ImsDRX$6E@@}c4I_NdFw|$Jg5wqPj8b{I& z;U94ypMG?4(pXLJTWsz}YewC!cFvC)6GfQ5rj4KV<$pqV!tfJUyc1|dvn9Q$gyYpe z0a-!AL6%}6!vu|9nLBStQsP--%OAJH*tgT*HDR19byZs4X5I70>T&BN=R!g&=j+Gn zmGirNE;LNtMtf>)={#vQRsc+~dOd~^z%~u$1LFqZfXHM4Rk{HITqQOl7nyieMyCk= zm_5uJYYBc`>Z(k<&$=%MGT|gIjI|XS)>NFX9mHvVZh?M3HlW~wsJ|{$6A#eEYkpl8 zL@1-RdtzjM%I;ywmy0P>`zN1m8~z>_CVJX5%pUu+T+ahX(A@sDHGMS=L8Wd2W<*KvX9Tr-Hy%&7mMk!@zw zqj*N$;GQv%45#W&*trmn2#>ufgS}f(dj5tLAC;hII?C z)?GZ44mTag5MMe@Lwpe(iQq>o=ZnT^q-L_O?Z;V&@0M2b{wV02;4?xDKOt49r^Kae z7Mpv7JnRs@Bha2xKzjz^^Tt_(-y5e9p2w!3p%8XH=ZuRYJnYi~Y}UkAmbmJsekoNcGj<7BL=;w)zee}wB)dlyMvm6ye=JI~wK%eMk>g4yFN z!0QpM|F@1y`BZ2afYF>PNzRc`$Oi+AUkaFH^c+G@pKLPBN z-om_gyoUKVwgn9Zv-A47@e!Dt#wBNEXJs(SS(%xrKe&x;iZOoE=0vgS5P3b;6xH+2 z&c_a?h#&?6Z*Re(x{3eD@YKNF#V#F$vxINWpUWS(+gLa8XFYJ8q$(s-fLs2o*T6gY z+^SyJ*RdF+HEd zSBAg+nL%AHoiLy-p(7I15cb+rzpFLx5q5Fm&lc9b0ZY4lmI&7Hgz`t|QMPyNXS?Rz z6>U|NXQ#E0q#eR@f400fpP<*gp@w#U#awGft$CgEvwn^+i)W!}8E(m&nML1sF|WZz z@x@zyBC^9BbkUvy)_IaM!3S&=Dxeu=&C9X=G^CS!?318b?qQjgDblIq(!vR(jO?r z0$Q8t4461(Yv07EJcWImMT3pkyVG$QqV+DeLDR8+yWU;C1laDMV6ojZfw8SKQGjHy zJ(-S3Y{Mr{)b+JKyIBKonC`gX#>9+(l~kV19zeTneZd( zCj6x`9u@vM?9)OD|BJ*;QdNb12CJ?QgzhB2OtfGw3(bK({a?S78F zYq7Qs#+10%b*Vq5s*?m5%F$$Y6a&c=)wqeasP4fPrGlbb!KyaR>$xA>u<*(2AKa=o zeG;R3i}c8#dLte2p?c#agQ^&Qne6LzaINsB#HRvA9`_j`Qs0z16uK~%#pdwd;2%&n zAGhs^$C^&zx=9w)E|V;%-%rw@wqsM!P@p=WJ57p!ipM%>S;^jvEd_XYPf8ZO;iE5M zDvsk9;aTo29{?2(M%)=;dM(Bm!|Nt4l#!_taxuFz7miXrT`zT27TUA!8ZUQ@Zw>1N zD<@e-4Gy`<6yJIXi0GvkV6}zK z0G$-cz$uf(uvQu9$gb6xY>Vh=Qdc2x8SA#3tS?he(rmJ271mUMt{ntuSnWiaHmtUf zvf8wqxWFs-tS_$4C-Ais`-2Cr8`*u_SFt7V+?sLB*C<+4J23gRdVC{lsXkmANMX9COBj$Z#` z1+5|y8}G&~xVyUk7%H(lL*(Hm8Jhz3UiR<0DHhn?Qdi~SPS))e$b*yIJ;eZv%?XhR zMJ`-hRjkx(xq6$1paHjALvLT7!a81DxKKx7y19F}uw_}%y>kMO?_-ZKyiAoHgv%1$ zJAM+EoPWve_pyb;!!xE>W~WYJW`C1T7-l!p5y@<5qYYavUHh_&>!w(4W2cHiYb=H6 zNW>CxnGM|xp17b}WO z{dh_P_Ei;(U((TgCZn*06xtk_L?qWLY-N*2XIX(s!^bi-m4=ttz4xbDc7K$*Dh&fz z_lH0loaDQyw%Ed&3evTMAkB&uJ$`QO!d&gI3FMZXXpgE;R%-XerQsEJZv_oCUbGhD zl0=KvsrJ~vT(l0W3tr==SzcqNF|Vgj)0DNQBN58z@lNY$y2if6UbdKKS-m1)-P4N<)WbE7R zc~K#D_>>gHVZ^239ViP|7+hP#mL=Wr-5^7(mST*j(aSt?>C1-i%W!GDicbEJUBtJy zckwdz2dS>I?QLu|uTFvtQ)T5dc6A+P<%`6FQdMQ-6IMMC z$cU5don|3k7l_w2gLn@mer1=p_}1S+x4gZ4I#d0i^vKlC`{{^}>iehbdiX8-dau{)FD!2dN+TQ3 znb$eNXM>m??o;uvZogw|_+{!rRM$6bb7FPt6z-jFk-l@fMSA*ljr1rs1r3F?bGhgA zDAMtnDVgb+c+S(fuu)ugb{0PQV75u2{IxnRBefB%sXs-tJ< z0z8l1967@l;G%$)t?B=x@bPz+c?7(;N^i9od#Mo1^Am8me#nLn%2c^3mS@6 z=k=E}EUjnXQ;2uqq$cA7C0OOw_4?gg7)LKgO1H0*9(X;9Ntt5v9_9A;mM1nZ9d0qR z{Lx#&E;fPlgm1RgRjDap-SnAy^g2ljBvgH`nyDAPMSO0Gx36IlzelHu{aY=1oktC4 z6300lHYSd>z4m=wR`6o!&fYn{iCGxUgek`?9?^!QIxkyx2`}U!B0=b?h)2 zF@^YZT)1cj{1z@s6#!j9A;yomai2L{f_G2RQ{2LtO!nW>8$Z*t1|H?>&^^h z!bzshvK1QERGh9I#Azz@4jSa9Lhm*eIy0^;_Yqt@uX=YZHOh$G#I{rWE3O{@u)jNK z6!I#0E3R6!N-ng={^cs!ySWFdbc5NJ<+`((<@0B20?(x*5dvwMeC}*rr9+MEc89Fl zmg8;#E4TQp5XXI_j_Rf`+q-|Z<@lCBi%tVAnkt<(+k!l3wyx6gYzrEyN;|KUXGb8W zpSaO)&$&p)hqF=9CN1bo3}d|)6b_%fpe{k&Qk@u+os#Tzy?<6x;z$`M4PDW_HQ2Xr zyxgoJyN`LMR99(9VD+i9HOEde2@>MC6v6t}$JO~^3;&rW7k|m%R4$U(!TpqrFA@{xh=Hi`a5Ae_o}=^NB(ZZW z#rp$Mx@HiiSrw!6xAeiSEz`9Tmm}ez5Odc?WYMloIf0M$*hknmW%%sbwhY%r4^>cx z%bQn^d~~@)=4TsLj0aOSI@A|;B)Z;?Q4s&hb@|w5Sn8M7MBy}%MP#LvZ8uk`=1I= z6`{KU9A`qGR%cdc@7d1_8c9y@`z8SE`u zF?c^T$Kw4TT$27J-l3O(_kXctkS5n7<}%*%q!R}3*>ptW9hyxEk-v*=$KK7DYw6w+ zF!Gzv2+@5=>ZraskL~?A*U%mM%`_-Ro>Q1%yT-h~ZpvH>c>Q^LZrz^EO|jZ)Zta|( zI5z@0?t9>SLup>uCK%RD{wa*3U$4`P>{4pY>P?8_&24@K{J=FW(+gcZCyDqjN8G+C ze&w4rPXMdN?-lH58bTnruadedN0+efj8J8x3w!y@JWKOX zsjISa73&TOWWz}Y&a)*N)>N#n9mHx##y}YKZegxJW)ae;36Ty~5u1=EX*b2Vy@uVK zNF$Nw*W+=qqWSd*d#s}Qbpk^BC;J`C{A|u&dG$AJ|pBjrZe9 zr&i53vD5MME!}4YES>JNM08&ubyQ#7%=XTmZ|Ocg+NwyE(~7rJgLrtpK^*rD^X^Cb zrcWBs`Q*sA+q<#ZusuOh?t(aupY+f^5R~#}vB^2OX&r$a>tZ~j%6)pcsp8lQ5EO1a z8BeGHI38P+ACOundC+Hs=zc-!sAwN! zd;Jzzx*s$RioS3P9Z6t6v=+L|+xSG$`QgtO=+gZZTf59E6V$?#^ZjCP?~_HT-jiD} zJ?}dK)ANi}Z1Af2Rv~`RpOZnq=f?)G*OVxhM0SJMn_Dp@_n&B`W|!9t8Lb+`FR*`8 z;5k+7QmLyl(~orv7Z{>N98R)~(valU{CMEQ;q43blzaf6zs%;syq#l;{adl^yqbuX zR^e5N(a@GJDy&yIgOg(RdM(+B8Mj{nyBaAq*z#4+J98JNt!0W$ZmKO5<6h^pYTV&6*gN@E+K>a)~p&E6AVY{DY``B9F(4aJM zlxFMKcYA#UK!{D0muSyL>u<8>7gOt8(sLKsl76N=R#8bWZvlRE5-5KdKmMT^df$ai z`7r5>q5K^>A}J5QvrsR<-)1)lFSMAC3s@QBvqG59mpZD$-eG&Q7up5*m_Un811*{b z_?rvu{Cw*|y#V*v7BtiX+V{nhn81<-DC1RTrFPoue}^1aPcNjkt_x zdQRVEuLV+G*~pRK0r|6QCtfXsR=j`3j(1#SdB0QYssw$`x;+93a*}R~Y(eiB4PERL zaBUsOkfGH#2FM$W@QBL}3(IdbE{AvdalL*5U%z2r(T1ttFXMVf^}8>wRsXVncU=my ze_mwC{%H}Dy+%4=$X-cDB-x>rln%M}9>w03EV5w#6EO0(&j^8CeX$tks%J*Cy{e0C z{r=lDC@y$Tp~QBKnV1(WvTUEdSQqfIY_7m+t68~oe(9nJ-}o5;?gS?rv|}<-GQ5*k zE$&NPx6p#=8yD9lqNM<=<7bTnw$4vV>?ng&Lv;#!bs7AnvfV@Ks)S5n-Ty4sEIY}~ zkPyp{EY=I{NqjCe%t9OOsl})BwXc)fRlW-*cNA4Q}MZW5T5}RJ-vP{Zj(jg z6rli9*O!i97s@j2o*0mG*}bJS#JB=4!ZnB%)j!!|6;k$qRl|2R`}O7$3-A|GSEZ(ubw@1G06WPikkCqc0;NE%q*wB( zpHTQ6LT}nEsM)sj=5=-!IsjE`3mUXuWQs5+8me_Jz5)Dy|8`surRyz9an-Z!~b7qQN8ku4@ zD?2{Jb(!(iUMlz@pGBLS*ymHIO~$$=Vx`i17+0cyS$YrcN9pab)Pj8BQU>`h>4*XO zb~@q%`F1aFny>V3V-IgzY8iehVB~q95n|YrI;xkpv%PngT85uD4T_XFh1*ELOXpj? zl$lsMk6)@Q?{2nst5sI$I^S=?Rg>B%X$-)(*ubykz22Hx~= z5x(8+?oZ`*sURu|Ctx3_TWlMVxN=ht|;i>_AkR2?5>r{ldOI?+k1FZY|Qp2#w ziIZ%iJn-82*it>I{*%w&WRqbg)dlu%MYHp2DLSDAZYo3rC!%fOBaY7MQ!8fI z&QgGVa*HN_|Mxu`VAOQCr^cj88GlUn8(mPt?O8kA;(av4f^=!2UKCOhC6pKQmY2 z+m>6XpOCsLIdxh0kw9{sByYK`)3-$f7u317PO(z6`xAp?P3>+0YXdc<)dXtZ2m*{-X@Pks2;glbGY~z`WZ-KVmC8Uid-h+<7A{)w z-^3|WS7jibbteQe;3VS;Y)OVS6`yMd@tJipy1i{16lBw(QGZQ10M^%`QLzbUlXg*z z&~w?vUun#7SzeC|6P4u!_E<$_xq`Lw`Hj61mu>K{UDVvRKB%8ObyPRyvc202?KHbiQzQr6)Zlg`Ph*qFdBi_R(|O8;V*)1-Ju- zJFgcN*7pY8P{s-L!1=#2R5f}#vroedEx!|_u1d?5tou`;=GRGngoKvKODKG~OumXw z#mniBVVOMKWvOV7zl z#iy7qrn_G087W@qt2uoZEWRz+!-_L$+hR0Nnk4asXk$YJ8 zaFM}Tq{2xKQuw@LKDk)WwR`dT2W<|_ig~mBTY>Go`n4zuHb>p;1-c1_d|;B2l2O>n zTMp=j%;w5ugy;@POh!_R1+pq553!f$6kEJ6le#J+53=q>#rgv0B<+iBd4@H$Vs`EP zYBOLa*69BY9Z{l9&r_r#8lt)EXnJc8MbA9K9zH;=FvPuzEX3E^WB((>k2m)6JI?n) z#g^gsin%&Zm0lT$C(#iJad=X(UOhj>{{CESDP9+_vc_kHDBde|R1ZDP_I4KA8TOh$ zi%tVAn$`2zVmrI8S)y0Z{n!>X)au!JonI{Y&CE!}PYQ@%jMuDe+_bHgQZzU&dKjIX zmF;yMhW7y(c(r8sK)ev>oRac~>Z|O~8E}>0y-4b+M7+ql7nbOu>LlkuLUZXGOEkDI z^SS4FL)zj>XTUwf{;j}u9<{+uUssViVg}bF!Yq-gC<~d$h5^@RgCRhkOg0{u5h`#8 zv6l~*Sa9Ezx+)uQuDt_kZCT^pi!`;I36RUQ=t~%}mb1T`%(urhcCmHIL7Z3S%=MwBJ2lTc*f-`SW2J zrW&lLFfsh9)Kw`N!MZP&YKEO;03^ilN2Pi_{5hWs4YM9bduqMtJb9qhvisKO zMa^8S7G9eO^A`EW|1D}Eg(4Bp^#<2AMV4Mlk;%hk8Jo((_w3)#_|h${iVLK!%EQ;J zyCjeYCs|l(%Py>`C|x^<(yWTn;ji{BY9Da8f3M=CVR6t;=FMyEv5HD=dH1P1KMY=5tsq`IhE_1Hm#@&cUP4D4uFW2r-!rsA(>j)&?6AVp zdT+qUUDAm8PVrMxM|H_hZ11rZme#uhEjkUfXzJ_*D=euWtk89K0^5RysT~S}8`8O2h(o@aPK5Xp+=biI~H>C$H3raFQA;Eu*le z!gTE*Ov5O;`(%~w`hN=F8)eCxA9HFcWQ zQJqrA_9m^glztm%(P^MXL+J}EEv4&MYD!Dl7Bm#4&g=fzS@vX6*Z7>2)Z~n8FSNp} zWbw+7{M}f|0@N09T2gQTD_Kw~B{3Q4*~6CLHMU1(WNK)xXKxO{Ph#}sRbm*cEUaPO zlUC`W=_Cn|5TmW};W#iVF79jj+ypO_$5Y`j+EfGBdGi;t$DB5grC7bbi|NKxI+Cz_ z*}_g97;UKqCI={@E%3@)cSeq9YJ#B*IDvax**%ywd_KF<@_7%gCjT3sJHY2VSgx+J ze15-*t7xJ0#sIpEjz~a5cxpRb?oc(?`EHux?@p8MPX`N7%y);5z|)qtsP{ z_ixs{cC`lBNxDEn0N=k_7umynE;LYNJA_ticAX>bR$F#oTaDc)BIdlsMfFWcxo-{Z z>@`?}EgMSe%gEAkL4{~W-jGqMjKnmt`yF0cZE+qhbyY@=b5tJ%GU6ofueQ||*3`wy zwS#~O<%BsjTFpB4Z@Z5DbRBl9CfYItA!EUanM(^ArL8yQ67 zH%!^7xPfY3wg;$jV=*Gb&y+B!F8HJ%iD;G*cUEqd!L<`#k>RP4Tc2He0nQT3A4y%6 ziaMQKbu z;&eLOd!0PA9|R9S8EDmMp;bfbHNRL=fA~d{dN$jGh9cE@el@-aHw)|9?97Y|3u;Dk zY9@YcXnu)gK+OoqQnn4ReFk- z&sa#STj`L&^%FYca5byjPu6N)FJV_d#9cA^oYIVdm8m`}R8@XD}R_?%RW_KXK8IMbyY5|X5HrN^e}ajCXi5BJ$IeP zwJV}GBAztfA9o0d1u)W&r?Ls%k8!{1fRxPic7FspT z{(><_Pk6G|Yi93Zd(cqKI?q?Z^9ZxqIa%qcTxC-;vfaCQKrKGa;zThSsTp3a@S?iJ ztT>MM0pOOFc{|GuGDJ0A`?5>dz}esCKb;^|RW=@A)qB=!Vx8npNQl^e>kYADrt%=4 zd#BByc|d!O{af9)aSmO*UXW`uK_fPv!a^p@4P>y}%4UK@kxUqJqo;^Wd@93JnRuLC z{BXS`cdXP^sd$)mM+Z{jBqP@wazh_RgB0m-ZCy>$4hgGhY?}q`171o@aaLT^`AAR} z-KaoBwfY2}KFOY9U>S5v0nJW4lEo#b0&>fn6Mt|3%hoCzEUe1@`hli%tVA8d#fcu&_S6LBskY z+k%FI)p^|*UMCh`6PKKknwjHuZCZ>QQP_ao`1-;;Z~0c-lo?*DxU!ZGcmO{j0;&zm zlx~DH@k1G*8l`WsS04PO3GryDtFrML>wdpM1M4K;Kyq;YYaxW_pAf&nr$WJ0STv^! zkaOf+B#^XCZr}C1uV+VVeBTF zFu!Z?C!YY;h|36h*fSCd*w!^wy$)=6v*Cm#8EpSyr3t(ur#CpLf`8g z*u(oaT4)CcjJzd{m{sg&QimcI7sHR)-Y4WCuVUW{wCc3bssZ=zjTYRQ8#TBi*d8<# zxF50P4tNf5V^foJP+u=8ZWN!9k)DFDt<+kzxHrv;8+yr2imSvpaSX&>vsNP*+@NgV zvc+{1H^>;(K>e0m{srC=wtq@pm5(o3cOT_Lu4A2G_eNW0tNyC7{hCjOhQSuisgdj) zS%vgPu%&?TLaS7~-V@Z~*Xg(mm+!4GljBAv6;Wv<7lvB@nMP)Ear&=fgsWWSvy-iU zwa{K5brlUGS@+yu^(D+nvVOJD!kP-zwS!O%wCMF`>J+z+qh7a>Mq;7jYWrLTYJ$1* z1P+d22VvZ-W_uXS%xd;ZbW;VyRYIsdZ_}@~*cJv_bQ);UF#FxFmf6aiG_zCL z7Bm#I&g-w?bs{cc_oWo$I}e%Zc)bl(Ts+Fi$OO6g$=`!s)70YTLWZB4<8ARZub7RW zrlw-u6Fm#hH!{5A7tO4j*lJVx19cud)ePfEIJQ_KoMjiz?Ced=#G=*4X;F@3ph1>T63xJaGAf1Y zQugdV{DzqJJiQ=wRR$KaZofbVoaC8J7FAeN@ws*opFtI!y}S)jEi;lsR|SJNefiA^ zyj#xR!LliA_7J(o**G zk4+ZR2EU2%X{^+xBM~bE=~+@o^~wsiciL}u30v1|7F!Zn!a6OqYCzqKaYjqntA5j< zu3>x7P@p=`cfs=rsCX$|ik%t*RP0j3ZsI))dwWd?$EXaT;z@3gy(RdpLn`o&N-#{5 zz2r;rg6R8XkZPFz#!lV+n^$nwf~OOts>;U(R(%?({%G}l z+W!PvbQ);U0GzSe0z7212KaBb1q}tT^E!32H{#YsZNs17S9tfAHX8PHaa??IW>!W9 zzP8Y`xUP5MKpeZ-&YI?mbb4O8 zpiaPX@glrx>^PbqUG7Q85PX-e?`I^w$) z4ESAN3u>~n&;3rZ<4xakm zUJgos*O!AjY!4dha^M_){C9IX@SeT5xK&&>3UzwqG7xXRd5_1qD~kIJ8(7>N-w5=} z>GSsa)tA-vx(_UF8IZ>0;QJ6=Cg80qf5?c{h;Gat?uGBfd(|!F59tQ18|QUB4I@|W zB6HI47R!92ExN)tw*ZnuGIYTq*~x*sq)|wys|zb=3%I#=4!OIS_0+X-ATFz}^NEXph#V ztp#ANIRt3f#t_)py|{x4)WkC_FET19&S*GKXcvY3HtZtonnm*?1~;>4?*4m)43~Ff z`n#UE&GjY4#pHgzg~?qYeKF9@r6ZEu&|I5|<<~5gnK+w0owdbQ@@)Z2ze`I!yDzvm zL8_>}Ifu<1w0%SLhA^yYtWm?FpPVK>2}aV4ae*22zaUi8)&ZoN5raWB)SXIf2|+>QbV_2+3mIE4S*x?If2$LWTSGts3GSKKC*&)D9Pc z!9UEwUg&lu@=ls_C3Pzie4a@`$`{3Tyy>-yV>#5l3-KO!;+R9#a+32&vA3buqi5rtg9It@9{QXPcPZ){I$GU^IY2cmYO-KNI=qpN#d=tkFeCnH&k`AG# zY-ZGo-1+i2lH0rZT$dC~P3u*52`L!Aq$3gEniE38I3u*l0PIo}InN|wo(xVU;x_hh z);3G}FH%<};#SsO8Aybalx(x4&x!^rMwDyoaU&geR=WfYhHqX#^|rmNg96!+A>zx1 zi7LEZ@I;=9mU^<#MtBU@GEBuoTfN+?L3{gmA4x8cUt+t0``>r+bUfMH*Rv$m z8@&9H`r)&;b5Xxmx@J)CLPsR(;V#?tbo?H6y3=-x`NIJ#eSKC4^OvNKO2WNtZ-AF_ z8!jqlKHfLbs?$QNWjVYcZ3*9rSp947hxt@!n6)>WQ*&_V$YkVt9OmFQ5q1DmDDEZF%NBsys4xb5 z$32sTvlsdVcyUD}0f{@rpjQcahCQpY!<+F2*4I*1k^BU!Ho~{!{I?pNq`?k*Lmb9b zc&-_QXJ+8&^yXW*yM2cS_BA#I4F#<8`HdX{*!1*F`pBBQk4B#n z!n4S%MSU!?Wr~M+tS?Tnd zLuz4@g^8G=6q>Hhkd>OXoOzoLMn>M(#T|4ICOQII3ruuxYL7+#e8?Wdu(>n#DjJ|W zV-MjHRKcCG^2&6(@35+#NHKN{kKf4e5)0~GVrVOnKVx$VyX-9caI{g;0Zwa$=m0a-F4}3aZo5k_roUvvMdB1S*><5U z-zoUcOioVA@b>S-FN9abl> z>t=kl;4#dD+u!$StI&8l{;w9!pH9KT`S>ooa6U4AMt0Fy4 ztD%(|n(OVh3+G3?yte}j=UHsFo;^Xa?1HGX+p_%eKQ!5zT^t{mm64X7?)5)X+z3B7 zP65xj+5L9#Xx^s5wY}XdFbbk4ghBF%+luQZzAeL5!+0_KHE_2j`75cbQZt`*Ki{oM zc9P+c&?0#fr9du{7xJmYDf|whfi??jk?eeVWB1UmB^f6ESPIAMnq7i>W3eUiG01^; zyz87!L;ophT9yJQY2)tV^s>Z}l&q0qs+1J5uPb(2viC||m6BzwyEBjyC)u{!l8v{z z(CDR*#W-?pytjpoKv6o8K$G?eu*iAQcnLdS zhZ^S<^vMXCR?tVhg7^OS74%A8L0{|*_|C1MbN6r+zel=en7@;bNan+L?$J~6HSBcH zJ(l-Z0#;u1Ss~uvmpUp5zp%Zb-i)u^3i`!Bt4<58nhANgJ+^XB*rO-p8`vH+)P&r5 ze#@Q+blbo56O@KEJ;}?lF2bJV`gIA#Ao1Rn>r=>&2VvEY&@}#+oXC)=BkfEx9 zy^UQfg40yBcS>EAmd&iYmC_>XtrKkCV~cjBy?XV$g-?ZsSv{jUwY+qWEZ+mraWl;1 zVCayNQz-?t=FcL$TdBi{J;}Q{6gY08Zn{^DauxMncBkQ9uU0XZ%u-d+ypvT^_Ua3q zlbo~HE}3CW#pIe_-=&2?gZ3-gn1MD7T)#zy0hVY@6lsjfB;W z;aqe@1=H&amdk${PQB1xyIOvEFC+TBbjBe14IS|z`psUA=-=$-mwUaGU$9yZ7+K&m zLWHi9I;vL=vANY~Xf0ODf%cpN+B0x|hIVQD*s;AD&ZBG!8VXM5^QU_waN@~IMh;#? zV~Q`nD}rsFL!O`6+Z(uoF3u;F#0z;09HtSevbj6I(5!zpzi#^=s1PZFLl<)~0Q5A$u@%uY$o&NQ^gWT)ao+?OorBUq10!+8Bi(_3gk4asXr6#QV(0*N$oTLvVH0gew5)rr?){M{Z zW3y{^jdr8IWl?ty-Ljt$x8a~FHK1tD372*mdbFfv^r%VCh)Z#?Bd(*zBe8!g<597n z!Tx-?-|{?7>Z;gVv+kro>`wCYemlGV(nKT%fotX#8}{ ziu^dOWGgi*=Ccl1gkSYSzhLD0A2nyO*|Y2kieMMS=?5&q3sSKVLQ$?9#(M^OZY!>j zZQGbYr{-Y$Benon8`Rrt+^nQkOqvwOlGxifZg`USTtMi~%}>IMU%r&_s}bFv9sTTp zrFoLnRk=Ekb;lpjG&{*yNQmZTloPpxzJO01OZn&!`pl+9Euoz+pCYrgCp5WLNlO#+ z^xe48)uVMuoQ=8XxZ$0=+fFHIL+Mg7laDD{=1a#O8KO$ZW$fpU0~YYuKg2+#bcjK5 z5$jg+YW*3U#5n2E0~T`JO{U?jme8)fPp#A}p)o2JB$ZrLUT|NX&Lbfbxi7jiPT=ts z?D6T;8n2mKBT`y3*R;nfdLdVnal@)qy6?mIN|o;W=~ev2$l@<^ak|PY=z=$l-$W_l zhtAjk!O%Y~Ju?;e2|6O74?ppTo{wM6K0o@01^&Z;mG^vB2>6jwNA+44w)c(gwY^E9 z%J#|gdx55%Dw;M^^SnRo)O^VwdTM?h8-<3NnmhL&{3C*TD}2NQUl!YjyJG1X+1SQu ziZuXl;x)Mvw~3Ur*)gn}`!_3TRHk&mF}#0bhm2Q^=x*%V7C24o=1PB-Kca7D-6Lg= zXeT}Nhn<$!{!=fWZ{_o$VHVG5Q!O-|H@_j3jCkW{To};}I45nxrB{2WXX64u=@0@_ zx&e68GEXzx5wKFI*`D=F+WW9Zt;D& z-L-^J&6*k`;Ox^&&MVVx6BNJ}BS3^~g6g9^6-DuG_7qK+rS<*Pe>aA&M@LmK`K|!x zUKZz%DNx=R`oW)!^K|Ku!FdWD@!>q>PmS{f?CQiny#Xy3-sH=_F|yWYglOI`8&ZAL zo6YUEU17G6tPM2kw9u#ldEB2CAm_0?Xef}K<757efZRGZD-AnHdR$U+D)uvB z{!LG;nwGq2x){G>a6;^ZqRDyko_VHJ+fEM32SA>f{FlH}joqi%xwGIlp?rzdRf&0w zb#uM0RZ9cUqMh`Dzbwi(|D{*hPw@E{cqt7^`8o7i_HVVqc3z$SmqI$0GT<#gy`(-T zAZ6Y>Q@1U;0kO$XgzSLWq~}Q)vP#bYcKOl2Z0#N>bya$vW!={)J*QP38f(6p9AG@1mV>DoTsN~4Qz43`hum0T2~Qek3^0AF^jW3~T+_!roJm^Z|a zHiVj8;2-??zf%9Qr5-<=u3FkLy#6l+KJK6xnugUd9g)C?!d`ye(!l=E*VxkZec+__y_Se~3+Ce*IZys$^^oY|sE_%ew+yB8h#SOL) z?mwPXDwo~^+3r8$3^j3gf&BfKy$BrZh5MkXpgS9zgD)v*7@wS$O*hNTF7Q2z2f z#gfcRd4F+|clD)ZNNNqkH_RWEnNj20WB>9FTKr#^x++KSuYq>= z0t@ecW2Vm_;Qy7lA0O;GOlP|>2HKz~Yq8$*Mq%?lM zJh92lR2i+x%qQ&a#DkXnBB`q~^8xEF3uMMg79X@T_K7B5F{E5G589-d$vQ^Du}&rU zd50MT(TGh*?H`T~kEqCmb4a@=+8NF+{!Ih1vDftCh3628sb2q!7q+Hj|7s;ZzYA94 zZT_|^@s@ux)K~tkp}vfc_@Ks*0a^#4{*t}C7%vhgsP79{y2odUO8GNVM|I3sZ10J` zE!Ou$TNSx+S{GZXA-X*hMMQt(4QYj;>|cq0$7b8x6BN)ci1YuJK;y=FPO=3$H90*U zztuGN&JEB}SvWP>TmEKYJ&SYnIDWW`r``q03z8Bi%6QeF9m|f5``hBYOzNuKjAq?M ze`}nbWIiN>Gk!qcs#LDLf8=?Xzfe3j2IMwaF{+a}g`8 zz+2j56|KO_yI+3R9pL+cLzeGehnVj{(iu~<-=rgw@9>+4^elZAyZIWvr$lUz3RwBx zXNB0FA$3$&&1QR34jHz?-v?TB8fei>(O)`5OrIY*q-W^!*%TDi4Ba{X{GkZTO}q^Q zP>xd4X=B;O`$`(drX}O2*rQX5`*@(a9C7X@e8nC$x*Tzjtm34^<1$(`hzr=of8adL z(`z3V172lj3G3E8tOv1^REGp)hfh1Km)pzuTxgi(Hri8bQ0K|t$R=~$lCx3kE8H`t zWaMQQo7#+@XP7ia1SSor$^n5%z~wS1m4KD(*u{q}#oeT?NE{QeQJvd?FQ_>KRk{874*?S=ob z{O$|1=rqux;dkL-yToq&j|O-%+k%Dy*m*tgumyPF7Zu|E$%m{ zOxebn*cH0IY?*n2eX)#E4cp!9S$p_Q+}py4U}sxpk6jAR%sh|D(Cx$>&1D zaEtcTz;>RTkF^MKd-Koq2+L#wBluM8ZAKnUA>R2jJ;YKHlZ7iMlp!%WcuU5ma_}en z_S!!d-Or@1%E3O?{UneBC;9Lni!Q9G2wgjf(A*tEpP%s(XdLO4(2q2z&!dr=c$QC& z^mtTa;+cN}9}lvRux~(}jY|^k>iz+jn+ia!;NBPv;8u6|uYWAD2mWDV>mLyu8Df*@ zh>zH$BbwNw?B^**EU`J#O4oi1J16*z5U?Gk3U!T`XB=a5n7ZFs+98}7XwNC2J;Q5_ zBbL|uk7!=Q&F#JpXeeHt&xuC_ulRT`zJvr`vF9^62Ww%ohuh#96~#d0^;m;Xl^Ir* zU|#`#l<}I3js~fSE`eQo30p)<8xP$(t6SnHQe7pZGOK?;$q2mJz)3yq8YEtSM4bL# zR8{5kp<#G^>4+Z9&Y|a##R#u9s=Sv<8gM4Cmpc!)w<$k#G@1m1suGwa6w0Vn5>95X zmQoVFNZcY-RRT_8RlIk~B|v1;N%4M8lG0i~yfhG^YYrhAVA1IVJuG~c+on?us!Cwu zseV+jp{^#i*-02Sx3sE~JLZSZ;RCq9Q~+yvRrRJ1P*vL$JZh`z(}5P923jXpONSI$cajA?@Rg=@$tA+5F zD(WVwtFqCOb=M!&71c?8frJP>h#38Zw&ru8VF*Qgs@^zH<{^VjDE2y077U;^3jp+? zz(MmXi>oHk)+nt`;nzJThO`R5ExUEfF)~%X?4u5W>4{QpZDE| zbIl+&GY#%aSvJ$)md)*6ks9BkcG~U};hJAq^!^r8i-5@V>@_EFH-+8Bs4{i6^HEz@ zv(ZQY64lAy1J(Y=EUM2QV^lwvP8d{&(-DbkXt>w&ncxkoEOznZV;0w00ZY?;mI&7p zsiS%*o9z`Gvp1-wM_UzFQ>XPYNjrq!Kjsbi0_#}(@6q}93cd5#+WXdux-aE?A9l<_ zJ8?ViB&KC$rsSBpa3g%UHU(df8S)kuvLokW$`loavy;66(}vXb`m92y`;V`mH>7Uj zDaXqnv6rw{HI7?gPm{VTAGxgC^0*$cPSOk#0`@%Ifbj!+5uXbU11#E8z&cM7aRZ-# zow5+))J9{5uuVX%KKOZ5gS{m!TyjVj$-obbFa?gDL&r@9{v)GO%wENw-E`bCnS25l?v#-Nw zyz!lNfQ`2bxcg}GO?#$y1?pEoH0e3SUk>G|mAJ;YZI(GBd;}+T~ zm8wOyn|Q`b936>RA!r*&9o0qGv%REB-i$6Qu-AfK`W08nYnERs-^=aP(5xx6>oDqQ z7xuZ>+|y^}z2fQ9&1?`Fs?a*u*Bp;B8;942WTg)~R?;{wCnpn&HuGet#;TImG5+J` z3&tQ;9}nF!sCME_GC(z6Z)bn5tK{XqxbmsQ-cna3qdV*Ns^sl^ZG(*8N$#%Xb?v+svXCTmODP?Y$>M(L?B2;ZC0 zV^Jrs3!sdpteE4R785?<8jzR-jF3U81oUFZJ~jzxL4Wq9oVmE5QYZDJ~Y6pM})dcj*3H-aC{ex{&T36yqL`&A0 zxXM&eS}RzxKIrxQ0K2oQc|(R{Pr!zDPc#Tu4vio2%*rOA#Ir*hv@_^P1T=bE=NTcx zO`Z9)^UGYT^4QllFuHNVz#9@fNi!qnVcqJpLb%>0Rj6;oRq7$Ohu_Q&NA{j1*Lhlr6LRc%Zdqe7Y75$--_909%HrS!O{};>R*dHDvp-SMP@`vp-5*m64}e z_Xo;IVDajt-{D0v#O>UW=Jr`W9~y>Rw5i6l^JZ8m!fmTayvy+5hf;wxf~&Q7f0<1a zWHwDE7ogX7niZK`{4V2DxpK!0vdIhd6oUd04wOQ^2$&n^2n}dE91~p zD?639W~I0LR6z0@mgK9wed8U;SB076hon=cWcHyWlH^byuW5d12LbXx_V$4=gZy^D z${?Q=BKf~kM|IO6HaMJIv@iDw4Kl5Y-f~J0kidTDICQVKVNB`y;n`u$@;hwt-mqrb zIe!=4JsDv+H8mT*w@Wru7d_U@-R9C5akJS%QYUG9rC)gXdG$+Iunng<=@Tq&f_7iY@To=|b zJ6G0(CCnU?f!XFFC0uGI&bX~?^JE5gBo!9ssK}R!Gh@W4S2%yp4z`J*OB>_dUY?*Z z`IJvMFGkNvoFpfPrf#{RHeRi{7$oY^wQCRo6U&KrQQ}Q)dM`SU#$$xCqBLMfCB7i< zK7r3)u+JE82JPDohGzHGRX9`u+T~$?)nAxKzZ>Ii?6vaB@Q@g$dA#()&^(ro_-Gz$ zGed9X6G(r@UgpOz(klX{ihZUC>1|R+b=CK5aI@(UJC_a>N81+T)T!o^v_p6#qM`y_ z6|b^EffkCR+2%-VMlFL~2;at7up1vOX)>%%X?$E-c6w?A?ri$}jQN$sr_D=S2^rYV zPVtt1i67q{_e;>#<}CC3h&Hk1kLL;OUyE2oZ z^mslO8m3I6JyoWiCrx85*`x5H92ctv+eDO-QP|PjP}?Vqf+WlBe*# zY(jcyoJP8s&xM9T8tu_I7vs%&a+f!K9k!epqB$HhY)z;`M=WKa10tJ+3+e#&s7z$x zCmET_!dmt&-(-P-UMNpcsaVA)%nhW%NoJYhlN*Lf1+;7IE~J7c+j@F zHUe>(VeLJEm+RR}3@$3o;hnJt-*74ZT|r&0V9JeeWYOZevDb6En{uBT&m8B*YXC2x zBM|^;@q9tN=6Eyv+Af|s?in!C-Die4epu>I7m4xoI~(jnK6VIqw=Ig*vr}kiB+PJD zyk+>Ec+K#3wg(NxuyZ{jCbx+}pkCKAOB+x;)%%om^_~mkqZF96#8RwAWOHM_7ESa<1(6&a zmT{>Z9A>}%GC5#$Yg86PP$l9oJ|V%I5n3U?R^bFyNPsQutFc-R1nHVXkOtm#4A)U- zly-;&Dxz`VmJv~gc2JDVBkUlClbKNC-H3q9OsG%Aq5lnB+->MRvZeRbn|aQZoso=RGBCZ#Dfa$X-^(!9ib`mR)=ZmM z&s!cmzAc5~`?yD3G;??tfk7J=NW& zO6f$BvZ8xwQ^UI72FXowE|k&cCw$l{JT&C>Y;bQYFZrn&)kNrZ+5L7^#6tQyc{Yt9 zal$ElLYF|UoTL*lr-gJon-R5;b`2sE2J86DHE9PT*^O_7wxr z@Q!z$fK9`D4;-q1_X^$z)Ubv55KZ{&Dt5O0MHPm9k@U#GKA(Zs0Y$_5XaF5#v0)@a)T8K*jjq#eRD5Eae18&%ay>6UDBhBc#> z(k_IlRU*vOHW0kHnsARnvGzthyr8cK+VKO$+e<4eVV6f1)FtG#5Ok!Z(1e^eL$s?Z zSXNc*Y<4fJs;%5zq^?TO>8yKIRn5JVTv63>e`i%)wa?^pp<${v+EZ2Ad6Hf=!aRPG zh>&BD53lF>r41rM{aj*@Zyk}CM44QG^fr;hkrOBjFUrVN7Sh?f{w51tyWf{5s8l5L z2}1*^aFVwX2CbuEQU&T7L!bufsTjWfuP$xp4>lSSkd8*`3u&76Pz=ya_HZhVJ6<(U zs$y5oU)W>+cGY~vHCQ$8s%kmjUX?knSxt;G!*O*wA~_CMucnLkdF*DjYRqtQz|7e` zGsJKQsiS)4d^UJNHM45AkCxB2?TYKNQ$w?O=*(4{X8c6)?bUSE&Sk66P*vLnfZKWI zE;p(+zAuqUPf~5grcISY2AAe}r8i?@ttIWV@J$K_Fn$xEPlPzJzYJH6+$-6!XR29# zhe}>5fN)SUgc7kp2B#9yl^vX862SN+XN>0dg+KE`5HRnBl(&HL$bKw+{`Xs?TtuX zaZ}=>0V5Cjj1b4KNF9n;n7f6|y+9sz2tQ=o69hYjtBr&S?wDW+{whHe+@0+~LlNv8 zzdXSb-0yz$P+CeBo;fqYsX1Q3)cJje4Jkv=e;NSp;g{eOiK#jG?38&#HAe=i2JJoU z)Qkj6?`o;55^@LYmQq3j>t-h{!nc5E=Dj;X6MPq+4-G>w+Ek<3c{3F&QX;tKP|Uh1 z5nO$3P*^~`;BjB}7^BQg zt}ij9!DvDJkgfoM-my}52POkV2_SSfI}YTMLuhOj2(P8kt^}U zfR*t+D@5>OsiXSnaW**L^hB1|w85YR)2N`_>AY)u$^3A5Fv6iKyfabHrJrVtgRQoj zOS=HxN)#NYV^c(?mp9lx+!_MZZ8PvKinV=FY;C|1vCBvvy(4@03%KZ&qhQixwMh#X<$L7` zDmSn233uAuh>_wXJ-z8&P!C{H1@78H;AUF=7RK@SFXL{ua^41CUff6`%bB=67w+90f%NE;*Re9yh zO?uvwA*=L!%`U%d(!-38lqaYh{g+Sp#^y+j7bp4B46EGGyV2N1j$DJ6TPeLEAf^x_ zyXO0NI{eXhuKRT&Y^48`FE^1Eoxt&L*>Q|QGYMZ--A=+M;NSnUey{ov^*dC2)2kT1Di!*7UJK^;!n=IgM zq$wK)b@Y0#FKr`)oFbEkC1r|C7S_thR2Js2d#g+qnC<=Y1eJ;ze8TQPDx7488A!RI zRnbtzC~^(HWu@k2J{SW1zQY~P!@pvaOf+^GUZ1JB{L$d>XQgM>+&T$01xw_uXl)*Q zTbEknI$pbmt>gGvS1%l^sE(I6G4J#Pz`nGm1^c3!40bQ+i~;*@IwHXi-(6Fe?X^~?&AnSPr-Zg7k4#;x9E=o#VCBs#tcny12 zg14#Ck1=*jU6q;@th>FYX4y%$)U=cHa4kJKU-f_Nop*dy#n$)TJE0%IKnOjB-Z>{d zASLt`AV?9Ea?&VD34|ss0SgF1kTQaxfG8@cpjQr92^J6m;i@D7&LI&L?4a1&yJptf zIdf+3o!sm5{&}Cz=kbO;YreDAn)%JlE@yA53l?H?4(%y>RKt^hL*j*!c`#zk!q*yk z4$eOL5qwxmh*d2TDL@^oMIr;uLZpGNWZ+ZsEIfo~fOMQ7S5VU6qY5!0Y8s3ZX9%8O zhqHow^ZB*WAOy-c<2CN$DHrG0g>2TDb6qOMsWFJ~gpSn`5#9K5oV`NM!uS&F^4ME( zUG5G4{)g*w!4Z(}>JXIg$`F$83$hbJzI*u*S-#p{o)7uF`b+ZenGjO%X%ppx018)c ziEN|v%~u4xD0+bIQhgwrmF70X>KW`Gu^#V+fVg;XsiU4*e@D#SXss;9MhH7Y$^^{6 z5grqt$U+7c*55R&5WXwpf=ga5mfRKg;IJUK2@WU@=EW>^^J$@C%fcONPlq|e>(~$C zU&zNsbx_7JvaOP%n`GO$jyisgk`8rH#{KK4GX9C`f`yPVw5Q0}@T7hnF5_;LitHYR zp)9hhKNs2vcqbQ#xs7TdWdj6lQ!Mf^S&mT=_21-Yy2uBKda+zVNy_h3VSyjGz`N0B>Y&6=)gg)hAiE_bew`nYC9Yquqpr|Z$l-75kjCrQ zmBz8a+{%xXVYtRy$~H<@RV83lU0k90vnQ}Z=e=Ag|1!a_`bIcJEA$r-5*K;jy6Ot; zAShTUE41PN=XFrvOTLDSpV9oe&07Z*HW2!T2l5k*2fD-S6vEl2TpY}c@tN*iQz3j0 zLDUu3Rnq0Cl@VQ!9GqAe6}~{WRWcMpwmEf$!llt;lw`BygT|Tmn!4(lc3rBU&6A1` zqG%KGZ)N*!cy$-_1wYq55>yB;_krl)Ed^zgrx3++-tUJMwowhF1huViE)Gc1J~?b9 zMNP=1^95c~y+DWbGM$^inpB2JgaBu_K3Ja^X|hk=gkOJ*dwXn5X91!T$a{LY_zo9L$s9&ywi~1?}_di_JpZyFL^?ISG_&TAa_{30E zs&V{CnN;~#FW~C%Yvz;f7UW`dD5?Gq6KYfdimQH_Y@_s5O9EzvN~#~_Z(HgX!!#O8 z#q!<>LgS~~4>8wkrqk`V#O{O@loj3xrG2P>0;mKpo^!?eSNLf7rdrvDFF@oXy}XL(BG z6K^L~J;>A1OWTcEQIv1^vJ?7)l;0X&oeN1R6Fx>QzI`ENk2zC{MN)+9mEwS`+>j$x zvXVsZej~C%vaeiE8o5ep;;4dNPfd+c^0ydd$=Wym(53NZG`JH>h3sK)4Eyn1AL?1F z7(wxElmrEY*g^GJYOyPM+@7~ci+-C>T=Zc(!jDz7=-Zu)H~j^KKdv4Me@s0R{u0?4 zu}0s^kI2H;@2#gU^~vPs{CXt%?Iz6D01OxXi?WT^z=hzb_UT5kj}tDYqFxVS`Tj3M>PL9y^cliI~6XEMIhSF$K9D1{eh z3z=IK=3RqlHNKHURz~wMa_))&#vb7yUGRAjhI5m%jZwQ?AoEi+DfPuAJDHqui2@w*vDis-tm!niNGMYS% z4&xaieGir^D5GWsRp=k4>f0#k6DIcZ@QBCy^X3zDqd^E*fxo^ z-6|FlsaV>rN=2mEFh_KKNw>;~zK5LbR3A0oU$#|}G=*$?*H;I#QPQ(MYW&Xns>Y{LU9b=u zhxQbW8=kbUFKHY@D$}@#X=3TSDX4Izl=3AKA~dd)`!ljgj#A0U9P)I&$OvgXU#_5} zWhPZvV@iurvI;`t=j(t}f;Jk1poP9);bTU<#ALl{UZD}yiCAVMU z!;=>Bm%?x%hnKJD}xB4jfl=#Ayl@jCQVkz3JhZ2b zeZ!Mk4cPiNg^AT4UK|-4j}ey%z7oU)84>5}orV^+u54oJ-C8x!xO4b3X1a342fs2cDFe3JLDC|*Q0z{uT7*Pn< z>XZ!mYoA2`J?1rzlNmjdrXw60Tiz6rLv9EJ6i~NZ$nh}tknMSz$G*)&3}eXKVCquPwBNO zq^KKw)kUjRq}~VLPDuD}88=r}b0dNt4a>ycqB1<1>WYu%>TUurO@W_5!TWqe3TLva z355ZL!MqUP=nJxLCD+3u@%q=-<#?6h`!qRss3D5_tZb{~W*6C>YA8f4WyB~s0a?ID zU$oD7D&!OL-BkMoPeXII>h^2(H}v?miui??b_jE$oSqxbz0y$VoDIt;tW*h813GVL zq$YLg*})7n4o|@Ftnnf#F>5UfL|Q5}k_McTmgmV?t&y}{ZzNYxa`P-z2y3KHct%Ox zM!1v%lB-(Ep3&GVm;`Yu4#S~MkHX$Yk18>Np5Ym&z+gp8JyjQ_W?m#0d+=sx*}e@j z%U`q53XlCCm+hBm*`Cn|wS9LZ()N1UEwOB`uVdS%l0ee@aje+?gJ*w3jr7| z?zd$drIQX4@Ga35xL4O-z;>l|+b~-#O6W}dL5PVj+?N}v3-_x;1q{%g#1g7s^1&R%OXm;cL5tdro#j==URjMAonN5zmBts{L>B?o4Bn?@uPm4*?V|->OZdL9O)4 zM+6LRf@`z5XZC|=R+{Dvt25X$;#B)21jNPLrips0T}aH6Xss;HMhNdW<^moApRs}W z-QcPWlP_E|Dm`{?CYwH^5Pn8s6a~lfd0BjE@YD>Lrj-KmJ;i=&V z*;dKOMY0{!M3t^lGO`IucV-iHo9&~zU?H~I(4Hb&!;>D6Z+`8p<|Mc;79--p^@s;5 zzApI}gBAU|8HJTGT7RiX!-Pj|N<}W#$?++l90<(VTUOpM#*+D zc#?HMD&ZQ9LAXM+(CN2kfN0f-c}$z<8$IifRYY?_bxs*Ki z5(6k)wkfiW(kIsmIIt(KW2<35RIW4QYzHo!(SkbZ-(AER;pp@V{15 zuGv%;@d9ibW8u93sNCRKC;URu)db#;aw(VJ#ZpS5qSl2m5Np=OS0j(JDjs zPjc+RrYPSXvaOPtU&(e`Q&ql3$(E)l-+wh#<@-C;1q&fxXipi>h9~zy-bubua!|Ou zLN?$^p;&rB#ce1bII4N3L_R>l<`R*LkLB=`R0Oxgr##MxRFHbVkSi$pxP>ZwX3B?A z@~Id@$vPmFXpP1oT5&zB7H>yf4}*_z^?>W$oihsI=c@j}5Evo|I-tk>r6SDQ;gXUR zuPc++FyO>0TmxP?%2(kZn^d?8S8y4uT1)W|i`I=r-CjiRQ0Wp*;+`bCB*ZV8DF;n7QzT1^73n9YRd7P{eJxe|xwjZrD!4uboOah?8ZP6Hb;>zk}~;2zi^!vMV1Al>}}! zNG>i2b)1nyR>pNBa_?j~O8hg~R!L77*_KjzGS^m@l4q3q*zlo6tMp&PRh2iO>b`JP zIW(z^d&8Oc;W^C!l?RElj5i7!!)dZeN=UEw2Q$!kTb-YNNChGzAaPTH$V9^kY3M7N zh$8puMMxX#PI3iBD^00Fy9jm0GfG-V;KmwmYo-;+&q5h(L7-xJh9U6F%ECUTFbh`0 zC5W|#*iFSErjg~i*qmGhK9{pLT!>HnjSYlm=BH$b zgqU~nBeIyaT|6VEAB40ecb|xW-^Jg1a!d^q>1Y6n>$y<2QF^Ey@jep$K=-qb`kR(U zuVMNGmWrMBV-OkNY5yFd?zB4*_%XCrcG^Z5k4CUmPvNM_2?;kglu?HD-wn5eHM1x7*EJY{9+em0j4&wQjhx(cGO}m^BZ8A zL@r*nEf)EhAjhaEx;yzfPUM5u>^X7;B`IB~!c0?AjFNjGAbt-EkV?o#V-T{CG<5zw zj}=C+zn_O29F~!tIpXhSo)rvQM72eAQW~i}$;n6g*rT2IrU=}5FT-R1bm!gW@xmS2 zF;+6QXt4fHB+2oVx;FPCFRw(>+FU(K8n^;eg&!%ya4k2HZIr(0 zPrwFI(g`!Xi)#T*BhvQUFufwYq7}L%62*L5l)6F>CNfy?6keOiG|Vwh4q6$( zBgwVVQK;ydvaOP!;bePvl&WZ>WJ(k&dPS5_v=rzFsyhYqDZbS{8vj9pVRfXGnU{z54#UpY>WCntd}Hs9wXQPuCT zGxrw#qYt*fupdsP9nElouGWkc-MN`6#SZ+4Aw}(RIF)Xu3Ob#fYuk(jJu|P=TF&QNlFgc z|7uE#QSy@*M#=gWQ^-bJ5VAO%ZpPaYXVcT!*?$+tGbISAyFtiCck}22!fW1KQjy~B zz2q(oHlgH*W_TK14gURq+jK9%(`Y@lIf{B{a}srq?2cGpv-uH2)Y<&W@NBkolX=&j zOU}+{PRibBLah%#ab-U(+bGfJ5pY*?X{lcCZ(GuZVLAg##kPAIgvQnVUUPNZeLsPx zp|!H@HsY8JucOe4MpufCi-+&;(5ZB+_}1NW_`O#Ry$BxkFDrw)tMJ~!kdAOwWx7>K z&z6N@jw^Ds%38FRoGNLKYxJ+Ot&*9C$o9wPs=@*L<5#bcoVX09@4o~Kd(zZLJIWEvc@mNLM?h4MQx3*-ZZ^8L=3sm-o z7NqRMvR6Xc2l)|M+4@1aTOD}mdpr62atnA1;M;I6ZK9kDpm0%tCEF++_Bipbif*C% z&F8RLX?-!wUKS;^UcU$-fuc2do0+d@s${*3pkSaZ*M|H1fWyTMZwRGrH(UaWjW@1~ z2{D_?#8n_6XLFfYo7%RtAIp2msg^BK(A{NQB`bT#wo6NO7#k%CaFqlWYi$INy$Q>I z_NY9RpQZY+6A3GB!e*5?TWK&1_}`P@;~Y||46mBCEYo&t_yr>*1y?3ainuOzx|Cnx zHkFB_2zi^!L{etUfhq!ji5#6Fl0rM~2jvP%W?rBQD@>U&N^&6*IG5ID_~VuIW;6&} zJ)VvIr>j9qKPaat<&MHq(LlD zjrox>6qmG9wo$t1H3D{Mxs z@8TW3jYOg0hVrXyu z=Wq_)T3wS1$;oc5Nx|s~WoQi~YyvNk}Q#zJm#g+_fV_%7IZ@&>HvH z7h9`}y-fANLYzNCo61l&yxG@UQY^*_iftr9I>3w_w!Z*AQX31Kma}t@hBBd8e~~{8 zf5@RJY51C4`$eRI1RK&u8ik5ruTh1XZPcxaQBu7P?yv!=L}@ezQHoRMcGC3Ni6T_8y)~4ZahdF+cV^zkn-U=V2xY-8fT(hnH5dMoIsMb~; z!bVBuwkYMOwyKnGp?1JRNEzBw2D#zM4ahoQe5&l_-tIAWE_JLZ3g{ zq^OT|I4e8D+N-2MgtNFD?`n{DKo(o)1#NKaoCg1{VC!6gZfn8jr0OZAwME(PX-l#_ zC3_=edx9ScknM@Ks%%5Z&tq-jedIMxjj3Uxd>KIDs{LEGQF^5g@qQP%C)Iw5%}S~@ z%#Mi?QtjIi5?5_RJ5{w|LMC>h)i6`R#g zy};F!>JDb^@y5Au68^263mYEAw<}X_%gRYk$OU|P2=>iJGQ^7pLAL%16R>A{=>)hlwks*v zFms5K1m^s8bPcUN3OJ*^D&QD`R&B2e*zmtn`!WH;*A)_DV`JHYua7#idnUwHxm}9vdDIc*>$5&RRZQE_+)KajSo3=^6MZ1On zA3NJMf1ZQM6_pevQpFAJRY4mi`R!5Ad*NLefj@riLUqAHEWt~`BJggM;npJP09t}U zj~HFvgZu=TrzAW6W3dK6!{ zCBEW;K7HDC{QhE10#RuNF;4w7;d|N4@Dz!vh=+vEA~ z*L>CpXFWIOIPGN0zZYM@VmtsY48bN^gO}{gF;0hF9Z1k)WVeK%NAe?vprbmUa%&w_ zJr5>-Q#+8J=bI=wGDVyZuaa$e0;Fkj2m$ZsF3RV_IoP(OX~Q&Cl+dc2(g8*NYzI}; z!-)(Q%BpMxF{lHI`ib#Hk<}i8AMqx|#3aG$y1b|oHUxEQG9~O=Ykf z-W=(GvYwGv6eUHyb9GUp$~-5=i%QlFFM{8e@O1GaOqWQ=cNPUA7q@nlWT50?68Y!o zDCxSTTtU&zT~r~eqdLbKCE*=$dksh>RHHEnRp=Uq!JoGm^|6fRo2-ED^~Wkg8eEQt zY2+c$#p!W>-gR_(?1E$eaB==%G%U^wJL2LzuOn%Bo9u|t@)mx?(6Trw-qKMO^AvJ% zGkm^Eyte;!6XvjtDd=@-N)6dW>6EF&J0Vg}yX(W)tfXVZY_ljK9X|pg@%v5RGWV$S z_!H*3WlQ070)vqvWg~=j9m}K)Uz13RjgJ%SbLH5?#5n%?>X5gmGY~TT-lD85n3plF z&%0p^L~JhU8TnzD!_mop(9R>Ts&+yFN6EHIYG#vd(@yGmHA)(FLh;7I3)BMF{;VSSQA(MClnRiqO|i(wC^<$& z#7oG}RFMzbVo#GRC`nmJ6|zi8F-p=QApYzoAeE4f#vo)NVi*9~S+F=;1_dfM`WLq- zyyrzc`Q^B`jNAjXSew^$#I5x_`1e0lZ;z><-Zwj;dSB~A>MfO>5bE{uBLV95byC%P zKe>0I6RB70ER9ux`6~d!x7KxK8>KrQAYkpzw6z{}s)mNmO6oPNE{Ku@b|zsEw-Vxo zH+(HLiT5GG7Isp_YeevICrP~VvHaRI-&|LYb2?)r@wN#rD+=aCl6L)-utfB2svN5_ zRyUASDV+lAQ8KYJOPy4*ibwBa`E!?YoSY%|Y9Ho+xt>ouskr7hwi*f}eEt{#rUQ=3( zl4ry~O4b3XglsehA#?RQKIQ{eT&!LP*N@J?x54tW;J$+zgqW;_nAH*y-Y4aFyN$es zu_nZPwiAl^HTZW0VyXsH!G{KBdgbR*2A3KuRiQn@7g*Xl|8PczvJL$I4OLr@-4Sadu1j2JHIF+ z*clh4%1{yf2?4ERjNi6>y{c5W`J>@N+1Qg+7sc74`yhp8}FRLx6)Ula~>N>hh2 zF!qzLeZd+2cKZpktuiL|k?lCADixz-j1!l+*^s5cW$p#43l>5s(4I1C3{QGN*7*11 zN}eogAq9+LfpoxY!ri6tYU~BOP38WC6q^gBgghb#sU*Zhj;<96A*Jk*D=1lcnJPSK z%8F64LyUuD9gsZcaQ{^Rqp@BxKRe=Ra;Q8gV0iG=Vko54YSmv+tMo#$m=AKt0a&sCV|`nPxA%d%zTI1`qLzk-(-OR%2FWd zm6GC}@Zg+SM&RlHm`;iKY=Y2;*!`Fd#H)&gP80*!9>Hq!Vpx8dqod1SD5uEhwk{M( zFWFWZ67Q33cb6&@qok_~g)-Wu3grW;3l>5s(4Ha`!;@AnNhnfKvp8KdMrh>C9t0jY?^XsngY z=VA$*LECIC8cYL3%o!9ayow9HD*H@PGu$5I0P&|v^#1{wtmxw$d2Z5&-4&eQAA{ZC z2QFMTjzcto%f=OxDoUw^Qjr09+3>lfWdl%_s+hor?Wj`O}!&(r^;2HuTk?rYw9p1rRZ z{ay>c#AMa2VXg6|vSHitWYNM}+81OSlG9$=Lp%MpV)J$s-Z{&E;tnpE2YTw7$7fcs zA`O5CVfe!Z4dIyu9$FaOL-!Uf)8TiX$~rWhTJ8*%FT<8&#=!MY=)GgqDS5Qt3>=JN z*F$ogdWRTElhA~(Zip{oWWBmF;yq=Er~*jq}0MgvSO2<;1|Jp`TsV&vW?G zqSCthW^ie6@tso6rjSb;V#>Cd-Sqqz=9>6v7kx39|6Ej8&wH&)w1s|x{5+=mslOA0qh`)uMWce*s--zK zJ@BVHSpVFV>q>2KL|l%+(K9)yIHsEZvnkmTlHI+ZhIyLREPkdc8~Dn3c;G8=+;s6< zig8my;h%)I-}E)*&WZ2~l<>!eTSfj?S>$5ZW7Bb-4h@RuYmTn5QbrXWjwQDObeQ+! z7I@64QSrLSw)y_uzB&J)I$J+Fq$8`|xOkjnq}+SDGrcV3!^(a5;8ZRd_b4I3}<{Ue(9t4eJETvz!y`I{An{OYCGb=(=Mp`^fpG zEPtu5Uk%=@EIYjbZl&z=c48e`6o03c2+PfVbA|*My1v@lMSmX*`4EE&F!TV|eStH~ zrdfU`$FA&DtK#{3O?aY|PXpECRDY_(p+6nl6o0`!f9HHScr)11T(%SL)CN254%n{` zF70pE8uui^+Dk~2I6J)&YXYzH;)_v3xS`CWOHY92 z`rQrDMaN6sF0$G=Udk#|5VM#ms})QJkHOALcRjYfTk*G!l}gp#EOL6~ z>iT{0?DOu$u{H0LimS4ygK?3LD(&V^nVLSO-NsEDDl=D?59_j&T2F*Jwn~=Vhu+M2 zZ;$|;>`^?|A%k!p+<#la0LMPLmY4^j<&fm!W`PxyN#`k>m_j{oCKqqf9q-6gB_DgN z>hd$}2suOMgg?*q0at-K+?$}6#^YS!8$6e?(l^=hvuq}& zipyZerwT9^Q-yWYOx%99E;GgfJR5mnWWkGiYk0;9Ms`q(gzD_ZgSoFny3?{^V`4Hh zV-w@uu}O)EN$D|3uDDG2l~7V#j5`Kio4hf1WyMxEmgF|jda|f1aME!7g@@%G;~SL8 zZV9;i>A7%8XT3{;q?#6R(!;ktQ3=xEF5CK8ZU7FIbq_0DcPW)QS1g#M&%)sJ=?Q!f zIe--mEq-5H#hp@j$H%Dp15ktSCD#=#?zm^r@M2BdiZLixj!!A}XH$!x)t)2Mz>Utw zep9j0Ss@}F&7BfKPE&%k-ryAY<2&p2riWSguBUipabw-#laXTcaO(g^JICkpVJ?~= zFl4E7YBsT`k>B3c!SRb)L-!@H`FDWK%uNVgR!@|AtgMLx?y3y~Ybe6JR2H37{XY=b zXDF`gzt5@5YG>rMVEw;44?llCJ*Tgu6Za%QW9{LKg|_opYhK3MPT?(9azUFD2;n6LAvAksIab4SF^?xO-ypVLhLGdssFT zzAYr*z`UYKz-E}RYH6^jy$VnF@kPx8ujZN#i`sXczNyR()!3TE*35>L?Tp;8SlLcN zgJt^#s3jIsIVoblVAtlpOlb2jYV&t$Gh;F=q@FdfZigmG{Uw?UNs^j_3jbYm!=^%W zy^=7*9!VHtmAj$2!yO>HJ50@uqUNrz-%v+OvS}?+4%a-{*M)~t`N``8)b5HT52Uu5 zwmAcu+-7QWiyYyKf7oUdcz$*B1_myR-aJO3rp$&=pPUTsmYCZ0%I!i0F%QX+mD`cs zbBf<~)aW89Raq+AwZ)UgKq4%ac0=RF+~Ua*S+Oo>QnWiEBQ7a1HaacIoe}ShcPD1W zIHNOS;$u8{Rp!qOZkpjtNO!~G`1CmViDpuKT2^#ce0*l6E8ZEC#`2!t73SIDTC`e= z$cTvntBm-}tjwfXczP%;HZ8`L<&2F3!wmR(xVCqGs3-sC@**v=f|j#b>dxYn$Z}hD z!F44c-I`cl+ZYyu>7M zJw4r(log)^ufh;%-#>8EJ}o@Xm64H@kO4oGNQzB&#U;Aafta2alb(@165N>ya3Bo>E15I@ zA#GU&UFL2E*&H~0?8KB|efkcWSiwL|4783fKWjV;53GtaR?gV#QrYC#jeK0=LT?rW( z=?QU}E{HC}9g~#i%*b>_XU3(u65Y{o%PL`0sHdd={JmOuW&(`ZcxQS>nlmdl3(DhS z;Kk%H-J~VBW8AEu5Tf4ScM({Y-!eN8{IDysf`;M#+wW`AHrG900|XkK4sApB5@AY= zNy|!$i-~q8#krlaP!Q|MJ2!tuaD)>^XL`KT?R2@aViOWG)A-O#%Y+XUrbnm4_nr#0 z`$9cu_HdzPX2oWvC1j;XN5eqPN=S1jxzaM7Znq24kPfeD?tQ+V=T^_W=d_BN786Kh z1ubW?kewS{TyE8Gi*~lUC#S2^*~RJX5E%*Y42hLwmzflo6`LNDndC}Hi_MD5N=tLc z#;0Y*!N`lxig9_|KhEQ`WM-T*J}$|X$>)a{SB5(cCPVlkFWhBMbj4>f_s#kBJi|B7 zU!^T8zr&)F0+m$3P>l<;c9);Tctdv)6+{Kw$@wkW@YjkfH;qn!*(EM69p0)Dn-1NQ z=*|LB#ql1>aCuUP%!gSgDLOVQJ~ksd3j`S(mze2J%t(rk0bk36+w1}95%$UsBr1Zpe*bJm+#=*CP zGvlJ&v5D?jn6BIyHv|Lng9)bG_Dl2UyCTYO*$LlPc^DVF+oC1$MMrmX#!KRh%gTsP zh=qASGtCv76${%6*mcEb#AIbA!nc4jVmzroFX!qj|6+irbol)3+Oi7zD^rnDxdSyW zKG3>?^re*vuY!o!B*(*dvFqOAG5_0X{%@!Gzn!M}l<0pu&2l!m|J!N)Z>Racou;_7 z^1q#?X^Z>6ou>aZ?|(Z@vC|wr;^AO+x$pT9y;&FW{EzgsZoJh6Qt^<5tK4$Sl8tSq@g`PH(^gl7 z{{j{M+d~}Tz*PdY3IN=OS6?-E+75V7npYeL|C}a5y_5g-=_&~IF8)_Au%?aYe~Fvo z6Zl`7H^8xp{4ep)&ZI82;ZJeH-OUeX#(PS@L(MUV|I4^l?*3s{iZ+XthF(b3^SUti z?DK;iv$%nA%V_=N^J96gQiGqYt2cj??X3LdF~>F&VhbXkBg7V4#FQ8!?6wqnj1uY}X5+@G(@8&Z#Cu79r*nBFhRPx}*T!EY7>+5fft_F?JARoh_sC zPGr1hVjSwq&YroLs&!={o6iraVM`di3kg?Dgi`Y2d-9^xmXZG?GHTwYc1rczM5k!* ziMjR{hB&Ho1GP`I{*cezNQgHPVu;WO2{Bd#kBVwWnaTg(`BjPSw#Kb*_SZPAs zPl(NkxZf7B`x!(WFd<&JjYU0qJ{18k*aE(I76Io?fI{-&8X^j95uNrTBB-0v9oj8y zeIiU3A>B|Sw{QcsJ47<)>_bEc69V1YsiU3b_lH(b3X#J#U2x3HxgbU!frc){@?+0;*1G#3K2d+oU%ondJi;>+H(>kf?HVj>F8IGG1$Zy(4FPogt-DxhheU; zB|LTz2{|T0HhHm}yvVj?lz5P_-Ne{RjJ?FzYQ;D(4JM1jh&l4+cI8!4H*r3sGU-;2Tpsfn0p*dd-b@1WuM%99TCYUME4%-?0Ya> z2tapRK+>BCm}UY@CLb0cVzMn_>05}{U_#^*VkaW05K*V8NMAf5+ z_{@a(ln_54;!|5h%G-#j)l=yYc+Yh9WSF#?^hBN2;09Lxp*_Mv4#IqqU?RjKp)V0) z?Ff3|yXeFu6Jk6fW)Nb$EuzUWM65C)9zX;m!~?bn_i;qLWJ0`%h$Dn}(H8Oa`-r$; zLKGq53qlmxBEC9-h~Q+ULv$?}XRSKP*drRZu<8-rc@h~NO^kNL=t_)sRt)!Am@iHt zVzi9NyL^7A;Y9`!Znq+c>EhMXh*%~g_zqlOOkO-pjK#K$zduCAGbYAU#5hQdr)(L0 z&LZQiiE%oa<$ZZR6+#kc0;g>etNx9M-%N;~(G9IC3t0-Y*3Y(x(;p$Cc`vnJBYWY* z2R|<3h)8Z=*{yXyLBtRfVjv;LA!48{;*N8Om}^4JCd3Lv%(g{rFGR%SCItLQg`Z7m z`w;P%9YXt*6%@maam++`hX|h_;T=1I-ugT`aovRYh7f-t;u~AUJr@wsu(#47S{RF3 z4KrWs-Z(76xPfJd9Jq*xUM55jL<}cH4_m}f@cjjTLUXqXF$EC|d&4V&FAS++OXzwD z2^&p>^+?!7POP^@0cn@qKQ#Vj4z2%Y|D7&OJr2)t8|N| zv$HQiHtMp1oiJ_byxg)=zWE9XolFFH#TqBTIT|Olw!?GJ)I9|g97>R&P1dOx= z%>Nc$$Tbm`AYm;Mme>+r{|*Vyng~xL!GnaSZ3)^9B>dY%_z(#tNchl}(C>RB{B9!r zA_#i5e(Y=um@8}vtA9X3i+)OH>QVhrW6}LkV^Q3~vOCY*L`I5*m zEq+48JQHFLA?_o@94myFF2?>Q)c{uh~6edPeP<3qNgq5 zgm{DyPa@(GTST{8SXB25#~g2(5U&y9BqCn3LY!^* zWGH-~{K9d^Ra5;dRR2e;f5oc47+J@3bm7(kN_S{AS>C^4V-P+7HByrsSayda7!gS( zL_8w;6C&Ogky;56X(q%(M9d<@L|eq>%7|EPLaao@7DBAFMO>)DQU}7!Ya$##!cig| zuq8xRLnpi@#Cb$~MTqlOi0ofswy2JT$^(`D(1Qlzq!l_4J0yr(Sa!&BHIUKS#OOeb zZp7$d%lOWLj5|z>QN+j^$PU~N^RF!;wiY7tOo*j~SVwLwwPh@>SaI z8(4Pi!=QIQUko)N1_NT!g;WF#wgYJYW@r1rd@HJglW@Z!Y~n%kuZV?$+m=9P0@+zCd4#EEF#1-D@0V&i=kRL5;mI% z8<4P@2pg;jVh#8$0ugVS5U(QwUScAW`MNElM-(EinGl~L;wM1NhuOlGa36fGm5=R^ zAxd}XwT7TPBG_5S#UYMb+`zIs-iOaPazqyy0YBX7&%W+^p|+ktoB_y5u;tW(kAHAZ zy3EO5a$%@Oglr^CvL)OO@0{X{3~xZ^J~&MX zc;hNZbSFedTf{zi;W9^zH6cbLVlp8{+ahkjyIwhBxe2ih5%3x+F~XPGBH}wEVy_AD z3?dE_;u$-Hwul{=1GDePCc;@Hd`g6~b_D&13!V7Wg!l~+HHKmwzgZ#9_JrvI78#z2 zRzsC8)te8+{Y5MxnsW=wJ{=T`jA16m5Mqoc#t>V^I(Vl9_hW&HF_#z*5M!<_<74=( zIcMxNF&-zzi^O=`h7qd4FI73>gb8ts5JiMIW`)p(Kt_`g@q-C*9TA$w@|-YnUAH2L z3HZq_h-flQ?UaVYaPDh|h=$z2vQMscMMPf{q8A}69DM+_uHq8&o}fVmk=7a1mk z8ws^xAsFP9yTE!Ld0W)c*qtpsy`wQnh-A|;vGV~Y>U`B01=l=h>M8$h7cER z5tjxcqH3zrA$p}$oVCK>f8T`t1vjwlkQRdx;W8mQ5uyj&OXXX}PPUAxLy$4f#27=2 zDa06K#W*k%W{VU=tS}*R39+6KxmE}}JF5jgL~A)*C0u_iG6x2x3KJx-s#A=&BRC| z#vo!O*)mpUAS2VnNF&A^Vx-wJPGurvt%QVVH^Top)Um2c8cwoYq zhlD3(g3ED{TsT1WcUaXIn~M$55|_tG86X}de;-{qPl)$z5k(6S@uLaxy+CL|tl()F zR^Qtan%;|q@G(kf=#9rPSKW)SMd5(Pyx6iY(iS10zX{N13@Q``21oR7Y zbV4je#B?i!dlgI*OOUX|MA%G(JxJJWMG(E=T84lcqZLhn#|LknSNUxtC*><&~{2sg0ok6Tut6WvURE{GURh%UB>zV{&_ z%Y;ZrL=GX+Z4nQ_|2Z`HP|2Lx_kmA)JIrCWO-pAx7ur)yTNZ z#28DAX~Y<7%V_g3GVV7qmJ?$GF_zmhrmscD3ns?iv8*&69$Y5GUR%UV>kv_BLVQea zd`66qZ5co3Bjc8FYOnl>46PQ+J^_=?pH_&F=V8Wp1PN_TgjVBl+Dbq|D{i26tLT%w z4TuE?~BK4mfCxSKPE^Scwv6*zkP&gG(x+MzmRAUKUq?bT;RcpH67d)! z2AB|i5iyz&eQgmL+u#-TkWLd}1`?JLVTLW?+3o1WRuh6D;u%6PD@68RFkw87gttwE zBS<()gd<>$-a3$RC^T(15Jc}L>PmFepUoAZA86}h}kB@OhV)$ zVx}!3>kULaW6fQMapA_{B~*WW_KHzvfFg!mm1 zU)mz#3J?)CN$QS*k>`i9(r|C8-eM9;tu8NCJ42-M-lGWUAp^we_HBqrA;fLAh_~KG z#1s=E6A|+Wk!gzvewQ8C1p5mUVJ#A#Ai`Q(!oc^?iC0Ys4(x4^F-BGu? z<3~FfzjVJ1HXTvvY9EKEv+QN?GgXBY&J8U)YRh?aYmf=mKOI-NJ5*SITbS>&*FxbcjCTxo>Y>E$I@0wso3HFf$yT0;#jT*MB=Px1aTNCRm zV*Mepcu%rnGriUMyFUWn0rGtba_VQOy%?H-8flqBDbv4a@vY#Eh5N5*R=#-R*+cLuyKlfOH| zmN57#60VpCrR2r;#eA<4l%;mcEm_zpAz9cdw{Q!!Q$$AR z+(1SL6QeCLx)7tSE#nZ}QQ>}!GBHLFBRvaWqG5~p^9MvMH6a!eVhy>m$d=LTM`Y|V zF?JK<6=LkRWjy#3GR~M7r-K=C(e*b*N59SJ!mLN`kWt70I&j-hL6Jske z_7Y>O6+^s9<1a+KXF|M9h>r>JwiQB*^J#x0<2w`MYhwIKjIV7OFW$1LzB-w3>qbT8~>;^@(n6luLYyGPVOvDiDgyDD3Gpc+Se37hE$FAVkd&$dQfsQ( zB{imEmo%A*T~dQvSapg1NHvaNkN*IB5%{#YIIoDM+I^{ZtZnVW>cW9ZCI`k7Vg@0` z+aj7c1Y(s5@ceCPdLx=4#+gg~v_A`d(y9 z_^P%b1W!}@LYsztQD+(=G;U$p7tRoY=x9Q;BScq1w6j9+w`goS;yvydE!P*X(4guW zRQ-0V>SCUFwXX1BnM@EvVlg2eCd6V}#NVL;@r()a6d?{0;wd`>{N6pg3dC{Ngg8A7 z-=9H*({==XRej;aZzjUe=mcCC&ui?HPpf{mWu0yySk3QNJ2n!Y-QlmFaH*_FZfe=X zbsGuR5EE-4vBs&afwrtW8VlB36KgiHR!FR#(GS(AVT;<{M4%owp&ldDJ_#kxLLakb zecDv8j+t2R5bG0_^^Ps8b%bDDH?h7U)?X^?8(Y>rk%HCm9<>|8?m>OFz6bRg#w{#+ z??9A5^fDoO5MnqXde|a|hZX#SJ!c8JvwjzkBrg|HJs6Acn565)ukEYYHKOEe`vOk8k z6^KL=B90LK2oYzC*w{`W+$O|?>Gh05~A1^@l0ods5C?E5Pb%ANZlFOAv(8^IwYlb%E4A^D$kiY zcXoQ_#%adeOm{d1uak+_o_Mzruf57+MG@YbWp72j&m}lxOq`L#$t2E5l~X(Ay4kPb zDbdw$VadnCn^)y;vYneYZ5AtdrCt-Ze?o4E=aFXKr>pAAXYhCFj_bN+eCM3$v-tlf zX3UPBI6ZS_=S29DiaXxrg75Ss#q&?Az{f`7vfLT5&P@2CSOR>m2`rrMG&ZTHuK~N- z-rK0=vNF%%FP1xM>+1RehbWnkKw-$|%cj~EuK#>l9LwzJecZ86A~M(5PgCkYD;+U< zhXZ@0FPa)=UC0LY_T@U>lPa$pmh?c%#_sT`u);%##o24fdu4fgwBNs1g}igZHh}z7yM@_Mf!Br;oRr z=6FrvFK18Dr8!Pa^{auyeQqn1N0ZA7h zNtKWIa|mA<_Dyk|ksVazm5gqjl1;?Gm^IK_=}~D%#j3)Y!QK{u6`+M-j_R}gQemP`!3*~LgHLuf8AmbUP7}3;4(@DC z@pcZZpa{ITMdW$SN}kbUXNi}XOIh!0HuboNc{6mq&n&(ibz%8CYIl$-3^Z4ukE@y| zkDV8@B0WQ9_&REiadIHWD7(#(CLb2*9yg11o8?Onte}NoYQZMO42yB(SXG#i?VA-? zK}pCR=(IeNm`KPPQ$ogBn8ImDJ@l_KGLc)~lguWK*$YVTpb-F;dLGdhTYvT1#8% z{bu6_rhCu!=N7*W+;g_)#xn2aAU$n13z=Co#qU~52MtLR;a8HrdY%ETmevZ^=RgE{ z;a!qhLZI2jc1xEB=__Wlv-u@=hL*XN(%UeDl3wtM>ANV%0njf0etl0k&V%g6T{MO# z1lfz_-<;DR+#=GHmV}%K`QaZxx9&9NTkD;xzd;#z)sz7bIKaOFep|lxs(x-Ze*XI- z*-UiCTjVF0`#=9}(_+O#C}k`=aA{Gf=le&zxw_*|IcC1`2>0i0LRpYfUU<0WD>5a6 z9XP)A9=*{V?D_h0)SeHW!{hGgd5d{tgY=j=7`Rim6M;7YJKjNH{~rY&X`K{ko=+z! z3pAGc+p>=A;x_L%$9UeF(b-Dic@+3K*+y)+j&Aqfblfc;R;sSBs@m}hZ;@lMTuW@D z?vsy*O~c|j?6n={4jc~{x4DNlQUaeOKJD>esLr6XoHHnVK^qO^$ejo=ynkLHAW@}BX|(i~b2 zP;5rZPU>zMhckkF#P0F^tQz%Y}4RW|JR_F;iD2Z6vLP#PKEVv}V z(k}^{w!~auT?P#cNgTkrVBf%{L-d*xq(JEm_~L$VtRqW0j%UCVa@gGmypKBM8m#t9 z-tmqFifwNeIlXfAATVShLzm7AtiktD(tLB!Dw!a=P|y1>doKhz@@2Nzd;gKTw2$La z`LG!0`8jOXA#Y4z1*Ne=R*i|tt^AC=$tSmgoBx>ITz^Y+qucR1cOal24~u^6zM^Sk(AL>t_YlWO*;Zt}C)k3H;H5%& zjez*#g*hGUav)?RJMC}R$iYoknzfzjd2><5OXspYZ_xmD=mYO+Z7cUSC0)p?ak&t@8k*CF>h{9X&+R@Fy+BCW0Cjd zwADAxW$Q;3jn7I`#fxVi3rbxuqDadPu9)lL1;c?>q!13X8rc$)|5uR>~I zhb?)zkZ_)P9``lx(?R+N;2G?$C6oKgOcM=Csz1VxVuy-gC|B zuVbLE^!3frvvFpE=-%uv6_{9^R)<; zHv+n{2?qysWy1y7mD4NxLNvapji9cKlTAg4QDDlu5~{2ZF70pE9$)qB%Gy=)?aC4l$`OVqz){EOp_71;2blM<&E<^@PpAMe!^ZJ?r0|(DG0uGhs(zB+v zFG_d3UrxW(r?zAOZusRRQul1H1O4_ncRtN=S?&xmGE1o6{;Ugo5e-%@=r@*MkTax) zY%2Qg8uc4g`M(TJ&&e=fN|2+~Li@1^AJW_k=gZUNh{}zzT4UdQz4t;~zk70Wz~Jn* zPz+8swTW+{e%C@=zsJgE5MWmgtoXPD>;F@H_lEnDG{=f^;_GD>UxXa7KMMFuOsWIm z5&Y6Ytae6D3w;MgyIl@Lbm>-#c4IT&eQe^HOEnq%m9HPBxDUz|M91!;z@g$l737%~ zAjr!LQII7IQIM5e`JUJR0C?caKbE5Zb)m=A+Sg9gYu>A_{1eMe_}zstcDar35glIi zqFh(Y@|y|W{R9DU-GKxDrS7J*_YDko47%5TOlI5lncW<<)9HIYqWn{$eN1byHk9SL zeE+h&nSS=AF7d47;gIS2tDKtvFxv zpeu8#vkAq^!h?e6R%gqKmyOih&lg{>)wAwp9WP(%GMQIhHEj-DR$Vm>tl__43jb{n zOVX-oS-jN$0opvC7!k{I{+GB=zk>fIE}GoO{}LyL_w&ER9_a!87mQ|>y(n^7Rel8% z9$+{mJ;2a5!MCHTz7@J&JisvS|MUPu=bDVSCzd++3!hyGI7BnTb5JOrU9c+@&o2Cs z4EHSFk%;*0LVf=k$YJM#p zr)L)q_w{XX+?0+>&n|51=es)y>fo~ra%H^R?{Al$T?l9wr#*gsEFcua2MbF^b zg(jX21AM;+)eK)G_knoMqUqPmW;$9)$0c7ce!XnC9=^zPGQ~GYbI6tP?mgT+zs=EA zt}CvsgfC*}hxtwgRuDJD{K3(q46@78qYR@K;iC*=WHvllftQN(+ZRdCGWePFEQ8GS zz_Scb>5gof!?#&={k7<3{Pacm7{fHlR31X&F^1sLzLlC|m1H6%V!eD=Bx2PfHvA6X zvw;Fqo1i zry7@k`G`M#_yogOvWL7En)-psxSzNtn~2NlA5ZXIb^IzH79opA2DHWg;fxO%fFZll zTyGRu!~Y0FUA2b(>mnu|VNjbG=4h$f264K0gh4f?M;H>+8k}A^-4_?=j=#?asue^N z;;E*9CKU1Xwn>&}cZRQ~=5WhYe`8bS!(x287qhupz8R(pE!Y?DUuy4IWL06yWM8bQ zLKJ)R#HB8dhpj5Co8oH|SV4(~p34a6dj7p?HvOa{erx!PZ@ULC6Hfuuw=rVlKRM8N^VTPqI3`IH zF>{M&I;O}+#motI_)JGY1*Ll)!pP)C@tKal@Adty>A95e;mV z_SX_$4(odkt^|swIks_MXcbcH|dB!7=wENALzJRu8{{mKax9u zIg=l1u2)%#CzZiV{V>c7T(1)M&d=1%{ZNlwiiv3|n~B6!12aeryx6~VeMwWc|H7R1 zVb;y#bt{{)8V~s%)`ycbDRL{~qVS-lcu|<;cF7I)`0D2tRMYQSD%4fSudWj~I^f4f zf5A0;{=9_-Ka+Hpbk#?IEx#;0h@EX!f*0!@{dp_2rDo!h3$bZ7w!I{dw~={u30@V> zow%T-zJvVSuKKBOU5ZzQ>$J?hT1|f)a>LIJ%REe}LboOkLq7Q>-yu)JgMIob@Qz;^ z_S-d7>>%uStLfgQcxl*gXFSIN&*<>D_@!a(Acnk)ItIS3QWi2(LZ&Oj7ICNCLLNZi zLSQ!iHuY8CT)jTLnUmjH2wkQQqL5{H+3eVBzAc*WT!y2lqiiQeQA4of@&bFmylk2j z^0F=?8KevnceL2`evdcT$CGp87QN$(XMK+O!dQcp+(>q9Xl`>h?mb^S z_S%r#9<0f`zDU-7SZ+AG?Ok7U_S=x$`mECJkB6~qDY^e;wd`ZQdir4qDR5-oMg4sc z(f}iK^YGlUHPWZJXH3q#YvQb_Gg$J7+z56*|4+RWzLqTReQ>DJh}^nt_lVpWcKu3T z!$z$;M7ExsnUgbh#^k#u&Y9(&4OP?Kvol)X#qxq5Y0kF2?;H33kr~xwadZ8|GF3Y1 zfq}5Kx94`Kj**B!dW_0#!bXnFZOp#?z}Jj@a(ixPcBb|6P_}PWZX=fWabEq+BO$v5 zCw*Q2`)ao?*?9lPyp2mX;;eBVhBJRu$}iZv{ocVqAEdo3hQj94J6iFPAg<~J3?V!> z4LIaq!M^&?_n4zft~8B_i{Sp&=9h_Bvf*;BZ%u^l|MCSrSjnNCae51QS1uQI6z2!5 znc=y(GJO1R-zB|UE^4}qY$jyW3e32s!Mq~b*sT~7KY`0`lXG!F%E-mbZr}d3x(eHN z4%X{jXd!SEucd&OKplQh_Zjv?M^?Sqx0szN@*UOJ=c=P+lTxAKdEaOHPIzTkV7G1e zoAGYb?}eE7l{oO}zwEOc7k%$LPM6bX&sz1F%jY|wm*%qMOC^oj-#%YY$LBIaY`ZS! zR^Jfvb5jTWuYX+=+wRXU`MNuPkq?V)_vKu+w8S?iumazvN#k`dd2=b3rEb35D@=m; zhXo89{xgMtmHK+Zg^oO_dEr>2Jai2HS8)s?smgX;_9Z%;av85xlUu_zwN0=?T@%kr zOJRC!ShBd5BY>iKyN|pL%PZGgI315?xg*-y?o^I^=DXWwOnQ<(_g&K*<7IzEl1E?j zb#Y|MheeXd=drJ@`8o$y;BJTeW$Ll&^72;Q>R-aDy9Qp@!v(sEw;3SN2l8;$o${6M zc1?dO4;8vgwi60n3wB(gVE-Sjx;80c)4%ntcYG*^uFOLpQ-CLB8*zbR@buho9bWmc zQuUl&RZs8@U%ck{O0Fw9V)FOU5kJU>MMr#<$Nu=<*TkYi-ydKAR$49%PNPE6558>{ z6+{d5tt!O-=xbq7!T0vV6g|+S~gx4ZQ@qun1~+cfT(!V>M-X=3+!je_uXKhO%)|1Z8W2 z!SC;PGK>>3X`ghNj<3DHKgOUapt7cidM)_mpw}}evo0RqbG#?6mp7^mT05N?)+$oH z!myT4r-pSf!#F}hS<{(a9T2loyUK)Y#I7LwKaG4rpYFA{?A%k%bT$OupPse8knysF z-ark?kI~5DEFsP>*=-_I#jqA^4fc z=xFp8G^qWp&#?QwR8Mq&Iv&wQZmgq<1^J2l24g0CH!`NBHTZ2hgH4yd_$6hA1L`|N z-6(&~M6Vfax|Dn;<)s4}t7(+=?2a{G{{57J4rsQfQQ>wxTcf0&lpzSgyjZ({sRG9I z0;8rj2ebWgsK4wB?1Bu8xLFdf8wvC#AV9 zpGwcG^2Uf7^vSu}vmhfbQNU`$nqcE!hBqP)^vKOifnqm?jMBzICG>yFnpWC)-ofB8 zQ)slx!?d(&mVnLp)`!G3Dj3JXrJOdMWqvX-oS=(_372wmI>|x!+1pX>cx9+@2wcpe z+3DfL&&2H1K%-|e0}Y)i415LDPS0r+@Y~@q<2}Prv90!H&aonyINm^cx_98{!l`rj9Pyf!LtT|9D%I$%Ct|wmRx{EFS2;JSt3sJG@wF)9 z6GNu>iwd=`9x4q}3J}lU80feQLdTsW=!%XzD|Fn3IO9y59%o!5nT6iV5zElt`-%77 z*?-x4LHg_gD|BQW$BuICdAF)8@_?^mkeJGKmWok4a)=zv^y{;##&1yAEav#vU|SccsA5q)=`50|VzrrtyVf-BQWj8k z-fX?jqvQIrTE;gHh7lraj4#|;9sYOOD8mGiOe-5P3pYtHwow*PRW?_zvQKHsy!ys* zD3c3+4XIP1B`b0E7%=ZsKAYO1!(8%*#9UPJ8<^zL%2{mKEkL%PGU!_kjU#Ycjq7kJ z{N0zu(L>Hru2>gckTlKWr&LEZHm)d&3eTo%k@lU*7VEhP5MI9s{1#n|{D^aA$gwy$ zFtZqXJd0fbGtHu-jX_ojnjBKqTa{aB6D(Pd?1O_V+%Ai%&t^(nWwuIgC~h`eT>7QL zrrudo+8aZqEZ6qNO%iH9TRqf1;>c}h)1ekG58sqZiiAk`Y!|pBpJp8Cf(J&3#1PaE znyp;8e4&Cl6}725feDtf9(6M=m*AUBSJGs0sZ-(yPoQELlRuYQ5rM_v;q8|?p_;%Z z38bJMWJoqdlNMSn!hV5FPf{kkq=@4EgAXv^5#jfXA4)P#mJHj)N>pQ)2WM7Ptxt|! zLwbW^|G+!wJ4FXgx!+8J_QCzMtl;XKT1ZF+(UaYWdtx@K+2^?&vZ;*V09&2$(f^BE zx!51Lahb!^#c7UOT^#2ycBarVH|XU9J#RJE*44zX&qdjsyAx{e(9yYU$~1Vfv1<`@4}_z% zl~Ww)4hWR&Fm+jO^mar~fGee={@IobQOx5I?0hDfF%N$foQal7%TvVbZid1tHH z4w?ma_>*L4D*~#__k&KcPdfZ3yNu6+^(R?YJ#2vBQwrnZrq~|i1jA^tax&)%9wAVm z2oHp;g`EnqE#6P(a>p@c7kOpv-)n^Xm0t;f?EZs&>Cw9oTMiK6X#0Xhik1yOS^TTDI}BVc>jdoz*|tXRjkfGBGj-$cPW6Zi-iyP+3`fz3!$H&#{X( z#Y%>S8rXRNTWIm72L?#k8BxJ@ECALk>&o}W({SHKENgGXPLWJK#pe0A!+B$GO#yyp z>!eL>&97dOaoYD*IMkpX(VrTZz#qM=yz!x$r)h3)nd;+UX}ggFUCO< z#E91H>{g3C|5ST^YD|gHOcDhGcQguAH1|`6lofW{*uIeA01=?ol2pUU{QtHChut^s z4Eppi0=sTeQ@wC2qj8E4jVXBD_TF~F_S5yyZhpERQuK5^y7d+A@xU04%#-P%di2)} zyyt=b>N zK!Mum$VC9<$N=B0+0Tr5gf$xpK8?rwE=E=a0{{t938?NaAMIX}XB7LRs-U4>C z-ze5=KiYqHfpE0nj_JiXQD9QN@Rj5V=;Z>OF3AlHuSHBch!#e2s^LEi?KZ=YiGwz? zQ`TY$GGqyzUV_#6g17z;A*))GvT_~d!IGi0SP`v%YGHY~AxtFGNCYyn`V}Qq_4}~; z0~az)E~tK$^f}iGNzvsaks|QV4KIMad(+d} zlB%*4!iZjb!&!T;{6l-M{^H@AC40$t91Kw!=l$L1r&r)a zfZR-3zQ@paf^auRRI57hrmeMYR`s_=%=5ZjK0QFkLCSdg=Z3 z4HzJ6pHswqbOx3T`N#|m^3xfZe%)**v4G!J#K`N=H;Y)k+ZM5j*QHq5)2V83Y;29# z=o)dAaat9*6W-K0)f;z=)A{8>oa}|Z172XM(bKL^{H@V!{JedRHy$1@S65-S$3Iqv zQ|ZA;DK0p!vRqB?=P+~wv<%iJ1>iAE_8fRZ71>2qa-{0-&aUFATgxK4ZXygYlQ|&# zK-T+DfH=ua55z%FuqZ^wW_k*ez4y9T2WfhzF==|HQE7&z)EYjrZylJPRF1437a0>7 z8(+OraBO^ZbdAcfeWPo{Btfc1wfM?-eJwfOS;&=9Qx5$$5Lvk@N4a|R0S z<(F&1fl-(^!|K;!$I+ES{(AMkM7$iQgL*<6=Rq_1Z7wG6*h*cB88?g zMFLIuFBNH60w~f{u1H@pMZ%lv%d@2A>dxH4>P%;yiH|mrUrJx=igSlDXSIg%Am}_Q zcvU<0+j7!&EJ-8thG3Ll2QTuh??aEH15*XGDM;TqtS%5f?7VJX271UFmz##ye|f74 zb{~1q9baf7eSD*vI@VzvRfs-^5k z9zcV3Fr5~h7r%s53-4_QKMt3p%S&M_oml>t@>;$sEXLXQVN>&m*76L=Fizx7uQhiW zi=$|3qVTijX=4ow#6qejU1Ry@YMR7V$5a;1B^n60PZX3dM5no`L{Q7If4@7N7ira7 zPQb^y$%6~{Jz}6-9dGO|hwJ|Sxh^#h59%Si7^2m@3i|mwVkmne^S|QQ8N)_Q}q@SKZY%0GF|tb z6&oEJ9}yiJ5v{NAAjTg5y#&8iGvj4v#(^_)fQv9IS)OnB{u2cX+Y1mG+I6Od6-sOu zn*)gy(LKfVBzLMF{FEduVcyBKga(dq7OKZkc{u)K?N~2s8bz$|BKE=dLhKE2 z2(lOQ`*^t6bbOecj2jG>OXDpQgg?Dm$mNdre#eI=K@ugEK=3`i>=E)nw`Iw5;G#|U zW$eBUBf2UAqF@F`#s&edv>lE{60euAhzOdfGi;NO#C$q>Xc5LvytiJ;MAc#`6_sN} z7GvYRL*?RF9x8j_)<5S>819af#?Ot!`w0dBIpLBcWN$i0 z(fuhzny4$sYAV=LID4e*iyM!WT_l<=FU{ALSUr0|DzV;6nZ%%_|C_`bF^L`F63bdj z4~PU#m;Un~CbWnMt-ayEiE<+xoFaEC6Bk)IGPZhTTwJB#%CV8LF;ybt<0E5YV=4uc zU#dsOL`UN-DRQS`wu~@u@xnpV1 zclv)?S3G=hmii)<^GLKen3}>*+!R2C|2I<@z)Yd+GUhx&mI+bd=$Y~rRC^garD1oh z!#EE$mI-lS)n&{k0YHZlI{El(w*0kZ7`RM`^=#p~;C)g!d|yB!vyUla0TLVvdB^j- z6PMB9S?8B=&@k{}SzYJL0TNmQ%_E1p?2Vbo5g=c};a?IE)VjXs%>*Hbm7iYFTr%sx z3*-foVV}sAUNgSpz`JNO__X5(v6QMU)@S<9Xxd`^ zjWz{pCQT6rVk=L*L^jBD!%t@*Zpn@Sj%T;vKFpEV8QzQKlyQ2Cg}inV>C=OJQc=7P z`J^+&^GX*KFZ0}@irAx)Nj;=vUPnZ_pm|~GO!EMt0L_!q@W(l_cVt{_xvsUzf93m+ zt{JTOuRHuz88Wm84vwu7S*1n&s8M)C_q6^JeC7a(hW{5u@u`LIKB2>0*`vvSQ3@(l zUhwOd{ttGN$%WAg+D+_agjhhOTdR5AA?a#6vHp^r&ZZi0A)t~e2B(dhTuHEjwY)s! zqN)XTs;tDyO?&7Xuo7tqo(5v56c^i#%e;<4-obhT_gIqI5T`7ZeWw05#guVaeOOrR z^Pir>M-J;XDst%XiM-ah*#G=%K9jl3`fLL zs@~Yh3mnq)hV_^IRKXJvK&njGT3LG${~t`4eL4bz374pBQ^|ks54&J-%O$dJ!~doz zTU_Q6lto@uZo_(aU*k6ZA?V$~#;rHpeY_Oi2VK1=ju+R`IFNl@^6nXe198b<4g@gh zDJGE>I1ombFK%bR@STo;X_QtJmaGyV~DdLYBq3aaCBrm9)#s) zdU+$Xc~vG~EkiJQA}3*PX#Eg{k~z8#vURyQ@vagaN-Dx_R?1cJyXEpo`?OH;)4>&T zgzit(@UBeR#kaLK0v5_QG_+JRE4YipT+E+mur-J1q(xzdZl5S{)Lwwh9d)1@WibCV zoOG+kKON`gA(v|IX=O!}8)ItZ8o4Ixr@d?Bx_Ui{*2Z(TDXHQ3R|jN^OKC6RUaE*6WJR8|5bU9RJ)E->G>Q zy5eHNU2%7l?4%VRHKj_Mz-BpEWYG{-TiCKX0nGxXzw)qMwR; zO-v>LNB3FU$eA#q*jN2CgPjcjdYjzMLGr}U6HM&EeK#y*rCY0SAuHKhg(5Kb;FnxP z#)Ja&gsc8DR`wm;$f|2f8@dQ|vJuh(wZ%B$fV|WomcaJY6NAM9^q>e7SaMJf zFR+R!VhL*%{SV3IR3*~h77NB7s;&t$q^U|Ypr0!uoYl#ayBEaS2C|V2yw5`05e)7^!X1QMpz@wVfA>T5FqkOpZ_%fOk-v8Sd)k9dKN( zr_4()(B3*OM;U(CE70qNnj3oH+dljGjoXl@7MNH{ut?D=%AXQ^tTELayB(Sofn1lX zj&HPhrG=%(Oz^X>S4N{imS1pk@3i?BFeg_rTmI4zxm-|VDxNALg^DtAIqrB`4ssFm zI^p31#`iHa5i`?RlzhqxK?&Q59QzV=3+v~41OYJKPvtL(Mcp*KBYpu?$PcF@=~qL) zlV3|{@N&IFGA)W|i`l9vgs0Y88i|XxFva3$yB3BEl5*1)TR=N3NUUGmVLs&BJWcV5 zUl*1^tDxcJyvTAQ7lmI-hfQJf9mCY~@*s2o7$?U?_KMl4Pg?`oh);v;cAutSKYOiC z|2L?e`m_-GaiXkq7vw^c!6(jWY`hF-#y*JE&=XzmPuCT~30L4iUU9ur7q7?zm8Ix0wsLxTbFRwelzB-* zgh4HoH{{K7b|CDfz>U4PAO<22VOf5b;rd!LO+}4Y;N0u-7ly{-FSIHBZ-58sE|N*x zT}Vdj0}$c3&8&A`*!8;XgQNXqS0xH<+AuYM0|4OluZERVW+rX3Z!fi|$lKNcFHSO5 z!_WFjPCf;-j~sXt)ZQusLalA+W}wdHuP z#9k)YwDlH$QB@YnEAzk}Lt!Qo?9tuBr=ZGIeQ)JcAq0Bb@h>xMP}UY}Rn3#5d98|~ zG!PUiLPNPns)9WVr#6tjz)AgpS>l3)0ivcB)IPXLee7if{jIAl!w0yyd^yc!w9p1V zXniS=*l`m&XpLT}J7_h~;@d`(SXjxkwL{>kp|%V^-TB=kd23NPq(Mv3H@fW+LsM-j zTTN`-lJ@9UH&9#fUyWQN=*UIB(B^aF_{B-48$wzLFt@#lHrZm>2_T}s|9tU$^#jx@+b;WMe|bUMQ>K& z;pKBaSAwhbrYOI8F0v0F6v|02Y^bUMj9ZOEB67kEapEsDCTJ>B2%`w{(%S%vy!19e zSG~OSHh>~8#T}xTm)-_YLbpeO*~{5HU1y#kkFa(Zf7Sr&JX%?UAV zR2OgnWE|19P)WQyG{+IYj?IZIsO&*?Sr@{UHTF6L8j+KV2gm0`1g3jRurCY$Oyp|g3ys8Gc@CI1^p#iFB!rE?8-T%#ux3~j) zNi5hIH^HSlum(D4RXQ_BlHS1`Yb12S%BKaZ-M(l3^Vi!ly3-73YKVB zr|ac?-!Nw!J{3Q;n6iM%_xSNX6h%Tiql8GY3kk!+Laj0VV(PIqY^*v=YFCU^ht{x3 z?DZx&6VMG144K6KEM}ua)d|Q(hAPNzj{yp(mM+Zc{|2?wNo*zhvJ>`emXmFGCrU&W zlExI&{{0NC@~*xydUHvjfebn zoYt?Kjnn$SS=-$JhcugwrEXYSZXKsPuVv%((Y85<5gG$kDF^4KTm&P5Ju)~ucE|~V zS2WkE2j@1be7ig6tV1Yct$J|oV$Vkh=V6Q&IyeI_bZ}NQf(_0Jl1+!K?drwsut$%a zcF1ss2++EYO06U(5e9+_BAE`(kdY3~iURb*M&BgmR509A7eHs$;)q_LGKvCpF!Sr3 z6K!~^S71x;oXVO4WihpMX`R3+bq!F%;yyXmGzCJiv2Tt6_rBlN6Tk19y@9^H>aY0`D%u8dId)I%PFrcpfdda|DzQQAyzOH-geDdZ=DDNd9W7y>2%KX^3r*p*JE_JFwn2I=cU%M zfpJK!133KOtRoyty%%_8U3#3;8yWrK+%@1g<~?# zc;VKQvJ2q{&vX7Z)EBa|w~y?Tkvg0~5t1_KBT|G)uxpbIbu+4MstRugdu+EVdN)#q zLeV>CGDQ!4k@G^5;Ip!jmn!-gF)LN{B*+SiE_KGzj{rzNpQB$pb@~Nzc6s@kboS>=e|(*@Hvm3s4?L)qyd!V_x3Ho>{C$Ix4@Lxdrc3{^#<#5hE|RhuRmbYW zRUZ8AU(EX9i(h#ePlea1*31U4`zNH&pM)utrA z>RQVSw`u=ilcCsppjyWTsl$V21`m-!l^*gi9adyk>2N?1CIhi*ro$q|-v3r+%HZtf z3%u~9jt^4)A%3XEw0%{l2lEZJMJ9>1`_vF9LM`}d+3)x>-=8|C?2;wQ-v<3o!a-Jv(N%Z9UWRwMh>iJEQNQ8f8G!fHyxISR)GVKlH&h zXLMt|I-nVD%a@fj@xcivWLd9{W!BoVkf`)?bOPE!uaH7c@(FAO-%MQI9Rcz`HeFciWgRHe&B}P#^>;2pZVMPq#LRR)b z`JP(YO$>1&nT96e8}Q3T56b8iXq*O2G}I}O^(yUwyQD0kvZZTWgd)dG8AXb=4R?q# z4n>1EFg+YdYFFrCzYRnWBeFU!d+-H9vosF5j}+bR1fv5WqPRpn^mm2 zR1c-y`06>UzumDx2rAGys7k4ezwy?e1@?$8sv`G!6a-{k+OF*`<`}%YT@F zmvX?1J9tFkUrL$A8Y*stsuZeRUZB|f*ve2QPDqdT!nb@)IWASjoa_OmTt8E1LtTMR z7U%gPfJOeMh7M2$Pix-L*ICS?Qqc`uk|HNeMMa91w{1*V?*mK=f#;!7 z7N3G%m%3{EBsRn<{LwB*u}@+T2lf|K#jQ`Q@y3SIrm_xouoI4Hb|)S+Sc3-w0hQTE zzl7~r6&&$`@0k`8y;J*od2yG1Zt#fafIx z8vMTjOqAy(m!T8_GmjRZmrP2|gA(w6`-@*Q;Ll{*>X{@(&&kXpDY}$1o1|#KH;1I? zusN5csC%48QdAKg=aXdljahQ@J7p!qYVwy=J7B8b1iKHD3ZoSp$rgTVX*-s#KumI~ zd4`{11<7i42yk*B8oT$q8;GZrH#z%|U~f$FcDUM<{KZuGAN};j*d^)N_kJ*()vw|- zui~0e#c91N0?M}7A}uH~YS@^Oz56ap)~#xPI<4x7rYiYBU=fMe^iHVhv2IP}Tb%!= znwG&~D4cLEunhXo0_;%H6e>-^l`5JJOK=prlBqN<8fNlEr8i-Z+NL`AR=BAQo)u;a zL{Xelp#e~egq!?PEl%mt87Sf5MP2ZTMW!OCDJOTR1LV|5lQ-(XDaT`ga`b{J67}Yk z$4!7zC<1hGIH%-Q14_$#9!0U+ZIc(8%*oB8fqZ$lsVIIdn@XYioV+Uz$g~d3DfLMm zPYq^Iw24#RGy=+r&|Xg75D(;+QNZ2_P6_=CD8r&nCC~*!y?YNnFN!YPj$14WJjdHlgCejR|)GuGsTK5|O0FrcIw{XDqWFl=Vhy&eVh zp}&~@{7P+h`p>9dNy%$L0m*W4Cj6ToP2+1EVpXUiim)P`FjRsW^(` zl+>0$=^AA5LiHF0CZDuRYgIORq82WoOm4Gt;OG`=ApHt2faZ~Kk zoH8g9D9txm%AjeS(xe4YGOI!-rEp(#qW#UlIS$2*P7DZf@XmBsES z@=Kv%oU)q;k8=1Wr}QHJj&e9}E56zpREI)j@Skguiu*M)l|~ym#fvB|h1kO>M-r?M z$2sMCZJ<0cBo@Op>W>KF68#Z=tPA+}97fjQq?^IP>!0glYK-!M($&;zYI-4v2ug2)=wTU2MUhlCN!22$Q6$xrr23Im2a?)DQoTuP zB}ok@sp%v&nWUDJ)O?cKM^c!ihLO}Jl3Gtvdr2ypq)u#_3dw;ad4Ul7lhiGeI!RI% zlKPsY{vfG|B=wP`){v9|#+Bquk|HBa@^O+XPf{r)6-QD>Nva-69VV$3BsGhqx{%al zNKH-dPm&pgIGUukk<>Jj8cb5DBsHI;R*}>~lG;X63rOl9N$nu1(E zN$Ms^jU_2FNsS<>=Oi_+5Q&FBkmPPcblwK3K_pd@q`oAnawN5hq+&^GFGpcp-v>OW7_@)`mRdMH@rv9kV*LXybr4fGfF0U+t zXOiG;m#WSmNl_a5zr%Z7%z?Pow;rG254X%t_|p44H~cu!v>Ew+jT3$a&+={?&Q3KY zNUw2%!CV*D*=DMS{_{1y`pi_Bh0M))6=?@d9@u?NUUAfv)nl;N)97m~{ly9; zk_;mwa6$oV_5;9GK=d;wpyfJ<@WuN!QVCqEzsUooYhagXVWp7#Hn{r$Qv^E4Vb6-N z^`4jsqk*{fKvOI_twB7gMFd9Yp%)zN4-ss~eh!v42!^Yt8nEAV!CK-wgH2VX(l{Z& zTptB(7sQyDWTD(;R7aus;}B@G|8}(~OKrD_(&IXGH1rYaXw(4yyew4`x zZPj3I;;mi}Jc$psBh%J8k0X;@-8t7fzHN zi(=zUP(`;LYP&YtF z9L8Y>3$VELOxB-)_~TqtFdC?V?5Bmaa_WkAM?7}It@nVGS99L^14yHpDc z{Wck$=Q!UBIJWMBy~bRJQaE^bz7sm5fjni0q`ne76ZMtjz!8u^5doO3)$pg5 znrcbib@94r@F=^#9?NsW#nWL?B8`K>qs~g6AI<`YdO6)h9t6_kbdCl&BrmTOcEG0c z=r{*Gq6WQp0gQUxCQ}idwyARve*1YvCn-x8{(uIaGVZd%6oeje_&hcI`4y&E_zI^U zyE*!JMOQ)0ky&9Bqxf(NFgGqb&>PFBD*b5|LJEz99c5;+-RtapchZ^ar4T)Mh*dq;pok=%W!_mvlj(GXPJZjxJT`X1bqDWBos=JwC z2QSIvh8>S%x)4)^r7*#|V|J?}qoF^$xZ%k8lZv3u@Eb(0QU_A9F$O44ymPxLUTQ}O znqZ*yZl$Au)#PIM(l@X~HiHAD2td$QXT0l>sU$u%$F&IFy2IotO}66-S~!tVd0;RO zki;O#@06(+zPuAwH23g2b_#XSkRx>$aJ*d?d8hC z*<%WjZt8+w*9Vo_!EjnP7Z%ui)|=pka>Rm*b$}-R&%6MwpLUbA~g6(v`L8& z3Xn$Lewct%<)HCuP`kwI#g!?7Kg5?Qiqm$Roun9b9g&}?1A4VY#v#~m=)>!Q7+lG` zwVr6HhZ?x6KCo3b{&-k(Kwiv|Q`N|)%H=v|xS5OMEA3o8aJ0$8fQPkmEs9(3gjRf| zu57M;Wz>beISdQjCwM(a)%8I1?~IQfF-1z>szKp2jGp+jzlQ2m4NwI-JX+LsJkYO$4v!8eV0bLKm+6f+-aCw#G@1TTy`es?&IpiD^mUI? zc=#9)PHG-hL?z_OvXgPR5Sa<%r$b==Ol}h*9lHuf4fo=l1WSE&C3J2RRE1UIosn(w zhR35RBdQS|Uf3N59!g!o-XUNKWlo!-(a62n<1=jq5L&jB2J1q?3i^I7kL%ul~vG5BUPJ{ zc-SxQh4G9#Ydoaybt^jaPZdo(2Nk{M75!asMLk!!8l3aWz?utPJ^53&wr9%P=qLit znvNnZxVI|S$OFMxKxvUSnlpYf&RmnMY3z-ASOp)uV2Xf&KVgbh>8_-k`J6jppL)(+ zXP<32pi48weuBA8Z)IUmJmn{_nM6(D?)%u3q02rzEz%rhTi=;{3HD8At3f_qg1yZd z8jutf2j%K{l;U&#Eoz7^S75njqXr_A^RZ^1ZQPMOK@#1sf)brqgZz5cR0(~r0Xd@u z0f|(>Ye#wbaejVNLnU1UJAbHw%C$q$ZiFV%FdyV(9T%yvf4go9l>BgZn$T08xX%q! zS*aurSz@jxjIZ8=P#*yVg@k@r^f{%o5aqxFi+uuO+h~@i2w3hlb9t;Xi53*Xl=1tCGF4>@IFysTgC0J3_sfSx zq%}$iPki(aECaxGPiUq9f%oGPiKao)biC-UX^(V(^OoM;3BgZPip%yZwJqQt^zuD5 z{OWtAa9Eg8!QZsOkG~J_e+lsLlNFvy7#c(EYz)ssBDjr%%y#kEHr%CH9JAWmg~JD% z%Sur=X(b^jqqs^3)Z&@_oktjM^}tj_YNLekz`Gv68eL0WoMsfq&d3TAGb0- zKLWU!SoLJNHvRV^+G6u#TjpYQ!O z5aAqt2e^8=aJBW}Xy-XSF;ztUM4$yvOwr)a_4rEs1W@38PfuLe0%6`f5zXlttfa!n z({)-oqd>HdXorX~?YXHUtljHjY*AuRGX!O)X4&L`(&}CRG*v)%Mc~vwAr!o22Nt}_ zjf2WjZunntsOGI$`1ilShF;kV3;p*(;OdWqHfy0H%!ks&gK*|ckW(OBZX`P81iHl%HX$_OeK{(jv zxO#JAm=`9K|?vmeRCOEBoh6qOC*WDCOI-CO})NvCk*lyJd${`j%Gxt=uIjwE=f5rkSF z4TVp}@S&W}bgO%UP~o5s;ct@yaB`;QRBMG%W3Wvg6*mPm!y|1}6>cbI}6o~7}{aOT`Vc zC`jBz@$R3CyK|ZU$ZPyTQKMbvd+K|+;61@0^Y84{3i_R`mANC{8Db7We{tmJ3S_I` z1F+oD%L(^v4#K)$3gDmE;e~#9OsMryK47W(!4Y39WA;NKN0`n8;-vR>ow0UCZJ2mb zx~dOK5^6P^R=%S%91yia(|)*94*H=bM{TA+CH;`m(W@L&`6jx^4Hd|=D?miLUGY^Y z9MPR~1joF}tFNdhq{^e>I5^Kj4c8a|S*6^(V)&aVa|H5$bwcIY57(ng zNgRuY1|)EtIyRh~68ZkPbwe|J_9My+FZq`9cEOR=%pRzw2C>>v7K&8{5UzVv8s}rp z!D#4Fc09!fydVV3A9(Y_!z+8c`j1I>;5P%=fqMJ8&;U(EeeD%deSxN^MdMM~+z)N# zt=VL&H0DWuaeUhPerPrGa{3hobEUW_8;A1%CRp zxB-8t2?y7!9%IHHkFUNmHwLv(2*3}gE%GjmFV+Hci6J>O+ai(2Y)V4Kai%tiBZ-6d zu!35pQ3uX1*iZyZ=|re}X51bMi^_4kE{GwOBYtH?v`V2Y;m{MW4)QLFTh@Su^0~Sd z%u-fBg#)Zxg+u>_XodVOl_LW$-+F2~RXCJmKkk3~7@M?Qn88ow;PQc%>Vg-!M#aKc zbU@Ww;V+He)`R+Qd1GMO1Tx0};z{?{!HBBEhr(JoPY=W1Z$_ra4+AZ9 z3xiINUqzX`;BkQAL6$+N+e!7FMdyv(w?>VPMQb?TT0ja42PojlxJ3hm`G*hLC8#sC1uzBSi?Vb8TD#JH;FZ#!jECwi8o z$4GN|beCh?5-@^CncGP>XmMf8|CzUfET&(EQsS7OGTK}j70tGGNk}y!C$bMrc{*{# zTn4A@b1x3J`AYiYh%+YAIW&`MQu0w*2Q?yKn@Vvr|BWoVfIuj1wvFbD54%1J!NJac zaH586VU$=ZbSAx-*DafM=AIoq2!K~KfC+I|rUNv=CTJ?8&hJYG<0~62MbH%1Jp5;M zIDSpfDglru9=_Kcj^)XvDqxqR5Os~Ww@c8xG4KSUc)mM(k~t1-!Z~G!h3=qk#vLIP;`SM|Exw{x1BK?ho9vE@?~A* ziyCC=eLAOr`-X4ver~BReN+QSOf!#`-s!@<)`#0Q9p+(C46YKs+SIBsR01<*n8!#J z8CBKp@`S2rH|4JIEQrOrF}TiZxVy8=W8vHotwaUaP9Ltv9CKx99)p8@03~4a?k|V`^^hN7FrHC|1HYb8JExk9e7JKe z^d0lP5>DzPV0mJLvn32ao9!Z>DBs!=@Yr#Qv<>;N%=w9p0$x?e=ytW!VYWQDe z!dCTMjyFq_`2GfS4Rny>?Nj50%?5EM{s`i{;O6IreKvs?-K`71 zLl3?suDlsW$_E_YsD|glt-_9C{i+LmTLTO(W~StZr}YPM8_qI=1x512pu{b4<~CRm zD|S|GrbW&&GZp%W%Jah4;O1*Fu<9Zhj2**J6%9_D76N>D{x)pG(I>I`uA=4 zm)>OR#jc)#H-huJMnCH$W5D+;V7l0c-&})7_$a#SyhktK*cLU>bH#5Dn=7FCydiT~ zLm*_TfKMJVCrUFZ(}D+@_Px>rZEEKqno-VTKnFO)UI7ABCk&tR^p9rFXBPz%;?!>l zflFW;lo#XF7AL^9<#5pZ0w@?>7!F?kC>#f$FI|{LM|ai8u;*SNa{4KAb>#X3>pEwg zGz|iBkQ?0Cn-9qD1O2Pulk34*6eT~gRXKs@!i1{jnZ^!}PJ_p&$&srG$W}p=!$ITx z4cPq!z*p9VkJX2#_Fnm{xhfjK;rj~klQO{7ft<@>V>Le)EYCN4>Vo(D1o(lq{*|zt z3O$+5Ygi)G0C5x*dS#q84R~Lq3lDGE>xqW)e&amwe)QI>*Lbnpx!t9%i=X7f$gW9?cW4=Fvf7~z5;Z`76wTVb?eC0uY>X~56mlq2VDX? z@ju73rWBS^K?&$QfT~W^WpiJ+lS!$n!L>M{)<=SV!xf%3*xNfGn8rq^DFZu+FwhQoL6Xcul8@XP5 z{X7dn0LK%-l>WO;5Bqp{u~9a_8#Od7J;I%i255u)HSy$lyMRaBy)K zT!w#1KV0uz01H3STMgc;^DMS`0UU|$|9&puMsnQn9|bmH2{H+V{-|cG+>aWdn31q} z>-G>jzAFdnBm%);ABNMO!MeLVy|gDjaSoQ>+G}vzYH_JBn>;p$qq!V+mWT^x+aFEW z08K3b=&T{IINsp{9_%1T+b5#I?d+~-w+3y877cEnw8CFMh5fz<9LOjF(UrR^H7!A; z&2i{g4diVtBt5fny+WWj{^$n`x?N!I&w!_WYjuBAbr$_$?jaRpRF(THLa6nT(7!C~ z_!BI>7RRfu#ef^5Nh#QHxa!O1qwrA}DmImX7HaCDYul^dz}og1 z4u47wZ|_WEVHv)`!bG3!&5-U<)pNvF4|OzP$kg#%;Eo8~1^s&m{7WLu32&^|-l_j2 zZ%g5}Cme8d1Y}r{Zo0MxF{@1*#b;zC|y6oep)n;iNlGw$SfJkd*JgE@(lQb zhouU3pKkF)VHedlUE!k5*-)sKk|i8<;ZPk#C}(F&1DrTAh_1tVN*bg#7nyfx35B_v zq29qVDJTGEI)HA^xk!&TKvDXH17$Gv4;X-JLyojU79TWCgE~cvO6Nca3tOVl0nX=M z5izBRr7zm00s2M@L>v5vqoq2^;XwCApotlla6EiTP%QrDPk0mIt_Jc}0g&~bEb#rn zpICP||0J{)WSEGG{-o}N!ar$5M|m4>u*9R99H^QI^v!-MHn^ZS;(2jgFUR76Dr;b4 zwXk%8cH9;C8^B@vimkqyg-y1*GdnFWfDWD4hc?5dm8#TUhtn{r@5j z>;f&Ul}}Hc_5n1G%$(6_0EW;O*s`k+Ww>@wNs`UQ?g!8@O(lo5l~6A^(A!c0J>|Ur zCSsqAhs^`9ovJvxqG_%v&yd&C)D~#uq+xF94%!jhnjNWMrvRy`|yk>i*0GeD&%@vWO9Al;%6z3 z#&YCQYUH|4xbi(s2y(>r4#Ds-oaIrW53!+Be+a&Y`oFSZNhII{M@Ig}=T2IxvoP$m z>q8ob!P(R*xLc5=ILf}n;>p%td?`>mK|mET?j@TGql^Au2U}v0i8C(?%maoehG_&W z9yBlRh@WkFTn1kVv3Nl6Ym*H<1bJKrhR9K0xJH_D&k`uSO)}(KurCYn++n|f+`x6g zF%QWc)*n_TV6W95r$mNSz*EwFXnZHZ`=SpO`)-bxZS2xzmz=WTacgj}ssb29VX#=~ z7E+E)?ct6v014CN7((FFRE_+tJ~B9@ z*7#fmAV0Z`JP^bN^pPcsiM<7@%q*5wysR=`GD4^SU zZyjd|l3Eo$ z>%kgKIzDZ$Vkrk3augGG;B1(u;$a8-t9q8;j6t9s(LtpP;ge&)&Q_~&S7>nQHskeb zmh!M2M{!|fw&7A<_f#kyjDuGI9L#5w!u?(YM_s&B(^3Jp<0u^LzuDld5nfyAZ#B}N z6bX)rhqTLOn-*}y7}E98%}Z<<@#rP$yx5L2D6o5JbY(qZyYt#5&)-M2&CX-<`V*UGIIclI~l4{c?~R~=oGZj z3GNB27_3*>0&87E%J|a24i37gaI^GrsWJF80_**qv;9boEH|?BhJ!9DJhMI?^{~IR zD(#MYtcEzk{fyZS`NBpp5h}d5Q6#r9rt(zDq9@HvmJq#gQn6f7ARc(HBdCEO3u+3! zZQ#gB+LqF6PZKrfb-*bJTOBmiJyyB|$;PKe32O8@8gyz9hnvHAJep&|n;bSwh#nGf ziccAFZUVRelq?U@f|93|9<&58ujiofGKURxT^=myr6rZ|!HF9mxv}L)_~f7xbh!r9 zDu)PkiG#w^95ztWdYss_Oc{HW1`A0l(6bs)n5YfJdweWK(OV7*4|Lc-Z?!WA;Ab~V zm&GUcnoGdxLlxd18a&G6r1s#qLUDEpcu%ez-s_hunihz(Gdz<9RI%HG2tjKHG!82? zu1qO9dxyO`irH3;*{74Gi_}Vu*<6W9VLzgiIF9hQxXE~(PjO&wjuBBPnqq}7QEEW?n z2zwKU;bCv_=tlP*mI&!LR{o))e7$5#N1RrqEI+o9OOXV}0^9U9fy%%fcP!LkmnT}n z;c%xE0{v40X9w{90j{P+T594edmdF_n-ayzk775u69Vrh0TtrH6bTl8319;S;KJUP z32^071yfrehAL0P@?}GD=9w}@`1NpD`X#W#6|mR(S|&+D)Ue5)fbH5JbTX4+!L4bb z%~4OxHF0!Y*n>mCnp&541$Wgo$$aqXHHBXSDQ#8tXfKEE@c5>{1rq z0X}Osz|~m__)-Blya?%<3uPbxepZJ2x4+c*&-L*k(42}Y++cpWEcCLy$K{LAdVq~% z0aXb3QS9+RLeTcOm18gL{&yKZf&7A3&_+>#oo||xZj!WA*V0VC78qs6qiGy=iUM}= zIM9Fh_wbmDZ7&ucl~*x8ULTfv6}V*Th!2m3x#KQg0i0nI1QT5u%7AFYE9@4;*7vt-#S@! zA~?USxKoQ*Hr0Ibqq3IlS`cAhW4;d#2~l@J{2}-mPfoV%hmCpiJ3F8PKT(ehSNJH69HBcpRCon|z5~CC z*HLebneM;9ZnLt6^k0a#!%lj*$F(iwiJ3F>D%z;nx1;D$&(CxKK}j zCqfcj@Bs?Srpe@rPmvjx$|#RRn$?hS6b&Yky~{<|mhL>H96PSykYNM3CImKj0ZE)m zcAf=mP+m7_?;?+zZ0&_|3#UIuA=jJg#VqHWY%xm>w0(}H21?*Sbwr?`?_t5X-k@@| z@rm_tvRVO= z1Ond1pr;z3-?Tt7WwNioT zEPro0gqf{4d~*RFHl~M2O?9CfX`rY-{~N=i@0T2Ef&gXZG?uM(jnxGmr2(bu8+BL0 z`o`C{a2t16E3h}7ZpTx@v9EG%)WwC5(D8QD2oCJ?d3m_LVYefQX(plvoNc2}2b}ez z_U?hN%r75+qu0Xl{;O^sw^|Qw}f~EKDF)Qz`P%QzoNwkOKG@e4b^h*m065= zz~WLfhNp@?o7@(nPpTD@{VG&o(dTf+{t$tEfb+zoHd#iJLyf?%;QjjFRtBKwH(P2z zNJJ$7Cl_rJpb(i`EK{Uq6hd%xiwS`@ITaWaycj6Op zUv0P4h394{+;cTt|8Fca;Fc?CpupYZPr$w0VQGj$?l4OY#ES=lrP7Ap-f5W!OHx44 zSY=7PI2o)`XlTf8%SzOeqcjsxI_+U1pv~SVEVWTLj@MbhdwRk$6^?-G;kEk&9&}F~ zG>_xW7VtV`Tc*Pqa6P<~PvBWj1Am7&-hKh^^k1pQMPvA8>3-N%7Lob zm0yp)JD--^;d4EWK@cJ#5M7HSQgn_Q<7FaEuTu`^XJ`WLFZ4O(5 zWaMTHY$oBSCqfIeVXUeya=bn=JstN&gNhZ|If7&k-(P?)`;%oNu&&2$k`j~-1K?`u zFaV9E{*r{=;K(Vhp^fH@W8Sb!JlU5mP0_($S=>DZS@&!9F=*9@up9VOZerJb;buK* zd6P4LoiPts-uT%cmZIcVvj^Vur<)t@y{WCI1WSZg(F;SwrC*gpgwHig5WJCobruYg zA8d%WORF9@Gpk|=y!voO{^aIcJF4K9UlA&|vlqZ0A2sMff^s)tJcK7jpav9vkA=v< zv?tzE1{T7f-T*BRy{C?o%iUvfGJsKW1KU)za2|nHM8pkJqO=`0nlnznWfE`p+=&yO zmkruF!j*nj3QlNyQ6UEOYT-%=4el%l>BQJ>{o4EV_I5n=d5Wq6?b zl?L#I29OREy=9nehu^2>jzaIVexwoz$bm^vx%=uaEPbDK;qrT|3qhi!yU+yqmmKiO zJkD-i(WAu9)#0O6$@iIgj5v{B7WKcc?vg(DZCx^=Ib6>lZMKv^3phvf7)Nj`Zt(&5 z0PvI+xjs1a+@qp6_+7Xo-rf{?WVVLI8JxuwD9j&g%zlyE6CLKDhistMM=@*GRNz0!%JuaZ^le*oa={AoPSgdyFG=b_R)YQ6#&}WE3Yv2xfS7p>pp|9 z1atUhHu$6l!0zRrBjBOWUX>hi@N+mVxL5<9st=!m0KL{9@ZG!bIB>QN*#1bu)Wlp@ z9NfQ>Cw@Pm5-8H2P{j#N6-V`}z*YYOu{`JSPi*jZvB-{*@Djxf5X)l?Xnp~pwf_dy z3Y6KH3y-yYliL^+K-8>w*mVW6X2|s>RPLb#jew7Vw8Q7)BHeNK<+%pbj6*lELR()& zDghURD!JjX3$W$UXa#&uqM>draI{*l7HSsl-he>H^9sgTE3nI>`jkrU)KI07y4b@$ zf!+BX$YnFf-eAQR<>H5j&4dQrtq1$g>vZu~>*Ir~X@`4#fb(HLbNtIze5y?}cRk145-3FjHCYQqn@U+5P!w3(&++!y@Tjkd zJ{swaTNMM>wo?PTT_2RXiIGmZUP$Jc_iUIdH*u<4B^TV(8JcrPgML#V9aEM^8gfg) zDVe?JVDxu-VC^Bwaqzd53gK3JD;2>P_ksUObb&F<5uVsq9*8dVK+{+7C7afGf@^Mw zRD%ImwE^4hxtxkpVBdP|Xp~zq7^(#cR-GwCL1jq`Bw%OZ^#o9~(LyLnzy; zFFkU?E%$-6lQft;3c$?t1k7a&bFmI)%kL`{!$S__dZJVf=2u!ws$o04a(!S`f{OQq z4HFcs1v;t$`Bn=;t$$aETu)ewpdgQJAa?6NH8!dcp5p_J&DUUBw3xJewwBBdL4GD? znk7xvju-mp*GlEsCz8BP>OS{0Y5JTR!C_zcsA&@p+Rz57^n)%}ASznt2i(@z0N2$5 zLw9$^Yd%Cd;n&Augc!roN7~S#(`)08`7j6@Pe9)c(|``vg3@!{mjXcq8%)?^Kb%{% z!Nt@Dr&sSKX#KZA;JsFB;8tkifX89zGUx1~4GK8xfX-_GzSjc4dBl^{h;92j&(ESbQd%bTtJN)38vkqA$0do&W2<>4dLyD_+0ohsWXH}t@g(h#ZP|%*U(yn*+Pp+b+2L-INMUUVy-u=N>KC^ z8@gTp5=%z-;NUPAA0}&nCu)J|ifg0r+)!AVpqM*tm?2AGxH0WcSEqr(aub*fk=H% zjX=&OPO`uomVnB}?pgyXqaN09)Uwqz@N0YU7oKudVG_XVrKvRvQ1Xq2`DpFWXxD4_ z#jpNS{Mvy_G~=M>-BH*^?RG6k0tPO4VNyNBcGh+b$Bv5r81LmD*kc(nwuJ^(rU%Pp z6M?@uireP-g`VRdn$OrasOPAF<*A&_10HC$)mL_+qa|A?=10b#`p4tb9bM}?;%qk! zJeLPAJjpT0cEc~$AO5kpCz{y+ZDnzac?9z+;_%d2c%p7vgu`4@3py+{mCKGA0R)Q@ z8AuZe;uT)}FNmG1_lymt%#-zkj0U%{1-*e4otxB_WJfdtV~##rqI-g_l5~n{7NE32 zv4ONU1<^Me+FpXYqRp^215i z4{YX$(~et^zIqALf#!$=uo#hv@{vUHbQS7oe_4?3`A6ar-0_xi`Ewn0La(1a_L|aKC!tM7O>at=$G=8}>KK`LhM{oEMW1-(iS^kNsevg{Lu;!_%p_vaz5Q z9hDt;*s1PVd6pXC6hm}Dojtqol*M_h?5^+ftuih-FvJBh;&n$ETMGuz1j|a11M3(& z^Nsj$giTjRHCqb1Y4PZd3~;`Sb&^XCz3?@Lle;-8Vy9saIo1nl?4z}7ivyomJgrrh z+CQ%qL}}d}!8m2WABo}qN$}4hsE4B*b{ys;R;wgtI*K#&5L(--b`e_86HUenzvxT- zqjQ;T?*;dJ+CV?4pyQ;-)>vxjk6CO?z=Um<2ZuY}2hqb51MaZ`$Ilf*Z4afhzv*FA z{uY>h=okHgfAq2a9D}vWZX+(P;O4cJYmfNpJ*cZSwX$w=H7$cXbD(XPVO}r@W?mE- z0xk2sw9fsKlc=1*@gfm>UJr2_!;L$B%_*ey~C%@{A8GK zxjN+x^v4$Thc7|zQ6M2dbr|j_q*c|8A*srAy*z3g=R7SD*r$&=3S`%=Q;8alfF)F5 zk1h4CEW0c0Oep}5DA(MrU6#^DLZaOTiPsepZNGO!($On*s?*i9+(9&E6e`|pera^@ zrQsRv<+gm~UhSf^dNgRv5;WdbXe5tuw6~>sLDe||-B*j{OVzDPtHz?2v{L|WQ-JVQ zT7Fv5xIqD08(6miwY!`UM6bBl1moZbe^U8~-8H0Q`;d;k;^Z?1oZDuvxKnk0P z7$f&hb2ZF$lbfN!FJEU_d6J{LmLRZesn{Ot?ySXIz+x?6yzqS|JL+o#1z3L-toK4N znmonPSLuCYwt9!Ohb=1(Z1lW8Pti#VRtudi>8ymAZb1jIo4MgojT}*H2hGS4H znDaX-4P#Q@3lhgw5&oxuFwO^?5_5IZV}0i3s=@E_a@eI&flfPT^o z)uBf3ViX|gmf_s0_s3R&Sa+CcZ8o)A(tP=v=Woi@D@?t9bLQ7xLFWJP*}}rcsLYLq zV(U8W-rCAmp24WgF=7l{-aD?pw>SI21 z5f~pJ!27A-IJ#Rfer7_wJoN7(M3cQO6na=GctsOkp?(NeUknNh1ceNhf=4vbRB#Ev z(=FidTfup4fSE*V2LNWd6ryws zaEA&$J^2Ps>ih)a{^4L^F>1FAjyA^ve$5K*mB{Gj7=|u-huI0f@9W{I!dw#3E9*tl z>iP8w8Z#|n?75{u#z&hyJPop>KY?xj8tf>ih;5BUxN`GyIroS-WtTI#ofpMaA|wfGU(+JV~9L`O$)X#)|EA zF(rS5wXF(s6x8zEqnP$szT3&}aRq3PI%qE}cu)Ty-mNZ4VYDj(##a+~tWl3s5aahc zI@qeQ8y0U;h20h5z2Z$grWU336L`H9Jg<>W+=o%69)6L#{vTxSLpFW}ACe*9(-nB` zLwJLk=&Bb&3qD6hdEYOM_x#h~os&)bp~L+GexCyG(IGxgccK^E_Yx*Y3cQ80yZ88| zvCBUVufN^-G%1*_9)Ro}f?AG3&D$Q0_y>+X<6uUx?V4Xgm;Dp+7)?d3(0xO-VKnw_ z#aQCApVuowRrB2l##Cj@B%c^CnBB0dmw!p~;)tV?mMkzEO3c!%Ti6VflO`xE>GKEW zVK0o{dA&gpC4T7$)kX?Xy9A9O7G;6ayzI3=nt3oI0yC5*5?J8pj|7icQ@%#Tx?BL0 z0*r{YB9_L~3(k&645L+r;9A)%4(2LN=nMU$dmZ20H4Shw{MRVJw}KAN36hfbx|J7h zG@;u|Bw|jD5jtijbl5*3J}|!iXoGUJD-Oo;x1fPDg(Qu3-#fZvF4M#~x+ng`!mT{t z1xF#ea=rnkp-;e@#5^$CgeVN)bpErs(LFE>{zpf3_F^FQD1bJhcUqqg#*TzcsRWC^%d+t+fSeO z3}sMAyCx^*r*{Tn?v+gtVfK^1Y5K-6kUFh#Hqn%3+UvV=-@wE+oVX-b-%QNwzY3mg z6hhm+aD>yPrHBYjRBBtO@QS;*MB}gmvlh=-JZ-UYC^($EBsRoE45#W~bGE?71?agG zos2j97AMt0$kR)TL5S}KUu*&=qt{3X9Q!X!EXap|FfHm&Vwn~ao|rU*8s5aj6CAuO z#4$4+qyI~Z6{zYhDCMwU5;#1|q!dr=6hiH8I||w0-zAAVW)j{=D)tT{shfUDxcrkq z5LH@>dT4l=k{HLA4&NI<)xYN`q7{E=_69{BTD$>Y4c_NIX6oAr$d)Q3PB#jnGkKjQ zDeOM#Z`TK?zs)STO{}R4N`JANtU-bKf9vRxo^GMOw(F*8;PG6oJ zLG2%4Oa9aUfjRAwS!FLQu$)J}Os#V7WYn}L2rB9b0yR|vypzibEPH@cC$BsOfjA3+ zYLB>0;0q!T-<-hHXINo3K*07>VMDPz(ct^n=Xj^L1+j;J#K$kNa%h1-%uo>FHD1-y zEimu{n1ItSU_Pa*(qOU1RU;vjFb#3rKkboJBRaKy;{x*Y02-Ec#w@ zVY(6EEUe{N5U*JfvFNEYh2(XX(u)4Wbl!wgj(B2rPhCnz>u~OnPrP1$-4OE%zKY?Vi zg{n~)vFEt${o*DcOpeIT3!dAUVO#ozm3qW*J%^p5z&_M(6vN>-CjKV)1(J%heQW@2 zR)FplcNW9xoF<_4F9(V!;jDmDIXOq?6(D|^7gn$}vHfU9!!~Mu#KuF)xKhqaS{^K8 zVS_L0el_Z5X?kAD*$k)Rn7DfC7ssFZ)C8h2{NllkpwKcXX*H_xi;qgHup1VY^2JKE zqn$BYKY`R+a>vgYuQVqc0}lu6}{JE?Sp$#%dV?I9&n8?tdXvrkt}i z23kyT@A-w}-TsN?ofWnH0&brIht59YzY5MO7*jF9?efBDXC4|8W@vcXgc;1<+q~m| zBG$aWxM|Gf7rAgFN*;#I_gI{slv4<+|HfX15c!@RllWoSM3m}*)Q?77ZG<#?nFDuRNiUE}p|H(-;F5UR5Fwo8h zG`8$8ps!bTwq=KH`@zB%9saO5n~e^*qOtIZvpLO!b>b9OYuVQY;H;QWFz_(hFDg#r z_J_)iJ}J&w35$?8>Q)cx&JVC=H8|c`!-k``{jiDe>ihxnBDbvJY>Z_{9Pn2UAYZE) zSJT;&ow@A?5TDbjfPBsrYT_pFM3@JTSPPvnz`ivgS1z$XAlZKTGeI7O&QEoVd}2(a zewT%5)S?t~->GhrQV376M1)o@bQPqzb(|Y9Cdyth_DR80PB2W|WBa6hzSa03k?(0d zxie3>^ukA%%bax?XXy5Irq8auS|n8MD7}Xlm`j+>a@L@07oC-9 zdZM!~0g=M0OFpf&}NayST@AJ>5jv)8(%QIi<8O1+S}{{#o93gukjx z1Ri`M>jB@z;Bf=EfM@wT%t?P}62mZF<93!?aBXRr;Qo3NKm z>|SJdn`jq+q^@l#+t^uE3x8^qJd`^94F}7SQSzeM$`*tW=wvcNye@)ihgz7Z&2Dkz9NL#W{I zC|+2FTalF3(pd>afRS`Rf49uwd`k_5qn^a8!dMkN}xfl(YypaGwROOxnh?g z&GyW^$m;o1X)|NnIHzkBpV9TUSY`Fh=)E8-#&y||k4Yn2VojN?MNMk>6SUR0EWTZh zerE2%lzv9GyE!bo$5ePLa^yuP99$jUBACM3I}2)^pHX-R6A_$$YY@r)y?Gp+?SXG? z+gadSTi`Lm)saefbiSfZ2TjyLZJNqDAHTfY(b-m;Yyq2S0W(J8hE%Y=Z@i4{6Wn;;f?mF2H_O!FY4bh1&mhX9MkL3*tEoB4=+)SF}KZG&aQ5 z1WjY7{H~f5KOLv_pwbnltXFPTrIG(O59B9(+HCB(x)kHNf6VW?1GBb)S;LGO{d$Wc z6m4r!nkxk#k~2(YRYO%e7V2uEm4Hrv#=1Nhl<@MfSYeuPR#KeqwqDLMwsDM@7$>_{ z)#G@vOI@f-_3tB}GwT#vRPo|ZzT2X>*xGK1!SEu3VSdUZpd#pKA2dq~%tg=OP<&%5 z?i_FTb;hEeaXB6|LwGa|i|>azzTaHteMXu0JeOw9NB&EvI^(e4AjiaNMW!2tEw=6K z$v)1iRAzv)yv$YcBKqQR^Y8t@OX9N(zs@aeJ%G3N)}K)Kwe-38nROY z^n?O>euT3N_S^Bt-`5r>uS}0zXc^)Y9{l%$#@57gF0b;ug2l^0bgu<|s!l}<{I_3f z_bt?TyV+|DVm(y-82Eznw6465y>W-ov2Dv&sLxnu1p1?RuGZTqN~vO41+TZPe*BK_ zz`Q2S9a!#hi17OxB>I?1aGwpKm!!MnoYibS%_O=RB+|W@d^uT_3C^On`3B}(GbS3< z!gOzfv#M>j8E&S8^9%>_A xTZIdk@Pz^TnHdy=9U;`ng*G;RLaR~~Itc>V%i)#q zX?HHVf6Q3M$90+KZD(cMp9bP}Ga{m=&Ip%GGQDVUcp(?9d)F1k;zd5@T6K!EtSy{U zpS~KLaL*b@+_LYK4T?+Bk_9A3O}9 z(EnN)pUz@MzCV#I^-qV3=)d>i+OZ;^(K)Hm!SOxZQH!E%x3$KhepqjdRr>x&eB&iy z8%hi70WF1H>e0QywqT~17!ft|Iy?DGS0%LHosv;}K4la@F-_QiHf6*eJFmEBFSWo7 z)ymdbwd7gvi{_laX^PIDd+Dphco84W!RP^IdnB!?mUs*klRIT@VD#To8tOQK$w~EuSv;e%9vXCR-d>ogbo$ z&h;#oS&i}D%}omrx_RfCbGLaJn)t1PyG?>Sf{tH%O&lb1f?(XIrf;)$qyPVvs zo_#`DniUOsKEMz-!y$P1K8v=6+nO-ZL*AloN!nGjZ9#gr))`@|X-1Cok6dcKv$QryfDTYV`Mh+mhPTSoj-<9ljK!$^ z%%Ht3puGLAxdF2%iv;Kb1r*InVd~hTZ7J%I+%_+j+z3vwJBqIi(k-A|2K7He|M-Xi zJ*a?UQk#QTq-vXhx8IDn&p%$9&CV$8mcYX*eW@r6T!s)zUdzyt!;F{1@i0IP3u2$e zdkyKDFr*tdmF~>5#yJsM)jWoo+wXb0GL@;u0K>xvDn6+~9%)UyUp#IbMpxVAF|4UI z%OZLV076GbL@l9oFSA`4I&uo*`z_c@Y8dybL5P0>kdnvOu4e6UMr)G={6sT6pD}H> z(;1KU+ypxI|A5Zj1x0NVpc~AfKc90((#UP?^V5*sr~&KD$gBSk@~lr#w|*AL=gi2B z_BiXJxi)cn(mx&_0eWvQMu2R24e35N5s<-@-4%#mH)b-J}Rp~GseOTDB9wSJU;#0Sx)OE z;JYjEEF{iO>QI6{+z*kyZiai!0>>-Vu`kf8nIqt4DR9PY)C25;Rp4d}9Xh- z{xL5dM5X#vV1A-t-W`kC_m6*RA4_s)FaS&4Tn!%B?V} zk_;vl9ksf z@b3dAD+j&|9p*cqG1Ag zu!4;EtQn3{F>%`8KNL6}qh$+}4-^#e*AS-=3@Q=r>v22Zwg?#$N_XPHB1sfl)*038pW(BK*qD0-$3#wh<7e3ex3pPVt&c9thQbQno@f5NegCEj;+)Lv|+5%0U& zs9uB*X2hJw2ve)so?J#u%PMAavsn2C>P>d!UuXUz4JzsYaT3N&S&C%VS>eJOw4)U}$*?)o@tE}~vnF~anTLTsm*7z{a*wFNP@ZGM5b zSb(|4`(1~|Km34o8rWjOOJ-PZ0`UmAGUM?9 zC~hPD`?W7+d?5@^>B}Szo)XBs3xv3icY(@^=mArk^ur7X?+5YjMweU8;@XeFMwFO! z*de+bXBdpy8Tuhu28g^ZJAJZKAZ@>mi0f~`?|p;cF`14^SWFc{WA306j=iyb`MYWG z=L(hqAs^EE>@IpeF(HNtL{X>pFaaRdWV1W@a4fJhfgK&U-bdZV>G}q!TY=)0;HUe} z3R-&s)y9B|-Uq0)51dKth&W%AX8uuJe*tBRK$+x=Qj*U8jaUMw!udkI=^yIwih#V7 z`w^CdZ5DVN4Ll|)^7x^AbnUUT2vtvcEibtqA*xt!hF@cWhv+&|&|@qnIWLfZl*mGK z08PNMIuoZqNGNV4P%gKU@442Ek&TB5&V<}{Pp|ZLGIn7toZm2$QHi26K{I!{5|xH0 zlxBP;S}=?h8vmKa2GCs7p}#I6!!&zUtFoQ*Q)m!+fR&7wOifjJ zc2|tkDW%|_cT~*hs*b^VZvncQ>0tF+2tCc`YJ?BPISVHAPX5ukPw86#+PXKTb6{BI zDvQ-c5wjJFGtCtFlD_Jp&=1Q>jq+nj+zc;m-jrn?_B3Tmi99qbV*uYrg zMOF0jF}v%P7q6eND`xE4Dp-NT#kYIl?ZuOVu5vbf0xS&xA*!#QxOah`BB|ru*Mi9% zhSE6w(*2X}9djkJVW@@St~5la=e|SeT9{%^dJLaW3S24dDo?TZJeC{Io?GSvLfKtm zxgnum%MEu8rnP0e6rhrMT=_As&q*L!wU9`*HS!Cb|j49!oiUEBN_nm}` zq91H7EM^Yq5k>$PUFgTuuljPp^9pN;XQ+Jco8%F$B##KsdTF_`8`Y#vlgN8M+W81pa z-P0Qu^u`e}u6MLS1-XaS2H-drHgt@<*i+(Dc$bUSuypF)jV{s3x{iJY`AD+ja(i9Bz3Si$)i-rrSR6}8APL%v1B6mah2xCp{JcPmcrS6ty*AuLA2AiW~m zFnmAM7G6gYE$_$$RdZF)d%Bj{QGb(2kE6(*w6er_Ww)!yYmsyU^FNps?pSc&njO4=sD+Xlf~RzEj(>W+7H)7Dvd zTP=87fp>+T`Tj2hYPxD@KMSC9Do}haSE_c}04m}=NH~&jyqGJO{iGFfJ6x=P)*nq9`oOc!MQHi1>dSE96j9t^0caX;<37o6q zp`*PQZb$-!;BF9mYO-hXY%OGkbB6Kqp!3k7?$|$dQ_q4FJx0qbg2*S~IJe!6Qw>)+ z3&B;htcqYBLUssqan$d~6xSZuhwT}IUh;adhDV&-1BKkfR>}~6^1xwXc!?y@15u!#Bzy=-T^F!F(d()2pZJP)y3A&xM`9KCSIPQ&(#CxajUiE z+vctsSa9ftTwsFqh`uwXT{tllF6LeYuHhjfjFQ)9w}qg)wlbDLco$$}BpxNFLv1{p z0OCY@-=d$4kW+Zl>TG{0eBLv-;iECY>5gd1AA8u&3+!b-bK&4brWxRJ&3wlR8iw%N zPs&b9b(`fxX*CNO)uQUp=zYXdcy706Q}&8M0Z%!FD&ih9 zwOUCg-D{HtgJ{$AOsQ0(^GNP3*Y%VzjYgnC&aSB#v50@Te@K zt1DJ}BuM;aCed-Is}$`j+V2(4JXH;HTdMYL3oiGeXA-g6_+WQew1#t7xtESEY&4o& zG(0Fd+{aav&Q9nZ!_l?Uh>v|6%@T!;MpKasZ;XHHiN?62z-_1E;wwZ$CX8zwWIwHU zF$27{1-yk7oO6DsH@yEe0X|s;_b{EJO|+nm_oDGi2TS25ht)IO44KJo%~6`>xXZ4> z+Cd!c{ioZm?dQ4Gws>D*uch^OP0+3ghAs+*PU~of`E2x^RQQk!7KY9XhJHi_;aw0i zcc4ZCU9lKXutmA+eXthaXa*HA)WQLS-f(r%@)R-aK`UbDLBZnAZ|B0+`KfLH{`sl* zK=hvLc~R@AsKzYxQ1qKdkLiyQ-+}#bRQL$2EUsyx6lbNxBgMHx&>tD(#UG&J!%919 z{VZ6$tytXTw-18^7J0E2s90F>#SJKu&J4U2Mf>fD<}xhM=~ifNm=}h-Dq^{*6z)M4 z+M}&VIx+%r?|uvFJ}W9`_)6I|g~ZagTV8CON5vytt~fq~0ACP^GecJe({H1|w!=ao z$4Y>I^8a|Ws}9b(4zI}E7i;Z{(z+OrE93avUd5sr;FqT8_xqKl%E_3chqGcYnOs>I z?XC=0rkDyZL#;PmRdM>Ymqb%D3BIgUaIm_lth5}m$s`o|90$vu)E>>e6e>r$dglhti0Uw~JSD!3@03n@F_j^V?~D?E z1C@ws%%QtY#;6h&g-Mk?F{58P=>+5mTuwM*CCRaZ{?LNX?KpKR>=<+3bv*`w zg%0&R2Elnh@LhrBL6YPr2M_X*;1t#OAKB+_I1>v|F+i^ zZ8BmlRyb1$7KjqC<$W2&r1X!yivgW)6wEIrW@Y1x>wr|Cxe&nV> z*f78T8-e_TG%d2Yxd|v*+-L$6N${>+<#crI+6vrO3N9Zi%J*eNB|175%bw%s!rwQy zz&5qQayhh^=c=u}EnweLV2!VAe{1ltih?`Nf;;9VxWnhW8fhO1+z(aUwOd{JX;Q<% zwWwVNoab5#3aXc zq15L7D&Aoom-lJaLf0PcNpZfwO~Y;O-!35o^KVI?E8mJ0Xo(e)v2_1cREn!Vcn-hC z=yD4mPgg0@?CEx%4=f@)T?dw3IQ_OPr-)yH7eRbhc+C=5JWfdFk5~;+s$26&S>5mj zZAS_nms7^}wu1PU8Idsq;^_=E|!hC@r?>^@R}KQsgL zL6{Y3^UBclazn(o<7@qrSY;uBFLlS-ep1lSn$a<SS4MFHqVzm45=Dq-n_Z+u<81h3Qjo~;?Zsy z!pr!+t|XS(UbGOnU?spE>#6s0YTz@18H0uOXdxvP{lZ&y)PhQyMV+UlMWG(SRI(*0 zVD(fmk2sRFIu^v5RzzMU^UukN#X@*5dxKO&KD)uIWAbmgalXw?IR60_?0!~k54WMT zGxlaMb=(C3FHxv0QmJ_OE<;D{_7Eyi1m?HELM6jW1sa@&MdDuOkEpO-z3p=3#@5k{ z`GXeN{StQJYj9c32^Y~EG-Wkbgg2Fx`$tA86mtI18}~`4;BW$$741; zw0|H*{JR`+ZKOOC++z3%&p7yT0Y0U=GW5g)&tjB132kgtEteQNFI?KJo$%7KDU{m5 z+Ck(q8doi$w4ot@h))n8g$NoQcT@THL#tKVtgCoVDn*M$ei8r6p&{E~g}^|S0AB{x z`x{q+*588I$BW4OP+*;xKNRcqYr!5sFfhhGhUQi<=D~n(Fhc6jr z)>rW;?twM%%cTp!aOtiT(rsJQJl@|w%Bc6z31Ylo>%%eB%HK0eR(@{_O{^dEqoM+&nGmXa^AY(KGS^Nr82rqpdoFrYr-+XTk>WRUTTLe zydA(hEOcF%eIAkPuL2u)IrirQdr~`7tcY6^xfmy}GiT5FNc(FvM2ITBWq^f&|XL z@Fj6CANmJT7qNKaHNU_(`T`~J0CU}=3`_=y0r98-HG5&q@yd#&kr2VPqQbLauTzGi znCL>U9Aw4P_6sKW8Jrj&l@*0!;b(nA4n=5f&6`TaqO*&I^|KYFAxqqCwC&!~%L=7A z1aOWSn74@>xPPC~LDYM|$ij5D2f`-4f5|oDb(5$s^RgJL6cuWo8Wuvk|A2ETgk@63 zP$b)8ah*r45D7mHA%w}i2%SAUx)?3Xfm#a~FPUfsv%5`Lp}6EBH7@x~#zF(C-wUf< zvo_@`DL)LllfQpHs^4U6jOYiw#<&m`HD;)1{J#T3t*6A|Z4EN5qUF*NK2vpT=JE&u zG~O2|f`&Qa3CD6EMXjTvrFkzb4Z?L@_>gpQG%Y-eVZ9M9d_1_qBbPjs|Cl?RJw%b> z#fN4?F}={hjf%6-%wnd&;ykb@+6%_wlB0S6b?ZB}qG0oDGn?P)u3Fdt*Hqrae!*z+ z$gwRc?d#=vvHZnHZWyG#g~`T0%{bTn<7~f;3I5<1!w*305!B?4t0BIdyuZ;$>;e1+ zCD-mAg57-7a#8QQt_E7H3i05stFi4BGeo7ALxkQ(0MSu}c=tZ`>}h9)XzdFj)()j6 zyW48x)ZF(UxJqMqfR#bf_{bQh@iO$u&#rd1DRlHNILo;)wBwQMH6*|L+x5MYbUbt& zSCY1We4dthY$Um<1D88mD4eHZSv(CJMLLN}uT)l+T+aPweKC<*s;nXQYaa<~*CNZB zqne^+rIm6!-x2&~C5qSFd9@^O?g*Ou6bmovS#sCmcT%*PWqnn){27L#`lA^Ep-SWG1>95$bw#%TI{gBU)}pcE2Zh#3SD;Q&umD`W zSl6Qva+j!J)?+b#hwG7BB}|D~CBFDzwqlGauYD#1^E%YALrynsKn26LM&}jZG;94V z$XIgV+3A8?#`L!#uNmHq*gm(cyRr6;CF2yq(xeK$PNL-eDGg|PH`KEYD$1Jj?v~m* z3(D%3pp3jdrMa+%Z&et3MfYpk*A|##FM(NB$z5O5Re;#a?qm(0C7A|J{!{=&o6W`1 zri#0PR-mGkBUYhQ!9Y$h?RNV#+<_H+#n`6Pw6cQ#ST%Q#s_yEDJ6LWdVywh(7(sCP zic+2npXJo0EA!kjT1OQltFgNZ0uK{LYhMg*Cg6%YFX)J;p=_S+fzq;8C8Uw^8GM^K zcNuN5Aatg==QH?)99MB;nRtbD<#y8Sc=s;bR)a2Iq=QG?EO8<+3TT++kxPoh%;=cY zQ@bQ+bjdEbm=DDJsB;y6(YRBMU&%O8^Qa zqA7ku1z4GgPc~950DTnzVVS1(Y_^Khr~m?mnFfktVQ3T|qhfnLE{Sd6E}?Bw^F40k zj@C9$S67l&X$WwRyOef91sLAWT~_(iuQ+D^ta&s+_XDox7Y3)Z`+A5wI6c2(N7 z6qWF%H!niDW$t=5mpShZgU3Ir`0A(E<(Y9tdms9Wp(N19=xsN2EJEmdw2zX4_zj~r zDnL9U4Cvvmq1DFBG>Zspyb?kw^JXPczq{bB29_4GfRH1X?dk4_9g0lIReh1U*p62* z#P$_0iqRZR&#y#DvAr>7@|IwGK?Be1_&AQGSoIi;6o~D>xIy&ogSc&pH(vzZ>4V69 zk(sFlUZ$`jAT>%irmH!|f#P$MM1=6UinP9;yM^sjGtwvikrwuM&(s-N=9LzlXrz4w1PdX!lU}FdRZ+qMhnL_dmnj z(`|E=+~@4>_ieMyxo7&%eRgfDyL0+}urnnnvzo-!3PI14AWhADeo%IWWKq7(MQ{A!JzbeF-X^3_o znIZo23&FW4Rv}Z4=fxW8h8QBKWEv`dWUM*lEz0ktAh7o-OQY%T*R{rK{@c?r3emul zKT*veWvrdNKf|4>4Nx<0d)Hl4>u1T_JJweTBdabdL_6x@q=t9Z+<9iAuaaiTJ=Gws zy&da2^v=WGjVb^Sch_40)?lrS*no_SuGRYpn!iyqUV0zB;V&&2j|j>K@eMDVH3JZD z!OfiTXy$JfkjKsUEr54SoSaB^SJDbsSJc;LE-WLwx>}7R2z0nz70h2yJZ}Ex+ z@S*@@Iu-yt-V4A6Y;2=DUddRmM8l^jrtya7-n=|if!#A^Q0cDM_c*pp_P>d3o>8-> zpSjUk_TM&i&grbR6mKW zz|!v)3ctqr8h@L$;66CsP%vlBvDV!}3ye1_IDp?t(QNTXH3Sg1HYN#$Rc-ctCW*>g zgLq?9FfpEre~5u@T)oVF^P#(^mSCY#E8ds6*2k%b2q_1vEY92L9;6MlWbZFn>?2qN zoL?5N{B0;}$|fjlso---JYC!bk>Tp)bM|I;4{ec!&;k>mH`gxhEBO3U<+IaP_fYMK zCHq0a=YGK_;3S`--f^Qk{Fw6@UdLDMe+!Q9$J2+~+}$-?y&S*3-Q7pKV_v^3 zY@s!=2J;_cuMQ^VfC|rmx~k@~Dgt%8K;2q{E`EyQ;_5|Rz0du&w#kCJ!6bkapSfph zzp6#w{JDFs_Om79IZ^b}qUZqPMPFCLr&a~Lnky(51fNXBjHY)9%1fDXh}aG&4CUU0l9al+EJiSk%wE3of8*Y!ZLsjQuBL3e zc&jtwxVx)%LsdYjZ=uUSEE%tg0$r-<+iXP@T<)1v2ttp9wb9&#Klu)hEKe=70ciYA ziUt_oMuQ)ZB6%8hL)JU5VpDRzmKW!Gu6GxwJ}2QYo7XZ-uW2nhbkf~P!_`~zp+CSO zC0i&r6qMn9I3={=oKj=7Pi)*i^aj4MIy(GMzEoxGQhXFX^)xgzrxt}fUB+k6+AIs| zyC^dT?z8`K6)g5%U{J1%{KG~K95LaIL4${l7&LCNeSKgMZHspgs{A1yPOxvyi%;v1 zv7eRf=Plf{ufo4J0mg}-t7{qd4Oq@x8VEAxI(=%4oQBuc6R2*t<=uqJ&kB)$_n8>> z*G^ejJW(jFitB>>UFd;VRaOJmj46e z5C!U(^%>0XaDDPJ!Mu2xz7?kW=|p7=HRRKk$;NPFOF(CM7BV-ppf;&PKBIwYHz1KA zJWqEj=72EXu;fVzC#8V>AH66k}VafBYAoaD0&EZ>CwWhdRh z-uV|o45}+tfKR*rMNF8dt~s~H@1$riOhW84drcWpv8$>uEuOfmYLzW86}&LqG{BUn zR6Gq$^K@0P&rIdTd1d7OTGyO5+Gs%~>Q$H%KA}k7YQ?#esSUExMlBT1xXf zDH=#}wL&4hAcMgQQ|rJaW34+cO=dTYYm5*D2}|*;bsuIy9gL&j#EcADg9K_C`(Z3K z4gtIKytyN2O$cVY=2&vi5 z=rL9Wc&)6SqK&cu47UPc5+H%*kZbFTR%$GY#2~v%}@pN7uTSz_h3Y%Bl z5=n+`kw;YAVo7G*7Up+SwD2TfIrEC!PzB%>x4s3S?n?mp0;T>c0AHZg#{$sP3cwr6 zIo0(V+IuQMp*VQz=@x)#Rse1)mE%$AKT-h>$D`7JXaQL31>h=z9Jx*&K*G$8KEfyT zQZWZ=!WCZ;sC_$n+~`FM>V+g}`p`x%%4zm{xc1DOQK;lUOU8c$JAZpsf~smP%F&`5 z7&-;z2y!$>f2?!^vrbF!J1Lq1fWGhtT2nRe^Sb&QTCyc?Lu+0xOzuGks{q`C4zvLD z_X2QXLJVA(=TRyq%!kL7bxq&(%xR&m7O1_x_n7ty3+mDaQkW*+cgUMt_`WYJxjz#; z?QI~9oIAg3YF_UAE?e^cuH;p{U+#v6BEWS7aqpL_p;-~nyj=4jp$|ib! zE!vW?G{1v|xD6%4yx4o1B35gz0(5#+Z>=@803^QzU{W*v6>XRb@U$7?$-x$YfnETv zMihmsQ4t~MXh91UV5t|dFjZ)&H`10^02c{B0B}HPlmjk-d|T;V(w5-p-bzkM*fgxhzq3sxPli_QKnyX3YnWtXD%PuL~EKAK%3ab`6xp>{jFPc|;A(%7|teJ#5L*bf=0>FiR_et=yyc1 z;YxN_vuCkOpnV>@1lfnOOELQncFAM^fL%2EKz0eVPh^*9`)5XK4!hXw>y68s>{8Ia z$auDlUGmuXu}g0I7wlrQZx6_o#*!biq-Gyw+&#)Jf%e1f5^R5mUGmsBu}hHseRi?g z-)5IE`={)p*+&|eLB_My?2_Bg1sh;rV?0}EJp0Iawvk-|>{D<_Ym?7TEScB-mT?)& zF8S=~>=I<($u2hgaCQl{Pc<$Z*d@Ten_UXpKV+8(`+MwC%)W zw&J$$#m^vae(cu43b=KP{oKLNAebIy{bjaT6`Ab;pKm%TpwX@H+W&>G!s-MeTt zrW*FVOr^ZJ>@oNmWM>*-w=Pe`t*h+kI(`P(7t)J%dNF+1Rjj@KiMBI<7M___vLllm zdwV7uaDAWs%wa!s*-r-h$z(rS>}L`CSKXuP`2 z=iv&Ul)ldZWqttUeNuOPQulmP4}4O8`=lPRR2s+|ptV0!NhJ8B2K%I#nJ~7Q)qok; z1xqorfh>Gd%y7KVm<4%L(@F;*l~$QMmn?f4PkK@_d{XcEq-Ob~X8WYleNyv$Qp{Ev zd1kv=+-Q+X6G>*Z>>=|!S=@ZRDQ3ssRLyiF#k^6Ly|zy(!6(Hmo#kVepT$kyn_?!< zQfaIXWO3tXNh8H-fj9O379+)cRF-{?Pin4D%5lkflUZt(-7QkA-f-iEt}M6G>~}5q z><_HB9$Ifbw%&STz4hFB%XZmdlQEViI15njiCclzTfx>_1+2HithWkTZ&l;BV1I_R zs*5*_RJ>2BrcbK2Pb$GDRnI3?-zU|;C)LPEdCH&c^RS6e>Q$dqbDva8pHyp~R9l}^ z@d|<5s91}YWiKgGrHy2i&%+o`>az)5^bR(B+5FAxdiDH08inMlY)_pAb2>&Zym#u| zM)QzKiCyJ8Cm!-U_?{d+&Ta0RH}Ma(eIV8o}?xbkh?Atx+*(URHiKu$x}R zR-p;V+mAD2Zi;^&EUq$R@ibJKt>t{JL5Zr13mOtZG*FW>U~~e0Uolk01p?| zM&QB%JX}~4fJ+@T5~=plG`puh3;P=u=%u%}*{OFgJtmZScf9c)9D1sK2+ixImkMIR z9`0?So$STQ^qgH*QM=xHt03l%@$3+-M#?swT)n~10cy|(uk5FJeQ6fHI%L`sp#YjL&NJ(@WZL)KdHYdeu;)iML;YLr%5t zrP=*~nfckd{`v1~FhGyT zUPk!_>Qiuz#H@jOOyLiB-pcmj2odcK5oZpv52P;!;`NE-7^rWyeMSr3(5n_<0U>xa zf(d(D_~%snn{?(46lM{X8-(|lQHMcbe;EV5e(<8iCn1aFvPKQoo(Tum`U5Sye?;t;)5A`2hc+t=6O?VR;Icrh571kapm z|42N4jFf%F$N1^Hm%X%+GLb!vIU6uf#)So#NU;DD7ZzaR!s;h3EWpHt1(>*OFfJ^> zM2ZENxUc{d7v@!QVF4yCEWpHt1(>+7023D$VB+#db>qqcOe9%=i31n)clx|v3Z?TvCY^VL z(s@599o-<7i`9s9d)i8VVSS)<-UUkMJ)k+f1C-ADKXZ8ZC!P0x(s}16-Ofxsom+ak zo%MXudB-Q+&iXy+yxWt`V~=#!>A@Y=d`7g86bUTY6(z#8h+c)z6%mCB5{iXB%%^YrhbGY%%;kK8~ zO>Yjjyg4wu;kk0n;XRu<-0tRZvzx=ME}a|Q9By-SxXI1o7B`0*TsrU2%;DXcIo#Oh za9f+hO>NEudyEY|8?3Kbg6lNYDHz;UyWS$2nU(zu_-Om5`N8e@#WT=T2}1H;SYl=S zVro8Ie=X3HSfeH$57+z1C%s4LLuKOR2>p$UA`ipgQU*Vr%6agwUCt|-?4flnP~K;UP~q>y{R{li34xywPoVb zn|fE7=sZsEAQM~0>78W4HePQj6CKAZXdjH%8w!DsV*;P~BYsN#;t}}n3sT^N>Ct#S zp^%}R!R+08{PgJ0HOq4|%OwT4tD;P{oCrMQersb2QYzEW4NqUl6kX8Zc zfxng4M)4C-kbWyd^90FqjDK6NDA@Rf*1av2H=2&VEg2k5A(N$!M^nGa(&R?d&dGXb z0Wg~KP0^dl#OqV^_A;?`ir!i#o=nlZ$VAtvdb0>a?4z0317pE$TpabEqQ~L8wZg&F zuWjLA`T9Ro6`+>W6rc~M>4_>(<2Y9AdXzdSIf8ZTy z^rI;#O>ZHebWM}eA5AOMWOW!#chY3#8ciwFmDgrZS6=&Vy7F4J8B*5ksLc#XbR8|7 zA!WUeZq1M-Tt_Y5m1yf|*}GEZ>*(&gvO3_k_msq%_w??f2qTf7yl1yBgr@tu^-7@rXGI35#w3)AuluwS#*N4kQjZA%{ z%HwZy!DEMcv~CG_9Ftn2rYI~gK)-o-cpg7Sqjfz)7IrcvF3?j2>SS8CK+>B`MY8k} z^2wYm$?#;dEz~E-C({-xdG0UNN69CH7fHcPrYno|QG(&gOsL0}fr;KL=-vu2-2X(0 z^3?c;Kl2vx_*4GQh!uEe{aPCx`9#N_S>KneKw}D)&LauLEtd8=nN}~>hsh_QOJrSI zMX^it0piIj%3dNlTty+-lJ`}VmMzt=ivG=3UK>UFXbJEqNlC1tK1=n{qEsvpwCCFa zjyLS2ek<`UcGxn#n#|U8nLb1&b}y5>uA-Rbx?O0CW1RjJ7?m+7W@sz!b0m%0aENv< zmv#3Lg{{!v5Rivx$_iOs57CVkQZR?8%SuV?5PiK;Mk0r(@+w&c4^ieSy}v|zxJrTU zzgiz8pZuUE>a9@#REt>+ zRY;Zv)b{xoA%<74a(l^ch&|Acj=f)4W?jEts(3nud?@*yP7^;=o?QD-?=9Lv4tg#J zpn+~1rEb^bff`9y50v!S*L2#jLGLX|1a8#(2sQD%H{HnFO!ufM@+Ojonhwz1jZ)bM z=?A53&_X@_8per>? z7Vxy$2WaGGh2F)@Qg;Wa`4;I|575V3WO)uy=vKY2kOe34bAXo1UOkUSN8d*?JH19s zNm@{&Y(7zB{z{`fcx5Sm49olyYnnun_tWF8dS?O0Iz9Gcfq1wlQoyavC|isge_7V! zHTTo!A4|seQ|WDz<^42gn>4EZbZ491UkHN34hskD`#8R72fk#UUaVY@(9eF_w_Qqh zKSl45Mz)`3?~s*dKRI^jJ!PI2JM~_orQzstkwD*wAESVCOUMGUE}Xqo360`Qp`{tI zxE#I>H?%#AD(}(N(b-KAF+1ZUBUUAkQ+#_ZNdsQI$XB43qq z8l7Ex36YI;Hbs9fo62lj{kc9_NGY4j>{p(w+Ao`wY%21F^cUGQ z?+bmbO7c!~kZjpPqkH5bc{im@ph9x$0ok5r)13pd_GMF_gVK|2rl|+@@q(Gn^v^+k zx=g%tNKccAfW!JMnaDb<&y$I=NAyK9ao~so(B!E8u6%Oxs6JaJdK^;{&SU!f^2zuw z^%*kp^h!e)5w5tEVaizyzIlT#(ie5&`Y{;JT^eD?0~cknQ3 zrba2p^&;6Hk1g%7`T6wyx3b$apTfVBJ;(Xf?mMZV3>xvB>``UVuJ80jQPd2&_nidD zpnBiS$UTGJ|6X>cQdHh4|=kY1DgQ1pFaXQ96buB@s}Qzom4H9Vzh_cD;bhQfKgkvls{UC)v;Qo+Vi|PkXF1A%*Ul?k4?C~q z*?(SEf(*+0i^6rMU-Sm53RdUFw8QK9$aX=mPHQK{di_uaUH(O}xN^TLG9LP?BI9kp z$}ye{di1Meag8s?+OUoKUXVO(qmM7h-q*J5-}E+urESdM`j!Ms(WU6>bsYyg=c^qp zUE?;|_?sLt*+#D4B!Ane`tN#GQNLzV|KBCyy_EL5Y*Y4<<9A7TFC|@+<6?Vh@kPC- zV1upkuu~PVfn{Hv9)XRp$q5w%`d(^tNxI~{^u;CFeC?$&mu1|vm*!kn=-$07efnNX zy&@xmy>#-5w6MKY>Z)Wslaj8=K6EC{zbZS8ndG{vHx;~QGF~fm2e0K%QH>nEE?xUM zF`wWylV)C%9qdfHbWNI4CdFOX+lzY6F{+IQ#*8t!v6euOqI=Wo6{j;3>gAEb&!nHP zE7>dkp)mLMA9`n%pO^{2+B1Qvur5Vs)C*EjD&{B|C*{amm`TTTq&;U+kw2waGHLLi zvaV&)p+A+^^52m9%%s#CvJPa@ZuLoChpdH})Zd}VOhpKN3T!A$ zNVH>AqkME&*F7<2CY{oyFUh3Xo3bmFNegevpf!{JxhV|~(z+!>vP?RCODSLF+tSNq z(yZIkj5F!hZT&Tst@rkUt(Bh}Y(3l3D9q#RGil8oMQ4xhC~9hRS9*d>T6$M8s+)He z1t#57lri_7qKpgo!w*96&Gb>-kl)-}V#U zsQPnmI(G_YKYe*}1hs#lNVd-d#SV8o(354=diX#oMw7qfaAGE9{w1AYCjI)C!fe&Q zmDeWzEh7$I120?vE1iGKP1jis1S>_o(hPp6WbFD-vA@j^6*2vzCYnEz?NBDIe56?B z!$%5Ft^SeSz)afok7Bbg{*m5j5=A|h0n8-o`&c#rlW6^8y{?eTB)axkwiA=6!oRY; zn?y7I)hmhDw$jdjCG<)<{jdI-2-Dc)k^KZFQ0?c-28duUpgfXBpC*f%|0f}{X#Ib( zP+9ckKUv%?>hwf*t+Hs>6WQ=*(c>plIa!qQRI)LT`ahLbWgZ=WD(mY!ig_lh*F2i> zOm@`f(I3yG@a9qSbIHy;T84xu6lQrbSl1GzIMm8hs70-1p@vfU3u$CSX}}AKKa{?D zA>)FfODf*<4F3&fh(Ep#h;v5rtD}7Q_N-?4q$U_TIZj z#U72ZB>5%L*kX(=CPuwO0Zn3J)b~5H&n@QVkDJ@i%Q%H zb2IJFS`qY(o35V-D&=n4A1NXz-rWp!WER1h9mO00qdC4=s?2=wUEPscB0Y827bB7C zdzkiTo7oo~GUHCDKw)eVr5OCr{J#GP{iA`zq=(;e{a+7ZxV^TP5X;T zBK_$7QF)5`e3aT?AAP+OX`jzWzGeBC_7|~4YF6N*q$d_I?NL@D*YVx^s8r{N8xFgm%{>a>~!zf~Nfr5Y<=kBS)4L{K(%Q3Vw8DN*6NQIxeYXM^BL8 z*H7(B`u3T=r0F!XkZFGwO{Z&xO#6drI{6niJ3DUfbav~vmxy*MlWG^{PU7|N-u5#k zoxUinOP)?1z8@tr#Mi9oaE0fd7)}2|A~_$IvpJ|bY{4S+2C3Pv6(utC${a!*+e$XB{jp<}( z+%7<8yo#!pGVKpxt7u*+(|-NR6C;e&Z{I?sMc<-t6Wm!a4S&`%z^5 z<#F4SttWI5&eDqVx}!czW_ewnv(&kQ?x@ewh6+08v-GBd+1oM1y) zsk~W@|2uOr`yMXWUlo0m?Vui2 zbTi*Uo2uxt@1TFGm{lEhJDbb?z7nQ%<@6kvcy7CD1W6QFRref8w6LnKh$OmMRr{1g ze%15?If+J9)7K-3&R5fyIEji>H~TsoaT4deEfiU8?nQpp&4v`W<*9FB`xBn15BGxl zO&?0GY1X4@(;j0p9NRCy8Xx76SVNaCiLTbrGYeHnd_=iO12 zY?sH-%UY)W_9K$~YU^vgp4!yb55D!ZxV9e7@Z=}s{cNN@Jk`#u=|Y`Z3jJMMH>?zD zS4ZDwDYUqbPK75=8UC0-YRtt1KUKVinC0hic?11jN8flGsB2xbzN4%>)5?hCNq;$w zV=Fd}aYV%MC71EnF8trF()g;edV5TLyR6&sA5HYbV>@-Pr^~vHV(RJP(l+|Mp1z9P z$hW>3)LK;|#z+{#eUGeuyY6s#yzxTj>{T)Tgf#xbA=M)|cKG3JB+DWiF4>j^MaI-Tqj+ zs5N|0+QY1EfSI!^syMc>&q?HZC8x@^oy!h7OkiP1}9ku zGa+(PD%eJ67)|?N>L`~ziQywtnU0_mk`MTQW1>P%Lh}7yY2`EdSbWdV(e~P+J(ADK zPd0z7m9NPv?iu|2!*_TrsmO`^`}aEXGzxF1FT^QI$qAgGbqF}Tmrq9cF!oU*^2JEy zAzy#S;R{ku7FR;>Hd<+SvICtF&e6&j2c;d&+CY4P$kED|1f^Xl-fzOEg&cMCDxGvH zg*MU`L*92*DV*mcQ);I##!OlWQ%7;+on)B*$EJVu#QOr3sk}cJh;UAxwR2;TrnEdg z(|DgN??>7r?R7RhZPOT3`eW^Ql)({qtrX|Yf7J4WTqTX4(2e!QSU_Ppfhd}afWv$F z@zer8z;gVP-%ctK`MJb%MRTeb`RxgY8LdYm6KWw`8CxJpQF|}fwMFi0f)oMd`X`?|2Wwm zdC}vkWOuN(3c@*=&dJF_KeltU^3+yw<$1OUPw^bBJkFH%XbVo-!jmpXEl)6|wx3`h zX)okt97(mC>9Vb-U<4e+k*CaQJf?C|m4}Q%wS%Lgw$bBerhjhCvvq53R%BVHxmhZAawqE6+>Govy^}{Stg$e@Wd}Y%Ak|Yn zG|C0W43C_+e9rP=bC#z%kBtmZh={^U16V{gGX7sIdea}a;YT9W#m%&Ok}q=X;es8V6~yFjx7J&b=|5C)q%ncX3>I+-0H z8U>ia5HkbJju2l5AgQrbuQL)JOUpW&!yx|bj53U+kU+6qABf_PrHnu`1pn5yRTs0N z8$WrG+mlX|Kh!KnK3z;t+StV`?`ULu49n*`AQKB&=^<(0(!OxBi5m~? zU^+j5UWB9Z#8Tie6g-xW4@2XLr3w+|IEa-IsFYax5Mjnb#12Peh^4#3&G8VSk)k^u zDY_~n%u${)UZh%R2UIIygdp9+C=R}o1NS?sX~7qKubpB#@R%Fj7Cv5(Wo)z6o{u|%&`!IV$4K{8!=`Q zM7LNGS7Oa+2nEKO(;>czGZ#Y)iZ>TPJdHO~Afgf^-opel4olEN$C|C&c~p#Az8~O0 zp5x46`7q`;jI?oP0u08ELz^_{uW{xKh)LsdiK6M$c(bKjw2Ea0kkbUvk<@O2+1ZgH0sf0Q&HrFBaWU;x%Q+|N_ za|HSRbA!0i?M-pIl}F6hNcrL{S1{~iE0+38Rua%<2*U-Hftk|-Y(HG zBVsw70jo@cW%ep_CB%Z&sAkNeU4!DDp-T{65`D>KM8|=qpAa8<)4j!}D@^`fYfi#4 z%EWbOywjAc(@{z^-UKR8zie%a-DI|h!_%n!dW<2a(arU^tESP24Q3j|yA9?Bh;ZB3)KTP0L=8wMoPD194l?NiiXyV=E^ z=XBy)Z$^E+UuD*!I=jtgl)2sXhk@@7b1uaC9p-X~`a8{K5SMqFt02O63H);xGCf79 zyUmrJGClOlzbN^Yf4SnO(B3_0ny2X09`jR(puNcb6y4b?q3C@m*eUvFpBadiq#gE~ zo!n0-U(Umq`04QF>dXqR^!}jP3KepKJPw$PV7dALQaOS7mhk2Tojxcq=n&F8L3a@AiS+19g}PMd z82p+=laAqX&!U3qsQy{BD;<}67Iiv~7CVc6JC5{c(fAW$;&l=iV-{^cX|922cS=Hc zPr;K}6muG7#l+9k=29>Dt$eB$ex%|+t#_iF(~g@VB=_Mgs&p1Zzo|6iEZXu^<=6*D zTc&e;Di)xJU*gG8`E#=^{`Xk)=VniL{&@}e^9JJIaL-0+wpBmWS{e;KhpsA(3Z6&D zl|~oNo5vs~eIc;M1@kaM4=$KTAy#}Tq0Sf4jiu2a7t!yf(Z)*>3chUaL+I^gbGw)P zoWB}?0^mRgKm91nmbCa*rIIl0^p!cvO@7%g#XLf)+o@_X`r#|Id1i37VxYA7O_cSm zxe0#mq;J1A&tcW@qHoO4A-es~ya-YFTk{);hu@k%Kz#O{n2h`0`~soISIx^1AC$O! z&Af!rq94rj5FyviFClzyNa*$r^AtkMZki_`f^SL4?Y4Oup-Z>T)>x(N{G-{zjo&rE zw{C$H^rP7qbjyzz_Kha5J9ubfw&NW|H>zCm41ZoE|roWVX&4;j~-#%kV;*C5xD0UNweT%Gu)FsG-S%4>zCwo z-|SA`JvKdId-t&<9`LJpb4ZDjzexg9ev>?Y{!L6eKaq_0J`u|zzhlIKr|a($GJnTt zB$fI-l^j2Rif4Z+)q5uK);}}j5%PJCQ3&Q}KF9bWmEJ$c&#P3LWa6$(rN2$FjI=O1 zOQjnYo&~8CoFO?J&oD=MiTi)QLleb;{EAzp=wXIgpHg0!UNBwwLh^n6!W^PZWo8}@ zX%EeAwC|@}2+q0nCOD@?Mg6~z=^mZVHWaCQj zr32Y0$6oS#1t<5?;#U|E?oE4*RQA%)*Qoxzbm27`)J)3zhuPAd7r~=RJjG3X&;#za zd1Dr*X@8jYUG0}qv@!BYF}nT-eoirhaYi5&_!CcU%%}Sk)pLY={=%5+2rd2#9o`Wt z_6EKD5nAyEJ@gT({x_cFM=1So^jSwJ;2(6NN9g81=%tQO%v*F%N9e;_)b$Zc{1>&e zi0=Q3M#=BGkdu2Cs`*an@^^TCEh6vtxQ>e`={?H0h|KqhxQHS?;5sg%TOTk?UbG^} zipBAi#i*8(#daH=tR#pMxdkrFE$~BbYYgC+JXQ?E&v~pkh~T`|1TT5f_Q_ zE&K?&n$K!eFmgip=;g8++Nd}M+KN-?(Fb!dt;vTU#EWQWKF*nnIa_dp7CK9wE-n_k zn4-jAE|S>@S8I%?Niz zkTn{iltNO?*@diFl}xQmNCt^UMnmYp|!6y7BN5bm6(-^SP=-#FCvxo zcM;1#Xn0Y%KsSq8+(=p!ldN_XvqmB0Til9*NG>j^WEU4Wq=dx#s)RKXy1FF=t}7{Z z>s?BcPF5nLl+_w0HA{;aQ`#D@{J#Ade&e8uk0#KFLP}V9sbd+d2ObnW#u|Km$O=76N!%Htm@tqRa@TEMIJp(=-jfjid5&{c7^c#nMfzgS>0jj?q>x; z^zySpAh!9z>51f3-fDt>`qQbr)zF*Y;Np%rsZ!}nZ7W#SX?G*5cv|U>z8*5AieKQS z7FsqP{}juqf>qa@A)G?u=uBl)&;n{+MZ}3J)(nJNR7I;?K)sXZ8 zI-^9>>bTTVw6VI?#XCwR^IVmFFime@1yhUKmJjL>bBAgmdKCRs18GLl;F@UEQS`hf znrIXauO;GsEo6(SPPNg*qv%d;fj#Ts-io6C)v+c)1k^>PN6~@0Xg5(*q8@ySqO^Lr zx>4j_AFVHnCfApEe?WMwaCUsIfdg?3tWTYy(i%!~Ne$7aqv-dBxW%FCRPvpQ`d@3tw!Gb z0v(a7sK|YmwOv+-%H0a`pasWGciLFfa-)sE1-a0M1Y$U*Vmr@#$yLgzY3vPA+UlUOCL1W4+oI$MKbGO4pQKxHBmc<2ddQk)hCS>DvVjp;)# zu5`fVDB8m#w~8b`l!3A4a2{#yQYtX^Rp}yD$=DR?2PU+OFi#5`d?bL*x z-(FH&Yn5t^v~NOvaZ%IBJqR_JPNRb)#*aZ(Q>VF9u&dR`ZLZ2-c@TwmwW>O8rpaBc zy52ms2N!OYx^RujFT^TIx4K$ooD%4du2vnl1ZA*3h-w8}T|kq9(JLg-Pf9fJhKrLx zE4raePN2WLq4){Zx4Vd=-EmP9$R`9{Kmtur;^z=+2tv(6(T)>nYbdHafn0isFnU>>Qrs8g#q=#e5Qk?afgU z`>5VPtF7BUMNQnp1JOh7qwIm!e2A%otWR8Dt6cg~*3NEIwdH);*W?G;0N2U{Jf znCcRS zp~g9CH55I~Iodl^LZ!m3w%GM&NVwI?`>cvzpsVyWLn*xEunIIS(yBz$hKChJOFB#W zhoRRyOY?@IO3%{!VR(|CrSTEy2+q>W2xN1XB8KD2o~5sbqhCEsT_f>mJ4;_iT5Yha zP`(jXO*j4q1vjg7rRF1qP8orFCz*a2frnZ$l^=;7A(_UFw3=Z9q5~tX%5MB!3NadX zr3WM7?hf*cLW~`h7-hAGI2C1eg2)|>+j9r?kH#&ygAPZdMeHD7!)oC)n|c^lQ*Zu& zg=9Lb^0i*}XiiBwYFL$=lIUl{YVFORu%HiC`c9(XFv_Zql4BmnC^Wbvx;6^8QWDi4 zZH0NtCoiiVz6xQCb1e=J7jv{#2-**$@ia&xV+<-JiS8@WBL=N8iPB@xM3bmOECv%v zv@}-WU$Is+Lg8@|x)diS_2R7%SDE^O?`Cx9rcsF2#ak7;8Ntms*%-1u`G zJWK6LL&sZvL648OM$*PkWO%aLjC-1B zU<#hhq%yqGmCmJDZCyENq&{*cr+=STpc>Px`Y;?i4cC=u_cW^`MCLRrLfJKV;!K&7 z5^B=i>A2q}(2vut{@xQ*f=^WmTG6$|2}P*S467Oprq95on?R3dpu?Czp`Tb=UD@1l z&UU7dn&Seg(@d*v+A=F&o7eJcDwICc8sZwyM*Z<(`#`tH^{D$StF|{I)bGD4 zn;vv+u2qfFXIa&h@%Oo0$h-c;8st0M>g*IxLuOlxATnm7kB+D0IaV^nyE)c!h^2F_ zRS-4iS!oa#=2@RP&7;Km)-3ONDwE>D(v9_{O^fi*Y`nm#>B<`8Qb8B;x&Ev+tyy4= zP^d@|7jp7{)`Z%oT5$?>DC$CGGA6g9x2bqE&7%PeEmE4#{axt$m;9%h0+-R)CA-lI~B_cH_Qu{S+7P05$v6YUOr7IaWWIrhkgAe-!=osWsJYl%h?7 zY3gDt(3OKmbY%?5Iz02I?8R1lg?3bRp@Y%)%F*B@R+2)OtGQ5t9ryZBgQaLt5^+Rz z7h2FixjG$PY6T$&r)B5`N73+Q7?q8pL(8n*%FewJqPBikoGLH3>Oj+PIR;)+=-hH^ zu=f<@P(M|F_!rq7?-!#F_fzsw;0mh(tj4Us<8cZ-T!EIr#zsWZ>QCx7(xb9Xak`&PN8Rnao!Yau@X&c3awp<@zE5@Txmr)^Tup=oit>X)!&WJ z(M%==)45e}d@Fga#t3{X&0lRTSB5jme+{~yLo{oRRmJ;|vY)LyZb|3X;y%B&#;WGb z8oaf4T5C;lm2=mTE_9;U{Kj;8trezFw`do7(qMjP8nw>qsgREW?+49qLAlpk0~N}Q zaiMPU^E=S4^;QRkd=p%##N+ujsr&{s8%e&?SQmOxenEeFwZU5GBB?whr z6I^noHtb7&&Z))IDn{j}!K0t$r%yNG8GnepHe2T*zTa$}gqXj@+6U2OD+c6;=+IV_ zU<;Qf{h1}L9V-=y7yR7<(%)d=lcUvJU z5PO$zmi{U*@-98xZFN_H;`gc19xGTmSm3@3Wn5Y2PY3o`^%bgt%GmeIvJ#YcuT@D! z+3}F-?zJYne!`XYFaB}f!{oF;dbbzj2u7%^j9{v{4|j}MTzl?9L$A-QLVNb%aVuz; zi1^f~voy<@>EoDljpNS{$&}t3X^9Jvv}*SAp+e)1rgcmnxaduW_Na zKI=^f4q0QA{=gfmaM-$}0z2MN=3(m#75MpYI`NtHjS8H8OAC%zdsQ+=-nvlc!DqE- z%uy>$>DxQg^`q8TO5ZS-Yx>q>mWz`L*39Kf2l}s?L^Y3FGd#rksrcWHsRJl$=Bgre z^|!E4@4YEP`B4TGLg!uk)mTdJ?026>9FBe&m$pDEW(exHAJJGywr8tq8InVOtMX+Pu2-|Iqq&stU7IDl$z(2ee$wI;e?vR5wSPH`Ia zxi!g+1JE_?Mh`y6-6y*89I)BbOp#nX9X!?2Unli3h%#{}X_$+`n zePIPE{njFs^@X)s>HVNj30)gPk1tq#lzwM1YV)NP>nWMdDUQl1j2SMpwlIDFCAxIM z*NVGR*_CUnQSe18+T~MrxllzqbI}^(%>lUFznkL+dFVyFR9SV~sz|M#Jo9vwP5g}c zrD@$IYnh4}RgSKHZ8fCPm(e{+S{@Z$>DrHomvz}{r%+daS6Z@gT`}r;#Tu*P<*7*D zUa>a1&f)BDHg}~KeI7TY-Cv<8GlCOiy3tQxS%Z|tjmoa%m$j}Djr-c_?IMwa@m=a` zD_QBA)puk%{Tr*LLiK>gyj)+3e)$HjNtADqk59P`waEA%+MA&MP3Y?XtjV4dxY!&O zRTBFv68um)ls0%72fWPf!b>y8KW3_J5BNi=azmxanc{l%ZFxf!>1r;^9Q|2DQrd zrc;kMH=*3utXS7^>_@+eNYZahAboMos_M-MeymZ~Dv9v*zR2Dj0uiZJ6=aGJDf9`H`kS_dShF*3)d|_H%7>4 zXE(~Yj^~3|G@9(Hp5lXVSgjN~m+Y#Z;umgMF$y`&bfv3*ZwaA!H_;zT!~wJE;Z19i z(oaV|-HSeNNuS-a`nrtgtUENL0=H2W96+Y0Rp~+~{Ek(ITVexOF?&DX(H=a0v;q{W zu-KLM{DMK(%pa|eDzO&L=<1KwNEJAkMy>APVJ7i|8o1N?_2=u-?{}imQU zr|26rb61V$Ge&Xj*{DhGlv(+C2O4tMD&xio{@vF)e6HTN$}7`HQyo5(d0@4s2P-gi&HBWhLJCZ)OsNm7(aLJn zJa@WQ?m;i=^$^!w^7s~cJi3WH`R+q&nClwOcFY!cy4oCshXd7&j+(b%*x)1y49ZZPwB5U(hQ`pxhR|7B#5%V_V%|6YY6yEmV0G-t10?+COhb zlYX^2s~E+$&{w}=Kq%28;fr^P$8~7ZZ&u-yWK5Sc_z=}-HukaQ&|EvjQw|;T4xwAh zAwG!Z3J$H{vhmiTP_MLss8@4nIjiTnhe>GS}5Z6KNMw?jsss-iyF$s@%PVP;byhqcN1U;#%oc-URQ zF%2s85O7?BNxcP})PUzU!i&=yycsOutOoHZLxh~uQe`XrK|pQ|7C1R^Y4U3DG`9d}4R{Mw zSh#91+gX4+gM-`{Ffo)ZyacG1F$j8VeP4Ic7u4WOPXWFf^u!cUL@B1hJY`W*gVPF> z(V(TuG!R00fhnb&Mv9tF%6?5$`7T6MWfG#YsmzJ++)8fi0sECt3qcW@Rv1gD&L-#A<-~tZb2>!AJ$hYw(Q%6BXe5 z4^vz@&SWM$wN;iZ0VLZ%F2giCWUR!BCa6Er;EDpXHTXw?c?@DXMPA&5D5*A(6c-_s zqVx-^ihi-JH+obPuvCM+3M|(EZ@oClG!1%H7qC);d^H5D)*wuQwHj=wks>DRHQ_yh zk?KYbT4I_lz-A42-YvjZ4Q?y2T?5_@7#2G<@WNbMfZZDK4!u#83g( zG`QYVz;z8S^%ihb1JAw!Zfg+LPrw}wg8Mtk^Y5-EyyY+odyj!$Y6tMp22%Q8?2vIN zOzeNvp!qNXPc#@2Dd4FFdqxO&&LEoq|Cq4@`w%0K3`KZoiqK0AjpPeZ7mM@&vTY#h z*LKKwYl!+!4GPB!c%uRDNsI*kVZd{fjb{r4yaPxPB1wMGdfu2A5u7l4QANlRb|wDH`yEa=!nPH3|GmOr|m5 zndC;&_X0k#ffRO@9Wq*674;kqdfX8(PlFo@EYM)qPhzpq1}R1bY`~1derglhkr`l# z2E87L#WD@*JQT1(gYl09kOq~05wJ=F-jNxJuF;_AGXW{&VCqW&yEXXkF9CZs2uXP(WWOd(*pV5T9@K!hXa+c}LEu{f zM>M$duYhA3B)t=GTm%0P0#0gRU{hu!dRp#3DI0Io402YR@TSZF=NRxTdgBE4F9x_^ z11bGQJ0u%3Lw#8T(^Krf(%_JnfNwO|o}HB7+P7tpBi{n z74SxbP%IRHtN#e#=O3>cVDhgv;jNkh-ZS7814d0OwFhv*^l|}G9eFsE#%f-P54E!m zMD1#ajP~_J?XH1;GXb7~JpPpwwkwifoAB1oNYY1xKNKja!O@mtQCNdtS_vqk!Lrr@ zifPcQt$-35%uK;{&d8>eCcM8hKp74CVOat|ISqK70zi2U?gR<&XP_4-z@oAZq&lkF zA)|Dt*jHzeA`!X{5K>c{e5XKd4N?Y*MO_U_4-!ycgYOh*s6onLv1qJ;f0%%#8n_Kr z_g`~Ou7`_BOAT&B2xzUr%}4=lHP}B=Kzj|sq6Bo*z}*lKpg~BifIxs0RbwX=3DPFK zVKk~Rn89dnV&7rgXMhkJNS*euLq_OWQTNi|%ZUQ|Xuz9CBY}Plc&&xOdpz*{H_#@M zT!)gIB z8vMRaK%5544hu-oVBlv0#%XX}fe9KU9TAI(8r(lBV3OQ_%F%QoQ?$vx;{uX3h&d@> zng%|n1kBK&@@WAxH5hqDz-$dd&I*{T!OawGPmM~RugTSO0#Y^L4XI(VNQ3ql1T5Bo z7nQ(bsRns23Rtc|xyu65H0XInz{)@#e@X=;e=TISHp%){z*-Hg?*y#ZApWX=jT-pg z6tG!?dA9^?)!@yK0=8?AGWI7SJ2mP2vw+ASeKM1*G6T>}M9yYn60WYNi_*#QVHv#|CV6umR?=)ELCE%(CFY*icL4&bA0#a^h z;#N?|Ee3nJgW#QAknbHE$jy7#4jC_ti29xe!6gJd(15qXMgosCs8dS7V-0erlos-v zCUeUR_?^K__ToMMi6s(wZUgbc;?NOR^PVzLzqEmrl@3f5s3Tu$!Ge$@eP4dSG zD5k+|1xjeZTWuqeQW`9Y6HrEj$OHl9G#ENoKzR*#i*2OgpQ6bHMJj3V(*!Z8qCts? z0;*|{CrLmJ4dzY~P)h?|>V$0SXuzwR0P5Kw#rSiokOnp}P9+Oyq`|Qi0ZlZxK3zaF z4V*s_&_aW{vjnu#VC!4~Z8YHJQE()sohJSZgmlp0%BKQ4Y0zScfX*81Stg*129;I_ z=&Av)r9w8{G~m6u0YV%A?VtDN2I-+qUau9@MFj0fk{}V7t1K!IUiB8dgx9*nr z51KT;Atuu__*#J(8uY&@7Be+?s=#aw5^sscTn(IW3z)CL3I$RH$nT$l*tr|7Ez%~u zl{dg*4I=IcSgOG#1(s`2^(V1N(_qVe0V_4=^iaTR4W2&ABj3N)YT}G#X~=iI2E0xU zV50`je-p4-gI-SrY}KI1?*g`Ka4bu}P7RXZ2-wXag_p3&=3>ZZ9}@=BuO6^N#(+F| z*^5IOw8|^sGY!h;6L3_6jfDlIYv5i?zzGJjWf@^f8@K<{Hjzxva%e64#7o|g>3JK7 z`hp#jO~#?V$Y3$s*Q_A+S8O2mU)v$$>q?^jp9XPNRsP>;^02y?T-6}EmVh5LSY1!R z4GoGn6>y8e0`_7+O96LmAYRYOQUce&_x_1=tSc4Ir1pKB! zWPpI*HQ>$4Q8~{TM6p}GT?AM*5Vu|+l%n(pgGHZd>y0Bl1!QY*p_hQy8u0ez$m359 z9`zCMMuUp|1pK2xrvU=~)!>%_xc`vIdrf8x6p#zcXOw5WV>v8xYcOSyfV>*ePyx;w zEQ}D~szE_~M?o6y8VpCJ0C)!R`v<9@2Kd?ol3$zn;IkZnj|N*41QgUD0Mn~rQCNd6 zxOD)EXpl8oKrsz?OLJJ1V8AN|jTR}G#|To|CURlQ+94zS6H)tVa0_EX*jLb?)ocM3 zHQ+tYVNsdEGR}h=CO|bCNES65A(WptI)}a%6VzNTgE#8~sA~g>P~Q$21DA@rp$46n z3uvrC&`JSKHHcgzpt%P1v4#a%v<%|kUy>>BfDY1{O%mA)-V_j^oeji`4tB^WgfG=l zchX=ChQk1zH5hPAKo<@6;x#5Lx@wU348FgCbkk%8R#yRpXy9^AKo1Svz7Wt$1OG1t z^wGfOvVeXX%==2f01X;^D_{^niYhEGh(x|aw8`P`1Ps+6{(Aw#G>E$@V7LZ7uL~HV zL8qGnqBP)TlgP!;;K*%t|Bcq<$sI9?(V*7P0^&5tcTYfq20tq>P6OU(9obCKfcI7h zn5e;tM*=3v{U=xZ<}X5~Xp^kR0+KcGdLm$&2E0BKsm@@K&Mk)bi3FHs18FgH?2wUU ziF%#}GhXDC=kEedc(-+=uuy|}xbv`Q@t*?HY#?5&$zm@1)HQ4Wzk6qrbL6_VDc4}~2f!!L6 z$tM1sv2M+D*V=4JLUDIHExj9|6ZS*rLF34R|kixO!59;=cLh z{yVJ+Z{ZG;vkaDUbzswW2Ip-c)p5ZN8Rtrh`l1H8stdTRL4}3_zS7`iGXdWyz~f(^ zHbTDDCcK|JGX0*xD)xdm4+Z$a2I9pHJA|E%M14yG-q#)WKWgwWRKQOf@P6*F_&J3M zI;va-Z$S$3zy^}XBReFUxQE{ zeku8j{sy*whd#^J%MR}VuNds%6sFA;i$853DZH^mMy_e1{)a&f+qau1;GGS`{sV{5 zspc}auo~}Qb7P&E5YgwgLq>;GiSDdH_hkZHHMqJ$fV&0-HVW|6pvP_j`8D9p;!!9c z2I%Y2{|>@Ft00AJB3}5~A>;gMQ5V&q^#uXNHQ0AWKuHZ&d@G=|2E2njvM8&;njZxC zb>;B~yJ4)mA*6yf8F61gMGgMbHW0VEawv(_yumHh-EAQ1P&;JIttRT8 z3{oUQ(?&viYm>`u1oYK_7Z4-K{u=lN2pFhAfe-&eH!y zXcF63Od>V7-cP_t4XpkGqBWQ?P{1e+@<$06qXF+=0qYcD*z}johk6pMy75Vsn0XcVhwH4=3*8;H7v9pVMt(*L&B1najs$95WE^)`c!8er`< zgU%XERe1zyFusmhbkpE|T>+sQU|lz-(F-6&IXYgEzHBmuJ$LFMCIf6Bo)5A^#_1-a z4%6UdI|0Kqz-n*KBT@sb^=1&I!Tmr0-2bCA>DyIIVl=1`A|PIa2`Z6s8e}Pu$Y3iw zo;qBjOtOJEKE)0hcYBID#Re%xLN6gRY+}q*Da>LZ%dtbIip5+TNRspIkg+aO)C)Dh z>TxdVVhyl%oWU{;uyUM1S}>2lBo8bcXR=D0VA(i>wHjd2ID-uu^c*K(vj)6u92VO& zm_Jd#P7Nwe7O+Qy2Pul|*JS7vF*&3`XI1(m47P9$V`({OlWqg4juUpsz`Al)pVq*C zwt&wy;PvIO_<})-B)M0Si`oRM%-Q6M2E4``;2RCDUls7326=7@xTXQGGDnmf8Z5mn z;I;#(7Crx7Sipf089dWqhXNLZPq+rL-kdF7 z0;C9$D$LS)tTt!;YYnj0oWWljRDUVp9}OmE33#VLoC3M9#!zMY{cEwvqXAZ)%l+r9 z$$>Xw;-Q0Ce+^#e5l~r!<|>1ygPuMDI%!ZfrI?UFO|}*h&{YF0P3Kg* zYp_#+9vblCbXfG(0L#)D^kaZ`sk|s%z(5;_wQ!FKC zVA()2ePM?TEFWiemIhcn&fv8MSUN8K&tIBgQ6SAowi_1iuY|a8&FD6@2r&Z4IbZhz_L~Z_6maYGb`&7;-jE#_x zSaHf+yv&&s!%MoHJc`qS${B8MEk0)D-CBJdEWWJlUWwT3Ka}cJK}5XZ%So*0va`Eg zIg6Gb(;_7s)eWmtD=uc_a;Q2wR9u;hQ_EB9su?BeM3sy}PM^@XRWfS2;SHgrC_z8p z22FF~cK(lw4tT7V+6i*tPbs!)MnktQI=HWDMk6=8K9uz4kX1FKhFdos^s9#4dVCx# zPf67>Jlya~(h&nD<>>&kp8sKmn}pT13)KB%jUSb$j*AogUlzg)?=^E$_4BRYFeeGT ztrXR1nqDKLxNqJ1IYl1y|5OcgRCwu`6RQM;Id68Q;x#fnoFthN)Eeh*c<=eK(HLfU z^_jyex()a^Sb{ze+$`5{hyxF&do?mDyW#byL>f==H8V=n+VSV5?j!z-TPGSJ8h zZTQE*as_qWjr=dKXV>Y_k9nD8wLce+!v8}HH_oZRVgJ$4+4^@R!s!3tW!+B+H8gdq zoly?|MHJ0A@?%!j4X=J3g=Le1+OHA+<@IfU$NYy=dhHCal)gRjc$>_J`F!ZihlzYx z#fNQtn9he@d>FxpnS40IheLcw;KMRLjOW8nJ_PaM93PVTFq#ho_^^Qw7x=K45A}QU z6oLJG+L{lceAvu~bUw7>!(cvi<3lVTj_{!oA0qe=&4-127|Mqhd|1nelYH32hcrGk zPt&@SiUgfo&y`bP4Bq6 z1P%Sna)#Y>3ag({(V6?=)T;CWn^rkf~aGLJd&nW9OoZi>Z@N*hZP!iFOj7fWld zRlz-m{>{CFL(5MaMCTG}qeE3QYU}7+UaeVDEu(Zv-NV>9@WV-&U=!{Pze0|r`6;Di zKB|#XPN&I(XRRqv6VH$?33uFkIO1{j!6mLa2p;%NT|Pe5CuZ2#xTxruiD8M+!$(Gr z8@rsJXZ*-jKV)P;&b6T4AaNxb6Vkgi&RE|uAM(OwZd=x=2>DFSsOV9qmq)Ikn4mNG zr#w_3bfTXZer+>47d*^q&T?Af;#4aS2yK{}(Xb0^g3mhz{{_`}_WECJ(W5r=nUB4B z)Y)2W%A?LMV>cdkcA>1}Y`k&IGgq#0%c=D@`AVcWNzQnFHUEmHxuqp=J){;PziH9F z`NG%@YTNxqncR@!-CtA?PlE^N4o=KHhpvsxS619Q)cu8@(yYiGd<+_=rBM|;r3k^t zb7OYs9IE9VU0!VKhP_jjAnhkhA99?6UzO_SrFP z>!Y;m`r2n(`JWU@jLO)r$2dQyRp^WKR-rGy^yZZFhQF-BvR3%Z5-hufzpThIKKy09 za#ESioPr0SGE?(MjvW_0CVX6Em=PNtgWX}6|~ zJBPh&l3!B$Bu{XoyhyDEU0d#2Bd?@VCgNpXwhE0Br$U5icvLSPSw6pUsC@ z_&;KOU;5*{tGdkjg71OKWxkGGfYg3LZlBs`udwfrVgs?^k2>3ioqp6=CbsxdXXCNA zk2>3W!aiG!&3qKAfL(ml*?Mf>!)NIU!(Y~qX~{kW89{U5mrn=vj{s|hg(XDBC4@=a zfObJpDzx4?+OgvtO8Vu8m*qQ25=(;8V3glBvj5|v=vD@;fv%vfiwYkb_8N;j{GFH(#EW`=^sfW@}YJt%EwEf;JT?T!=P%WJ**2$|JJ@yZpf; zvn0z>o|(l;I%;zZ9QWYbz?F@RSJ#!gduA4AL&Gz(R9P`R7<3qha-D1a_ZrbQ&&;xH ze91FYZnR8?Ea8<|jd>@p%&IKoy)xwnT*i1`P|5#DP2f@ZxwFhomstQELV0XzA=!;iXU_VAR7m>skX6;YH5bk8hGeY$7XRCra; zLBZjSw|7@1xYAvf@LBgvx!pZOl&l@1YGgo2W_3<|PDo~DmIoc-dm)+4I9xn5Q!Z{u zsIs3Nn%Q`ywBuP$!7J_lKNx$gsLfcGbhpob!iFe{HR@%bdG)c+di1r=F7>m|Cil0` z0hfVxkLmZ~b1bSdbb zqu1&^42khu1Y;VuI#FjAvB!yFq&G^)Y|w>^Ir?;_^o|=KRc+1*T7}xIK_BL2I(ksg zGpb5!ol%XU=NVNc$!9WaavJ;2WHwMe=~$=W>3oYg^ zXjoEiA~RoBJI=ATb5;XY>AwbLp^iglmMBH@oU>|GlZt*FT*Ph$qp>lG+QMWFb`w!& zzY(9MKXT6c+DmGwaF*Ocj|yiwE@hvf!AN!btCFRuxo=j%a_hJNmG>Z;oW)~n4mlfd z^xo>kV}`n~N;gU0=9?8N1$omcs|6?AC?HE(c>jQ`YRcW!L7R}UPnlvRr5D{3kX2EY zbWhM{C~0weG{s*!qrU^Pq?wiIoK?Llzcw;DTtudFwi~-rsIyntjzXOs_?pksV>)N8 zlA3ah&yriTXMC1)7fJD1RaH*YWJKjp;kV1mnB!J_mfTKW30ZPAnkHn`XXj%Qvg(%Q zH&sT^&q!O&R%2HQb+!oGNf^`8&n9Gz=&sT&64U}EC`spw_!Xjeaar!1NcS(Y>M8Xn zLEE7&t<)R8$ns?M{x4LXKYgLDe2EKL(ryDUWVK}d+zaZ;oW77HPnisdEc0bn9oC0@ znN_bWzeY1Y!?qD>!->KF*k_Nh>4R}9ebbj&ccm_qf6bD*+4-wV?ar@R($P5omL*+r z-QTh*sLQlC=v!Q-^BpS`Y8n+9FJv-4XBH6 zc4Kw_7H|qK#rJO&DzLvoVT$(6_M`*8*;2`;e6#D9<=2NsxIa9Qvn$y2K+eV+hf3zo zHI54S7cNacb1Ich4=j>B-(Ovn)kM*SK3!tWG=Q(;JL|EXMo z3Qfr_6v(e!jV43jxtz_w1_0`;`%wF=_%Qoy*l_!7@(9P-c;iA3lodZ({4Q7ZOJ6)C zdzXxfo3GBUq(%*0gZjcX?;bKFi%h8X(b#O->TGGMn^tGb)BV!wY#FO$K>G4qV8cBL z`N&!SNqm-Gc}@2H!K&Go37UYS6j)MC^)5C4&aRxoRTx~wDL9U+BY#w6_~>y_VPnUS z857R`@K>~WHe|E5Kp1|pg~f~?6Bao!d`#SE{?FE8@P|{dCx&uz3p`9luKWht=!~WP z>Z}6R^sBRsrH-@l#`0-g3+dPY&fezTP%dPdpt8utvwgR27*$2bM32+s<+?!u(0H(B zL~KH0c!C-z?sI!pt{lJSHX5!$x^h-%z2j`W@nALQKn40WsF3dC{_3stwO%z|Id0;C zLBmlS2lF&2>UbWH3>pOxGP*&r6xFg~g2p1-eB%ATP6^FI) zrE?`4`=*z!`Ks~)Zj+skzmiKn>iDaMYRo;~DR{lp9Exes*iW7o-yeU)y-9yTm|Ttrk@L{wzN zD91H^kvsUkeT@%cF|%5M+#ai#)!9odUsh*}v2IzNxd+;3J+M+)vAI~Htj<<00)yYIHLDl?SUYXTNH$)V+iHKwX*Dm8s#Y zS27?R^6Hh`&B?D`$(^Wzj^hlR5Q7XzXZKNwEWzjxJk?Z19UXzpw~g~ZQa=a z=*aK&E8kYq;9Z@9yYU?%Eix`4a(Hxv{C2{v6yg-zOKuiU+@T7KONbp7&J{`HUcag^ zkiWhddHbTwayGD^eYOA#rxi1>vQwRXidB*7EL)%T#==O&oFCX{tFaW)Sd^aq`c4B z`*pEEaj>vca3JbS9Q?Hsa^UY^#{8=G*+13oGtb)g*^zqoS^cJbmcA(abx+4nN?E@DX=dD+T}{9HeRHiRf6b43=kd+G-{XGY zoga&_}rKJ#cTrM~Nty@vD7$c?qp!@$74f#s7N=apnitDh98g(em;cBTG zUZ}d**+M-(x1s3)Jc)_ZfSp#v*de+eyv+Gn`LsizP)3}mcs#9?y9@VKyv z;d1qptdZmb%dD(XxVd`_#%Ki}-(`yg+L|MfyhNa;Jb_x=0$qgb=vtn=5jqEHHlbcn zEh2OiDxQRf6@WnyjE1@=q4u{;BUqy?a zzh8YN2S?e7%ZMmniD!jx^;oks2gRpcsnFE&-$GTHIFpZmCs5As1=_yVM1JoHI1!#5 zFIV4@;*~GPl+1? zu)O!GI*@GGW?{*~Jl4S0Gw~qvVRxUveAx$~SFs_`nPHkhpaiu4^^ks#-9 zVhQAfk2^I~#4nv1x=h`vp^6WfrC|kU@+=K~^a}Iu3iJ5!EG=;%mxBGl!p_56Rz{Wk zm+}~u;}V|vl7(I6Jw45y7mI@I3k$o$JA0U&1yH|2=@YZ)$r)K1rg$r}NV08N8cyaX zSy~()k8@cXx}(Qg8anw{iLOhBBQ9OpQ7dcaCe;&`X;2e>p(rVrN*XRzWl2jSTf1*% zy0Ep>zrfJ*&k4L+;1dNxtKn+_LZ>08A~X;(Tta(J3S>VeP;x+^$*ls}&j{3bR-g@Y z+Xaj{FHrk)wC#dutGFmo@nwPXt_pPF+H-VWpqFk4liTMN22@YDN*~tM{NZX;qp0prt1ld=W z^eIeGENKQ0?k_}kDInd3&Um@^k_8EwsPUcBe@$;u`v4xV@G1J>kwD*f3G~%tfsTAD z(B|(rQXZ|+W{#%Z%_-%;7RapZzVg8_*->N8X2kJFUf^XE5!dM#U=xER~ zxfZT!AX}?9j~5!W6uSF$>A@DcD|?{>$6)wAZ3MMHV>XLCW}lWI--%urNogbdv4zEg zHON()7RJl__i25Iw)qoab`ooJ?{l>FN1`nyLZH6`y_3#M1{$Y%#dCBUn4HwM5*V9= zruP=;TOe&x+vdIkb-mJ!!!2(#YRVgpPrk~hHCzTO<|aE_ZpeNx0$(e)d(c7gYlfBG z=f;*SPfhp_+LqEih{xOAgJ{T65kU+Jqs`-jh#;l_??wcF#)q;wB8YD5aYPWS^Mh?c zTz@aN(e;~cK};PKTM!Mu!xlu>WQz=rA&2X+v0XM(L2dwXlo+P{fiX&G(yIbp0gfoO zjR0;aAstAe-Wp{?WH2s+%ky3)$#FI_=pglNm+r$HZF)b4Ho^uwgDIFSvIqECVmOI^o#dSZ98m9H zl@BX}dvR%;d6>qu;ghJLxxe8^={y`Xc<>~%i-ynp7ztObf@+BX>v#;AV;Pr9|CK2j&G( zD!DX3kFE~r81N1Sbj+AK0y^qPbc>F9lm zqDN!Rz_-RzR+L|g!KSK3xA(`_%d)Wf{G3QUr_kre{?A+V{?z}Dg;i0%$M1F(6w+&d z-$F7EYNgkfT6L_2z1yl|3Ui{B`a4=p+1qrS$8l{s>U>d~j_&2XHafq(O~>RxYtvEJ z9jA4)p}D82eeG%8)b+@2%maIrsB&)tk(Ma8g}|UC^zWSljRejtwG{zb);#YhN6O>V zx_dLt$2jh@;d6%cm^=*pn`RrPhBZhRK*KKmIgd8eF3dJ?QEb2o+)M^D0}Jb~F@s96 z%)lE|F=HIwnpv&P39doT-{GQF@i)w{r{bt@wz93 zm*rDajF%_!DS;ISY*D|@Tccg2MLr1Yp5>mB0<&+Al^v(Pg0lQyzZmj&%rW9==jF1M zJ%n>`=xzf0mk7Fxf%Z%24Dfvk9Ri{+p#)&~5;_XhUP1~`dI@a=E-#^bK;reDRAT2E z*KpN#|CE6f+N;^H(?B1Q?t<+7c$%?9Qidb5F=lM*m6+sO+UGszjGh434*jbHaAcebr1gm!nhC4@QQ-Ifr>j+oXE#-JIk zq0}Y(Lr(AC#)AZi7Q?5Egf>hQs2;xSqqYqA^p4O3_%M%9uU`l>9=>?PHote$s0d#8 zi|z0xDF12=)#8Y*?+js#JJ=Z-Ny$rvbPQF}n-APv?@{GpXDDF^btUo)mFG1xfQIWW zRt7|bE6~aQF)fUX_RrG74qWm|=lBAj6nj0K3&{lh_pdD+DY5C{;CPA|1EoeV$L6`k zXt*N^!zh!pFg$ny8rWnDTM51n?~@BmTcYH;fMQE%GH`1V`Mt+?@VA3+9;RCE3{hGO z!`J(e(1RpD3H=m!wcfqTp|`_{s66KnkkF3~gp(=qJz+`WX-9!IOZ3{cz?SuXsH7hZ x{|P7$wrB0hK7a~rj};rhKb3E<_4x|i76%qsiu|| T=B9>5KotgwNt?Ga_ACJawoDX? diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 3220b9b64a856f654b81c23832226d96969eaf23..cea9251d35de8ead2414f007a9d97038572e3198 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4GXeTv-8c1iuFyCEmD$<(-JKWlMO5lOwv*eQj=5C43iU$jDXn0 RA}KW`#ni$)ZSfVx902vT7B~O^ delta 63 zcmca|oAJtR#tn-Z4J}fNjN)@s^YtxElZ_J13=It}OfAjK4HJ_S%?(V`5>reJQcW!_ S%uNlAfGP|UlNMiL%mDznNE9{z diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index 6f50fce62..292e02cfe 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:18.361812Z", - "iopub.status.busy": "2024-02-07T22:09:18.361636Z", - "iopub.status.idle": "2024-02-07T22:09:23.711531Z", - "shell.execute_reply": "2024-02-07T22:09:23.710898Z" + "iopub.execute_input": "2024-02-07T23:50:00.107221Z", + "iopub.status.busy": "2024-02-07T23:50:00.107063Z", + "iopub.status.idle": "2024-02-07T23:50:04.972205Z", + "shell.execute_reply": "2024-02-07T23:50:04.971588Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.714287Z", - "iopub.status.busy": "2024-02-07T22:09:23.713904Z", - "iopub.status.idle": "2024-02-07T22:09:23.717701Z", - "shell.execute_reply": "2024-02-07T22:09:23.717275Z" + "iopub.execute_input": "2024-02-07T23:50:04.974847Z", + "iopub.status.busy": "2024-02-07T23:50:04.974485Z", + "iopub.status.idle": "2024-02-07T23:50:04.977602Z", + "shell.execute_reply": "2024-02-07T23:50:04.977185Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.719659Z", - "iopub.status.busy": "2024-02-07T22:09:23.719476Z", - "iopub.status.idle": "2024-02-07T22:09:23.723985Z", - "shell.execute_reply": "2024-02-07T22:09:23.723572Z" + "iopub.execute_input": "2024-02-07T23:50:04.979500Z", + "iopub.status.busy": "2024-02-07T23:50:04.979321Z", + "iopub.status.idle": "2024-02-07T23:50:04.983925Z", + "shell.execute_reply": "2024-02-07T23:50:04.983480Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.725972Z", - "iopub.status.busy": "2024-02-07T22:09:23.725707Z", - "iopub.status.idle": "2024-02-07T22:09:25.249850Z", - "shell.execute_reply": "2024-02-07T22:09:25.249225Z" + "iopub.execute_input": "2024-02-07T23:50:04.986003Z", + "iopub.status.busy": "2024-02-07T23:50:04.985618Z", + "iopub.status.idle": "2024-02-07T23:50:06.549578Z", + "shell.execute_reply": "2024-02-07T23:50:06.548944Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.252557Z", - "iopub.status.busy": "2024-02-07T22:09:25.252169Z", - "iopub.status.idle": "2024-02-07T22:09:25.263474Z", - "shell.execute_reply": "2024-02-07T22:09:25.262738Z" + "iopub.execute_input": "2024-02-07T23:50:06.552344Z", + "iopub.status.busy": "2024-02-07T23:50:06.551958Z", + "iopub.status.idle": "2024-02-07T23:50:06.562444Z", + "shell.execute_reply": "2024-02-07T23:50:06.561881Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.296003Z", - "iopub.status.busy": "2024-02-07T22:09:25.295584Z", - "iopub.status.idle": "2024-02-07T22:09:25.301465Z", - "shell.execute_reply": "2024-02-07T22:09:25.300981Z" + "iopub.execute_input": "2024-02-07T23:50:06.593982Z", + "iopub.status.busy": "2024-02-07T23:50:06.593548Z", + "iopub.status.idle": "2024-02-07T23:50:06.599022Z", + "shell.execute_reply": "2024-02-07T23:50:06.598581Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.303281Z", - "iopub.status.busy": "2024-02-07T22:09:25.303109Z", - "iopub.status.idle": "2024-02-07T22:09:25.749448Z", - "shell.execute_reply": "2024-02-07T22:09:25.748880Z" + "iopub.execute_input": "2024-02-07T23:50:06.600905Z", + "iopub.status.busy": "2024-02-07T23:50:06.600729Z", + "iopub.status.idle": "2024-02-07T23:50:07.080952Z", + "shell.execute_reply": "2024-02-07T23:50:07.080367Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.751700Z", - "iopub.status.busy": "2024-02-07T22:09:25.751373Z", - "iopub.status.idle": "2024-02-07T22:09:26.514501Z", - "shell.execute_reply": "2024-02-07T22:09:26.513900Z" + "iopub.execute_input": "2024-02-07T23:50:07.083112Z", + "iopub.status.busy": "2024-02-07T23:50:07.082774Z", + "iopub.status.idle": "2024-02-07T23:50:07.698361Z", + "shell.execute_reply": "2024-02-07T23:50:07.697874Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.516952Z", - "iopub.status.busy": "2024-02-07T22:09:26.516772Z", - "iopub.status.idle": "2024-02-07T22:09:26.536940Z", - "shell.execute_reply": "2024-02-07T22:09:26.536500Z" + "iopub.execute_input": "2024-02-07T23:50:07.700875Z", + "iopub.status.busy": "2024-02-07T23:50:07.700453Z", + "iopub.status.idle": "2024-02-07T23:50:07.720767Z", + "shell.execute_reply": "2024-02-07T23:50:07.720213Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.538937Z", - "iopub.status.busy": "2024-02-07T22:09:26.538682Z", - "iopub.status.idle": "2024-02-07T22:09:26.541623Z", - "shell.execute_reply": "2024-02-07T22:09:26.541204Z" + "iopub.execute_input": "2024-02-07T23:50:07.722821Z", + "iopub.status.busy": "2024-02-07T23:50:07.722441Z", + "iopub.status.idle": "2024-02-07T23:50:07.725646Z", + "shell.execute_reply": "2024-02-07T23:50:07.725101Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.543564Z", - "iopub.status.busy": "2024-02-07T22:09:26.543237Z", - "iopub.status.idle": "2024-02-07T22:09:41.167409Z", - "shell.execute_reply": "2024-02-07T22:09:41.166804Z" + "iopub.execute_input": "2024-02-07T23:50:07.727549Z", + "iopub.status.busy": "2024-02-07T23:50:07.727193Z", + "iopub.status.idle": "2024-02-07T23:50:21.686992Z", + "shell.execute_reply": "2024-02-07T23:50:21.686381Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.170099Z", - "iopub.status.busy": "2024-02-07T22:09:41.169730Z", - "iopub.status.idle": "2024-02-07T22:09:41.173537Z", - "shell.execute_reply": "2024-02-07T22:09:41.173080Z" + "iopub.execute_input": "2024-02-07T23:50:21.689932Z", + "iopub.status.busy": "2024-02-07T23:50:21.689619Z", + "iopub.status.idle": "2024-02-07T23:50:21.693998Z", + "shell.execute_reply": "2024-02-07T23:50:21.693471Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -689,10 +689,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.175544Z", - "iopub.status.busy": "2024-02-07T22:09:41.175252Z", - "iopub.status.idle": "2024-02-07T22:09:41.882562Z", - "shell.execute_reply": "2024-02-07T22:09:41.881983Z" + "iopub.execute_input": "2024-02-07T23:50:21.696250Z", + "iopub.status.busy": "2024-02-07T23:50:21.695894Z", + "iopub.status.idle": "2024-02-07T23:50:22.394154Z", + "shell.execute_reply": "2024-02-07T23:50:22.393570Z" }, "id": "i_drkY9YOcw4" }, @@ -726,10 +726,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.886194Z", - "iopub.status.busy": "2024-02-07T22:09:41.885276Z", - "iopub.status.idle": "2024-02-07T22:09:41.891871Z", - "shell.execute_reply": "2024-02-07T22:09:41.891394Z" + "iopub.execute_input": "2024-02-07T23:50:22.397720Z", + "iopub.status.busy": "2024-02-07T23:50:22.396797Z", + "iopub.status.idle": "2024-02-07T23:50:22.403356Z", + "shell.execute_reply": "2024-02-07T23:50:22.402877Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -776,10 +776,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.895266Z", - "iopub.status.busy": "2024-02-07T22:09:41.894373Z", - "iopub.status.idle": "2024-02-07T22:09:42.014766Z", - "shell.execute_reply": "2024-02-07T22:09:42.014141Z" + "iopub.execute_input": "2024-02-07T23:50:22.406771Z", + "iopub.status.busy": "2024-02-07T23:50:22.405875Z", + "iopub.status.idle": "2024-02-07T23:50:22.531248Z", + "shell.execute_reply": "2024-02-07T23:50:22.530652Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.017421Z", - "iopub.status.busy": "2024-02-07T22:09:42.017053Z", - "iopub.status.idle": "2024-02-07T22:09:42.026022Z", - "shell.execute_reply": "2024-02-07T22:09:42.025558Z" + "iopub.execute_input": "2024-02-07T23:50:22.533546Z", + "iopub.status.busy": "2024-02-07T23:50:22.533179Z", + "iopub.status.idle": "2024-02-07T23:50:22.542292Z", + "shell.execute_reply": "2024-02-07T23:50:22.541760Z" }, "scrolled": true }, @@ -874,10 +874,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.028007Z", - "iopub.status.busy": "2024-02-07T22:09:42.027689Z", - "iopub.status.idle": "2024-02-07T22:09:42.035320Z", - "shell.execute_reply": "2024-02-07T22:09:42.034866Z" + "iopub.execute_input": "2024-02-07T23:50:22.544390Z", + "iopub.status.busy": "2024-02-07T23:50:22.544079Z", + "iopub.status.idle": "2024-02-07T23:50:22.551630Z", + "shell.execute_reply": "2024-02-07T23:50:22.551177Z" } }, "outputs": [ @@ -981,10 +981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.037273Z", - "iopub.status.busy": "2024-02-07T22:09:42.036949Z", - "iopub.status.idle": "2024-02-07T22:09:42.041027Z", - "shell.execute_reply": "2024-02-07T22:09:42.040574Z" + "iopub.execute_input": "2024-02-07T23:50:22.553693Z", + "iopub.status.busy": "2024-02-07T23:50:22.553372Z", + "iopub.status.idle": "2024-02-07T23:50:22.557201Z", + "shell.execute_reply": "2024-02-07T23:50:22.556671Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.043089Z", - "iopub.status.busy": "2024-02-07T22:09:42.042704Z", - "iopub.status.idle": "2024-02-07T22:09:42.048359Z", - "shell.execute_reply": "2024-02-07T22:09:42.047911Z" + "iopub.execute_input": "2024-02-07T23:50:22.559234Z", + "iopub.status.busy": "2024-02-07T23:50:22.558929Z", + "iopub.status.idle": "2024-02-07T23:50:22.564278Z", + "shell.execute_reply": "2024-02-07T23:50:22.563751Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1152,10 +1152,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.050308Z", - "iopub.status.busy": "2024-02-07T22:09:42.049989Z", - "iopub.status.idle": "2024-02-07T22:09:42.161793Z", - "shell.execute_reply": "2024-02-07T22:09:42.161209Z" + "iopub.execute_input": "2024-02-07T23:50:22.566348Z", + "iopub.status.busy": "2024-02-07T23:50:22.566033Z", + "iopub.status.idle": "2024-02-07T23:50:22.680300Z", + "shell.execute_reply": "2024-02-07T23:50:22.679806Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1209,10 +1209,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.164076Z", - "iopub.status.busy": "2024-02-07T22:09:42.163750Z", - "iopub.status.idle": "2024-02-07T22:09:42.270803Z", - "shell.execute_reply": "2024-02-07T22:09:42.270219Z" + "iopub.execute_input": "2024-02-07T23:50:22.682360Z", + "iopub.status.busy": "2024-02-07T23:50:22.682086Z", + "iopub.status.idle": "2024-02-07T23:50:22.787241Z", + "shell.execute_reply": "2024-02-07T23:50:22.786768Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1257,10 +1257,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.273107Z", - "iopub.status.busy": "2024-02-07T22:09:42.272726Z", - "iopub.status.idle": "2024-02-07T22:09:42.377361Z", - "shell.execute_reply": "2024-02-07T22:09:42.376788Z" + "iopub.execute_input": "2024-02-07T23:50:22.789319Z", + "iopub.status.busy": "2024-02-07T23:50:22.788985Z", + "iopub.status.idle": "2024-02-07T23:50:22.889567Z", + "shell.execute_reply": "2024-02-07T23:50:22.889085Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1301,10 +1301,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.379634Z", - "iopub.status.busy": "2024-02-07T22:09:42.379175Z", - "iopub.status.idle": "2024-02-07T22:09:42.483476Z", - "shell.execute_reply": "2024-02-07T22:09:42.482909Z" + "iopub.execute_input": "2024-02-07T23:50:22.891545Z", + "iopub.status.busy": "2024-02-07T23:50:22.891171Z", + "iopub.status.idle": "2024-02-07T23:50:22.990254Z", + "shell.execute_reply": "2024-02-07T23:50:22.989797Z" } }, "outputs": [ @@ -1352,10 +1352,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.485522Z", - "iopub.status.busy": "2024-02-07T22:09:42.485311Z", - "iopub.status.idle": "2024-02-07T22:09:42.488885Z", - "shell.execute_reply": "2024-02-07T22:09:42.488370Z" + "iopub.execute_input": "2024-02-07T23:50:22.992236Z", + "iopub.status.busy": "2024-02-07T23:50:22.991963Z", + "iopub.status.idle": "2024-02-07T23:50:22.995630Z", + "shell.execute_reply": "2024-02-07T23:50:22.995182Z" }, "nbsphinx": "hidden" }, @@ -1396,7 +1396,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "018c961243dc4a2ab609ecd13bf21b1c": { + "04300f6af0e2499abc98d7c0019ae68c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1412,43 +1412,135 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ea45f78382040ef970a525ca19405dc", - "max": 3201.0, + "layout": "IPY_MODEL_e0528fbb6b84426681be3552bcfa5be7", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e8bb345f6d81459fa75f4555635255d2", + "style": "IPY_MODEL_3130c2baa2ca43b8866db622c29120fc", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 2041.0 } }, - "02b46780ae3f483399e08d2e6ff8eab2": { + "049baf23826b4af093eff7678dd9f29d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb5894e2b38c45c194efd20f8c3cbe66", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60b527de43034970b1308b099653ea53", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aefceca0700b4c62b24820c53e63d7f9", + "IPY_MODEL_04300f6af0e2499abc98d7c0019ae68c", + "IPY_MODEL_d982ece3b4e14443adc855de84443142" + ], + "layout": "IPY_MODEL_99d97c19f0dc458bbece97f7d70aff29", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null + } + }, + "0595d525f4e448ab899ecc84c2c97ac6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b39dbdd24a234f3982e2b78d6a3a6ca4", + "IPY_MODEL_c8da71bd884e46109202edc2ee6ab409", + "IPY_MODEL_f620b009650b49f69c70d93caed3431b" + ], + "layout": "IPY_MODEL_d48b4a1fa40646a3bec001eabc934939", + "tabbable": null, + "tooltip": null + } + }, + "06290fbe33a34692b6a4159ab260ce9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b5d2f843fa24204af224bc21fdaf056": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0df3f598e42449c692311ec643f0d43d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b247055147c47c2a71d10020cd84176": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "05fbe93d9d004d09b7a9891b7f6adbe2": { + "293f95aa421a4889bf08ad2176227a3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1501,23 +1593,7 @@ "width": null } }, - "06630781720c42d199dca36dbc67bb87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "11c7035432e343fb93816c86129b8adf": { + "2a411ecde9e54d31b05f5cc5733557f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1570,7 +1646,30 @@ "width": null } }, - "1366b1442bcd477f91d3b1f2c79ccf71": { + "2c996374e678491788c459e1dbc99a01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a411ecde9e54d31b05f5cc5733557f7", + "placeholder": "​", + "style": "IPY_MODEL_9ef834011f39489aafc203ff4a85829a", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 227MB/s]" + } + }, + "2d4fdb5e6e5b487387c870752b01cd9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1623,7 +1722,41 @@ "width": null } }, - "1602afb154024a839e7eb2baeadf14c9": { + "3130c2baa2ca43b8866db622c29120fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d8bf5983d3844eb8ff2f91414a189f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3de28429f250445fa8516dbacd9be6b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1676,7 +1809,7 @@ "width": null } }, - "1797a298ca2148919567beaa49cc33d7": { + "481f68c008f94fc598a9ef7c2cce6da0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1729,48 +1862,7 @@ "width": null } }, - "1ba1608cb15441918fffbdb0112aa1f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1602afb154024a839e7eb2baeadf14c9", - "placeholder": "​", - "style": "IPY_MODEL_db3add3863d748748c253c014e2faf03", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "2ceda72b1d5049b5a8049ad58afd02d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2ea45f78382040ef970a525ca19405dc": { + "58eb5f1bb6f543b9b6d320bd4dc8a583": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1823,7 +1915,23 @@ "width": null } }, - "3095c367a4c74a08854abcd7622d7a72": { + "59c2bdf1dad14b51966cb22a618f131d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61d8c620b2004dcbbf7642355fae0c8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1876,33 +1984,7 @@ "width": null } }, - "314fd2a192634790b5db62a3957f85ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11c7035432e343fb93816c86129b8adf", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79351f8482fe4216b6609e0f2c2f5d0f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "3a569a86618c42dc86af61139d6acadf": { + "62bd4894905e4e87a345db49d46d4165": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1955,109 +2037,60 @@ "width": null } }, - "3f358d8bedbb43768725d491407bfce8": { - "model_module": "@jupyter-widgets/controls", + "654f7806575d45a9a93e8a5c0d6424c0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f248fc8f51004a06b30e02a83397236b", - "placeholder": "​", - "style": "IPY_MODEL_ff8cf12f43ca4d13a1017fbff08fe9f6", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 445kB/s]" - } - }, - "47d60ecdbe0a4f409818f97dffc6439c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6372cda2727c44baa0af02192d868905", - "placeholder": "​", - "style": "IPY_MODEL_2ceda72b1d5049b5a8049ad58afd02d9", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 198MB/s]" - } - }, - "578b918f0b334af9a2793c197fe9a32c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_99d0bf7b85e74ac2a356f2a9fff98e37", - "IPY_MODEL_92bc2ade5f1a4d98b4659c1d3a64feed", - "IPY_MODEL_6a87e23c3c664f00ab0368cbb61ca901" - ], - "layout": "IPY_MODEL_1366b1442bcd477f91d3b1f2c79ccf71", - "tabbable": null, - "tooltip": null - } - }, - "5d84cb363c6b490cb8afa2ab45a2daee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "60b527de43034970b1308b099653ea53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6372cda2727c44baa0af02192d868905": { + "666271d492134ef0b03b8ec9578b7998": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2110,7 +2143,7 @@ "width": null } }, - "6a87e23c3c664f00ab0368cbb61ca901": { + "668783404483450b8f426724d2f89cd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2125,15 +2158,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9340c56a375c49e89e8e3b127db43593", + "layout": "IPY_MODEL_481f68c008f94fc598a9ef7c2cce6da0", "placeholder": "​", - "style": "IPY_MODEL_ea839efc9eda4c81be312c0e78c8f734", + "style": "IPY_MODEL_7e6e92ecdf7e4d9eafaba693dc09a3c5", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]" + "value": "classifier.ckpt: 100%" + } + }, + "68ffad4d65d54523b62a4a5eccb50913": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f01ef992cbbf4ff19aa1fcca3a0d11ed", + "IPY_MODEL_cad92de12db6453a8c477718a7af5c66", + "IPY_MODEL_dd0085e26ee6480aa6a013494fb70534" + ], + "layout": "IPY_MODEL_58eb5f1bb6f543b9b6d320bd4dc8a583", + "tabbable": null, + "tooltip": null } }, - "6ee9b3701a494b97a2c8644af1e520cb": { + "69fd182a930c4068837b29ef749fc1bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2243,7 @@ "width": null } }, - "707ef7472aa046e0af876676bdeb0e1a": { + "6c5385e8b4cf43428bb9acc7bf7b1b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2204,7 +2261,7 @@ "text_color": null } }, - "79351f8482fe4216b6609e0f2c2f5d0f": { + "73bf2556b81f44f2b96275a8445d1cf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2220,7 +2277,31 @@ "description_width": "" } }, - "87af3d337e4c4f56b8de8653ffbcf2fa": { + "79d69ad0f5d64b55b2c38c5a74f7b121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_668783404483450b8f426724d2f89cd3", + "IPY_MODEL_efad4ad3f4a54a6994d42d4a6b5132d8", + "IPY_MODEL_2c996374e678491788c459e1dbc99a01" + ], + "layout": "IPY_MODEL_2d4fdb5e6e5b487387c870752b01cd9f", + "tabbable": null, + "tooltip": null + } + }, + "7e072d86b5c74dcb93b0e3f2038cc23d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2273,56 +2354,7 @@ "width": null } }, - "88e025fac457476e857a0ed0172c8ebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_05fbe93d9d004d09b7a9891b7f6adbe2", - "placeholder": "​", - "style": "IPY_MODEL_707ef7472aa046e0af876676bdeb0e1a", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "8fc50970ec7644c6825dbf8f10bcced8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1797a298ca2148919567beaa49cc33d7", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06630781720c42d199dca36dbc67bb87", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "918ea5972c8a43b4b372a06b881f8d52": { + "7e6e92ecdf7e4d9eafaba693dc09a3c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2340,7 +2372,7 @@ "text_color": null } }, - "92bc2ade5f1a4d98b4659c1d3a64feed": { + "857398c0b7f442608c58fc97f1061a9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2356,17 +2388,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e831980da61448918a716f1d888c714a", - "max": 15856877.0, + "layout": "IPY_MODEL_62bd4894905e4e87a345db49d46d4165", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5d84cb363c6b490cb8afa2ab45a2daee", + "style": "IPY_MODEL_59c2bdf1dad14b51966cb22a618f131d", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": 3201.0 } }, - "9340c56a375c49e89e8e3b127db43593": { + "99d97c19f0dc458bbece97f7d70aff29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2419,30 +2451,49 @@ "width": null } }, - "99d0bf7b85e74ac2a356f2a9fff98e37": { + "9ae177114d464deba94c0d078154bdf4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d916d408a2f44a8992d77870d9ae75bf", - "placeholder": "​", - "style": "IPY_MODEL_f0aa84448e3f405b9aeee1a3005ca7a2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f816adc0ed2b4d56be8bf200373ef9aa", + "IPY_MODEL_857398c0b7f442608c58fc97f1061a9f", + "IPY_MODEL_fc8d050fc3f448ee9399813ed8e667f4" + ], + "layout": "IPY_MODEL_69fd182a930c4068837b29ef749fc1bf", "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "tooltip": null + } + }, + "9ef834011f39489aafc203ff4a85829a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d41a343cf504fc2878761980bd12889": { + "abe7c4e2a2194914a09f1d5bd6432fec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2495,7 +2546,30 @@ "width": null } }, - "b69d30f9f6bd496e950e0a7253129c59": { + "aefceca0700b4c62b24820c53e63d7f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_293f95aa421a4889bf08ad2176227a3a", + "placeholder": "​", + "style": "IPY_MODEL_d6c9f629d18240d7a6b98ac06c78293a", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "b39dbdd24a234f3982e2b78d6a3a6ca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2510,15 +2584,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3095c367a4c74a08854abcd7622d7a72", + "layout": "IPY_MODEL_bac330bbb6a4449a8fbf7ad2fb9720e7", "placeholder": "​", - "style": "IPY_MODEL_d60c4c9975014fc6918fb9394f823e45", + "style": "IPY_MODEL_cf487e1807424afba2b22b5f777c96a2", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 769kB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "bb5894e2b38c45c194efd20f8c3cbe66": { + "baae0b1fb874444ebed0ca5b86534711": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2571,102 +2645,8 @@ "width": null } }, - "bba729c19a594f33892a4024225287f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_88e025fac457476e857a0ed0172c8ebf", - "IPY_MODEL_314fd2a192634790b5db62a3957f85ac", - "IPY_MODEL_47d60ecdbe0a4f409818f97dffc6439c" - ], - "layout": "IPY_MODEL_eaa3e635e6d845149a49424039f11a4a", - "tabbable": null, - "tooltip": null - } - }, - "bf3f0473f1a24d82986d6c703fdff8de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c96f0f9cb7694a33982acab6e5ac22c1", - "IPY_MODEL_018c961243dc4a2ab609ecd13bf21b1c", - "IPY_MODEL_b69d30f9f6bd496e950e0a7253129c59" - ], - "layout": "IPY_MODEL_87af3d337e4c4f56b8de8653ffbcf2fa", - "tabbable": null, - "tooltip": null - } - }, - "c7316533a256479abb53524380df0dd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a569a86618c42dc86af61139d6acadf", - "placeholder": "​", - "style": "IPY_MODEL_f853c6490ccf49c18f81d8894a4fd3d4", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 9.21MB/s]" - } - }, - "c96f0f9cb7694a33982acab6e5ac22c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4ac54bb95434214887e6908f7417cc4", - "placeholder": "​", - "style": "IPY_MODEL_918ea5972c8a43b4b372a06b881f8d52", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "d4ac54bb95434214887e6908f7417cc4": { - "model_module": "@jupyter-widgets/base", + "bac330bbb6a4449a8fbf7ad2fb9720e7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -2718,7 +2698,59 @@ "width": null } }, - "d60c4c9975014fc6918fb9394f823e45": { + "c8da71bd884e46109202edc2ee6ab409": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_654f7806575d45a9a93e8a5c0d6424c0", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4c65529fdc840279cfc12be44b62fb9", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "cad92de12db6453a8c477718a7af5c66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e072d86b5c74dcb93b0e3f2038cc23d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b5d2f843fa24204af224bc21fdaf056", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "cf487e1807424afba2b22b5f777c96a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2736,7 +2768,7 @@ "text_color": null } }, - "d916d408a2f44a8992d77870d9ae75bf": { + "d48b4a1fa40646a3bec001eabc934939": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2789,7 +2821,23 @@ "width": null } }, - "db3add3863d748748c253c014e2faf03": { + "d4c65529fdc840279cfc12be44b62fb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d65f6dbb468c45f5833700dc76ef4722": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2807,60 +2855,71 @@ "text_color": null } }, - "e617431224a74447b3168997dee691d1": { - "model_module": "@jupyter-widgets/base", + "d6c9f629d18240d7a6b98ac06c78293a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d982ece3b4e14443adc855de84443142": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3de28429f250445fa8516dbacd9be6b4", + "placeholder": "​", + "style": "IPY_MODEL_1b247055147c47c2a71d10020cd84176", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 499kB/s]" + } + }, + "dd0085e26ee6480aa6a013494fb70534": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_baae0b1fb874444ebed0ca5b86534711", + "placeholder": "​", + "style": "IPY_MODEL_d65f6dbb468c45f5833700dc76ef4722", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 15.9MB/s]" } }, - "e831980da61448918a716f1d888c714a": { + "e0528fbb6b84426681be3552bcfa5be7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2913,41 +2972,7 @@ "width": null } }, - "e8bb345f6d81459fa75f4555635255d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ea839efc9eda4c81be312c0e78c8f734": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eaa3e635e6d845149a49424039f11a4a": { + "e872326b222549548e420a960ab1959d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3000,43 +3025,7 @@ "width": null } }, - "f0aa84448e3f405b9aeee1a3005ca7a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f0e4ebf8d49e4f038e5a57a3736f1527": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f248fc8f51004a06b30e02a83397236b": { + "ede528c5216046cfba4a067472e5124d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3089,49 +3078,56 @@ "width": null } }, - "f853c6490ccf49c18f81d8894a4fd3d4": { + "efad4ad3f4a54a6994d42d4a6b5132d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e872326b222549548e420a960ab1959d", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73bf2556b81f44f2b96275a8445d1cf0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "f8ffabec7ae64c16bd74b38130d34b65": { + "f01ef992cbbf4ff19aa1fcca3a0d11ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1ba1608cb15441918fffbdb0112aa1f8", - "IPY_MODEL_8fc50970ec7644c6825dbf8f10bcced8", - "IPY_MODEL_c7316533a256479abb53524380df0dd4" - ], - "layout": "IPY_MODEL_6ee9b3701a494b97a2c8644af1e520cb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61d8c620b2004dcbbf7642355fae0c8d", + "placeholder": "​", + "style": "IPY_MODEL_0df3f598e42449c692311ec643f0d43d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "fe3bcc7d9bf948039e3be396079d45a5": { + "f620b009650b49f69c70d93caed3431b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3146,54 +3142,58 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e617431224a74447b3168997dee691d1", + "layout": "IPY_MODEL_abe7c4e2a2194914a09f1d5bd6432fec", "placeholder": "​", - "style": "IPY_MODEL_f0e4ebf8d49e4f038e5a57a3736f1527", + "style": "IPY_MODEL_6c5385e8b4cf43428bb9acc7bf7b1b4f", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 192MB/s]" } }, - "ff1fa9c053ff44b6819529a9bf6f509a": { + "f816adc0ed2b4d56be8bf200373ef9aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fe3bcc7d9bf948039e3be396079d45a5", - "IPY_MODEL_02b46780ae3f483399e08d2e6ff8eab2", - "IPY_MODEL_3f358d8bedbb43768725d491407bfce8" - ], - "layout": "IPY_MODEL_9d41a343cf504fc2878761980bd12889", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ede528c5216046cfba4a067472e5124d", + "placeholder": "​", + "style": "IPY_MODEL_3d8bf5983d3844eb8ff2f91414a189f4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ff8cf12f43ca4d13a1017fbff08fe9f6": { + "fc8d050fc3f448ee9399813ed8e667f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_666271d492134ef0b03b8ec9578b7998", + "placeholder": "​", + "style": "IPY_MODEL_06290fbe33a34692b6a4159ab260ce9c", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 841kB/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index eb98a395e..2aa010cbc 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:45.766597Z", - "iopub.status.busy": "2024-02-07T22:09:45.766116Z", - "iopub.status.idle": "2024-02-07T22:09:46.894614Z", - "shell.execute_reply": "2024-02-07T22:09:46.893994Z" + "iopub.execute_input": "2024-02-07T23:50:26.079478Z", + "iopub.status.busy": "2024-02-07T23:50:26.079305Z", + "iopub.status.idle": "2024-02-07T23:50:27.150586Z", + "shell.execute_reply": "2024-02-07T23:50:27.149991Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.897320Z", - "iopub.status.busy": "2024-02-07T22:09:46.897025Z", - "iopub.status.idle": "2024-02-07T22:09:46.900128Z", - "shell.execute_reply": "2024-02-07T22:09:46.899610Z" + "iopub.execute_input": "2024-02-07T23:50:27.153138Z", + "iopub.status.busy": "2024-02-07T23:50:27.152874Z", + "iopub.status.idle": "2024-02-07T23:50:27.156022Z", + "shell.execute_reply": "2024-02-07T23:50:27.155466Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.902250Z", - "iopub.status.busy": "2024-02-07T22:09:46.902067Z", - "iopub.status.idle": "2024-02-07T22:09:46.910749Z", - "shell.execute_reply": "2024-02-07T22:09:46.910239Z" + "iopub.execute_input": "2024-02-07T23:50:27.158108Z", + "iopub.status.busy": "2024-02-07T23:50:27.157782Z", + "iopub.status.idle": "2024-02-07T23:50:27.166233Z", + "shell.execute_reply": "2024-02-07T23:50:27.165798Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.912794Z", - "iopub.status.busy": "2024-02-07T22:09:46.912478Z", - "iopub.status.idle": "2024-02-07T22:09:46.917349Z", - "shell.execute_reply": "2024-02-07T22:09:46.916928Z" + "iopub.execute_input": "2024-02-07T23:50:27.168113Z", + "iopub.status.busy": "2024-02-07T23:50:27.167802Z", + "iopub.status.idle": "2024-02-07T23:50:27.172764Z", + "shell.execute_reply": "2024-02-07T23:50:27.172228Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.919340Z", - "iopub.status.busy": "2024-02-07T22:09:46.919163Z", - "iopub.status.idle": "2024-02-07T22:09:47.102840Z", - "shell.execute_reply": "2024-02-07T22:09:47.102218Z" + "iopub.execute_input": "2024-02-07T23:50:27.174817Z", + "iopub.status.busy": "2024-02-07T23:50:27.174498Z", + "iopub.status.idle": "2024-02-07T23:50:27.354014Z", + "shell.execute_reply": "2024-02-07T23:50:27.353508Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.105419Z", - "iopub.status.busy": "2024-02-07T22:09:47.105218Z", - "iopub.status.idle": "2024-02-07T22:09:47.478382Z", - "shell.execute_reply": "2024-02-07T22:09:47.477797Z" + "iopub.execute_input": "2024-02-07T23:50:27.356243Z", + "iopub.status.busy": "2024-02-07T23:50:27.355969Z", + "iopub.status.idle": "2024-02-07T23:50:27.726314Z", + "shell.execute_reply": "2024-02-07T23:50:27.725725Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.480753Z", - "iopub.status.busy": "2024-02-07T22:09:47.480556Z", - "iopub.status.idle": "2024-02-07T22:09:47.504355Z", - "shell.execute_reply": "2024-02-07T22:09:47.503906Z" + "iopub.execute_input": "2024-02-07T23:50:27.728588Z", + "iopub.status.busy": "2024-02-07T23:50:27.728237Z", + "iopub.status.idle": "2024-02-07T23:50:27.751646Z", + "shell.execute_reply": "2024-02-07T23:50:27.751190Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.506265Z", - "iopub.status.busy": "2024-02-07T22:09:47.506078Z", - "iopub.status.idle": "2024-02-07T22:09:47.520161Z", - "shell.execute_reply": "2024-02-07T22:09:47.519724Z" + "iopub.execute_input": "2024-02-07T23:50:27.753586Z", + "iopub.status.busy": "2024-02-07T23:50:27.753257Z", + "iopub.status.idle": "2024-02-07T23:50:27.767865Z", + "shell.execute_reply": "2024-02-07T23:50:27.767424Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.522067Z", - "iopub.status.busy": "2024-02-07T22:09:47.521889Z", - "iopub.status.idle": "2024-02-07T22:09:49.194798Z", - "shell.execute_reply": "2024-02-07T22:09:49.194164Z" + "iopub.execute_input": "2024-02-07T23:50:27.769928Z", + "iopub.status.busy": "2024-02-07T23:50:27.769614Z", + "iopub.status.idle": "2024-02-07T23:50:29.339727Z", + "shell.execute_reply": "2024-02-07T23:50:29.339121Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.197488Z", - "iopub.status.busy": "2024-02-07T22:09:49.196806Z", - "iopub.status.idle": "2024-02-07T22:09:49.221374Z", - "shell.execute_reply": "2024-02-07T22:09:49.220928Z" + "iopub.execute_input": "2024-02-07T23:50:29.342327Z", + "iopub.status.busy": "2024-02-07T23:50:29.341776Z", + "iopub.status.idle": "2024-02-07T23:50:29.363862Z", + "shell.execute_reply": "2024-02-07T23:50:29.363291Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.223702Z", - "iopub.status.busy": "2024-02-07T22:09:49.223201Z", - "iopub.status.idle": "2024-02-07T22:09:49.241727Z", - "shell.execute_reply": "2024-02-07T22:09:49.241144Z" + "iopub.execute_input": "2024-02-07T23:50:29.365917Z", + "iopub.status.busy": "2024-02-07T23:50:29.365594Z", + "iopub.status.idle": "2024-02-07T23:50:29.383708Z", + "shell.execute_reply": "2024-02-07T23:50:29.383160Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.243746Z", - "iopub.status.busy": "2024-02-07T22:09:49.243416Z", - "iopub.status.idle": "2024-02-07T22:09:49.256057Z", - "shell.execute_reply": "2024-02-07T22:09:49.255592Z" + "iopub.execute_input": "2024-02-07T23:50:29.385827Z", + "iopub.status.busy": "2024-02-07T23:50:29.385426Z", + "iopub.status.idle": "2024-02-07T23:50:29.397799Z", + "shell.execute_reply": "2024-02-07T23:50:29.397365Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.258061Z", - "iopub.status.busy": "2024-02-07T22:09:49.257720Z", - "iopub.status.idle": "2024-02-07T22:09:49.279982Z", - "shell.execute_reply": "2024-02-07T22:09:49.279381Z" + "iopub.execute_input": "2024-02-07T23:50:29.399711Z", + "iopub.status.busy": "2024-02-07T23:50:29.399540Z", + "iopub.status.idle": "2024-02-07T23:50:29.420343Z", + "shell.execute_reply": "2024-02-07T23:50:29.419747Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fde4d4047cc04f52b05c97287dfdab6f", + "model_id": "fc591f1bc33243c09e4539d5f7f93d6e", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.282086Z", - "iopub.status.busy": "2024-02-07T22:09:49.281743Z", - "iopub.status.idle": "2024-02-07T22:09:49.295746Z", - "shell.execute_reply": "2024-02-07T22:09:49.295286Z" + "iopub.execute_input": "2024-02-07T23:50:29.422227Z", + "iopub.status.busy": "2024-02-07T23:50:29.421911Z", + "iopub.status.idle": "2024-02-07T23:50:29.434983Z", + "shell.execute_reply": "2024-02-07T23:50:29.434447Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.297847Z", - "iopub.status.busy": "2024-02-07T22:09:49.297623Z", - "iopub.status.idle": "2024-02-07T22:09:49.303905Z", - "shell.execute_reply": "2024-02-07T22:09:49.303324Z" + "iopub.execute_input": "2024-02-07T23:50:29.437032Z", + "iopub.status.busy": "2024-02-07T23:50:29.436723Z", + "iopub.status.idle": "2024-02-07T23:50:29.442271Z", + "shell.execute_reply": "2024-02-07T23:50:29.441861Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.306143Z", - "iopub.status.busy": "2024-02-07T22:09:49.305836Z", - "iopub.status.idle": "2024-02-07T22:09:49.323660Z", - "shell.execute_reply": "2024-02-07T22:09:49.323089Z" + "iopub.execute_input": "2024-02-07T23:50:29.444286Z", + "iopub.status.busy": "2024-02-07T23:50:29.443974Z", + "iopub.status.idle": "2024-02-07T23:50:29.460426Z", + "shell.execute_reply": "2024-02-07T23:50:29.459872Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2796c1b17ef34cd2924b19c570f1ba19": { + "112602ddf49c4bf785b9bad0c12fe160": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1445,15 +1445,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9fa597efa5d48e59d7f343f74918d9e", + "layout": "IPY_MODEL_6aa4b5d7697a4ed0bc096aa15d54b031", "placeholder": "​", - "style": "IPY_MODEL_bb4f3fe3fa91465da8d8e7461df5ba6e", + "style": "IPY_MODEL_6fa4e74a8cff48f9a59390c7cf9bdc68", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%" } }, - "2821f5f639ba4ffd9334637e6f72a8f6": { + "5a809642ae1c44d1bcb4435dfeba74f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9553827654b745bf83b8b620248421b0", + "placeholder": "​", + "style": "IPY_MODEL_fc883be33a264afa82c5f8909066a0cf", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 11705.53 examples/s]" + } + }, + "6aa4b5d7697a4ed0bc096aa15d54b031": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,56 +1529,41 @@ "width": null } }, - "49bb714cc50743d4ba856e9f230e86d4": { + "6fa4e74a8cff48f9a59390c7cf9bdc68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2821f5f639ba4ffd9334637e6f72a8f6", - "placeholder": "​", - "style": "IPY_MODEL_d96baeb2794b4526b8c5e3e90431ba55", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 10686.54 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8e20c89702ef461daecccbb5da8848ab": { + "8340d103f0ae4a1c9c28c150537d321a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f27d8d03bb7a4b9c80ec66879eba1d42", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_af54435c28a94ad3a9d70db593b5a3e5", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a9fa597efa5d48e59d7f343f74918d9e": { + "8dccc6dba8764969a34bcdd2d2695a48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1608,59 +1616,33 @@ "width": null } }, - "af54435c28a94ad3a9d70db593b5a3e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb4f3fe3fa91465da8d8e7461df5ba6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d96baeb2794b4526b8c5e3e90431ba55": { + "923d794e2ac04e25b34fa7031a457daf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba00a80584da4e25999bd64658097477", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8340d103f0ae4a1c9c28c150537d321a", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "ecad1f34aefc443ca975a3be167d184c": { + "9553827654b745bf83b8b620248421b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1713,7 +1695,7 @@ "width": null } }, - "f27d8d03bb7a4b9c80ec66879eba1d42": { + "ba00a80584da4e25999bd64658097477": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,7 +1748,7 @@ "width": null } }, - "fde4d4047cc04f52b05c97287dfdab6f": { + "fc591f1bc33243c09e4539d5f7f93d6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1781,14 +1763,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2796c1b17ef34cd2924b19c570f1ba19", - "IPY_MODEL_8e20c89702ef461daecccbb5da8848ab", - "IPY_MODEL_49bb714cc50743d4ba856e9f230e86d4" + "IPY_MODEL_112602ddf49c4bf785b9bad0c12fe160", + "IPY_MODEL_923d794e2ac04e25b34fa7031a457daf", + "IPY_MODEL_5a809642ae1c44d1bcb4435dfeba74f1" ], - "layout": "IPY_MODEL_ecad1f34aefc443ca975a3be167d184c", + "layout": "IPY_MODEL_8dccc6dba8764969a34bcdd2d2695a48", "tabbable": null, "tooltip": null } + }, + "fc883be33a264afa82c5f8909066a0cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 27e694d83..38a0df9fa 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:51.944305Z", - "iopub.status.busy": "2024-02-07T22:09:51.943895Z", - "iopub.status.idle": "2024-02-07T22:09:53.035775Z", - "shell.execute_reply": "2024-02-07T22:09:53.035210Z" + "iopub.execute_input": "2024-02-07T23:50:32.050037Z", + "iopub.status.busy": "2024-02-07T23:50:32.049655Z", + "iopub.status.idle": "2024-02-07T23:50:33.121241Z", + "shell.execute_reply": "2024-02-07T23:50:33.120710Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.038346Z", - "iopub.status.busy": "2024-02-07T22:09:53.037927Z", - "iopub.status.idle": "2024-02-07T22:09:53.040885Z", - "shell.execute_reply": "2024-02-07T22:09:53.040446Z" + "iopub.execute_input": "2024-02-07T23:50:33.123591Z", + "iopub.status.busy": "2024-02-07T23:50:33.123252Z", + "iopub.status.idle": "2024-02-07T23:50:33.126067Z", + "shell.execute_reply": "2024-02-07T23:50:33.125643Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.043051Z", - "iopub.status.busy": "2024-02-07T22:09:53.042662Z", - "iopub.status.idle": "2024-02-07T22:09:53.051658Z", - "shell.execute_reply": "2024-02-07T22:09:53.051179Z" + "iopub.execute_input": "2024-02-07T23:50:33.128077Z", + "iopub.status.busy": "2024-02-07T23:50:33.127739Z", + "iopub.status.idle": "2024-02-07T23:50:33.136454Z", + "shell.execute_reply": "2024-02-07T23:50:33.136019Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.053597Z", - "iopub.status.busy": "2024-02-07T22:09:53.053299Z", - "iopub.status.idle": "2024-02-07T22:09:53.058208Z", - "shell.execute_reply": "2024-02-07T22:09:53.057763Z" + "iopub.execute_input": "2024-02-07T23:50:33.138407Z", + "iopub.status.busy": "2024-02-07T23:50:33.138099Z", + "iopub.status.idle": "2024-02-07T23:50:33.142931Z", + "shell.execute_reply": "2024-02-07T23:50:33.142378Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.060288Z", - "iopub.status.busy": "2024-02-07T22:09:53.059980Z", - "iopub.status.idle": "2024-02-07T22:09:53.243898Z", - "shell.execute_reply": "2024-02-07T22:09:53.243265Z" + "iopub.execute_input": "2024-02-07T23:50:33.145229Z", + "iopub.status.busy": "2024-02-07T23:50:33.144779Z", + "iopub.status.idle": "2024-02-07T23:50:33.324549Z", + "shell.execute_reply": "2024-02-07T23:50:33.324005Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.246458Z", - "iopub.status.busy": "2024-02-07T22:09:53.246117Z", - "iopub.status.idle": "2024-02-07T22:09:53.569144Z", - "shell.execute_reply": "2024-02-07T22:09:53.568560Z" + "iopub.execute_input": "2024-02-07T23:50:33.326802Z", + "iopub.status.busy": "2024-02-07T23:50:33.326501Z", + "iopub.status.idle": "2024-02-07T23:50:33.691854Z", + "shell.execute_reply": "2024-02-07T23:50:33.691275Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.571195Z", - "iopub.status.busy": "2024-02-07T22:09:53.571004Z", - "iopub.status.idle": "2024-02-07T22:09:53.573886Z", - "shell.execute_reply": "2024-02-07T22:09:53.573439Z" + "iopub.execute_input": "2024-02-07T23:50:33.693985Z", + "iopub.status.busy": "2024-02-07T23:50:33.693672Z", + "iopub.status.idle": "2024-02-07T23:50:33.696518Z", + "shell.execute_reply": "2024-02-07T23:50:33.695930Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.575899Z", - "iopub.status.busy": "2024-02-07T22:09:53.575585Z", - "iopub.status.idle": "2024-02-07T22:09:53.610611Z", - "shell.execute_reply": "2024-02-07T22:09:53.610139Z" + "iopub.execute_input": "2024-02-07T23:50:33.698376Z", + "iopub.status.busy": "2024-02-07T23:50:33.698197Z", + "iopub.status.idle": "2024-02-07T23:50:33.734067Z", + "shell.execute_reply": "2024-02-07T23:50:33.733496Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.612587Z", - "iopub.status.busy": "2024-02-07T22:09:53.612283Z", - "iopub.status.idle": "2024-02-07T22:09:55.294395Z", - "shell.execute_reply": "2024-02-07T22:09:55.293723Z" + "iopub.execute_input": "2024-02-07T23:50:33.736250Z", + "iopub.status.busy": "2024-02-07T23:50:33.735898Z", + "iopub.status.idle": "2024-02-07T23:50:35.324293Z", + "shell.execute_reply": "2024-02-07T23:50:35.323707Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.297112Z", - "iopub.status.busy": "2024-02-07T22:09:55.296398Z", - "iopub.status.idle": "2024-02-07T22:09:55.312678Z", - "shell.execute_reply": "2024-02-07T22:09:55.312224Z" + "iopub.execute_input": "2024-02-07T23:50:35.326786Z", + "iopub.status.busy": "2024-02-07T23:50:35.326145Z", + "iopub.status.idle": "2024-02-07T23:50:35.342690Z", + "shell.execute_reply": "2024-02-07T23:50:35.342116Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.314716Z", - "iopub.status.busy": "2024-02-07T22:09:55.314404Z", - "iopub.status.idle": "2024-02-07T22:09:55.320693Z", - "shell.execute_reply": "2024-02-07T22:09:55.320168Z" + "iopub.execute_input": "2024-02-07T23:50:35.344850Z", + "iopub.status.busy": "2024-02-07T23:50:35.344539Z", + "iopub.status.idle": "2024-02-07T23:50:35.351268Z", + "shell.execute_reply": "2024-02-07T23:50:35.350723Z" } }, "outputs": [ @@ -941,10 +941,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.322682Z", - "iopub.status.busy": "2024-02-07T22:09:55.322374Z", - "iopub.status.idle": "2024-02-07T22:09:55.327895Z", - "shell.execute_reply": "2024-02-07T22:09:55.327376Z" + "iopub.execute_input": "2024-02-07T23:50:35.353405Z", + "iopub.status.busy": "2024-02-07T23:50:35.353065Z", + "iopub.status.idle": "2024-02-07T23:50:35.358733Z", + "shell.execute_reply": "2024-02-07T23:50:35.358315Z" } }, "outputs": [ @@ -1011,10 +1011,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.329882Z", - "iopub.status.busy": "2024-02-07T22:09:55.329574Z", - "iopub.status.idle": "2024-02-07T22:09:55.338962Z", - "shell.execute_reply": "2024-02-07T22:09:55.338443Z" + "iopub.execute_input": "2024-02-07T23:50:35.360561Z", + "iopub.status.busy": "2024-02-07T23:50:35.360391Z", + "iopub.status.idle": "2024-02-07T23:50:35.370073Z", + "shell.execute_reply": "2024-02-07T23:50:35.369622Z" } }, "outputs": [ @@ -1187,10 +1187,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.341062Z", - "iopub.status.busy": "2024-02-07T22:09:55.340748Z", - "iopub.status.idle": "2024-02-07T22:09:55.349834Z", - "shell.execute_reply": "2024-02-07T22:09:55.349389Z" + "iopub.execute_input": "2024-02-07T23:50:35.372076Z", + "iopub.status.busy": "2024-02-07T23:50:35.371747Z", + "iopub.status.idle": "2024-02-07T23:50:35.380435Z", + "shell.execute_reply": "2024-02-07T23:50:35.380030Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.351812Z", - "iopub.status.busy": "2024-02-07T22:09:55.351492Z", - "iopub.status.idle": "2024-02-07T22:09:55.358215Z", - "shell.execute_reply": "2024-02-07T22:09:55.357777Z" + "iopub.execute_input": "2024-02-07T23:50:35.382354Z", + "iopub.status.busy": "2024-02-07T23:50:35.382064Z", + "iopub.status.idle": "2024-02-07T23:50:35.388711Z", + "shell.execute_reply": "2024-02-07T23:50:35.388189Z" }, "scrolled": true }, @@ -1434,10 +1434,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.360252Z", - "iopub.status.busy": "2024-02-07T22:09:55.359862Z", - "iopub.status.idle": "2024-02-07T22:09:55.368697Z", - "shell.execute_reply": "2024-02-07T22:09:55.368160Z" + "iopub.execute_input": "2024-02-07T23:50:35.390572Z", + "iopub.status.busy": "2024-02-07T23:50:35.390398Z", + "iopub.status.idle": "2024-02-07T23:50:35.399536Z", + "shell.execute_reply": "2024-02-07T23:50:35.399098Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 69da62e85..89256cb69 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:58.185193Z", - "iopub.status.busy": "2024-02-07T22:09:58.185035Z", - "iopub.status.idle": "2024-02-07T22:09:59.240954Z", - "shell.execute_reply": "2024-02-07T22:09:59.240396Z" + "iopub.execute_input": "2024-02-07T23:50:37.883084Z", + "iopub.status.busy": "2024-02-07T23:50:37.882910Z", + "iopub.status.idle": "2024-02-07T23:50:38.892679Z", + "shell.execute_reply": "2024-02-07T23:50:38.892131Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.243686Z", - "iopub.status.busy": "2024-02-07T22:09:59.243159Z", - "iopub.status.idle": "2024-02-07T22:09:59.278797Z", - "shell.execute_reply": "2024-02-07T22:09:59.278254Z" + "iopub.execute_input": "2024-02-07T23:50:38.894943Z", + "iopub.status.busy": "2024-02-07T23:50:38.894684Z", + "iopub.status.idle": "2024-02-07T23:50:38.929710Z", + "shell.execute_reply": "2024-02-07T23:50:38.929146Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.281190Z", - "iopub.status.busy": "2024-02-07T22:09:59.280903Z", - "iopub.status.idle": "2024-02-07T22:09:59.401377Z", - "shell.execute_reply": "2024-02-07T22:09:59.400748Z" + "iopub.execute_input": "2024-02-07T23:50:38.931765Z", + "iopub.status.busy": "2024-02-07T23:50:38.931526Z", + "iopub.status.idle": "2024-02-07T23:50:39.058331Z", + "shell.execute_reply": "2024-02-07T23:50:39.057887Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.403384Z", - "iopub.status.busy": "2024-02-07T22:09:59.403180Z", - "iopub.status.idle": "2024-02-07T22:09:59.407799Z", - "shell.execute_reply": "2024-02-07T22:09:59.407346Z" + "iopub.execute_input": "2024-02-07T23:50:39.060129Z", + "iopub.status.busy": "2024-02-07T23:50:39.059952Z", + "iopub.status.idle": "2024-02-07T23:50:39.064178Z", + "shell.execute_reply": "2024-02-07T23:50:39.063670Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.409634Z", - "iopub.status.busy": "2024-02-07T22:09:59.409460Z", - "iopub.status.idle": "2024-02-07T22:09:59.417606Z", - "shell.execute_reply": "2024-02-07T22:09:59.417193Z" + "iopub.execute_input": "2024-02-07T23:50:39.066362Z", + "iopub.status.busy": "2024-02-07T23:50:39.065950Z", + "iopub.status.idle": "2024-02-07T23:50:39.076608Z", + "shell.execute_reply": "2024-02-07T23:50:39.076042Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.419486Z", - "iopub.status.busy": "2024-02-07T22:09:59.419287Z", - "iopub.status.idle": "2024-02-07T22:09:59.421813Z", - "shell.execute_reply": "2024-02-07T22:09:59.421375Z" + "iopub.execute_input": "2024-02-07T23:50:39.078928Z", + "iopub.status.busy": "2024-02-07T23:50:39.078751Z", + "iopub.status.idle": "2024-02-07T23:50:39.083266Z", + "shell.execute_reply": "2024-02-07T23:50:39.082562Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.423749Z", - "iopub.status.busy": "2024-02-07T22:09:59.423432Z", - "iopub.status.idle": "2024-02-07T22:10:02.368926Z", - "shell.execute_reply": "2024-02-07T22:10:02.368252Z" + "iopub.execute_input": "2024-02-07T23:50:39.086189Z", + "iopub.status.busy": "2024-02-07T23:50:39.085768Z", + "iopub.status.idle": "2024-02-07T23:50:42.065051Z", + "shell.execute_reply": "2024-02-07T23:50:42.064424Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:02.371956Z", - "iopub.status.busy": "2024-02-07T22:10:02.371532Z", - "iopub.status.idle": "2024-02-07T22:10:02.381528Z", - "shell.execute_reply": "2024-02-07T22:10:02.380946Z" + "iopub.execute_input": "2024-02-07T23:50:42.067604Z", + "iopub.status.busy": "2024-02-07T23:50:42.067419Z", + "iopub.status.idle": "2024-02-07T23:50:42.077021Z", + "shell.execute_reply": "2024-02-07T23:50:42.076618Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:02.383882Z", - "iopub.status.busy": "2024-02-07T22:10:02.383431Z", - "iopub.status.idle": "2024-02-07T22:10:04.216983Z", - "shell.execute_reply": "2024-02-07T22:10:04.216362Z" + "iopub.execute_input": "2024-02-07T23:50:42.078892Z", + "iopub.status.busy": "2024-02-07T23:50:42.078719Z", + "iopub.status.idle": "2024-02-07T23:50:43.738703Z", + "shell.execute_reply": "2024-02-07T23:50:43.738023Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.220917Z", - "iopub.status.busy": "2024-02-07T22:10:04.219625Z", - "iopub.status.idle": "2024-02-07T22:10:04.241581Z", - "shell.execute_reply": "2024-02-07T22:10:04.241080Z" + "iopub.execute_input": "2024-02-07T23:50:43.741956Z", + "iopub.status.busy": "2024-02-07T23:50:43.741196Z", + "iopub.status.idle": "2024-02-07T23:50:43.761486Z", + "shell.execute_reply": "2024-02-07T23:50:43.760971Z" }, "scrolled": true }, @@ -604,10 +604,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.245130Z", - "iopub.status.busy": "2024-02-07T22:10:04.244225Z", - "iopub.status.idle": "2024-02-07T22:10:04.255345Z", - "shell.execute_reply": "2024-02-07T22:10:04.254854Z" + "iopub.execute_input": "2024-02-07T23:50:43.764641Z", + "iopub.status.busy": "2024-02-07T23:50:43.763724Z", + "iopub.status.idle": "2024-02-07T23:50:43.774658Z", + "shell.execute_reply": "2024-02-07T23:50:43.774184Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.258823Z", - "iopub.status.busy": "2024-02-07T22:10:04.257919Z", - "iopub.status.idle": "2024-02-07T22:10:04.270597Z", - "shell.execute_reply": "2024-02-07T22:10:04.270094Z" + "iopub.execute_input": "2024-02-07T23:50:43.778049Z", + "iopub.status.busy": "2024-02-07T23:50:43.777135Z", + "iopub.status.idle": "2024-02-07T23:50:43.789631Z", + "shell.execute_reply": "2024-02-07T23:50:43.789124Z" } }, "outputs": [ @@ -843,10 +843,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.274181Z", - "iopub.status.busy": "2024-02-07T22:10:04.273266Z", - "iopub.status.idle": "2024-02-07T22:10:04.284928Z", - "shell.execute_reply": "2024-02-07T22:10:04.284408Z" + "iopub.execute_input": "2024-02-07T23:50:43.793061Z", + "iopub.status.busy": "2024-02-07T23:50:43.792169Z", + "iopub.status.idle": "2024-02-07T23:50:43.803071Z", + "shell.execute_reply": "2024-02-07T23:50:43.802586Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.288692Z", - "iopub.status.busy": "2024-02-07T22:10:04.287752Z", - "iopub.status.idle": "2024-02-07T22:10:04.301331Z", - "shell.execute_reply": "2024-02-07T22:10:04.300828Z" + "iopub.execute_input": "2024-02-07T23:50:43.806458Z", + "iopub.status.busy": "2024-02-07T23:50:43.805573Z", + "iopub.status.idle": "2024-02-07T23:50:43.817839Z", + "shell.execute_reply": "2024-02-07T23:50:43.817365Z" } }, "outputs": [ @@ -1074,10 +1074,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.304987Z", - "iopub.status.busy": "2024-02-07T22:10:04.304078Z", - "iopub.status.idle": "2024-02-07T22:10:04.312203Z", - "shell.execute_reply": "2024-02-07T22:10:04.311804Z" + "iopub.execute_input": "2024-02-07T23:50:43.821198Z", + "iopub.status.busy": "2024-02-07T23:50:43.820286Z", + "iopub.status.idle": "2024-02-07T23:50:43.829526Z", + "shell.execute_reply": "2024-02-07T23:50:43.828987Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.315003Z", - "iopub.status.busy": "2024-02-07T22:10:04.314273Z", - "iopub.status.idle": "2024-02-07T22:10:04.321246Z", - "shell.execute_reply": "2024-02-07T22:10:04.320693Z" + "iopub.execute_input": "2024-02-07T23:50:43.831641Z", + "iopub.status.busy": "2024-02-07T23:50:43.831471Z", + "iopub.status.idle": "2024-02-07T23:50:43.837592Z", + "shell.execute_reply": "2024-02-07T23:50:43.837146Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.323382Z", - "iopub.status.busy": "2024-02-07T22:10:04.323031Z", - "iopub.status.idle": "2024-02-07T22:10:04.329588Z", - "shell.execute_reply": "2024-02-07T22:10:04.328964Z" + "iopub.execute_input": "2024-02-07T23:50:43.839485Z", + "iopub.status.busy": "2024-02-07T23:50:43.839314Z", + "iopub.status.idle": "2024-02-07T23:50:43.845958Z", + "shell.execute_reply": "2024-02-07T23:50:43.845400Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 18dadf034..d297bd27d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:06.947323Z", - "iopub.status.busy": "2024-02-07T22:10:06.947148Z", - "iopub.status.idle": "2024-02-07T22:10:09.939027Z", - "shell.execute_reply": "2024-02-07T22:10:09.938409Z" + "iopub.execute_input": "2024-02-07T23:50:46.233862Z", + "iopub.status.busy": "2024-02-07T23:50:46.233691Z", + "iopub.status.idle": "2024-02-07T23:50:49.479909Z", + "shell.execute_reply": "2024-02-07T23:50:49.479357Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.941621Z", - "iopub.status.busy": "2024-02-07T22:10:09.941215Z", - "iopub.status.idle": "2024-02-07T22:10:09.944579Z", - "shell.execute_reply": "2024-02-07T22:10:09.944140Z" + "iopub.execute_input": "2024-02-07T23:50:49.482307Z", + "iopub.status.busy": "2024-02-07T23:50:49.482016Z", + "iopub.status.idle": "2024-02-07T23:50:49.485135Z", + "shell.execute_reply": "2024-02-07T23:50:49.484703Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.946445Z", - "iopub.status.busy": "2024-02-07T22:10:09.946183Z", - "iopub.status.idle": "2024-02-07T22:10:09.949100Z", - "shell.execute_reply": "2024-02-07T22:10:09.948667Z" + "iopub.execute_input": "2024-02-07T23:50:49.487098Z", + "iopub.status.busy": "2024-02-07T23:50:49.486785Z", + "iopub.status.idle": "2024-02-07T23:50:49.489812Z", + "shell.execute_reply": "2024-02-07T23:50:49.489306Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.951000Z", - "iopub.status.busy": "2024-02-07T22:10:09.950733Z", - "iopub.status.idle": "2024-02-07T22:10:09.991047Z", - "shell.execute_reply": "2024-02-07T22:10:09.990478Z" + "iopub.execute_input": "2024-02-07T23:50:49.491745Z", + "iopub.status.busy": "2024-02-07T23:50:49.491425Z", + "iopub.status.idle": "2024-02-07T23:50:49.528987Z", + "shell.execute_reply": "2024-02-07T23:50:49.528551Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.993279Z", - "iopub.status.busy": "2024-02-07T22:10:09.992913Z", - "iopub.status.idle": "2024-02-07T22:10:09.996608Z", - "shell.execute_reply": "2024-02-07T22:10:09.996099Z" + "iopub.execute_input": "2024-02-07T23:50:49.530871Z", + "iopub.status.busy": "2024-02-07T23:50:49.530546Z", + "iopub.status.idle": "2024-02-07T23:50:49.533966Z", + "shell.execute_reply": "2024-02-07T23:50:49.533472Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.998677Z", - "iopub.status.busy": "2024-02-07T22:10:09.998368Z", - "iopub.status.idle": "2024-02-07T22:10:10.001537Z", - "shell.execute_reply": "2024-02-07T22:10:10.000982Z" + "iopub.execute_input": "2024-02-07T23:50:49.535879Z", + "iopub.status.busy": "2024-02-07T23:50:49.535606Z", + "iopub.status.idle": "2024-02-07T23:50:49.538753Z", + "shell.execute_reply": "2024-02-07T23:50:49.538216Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:10.003570Z", - "iopub.status.busy": "2024-02-07T22:10:10.003251Z", - "iopub.status.idle": "2024-02-07T22:10:14.583265Z", - "shell.execute_reply": "2024-02-07T22:10:14.582629Z" + "iopub.execute_input": "2024-02-07T23:50:49.540840Z", + "iopub.status.busy": "2024-02-07T23:50:49.540442Z", + "iopub.status.idle": "2024-02-07T23:50:53.722382Z", + "shell.execute_reply": "2024-02-07T23:50:53.721737Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0d885c1a34b04b04a65e76462bc7f8ae", + "model_id": "c122193addbf4629b7ada89af7819966", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70b899115926475ab4ca6289cac6f98d", + "model_id": "49733f926f10403491687cd4d40d244f", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "455cdf2910fc4c79acb1d3b1b36f013d", + "model_id": "e83d2ad65dac4e88a3f2ccde21d67f7f", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "617ccbb8f42e4c1da705cc6973aae912", + "model_id": "294346972e994e1c991aae390ff08179", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a965f31be8c34295846ad4a509228998", + "model_id": "9a65587ca1b94945af7dcc0cfc29a026", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c48d71673f824ce380d94b6bc999083a", + "model_id": "8e9d9888450346db8e3954d17cef036f", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4eef59cd705841408e36d8db6510b5db", + "model_id": "2dd173e0deec4bd6bc92ad03b5a7656c", "version_major": 2, "version_minor": 0 }, @@ -521,10 +521,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:14.586075Z", - "iopub.status.busy": "2024-02-07T22:10:14.585631Z", - "iopub.status.idle": "2024-02-07T22:10:15.504919Z", - "shell.execute_reply": "2024-02-07T22:10:15.504346Z" + "iopub.execute_input": "2024-02-07T23:50:53.724982Z", + "iopub.status.busy": "2024-02-07T23:50:53.724780Z", + "iopub.status.idle": "2024-02-07T23:50:54.607508Z", + "shell.execute_reply": "2024-02-07T23:50:54.606933Z" }, "scrolled": true }, @@ -556,10 +556,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:15.507830Z", - "iopub.status.busy": "2024-02-07T22:10:15.507434Z", - "iopub.status.idle": "2024-02-07T22:10:15.510302Z", - "shell.execute_reply": "2024-02-07T22:10:15.509822Z" + "iopub.execute_input": "2024-02-07T23:50:54.610305Z", + "iopub.status.busy": "2024-02-07T23:50:54.609824Z", + "iopub.status.idle": "2024-02-07T23:50:54.612703Z", + "shell.execute_reply": "2024-02-07T23:50:54.612237Z" } }, "outputs": [], @@ -579,10 +579,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:15.513318Z", - "iopub.status.busy": "2024-02-07T22:10:15.512296Z", - "iopub.status.idle": "2024-02-07T22:10:17.066860Z", - "shell.execute_reply": "2024-02-07T22:10:17.066217Z" + "iopub.execute_input": "2024-02-07T23:50:54.614977Z", + "iopub.status.busy": "2024-02-07T23:50:54.614633Z", + "iopub.status.idle": "2024-02-07T23:50:56.087451Z", + "shell.execute_reply": "2024-02-07T23:50:56.086626Z" }, "scrolled": true }, @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.071173Z", - "iopub.status.busy": "2024-02-07T22:10:17.069847Z", - "iopub.status.idle": "2024-02-07T22:10:17.092618Z", - "shell.execute_reply": "2024-02-07T22:10:17.092122Z" + "iopub.execute_input": "2024-02-07T23:50:56.091488Z", + "iopub.status.busy": "2024-02-07T23:50:56.090197Z", + "iopub.status.idle": "2024-02-07T23:50:56.112835Z", + "shell.execute_reply": "2024-02-07T23:50:56.112316Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.096131Z", - "iopub.status.busy": "2024-02-07T22:10:17.095219Z", - "iopub.status.idle": "2024-02-07T22:10:17.106575Z", - "shell.execute_reply": "2024-02-07T22:10:17.106103Z" + "iopub.execute_input": "2024-02-07T23:50:56.116330Z", + "iopub.status.busy": "2024-02-07T23:50:56.115399Z", + "iopub.status.idle": "2024-02-07T23:50:56.126920Z", + "shell.execute_reply": "2024-02-07T23:50:56.126444Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.109988Z", - "iopub.status.busy": "2024-02-07T22:10:17.109076Z", - "iopub.status.idle": "2024-02-07T22:10:17.115450Z", - "shell.execute_reply": "2024-02-07T22:10:17.114951Z" + "iopub.execute_input": "2024-02-07T23:50:56.130383Z", + "iopub.status.busy": "2024-02-07T23:50:56.129483Z", + "iopub.status.idle": "2024-02-07T23:50:56.135890Z", + "shell.execute_reply": "2024-02-07T23:50:56.135397Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.118760Z", - "iopub.status.busy": "2024-02-07T22:10:17.117868Z", - "iopub.status.idle": "2024-02-07T22:10:17.126824Z", - "shell.execute_reply": "2024-02-07T22:10:17.126445Z" + "iopub.execute_input": "2024-02-07T23:50:56.139224Z", + "iopub.status.busy": "2024-02-07T23:50:56.138329Z", + "iopub.status.idle": "2024-02-07T23:50:56.147473Z", + "shell.execute_reply": "2024-02-07T23:50:56.147004Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.128914Z", - "iopub.status.busy": "2024-02-07T22:10:17.128742Z", - "iopub.status.idle": "2024-02-07T22:10:17.136240Z", - "shell.execute_reply": "2024-02-07T22:10:17.135712Z" + "iopub.execute_input": "2024-02-07T23:50:56.149798Z", + "iopub.status.busy": "2024-02-07T23:50:56.149623Z", + "iopub.status.idle": "2024-02-07T23:50:56.156444Z", + "shell.execute_reply": "2024-02-07T23:50:56.155823Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.138165Z", - "iopub.status.busy": "2024-02-07T22:10:17.137995Z", - "iopub.status.idle": "2024-02-07T22:10:17.144520Z", - "shell.execute_reply": "2024-02-07T22:10:17.143902Z" + "iopub.execute_input": "2024-02-07T23:50:56.158506Z", + "iopub.status.busy": "2024-02-07T23:50:56.158330Z", + "iopub.status.idle": "2024-02-07T23:50:56.164895Z", + "shell.execute_reply": "2024-02-07T23:50:56.164300Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.146533Z", - "iopub.status.busy": "2024-02-07T22:10:17.146359Z", - "iopub.status.idle": "2024-02-07T22:10:17.155364Z", - "shell.execute_reply": "2024-02-07T22:10:17.154731Z" + "iopub.execute_input": "2024-02-07T23:50:56.166958Z", + "iopub.status.busy": "2024-02-07T23:50:56.166784Z", + "iopub.status.idle": "2024-02-07T23:50:56.175982Z", + "shell.execute_reply": "2024-02-07T23:50:56.175361Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.157360Z", - "iopub.status.busy": "2024-02-07T22:10:17.157188Z", - "iopub.status.idle": "2024-02-07T22:10:17.162733Z", - "shell.execute_reply": "2024-02-07T22:10:17.162088Z" + "iopub.execute_input": "2024-02-07T23:50:56.178038Z", + "iopub.status.busy": "2024-02-07T23:50:56.177865Z", + "iopub.status.idle": "2024-02-07T23:50:56.183444Z", + "shell.execute_reply": "2024-02-07T23:50:56.182795Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.165077Z", - "iopub.status.busy": "2024-02-07T22:10:17.164903Z", - "iopub.status.idle": "2024-02-07T22:10:17.170197Z", - "shell.execute_reply": "2024-02-07T22:10:17.169559Z" + "iopub.execute_input": "2024-02-07T23:50:56.185842Z", + "iopub.status.busy": "2024-02-07T23:50:56.185452Z", + "iopub.status.idle": "2024-02-07T23:50:56.190683Z", + "shell.execute_reply": "2024-02-07T23:50:56.190168Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.172679Z", - "iopub.status.busy": "2024-02-07T22:10:17.172506Z", - "iopub.status.idle": "2024-02-07T22:10:17.176201Z", - "shell.execute_reply": "2024-02-07T22:10:17.175552Z" + "iopub.execute_input": "2024-02-07T23:50:56.192661Z", + "iopub.status.busy": "2024-02-07T23:50:56.192345Z", + "iopub.status.idle": "2024-02-07T23:50:56.195806Z", + "shell.execute_reply": "2024-02-07T23:50:56.195258Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.178606Z", - "iopub.status.busy": "2024-02-07T22:10:17.178436Z", - "iopub.status.idle": "2024-02-07T22:10:17.183817Z", - "shell.execute_reply": "2024-02-07T22:10:17.183182Z" + "iopub.execute_input": "2024-02-07T23:50:56.197832Z", + "iopub.status.busy": "2024-02-07T23:50:56.197471Z", + "iopub.status.idle": "2024-02-07T23:50:56.202662Z", + "shell.execute_reply": "2024-02-07T23:50:56.202128Z" }, "nbsphinx": "hidden" }, @@ -1598,33 +1598,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06844a7db8a6422892d1acb1093405d3": { + "01a106c335cd4ec5a6a8b14ff1d5ba8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_974ed300109b4bed98388334741d7e20", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74bffb84a6eb4480a26355932844fbf5", + "layout": "IPY_MODEL_96544fa91ef044518cca58cdc8b7e90e", + "placeholder": "​", + "style": "IPY_MODEL_a9f88197d6d3487599e3bcf4cc14437f", "tabbable": null, "tooltip": null, - "value": 29.0 + "value": " 29.0/29.0 [00:00<00:00, 5.39kB/s]" } }, - "0935d34e934d4f82955d4a9dd06e95e1": { + "05ac06cc7d34426a9f564a521b6f5875": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1642,7 +1639,7 @@ "text_color": null } }, - "0a7f8e7552794e84871dff2662ca68c6": { + "081174bba3534f74bb5ef231d4b3fc4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1695,75 +1692,7 @@ "width": null } }, - "0d885c1a34b04b04a65e76462bc7f8ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e0526787ea344759f493ff3f7048f30", - "IPY_MODEL_94ba3436c83b4db9ba81e2bec475edd4", - "IPY_MODEL_e6f2f27575614660a8dd13e1ce1592ed" - ], - "layout": "IPY_MODEL_b830d17a17194985802b41acfc283bc5", - "tabbable": null, - "tooltip": null - } - }, - "0f436aaa0eda485f8feabba1220a17e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12eca47a10834c6395838a954baa15a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9fe06d39c12248debba0ce4f131d1b0c", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3e83a7c1d3504ca0ac014f3ddb23fa79", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "1daa511c5f96480a898ea35b444b1eca": { + "133eddeef7544847977f9757ebacf52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1816,7 +1745,23 @@ "width": null } }, - "22413209abe846cdbe1e339fca65b5d5": { + "1629e90242ff4712bf0774c4d7943ed9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1781eb1973d74e20986b1ac2f47913b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1831,31 +1776,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a7f8e7552794e84871dff2662ca68c6", + "layout": "IPY_MODEL_1972a9b3359a4b1abc2438b34e72ac35", "placeholder": "​", - "style": "IPY_MODEL_dfb7fa9cce6240e6be17ce35ae03b6a2", + "style": "IPY_MODEL_05ac06cc7d34426a9f564a521b6f5875", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "26bf4567f23a4ecdbbb4391039e47a1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "config.json: 100%" } }, - "294f544e4fbc4e68a974452deb9b095e": { + "1972a9b3359a4b1abc2438b34e72ac35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1908,7 +1837,7 @@ "width": null } }, - "2f4f8123d8ba4a888ed11e05b0c87d16": { + "1ac440e00f2e4511bc1a64dc9215f5fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1961,60 +1890,112 @@ "width": null } }, - "2ff3313f83984a09b2354f35ba8b7f57": { - "model_module": "@jupyter-widgets/base", + "283c8b33977b456ebc5a25d251743c83": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55d53572e1964c34bda15161a71f7592", + "placeholder": "​", + "style": "IPY_MODEL_d1ac4d9b3095413592ea9015d4a58175", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 433kB/s]" + } + }, + "294346972e994e1c991aae390ff08179": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a440225dab48494daf0d867e0a062c60", + "IPY_MODEL_533a2a80ff99434fbad2ef63edf9b216", + "IPY_MODEL_5af1c1a5fa7e4b0e87198be81c8c806c" + ], + "layout": "IPY_MODEL_f017d2f580b040638630015c72d627b2", + "tabbable": null, + "tooltip": null + } + }, + "2d4d74efbd824425870cbaf45c10f938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2dd173e0deec4bd6bc92ad03b5a7656c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_664ea7a324e443bbb27801624a919c05", + "IPY_MODEL_7df77100f86c42f59a817321411eb210", + "IPY_MODEL_42e820ce57d64326b13eb2eba7da616e" + ], + "layout": "IPY_MODEL_38d9a775cbf2416481cf86be42b1b571", + "tabbable": null, + "tooltip": null + } + }, + "2dded20223ec437d9b4f0724d519c76b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "340fe62c803045229af00190ee214ca8": { + "2f50043f1a0d4aada1f2ea15e26779a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2032,33 +2013,30 @@ "text_color": null } }, - "34c8f48cf7b3429383912dffe61081f1": { + "365ba1b09e7341489be8464655a555cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e12d0db22792490c99b19e69618087c0", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_828e8f4e5a684ae88f51ea6ae972b36a", + "layout": "IPY_MODEL_133eddeef7544847977f9757ebacf52b", + "placeholder": "​", + "style": "IPY_MODEL_53ae31ba2c0f4559a6bbe11311fa21c8", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 466k/466k [00:00<00:00, 28.7MB/s]" } }, - "36d01d15d38e4c90afc3997820731f1d": { + "36bf4419cfb34b2fb65dc8ca66ddeb57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,33 +2089,60 @@ "width": null } }, - "383aaede23d042d58e21efdc6823b5a8": { - "model_module": "@jupyter-widgets/controls", + "38d9a775cbf2416481cf86be42b1b571": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d4d46c545514392aa8b9666188c2c2f", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44be34defa9b4e3a8116c9c64f985d0f", - "tabbable": null, - "tooltip": null, - "value": 231508.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3e83a7c1d3504ca0ac014f3ddb23fa79": { + "4026be558dc041d182c88249f880078e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2153,7 +2158,7 @@ "description_width": "" } }, - "42466c5944084b1e9b24e6e9a2f21f0e": { + "4033e28a96fa4a59bb9a423171ca614b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2169,57 +2174,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b089b7ff67904e859e08f74eb4462cc5", - "max": 665.0, + "layout": "IPY_MODEL_43918fb3e44743d19d92614011500cf2", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_26bf4567f23a4ecdbbb4391039e47a1f", + "style": "IPY_MODEL_7288265f2e2a4b99ab54e05e23f5f0ae", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 2211.0 } }, - "44be34defa9b4e3a8116c9c64f985d0f": { - "model_module": "@jupyter-widgets/controls", + "40c2452148e54b80ad05abfeb95dab29": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "455cdf2910fc4c79acb1d3b1b36f013d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9cae2bb475d64e8ea6440578d75f46df", - "IPY_MODEL_42466c5944084b1e9b24e6e9a2f21f0e", - "IPY_MODEL_e38d5a36366d4cb4892d529cf4e51cfb" - ], - "layout": "IPY_MODEL_a265a663c76a43e1b927ff469bc5d2b5", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "486557d720934439a49a6e048ca63142": { + "42e820ce57d64326b13eb2eba7da616e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2234,15 +2252,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_294f544e4fbc4e68a974452deb9b095e", + "layout": "IPY_MODEL_bb8fa5d63e7f401ba6dd282294a14d51", "placeholder": "​", - "style": "IPY_MODEL_c105e79c89b848c98c79ea2425e07146", + "style": "IPY_MODEL_2f50043f1a0d4aada1f2ea15e26779a6", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 132MB/s]" + "value": " 232k/232k [00:00<00:00, 37.4MB/s]" } }, - "49d1dca865a4406f9fd081d76b25120f": { + "43918fb3e44743d19d92614011500cf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2295,7 +2313,31 @@ "width": null } }, - "4a73f1657df6418192b8e88b26bfea54": { + "49733f926f10403491687cd4d40d244f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_738a58ca6f7b4db7a157166614a2d23d", + "IPY_MODEL_4033e28a96fa4a59bb9a423171ca614b", + "IPY_MODEL_283c8b33977b456ebc5a25d251743c83" + ], + "layout": "IPY_MODEL_f48d4fa2009642d08bc01e8fe3f7baa2", + "tabbable": null, + "tooltip": null + } + }, + "4c1bc089fe3a44f99d3e97c6aa907ed2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,78 +2390,74 @@ "width": null } }, - "4eef59cd705841408e36d8db6510b5db": { + "4c6d24e1b8e140589b3f7206e752a847": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b56c9e208a93471cafa984931cfab2d1", - "IPY_MODEL_383aaede23d042d58e21efdc6823b5a8", - "IPY_MODEL_6dcc0a68a8624bf5b340aa9c48917f41" - ], - "layout": "IPY_MODEL_1daa511c5f96480a898ea35b444b1eca", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_deef1f9c7c854b4787e1291d7676ccfa", + "placeholder": "​", + "style": "IPY_MODEL_4d174d86825a4659a535d3f67ddd8f91", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "tokenizer.json: 100%" } }, - "5e0526787ea344759f493ff3f7048f30": { + "4d174d86825a4659a535d3f67ddd8f91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f4f8123d8ba4a888ed11e05b0c87d16", - "placeholder": "​", - "style": "IPY_MODEL_7ee455eacbd742bdb254f16dc1e68910", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "617ccbb8f42e4c1da705cc6973aae912": { + "533a2a80ff99434fbad2ef63edf9b216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fb88ef6b95a5461989853ce1b5f754ca", - "IPY_MODEL_8c226dcc1f7e4700bb2b27f77e40f8ac", - "IPY_MODEL_486557d720934439a49a6e048ca63142" - ], - "layout": "IPY_MODEL_bb249cbd8534453ba55520e924c7b81d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60796f28cf154144a6bacad76d5ff446", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1629e90242ff4712bf0774c4d7943ed9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 54245363.0 } }, - "6386e67f246a46c2a8167db4fbd4f50f": { + "5355024e5df14205a7c989138994be48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2472,7 +2510,7 @@ "width": null } }, - "68191e9841cf4fc3ad5084c453808bf6": { + "53ae31ba2c0f4559a6bbe11311fa21c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2490,7 +2528,7 @@ "text_color": null } }, - "6952ddc411c24d5a9250ef2f3f8fc46b": { + "54c548b22f99437abf98203ae4a700a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2506,7 +2544,7 @@ "description_width": "" } }, - "69e2a0e88f5b4789aca076d1397eeef0": { + "55d53572e1964c34bda15161a71f7592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2559,7 +2597,30 @@ "width": null } }, - "6d4d46c545514392aa8b9666188c2c2f": { + "5af1c1a5fa7e4b0e87198be81c8c806c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ac440e00f2e4511bc1a64dc9215f5fc", + "placeholder": "​", + "style": "IPY_MODEL_65e3df94b7524d67b789725d4178ebfa", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 162MB/s]" + } + }, + "5c42af812e744e9b81b5a6a33e0ce2ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2612,189 +2673,7 @@ "width": null } }, - "6dcc0a68a8624bf5b340aa9c48917f41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49d1dca865a4406f9fd081d76b25120f", - "placeholder": "​", - "style": "IPY_MODEL_b1a67674d9034ceea803f59c0cc261a3", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 4.29MB/s]" - } - }, - "70b899115926475ab4ca6289cac6f98d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b70a3bde8ab44d1a383656136a63d06", - "IPY_MODEL_34c8f48cf7b3429383912dffe61081f1", - "IPY_MODEL_c0f2fcd597464233b9df7c82e9338208" - ], - "layout": "IPY_MODEL_f4fb247100d34699900ba0b2436078d6", - "tabbable": null, - "tooltip": null - } - }, - "730e39295f384d38a7809341193721b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "74bffb84a6eb4480a26355932844fbf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b70a3bde8ab44d1a383656136a63d06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f39b17bf56d44a99a5c3bed40eb29a2d", - "placeholder": "​", - "style": "IPY_MODEL_0935d34e934d4f82955d4a9dd06e95e1", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "7ee455eacbd742bdb254f16dc1e68910": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "828e8f4e5a684ae88f51ea6ae972b36a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "858df27692a24f74844cc2329eb49af6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8c226dcc1f7e4700bb2b27f77e40f8ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69e2a0e88f5b4789aca076d1397eeef0", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6952ddc411c24d5a9250ef2f3f8fc46b", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "9021471f58ab4bfd9bbe4dc26b025b17": { + "60796f28cf154144a6bacad76d5ff446": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2847,33 +2726,64 @@ "width": null } }, - "94ba3436c83b4db9ba81e2bec475edd4": { + "65e3df94b7524d67b789725d4178ebfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "663e96ddeae4405e8915682214e5f41c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "664ea7a324e443bbb27801624a919c05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf2ac6ab2e79499ca90d11cfe4224527", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d0d3c86b2cbc491aaa5eb6ab71d264a7", + "layout": "IPY_MODEL_40c2452148e54b80ad05abfeb95dab29", + "placeholder": "​", + "style": "IPY_MODEL_af88cbafd956443186aabd0ff6d2b158", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": "vocab.txt: 100%" } }, - "974ed300109b4bed98388334741d7e20": { + "6f651b05536a4cd9805b0594ac0233a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2926,76 +2836,39 @@ "width": null } }, - "97925e46e7544803bfa9bbd35f277a0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab4a58de1d1647f496edad461715aaa9", - "placeholder": "​", - "style": "IPY_MODEL_858df27692a24f74844cc2329eb49af6", - "tabbable": null, - "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.34kB/s]" - } - }, - "9a60224542464545b7c54c09f1ed9262": { + "708e85be24f2472c9002b8fd7d8ab151": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4a73f1657df6418192b8e88b26bfea54", - "placeholder": "​", - "style": "IPY_MODEL_b311be58b5184dfeb6b02e5beec356df", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9cae2bb475d64e8ea6440578d75f46df": { + "7288265f2e2a4b99ab54e05e23f5f0ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d752ef40d854b17bb45f92da198d00d", - "placeholder": "​", - "style": "IPY_MODEL_68191e9841cf4fc3ad5084c453808bf6", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9d752ef40d854b17bb45f92da198d00d": { + "729140e943504b57ace99650651ea1d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3048,7 +2921,30 @@ "width": null } }, - "9fe06d39c12248debba0ce4f131d1b0c": { + "738a58ca6f7b4db7a157166614a2d23d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f651b05536a4cd9805b0594ac0233a1", + "placeholder": "​", + "style": "IPY_MODEL_ac027eeeec8d46bbb3f5d08bc844df94", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "739c66018de446f48db6b585f8936d11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3101,7 +2997,98 @@ "width": null } }, - "a265a663c76a43e1b927ff469bc5d2b5": { + "78e9ebb162834213bfce2fea8e8fd18d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36bf4419cfb34b2fb65dc8ca66ddeb57", + "placeholder": "​", + "style": "IPY_MODEL_2d4d74efbd824425870cbaf45c10f938", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "7df77100f86c42f59a817321411eb210": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c1bc089fe3a44f99d3e97c6aa907ed2", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_663e96ddeae4405e8915682214e5f41c", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "8e289bbbfd1e4a2b8be1b6c58b2a5b86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e9d9888450346db8e3954d17cef036f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78e9ebb162834213bfce2fea8e8fd18d", + "IPY_MODEL_ffda121f1cd44363b9efc3901ed1f0fa", + "IPY_MODEL_01a106c335cd4ec5a6a8b14ff1d5ba8d" + ], + "layout": "IPY_MODEL_a612dc860dc94c72bb4ab4487f91d8de", + "tabbable": null, + "tooltip": null + } + }, + "96544fa91ef044518cca58cdc8b7e90e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3154,7 +3141,7 @@ "width": null } }, - "a499d7f12838442180a4cbdb3920f920": { + "96b3841f46794027a4931069701de656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3169,15 +3156,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dd7233a7504d445fbd282ff1343a6fe0", + "layout": "IPY_MODEL_739c66018de446f48db6b585f8936d11", "placeholder": "​", - "style": "IPY_MODEL_730e39295f384d38a7809341193721b7", + "style": "IPY_MODEL_8e289bbbfd1e4a2b8be1b6c58b2a5b86", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 12.3MB/s]" + "value": ".gitattributes: 100%" } }, - "a965f31be8c34295846ad4a509228998": { + "9a65587ca1b94945af7dcc0cfc29a026": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3192,16 +3179,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9a60224542464545b7c54c09f1ed9262", - "IPY_MODEL_12eca47a10834c6395838a954baa15a0", - "IPY_MODEL_a499d7f12838442180a4cbdb3920f920" + "IPY_MODEL_4c6d24e1b8e140589b3f7206e752a847", + "IPY_MODEL_a562153720f0466ca6468834694f3b95", + "IPY_MODEL_365ba1b09e7341489be8464655a555cd" ], - "layout": "IPY_MODEL_b9dd625238174ebab9b1a516894b5590", + "layout": "IPY_MODEL_cfea3cab90dc4d4b8e5c12a36c64326f", "tabbable": null, "tooltip": null } }, - "ab4a58de1d1647f496edad461715aaa9": { + "9becc04773b84d3c8fa6a24cadf6f29c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3254,7 +3241,105 @@ "width": null } }, - "aef64cc2ded04950a68d8fe166bf68d5": { + "a1dc17837a20424680ae0627499e3789": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_081174bba3534f74bb5ef231d4b3fc4c", + "placeholder": "​", + "style": "IPY_MODEL_df0b59c454bd43bcadc10fd7b46c1617", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 71.7kB/s]" + } + }, + "a440225dab48494daf0d867e0a062c60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_729140e943504b57ace99650651ea1d9", + "placeholder": "​", + "style": "IPY_MODEL_a71782ebbaae423285c7e0c7cc938aa0", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "a562153720f0466ca6468834694f3b95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eff42f4744924c029089618d6ff32d26", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_708e85be24f2472c9002b8fd7d8ab151", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "a5fe42ca82c4420c820ad748a75d4efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9becc04773b84d3c8fa6a24cadf6f29c", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54c548b22f99437abf98203ae4a700a1", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "a612dc860dc94c72bb4ab4487f91d8de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3307,7 +3392,25 @@ "width": null } }, - "b0431ac60b4b4851a994c3f65b39fe27": { + "a71782ebbaae423285c7e0c7cc938aa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a9f88197d6d3487599e3bcf4cc14437f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3325,7 +3428,7 @@ "text_color": null } }, - "b089b7ff67904e859e08f74eb4462cc5": { + "ab60f70d2fef418893f80a8008c92281": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3378,25 +3481,7 @@ "width": null } }, - "b15b2120b9a64253ad75edebadfd55c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b1a67674d9034ceea803f59c0cc261a3": { + "ac027eeeec8d46bbb3f5d08bc844df94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3414,7 +3499,7 @@ "text_color": null } }, - "b311be58b5184dfeb6b02e5beec356df": { + "af88cbafd956443186aabd0ff6d2b158": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3432,30 +3517,7 @@ "text_color": null } }, - "b56c9e208a93471cafa984931cfab2d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6386e67f246a46c2a8167db4fbd4f50f", - "placeholder": "​", - "style": "IPY_MODEL_0f436aaa0eda485f8feabba1220a17e7", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "b830d17a17194985802b41acfc283bc5": { + "bb8fa5d63e7f401ba6dd282294a14d51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3508,7 +3570,31 @@ "width": null } }, - "b9dd625238174ebab9b1a516894b5590": { + "c122193addbf4629b7ada89af7819966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_96b3841f46794027a4931069701de656", + "IPY_MODEL_a5fe42ca82c4420c820ad748a75d4efd", + "IPY_MODEL_a1dc17837a20424680ae0627499e3789" + ], + "layout": "IPY_MODEL_cb2cf5748533424cba70d5177df7e7bc", + "tabbable": null, + "tooltip": null + } + }, + "cb2cf5748533424cba70d5177df7e7bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3561,7 +3647,7 @@ "width": null } }, - "bb249cbd8534453ba55520e924c7b81d": { + "cfea3cab90dc4d4b8e5c12a36c64326f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3614,30 +3700,25 @@ "width": null } }, - "c0f2fcd597464233b9df7c82e9338208": { + "d160a62e311e44c2a614b54fba944911": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9021471f58ab4bfd9bbe4dc26b025b17", - "placeholder": "​", - "style": "IPY_MODEL_c9f79242d5f9499285306c8816267e3d", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 408kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c105e79c89b848c98c79ea2425e07146": { + "d1ac4d9b3095413592ea9015d4a58175": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3655,49 +3736,56 @@ "text_color": null } }, - "c48d71673f824ce380d94b6bc999083a": { + "d3b4ea42869f406bb1415d13761b16c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_22413209abe846cdbe1e339fca65b5d5", - "IPY_MODEL_06844a7db8a6422892d1acb1093405d3", - "IPY_MODEL_97925e46e7544803bfa9bbd35f277a0f" - ], - "layout": "IPY_MODEL_2ff3313f83984a09b2354f35ba8b7f57", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab60f70d2fef418893f80a8008c92281", + "placeholder": "​", + "style": "IPY_MODEL_d160a62e311e44c2a614b54fba944911", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 665/665 [00:00<00:00, 82.9kB/s]" } }, - "c9f79242d5f9499285306c8816267e3d": { + "dab660c06f0646dfa8fd919ad168088c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c42af812e744e9b81b5a6a33e0ce2ee", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2dded20223ec437d9b4f0724d519c76b", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "cbc42ac422f34e828447b08b2c8086e8": { + "deef1f9c7c854b4787e1291d7676ccfa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3750,76 +3838,49 @@ "width": null } }, - "cf2ac6ab2e79499ca90d11cfe4224527": { - "model_module": "@jupyter-widgets/base", + "df0b59c454bd43bcadc10fd7b46c1617": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0d3c86b2cbc491aaa5eb6ab71d264a7": { + "e83d2ad65dac4e88a3f2ccde21d67f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1781eb1973d74e20986b1ac2f47913b7", + "IPY_MODEL_dab660c06f0646dfa8fd919ad168088c", + "IPY_MODEL_d3b4ea42869f406bb1415d13761b16c6" + ], + "layout": "IPY_MODEL_fe6c1ad7ef28465084828be32acd21c5", + "tabbable": null, + "tooltip": null } }, - "dd7233a7504d445fbd282ff1343a6fe0": { + "eff42f4744924c029089618d6ff32d26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3872,25 +3933,7 @@ "width": null } }, - "dfb7fa9cce6240e6be17ce35ae03b6a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e12d0db22792490c99b19e69618087c0": { + "f017d2f580b040638630015c72d627b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3943,53 +3986,7 @@ "width": null } }, - "e38d5a36366d4cb4892d529cf4e51cfb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aef64cc2ded04950a68d8fe166bf68d5", - "placeholder": "​", - "style": "IPY_MODEL_340fe62c803045229af00190ee214ca8", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" - } - }, - "e6f2f27575614660a8dd13e1ce1592ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_36d01d15d38e4c90afc3997820731f1d", - "placeholder": "​", - "style": "IPY_MODEL_b15b2120b9a64253ad75edebadfd55c6", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.3kB/s]" - } - }, - "f39b17bf56d44a99a5c3bed40eb29a2d": { + "f48d4fa2009642d08bc01e8fe3f7baa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4042,7 +4039,7 @@ "width": null } }, - "f4fb247100d34699900ba0b2436078d6": { + "fe6c1ad7ef28465084828be32acd21c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4095,27 +4092,30 @@ "width": null } }, - "fb88ef6b95a5461989853ce1b5f754ca": { + "ffda121f1cd44363b9efc3901ed1f0fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cbc42ac422f34e828447b08b2c8086e8", - "placeholder": "​", - "style": "IPY_MODEL_b0431ac60b4b4851a994c3f65b39fe27", + "layout": "IPY_MODEL_5355024e5df14205a7c989138994be48", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4026be558dc041d182c88249f880078e", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 29.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 4d4c8909b..a656e6dee 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:20.445577Z", - "iopub.status.busy": "2024-02-07T22:10:20.445400Z", - "iopub.status.idle": "2024-02-07T22:10:21.481005Z", - "shell.execute_reply": "2024-02-07T22:10:21.480362Z" + "iopub.execute_input": "2024-02-07T23:50:59.127525Z", + "iopub.status.busy": "2024-02-07T23:50:59.127102Z", + "iopub.status.idle": "2024-02-07T23:51:00.150396Z", + "shell.execute_reply": "2024-02-07T23:51:00.149892Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:21.483771Z", - "iopub.status.busy": "2024-02-07T22:10:21.483236Z", - "iopub.status.idle": "2024-02-07T22:10:21.486136Z", - "shell.execute_reply": "2024-02-07T22:10:21.485591Z" + "iopub.execute_input": "2024-02-07T23:51:00.153121Z", + "iopub.status.busy": "2024-02-07T23:51:00.152624Z", + "iopub.status.idle": "2024-02-07T23:51:00.155459Z", + "shell.execute_reply": "2024-02-07T23:51:00.154942Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:21.488244Z", - "iopub.status.busy": "2024-02-07T22:10:21.487938Z", - "iopub.status.idle": "2024-02-07T22:10:21.499556Z", - "shell.execute_reply": "2024-02-07T22:10:21.499007Z" + "iopub.execute_input": "2024-02-07T23:51:00.157665Z", + "iopub.status.busy": "2024-02-07T23:51:00.157286Z", + "iopub.status.idle": "2024-02-07T23:51:00.168842Z", + "shell.execute_reply": "2024-02-07T23:51:00.168305Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:21.501697Z", - "iopub.status.busy": "2024-02-07T22:10:21.501285Z", - "iopub.status.idle": "2024-02-07T22:10:25.286494Z", - "shell.execute_reply": "2024-02-07T22:10:25.286003Z" + "iopub.execute_input": "2024-02-07T23:51:00.170850Z", + "iopub.status.busy": "2024-02-07T23:51:00.170540Z", + "iopub.status.idle": "2024-02-07T23:51:03.496922Z", + "shell.execute_reply": "2024-02-07T23:51:03.496339Z" }, "id": "dhTHOg8Pyv5G" }, @@ -692,13 +692,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index a7665e67c..2827a0233 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:27.452546Z", - "iopub.status.busy": "2024-02-07T22:10:27.452375Z", - "iopub.status.idle": "2024-02-07T22:10:28.497741Z", - "shell.execute_reply": "2024-02-07T22:10:28.497182Z" + "iopub.execute_input": "2024-02-07T23:51:05.455012Z", + "iopub.status.busy": "2024-02-07T23:51:05.454838Z", + "iopub.status.idle": "2024-02-07T23:51:06.473290Z", + "shell.execute_reply": "2024-02-07T23:51:06.472687Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:28.500549Z", - "iopub.status.busy": "2024-02-07T22:10:28.500102Z", - "iopub.status.idle": "2024-02-07T22:10:28.503908Z", - "shell.execute_reply": "2024-02-07T22:10:28.503487Z" + "iopub.execute_input": "2024-02-07T23:51:06.476374Z", + "iopub.status.busy": "2024-02-07T23:51:06.476069Z", + "iopub.status.idle": "2024-02-07T23:51:06.480293Z", + "shell.execute_reply": "2024-02-07T23:51:06.479735Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:28.505941Z", - "iopub.status.busy": "2024-02-07T22:10:28.505673Z", - "iopub.status.idle": "2024-02-07T22:10:31.465345Z", - "shell.execute_reply": "2024-02-07T22:10:31.464742Z" + "iopub.execute_input": "2024-02-07T23:51:06.482920Z", + "iopub.status.busy": "2024-02-07T23:51:06.482459Z", + "iopub.status.idle": "2024-02-07T23:51:09.338068Z", + "shell.execute_reply": "2024-02-07T23:51:09.337471Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.468561Z", - "iopub.status.busy": "2024-02-07T22:10:31.467758Z", - "iopub.status.idle": "2024-02-07T22:10:31.504646Z", - "shell.execute_reply": "2024-02-07T22:10:31.504063Z" + "iopub.execute_input": "2024-02-07T23:51:09.340898Z", + "iopub.status.busy": "2024-02-07T23:51:09.340331Z", + "iopub.status.idle": "2024-02-07T23:51:09.370728Z", + "shell.execute_reply": "2024-02-07T23:51:09.370021Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.507191Z", - "iopub.status.busy": "2024-02-07T22:10:31.506891Z", - "iopub.status.idle": "2024-02-07T22:10:31.538074Z", - "shell.execute_reply": "2024-02-07T22:10:31.537474Z" + "iopub.execute_input": "2024-02-07T23:51:09.373389Z", + "iopub.status.busy": "2024-02-07T23:51:09.373025Z", + "iopub.status.idle": "2024-02-07T23:51:09.401579Z", + "shell.execute_reply": "2024-02-07T23:51:09.400876Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.540560Z", - "iopub.status.busy": "2024-02-07T22:10:31.540268Z", - "iopub.status.idle": "2024-02-07T22:10:31.543180Z", - "shell.execute_reply": "2024-02-07T22:10:31.542750Z" + "iopub.execute_input": "2024-02-07T23:51:09.404372Z", + "iopub.status.busy": "2024-02-07T23:51:09.403951Z", + "iopub.status.idle": "2024-02-07T23:51:09.407421Z", + "shell.execute_reply": "2024-02-07T23:51:09.407008Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.545134Z", - "iopub.status.busy": "2024-02-07T22:10:31.544882Z", - "iopub.status.idle": "2024-02-07T22:10:31.547427Z", - "shell.execute_reply": "2024-02-07T22:10:31.546973Z" + "iopub.execute_input": "2024-02-07T23:51:09.409324Z", + "iopub.status.busy": "2024-02-07T23:51:09.409015Z", + "iopub.status.idle": "2024-02-07T23:51:09.411602Z", + "shell.execute_reply": "2024-02-07T23:51:09.411146Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.549452Z", - "iopub.status.busy": "2024-02-07T22:10:31.549197Z", - "iopub.status.idle": "2024-02-07T22:10:31.571926Z", - "shell.execute_reply": "2024-02-07T22:10:31.571367Z" + "iopub.execute_input": "2024-02-07T23:51:09.413787Z", + "iopub.status.busy": "2024-02-07T23:51:09.413391Z", + "iopub.status.idle": "2024-02-07T23:51:09.438151Z", + "shell.execute_reply": "2024-02-07T23:51:09.437621Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c25091c0e304b75a635d082e4c6a8ae", + "model_id": "1f0a59e748704a83935f5135d15c1d2b", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "05cb13f0b3d24b2c80ccb203c55bfb3a", + "model_id": "13ee7841383649f8b84f5a090929a0f2", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.579230Z", - "iopub.status.busy": "2024-02-07T22:10:31.578965Z", - "iopub.status.idle": "2024-02-07T22:10:31.585408Z", - "shell.execute_reply": "2024-02-07T22:10:31.584997Z" + "iopub.execute_input": "2024-02-07T23:51:09.443984Z", + "iopub.status.busy": "2024-02-07T23:51:09.443652Z", + "iopub.status.idle": "2024-02-07T23:51:09.449921Z", + "shell.execute_reply": "2024-02-07T23:51:09.449510Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.587392Z", - "iopub.status.busy": "2024-02-07T22:10:31.587038Z", - "iopub.status.idle": "2024-02-07T22:10:31.590434Z", - "shell.execute_reply": "2024-02-07T22:10:31.589989Z" + "iopub.execute_input": "2024-02-07T23:51:09.451774Z", + "iopub.status.busy": "2024-02-07T23:51:09.451528Z", + "iopub.status.idle": "2024-02-07T23:51:09.454944Z", + "shell.execute_reply": "2024-02-07T23:51:09.454496Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.592502Z", - "iopub.status.busy": "2024-02-07T22:10:31.592174Z", - "iopub.status.idle": "2024-02-07T22:10:31.598237Z", - "shell.execute_reply": "2024-02-07T22:10:31.597809Z" + "iopub.execute_input": "2024-02-07T23:51:09.456868Z", + "iopub.status.busy": "2024-02-07T23:51:09.456584Z", + "iopub.status.idle": "2024-02-07T23:51:09.462775Z", + "shell.execute_reply": "2024-02-07T23:51:09.462226Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.600071Z", - "iopub.status.busy": "2024-02-07T22:10:31.599903Z", - "iopub.status.idle": "2024-02-07T22:10:31.635926Z", - "shell.execute_reply": "2024-02-07T22:10:31.635199Z" + "iopub.execute_input": "2024-02-07T23:51:09.464784Z", + "iopub.status.busy": "2024-02-07T23:51:09.464418Z", + "iopub.status.idle": "2024-02-07T23:51:09.496417Z", + "shell.execute_reply": "2024-02-07T23:51:09.495700Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.638662Z", - "iopub.status.busy": "2024-02-07T22:10:31.638298Z", - "iopub.status.idle": "2024-02-07T22:10:31.672896Z", - "shell.execute_reply": "2024-02-07T22:10:31.672308Z" + "iopub.execute_input": "2024-02-07T23:51:09.498767Z", + "iopub.status.busy": "2024-02-07T23:51:09.498552Z", + "iopub.status.idle": "2024-02-07T23:51:09.526519Z", + "shell.execute_reply": "2024-02-07T23:51:09.525829Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.675572Z", - "iopub.status.busy": "2024-02-07T22:10:31.675187Z", - "iopub.status.idle": "2024-02-07T22:10:31.803427Z", - "shell.execute_reply": "2024-02-07T22:10:31.802840Z" + "iopub.execute_input": "2024-02-07T23:51:09.529394Z", + "iopub.status.busy": "2024-02-07T23:51:09.528909Z", + "iopub.status.idle": "2024-02-07T23:51:09.651328Z", + "shell.execute_reply": "2024-02-07T23:51:09.650790Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.806059Z", - "iopub.status.busy": "2024-02-07T22:10:31.805418Z", - "iopub.status.idle": "2024-02-07T22:10:34.901493Z", - "shell.execute_reply": "2024-02-07T22:10:34.900838Z" + "iopub.execute_input": "2024-02-07T23:51:09.654079Z", + "iopub.status.busy": "2024-02-07T23:51:09.653293Z", + "iopub.status.idle": "2024-02-07T23:51:12.638133Z", + "shell.execute_reply": "2024-02-07T23:51:12.637512Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:34.903881Z", - "iopub.status.busy": "2024-02-07T22:10:34.903524Z", - "iopub.status.idle": "2024-02-07T22:10:34.961241Z", - "shell.execute_reply": "2024-02-07T22:10:34.960728Z" + "iopub.execute_input": "2024-02-07T23:51:12.640414Z", + "iopub.status.busy": "2024-02-07T23:51:12.640232Z", + "iopub.status.idle": "2024-02-07T23:51:12.700289Z", + "shell.execute_reply": "2024-02-07T23:51:12.699728Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "fc603ddf", + "id": "ce26211e", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "3eef2541", + "id": "b06d92f4", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "bee6fe2a", + "id": "ea762ae8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:34.963472Z", - "iopub.status.busy": "2024-02-07T22:10:34.963133Z", - "iopub.status.idle": "2024-02-07T22:10:35.059654Z", - "shell.execute_reply": "2024-02-07T22:10:35.059063Z" + "iopub.execute_input": "2024-02-07T23:51:12.702418Z", + "iopub.status.busy": "2024-02-07T23:51:12.702105Z", + "iopub.status.idle": "2024-02-07T23:51:12.780616Z", + "shell.execute_reply": "2024-02-07T23:51:12.780126Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "bb0353d1", + "id": "ef415656", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "40fe9448", + "id": "01a67f53", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.062203Z", - "iopub.status.busy": "2024-02-07T22:10:35.061944Z", - "iopub.status.idle": "2024-02-07T22:10:35.130321Z", - "shell.execute_reply": "2024-02-07T22:10:35.129748Z" + "iopub.execute_input": "2024-02-07T23:51:12.783162Z", + "iopub.status.busy": "2024-02-07T23:51:12.782885Z", + "iopub.status.idle": "2024-02-07T23:51:12.844744Z", + "shell.execute_reply": "2024-02-07T23:51:12.844293Z" } }, "outputs": [ @@ -1297,7 +1297,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1325,7 +1332,7 @@ }, { "cell_type": "markdown", - "id": "f3c05afd", + "id": "01300d0b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1343,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "f74e26fd", + "id": "cc35bf44", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.132892Z", - "iopub.status.busy": "2024-02-07T22:10:35.132688Z", - "iopub.status.idle": "2024-02-07T22:10:35.142277Z", - "shell.execute_reply": "2024-02-07T22:10:35.141716Z" + "iopub.execute_input": "2024-02-07T23:51:12.847304Z", + "iopub.status.busy": "2024-02-07T23:51:12.847003Z", + "iopub.status.idle": "2024-02-07T23:51:12.864134Z", + "shell.execute_reply": "2024-02-07T23:51:12.863661Z" } }, "outputs": [], @@ -1444,7 +1451,7 @@ }, { "cell_type": "markdown", - "id": "1909cd9a", + "id": "3e6233f1", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1466,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "f4adae44", + "id": "dfdf91ae", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.144450Z", - "iopub.status.busy": "2024-02-07T22:10:35.144137Z", - "iopub.status.idle": "2024-02-07T22:10:35.163091Z", - "shell.execute_reply": "2024-02-07T22:10:35.162505Z" + "iopub.execute_input": "2024-02-07T23:51:12.866623Z", + "iopub.status.busy": "2024-02-07T23:51:12.866327Z", + "iopub.status.idle": "2024-02-07T23:51:12.886313Z", + "shell.execute_reply": "2024-02-07T23:51:12.885931Z" } }, "outputs": [ @@ -1482,7 +1489,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6061/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_5828/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1523,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "27025c00", + "id": "ec960a88", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.165075Z", - "iopub.status.busy": "2024-02-07T22:10:35.164775Z", - "iopub.status.idle": "2024-02-07T22:10:35.167916Z", - "shell.execute_reply": "2024-02-07T22:10:35.167398Z" + "iopub.execute_input": "2024-02-07T23:51:12.888153Z", + "iopub.status.busy": "2024-02-07T23:51:12.887892Z", + "iopub.status.idle": "2024-02-07T23:51:12.890674Z", + "shell.execute_reply": "2024-02-07T23:51:12.890305Z" } }, "outputs": [ @@ -1617,7 +1624,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05cb13f0b3d24b2c80ccb203c55bfb3a": { + "109440f4ecdb45e48bd5dfb4e921937f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "13ee7841383649f8b84f5a090929a0f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1632,16 +1655,93 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d25a1b4311564103b234c326b27f756d", - "IPY_MODEL_359df53dc8a745b0b4af77e7d5baa3d6", - "IPY_MODEL_2122bb3f9c314e79921caaf0ec520ced" + "IPY_MODEL_be264bec58f14b0baef628c118c9cb1c", + "IPY_MODEL_6bca8cbd5c784882be9b9ba1fb9ff9e8", + "IPY_MODEL_f7c08bebb30b4363b6071b0a91d776b5" ], - "layout": "IPY_MODEL_7a95ca857d02446596ff4b15e78f5474", + "layout": "IPY_MODEL_bc75ced40cce43a4a6c803441a092a23", "tabbable": null, "tooltip": null } }, - "07ad650e025e41db8a3a7f9d4903f4ab": { + "1f0a59e748704a83935f5135d15c1d2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e22079120aae4d4fbc3f623f7733332a", + "IPY_MODEL_7b3ab139d2d44ce09eacb3aed869a342", + "IPY_MODEL_f5b644426ae0412cbd5e3e574cbd2d2a" + ], + "layout": "IPY_MODEL_c104b9ca8f874df9b5176bc9dedbe1f2", + "tabbable": null, + "tooltip": null + } + }, + "26508857376d41e9a2a595519cc0e230": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "272500523da24571b2cba2f8ee1e5d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1694,7 +1794,7 @@ "width": null } }, - "0c1387d046e4406c9665c4bd481ca0bd": { + "3e2781d1b9ac498482800cefb6007621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1712,7 +1812,7 @@ "text_color": null } }, - "1de8c5ce9b044defa2fb6bba7b845f1d": { + "439705e7fbd747aa945a4286336cfeb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1765,54 +1865,33 @@ "width": null } }, - "2122bb3f9c314e79921caaf0ec520ced": { + "6bca8cbd5c784882be9b9ba1fb9ff9e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6e74a6135da64a6da9bff7774b1a3023", - "placeholder": "​", - "style": "IPY_MODEL_30857eeb9f4f4a9d9a4b6703ef52f007", + "layout": "IPY_MODEL_e14323e673094de292c5bcd867946d3e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9aad290993434b079a25a5cfae233e5a", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1904510.74it/s]" - } - }, - "2c25091c0e304b75a635d082e4c6a8ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_383d59cddf1044128cd6c9a36ef421b6", - "IPY_MODEL_4368ff0861b64772b1c876ce3677f85f", - "IPY_MODEL_44ce408123ef4dfa9f0ccb0b61d47dff" - ], - "layout": "IPY_MODEL_2f6d1355674b4154958d3f9fdc5c65d0", - "tabbable": null, - "tooltip": null + "value": 50.0 } }, - "2f6d1355674b4154958d3f9fdc5c65d0": { + "712d2f7be4a74b05a8620096c3529e53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1865,25 +1944,7 @@ "width": null } }, - "30857eeb9f4f4a9d9a4b6703ef52f007": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "359df53dc8a745b0b4af77e7d5baa3d6": { + "7b3ab139d2d44ce09eacb3aed869a342": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1899,40 +1960,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fde2b7ca73b8420dade7126a99c0db5b", + "layout": "IPY_MODEL_272500523da24571b2cba2f8ee1e5d82", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7348613891c541cdbedd0e8a595dfd07", + "style": "IPY_MODEL_109440f4ecdb45e48bd5dfb4e921937f", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "383d59cddf1044128cd6c9a36ef421b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07ad650e025e41db8a3a7f9d4903f4ab", - "placeholder": "​", - "style": "IPY_MODEL_bb33dbfe81ad4ab2838ae1c597cc118b", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "3e5b1ebb362940059efebecf082eab76": { + "7fb415c1e4af4299ae1ec87c915c9c4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1950,56 +1988,41 @@ "text_color": null } }, - "4368ff0861b64772b1c876ce3677f85f": { + "8f017318a7174e83bde2637e28023b69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1de8c5ce9b044defa2fb6bba7b845f1d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a7e694329b5941728726ce57f56210a9", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "44ce408123ef4dfa9f0ccb0b61d47dff": { + "9aad290993434b079a25a5cfae233e5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a78e0b16929d430bacf6a958a9660d4b", - "placeholder": "​", - "style": "IPY_MODEL_3e5b1ebb362940059efebecf082eab76", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1087339.66it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6e74a6135da64a6da9bff7774b1a3023": { + "a46f0c56a05b46db92524f027cd1a3f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2052,23 +2075,7 @@ "width": null } }, - "7348613891c541cdbedd0e8a595dfd07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a95ca857d02446596ff4b15e78f5474": { + "bc75ced40cce43a4a6c803441a092a23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2121,7 +2128,30 @@ "width": null } }, - "85cc0795390d430dba7bd02f2fc01dd2": { + "be264bec58f14b0baef628c118c9cb1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_26508857376d41e9a2a595519cc0e230", + "placeholder": "​", + "style": "IPY_MODEL_7fb415c1e4af4299ae1ec87c915c9c4a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "c104b9ca8f874df9b5176bc9dedbe1f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2174,7 +2204,7 @@ "width": null } }, - "a78e0b16929d430bacf6a958a9660d4b": { + "e14323e673094de292c5bcd867946d3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2227,23 +2257,53 @@ "width": null } }, - "a7e694329b5941728726ce57f56210a9": { + "e22079120aae4d4fbc3f623f7733332a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_712d2f7be4a74b05a8620096c3529e53", + "placeholder": "​", + "style": "IPY_MODEL_8f017318a7174e83bde2637e28023b69", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "bb33dbfe81ad4ab2838ae1c597cc118b": { + "f5b644426ae0412cbd5e3e574cbd2d2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a46f0c56a05b46db92524f027cd1a3f4", + "placeholder": "​", + "style": "IPY_MODEL_f62417094f504253a9df11954097f238", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1096550.07it/s]" + } + }, + "f62417094f504253a9df11954097f238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2261,7 +2321,7 @@ "text_color": null } }, - "d25a1b4311564103b234c326b27f756d": { + "f7c08bebb30b4363b6071b0a91d776b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2276,65 +2336,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_85cc0795390d430dba7bd02f2fc01dd2", + "layout": "IPY_MODEL_439705e7fbd747aa945a4286336cfeb9", "placeholder": "​", - "style": "IPY_MODEL_0c1387d046e4406c9665c4bd481ca0bd", + "style": "IPY_MODEL_3e2781d1b9ac498482800cefb6007621", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "fde2b7ca73b8420dade7126a99c0db5b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 10000/? [00:00<00:00, 1373335.52it/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index 1ddbcfb2b..b5eaf0560 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:38.419113Z", - "iopub.status.busy": "2024-02-07T22:10:38.418945Z", - "iopub.status.idle": "2024-02-07T22:10:41.179916Z", - "shell.execute_reply": "2024-02-07T22:10:41.179338Z" + "iopub.execute_input": "2024-02-07T23:51:15.881810Z", + "iopub.status.busy": "2024-02-07T23:51:15.881636Z", + "iopub.status.idle": "2024-02-07T23:51:18.606850Z", + "shell.execute_reply": "2024-02-07T23:51:18.606230Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:41.182330Z", - "iopub.status.busy": "2024-02-07T22:10:41.182041Z", - "iopub.status.idle": "2024-02-07T22:10:41.185719Z", - "shell.execute_reply": "2024-02-07T22:10:41.185287Z" + "iopub.execute_input": "2024-02-07T23:51:18.609445Z", + "iopub.status.busy": "2024-02-07T23:51:18.609155Z", + "iopub.status.idle": "2024-02-07T23:51:18.612709Z", + "shell.execute_reply": "2024-02-07T23:51:18.612173Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:41.187549Z", - "iopub.status.busy": "2024-02-07T22:10:41.187370Z", - "iopub.status.idle": "2024-02-07T22:10:43.573339Z", - "shell.execute_reply": "2024-02-07T22:10:43.572876Z" + "iopub.execute_input": "2024-02-07T23:51:18.614784Z", + "iopub.status.busy": "2024-02-07T23:51:18.614359Z", + "iopub.status.idle": "2024-02-07T23:51:20.434279Z", + "shell.execute_reply": "2024-02-07T23:51:20.433763Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "150b7b9c86184b3a81ec2e9d2c4862a1", + "model_id": "7fc3c32bcf1148368c0a1dd69f0726fc", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1075a3bfa6094847a1f22a2a826545d8", + "model_id": "33e6bf1a962241b9965f57093ccfbea2", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "67691e10a0ac4a259f3747a827b350d5", + "model_id": "8488030d7afb4e4c95288794d76c2b48", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f297df970eaa40368e0d02896d28f3b8", + "model_id": "75399c16f9a9462ab14c8fc2e9c2b817", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:43.575644Z", - "iopub.status.busy": "2024-02-07T22:10:43.575289Z", - "iopub.status.idle": "2024-02-07T22:10:43.579073Z", - "shell.execute_reply": "2024-02-07T22:10:43.578518Z" + "iopub.execute_input": "2024-02-07T23:51:20.436485Z", + "iopub.status.busy": "2024-02-07T23:51:20.436157Z", + "iopub.status.idle": "2024-02-07T23:51:20.440017Z", + "shell.execute_reply": "2024-02-07T23:51:20.439436Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:43.581168Z", - "iopub.status.busy": "2024-02-07T22:10:43.580868Z", - "iopub.status.idle": "2024-02-07T22:10:54.969790Z", - "shell.execute_reply": "2024-02-07T22:10:54.969260Z" + "iopub.execute_input": "2024-02-07T23:51:20.442272Z", + "iopub.status.busy": "2024-02-07T23:51:20.441887Z", + "iopub.status.idle": "2024-02-07T23:51:31.626856Z", + "shell.execute_reply": "2024-02-07T23:51:31.626349Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5b393b5be18c4614bbbe5748904485e6", + "model_id": "def052e51c5d4bc1b365fb7a46f00d5e", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:54.972318Z", - "iopub.status.busy": "2024-02-07T22:10:54.972030Z", - "iopub.status.idle": "2024-02-07T22:11:13.025094Z", - "shell.execute_reply": "2024-02-07T22:11:13.024547Z" + "iopub.execute_input": "2024-02-07T23:51:31.629265Z", + "iopub.status.busy": "2024-02-07T23:51:31.628926Z", + "iopub.status.idle": "2024-02-07T23:51:49.868014Z", + "shell.execute_reply": "2024-02-07T23:51:49.867458Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.027702Z", - "iopub.status.busy": "2024-02-07T22:11:13.027309Z", - "iopub.status.idle": "2024-02-07T22:11:13.033230Z", - "shell.execute_reply": "2024-02-07T22:11:13.032780Z" + "iopub.execute_input": "2024-02-07T23:51:49.870696Z", + "iopub.status.busy": "2024-02-07T23:51:49.870322Z", + "iopub.status.idle": "2024-02-07T23:51:49.876254Z", + "shell.execute_reply": "2024-02-07T23:51:49.875791Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.035125Z", - "iopub.status.busy": "2024-02-07T22:11:13.034795Z", - "iopub.status.idle": "2024-02-07T22:11:13.038441Z", - "shell.execute_reply": "2024-02-07T22:11:13.038047Z" + "iopub.execute_input": "2024-02-07T23:51:49.878157Z", + "iopub.status.busy": "2024-02-07T23:51:49.877790Z", + "iopub.status.idle": "2024-02-07T23:51:49.881768Z", + "shell.execute_reply": "2024-02-07T23:51:49.881250Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.040408Z", - "iopub.status.busy": "2024-02-07T22:11:13.040096Z", - "iopub.status.idle": "2024-02-07T22:11:13.048723Z", - "shell.execute_reply": "2024-02-07T22:11:13.048299Z" + "iopub.execute_input": "2024-02-07T23:51:49.883955Z", + "iopub.status.busy": "2024-02-07T23:51:49.883621Z", + "iopub.status.idle": "2024-02-07T23:51:49.892194Z", + "shell.execute_reply": "2024-02-07T23:51:49.891730Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.050685Z", - "iopub.status.busy": "2024-02-07T22:11:13.050442Z", - "iopub.status.idle": "2024-02-07T22:11:13.077420Z", - "shell.execute_reply": "2024-02-07T22:11:13.076808Z" + "iopub.execute_input": "2024-02-07T23:51:49.894038Z", + "iopub.status.busy": "2024-02-07T23:51:49.893778Z", + "iopub.status.idle": "2024-02-07T23:51:49.921230Z", + "shell.execute_reply": "2024-02-07T23:51:49.920805Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.079978Z", - "iopub.status.busy": "2024-02-07T22:11:13.079643Z", - "iopub.status.idle": "2024-02-07T22:11:45.583620Z", - "shell.execute_reply": "2024-02-07T22:11:45.582818Z" + "iopub.execute_input": "2024-02-07T23:51:49.923139Z", + "iopub.status.busy": "2024-02-07T23:51:49.922820Z", + "iopub.status.idle": "2024-02-07T23:52:21.122766Z", + "shell.execute_reply": "2024-02-07T23:52:21.122031Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.872\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.643\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.584\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.435\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:03, 9.78it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.80it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 43.59it/s]" + " 20%|██ | 8/40 [00:00<00:00, 43.66it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 50.24it/s]" + " 40%|████ | 16/40 [00:00<00:00, 56.74it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 57.40it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.69it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 62.55it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 60.95it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 67.66it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 66.20it/s]" ] }, { @@ -798,7 +798,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 58.42it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.00it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.32it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.73it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.31it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.56it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 50.04it/s]" + " 40%|████ | 16/40 [00:00<00:00, 54.76it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 56.70it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.82it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 59.22it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 63.79it/s]" ] }, { @@ -868,7 +868,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 64.79it/s]" + "100%|██████████| 40/40 [00:00<00:00, 72.02it/s]" ] }, { @@ -876,7 +876,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 57.42it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.94it/s]" ] }, { @@ -898,14 +898,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.878\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.627\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.623\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.443\n", "Computing feature embeddings ...\n" ] }, @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.28it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.30it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 44.67it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.01it/s]" + " 40%|████ | 16/40 [00:00<00:00, 55.44it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 57.99it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.58it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 62.69it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 62.31it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 68.86it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.83it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.41it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.72it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.65it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.61it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.54it/s]" + " 40%|████ | 16/40 [00:00<00:00, 56.92it/s]" ] }, { @@ -1024,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 60.86it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.96it/s]" ] }, { @@ -1032,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 63.94it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 63.65it/s]" ] }, { @@ -1040,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 71.59it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 68.19it/s]" ] }, { @@ -1048,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.49it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.54it/s]" ] }, { @@ -1070,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.760\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.622\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.601\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.436\n", "Computing feature embeddings ...\n" ] }, @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.61it/s]" + " 5%|▌ | 2/40 [00:00<00:01, 19.37it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.78it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.94it/s]" ] }, { @@ -1110,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 49.03it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.02it/s]" ] }, { @@ -1118,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 56.57it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.18it/s]" ] }, { @@ -1126,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 57.37it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 64.86it/s]" ] }, { @@ -1134,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 63.22it/s]" + "100%|██████████| 40/40 [00:00<00:00, 72.97it/s]" ] }, { @@ -1142,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 56.87it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.50it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.04it/s]" ] }, { @@ -1180,7 +1180,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.39it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 46.80it/s]" ] }, { @@ -1188,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 52.21it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 55.65it/s]" ] }, { @@ -1196,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 52.17it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 60.53it/s]" ] }, { @@ -1204,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 28/40 [00:00<00:00, 58.08it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 64.95it/s]" ] }, { @@ -1212,15 +1212,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 60.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 54.75it/s]" + "100%|██████████| 40/40 [00:00<00:00, 61.46it/s]" ] }, { @@ -1297,10 +1289,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:45.585975Z", - "iopub.status.busy": "2024-02-07T22:11:45.585741Z", - "iopub.status.idle": "2024-02-07T22:11:45.600179Z", - "shell.execute_reply": "2024-02-07T22:11:45.599732Z" + "iopub.execute_input": "2024-02-07T23:52:21.125104Z", + "iopub.status.busy": "2024-02-07T23:52:21.124865Z", + "iopub.status.idle": "2024-02-07T23:52:21.140126Z", + "shell.execute_reply": "2024-02-07T23:52:21.139559Z" } }, "outputs": [], @@ -1325,10 +1317,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:45.602241Z", - "iopub.status.busy": "2024-02-07T22:11:45.601991Z", - "iopub.status.idle": "2024-02-07T22:11:46.071339Z", - "shell.execute_reply": "2024-02-07T22:11:46.070732Z" + "iopub.execute_input": "2024-02-07T23:52:21.142411Z", + "iopub.status.busy": "2024-02-07T23:52:21.142029Z", + "iopub.status.idle": "2024-02-07T23:52:21.586244Z", + "shell.execute_reply": "2024-02-07T23:52:21.585702Z" } }, "outputs": [], @@ -1348,10 +1340,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:46.073789Z", - "iopub.status.busy": "2024-02-07T22:11:46.073607Z", - "iopub.status.idle": "2024-02-07T22:15:13.726179Z", - "shell.execute_reply": "2024-02-07T22:15:13.725548Z" + "iopub.execute_input": "2024-02-07T23:52:21.588565Z", + "iopub.status.busy": "2024-02-07T23:52:21.588385Z", + "iopub.status.idle": "2024-02-07T23:55:46.523357Z", + "shell.execute_reply": "2024-02-07T23:55:46.522791Z" } }, "outputs": [ @@ -1390,7 +1382,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "06bcff0001014bfb950d1828761c0eaa", + "model_id": "15a700e2959f45d9bc818012a4ac35cf", "version_major": 2, "version_minor": 0 }, @@ -1429,10 +1421,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:13.728842Z", - "iopub.status.busy": "2024-02-07T22:15:13.728169Z", - "iopub.status.idle": "2024-02-07T22:15:14.183497Z", - "shell.execute_reply": "2024-02-07T22:15:14.182926Z" + "iopub.execute_input": "2024-02-07T23:55:46.525817Z", + "iopub.status.busy": "2024-02-07T23:55:46.525191Z", + "iopub.status.idle": "2024-02-07T23:55:46.967520Z", + "shell.execute_reply": "2024-02-07T23:55:46.966995Z" } }, "outputs": [ @@ -1580,10 +1572,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.186298Z", - "iopub.status.busy": "2024-02-07T22:15:14.185789Z", - "iopub.status.idle": "2024-02-07T22:15:14.247703Z", - "shell.execute_reply": "2024-02-07T22:15:14.247163Z" + "iopub.execute_input": "2024-02-07T23:55:46.970176Z", + "iopub.status.busy": "2024-02-07T23:55:46.969807Z", + "iopub.status.idle": "2024-02-07T23:55:47.030546Z", + "shell.execute_reply": "2024-02-07T23:55:47.029858Z" } }, "outputs": [ @@ -1687,10 +1679,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.249928Z", - "iopub.status.busy": "2024-02-07T22:15:14.249599Z", - "iopub.status.idle": "2024-02-07T22:15:14.258029Z", - "shell.execute_reply": "2024-02-07T22:15:14.257501Z" + "iopub.execute_input": "2024-02-07T23:55:47.032998Z", + "iopub.status.busy": "2024-02-07T23:55:47.032735Z", + "iopub.status.idle": "2024-02-07T23:55:47.040993Z", + "shell.execute_reply": "2024-02-07T23:55:47.040535Z" } }, "outputs": [ @@ -1820,10 +1812,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.259872Z", - "iopub.status.busy": "2024-02-07T22:15:14.259698Z", - "iopub.status.idle": "2024-02-07T22:15:14.264612Z", - "shell.execute_reply": "2024-02-07T22:15:14.264180Z" + "iopub.execute_input": "2024-02-07T23:55:47.043175Z", + "iopub.status.busy": "2024-02-07T23:55:47.042830Z", + "iopub.status.idle": "2024-02-07T23:55:47.048286Z", + "shell.execute_reply": "2024-02-07T23:55:47.047803Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1861,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.266402Z", - "iopub.status.busy": "2024-02-07T22:15:14.266233Z", - "iopub.status.idle": "2024-02-07T22:15:14.771851Z", - "shell.execute_reply": "2024-02-07T22:15:14.771240Z" + "iopub.execute_input": "2024-02-07T23:55:47.050377Z", + "iopub.status.busy": "2024-02-07T23:55:47.050009Z", + "iopub.status.idle": "2024-02-07T23:55:47.563713Z", + "shell.execute_reply": "2024-02-07T23:55:47.563239Z" } }, "outputs": [ @@ -1907,10 +1899,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.774093Z", - "iopub.status.busy": "2024-02-07T22:15:14.773749Z", - "iopub.status.idle": "2024-02-07T22:15:14.782399Z", - "shell.execute_reply": "2024-02-07T22:15:14.781863Z" + "iopub.execute_input": "2024-02-07T23:55:47.565638Z", + "iopub.status.busy": "2024-02-07T23:55:47.565459Z", + "iopub.status.idle": "2024-02-07T23:55:47.573691Z", + "shell.execute_reply": "2024-02-07T23:55:47.573256Z" } }, "outputs": [ @@ -2077,10 +2069,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.784695Z", - "iopub.status.busy": "2024-02-07T22:15:14.784378Z", - "iopub.status.idle": "2024-02-07T22:15:14.792575Z", - "shell.execute_reply": "2024-02-07T22:15:14.792106Z" + "iopub.execute_input": "2024-02-07T23:55:47.575826Z", + "iopub.status.busy": "2024-02-07T23:55:47.575405Z", + "iopub.status.idle": "2024-02-07T23:55:47.582426Z", + "shell.execute_reply": "2024-02-07T23:55:47.581985Z" }, "nbsphinx": "hidden" }, @@ -2156,10 +2148,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.794419Z", - "iopub.status.busy": "2024-02-07T22:15:14.794248Z", - "iopub.status.idle": "2024-02-07T22:15:15.266167Z", - "shell.execute_reply": "2024-02-07T22:15:15.265586Z" + "iopub.execute_input": "2024-02-07T23:55:47.584184Z", + "iopub.status.busy": "2024-02-07T23:55:47.584014Z", + "iopub.status.idle": "2024-02-07T23:55:48.046048Z", + "shell.execute_reply": "2024-02-07T23:55:48.045495Z" } }, "outputs": [ @@ -2196,10 +2188,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.268447Z", - "iopub.status.busy": "2024-02-07T22:15:15.268135Z", - "iopub.status.idle": "2024-02-07T22:15:15.284704Z", - "shell.execute_reply": "2024-02-07T22:15:15.284211Z" + "iopub.execute_input": "2024-02-07T23:55:48.048037Z", + "iopub.status.busy": "2024-02-07T23:55:48.047862Z", + "iopub.status.idle": "2024-02-07T23:55:48.062692Z", + "shell.execute_reply": "2024-02-07T23:55:48.062251Z" } }, "outputs": [ @@ -2356,10 +2348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.287144Z", - "iopub.status.busy": "2024-02-07T22:15:15.286677Z", - "iopub.status.idle": "2024-02-07T22:15:15.293454Z", - "shell.execute_reply": "2024-02-07T22:15:15.292999Z" + "iopub.execute_input": "2024-02-07T23:55:48.064581Z", + "iopub.status.busy": "2024-02-07T23:55:48.064412Z", + "iopub.status.idle": "2024-02-07T23:55:48.069814Z", + "shell.execute_reply": "2024-02-07T23:55:48.069388Z" }, "nbsphinx": "hidden" }, @@ -2404,10 +2396,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.295629Z", - "iopub.status.busy": "2024-02-07T22:15:15.295278Z", - "iopub.status.idle": "2024-02-07T22:15:15.767384Z", - "shell.execute_reply": "2024-02-07T22:15:15.766576Z" + "iopub.execute_input": "2024-02-07T23:55:48.071509Z", + "iopub.status.busy": "2024-02-07T23:55:48.071343Z", + "iopub.status.idle": "2024-02-07T23:55:48.539232Z", + "shell.execute_reply": "2024-02-07T23:55:48.538712Z" } }, "outputs": [ @@ -2489,10 +2481,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.770046Z", - "iopub.status.busy": "2024-02-07T22:15:15.769833Z", - "iopub.status.idle": "2024-02-07T22:15:15.780284Z", - "shell.execute_reply": "2024-02-07T22:15:15.779737Z" + "iopub.execute_input": "2024-02-07T23:55:48.542136Z", + "iopub.status.busy": "2024-02-07T23:55:48.541942Z", + "iopub.status.idle": "2024-02-07T23:55:48.551478Z", + "shell.execute_reply": "2024-02-07T23:55:48.550999Z" } }, "outputs": [ @@ -2620,10 +2612,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.782972Z", - "iopub.status.busy": "2024-02-07T22:15:15.782761Z", - "iopub.status.idle": "2024-02-07T22:15:15.789772Z", - "shell.execute_reply": "2024-02-07T22:15:15.789237Z" + "iopub.execute_input": "2024-02-07T23:55:48.553910Z", + "iopub.status.busy": "2024-02-07T23:55:48.553723Z", + "iopub.status.idle": "2024-02-07T23:55:48.560475Z", + "shell.execute_reply": "2024-02-07T23:55:48.559985Z" }, "nbsphinx": "hidden" }, @@ -2660,10 +2652,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.792545Z", - "iopub.status.busy": "2024-02-07T22:15:15.792004Z", - "iopub.status.idle": "2024-02-07T22:15:15.996072Z", - "shell.execute_reply": "2024-02-07T22:15:15.995539Z" + "iopub.execute_input": "2024-02-07T23:55:48.562594Z", + "iopub.status.busy": "2024-02-07T23:55:48.562409Z", + "iopub.status.idle": "2024-02-07T23:55:48.763788Z", + "shell.execute_reply": "2024-02-07T23:55:48.763368Z" } }, "outputs": [ @@ -2705,10 +2697,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.998260Z", - "iopub.status.busy": "2024-02-07T22:15:15.998067Z", - "iopub.status.idle": "2024-02-07T22:15:16.006248Z", - "shell.execute_reply": "2024-02-07T22:15:16.005671Z" + "iopub.execute_input": "2024-02-07T23:55:48.765744Z", + "iopub.status.busy": "2024-02-07T23:55:48.765594Z", + "iopub.status.idle": "2024-02-07T23:55:48.772950Z", + "shell.execute_reply": "2024-02-07T23:55:48.772568Z" } }, "outputs": [ @@ -2733,47 +2725,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2794,10 +2786,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:16.008244Z", - "iopub.status.busy": "2024-02-07T22:15:16.008065Z", - "iopub.status.idle": "2024-02-07T22:15:16.207600Z", - "shell.execute_reply": "2024-02-07T22:15:16.206983Z" + "iopub.execute_input": "2024-02-07T23:55:48.774610Z", + "iopub.status.busy": "2024-02-07T23:55:48.774465Z", + "iopub.status.idle": "2024-02-07T23:55:48.966740Z", + "shell.execute_reply": "2024-02-07T23:55:48.966273Z" } }, "outputs": [ @@ -2837,10 +2829,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:16.209828Z", - "iopub.status.busy": "2024-02-07T22:15:16.209640Z", - "iopub.status.idle": "2024-02-07T22:15:16.214037Z", - "shell.execute_reply": "2024-02-07T22:15:16.213595Z" + "iopub.execute_input": "2024-02-07T23:55:48.968846Z", + "iopub.status.busy": "2024-02-07T23:55:48.968688Z", + "iopub.status.idle": "2024-02-07T23:55:48.972895Z", + "shell.execute_reply": "2024-02-07T23:55:48.972438Z" }, "nbsphinx": "hidden" }, @@ -2877,7 +2869,70 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "007cca45272b4a15865ee386417fca56": { + "096734e131e7446789cb828a670c4d33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "15a700e2959f45d9bc818012a4ac35cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e25684bca4d04cc586c2ae9653e92baf", + "IPY_MODEL_64976c7cec274e2cb599f9864d9d2b3e", + "IPY_MODEL_94bc8870033b400c828c994a4697989a" + ], + "layout": "IPY_MODEL_4bee7ed00ac6488f9434077c2e5ffff2", + "tabbable": null, + "tooltip": null + } + }, + "183ec1a8cefe4e868b0f39386c2db1e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2711254680224029b57c4b746e722522", + "placeholder": "​", + "style": "IPY_MODEL_dca81aa852a141c0b18590a7f7cf263c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "1ce7003827024b28a7d772ffcf95c3a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2930,7 +2985,7 @@ "width": null } }, - "00a8666c63fe45f283b11685743a81b6": { + "1ee143b057ae4463bf1a6f310045fe94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2983,65 +3038,7 @@ "width": null } }, - "06bcff0001014bfb950d1828761c0eaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b5b76bb51dd24c3386ccaa609dc70842", - "IPY_MODEL_423bc17c3a044d53a5de362b4d36e27b", - "IPY_MODEL_8347afc027284ba1863d50faee7fb11f" - ], - "layout": "IPY_MODEL_a51bf779db9d469c8cc33a8b24c8e7ca", - "tabbable": null, - "tooltip": null - } - }, - "07ce8ed7891c4ebeb9fefd6949c7b180": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0986b1a6d95d485cbe39462131805d4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0c988c95890b4f69b74f89e0c81d7828": { + "234cdeb4c2ad4b40b8c4cbd3cac01772": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3094,31 +3091,33 @@ "width": null } }, - "1075a3bfa6094847a1f22a2a826545d8": { + "26ad29a0928d4632b2a0122ed75fcba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e4965fe8a11c45b89b19f160a93c542b", - "IPY_MODEL_166baabd90ae4a70974b4d2f3b164fc9", - "IPY_MODEL_2aeff5887c2744658ab43b4d60c1fa69" - ], - "layout": "IPY_MODEL_a745f815281f456fbc80f4bdc464b2a4", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6de8542b53114be68c4e71576a77d58d", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f782ebbbd274491fa6c680f42c1bf160", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 5175617.0 } }, - "10f5705a3e4e4a5489fdffb09b3ae22d": { + "2711254680224029b57c4b746e722522": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,7 +3170,7 @@ "width": null } }, - "150b7b9c86184b3a81ec2e9d2c4862a1": { + "33e6bf1a962241b9965f57093ccfbea2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3186,42 +3185,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8e6ad75a2b144274bcc9ff9239778002", - "IPY_MODEL_b6cd68308d5e4a28b4407d8ee3829be1", - "IPY_MODEL_6ba0aea08e8643b78fb9dd4fadbd8604" + "IPY_MODEL_6cf83a63cad34d77a53d085e937274b7", + "IPY_MODEL_26ad29a0928d4632b2a0122ed75fcba0", + "IPY_MODEL_6fcdf7eb188047ea8070940e35a2c311" ], - "layout": "IPY_MODEL_6ffbbae9cb954f6a82f68b536f065ab8", + "layout": "IPY_MODEL_9b4cac2ed2814e8b9e247efc679c9223", "tabbable": null, "tooltip": null } }, - "166baabd90ae4a70974b4d2f3b164fc9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_38c29ede099f486ead043fd5488a0759", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07ce8ed7891c4ebeb9fefd6949c7b180", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "18293d50d4484b0393bfae1f7b74f293": { + "34b9ed23fedc419c93f8e11b3bba77d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3274,7 +3247,7 @@ "width": null } }, - "197fca20a4434a20984b059e49d64036": { + "3f16949cc8934b0ab3befc7da6f162af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3327,69 +3300,23 @@ "width": null } }, - "19b04ce129ed43bea80c3763311498a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fcc301f31d19462b97bdc821e4e82fef", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_be13cc6a5b264e5c998f323c75cc7bb5", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "1c7be1df6c5e4d32a0559e03971d081a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "26746b6b76004ae59adf81188c1fdd1a": { + "45819af2ac5246748f97bf8d73a8f283": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "29ac47e5ca144d298560f408c853cf1e": { + "45a1b9299e1845aab1844559b266af3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3442,7 +3369,48 @@ "width": null } }, - "2ac6b1ce136d47ef8d4c7d14c22c7116": { + "4a4f8f6ed26f4e04ade21e5c4c413553": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b56c0a3af7b4854bcaa5e65e32570a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_234cdeb4c2ad4b40b8c4cbd3cac01772", + "placeholder": "​", + "style": "IPY_MODEL_d78d044a913243d8bf9346c6281d126a", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 71.9MB/s]" + } + }, + "4bee7ed00ac6488f9434077c2e5ffff2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3495,46 +3463,77 @@ "width": null } }, - "2aeff5887c2744658ab43b4d60c1fa69": { + "4c5bb1bea32c4cf4b4e27b2f03b4cd45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5156825dd8984f5390c32a26ec67aac1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_18293d50d4484b0393bfae1f7b74f293", - "placeholder": "​", - "style": "IPY_MODEL_7faa2feb4f15433b9d040ffbf537d6b5", + "layout": "IPY_MODEL_9d3ce37c18da435f9c36109f68013b0f", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45819af2ac5246748f97bf8d73a8f283", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 94.9MB/s]" + "value": 2.0 } }, - "2d482bad9ee041b79ba26875c7d1a80e": { + "578929fb3a044fb8b98da73290b779d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b98f676249946058d5415d4909e05b9", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_096734e131e7446789cb828a670c4d33", + "tabbable": null, + "tooltip": null, + "value": 1.0 } }, - "2ef38576452d4a8ca2641b46f9f35c14": { + "57bef00c454b4e879a865a60febb6b60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3552,7 +3551,7 @@ "text_color": null } }, - "2f2a551a941645a78fe4691c1f20b53f": { + "5b3a5d15a27842e893e424fbca85b9e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3605,7 +3604,49 @@ "width": null } }, - "38c29ede099f486ead043fd5488a0759": { + "64976c7cec274e2cb599f9864d9d2b3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d66b7bebee1c4c5a9bfb23d862bd89e4", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c83eb5b6161d4f85aa318bfa7112095f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "673d6eed56f44ff6ae4e58f52e19133c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "686948274691459e859ec29d1d6727ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3658,7 +3699,48 @@ "width": null } }, - "39470974b22044fcabdf343041f46c3e": { + "6c6fe37f727d4b6e8f95c49cb618852d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6cf83a63cad34d77a53d085e937274b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f16949cc8934b0ab3befc7da6f162af", + "placeholder": "​", + "style": "IPY_MODEL_80e4373e9d5d4f5083c3e92a61a83408", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "6de8542b53114be68c4e71576a77d58d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3711,7 +3793,7 @@ "width": null } }, - "3c5a1561976c4ff1ad4db4058a8c0127": { + "6fcdf7eb188047ea8070940e35a2c311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3726,64 +3808,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_197fca20a4434a20984b059e49d64036", + "layout": "IPY_MODEL_e072741128074994b5fba0025ee966de", "placeholder": "​", - "style": "IPY_MODEL_2ef38576452d4a8ca2641b46f9f35c14", + "style": "IPY_MODEL_fc7aae1e798a48039208372e86ec973b", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 5.18M/5.18M [00:00<00:00, 69.5MB/s]" } }, - "3cb4a82173174d78a59af75f16489b2c": { + "70cc77e667df49dab4bde4d8dea9c5fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_10f5705a3e4e4a5489fdffb09b3ae22d", - "placeholder": "​", - "style": "IPY_MODEL_0986b1a6d95d485cbe39462131805d4a", + "layout": "IPY_MODEL_e04ff729cd6248debe23ad79acebf4bc", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_673d6eed56f44ff6ae4e58f52e19133c", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 641.77it/s]" + "value": 30931277.0 } }, - "423bc17c3a044d53a5de362b4d36e27b": { - "model_module": "@jupyter-widgets/controls", + "71185cb9b6c8422094d1c0f6d1d0147f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f4443875618434da0e9c191e0ace738", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d482bad9ee041b79ba26875c7d1a80e", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" } }, - "47f5060567b54568b0bcee09f764ad27": { + "713efc8818df493895a188556513706a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3836,7 +3948,7 @@ "width": null } }, - "4e64526cc3ce44e292359000779eb539": { + "73635cd35f554107ad27ff09c5a3deaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3854,25 +3966,31 @@ "text_color": null } }, - "515f681f9dab4dd392d167d2ea28a430": { + "75399c16f9a9462ab14c8fc2e9c2b817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a265c03419fb47d78575b3c0a5c8ecae", + "IPY_MODEL_578929fb3a044fb8b98da73290b779d0", + "IPY_MODEL_8141d17ba66a4fa79738072a90f4bd9e" + ], + "layout": "IPY_MODEL_9727eec2512c4933a9d698603b04afa7", + "tabbable": null, + "tooltip": null } }, - "5487841021704122bdfd383f3ecc760a": { + "7b617e68684d4328b814adff85313cd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3887,15 +4005,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f2a551a941645a78fe4691c1f20b53f", + "layout": "IPY_MODEL_1ce7003827024b28a7d772ffcf95c3a0", "placeholder": "​", - "style": "IPY_MODEL_bf49a26db85d4c928bd1f112e88d04ae", + "style": "IPY_MODEL_57bef00c454b4e879a865a60febb6b60", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": "Generating train split: " + } + }, + "7fb92d346357470cb4e334e9867b871a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b393b5be18c4614bbbe5748904485e6": { + "7fc3c32bcf1148368c0a1dd69f0726fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3910,56 +4046,107 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3c5a1561976c4ff1ad4db4058a8c0127", - "IPY_MODEL_19b04ce129ed43bea80c3763311498a1", - "IPY_MODEL_7bdda0e0e9af4e329762cac848c7afeb" + "IPY_MODEL_bdd9181360ef47cdb60a4d3587334477", + "IPY_MODEL_70cc77e667df49dab4bde4d8dea9c5fc", + "IPY_MODEL_4b56c0a3af7b4854bcaa5e65e32570a4" ], - "layout": "IPY_MODEL_47f5060567b54568b0bcee09f764ad27", + "layout": "IPY_MODEL_686948274691459e859ec29d1d6727ad", "tabbable": null, "tooltip": null } }, - "675dd88192524e39b8b2c590edca71dc": { + "80e4373e9d5d4f5083c3e92a61a83408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "67691e10a0ac4a259f3747a827b350d5": { + "8141d17ba66a4fa79738072a90f4bd9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da707b4db6684c0fa1f42dfbbfa15ec2", - "IPY_MODEL_e57ae3a3bbb847ecae1ef7ae2ed00f25", - "IPY_MODEL_cd2955ed357d49f78df0e62fe52334a0" - ], - "layout": "IPY_MODEL_80b35b7c4593476685445ef3025428eb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b66eff66d81e4438b9228605517b1593", + "placeholder": "​", + "style": "IPY_MODEL_f8a5a07864954ff99b69195ff03014bc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/0 [00:00<00:00, 628068.46 examples/s]" } }, - "6853885176e7477cb8135d6bfe80ff02": { + "8488030d7afb4e4c95288794d76c2b48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b617e68684d4328b814adff85313cd5", + "IPY_MODEL_a2eae19faf36409f8181eef097b68a54", + "IPY_MODEL_cab835ba7133491985672d5adf685b51" + ], + "layout": "IPY_MODEL_f643dd39622741d4a35fcf7a2d438eb7", + "tabbable": null, + "tooltip": null + } + }, + "8762f99816334281badb51b354443160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ac2c8c227bba40a594ee42bcdfd88417", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cac02aaea187408aae5a8c6677012f49", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "89515e7f66a14b7f958928ae0c7e4729": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4012,7 +4199,7 @@ "width": null } }, - "6ba0aea08e8643b78fb9dd4fadbd8604": { + "8ec2228212b74dae9b1d6b947be22df7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4027,15 +4214,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_00a8666c63fe45f283b11685743a81b6", + "layout": "IPY_MODEL_da231bdfa36744078ae247859bcb9b02", "placeholder": "​", - "style": "IPY_MODEL_1c7be1df6c5e4d32a0559e03971d081a", + "style": "IPY_MODEL_d5dac1c26a794eceb5b33cdac38e91e1", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 70.7MB/s]" + "value": " 2/2 [00:00<00:00, 629.07it/s]" + } + }, + "8eec55efd8174ae9b1880eb091282f8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3e1582141cd4032a0ff25cedc977203", + "IPY_MODEL_5156825dd8984f5390c32a26ec67aac1", + "IPY_MODEL_8ec2228212b74dae9b1d6b947be22df7" + ], + "layout": "IPY_MODEL_713efc8818df493895a188556513706a", + "tabbable": null, + "tooltip": null } }, - "6f4443875618434da0e9c191e0ace738": { + "9431d2713aad4a79b208a039fbb37fab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4088,7 +4299,30 @@ "width": null } }, - "6ffbbae9cb954f6a82f68b536f065ab8": { + "94bc8870033b400c828c994a4697989a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c5b2ed298d3c4fbda43a63faac09ec97", + "placeholder": "​", + "style": "IPY_MODEL_6c6fe37f727d4b6e8f95c49cb618852d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1562.36it/s]" + } + }, + "9727eec2512c4933a9d698603b04afa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4141,7 +4375,7 @@ "width": null } }, - "7b37caa92b634a88b72e54c5f100899e": { + "9b4cac2ed2814e8b9e247efc679c9223": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4194,7 +4428,7 @@ "width": null } }, - "7ba1ac52122646b58c5b9a4f176153ef": { + "9b98f676249946058d5415d4909e05b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4244,51 +4478,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "7bdda0e0e9af4e329762cac848c7afeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_007cca45272b4a15865ee386417fca56", - "placeholder": "​", - "style": "IPY_MODEL_26746b6b76004ae59adf81188c1fdd1a", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6531.80 examples/s]" - } - }, - "7faa2feb4f15433b9d040ffbf537d6b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": "20px" } }, - "80b35b7c4593476685445ef3025428eb": { + "9d3ce37c18da435f9c36109f68013b0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4341,7 +4534,7 @@ "width": null } }, - "8347afc027284ba1863d50faee7fb11f": { + "a265c03419fb47d78575b3c0a5c8ecae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4356,38 +4549,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e0d10aecc1b8464c94fddbea98f240d7", + "layout": "IPY_MODEL_9431d2713aad4a79b208a039fbb37fab", "placeholder": "​", - "style": "IPY_MODEL_4e64526cc3ce44e292359000779eb539", + "style": "IPY_MODEL_4a4f8f6ed26f4e04ade21e5c4c413553", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:38<00:00, 1627.63it/s]" + "value": "Generating test split: " } }, - "866395f01978484db997ca8002c94500": { + "a2eae19faf36409f8181eef097b68a54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0d2d9d153814469a1c5f837c963a987", - "placeholder": "​", - "style": "IPY_MODEL_c02b56ba484f4b5bb2383da56ef2baf2", + "layout": "IPY_MODEL_71185cb9b6c8422094d1c0f6d1d0147f", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a825e0188dbe47a195347df2c50c35d0", "tabbable": null, "tooltip": null, - "value": " 10000/0 [00:00<00:00, 576037.80 examples/s]" + "value": 1.0 + } + }, + "a4e2cd3cbcc1439b92a8f2e5001a07a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a825e0188dbe47a195347df2c50c35d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8cb1e055ca064cd6b11318325702ebf2": { + "ac2c8c227bba40a594ee42bcdfd88417": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4440,88 +4670,7 @@ "width": null } }, - "8e6ad75a2b144274bcc9ff9239778002": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df492ac34dc243af97c31bd624502099", - "placeholder": "​", - "style": "IPY_MODEL_973abcd851334a23a1270519eccaa3c5", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "911987d56e934f189bd14bb79602c280": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5487841021704122bdfd383f3ecc760a", - "IPY_MODEL_c855fae6b03a49cb953be1c8f51d44f9", - "IPY_MODEL_3cb4a82173174d78a59af75f16489b2c" - ], - "layout": "IPY_MODEL_6853885176e7477cb8135d6bfe80ff02", - "tabbable": null, - "tooltip": null - } - }, - "973abcd851334a23a1270519eccaa3c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9f2a28910749459bb33e5ad7e62ad01e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a51bf779db9d469c8cc33a8b24c8e7ca": { + "b66eff66d81e4438b9228605517b1593": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4574,33 +4723,30 @@ "width": null } }, - "a6c96a8ee9564d51a056291e1e184f49": { + "bdd9181360ef47cdb60a4d3587334477": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d85cd0edb5d6484b93791a949f5eb677", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8738a0fd0a9491db1151ef381d35254", + "layout": "IPY_MODEL_1ee143b057ae4463bf1a6f310045fe94", + "placeholder": "​", + "style": "IPY_MODEL_7fb92d346357470cb4e334e9867b871a", "tabbable": null, "tooltip": null, - "value": 1.0 + "value": "Downloading data: 100%" } }, - "a745f815281f456fbc80f4bdc464b2a4": { + "c5b2ed298d3c4fbda43a63faac09ec97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4653,7 +4799,7 @@ "width": null } }, - "b0d2d9d153814469a1c5f837c963a987": { + "c5cb71c61f3d4544ace25a3110062e2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4706,108 +4852,46 @@ "width": null } }, - "b5b76bb51dd24c3386ccaa609dc70842": { + "c83eb5b6161d4f85aa318bfa7112095f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ba1ac52122646b58c5b9a4f176153ef", - "placeholder": "​", - "style": "IPY_MODEL_515f681f9dab4dd392d167d2ea28a430", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b6cd68308d5e4a28b4407d8ee3829be1": { + "cab835ba7133491985672d5adf685b51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ac6b1ce136d47ef8d4c7d14c22c7116", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_675dd88192524e39b8b2c590edca71dc", + "layout": "IPY_MODEL_34b9ed23fedc419c93f8e11b3bba77d3", + "placeholder": "​", + "style": "IPY_MODEL_a4e2cd3cbcc1439b92a8f2e5001a07a0", "tabbable": null, "tooltip": null, - "value": 30931277.0 - } - }, - "be13cc6a5b264e5c998f323c75cc7bb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bf49a26db85d4c928bd1f112e88d04ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c02b56ba484f4b5bb2383da56ef2baf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/0 [00:00<00:00, 963377.32 examples/s]" } }, - "c44a23970a994528bfdc06bfcb012be7": { + "cac02aaea187408aae5a8c6677012f49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4823,33 +4907,7 @@ "description_width": "" } }, - "c855fae6b03a49cb953be1c8f51d44f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b37caa92b634a88b72e54c5f100899e", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c44a23970a994528bfdc06bfcb012be7", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "cc76dce215d548d892e41d3a7229508c": { + "d5dac1c26a794eceb5b33cdac38e91e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4867,30 +4925,7 @@ "text_color": null } }, - "cd2955ed357d49f78df0e62fe52334a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc1ff02cf5c94c70b74423fece694376", - "placeholder": "​", - "style": "IPY_MODEL_f4a04192e971448aaecf424bc4f41bda", - "tabbable": null, - "tooltip": null, - "value": " 60000/0 [00:00<00:00, 846818.07 examples/s]" - } - }, - "d85cd0edb5d6484b93791a949f5eb677": { + "d66b7bebee1c4c5a9bfb23d862bd89e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4940,49 +4975,28 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "d8738a0fd0a9491db1151ef381d35254": { + "d78d044a913243d8bf9346c6281d126a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "da707b4db6684c0fa1f42dfbbfa15ec2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8cb1e055ca064cd6b11318325702ebf2", - "placeholder": "​", - "style": "IPY_MODEL_e18168fd3de74d7ea007bfdb3a814603", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: " + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "df492ac34dc243af97c31bd624502099": { + "da231bdfa36744078ae247859bcb9b02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5035,7 +5049,72 @@ "width": null } }, - "e0d10aecc1b8464c94fddbea98f240d7": { + "db4d65560ff04257ad1532c0bf200fa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_45a1b9299e1845aab1844559b266af3b", + "placeholder": "​", + "style": "IPY_MODEL_4c5bb1bea32c4cf4b4e27b2f03b4cd45", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7408.76 examples/s]" + } + }, + "dca81aa852a141c0b18590a7f7cf263c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "def052e51c5d4bc1b365fb7a46f00d5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_183ec1a8cefe4e868b0f39386c2db1e5", + "IPY_MODEL_8762f99816334281badb51b354443160", + "IPY_MODEL_db4d65560ff04257ad1532c0bf200fa9" + ], + "layout": "IPY_MODEL_89515e7f66a14b7f958928ae0c7e4729", + "tabbable": null, + "tooltip": null + } + }, + "e04ff729cd6248debe23ad79acebf4bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5088,25 +5167,7 @@ "width": null } }, - "e18168fd3de74d7ea007bfdb3a814603": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e47d1549488742599209ede60f9bad03": { + "e072741128074994b5fba0025ee966de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5156,10 +5217,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "e4965fe8a11c45b89b19f160a93c542b": { + "e25684bca4d04cc586c2ae9653e92baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5174,65 +5235,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0c988c95890b4f69b74f89e0c81d7828", + "layout": "IPY_MODEL_c5cb71c61f3d4544ace25a3110062e2f", "placeholder": "​", - "style": "IPY_MODEL_cc76dce215d548d892e41d3a7229508c", + "style": "IPY_MODEL_73635cd35f554107ad27ff09c5a3deaf", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "e57ae3a3bbb847ecae1ef7ae2ed00f25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e47d1549488742599209ede60f9bad03", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9f2a28910749459bb33e5ad7e62ad01e", - "tabbable": null, - "tooltip": null, - "value": 1.0 - } - }, - "f297df970eaa40368e0d02896d28f3b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f37dedb7f52e45adb6f1791f0875f640", - "IPY_MODEL_a6c96a8ee9564d51a056291e1e184f49", - "IPY_MODEL_866395f01978484db997ca8002c94500" - ], - "layout": "IPY_MODEL_39470974b22044fcabdf343041f46c3e", - "tabbable": null, - "tooltip": null + "value": "100%" } }, - "f37dedb7f52e45adb6f1791f0875f640": { + "e3e1582141cd4032a0ff25cedc977203": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5247,33 +5258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ac47e5ca144d298560f408c853cf1e", + "layout": "IPY_MODEL_5b3a5d15a27842e893e424fbca85b9e3", "placeholder": "​", - "style": "IPY_MODEL_f8cf10ba3a9341a3aac3ac337cbf990e", + "style": "IPY_MODEL_ef5a2cf277c64341b028581a65c8220c", "tabbable": null, "tooltip": null, - "value": "Generating test split: " - } - }, - "f4a04192e971448aaecf424bc4f41bda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Computing checksums: 100%" } }, - "f8cf10ba3a9341a3aac3ac337cbf990e": { + "ef5a2cf277c64341b028581a65c8220c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5291,7 +5284,7 @@ "text_color": null } }, - "fc1ff02cf5c94c70b74423fece694376": { + "f643dd39622741d4a35fcf7a2d438eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5344,57 +5337,56 @@ "width": null } }, - "fcc301f31d19462b97bdc821e4e82fef": { - "model_module": "@jupyter-widgets/base", + "f782ebbbd274491fa6c680f42c1bf160": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f8a5a07864954ff99b69195ff03014bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fc7aae1e798a48039208372e86ec973b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index eedb2b4a0..fcbca0822 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:21.351866Z", - "iopub.status.busy": "2024-02-07T22:15:21.351677Z", - "iopub.status.idle": "2024-02-07T22:15:22.453306Z", - "shell.execute_reply": "2024-02-07T22:15:22.452757Z" + "iopub.execute_input": "2024-02-07T23:55:52.793906Z", + "iopub.status.busy": "2024-02-07T23:55:52.793563Z", + "iopub.status.idle": "2024-02-07T23:55:53.871456Z", + "shell.execute_reply": "2024-02-07T23:55:53.870917Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.455742Z", - "iopub.status.busy": "2024-02-07T22:15:22.455483Z", - "iopub.status.idle": "2024-02-07T22:15:22.634154Z", - "shell.execute_reply": "2024-02-07T22:15:22.633543Z" + "iopub.execute_input": "2024-02-07T23:55:53.873895Z", + "iopub.status.busy": "2024-02-07T23:55:53.873500Z", + "iopub.status.idle": "2024-02-07T23:55:54.047760Z", + "shell.execute_reply": "2024-02-07T23:55:54.047227Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.636920Z", - "iopub.status.busy": "2024-02-07T22:15:22.636572Z", - "iopub.status.idle": "2024-02-07T22:15:22.648321Z", - "shell.execute_reply": "2024-02-07T22:15:22.647894Z" + "iopub.execute_input": "2024-02-07T23:55:54.050158Z", + "iopub.status.busy": "2024-02-07T23:55:54.049974Z", + "iopub.status.idle": "2024-02-07T23:55:54.061117Z", + "shell.execute_reply": "2024-02-07T23:55:54.060658Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.650316Z", - "iopub.status.busy": "2024-02-07T22:15:22.649989Z", - "iopub.status.idle": "2024-02-07T22:15:22.883619Z", - "shell.execute_reply": "2024-02-07T22:15:22.883022Z" + "iopub.execute_input": "2024-02-07T23:55:54.062919Z", + "iopub.status.busy": "2024-02-07T23:55:54.062746Z", + "iopub.status.idle": "2024-02-07T23:55:54.297436Z", + "shell.execute_reply": "2024-02-07T23:55:54.296880Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.885905Z", - "iopub.status.busy": "2024-02-07T22:15:22.885576Z", - "iopub.status.idle": "2024-02-07T22:15:22.911960Z", - "shell.execute_reply": "2024-02-07T22:15:22.911384Z" + "iopub.execute_input": "2024-02-07T23:55:54.299486Z", + "iopub.status.busy": "2024-02-07T23:55:54.299307Z", + "iopub.status.idle": "2024-02-07T23:55:54.325624Z", + "shell.execute_reply": "2024-02-07T23:55:54.325176Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.914485Z", - "iopub.status.busy": "2024-02-07T22:15:22.913996Z", - "iopub.status.idle": "2024-02-07T22:15:24.619121Z", - "shell.execute_reply": "2024-02-07T22:15:24.618526Z" + "iopub.execute_input": "2024-02-07T23:55:54.327440Z", + "iopub.status.busy": "2024-02-07T23:55:54.327261Z", + "iopub.status.idle": "2024-02-07T23:55:55.923609Z", + "shell.execute_reply": "2024-02-07T23:55:55.922962Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:24.621699Z", - "iopub.status.busy": "2024-02-07T22:15:24.621099Z", - "iopub.status.idle": "2024-02-07T22:15:24.637180Z", - "shell.execute_reply": "2024-02-07T22:15:24.636739Z" + "iopub.execute_input": "2024-02-07T23:55:55.926111Z", + "iopub.status.busy": "2024-02-07T23:55:55.925634Z", + "iopub.status.idle": "2024-02-07T23:55:55.942989Z", + "shell.execute_reply": "2024-02-07T23:55:55.942452Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:24.639293Z", - "iopub.status.busy": "2024-02-07T22:15:24.639017Z", - "iopub.status.idle": "2024-02-07T22:15:26.071028Z", - "shell.execute_reply": "2024-02-07T22:15:26.070435Z" + "iopub.execute_input": "2024-02-07T23:55:55.944841Z", + "iopub.status.busy": "2024-02-07T23:55:55.944659Z", + "iopub.status.idle": "2024-02-07T23:55:57.319622Z", + "shell.execute_reply": "2024-02-07T23:55:57.319078Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.073837Z", - "iopub.status.busy": "2024-02-07T22:15:26.073006Z", - "iopub.status.idle": "2024-02-07T22:15:26.086788Z", - "shell.execute_reply": "2024-02-07T22:15:26.086329Z" + "iopub.execute_input": "2024-02-07T23:55:57.322169Z", + "iopub.status.busy": "2024-02-07T23:55:57.321580Z", + "iopub.status.idle": "2024-02-07T23:55:57.335184Z", + "shell.execute_reply": "2024-02-07T23:55:57.334645Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.089018Z", - "iopub.status.busy": "2024-02-07T22:15:26.088676Z", - "iopub.status.idle": "2024-02-07T22:15:26.166965Z", - "shell.execute_reply": "2024-02-07T22:15:26.166362Z" + "iopub.execute_input": "2024-02-07T23:55:57.337271Z", + "iopub.status.busy": "2024-02-07T23:55:57.336902Z", + "iopub.status.idle": "2024-02-07T23:55:57.408692Z", + "shell.execute_reply": "2024-02-07T23:55:57.408157Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.169567Z", - "iopub.status.busy": "2024-02-07T22:15:26.169069Z", - "iopub.status.idle": "2024-02-07T22:15:26.381855Z", - "shell.execute_reply": "2024-02-07T22:15:26.381243Z" + "iopub.execute_input": "2024-02-07T23:55:57.410865Z", + "iopub.status.busy": "2024-02-07T23:55:57.410584Z", + "iopub.status.idle": "2024-02-07T23:55:57.618710Z", + "shell.execute_reply": "2024-02-07T23:55:57.618185Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.383995Z", - "iopub.status.busy": "2024-02-07T22:15:26.383801Z", - "iopub.status.idle": "2024-02-07T22:15:26.401001Z", - "shell.execute_reply": "2024-02-07T22:15:26.400532Z" + "iopub.execute_input": "2024-02-07T23:55:57.620862Z", + "iopub.status.busy": "2024-02-07T23:55:57.620521Z", + "iopub.status.idle": "2024-02-07T23:55:57.636978Z", + "shell.execute_reply": "2024-02-07T23:55:57.636540Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.403060Z", - "iopub.status.busy": "2024-02-07T22:15:26.402733Z", - "iopub.status.idle": "2024-02-07T22:15:26.412648Z", - "shell.execute_reply": "2024-02-07T22:15:26.412212Z" + "iopub.execute_input": "2024-02-07T23:55:57.638931Z", + "iopub.status.busy": "2024-02-07T23:55:57.638611Z", + "iopub.status.idle": "2024-02-07T23:55:57.648032Z", + "shell.execute_reply": "2024-02-07T23:55:57.647545Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.414515Z", - "iopub.status.busy": "2024-02-07T22:15:26.414337Z", - "iopub.status.idle": "2024-02-07T22:15:26.507527Z", - "shell.execute_reply": "2024-02-07T22:15:26.506872Z" + "iopub.execute_input": "2024-02-07T23:55:57.650008Z", + "iopub.status.busy": "2024-02-07T23:55:57.649677Z", + "iopub.status.idle": "2024-02-07T23:55:57.735094Z", + "shell.execute_reply": "2024-02-07T23:55:57.734511Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.510067Z", - "iopub.status.busy": "2024-02-07T22:15:26.509583Z", - "iopub.status.idle": "2024-02-07T22:15:26.645559Z", - "shell.execute_reply": "2024-02-07T22:15:26.645002Z" + "iopub.execute_input": "2024-02-07T23:55:57.737432Z", + "iopub.status.busy": "2024-02-07T23:55:57.737237Z", + "iopub.status.idle": "2024-02-07T23:55:57.855160Z", + "shell.execute_reply": "2024-02-07T23:55:57.854608Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.647901Z", - "iopub.status.busy": "2024-02-07T22:15:26.647610Z", - "iopub.status.idle": "2024-02-07T22:15:26.651464Z", - "shell.execute_reply": "2024-02-07T22:15:26.650960Z" + "iopub.execute_input": "2024-02-07T23:55:57.857572Z", + "iopub.status.busy": "2024-02-07T23:55:57.857138Z", + "iopub.status.idle": "2024-02-07T23:55:57.861016Z", + "shell.execute_reply": "2024-02-07T23:55:57.860464Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.653401Z", - "iopub.status.busy": "2024-02-07T22:15:26.653143Z", - "iopub.status.idle": "2024-02-07T22:15:26.656733Z", - "shell.execute_reply": "2024-02-07T22:15:26.656187Z" + "iopub.execute_input": "2024-02-07T23:55:57.863057Z", + "iopub.status.busy": "2024-02-07T23:55:57.862660Z", + "iopub.status.idle": "2024-02-07T23:55:57.866556Z", + "shell.execute_reply": "2024-02-07T23:55:57.865984Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.658643Z", - "iopub.status.busy": "2024-02-07T22:15:26.658386Z", - "iopub.status.idle": "2024-02-07T22:15:26.695310Z", - "shell.execute_reply": "2024-02-07T22:15:26.694804Z" + "iopub.execute_input": "2024-02-07T23:55:57.868833Z", + "iopub.status.busy": "2024-02-07T23:55:57.868415Z", + "iopub.status.idle": "2024-02-07T23:55:57.905529Z", + "shell.execute_reply": "2024-02-07T23:55:57.905083Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.697492Z", - "iopub.status.busy": "2024-02-07T22:15:26.697153Z", - "iopub.status.idle": "2024-02-07T22:15:26.740554Z", - "shell.execute_reply": "2024-02-07T22:15:26.739987Z" + "iopub.execute_input": "2024-02-07T23:55:57.907438Z", + "iopub.status.busy": "2024-02-07T23:55:57.907262Z", + "iopub.status.idle": "2024-02-07T23:55:57.950758Z", + "shell.execute_reply": "2024-02-07T23:55:57.950272Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.742713Z", - "iopub.status.busy": "2024-02-07T22:15:26.742403Z", - "iopub.status.idle": "2024-02-07T22:15:26.841701Z", - "shell.execute_reply": "2024-02-07T22:15:26.840988Z" + "iopub.execute_input": "2024-02-07T23:55:57.952847Z", + "iopub.status.busy": "2024-02-07T23:55:57.952459Z", + "iopub.status.idle": "2024-02-07T23:55:58.044023Z", + "shell.execute_reply": "2024-02-07T23:55:58.043409Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.844347Z", - "iopub.status.busy": "2024-02-07T22:15:26.844156Z", - "iopub.status.idle": "2024-02-07T22:15:26.944490Z", - "shell.execute_reply": "2024-02-07T22:15:26.943909Z" + "iopub.execute_input": "2024-02-07T23:55:58.046632Z", + "iopub.status.busy": "2024-02-07T23:55:58.046286Z", + "iopub.status.idle": "2024-02-07T23:55:58.131106Z", + "shell.execute_reply": "2024-02-07T23:55:58.130530Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.946747Z", - "iopub.status.busy": "2024-02-07T22:15:26.946443Z", - "iopub.status.idle": "2024-02-07T22:15:27.154696Z", - "shell.execute_reply": "2024-02-07T22:15:27.154138Z" + "iopub.execute_input": "2024-02-07T23:55:58.133293Z", + "iopub.status.busy": "2024-02-07T23:55:58.133056Z", + "iopub.status.idle": "2024-02-07T23:55:58.344933Z", + "shell.execute_reply": "2024-02-07T23:55:58.344357Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.156796Z", - "iopub.status.busy": "2024-02-07T22:15:27.156608Z", - "iopub.status.idle": "2024-02-07T22:15:27.353494Z", - "shell.execute_reply": "2024-02-07T22:15:27.352882Z" + "iopub.execute_input": "2024-02-07T23:55:58.347184Z", + "iopub.status.busy": "2024-02-07T23:55:58.346751Z", + "iopub.status.idle": "2024-02-07T23:55:58.510583Z", + "shell.execute_reply": "2024-02-07T23:55:58.509985Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.355739Z", - "iopub.status.busy": "2024-02-07T22:15:27.355551Z", - "iopub.status.idle": "2024-02-07T22:15:27.361595Z", - "shell.execute_reply": "2024-02-07T22:15:27.361143Z" + "iopub.execute_input": "2024-02-07T23:55:58.512995Z", + "iopub.status.busy": "2024-02-07T23:55:58.512569Z", + "iopub.status.idle": "2024-02-07T23:55:58.518373Z", + "shell.execute_reply": "2024-02-07T23:55:58.517831Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.363428Z", - "iopub.status.busy": "2024-02-07T22:15:27.363240Z", - "iopub.status.idle": "2024-02-07T22:15:27.581468Z", - "shell.execute_reply": "2024-02-07T22:15:27.580881Z" + "iopub.execute_input": "2024-02-07T23:55:58.520271Z", + "iopub.status.busy": "2024-02-07T23:55:58.520096Z", + "iopub.status.idle": "2024-02-07T23:55:58.734987Z", + "shell.execute_reply": "2024-02-07T23:55:58.734456Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.583753Z", - "iopub.status.busy": "2024-02-07T22:15:27.583416Z", - "iopub.status.idle": "2024-02-07T22:15:28.654066Z", - "shell.execute_reply": "2024-02-07T22:15:28.653455Z" + "iopub.execute_input": "2024-02-07T23:55:58.737174Z", + "iopub.status.busy": "2024-02-07T23:55:58.736837Z", + "iopub.status.idle": "2024-02-07T23:55:59.819273Z", + "shell.execute_reply": "2024-02-07T23:55:59.818745Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index c986eebc5..faeef8745 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:32.145853Z", - "iopub.status.busy": "2024-02-07T22:15:32.145685Z", - "iopub.status.idle": "2024-02-07T22:15:33.233957Z", - "shell.execute_reply": "2024-02-07T22:15:33.233337Z" + "iopub.execute_input": "2024-02-07T23:56:03.103506Z", + "iopub.status.busy": "2024-02-07T23:56:03.103340Z", + "iopub.status.idle": "2024-02-07T23:56:04.118950Z", + "shell.execute_reply": "2024-02-07T23:56:04.118459Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.236597Z", - "iopub.status.busy": "2024-02-07T22:15:33.236316Z", - "iopub.status.idle": "2024-02-07T22:15:33.239477Z", - "shell.execute_reply": "2024-02-07T22:15:33.238940Z" + "iopub.execute_input": "2024-02-07T23:56:04.121683Z", + "iopub.status.busy": "2024-02-07T23:56:04.121265Z", + "iopub.status.idle": "2024-02-07T23:56:04.124434Z", + "shell.execute_reply": "2024-02-07T23:56:04.123985Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.241447Z", - "iopub.status.busy": "2024-02-07T22:15:33.241135Z", - "iopub.status.idle": "2024-02-07T22:15:33.248930Z", - "shell.execute_reply": "2024-02-07T22:15:33.248387Z" + "iopub.execute_input": "2024-02-07T23:56:04.126463Z", + "iopub.status.busy": "2024-02-07T23:56:04.126136Z", + "iopub.status.idle": "2024-02-07T23:56:04.133993Z", + "shell.execute_reply": "2024-02-07T23:56:04.133459Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.250950Z", - "iopub.status.busy": "2024-02-07T22:15:33.250645Z", - "iopub.status.idle": "2024-02-07T22:15:33.298657Z", - "shell.execute_reply": "2024-02-07T22:15:33.298050Z" + "iopub.execute_input": "2024-02-07T23:56:04.136023Z", + "iopub.status.busy": "2024-02-07T23:56:04.135616Z", + "iopub.status.idle": "2024-02-07T23:56:04.188425Z", + "shell.execute_reply": "2024-02-07T23:56:04.187883Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.300978Z", - "iopub.status.busy": "2024-02-07T22:15:33.300771Z", - "iopub.status.idle": "2024-02-07T22:15:33.318345Z", - "shell.execute_reply": "2024-02-07T22:15:33.317890Z" + "iopub.execute_input": "2024-02-07T23:56:04.190556Z", + "iopub.status.busy": "2024-02-07T23:56:04.190390Z", + "iopub.status.idle": "2024-02-07T23:56:04.206810Z", + "shell.execute_reply": "2024-02-07T23:56:04.206304Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.320328Z", - "iopub.status.busy": "2024-02-07T22:15:33.320023Z", - "iopub.status.idle": "2024-02-07T22:15:33.323869Z", - "shell.execute_reply": "2024-02-07T22:15:33.323430Z" + "iopub.execute_input": "2024-02-07T23:56:04.208783Z", + "iopub.status.busy": "2024-02-07T23:56:04.208482Z", + "iopub.status.idle": "2024-02-07T23:56:04.212185Z", + "shell.execute_reply": "2024-02-07T23:56:04.211662Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.325943Z", - "iopub.status.busy": "2024-02-07T22:15:33.325647Z", - "iopub.status.idle": "2024-02-07T22:15:33.356671Z", - "shell.execute_reply": "2024-02-07T22:15:33.356095Z" + "iopub.execute_input": "2024-02-07T23:56:04.214215Z", + "iopub.status.busy": "2024-02-07T23:56:04.213913Z", + "iopub.status.idle": "2024-02-07T23:56:04.240502Z", + "shell.execute_reply": "2024-02-07T23:56:04.240094Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.358903Z", - "iopub.status.busy": "2024-02-07T22:15:33.358588Z", - "iopub.status.idle": "2024-02-07T22:15:33.385755Z", - "shell.execute_reply": "2024-02-07T22:15:33.385132Z" + "iopub.execute_input": "2024-02-07T23:56:04.242411Z", + "iopub.status.busy": "2024-02-07T23:56:04.242089Z", + "iopub.status.idle": "2024-02-07T23:56:04.268227Z", + "shell.execute_reply": "2024-02-07T23:56:04.267681Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.388411Z", - "iopub.status.busy": "2024-02-07T22:15:33.388028Z", - "iopub.status.idle": "2024-02-07T22:15:35.180954Z", - "shell.execute_reply": "2024-02-07T22:15:35.180351Z" + "iopub.execute_input": "2024-02-07T23:56:04.270386Z", + "iopub.status.busy": "2024-02-07T23:56:04.270015Z", + "iopub.status.idle": "2024-02-07T23:56:05.942630Z", + "shell.execute_reply": "2024-02-07T23:56:05.942094Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.183842Z", - "iopub.status.busy": "2024-02-07T22:15:35.183215Z", - "iopub.status.idle": "2024-02-07T22:15:35.190451Z", - "shell.execute_reply": "2024-02-07T22:15:35.190006Z" + "iopub.execute_input": "2024-02-07T23:56:05.945098Z", + "iopub.status.busy": "2024-02-07T23:56:05.944826Z", + "iopub.status.idle": "2024-02-07T23:56:05.951226Z", + "shell.execute_reply": "2024-02-07T23:56:05.950773Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.192648Z", - "iopub.status.busy": "2024-02-07T22:15:35.192320Z", - "iopub.status.idle": "2024-02-07T22:15:35.204677Z", - "shell.execute_reply": "2024-02-07T22:15:35.204232Z" + "iopub.execute_input": "2024-02-07T23:56:05.953087Z", + "iopub.status.busy": "2024-02-07T23:56:05.952918Z", + "iopub.status.idle": "2024-02-07T23:56:05.965050Z", + "shell.execute_reply": "2024-02-07T23:56:05.964629Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.206669Z", - "iopub.status.busy": "2024-02-07T22:15:35.206301Z", - "iopub.status.idle": "2024-02-07T22:15:35.212711Z", - "shell.execute_reply": "2024-02-07T22:15:35.212172Z" + "iopub.execute_input": "2024-02-07T23:56:05.966796Z", + "iopub.status.busy": "2024-02-07T23:56:05.966628Z", + "iopub.status.idle": "2024-02-07T23:56:05.972874Z", + "shell.execute_reply": "2024-02-07T23:56:05.972451Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.214832Z", - "iopub.status.busy": "2024-02-07T22:15:35.214512Z", - "iopub.status.idle": "2024-02-07T22:15:35.217164Z", - "shell.execute_reply": "2024-02-07T22:15:35.216725Z" + "iopub.execute_input": "2024-02-07T23:56:05.974787Z", + "iopub.status.busy": "2024-02-07T23:56:05.974479Z", + "iopub.status.idle": "2024-02-07T23:56:05.977066Z", + "shell.execute_reply": "2024-02-07T23:56:05.976629Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.219050Z", - "iopub.status.busy": "2024-02-07T22:15:35.218733Z", - "iopub.status.idle": "2024-02-07T22:15:35.222281Z", - "shell.execute_reply": "2024-02-07T22:15:35.221820Z" + "iopub.execute_input": "2024-02-07T23:56:05.978834Z", + "iopub.status.busy": "2024-02-07T23:56:05.978668Z", + "iopub.status.idle": "2024-02-07T23:56:05.982198Z", + "shell.execute_reply": "2024-02-07T23:56:05.981653Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.224316Z", - "iopub.status.busy": "2024-02-07T22:15:35.224013Z", - "iopub.status.idle": "2024-02-07T22:15:35.226604Z", - "shell.execute_reply": "2024-02-07T22:15:35.226158Z" + "iopub.execute_input": "2024-02-07T23:56:05.984156Z", + "iopub.status.busy": "2024-02-07T23:56:05.983985Z", + "iopub.status.idle": "2024-02-07T23:56:05.986977Z", + "shell.execute_reply": "2024-02-07T23:56:05.986575Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.228645Z", - "iopub.status.busy": "2024-02-07T22:15:35.228343Z", - "iopub.status.idle": "2024-02-07T22:15:35.232335Z", - "shell.execute_reply": "2024-02-07T22:15:35.231904Z" + "iopub.execute_input": "2024-02-07T23:56:05.988801Z", + "iopub.status.busy": "2024-02-07T23:56:05.988634Z", + "iopub.status.idle": "2024-02-07T23:56:05.992758Z", + "shell.execute_reply": "2024-02-07T23:56:05.992305Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.234323Z", - "iopub.status.busy": "2024-02-07T22:15:35.234016Z", - "iopub.status.idle": "2024-02-07T22:15:35.263094Z", - "shell.execute_reply": "2024-02-07T22:15:35.262539Z" + "iopub.execute_input": "2024-02-07T23:56:05.994760Z", + "iopub.status.busy": "2024-02-07T23:56:05.994455Z", + "iopub.status.idle": "2024-02-07T23:56:06.022507Z", + "shell.execute_reply": "2024-02-07T23:56:06.022052Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.265344Z", - "iopub.status.busy": "2024-02-07T22:15:35.264967Z", - "iopub.status.idle": "2024-02-07T22:15:35.269602Z", - "shell.execute_reply": "2024-02-07T22:15:35.269145Z" + "iopub.execute_input": "2024-02-07T23:56:06.024458Z", + "iopub.status.busy": "2024-02-07T23:56:06.024139Z", + "iopub.status.idle": "2024-02-07T23:56:06.028445Z", + "shell.execute_reply": "2024-02-07T23:56:06.028024Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index c6ef453c4..5e9a4d29e 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -19,7 +19,7 @@ "Quickstart\n", "
\n", " \n", - "cleanlab finds label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find label issues in your multi-label dataset:\n", + "cleanlab finds data/label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find issues in your multi-label dataset:\n", "\n", "

\n", " \n", @@ -28,10 +28,10 @@ "\n", "# Assuming your dataset has a label column named 'label'\n", "lab = Datalab(dataset, label_name='label', task='multilabel')\n", + "# To detect more issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", "\n", - "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}})\n", - "\n", - "ranked_label_issues = lab.get_issues(\"label\").sort_values(\"label_score\")\n", + "lab.report()\n", "```\n", "\n", " \n", @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:38.074145Z", - "iopub.status.busy": "2024-02-07T22:15:38.073970Z", - "iopub.status.idle": "2024-02-07T22:15:39.203313Z", - "shell.execute_reply": "2024-02-07T22:15:39.202712Z" + "iopub.execute_input": "2024-02-07T23:56:08.687266Z", + "iopub.status.busy": "2024-02-07T23:56:08.687100Z", + "iopub.status.idle": "2024-02-07T23:56:09.754564Z", + "shell.execute_reply": "2024-02-07T23:56:09.754027Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.205859Z", - "iopub.status.busy": "2024-02-07T22:15:39.205596Z", - "iopub.status.idle": "2024-02-07T22:15:39.414109Z", - "shell.execute_reply": "2024-02-07T22:15:39.413479Z" + "iopub.execute_input": "2024-02-07T23:56:09.757160Z", + "iopub.status.busy": "2024-02-07T23:56:09.756746Z", + "iopub.status.idle": "2024-02-07T23:56:09.946615Z", + "shell.execute_reply": "2024-02-07T23:56:09.946097Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.416970Z", - "iopub.status.busy": "2024-02-07T22:15:39.416561Z", - "iopub.status.idle": "2024-02-07T22:15:39.429574Z", - "shell.execute_reply": "2024-02-07T22:15:39.429157Z" + "iopub.execute_input": "2024-02-07T23:56:09.949158Z", + "iopub.status.busy": "2024-02-07T23:56:09.948714Z", + "iopub.status.idle": "2024-02-07T23:56:09.961413Z", + "shell.execute_reply": "2024-02-07T23:56:09.960973Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.431695Z", - "iopub.status.busy": "2024-02-07T22:15:39.431290Z", - "iopub.status.idle": "2024-02-07T22:15:42.066450Z", - "shell.execute_reply": "2024-02-07T22:15:42.065835Z" + "iopub.execute_input": "2024-02-07T23:56:09.963377Z", + "iopub.status.busy": "2024-02-07T23:56:09.963052Z", + "iopub.status.idle": "2024-02-07T23:56:12.619380Z", + "shell.execute_reply": "2024-02-07T23:56:12.618822Z" } }, "outputs": [ @@ -452,10 +452,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:42.068923Z", - "iopub.status.busy": "2024-02-07T22:15:42.068564Z", - "iopub.status.idle": "2024-02-07T22:15:43.411615Z", - "shell.execute_reply": "2024-02-07T22:15:43.411041Z" + "iopub.execute_input": "2024-02-07T23:56:12.621613Z", + "iopub.status.busy": "2024-02-07T23:56:12.621277Z", + "iopub.status.idle": "2024-02-07T23:56:13.971194Z", + "shell.execute_reply": "2024-02-07T23:56:13.970652Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:43.414000Z", - "iopub.status.busy": "2024-02-07T22:15:43.413818Z", - "iopub.status.idle": "2024-02-07T22:15:43.417446Z", - "shell.execute_reply": "2024-02-07T22:15:43.416934Z" + "iopub.execute_input": "2024-02-07T23:56:13.973499Z", + "iopub.status.busy": "2024-02-07T23:56:13.973162Z", + "iopub.status.idle": "2024-02-07T23:56:13.977165Z", + "shell.execute_reply": "2024-02-07T23:56:13.976701Z" } }, "outputs": [ @@ -542,10 +542,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:43.419309Z", - "iopub.status.busy": "2024-02-07T22:15:43.419135Z", - "iopub.status.idle": "2024-02-07T22:15:45.207494Z", - "shell.execute_reply": "2024-02-07T22:15:45.206816Z" + "iopub.execute_input": "2024-02-07T23:56:13.979194Z", + "iopub.status.busy": "2024-02-07T23:56:13.978885Z", + "iopub.status.idle": "2024-02-07T23:56:15.657571Z", + "shell.execute_reply": "2024-02-07T23:56:15.657005Z" } }, "outputs": [ @@ -592,10 +592,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:45.210051Z", - "iopub.status.busy": "2024-02-07T22:15:45.209488Z", - "iopub.status.idle": "2024-02-07T22:15:45.217636Z", - "shell.execute_reply": "2024-02-07T22:15:45.217158Z" + "iopub.execute_input": "2024-02-07T23:56:15.660326Z", + "iopub.status.busy": "2024-02-07T23:56:15.659641Z", + "iopub.status.idle": "2024-02-07T23:56:15.667026Z", + "shell.execute_reply": "2024-02-07T23:56:15.666496Z" } }, "outputs": [ @@ -631,10 +631,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:45.219651Z", - "iopub.status.busy": "2024-02-07T22:15:45.219310Z", - "iopub.status.idle": "2024-02-07T22:15:47.808437Z", - "shell.execute_reply": "2024-02-07T22:15:47.807942Z" + "iopub.execute_input": "2024-02-07T23:56:15.669181Z", + "iopub.status.busy": "2024-02-07T23:56:15.668872Z", + "iopub.status.idle": "2024-02-07T23:56:18.270814Z", + "shell.execute_reply": "2024-02-07T23:56:18.270242Z" } }, "outputs": [ @@ -669,10 +669,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.810738Z", - "iopub.status.busy": "2024-02-07T22:15:47.810301Z", - "iopub.status.idle": "2024-02-07T22:15:47.813993Z", - "shell.execute_reply": "2024-02-07T22:15:47.813455Z" + "iopub.execute_input": "2024-02-07T23:56:18.273199Z", + "iopub.status.busy": "2024-02-07T23:56:18.272850Z", + "iopub.status.idle": "2024-02-07T23:56:18.276268Z", + "shell.execute_reply": "2024-02-07T23:56:18.275699Z" } }, "outputs": [ @@ -691,6 +691,16 @@ "print(f\"Label quality scores of the first 10 examples in dataset:\\n{scores[:10]}\")" ] }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d6", + "metadata": {}, + "source": [ + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset.\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks)." + ] + }, { "cell_type": "markdown", "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d5", @@ -707,10 +717,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.815974Z", - "iopub.status.busy": "2024-02-07T22:15:47.815684Z", - "iopub.status.idle": "2024-02-07T22:15:47.819808Z", - "shell.execute_reply": "2024-02-07T22:15:47.819250Z" + "iopub.execute_input": "2024-02-07T23:56:18.278300Z", + "iopub.status.busy": "2024-02-07T23:56:18.277998Z", + "iopub.status.idle": "2024-02-07T23:56:18.282388Z", + "shell.execute_reply": "2024-02-07T23:56:18.281980Z" } }, "outputs": [], @@ -733,10 +743,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.821661Z", - "iopub.status.busy": "2024-02-07T22:15:47.821392Z", - "iopub.status.idle": "2024-02-07T22:15:47.824553Z", - "shell.execute_reply": "2024-02-07T22:15:47.824004Z" + "iopub.execute_input": "2024-02-07T23:56:18.284367Z", + "iopub.status.busy": "2024-02-07T23:56:18.284047Z", + "iopub.status.idle": "2024-02-07T23:56:18.286987Z", + "shell.execute_reply": "2024-02-07T23:56:18.286563Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index bd98ee443..74d92a714 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:50.447928Z", - "iopub.status.busy": "2024-02-07T22:15:50.447758Z", - "iopub.status.idle": "2024-02-07T22:15:51.564104Z", - "shell.execute_reply": "2024-02-07T22:15:51.563498Z" + "iopub.execute_input": "2024-02-07T23:56:20.562684Z", + "iopub.status.busy": "2024-02-07T23:56:20.562520Z", + "iopub.status.idle": "2024-02-07T23:56:21.638239Z", + "shell.execute_reply": "2024-02-07T23:56:21.637675Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:51.566518Z", - "iopub.status.busy": "2024-02-07T22:15:51.566240Z", - "iopub.status.idle": "2024-02-07T22:15:52.801961Z", - "shell.execute_reply": "2024-02-07T22:15:52.801317Z" + "iopub.execute_input": "2024-02-07T23:56:21.640925Z", + "iopub.status.busy": "2024-02-07T23:56:21.640505Z", + "iopub.status.idle": "2024-02-07T23:56:22.688443Z", + "shell.execute_reply": "2024-02-07T23:56:22.687829Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.804419Z", - "iopub.status.busy": "2024-02-07T22:15:52.804219Z", - "iopub.status.idle": "2024-02-07T22:15:52.807410Z", - "shell.execute_reply": "2024-02-07T22:15:52.806937Z" + "iopub.execute_input": "2024-02-07T23:56:22.690921Z", + "iopub.status.busy": "2024-02-07T23:56:22.690540Z", + "iopub.status.idle": "2024-02-07T23:56:22.693716Z", + "shell.execute_reply": "2024-02-07T23:56:22.693271Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.809336Z", - "iopub.status.busy": "2024-02-07T22:15:52.809039Z", - "iopub.status.idle": "2024-02-07T22:15:52.815182Z", - "shell.execute_reply": "2024-02-07T22:15:52.814647Z" + "iopub.execute_input": "2024-02-07T23:56:22.695625Z", + "iopub.status.busy": "2024-02-07T23:56:22.695302Z", + "iopub.status.idle": "2024-02-07T23:56:22.701268Z", + "shell.execute_reply": "2024-02-07T23:56:22.700863Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.817367Z", - "iopub.status.busy": "2024-02-07T22:15:52.816989Z", - "iopub.status.idle": "2024-02-07T22:15:53.308064Z", - "shell.execute_reply": "2024-02-07T22:15:53.307480Z" + "iopub.execute_input": "2024-02-07T23:56:22.703196Z", + "iopub.status.busy": "2024-02-07T23:56:22.702938Z", + "iopub.status.idle": "2024-02-07T23:56:23.186186Z", + "shell.execute_reply": "2024-02-07T23:56:23.185652Z" }, "scrolled": true }, @@ -238,10 +238,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.310939Z", - "iopub.status.busy": "2024-02-07T22:15:53.310566Z", - "iopub.status.idle": "2024-02-07T22:15:53.315939Z", - "shell.execute_reply": "2024-02-07T22:15:53.315394Z" + "iopub.execute_input": "2024-02-07T23:56:23.188813Z", + "iopub.status.busy": "2024-02-07T23:56:23.188488Z", + "iopub.status.idle": "2024-02-07T23:56:23.193539Z", + "shell.execute_reply": "2024-02-07T23:56:23.193126Z" } }, "outputs": [ @@ -493,10 +493,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.317995Z", - "iopub.status.busy": "2024-02-07T22:15:53.317689Z", - "iopub.status.idle": "2024-02-07T22:15:53.321394Z", - "shell.execute_reply": "2024-02-07T22:15:53.320912Z" + "iopub.execute_input": "2024-02-07T23:56:23.195528Z", + "iopub.status.busy": "2024-02-07T23:56:23.195222Z", + "iopub.status.idle": "2024-02-07T23:56:23.199084Z", + "shell.execute_reply": "2024-02-07T23:56:23.198542Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.323449Z", - "iopub.status.busy": "2024-02-07T22:15:53.323111Z", - "iopub.status.idle": "2024-02-07T22:15:54.015545Z", - "shell.execute_reply": "2024-02-07T22:15:54.014869Z" + "iopub.execute_input": "2024-02-07T23:56:23.201119Z", + "iopub.status.busy": "2024-02-07T23:56:23.200823Z", + "iopub.status.idle": "2024-02-07T23:56:23.836419Z", + "shell.execute_reply": "2024-02-07T23:56:23.835758Z" } }, "outputs": [ @@ -612,10 +612,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.018097Z", - "iopub.status.busy": "2024-02-07T22:15:54.017708Z", - "iopub.status.idle": "2024-02-07T22:15:54.187878Z", - "shell.execute_reply": "2024-02-07T22:15:54.187411Z" + "iopub.execute_input": "2024-02-07T23:56:23.838728Z", + "iopub.status.busy": "2024-02-07T23:56:23.838526Z", + "iopub.status.idle": "2024-02-07T23:56:23.988464Z", + "shell.execute_reply": "2024-02-07T23:56:23.988047Z" } }, "outputs": [ @@ -656,10 +656,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.189935Z", - "iopub.status.busy": "2024-02-07T22:15:54.189745Z", - "iopub.status.idle": "2024-02-07T22:15:54.194222Z", - "shell.execute_reply": "2024-02-07T22:15:54.193779Z" + "iopub.execute_input": "2024-02-07T23:56:23.990471Z", + "iopub.status.busy": "2024-02-07T23:56:23.990165Z", + "iopub.status.idle": "2024-02-07T23:56:23.994186Z", + "shell.execute_reply": "2024-02-07T23:56:23.993763Z" } }, "outputs": [ @@ -696,10 +696,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.196260Z", - "iopub.status.busy": "2024-02-07T22:15:54.195894Z", - "iopub.status.idle": "2024-02-07T22:15:54.649689Z", - "shell.execute_reply": "2024-02-07T22:15:54.649109Z" + "iopub.execute_input": "2024-02-07T23:56:23.996117Z", + "iopub.status.busy": "2024-02-07T23:56:23.995822Z", + "iopub.status.idle": "2024-02-07T23:56:24.434799Z", + "shell.execute_reply": "2024-02-07T23:56:24.434220Z" } }, "outputs": [ @@ -758,10 +758,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.652534Z", - "iopub.status.busy": "2024-02-07T22:15:54.652158Z", - "iopub.status.idle": "2024-02-07T22:15:54.984855Z", - "shell.execute_reply": "2024-02-07T22:15:54.984298Z" + "iopub.execute_input": "2024-02-07T23:56:24.437281Z", + "iopub.status.busy": "2024-02-07T23:56:24.436886Z", + "iopub.status.idle": "2024-02-07T23:56:24.768783Z", + "shell.execute_reply": "2024-02-07T23:56:24.768200Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.987521Z", - "iopub.status.busy": "2024-02-07T22:15:54.987189Z", - "iopub.status.idle": "2024-02-07T22:15:55.470495Z", - "shell.execute_reply": "2024-02-07T22:15:55.469879Z" + "iopub.execute_input": "2024-02-07T23:56:24.771064Z", + "iopub.status.busy": "2024-02-07T23:56:24.770889Z", + "iopub.status.idle": "2024-02-07T23:56:25.250367Z", + "shell.execute_reply": "2024-02-07T23:56:25.249843Z" } }, "outputs": [ @@ -858,10 +858,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:55.475223Z", - "iopub.status.busy": "2024-02-07T22:15:55.474845Z", - "iopub.status.idle": "2024-02-07T22:15:55.916362Z", - "shell.execute_reply": "2024-02-07T22:15:55.915780Z" + "iopub.execute_input": "2024-02-07T23:56:25.254651Z", + "iopub.status.busy": "2024-02-07T23:56:25.254288Z", + "iopub.status.idle": "2024-02-07T23:56:25.662812Z", + "shell.execute_reply": "2024-02-07T23:56:25.662264Z" } }, "outputs": [ @@ -921,10 +921,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:55.920172Z", - "iopub.status.busy": "2024-02-07T22:15:55.919985Z", - "iopub.status.idle": "2024-02-07T22:15:56.369242Z", - "shell.execute_reply": "2024-02-07T22:15:56.368651Z" + "iopub.execute_input": "2024-02-07T23:56:25.666313Z", + "iopub.status.busy": "2024-02-07T23:56:25.665961Z", + "iopub.status.idle": "2024-02-07T23:56:26.090422Z", + "shell.execute_reply": "2024-02-07T23:56:26.089821Z" } }, "outputs": [ @@ -967,10 +967,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.372426Z", - "iopub.status.busy": "2024-02-07T22:15:56.372048Z", - "iopub.status.idle": "2024-02-07T22:15:56.587116Z", - "shell.execute_reply": "2024-02-07T22:15:56.586546Z" + "iopub.execute_input": "2024-02-07T23:56:26.093719Z", + "iopub.status.busy": "2024-02-07T23:56:26.093346Z", + "iopub.status.idle": "2024-02-07T23:56:26.281170Z", + "shell.execute_reply": "2024-02-07T23:56:26.280571Z" } }, "outputs": [ @@ -1013,10 +1013,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.589448Z", - "iopub.status.busy": "2024-02-07T22:15:56.589113Z", - "iopub.status.idle": "2024-02-07T22:15:56.788433Z", - "shell.execute_reply": "2024-02-07T22:15:56.787907Z" + "iopub.execute_input": "2024-02-07T23:56:26.283283Z", + "iopub.status.busy": "2024-02-07T23:56:26.283103Z", + "iopub.status.idle": "2024-02-07T23:56:26.463218Z", + "shell.execute_reply": "2024-02-07T23:56:26.462690Z" } }, "outputs": [ @@ -1051,10 +1051,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.790786Z", - "iopub.status.busy": "2024-02-07T22:15:56.790442Z", - "iopub.status.idle": "2024-02-07T22:15:56.793953Z", - "shell.execute_reply": "2024-02-07T22:15:56.793508Z" + "iopub.execute_input": "2024-02-07T23:56:26.465892Z", + "iopub.status.busy": "2024-02-07T23:56:26.465487Z", + "iopub.status.idle": "2024-02-07T23:56:26.468734Z", + "shell.execute_reply": "2024-02-07T23:56:26.468320Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index a17f8d98c..216232f6b 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:59.020657Z", - "iopub.status.busy": "2024-02-07T22:15:59.020490Z", - "iopub.status.idle": "2024-02-07T22:16:01.758945Z", - "shell.execute_reply": "2024-02-07T22:16:01.758382Z" + "iopub.execute_input": "2024-02-07T23:56:28.439526Z", + "iopub.status.busy": "2024-02-07T23:56:28.439052Z", + "iopub.status.idle": "2024-02-07T23:56:31.054002Z", + "shell.execute_reply": "2024-02-07T23:56:31.053462Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:01.761638Z", - "iopub.status.busy": "2024-02-07T22:16:01.761143Z", - "iopub.status.idle": "2024-02-07T22:16:02.096462Z", - "shell.execute_reply": "2024-02-07T22:16:02.095807Z" + "iopub.execute_input": "2024-02-07T23:56:31.056612Z", + "iopub.status.busy": "2024-02-07T23:56:31.056130Z", + "iopub.status.idle": "2024-02-07T23:56:31.365716Z", + "shell.execute_reply": "2024-02-07T23:56:31.365105Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:02.099057Z", - "iopub.status.busy": "2024-02-07T22:16:02.098634Z", - "iopub.status.idle": "2024-02-07T22:16:02.102883Z", - "shell.execute_reply": "2024-02-07T22:16:02.102346Z" + "iopub.execute_input": "2024-02-07T23:56:31.368552Z", + "iopub.status.busy": "2024-02-07T23:56:31.368013Z", + "iopub.status.idle": "2024-02-07T23:56:31.372079Z", + "shell.execute_reply": "2024-02-07T23:56:31.371533Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:02.105213Z", - "iopub.status.busy": "2024-02-07T22:16:02.104839Z", - "iopub.status.idle": "2024-02-07T22:16:07.269555Z", - "shell.execute_reply": "2024-02-07T22:16:07.268968Z" + "iopub.execute_input": "2024-02-07T23:56:31.374309Z", + "iopub.status.busy": "2024-02-07T23:56:31.373857Z", + "iopub.status.idle": "2024-02-07T23:56:35.799516Z", + "shell.execute_reply": "2024-02-07T23:56:35.798918Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 458752/170498071 [00:00<00:37, 4545271.76it/s]" + " 1%| | 1802240/170498071 [00:00<00:09, 17679640.48it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3309568/170498071 [00:00<00:08, 18583304.64it/s]" + " 7%|▋ | 12124160/170498071 [00:00<00:02, 67499577.03it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 6193152/170498071 [00:00<00:07, 23121327.17it/s]" + " 13%|█▎ | 23003136/170498071 [00:00<00:01, 86235389.73it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 9076736/170498071 [00:00<00:06, 25243096.18it/s]" + " 19%|█▉ | 32899072/170498071 [00:00<00:01, 91230976.11it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11960320/170498071 [00:00<00:05, 26449931.31it/s]" + " 25%|██▌ | 43384832/170498071 [00:00<00:01, 96066497.78it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 14843904/170498071 [00:00<00:05, 27180695.70it/s]" + " 32%|███▏ | 53739520/170498071 [00:00<00:01, 98584790.93it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17727488/170498071 [00:00<00:05, 27645215.87it/s]" + " 38%|███▊ | 64028672/170498071 [00:00<00:01, 99955094.01it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20611072/170498071 [00:00<00:05, 27960133.49it/s]" + " 44%|████▍ | 74874880/170498071 [00:00<00:00, 102643580.09it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 23494656/170498071 [00:00<00:05, 28127845.66it/s]" + " 50%|████▉ | 85164032/170498071 [00:00<00:00, 101368779.28it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 26378240/170498071 [00:01<00:05, 28294948.20it/s]" + " 57%|█████▋ | 96403456/170498071 [00:01<00:00, 104721663.01it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29261824/170498071 [00:01<00:04, 28399986.90it/s]" + " 63%|██████▎ | 106889216/170498071 [00:01<00:00, 102308446.63it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32407552/170498071 [00:01<00:04, 29288533.69it/s]" + " 69%|██████▉ | 118259712/170498071 [00:01<00:00, 105670851.32it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37421056/170498071 [00:01<00:03, 35559850.79it/s]" + " 76%|███████▌ | 128876544/170498071 [00:01<00:00, 102956737.54it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43909120/170498071 [00:01<00:02, 44377286.88it/s]" + " 82%|████████▏ | 140181504/170498071 [00:01<00:00, 105850590.83it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52068352/170498071 [00:01<00:02, 55525436.53it/s]" + " 88%|████████▊ | 150798336/170498071 [00:01<00:00, 103312662.70it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61669376/170498071 [00:01<00:01, 67657342.80it/s]" + " 95%|█████████▍| 161841152/170498071 [00:01<00:00, 105282046.90it/s]" ] }, { @@ -380,79 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73203712/170498071 [00:01<00:01, 81953829.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 84672512/170498071 [00:01<00:00, 91732954.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 96272384/170498071 [00:01<00:00, 98948948.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107741184/170498071 [00:02<00:00, 103611942.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 119275520/170498071 [00:02<00:00, 107040423.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 130777088/170498071 [00:02<00:00, 109403134.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 142311424/170498071 [00:02<00:00, 111129043.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 153812992/170498071 [00:02<00:00, 112217547.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165412864/170498071 [00:02<00:00, 113296111.93it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 66708420.75it/s] " + "100%|██████████| 170498071/170498071 [00:01<00:00, 99133860.68it/s] " ] }, { @@ -570,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.271763Z", - "iopub.status.busy": "2024-02-07T22:16:07.271561Z", - "iopub.status.idle": "2024-02-07T22:16:07.276376Z", - "shell.execute_reply": "2024-02-07T22:16:07.275905Z" + "iopub.execute_input": "2024-02-07T23:56:35.802008Z", + "iopub.status.busy": "2024-02-07T23:56:35.801591Z", + "iopub.status.idle": "2024-02-07T23:56:35.806302Z", + "shell.execute_reply": "2024-02-07T23:56:35.805886Z" }, "nbsphinx": "hidden" }, @@ -624,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.278274Z", - "iopub.status.busy": "2024-02-07T22:16:07.277964Z", - "iopub.status.idle": "2024-02-07T22:16:07.830552Z", - "shell.execute_reply": "2024-02-07T22:16:07.829958Z" + "iopub.execute_input": "2024-02-07T23:56:35.808410Z", + "iopub.status.busy": "2024-02-07T23:56:35.808083Z", + "iopub.status.idle": "2024-02-07T23:56:36.353076Z", + "shell.execute_reply": "2024-02-07T23:56:36.352508Z" } }, "outputs": [ @@ -660,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.832750Z", - "iopub.status.busy": "2024-02-07T22:16:07.832421Z", - "iopub.status.idle": "2024-02-07T22:16:08.355543Z", - "shell.execute_reply": "2024-02-07T22:16:08.354936Z" + "iopub.execute_input": "2024-02-07T23:56:36.355346Z", + "iopub.status.busy": "2024-02-07T23:56:36.354914Z", + "iopub.status.idle": "2024-02-07T23:56:36.873202Z", + "shell.execute_reply": "2024-02-07T23:56:36.872720Z" } }, "outputs": [ @@ -701,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:08.357548Z", - "iopub.status.busy": "2024-02-07T22:16:08.357358Z", - "iopub.status.idle": "2024-02-07T22:16:08.361026Z", - "shell.execute_reply": "2024-02-07T22:16:08.360580Z" + "iopub.execute_input": "2024-02-07T23:56:36.875189Z", + "iopub.status.busy": "2024-02-07T23:56:36.875002Z", + "iopub.status.idle": "2024-02-07T23:56:36.878463Z", + "shell.execute_reply": "2024-02-07T23:56:36.878026Z" } }, "outputs": [], @@ -727,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:08.362757Z", - "iopub.status.busy": "2024-02-07T22:16:08.362583Z", - "iopub.status.idle": "2024-02-07T22:16:20.966537Z", - "shell.execute_reply": "2024-02-07T22:16:20.965959Z" + "iopub.execute_input": "2024-02-07T23:56:36.880489Z", + "iopub.status.busy": "2024-02-07T23:56:36.880123Z", + "iopub.status.idle": "2024-02-07T23:56:49.380652Z", + "shell.execute_reply": "2024-02-07T23:56:49.380045Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "066739a4f86b491c983744119357f90a", + "model_id": "104aeedd0a604fe19bdfe63c8894bf8c", "version_major": 2, "version_minor": 0 }, @@ -796,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:20.968884Z", - "iopub.status.busy": "2024-02-07T22:16:20.968576Z", - "iopub.status.idle": "2024-02-07T22:16:22.543906Z", - "shell.execute_reply": "2024-02-07T22:16:22.543395Z" + "iopub.execute_input": "2024-02-07T23:56:49.383110Z", + "iopub.status.busy": "2024-02-07T23:56:49.382718Z", + "iopub.status.idle": "2024-02-07T23:56:50.973179Z", + "shell.execute_reply": "2024-02-07T23:56:50.972522Z" } }, "outputs": [ @@ -843,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:22.546319Z", - "iopub.status.busy": "2024-02-07T22:16:22.545932Z", - "iopub.status.idle": "2024-02-07T22:16:22.972593Z", - "shell.execute_reply": "2024-02-07T22:16:22.971973Z" + "iopub.execute_input": "2024-02-07T23:56:50.975995Z", + "iopub.status.busy": "2024-02-07T23:56:50.975507Z", + "iopub.status.idle": "2024-02-07T23:56:51.398007Z", + "shell.execute_reply": "2024-02-07T23:56:51.397417Z" } }, "outputs": [ @@ -882,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:22.974994Z", - "iopub.status.busy": "2024-02-07T22:16:22.974798Z", - "iopub.status.idle": "2024-02-07T22:16:23.625666Z", - "shell.execute_reply": "2024-02-07T22:16:23.625005Z" + "iopub.execute_input": "2024-02-07T23:56:51.400644Z", + "iopub.status.busy": "2024-02-07T23:56:51.400427Z", + "iopub.status.idle": "2024-02-07T23:56:52.063578Z", + "shell.execute_reply": "2024-02-07T23:56:52.063073Z" } }, "outputs": [ @@ -935,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:23.628615Z", - "iopub.status.busy": "2024-02-07T22:16:23.628134Z", - "iopub.status.idle": "2024-02-07T22:16:23.967563Z", - "shell.execute_reply": "2024-02-07T22:16:23.967044Z" + "iopub.execute_input": "2024-02-07T23:56:52.066513Z", + "iopub.status.busy": "2024-02-07T23:56:52.066076Z", + "iopub.status.idle": "2024-02-07T23:56:52.406672Z", + "shell.execute_reply": "2024-02-07T23:56:52.406143Z" } }, "outputs": [ @@ -986,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:23.969758Z", - "iopub.status.busy": "2024-02-07T22:16:23.969409Z", - "iopub.status.idle": "2024-02-07T22:16:24.216721Z", - "shell.execute_reply": "2024-02-07T22:16:24.216100Z" + "iopub.execute_input": "2024-02-07T23:56:52.408986Z", + "iopub.status.busy": "2024-02-07T23:56:52.408584Z", + "iopub.status.idle": "2024-02-07T23:56:52.649620Z", + "shell.execute_reply": "2024-02-07T23:56:52.649039Z" } }, "outputs": [ @@ -1045,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:24.219590Z", - "iopub.status.busy": "2024-02-07T22:16:24.219135Z", - "iopub.status.idle": "2024-02-07T22:16:24.306780Z", - "shell.execute_reply": "2024-02-07T22:16:24.306300Z" + "iopub.execute_input": "2024-02-07T23:56:52.652114Z", + "iopub.status.busy": "2024-02-07T23:56:52.651671Z", + "iopub.status.idle": "2024-02-07T23:56:52.738340Z", + "shell.execute_reply": "2024-02-07T23:56:52.737865Z" } }, "outputs": [], @@ -1069,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:24.309196Z", - "iopub.status.busy": "2024-02-07T22:16:24.308835Z", - "iopub.status.idle": "2024-02-07T22:16:34.736929Z", - "shell.execute_reply": "2024-02-07T22:16:34.736344Z" + "iopub.execute_input": "2024-02-07T23:56:52.740933Z", + "iopub.status.busy": "2024-02-07T23:56:52.740576Z", + "iopub.status.idle": "2024-02-07T23:57:02.887449Z", + "shell.execute_reply": "2024-02-07T23:57:02.886809Z" } }, "outputs": [ @@ -1109,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:34.739237Z", - "iopub.status.busy": "2024-02-07T22:16:34.738874Z", - "iopub.status.idle": "2024-02-07T22:16:36.458553Z", - "shell.execute_reply": "2024-02-07T22:16:36.458057Z" + "iopub.execute_input": "2024-02-07T23:57:02.889811Z", + "iopub.status.busy": "2024-02-07T23:57:02.889604Z", + "iopub.status.idle": "2024-02-07T23:57:04.558953Z", + "shell.execute_reply": "2024-02-07T23:57:04.558434Z" } }, "outputs": [ @@ -1143,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.461205Z", - "iopub.status.busy": "2024-02-07T22:16:36.460735Z", - "iopub.status.idle": "2024-02-07T22:16:36.666276Z", - "shell.execute_reply": "2024-02-07T22:16:36.665777Z" + "iopub.execute_input": "2024-02-07T23:57:04.561779Z", + "iopub.status.busy": "2024-02-07T23:57:04.561169Z", + "iopub.status.idle": "2024-02-07T23:57:04.762684Z", + "shell.execute_reply": "2024-02-07T23:57:04.762087Z" } }, "outputs": [], @@ -1160,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.668659Z", - "iopub.status.busy": "2024-02-07T22:16:36.668383Z", - "iopub.status.idle": "2024-02-07T22:16:36.671525Z", - "shell.execute_reply": "2024-02-07T22:16:36.671082Z" + "iopub.execute_input": "2024-02-07T23:57:04.765111Z", + "iopub.status.busy": "2024-02-07T23:57:04.764820Z", + "iopub.status.idle": "2024-02-07T23:57:04.768733Z", + "shell.execute_reply": "2024-02-07T23:57:04.768164Z" } }, "outputs": [], @@ -1185,10 +1113,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.673575Z", - "iopub.status.busy": "2024-02-07T22:16:36.673247Z", - "iopub.status.idle": "2024-02-07T22:16:36.681282Z", - "shell.execute_reply": "2024-02-07T22:16:36.680824Z" + "iopub.execute_input": "2024-02-07T23:57:04.770734Z", + "iopub.status.busy": "2024-02-07T23:57:04.770350Z", + "iopub.status.idle": "2024-02-07T23:57:04.778478Z", + "shell.execute_reply": "2024-02-07T23:57:04.777929Z" }, "nbsphinx": "hidden" }, @@ -1233,7 +1161,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "066739a4f86b491c983744119357f90a": { + "104aeedd0a604fe19bdfe63c8894bf8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1248,16 +1176,117 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ac761b251bf94ac9b0515c7eb6ee1128", - "IPY_MODEL_a1e5d5eb3b654519bf26e1ee9e662af1", - "IPY_MODEL_ca3c262c376348b19cf1a806479ad0db" + "IPY_MODEL_37c709610cb741598ce0fdabdd829a1f", + "IPY_MODEL_3c821a5c04e64080a5c2d282f35cf242", + "IPY_MODEL_b7cdd7b611234dd7b53f21dd82a37bff" ], - "layout": "IPY_MODEL_7e888ca97822424f9f86d33f0a92b841", + "layout": "IPY_MODEL_be9dd8679029459f89b7c573872bbc61", "tabbable": null, "tooltip": null } }, - "202ea01d0cff416598f8d3b0d2955b06": { + "321e616c64df4e09a970b3f7ec6cdbe6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "37c709610cb741598ce0fdabdd829a1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_78f759523bc5438db78dcf67a29e7173", + "placeholder": "​", + "style": "IPY_MODEL_696e209101d0447183117bc6c5127dfa", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "3c821a5c04e64080a5c2d282f35cf242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69b8a3af8a8046a3a365aa1b96478a70", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_321e616c64df4e09a970b3f7ec6cdbe6", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "47cbbee3f2fb454db90d7a7c5417178e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "696e209101d0447183117bc6c5127dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69b8a3af8a8046a3a365aa1b96478a70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1310,23 +1339,7 @@ "width": null } }, - "5cce777711da484bb13b928829116979": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7e888ca97822424f9f86d33f0a92b841": { + "78f759523bc5438db78dcf67a29e7173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1379,92 +1392,7 @@ "width": null } }, - "7e950bd1f02e4e56940be6dd48802232": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1e5d5eb3b654519bf26e1ee9e662af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_202ea01d0cff416598f8d3b0d2955b06", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5cce777711da484bb13b928829116979", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "aba4b388c9074a3db4555b9eec74dbed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ac761b251bf94ac9b0515c7eb6ee1128": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0ffc152011e4313bb22edae8168843e", - "placeholder": "​", - "style": "IPY_MODEL_7e950bd1f02e4e56940be6dd48802232", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "c0ffc152011e4313bb22edae8168843e": { + "8135528dc3304bc5887731c6b6773be0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1517,7 +1445,7 @@ "width": null } }, - "ca3c262c376348b19cf1a806479ad0db": { + "b7cdd7b611234dd7b53f21dd82a37bff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1532,15 +1460,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc78c8afb40d44d585718c7ac9cacbe8", + "layout": "IPY_MODEL_8135528dc3304bc5887731c6b6773be0", "placeholder": "​", - "style": "IPY_MODEL_aba4b388c9074a3db4555b9eec74dbed", + "style": "IPY_MODEL_47cbbee3f2fb454db90d7a7c5417178e", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 300MB/s]" + "value": " 102M/102M [00:00<00:00, 208MB/s]" } }, - "fc78c8afb40d44d585718c7ac9cacbe8": { + "be9dd8679029459f89b7c573872bbc61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 6460b1da7..f14378353 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:41.001585Z", - "iopub.status.busy": "2024-02-07T22:16:41.001035Z", - "iopub.status.idle": "2024-02-07T22:16:42.113233Z", - "shell.execute_reply": "2024-02-07T22:16:42.112677Z" + "iopub.execute_input": "2024-02-07T23:57:09.007821Z", + "iopub.status.busy": "2024-02-07T23:57:09.007615Z", + "iopub.status.idle": "2024-02-07T23:57:10.072485Z", + "shell.execute_reply": "2024-02-07T23:57:10.071948Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.115952Z", - "iopub.status.busy": "2024-02-07T22:16:42.115427Z", - "iopub.status.idle": "2024-02-07T22:16:42.133567Z", - "shell.execute_reply": "2024-02-07T22:16:42.133124Z" + "iopub.execute_input": "2024-02-07T23:57:10.074834Z", + "iopub.status.busy": "2024-02-07T23:57:10.074594Z", + "iopub.status.idle": "2024-02-07T23:57:10.092876Z", + "shell.execute_reply": "2024-02-07T23:57:10.092428Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.135930Z", - "iopub.status.busy": "2024-02-07T22:16:42.135528Z", - "iopub.status.idle": "2024-02-07T22:16:42.138579Z", - "shell.execute_reply": "2024-02-07T22:16:42.138043Z" + "iopub.execute_input": "2024-02-07T23:57:10.095294Z", + "iopub.status.busy": "2024-02-07T23:57:10.094881Z", + "iopub.status.idle": "2024-02-07T23:57:10.097914Z", + "shell.execute_reply": "2024-02-07T23:57:10.097396Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.140671Z", - "iopub.status.busy": "2024-02-07T22:16:42.140370Z", - "iopub.status.idle": "2024-02-07T22:16:42.204946Z", - "shell.execute_reply": "2024-02-07T22:16:42.204403Z" + "iopub.execute_input": "2024-02-07T23:57:10.099990Z", + "iopub.status.busy": "2024-02-07T23:57:10.099668Z", + "iopub.status.idle": "2024-02-07T23:57:10.155253Z", + "shell.execute_reply": "2024-02-07T23:57:10.154741Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.207190Z", - "iopub.status.busy": "2024-02-07T22:16:42.206799Z", - "iopub.status.idle": "2024-02-07T22:16:42.385929Z", - "shell.execute_reply": "2024-02-07T22:16:42.385435Z" + "iopub.execute_input": "2024-02-07T23:57:10.157365Z", + "iopub.status.busy": "2024-02-07T23:57:10.156978Z", + "iopub.status.idle": "2024-02-07T23:57:10.331972Z", + "shell.execute_reply": "2024-02-07T23:57:10.331386Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.388432Z", - "iopub.status.busy": "2024-02-07T22:16:42.388089Z", - "iopub.status.idle": "2024-02-07T22:16:42.607298Z", - "shell.execute_reply": "2024-02-07T22:16:42.606720Z" + "iopub.execute_input": "2024-02-07T23:57:10.334267Z", + "iopub.status.busy": "2024-02-07T23:57:10.334002Z", + "iopub.status.idle": "2024-02-07T23:57:10.541166Z", + "shell.execute_reply": "2024-02-07T23:57:10.540646Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.609580Z", - "iopub.status.busy": "2024-02-07T22:16:42.609148Z", - "iopub.status.idle": "2024-02-07T22:16:42.613684Z", - "shell.execute_reply": "2024-02-07T22:16:42.613262Z" + "iopub.execute_input": "2024-02-07T23:57:10.543123Z", + "iopub.status.busy": "2024-02-07T23:57:10.542912Z", + "iopub.status.idle": "2024-02-07T23:57:10.547063Z", + "shell.execute_reply": "2024-02-07T23:57:10.546643Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.615732Z", - "iopub.status.busy": "2024-02-07T22:16:42.615409Z", - "iopub.status.idle": "2024-02-07T22:16:42.621064Z", - "shell.execute_reply": "2024-02-07T22:16:42.620649Z" + "iopub.execute_input": "2024-02-07T23:57:10.549116Z", + "iopub.status.busy": "2024-02-07T23:57:10.548782Z", + "iopub.status.idle": "2024-02-07T23:57:10.554644Z", + "shell.execute_reply": "2024-02-07T23:57:10.554206Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.623161Z", - "iopub.status.busy": "2024-02-07T22:16:42.622751Z", - "iopub.status.idle": "2024-02-07T22:16:42.625299Z", - "shell.execute_reply": "2024-02-07T22:16:42.624875Z" + "iopub.execute_input": "2024-02-07T23:57:10.556665Z", + "iopub.status.busy": "2024-02-07T23:57:10.556409Z", + "iopub.status.idle": "2024-02-07T23:57:10.558873Z", + "shell.execute_reply": "2024-02-07T23:57:10.558458Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.627236Z", - "iopub.status.busy": "2024-02-07T22:16:42.626928Z", - "iopub.status.idle": "2024-02-07T22:16:50.819298Z", - "shell.execute_reply": "2024-02-07T22:16:50.818629Z" + "iopub.execute_input": "2024-02-07T23:57:10.560767Z", + "iopub.status.busy": "2024-02-07T23:57:10.560447Z", + "iopub.status.idle": "2024-02-07T23:57:18.597883Z", + "shell.execute_reply": "2024-02-07T23:57:18.597245Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.822227Z", - "iopub.status.busy": "2024-02-07T22:16:50.821588Z", - "iopub.status.idle": "2024-02-07T22:16:50.828619Z", - "shell.execute_reply": "2024-02-07T22:16:50.828176Z" + "iopub.execute_input": "2024-02-07T23:57:18.600502Z", + "iopub.status.busy": "2024-02-07T23:57:18.600144Z", + "iopub.status.idle": "2024-02-07T23:57:18.607142Z", + "shell.execute_reply": "2024-02-07T23:57:18.606625Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.830508Z", - "iopub.status.busy": "2024-02-07T22:16:50.830326Z", - "iopub.status.idle": "2024-02-07T22:16:50.834051Z", - "shell.execute_reply": "2024-02-07T22:16:50.833572Z" + "iopub.execute_input": "2024-02-07T23:57:18.609010Z", + "iopub.status.busy": "2024-02-07T23:57:18.608834Z", + "iopub.status.idle": "2024-02-07T23:57:18.612483Z", + "shell.execute_reply": "2024-02-07T23:57:18.611944Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.836017Z", - "iopub.status.busy": "2024-02-07T22:16:50.835693Z", - "iopub.status.idle": "2024-02-07T22:16:50.838791Z", - "shell.execute_reply": "2024-02-07T22:16:50.838260Z" + "iopub.execute_input": "2024-02-07T23:57:18.614300Z", + "iopub.status.busy": "2024-02-07T23:57:18.614127Z", + "iopub.status.idle": "2024-02-07T23:57:18.617088Z", + "shell.execute_reply": "2024-02-07T23:57:18.616563Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.840784Z", - "iopub.status.busy": "2024-02-07T22:16:50.840458Z", - "iopub.status.idle": "2024-02-07T22:16:50.843463Z", - "shell.execute_reply": "2024-02-07T22:16:50.843001Z" + "iopub.execute_input": "2024-02-07T23:57:18.618875Z", + "iopub.status.busy": "2024-02-07T23:57:18.618705Z", + "iopub.status.idle": "2024-02-07T23:57:18.621573Z", + "shell.execute_reply": "2024-02-07T23:57:18.621156Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.845383Z", - "iopub.status.busy": "2024-02-07T22:16:50.845063Z", - "iopub.status.idle": "2024-02-07T22:16:50.852852Z", - "shell.execute_reply": "2024-02-07T22:16:50.852402Z" + "iopub.execute_input": "2024-02-07T23:57:18.623300Z", + "iopub.status.busy": "2024-02-07T23:57:18.623130Z", + "iopub.status.idle": "2024-02-07T23:57:18.631019Z", + "shell.execute_reply": "2024-02-07T23:57:18.630588Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.854861Z", - "iopub.status.busy": "2024-02-07T22:16:50.854539Z", - "iopub.status.idle": "2024-02-07T22:16:50.974215Z", - "shell.execute_reply": "2024-02-07T22:16:50.973641Z" + "iopub.execute_input": "2024-02-07T23:57:18.632839Z", + "iopub.status.busy": "2024-02-07T23:57:18.632669Z", + "iopub.status.idle": "2024-02-07T23:57:18.751110Z", + "shell.execute_reply": "2024-02-07T23:57:18.750652Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.976792Z", - "iopub.status.busy": "2024-02-07T22:16:50.976387Z", - "iopub.status.idle": "2024-02-07T22:16:51.083738Z", - "shell.execute_reply": "2024-02-07T22:16:51.083123Z" + "iopub.execute_input": "2024-02-07T23:57:18.753135Z", + "iopub.status.busy": "2024-02-07T23:57:18.752961Z", + "iopub.status.idle": "2024-02-07T23:57:18.854301Z", + "shell.execute_reply": "2024-02-07T23:57:18.853737Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.086417Z", - "iopub.status.busy": "2024-02-07T22:16:51.085958Z", - "iopub.status.idle": "2024-02-07T22:16:51.565882Z", - "shell.execute_reply": "2024-02-07T22:16:51.565259Z" + "iopub.execute_input": "2024-02-07T23:57:18.856714Z", + "iopub.status.busy": "2024-02-07T23:57:18.856277Z", + "iopub.status.idle": "2024-02-07T23:57:19.344066Z", + "shell.execute_reply": "2024-02-07T23:57:19.343446Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.568859Z", - "iopub.status.busy": "2024-02-07T22:16:51.568362Z", - "iopub.status.idle": "2024-02-07T22:16:51.646362Z", - "shell.execute_reply": "2024-02-07T22:16:51.645818Z" + "iopub.execute_input": "2024-02-07T23:57:19.346737Z", + "iopub.status.busy": "2024-02-07T23:57:19.346338Z", + "iopub.status.idle": "2024-02-07T23:57:19.423350Z", + "shell.execute_reply": "2024-02-07T23:57:19.422787Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.648680Z", - "iopub.status.busy": "2024-02-07T22:16:51.648305Z", - "iopub.status.idle": "2024-02-07T22:16:51.658253Z", - "shell.execute_reply": "2024-02-07T22:16:51.657843Z" + "iopub.execute_input": "2024-02-07T23:57:19.425650Z", + "iopub.status.busy": "2024-02-07T23:57:19.425311Z", + "iopub.status.idle": "2024-02-07T23:57:19.434732Z", + "shell.execute_reply": "2024-02-07T23:57:19.434279Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 2278816b2..979c7e3be 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:54.759216Z", - "iopub.status.busy": "2024-02-07T22:16:54.759059Z", - "iopub.status.idle": "2024-02-07T22:16:56.709104Z", - "shell.execute_reply": "2024-02-07T22:16:56.708365Z" + "iopub.execute_input": "2024-02-07T23:57:22.267015Z", + "iopub.status.busy": "2024-02-07T23:57:22.266847Z", + "iopub.status.idle": "2024-02-07T23:57:23.557742Z", + "shell.execute_reply": "2024-02-07T23:57:23.557100Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:56.711689Z", - "iopub.status.busy": "2024-02-07T22:16:56.711492Z", - "iopub.status.idle": "2024-02-07T22:17:51.576173Z", - "shell.execute_reply": "2024-02-07T22:17:51.575514Z" + "iopub.execute_input": "2024-02-07T23:57:23.560412Z", + "iopub.status.busy": "2024-02-07T23:57:23.560029Z", + "iopub.status.idle": "2024-02-07T23:58:14.095094Z", + "shell.execute_reply": "2024-02-07T23:58:14.094451Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:51.578880Z", - "iopub.status.busy": "2024-02-07T22:17:51.578435Z", - "iopub.status.idle": "2024-02-07T22:17:52.624888Z", - "shell.execute_reply": "2024-02-07T22:17:52.624282Z" + "iopub.execute_input": "2024-02-07T23:58:14.097742Z", + "iopub.status.busy": "2024-02-07T23:58:14.097332Z", + "iopub.status.idle": "2024-02-07T23:58:15.117655Z", + "shell.execute_reply": "2024-02-07T23:58:15.117170Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.627442Z", - "iopub.status.busy": "2024-02-07T22:17:52.627135Z", - "iopub.status.idle": "2024-02-07T22:17:52.630302Z", - "shell.execute_reply": "2024-02-07T22:17:52.629875Z" + "iopub.execute_input": "2024-02-07T23:58:15.120117Z", + "iopub.status.busy": "2024-02-07T23:58:15.119697Z", + "iopub.status.idle": "2024-02-07T23:58:15.122830Z", + "shell.execute_reply": "2024-02-07T23:58:15.122391Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.632362Z", - "iopub.status.busy": "2024-02-07T22:17:52.632061Z", - "iopub.status.idle": "2024-02-07T22:17:52.635961Z", - "shell.execute_reply": "2024-02-07T22:17:52.635445Z" + "iopub.execute_input": "2024-02-07T23:58:15.125002Z", + "iopub.status.busy": "2024-02-07T23:58:15.124688Z", + "iopub.status.idle": "2024-02-07T23:58:15.128438Z", + "shell.execute_reply": "2024-02-07T23:58:15.127995Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.637990Z", - "iopub.status.busy": "2024-02-07T22:17:52.637625Z", - "iopub.status.idle": "2024-02-07T22:17:52.641010Z", - "shell.execute_reply": "2024-02-07T22:17:52.640595Z" + "iopub.execute_input": "2024-02-07T23:58:15.130385Z", + "iopub.status.busy": "2024-02-07T23:58:15.130025Z", + "iopub.status.idle": "2024-02-07T23:58:15.133555Z", + "shell.execute_reply": "2024-02-07T23:58:15.133040Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.642975Z", - "iopub.status.busy": "2024-02-07T22:17:52.642693Z", - "iopub.status.idle": "2024-02-07T22:17:52.645515Z", - "shell.execute_reply": "2024-02-07T22:17:52.645069Z" + "iopub.execute_input": "2024-02-07T23:58:15.135489Z", + "iopub.status.busy": "2024-02-07T23:58:15.135128Z", + "iopub.status.idle": "2024-02-07T23:58:15.137853Z", + "shell.execute_reply": "2024-02-07T23:58:15.137431Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.647312Z", - "iopub.status.busy": "2024-02-07T22:17:52.647133Z", - "iopub.status.idle": "2024-02-07T22:19:07.736286Z", - "shell.execute_reply": "2024-02-07T22:19:07.735682Z" + "iopub.execute_input": "2024-02-07T23:58:15.139805Z", + "iopub.status.busy": "2024-02-07T23:58:15.139476Z", + "iopub.status.idle": "2024-02-07T23:59:30.237567Z", + "shell.execute_reply": "2024-02-07T23:59:30.236895Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f8e42fb70e364942b5126777ae7364b8", + "model_id": "516f602a1da94152b495bff09963ecc2", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be506591e8ac431dabddd430053816e2", + "model_id": "04cf97e28dc54e9e8ad9b5cad5a1f640", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:07.738877Z", - "iopub.status.busy": "2024-02-07T22:19:07.738502Z", - "iopub.status.idle": "2024-02-07T22:19:08.410129Z", - "shell.execute_reply": "2024-02-07T22:19:08.409587Z" + "iopub.execute_input": "2024-02-07T23:59:30.240593Z", + "iopub.status.busy": "2024-02-07T23:59:30.240063Z", + "iopub.status.idle": "2024-02-07T23:59:30.904928Z", + "shell.execute_reply": "2024-02-07T23:59:30.904345Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:08.412426Z", - "iopub.status.busy": "2024-02-07T22:19:08.411976Z", - "iopub.status.idle": "2024-02-07T22:19:11.136068Z", - "shell.execute_reply": "2024-02-07T22:19:11.135474Z" + "iopub.execute_input": "2024-02-07T23:59:30.907247Z", + "iopub.status.busy": "2024-02-07T23:59:30.906730Z", + "iopub.status.idle": "2024-02-07T23:59:33.588948Z", + "shell.execute_reply": "2024-02-07T23:59:33.588459Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:11.138343Z", - "iopub.status.busy": "2024-02-07T22:19:11.138010Z", - "iopub.status.idle": "2024-02-07T22:19:43.883956Z", - "shell.execute_reply": "2024-02-07T22:19:43.883330Z" + "iopub.execute_input": "2024-02-07T23:59:33.591098Z", + "iopub.status.busy": "2024-02-07T23:59:33.590759Z", + "iopub.status.idle": "2024-02-08T00:00:06.382957Z", + "shell.execute_reply": "2024-02-08T00:00:06.382396Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15347/4997817 [00:00<00:32, 153458.07it/s]" + " 0%| | 15387/4997817 [00:00<00:32, 153859.88it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30769/4997817 [00:00<00:32, 153898.57it/s]" + " 1%| | 30953/4997817 [00:00<00:32, 154916.01it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46197/4997817 [00:00<00:32, 154067.93it/s]" + " 1%| | 46445/4997817 [00:00<00:31, 154862.43it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 61604/4997817 [00:00<00:32, 153518.87it/s]" + " 1%| | 61949/4997817 [00:00<00:31, 154930.24it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 76957/4997817 [00:00<00:32, 153377.81it/s]" + " 2%|▏ | 77467/4997817 [00:00<00:31, 155019.01it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 92295/4997817 [00:00<00:32, 153281.65it/s]" + " 2%|▏ | 92969/4997817 [00:00<00:31, 154441.07it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 107770/4997817 [00:00<00:31, 153758.56it/s]" + " 2%|▏ | 108414/4997817 [00:00<00:31, 154378.14it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 123147/4997817 [00:00<00:31, 153622.15it/s]" + " 2%|▏ | 123962/4997817 [00:00<00:31, 154726.37it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 138510/4997817 [00:00<00:31, 153513.94it/s]" + " 3%|▎ | 139435/4997817 [00:00<00:31, 154613.74it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 153862/4997817 [00:01<00:31, 153440.87it/s]" + " 3%|▎ | 154933/4997817 [00:01<00:31, 154724.64it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 169207/4997817 [00:01<00:31, 153375.31it/s]" + " 3%|▎ | 170450/4997817 [00:01<00:31, 154858.82it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 184566/4997817 [00:01<00:31, 153437.24it/s]" + " 4%|▎ | 185960/4997817 [00:01<00:31, 154931.05it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 200027/4997817 [00:01<00:31, 153789.46it/s]" + " 4%|▍ | 201595/4997817 [00:01<00:30, 155359.04it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 215446/4997817 [00:01<00:31, 153907.31it/s]" + " 4%|▍ | 217166/4997817 [00:01<00:30, 155463.26it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 230924/4997817 [00:01<00:30, 154166.08it/s]" + " 5%|▍ | 232796/4997817 [00:01<00:30, 155713.22it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 246392/4997817 [00:01<00:30, 154317.10it/s]" + " 5%|▍ | 248368/4997817 [00:01<00:30, 155024.90it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 261824/4997817 [00:01<00:30, 153630.47it/s]" + " 5%|▌ | 263872/4997817 [00:01<00:30, 154707.21it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 277224/4997817 [00:01<00:30, 153736.80it/s]" + " 6%|▌ | 279344/4997817 [00:01<00:30, 154411.85it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 292639/4997817 [00:01<00:30, 153857.25it/s]" + " 6%|▌ | 294786/4997817 [00:01<00:30, 153675.58it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 308121/4997817 [00:02<00:30, 154142.35it/s]" + " 6%|▌ | 310155/4997817 [00:02<00:30, 153084.29it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 323536/4997817 [00:02<00:30, 154021.27it/s]" + " 7%|▋ | 325465/4997817 [00:02<00:30, 152924.81it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 338991/4997817 [00:02<00:30, 154177.79it/s]" + " 7%|▋ | 340815/4997817 [00:02<00:30, 153092.91it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 354437/4997817 [00:02<00:30, 154259.57it/s]" + " 7%|▋ | 356125/4997817 [00:02<00:30, 152796.73it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369864/4997817 [00:02<00:30, 154160.91it/s]" + " 7%|▋ | 371405/4997817 [00:02<00:30, 152624.10it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 385349/4997817 [00:02<00:29, 154364.42it/s]" + " 8%|▊ | 386668/4997817 [00:02<00:30, 152387.84it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 400786/4997817 [00:02<00:29, 154238.35it/s]" + " 8%|▊ | 401907/4997817 [00:02<00:30, 151622.18it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 416218/4997817 [00:02<00:29, 154259.56it/s]" + " 8%|▊ | 417070/4997817 [00:02<00:30, 151606.88it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 431732/4997817 [00:02<00:29, 154520.13it/s]" + " 9%|▊ | 432286/4997817 [00:02<00:30, 151770.09it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 447185/4997817 [00:02<00:29, 153245.62it/s]" + " 9%|▉ | 447464/4997817 [00:02<00:29, 151738.90it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 462512/4997817 [00:03<00:30, 146732.31it/s]" + " 9%|▉ | 462721/4997817 [00:03<00:29, 151984.24it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 477889/4997817 [00:03<00:30, 148766.90it/s]" + " 10%|▉ | 477975/4997817 [00:03<00:29, 152147.15it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 493335/4997817 [00:03<00:29, 150430.33it/s]" + " 10%|▉ | 493202/4997817 [00:03<00:29, 152182.16it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 508611/4997817 [00:03<00:29, 151113.76it/s]" + " 10%|█ | 508476/4997817 [00:03<00:29, 152345.94it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 523989/4997817 [00:03<00:29, 151901.84it/s]" + " 10%|█ | 523738/4997817 [00:03<00:29, 152425.10it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 539401/4997817 [00:03<00:29, 152559.93it/s]" + " 11%|█ | 539030/4997817 [00:03<00:29, 152572.90it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 554825/4997817 [00:03<00:29, 153058.80it/s]" + " 11%|█ | 554288/4997817 [00:03<00:29, 152516.18it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 570237/4997817 [00:03<00:28, 153371.61it/s]" + " 11%|█▏ | 569540/4997817 [00:03<00:29, 152488.37it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 585614/4997817 [00:03<00:28, 153487.20it/s]" + " 12%|█▏ | 584949/4997817 [00:03<00:28, 152966.60it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 601012/4997817 [00:03<00:28, 153632.69it/s]" + " 12%|█▏ | 600453/4997817 [00:03<00:28, 153586.15it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 616379/4997817 [00:04<00:28, 153190.63it/s]" + " 12%|█▏ | 615876/4997817 [00:04<00:28, 153775.67it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 631701/4997817 [00:04<00:28, 153034.14it/s]" + " 13%|█▎ | 631317/4997817 [00:04<00:28, 153964.11it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 647041/4997817 [00:04<00:28, 153139.80it/s]" + " 13%|█▎ | 646849/4997817 [00:04<00:28, 154369.76it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 662439/4997817 [00:04<00:28, 153387.00it/s]" + " 13%|█▎ | 662330/4997817 [00:04<00:28, 154500.98it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 677783/4997817 [00:04<00:28, 153400.95it/s]" + " 14%|█▎ | 677819/4997817 [00:04<00:27, 154616.28it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 693146/4997817 [00:04<00:28, 153465.36it/s]" + " 14%|█▍ | 693283/4997817 [00:04<00:27, 154620.90it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 708494/4997817 [00:04<00:27, 153436.13it/s]" + " 14%|█▍ | 708746/4997817 [00:04<00:27, 154483.57it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723849/4997817 [00:04<00:27, 153466.14it/s]" + " 14%|█▍ | 724195/4997817 [00:04<00:28, 149330.22it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739196/4997817 [00:04<00:27, 153373.26it/s]" + " 15%|█▍ | 739415/4997817 [00:04<00:28, 150169.33it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754593/4997817 [00:04<00:27, 153549.34it/s]" + " 15%|█▌ | 754739/4997817 [00:04<00:28, 151072.92it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 769949/4997817 [00:05<00:28, 150908.16it/s]" + " 15%|█▌ | 770174/4997817 [00:05<00:27, 152041.12it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 785470/4997817 [00:05<00:27, 152179.07it/s]" + " 16%|█▌ | 785615/4997817 [00:05<00:27, 152744.99it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 801022/4997817 [00:05<00:27, 153170.62it/s]" + " 16%|█▌ | 801159/4997817 [00:05<00:27, 153547.67it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 816526/4997817 [00:05<00:27, 153726.26it/s]" + " 16%|█▋ | 816774/4997817 [00:05<00:27, 154323.42it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 832085/4997817 [00:05<00:27, 154281.24it/s]" + " 17%|█▋ | 832233/4997817 [00:05<00:26, 154401.44it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 847655/4997817 [00:05<00:26, 154701.31it/s]" + " 17%|█▋ | 847796/4997817 [00:05<00:26, 154767.42it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 863128/4997817 [00:05<00:26, 154543.39it/s]" + " 17%|█▋ | 863276/4997817 [00:05<00:26, 154708.16it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 878688/4997817 [00:05<00:26, 154857.05it/s]" + " 18%|█▊ | 878750/4997817 [00:05<00:26, 154184.03it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 894280/4997817 [00:05<00:26, 155173.03it/s]" + " 18%|█▊ | 894171/4997817 [00:05<00:26, 153911.40it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 909799/4997817 [00:05<00:26, 153932.45it/s]" + " 18%|█▊ | 909620/4997817 [00:05<00:26, 154081.10it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 925196/4997817 [00:06<00:26, 153134.34it/s]" + " 19%|█▊ | 925183/4997817 [00:06<00:26, 154541.55it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 940720/4997817 [00:06<00:26, 153757.32it/s]" + " 19%|█▉ | 940724/4997817 [00:06<00:26, 154798.01it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 956290/4997817 [00:06<00:26, 154335.16it/s]" + " 19%|█▉ | 956285/4997817 [00:06<00:26, 155038.35it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 971837/4997817 [00:06<00:26, 154670.43it/s]" + " 19%|█▉ | 971790/4997817 [00:06<00:25, 154956.07it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 987409/4997817 [00:06<00:25, 154980.24it/s]" + " 20%|█▉ | 987286/4997817 [00:06<00:25, 154826.09it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1003021/4997817 [00:06<00:25, 155319.53it/s]" + " 20%|██ | 1002769/4997817 [00:06<00:25, 154658.28it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1018554/4997817 [00:06<00:25, 155043.65it/s]" + " 20%|██ | 1018250/4997817 [00:06<00:25, 154701.77it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1034111/4997817 [00:06<00:25, 155190.83it/s]" + " 21%|██ | 1033721/4997817 [00:06<00:25, 154399.73it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1049635/4997817 [00:06<00:25, 155203.50it/s]" + " 21%|██ | 1049162/4997817 [00:06<00:25, 154388.08it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1065196/4997817 [00:06<00:25, 155323.02it/s]" + " 21%|██▏ | 1064700/4997817 [00:06<00:25, 154682.90it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1080813/4997817 [00:07<00:25, 155572.06it/s]" + " 22%|██▏ | 1080169/4997817 [00:07<00:25, 154502.61it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1096371/4997817 [00:07<00:25, 155143.85it/s]" + " 22%|██▏ | 1095620/4997817 [00:07<00:25, 153934.36it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1111933/4997817 [00:07<00:25, 155283.41it/s]" + " 22%|██▏ | 1111014/4997817 [00:07<00:25, 153453.97it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1127467/4997817 [00:07<00:24, 155297.30it/s]" + " 23%|██▎ | 1126460/4997817 [00:07<00:25, 153751.09it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1143078/4997817 [00:07<00:24, 155537.53it/s]" + " 23%|██▎ | 1141915/4997817 [00:07<00:25, 153987.80it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1158632/4997817 [00:07<00:24, 155524.20it/s]" + " 23%|██▎ | 1157315/4997817 [00:07<00:24, 153646.26it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1174185/4997817 [00:07<00:24, 155271.94it/s]" + " 23%|██▎ | 1172782/4997817 [00:07<00:24, 153950.34it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1189714/4997817 [00:07<00:24, 155275.28it/s]" + " 24%|██▍ | 1188178/4997817 [00:07<00:24, 153569.49it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1205250/4997817 [00:07<00:24, 155297.83it/s]" + " 24%|██▍ | 1203670/4997817 [00:07<00:24, 153971.80it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1220788/4997817 [00:07<00:24, 155319.29it/s]" + " 24%|██▍ | 1219312/4997817 [00:07<00:24, 154701.16it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1236320/4997817 [00:08<00:24, 155297.01it/s]" + " 25%|██▍ | 1234865/4997817 [00:08<00:24, 154946.23it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1251850/4997817 [00:08<00:24, 154837.80it/s]" + " 25%|██▌ | 1250438/4997817 [00:08<00:24, 155179.69it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1267335/4997817 [00:08<00:24, 154514.28it/s]" + " 25%|██▌ | 1266015/4997817 [00:08<00:24, 155354.02it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1282844/4997817 [00:08<00:24, 154680.42it/s]" + " 26%|██▌ | 1281583/4997817 [00:08<00:23, 155450.35it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1298407/4997817 [00:08<00:23, 154960.16it/s]" + " 26%|██▌ | 1297301/4997817 [00:08<00:23, 155966.62it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1313976/4997817 [00:08<00:23, 155176.70it/s]" + " 26%|██▋ | 1312991/4997817 [00:08<00:23, 156242.91it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1329577/4997817 [00:08<00:23, 155424.12it/s]" + " 27%|██▋ | 1328616/4997817 [00:08<00:23, 155989.64it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1345162/4997817 [00:08<00:23, 155550.05it/s]" + " 27%|██▋ | 1344327/4997817 [00:08<00:23, 156323.68it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1360737/4997817 [00:08<00:23, 155607.38it/s]" + " 27%|██▋ | 1359960/4997817 [00:08<00:24, 148351.64it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1376313/4997817 [00:08<00:23, 155649.40it/s]" + " 28%|██▊ | 1375464/4997817 [00:08<00:24, 150281.68it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1391965/4997817 [00:09<00:23, 155908.88it/s]" + " 28%|██▊ | 1391084/4997817 [00:09<00:23, 152008.93it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1407556/4997817 [00:09<00:23, 155321.25it/s]" + " 28%|██▊ | 1406706/4997817 [00:09<00:23, 153246.84it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1423155/4997817 [00:09<00:22, 155479.77it/s]" + " 28%|██▊ | 1422423/4997817 [00:09<00:23, 154405.82it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1438785/4997817 [00:09<00:22, 155724.14it/s]" + " 29%|██▉ | 1438109/4997817 [00:09<00:22, 155134.29it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1454384/4997817 [00:09<00:22, 155801.48it/s]" + " 29%|██▉ | 1453665/4997817 [00:09<00:22, 155257.81it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1470014/4997817 [00:09<00:22, 155947.13it/s]" + " 29%|██▉ | 1469349/4997817 [00:09<00:22, 155727.92it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1485609/4997817 [00:09<00:22, 155913.61it/s]" + " 30%|██▉ | 1485018/4997817 [00:09<00:22, 156012.89it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1501201/4997817 [00:09<00:22, 155784.73it/s]" + " 30%|███ | 1500627/4997817 [00:09<00:22, 155976.47it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1516780/4997817 [00:09<00:22, 155559.73it/s]" + " 30%|███ | 1516230/4997817 [00:09<00:22, 153762.84it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1532380/4997817 [00:09<00:22, 155687.40it/s]" + " 31%|███ | 1531868/4997817 [00:09<00:22, 154536.52it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1547949/4997817 [00:10<00:22, 155528.12it/s]" + " 31%|███ | 1547362/4997817 [00:10<00:22, 154655.76it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1563502/4997817 [00:10<00:23, 147324.84it/s]" + " 31%|███▏ | 1562834/4997817 [00:10<00:22, 154496.08it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1579008/4997817 [00:10<00:22, 149552.84it/s]" + " 32%|███▏ | 1578361/4997817 [00:10<00:22, 154724.34it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1594563/4997817 [00:10<00:22, 151300.39it/s]" + " 32%|███▏ | 1593837/4997817 [00:10<00:22, 154526.62it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1610073/4997817 [00:10<00:22, 152415.30it/s]" + " 32%|███▏ | 1609292/4997817 [00:10<00:21, 154082.95it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1625549/4997817 [00:10<00:22, 153107.12it/s]" + " 33%|███▎ | 1624709/4997817 [00:10<00:21, 154108.12it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1640959/4997817 [00:10<00:21, 153398.91it/s]" + " 33%|███▎ | 1640152/4997817 [00:10<00:21, 154202.78it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1656429/4997817 [00:10<00:21, 153784.58it/s]" + " 33%|███▎ | 1655574/4997817 [00:10<00:21, 153955.25it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1671823/4997817 [00:10<00:22, 147620.43it/s]" + " 33%|███▎ | 1670971/4997817 [00:10<00:21, 153956.41it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1687245/4997817 [00:10<00:22, 149534.13it/s]" + " 34%|███▎ | 1686509/4997817 [00:10<00:21, 154381.52it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1702248/4997817 [00:11<00:22, 145716.03it/s]" + " 34%|███▍ | 1701951/4997817 [00:11<00:21, 154392.21it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1717722/4997817 [00:11<00:22, 148327.18it/s]" + " 34%|███▍ | 1717391/4997817 [00:11<00:21, 154191.74it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1733212/4997817 [00:11<00:21, 150249.60it/s]" + " 35%|███▍ | 1732903/4997817 [00:11<00:21, 154468.06it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1748683/4997817 [00:11<00:21, 151562.76it/s]" + " 35%|███▍ | 1748426/4997817 [00:11<00:21, 154695.22it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1764179/4997817 [00:11<00:21, 152568.57it/s]" + " 35%|███▌ | 1763908/4997817 [00:11<00:20, 154731.01it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1779561/4997817 [00:11<00:21, 152939.77it/s]" + " 36%|███▌ | 1779465/4997817 [00:11<00:20, 154980.84it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1794870/4997817 [00:11<00:20, 152948.40it/s]" + " 36%|███▌ | 1794973/4997817 [00:11<00:20, 155008.18it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1810300/4997817 [00:11<00:20, 153350.41it/s]" + " 36%|███▌ | 1810474/4997817 [00:11<00:20, 154706.88it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1825723/4997817 [00:11<00:20, 153610.68it/s]" + " 37%|███▋ | 1825945/4997817 [00:11<00:21, 150553.76it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1841251/4997817 [00:11<00:20, 154108.13it/s]" + " 37%|███▋ | 1841366/4997817 [00:11<00:20, 151623.92it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1856784/4997817 [00:12<00:20, 154470.98it/s]" + " 37%|███▋ | 1856852/4997817 [00:12<00:20, 152579.57it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1872234/4997817 [00:12<00:20, 154379.68it/s]" + " 37%|███▋ | 1872563/4997817 [00:12<00:20, 153923.92it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1887674/4997817 [00:12<00:20, 154351.08it/s]" + " 38%|███▊ | 1888219/4997817 [00:12<00:20, 154708.39it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1903137/4997817 [00:12<00:20, 154430.74it/s]" + " 38%|███▊ | 1903953/4997817 [00:12<00:19, 155491.61it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1918581/4997817 [00:12<00:19, 154231.39it/s]" + " 38%|███▊ | 1919523/4997817 [00:12<00:19, 155552.74it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1934021/4997817 [00:12<00:19, 154278.42it/s]" + " 39%|███▊ | 1935132/4997817 [00:12<00:19, 155711.90it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949544/4997817 [00:12<00:19, 154560.34it/s]" + " 39%|███▉ | 1950707/4997817 [00:12<00:19, 155602.81it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1965001/4997817 [00:12<00:19, 154544.17it/s]" + " 39%|███▉ | 1966388/4997817 [00:12<00:19, 155963.60it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1980514/4997817 [00:12<00:19, 154717.76it/s]" + " 40%|███▉ | 1982054/4997817 [00:12<00:19, 156169.63it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1995986/4997817 [00:12<00:19, 154624.51it/s]" + " 40%|███▉ | 1997673/4997817 [00:12<00:19, 155736.39it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2011449/4997817 [00:13<00:19, 154571.51it/s]" + " 40%|████ | 2013248/4997817 [00:13<00:19, 155496.01it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2026907/4997817 [00:13<00:19, 154431.61it/s]" + " 41%|████ | 2028804/4997817 [00:13<00:19, 155511.76it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2042351/4997817 [00:13<00:19, 150939.06it/s]" + " 41%|████ | 2044356/4997817 [00:13<00:19, 155257.61it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2057814/4997817 [00:13<00:19, 152025.47it/s]" + " 41%|████ | 2059960/4997817 [00:13<00:18, 155488.99it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2073170/4997817 [00:13<00:19, 152476.99it/s]" + " 42%|████▏ | 2075625/4997817 [00:13<00:18, 155833.92it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2088594/4997817 [00:13<00:19, 152999.26it/s]" + " 42%|████▏ | 2091209/4997817 [00:13<00:18, 155266.92it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2104043/4997817 [00:13<00:18, 153442.72it/s]" + " 42%|████▏ | 2106737/4997817 [00:13<00:18, 154717.60it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2119443/4997817 [00:13<00:18, 153606.85it/s]" + " 42%|████▏ | 2122210/4997817 [00:13<00:18, 154334.91it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2134833/4997817 [00:13<00:18, 153691.74it/s]" + " 43%|████▎ | 2137645/4997817 [00:13<00:18, 154040.89it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2150260/4997817 [00:13<00:18, 153861.39it/s]" + " 43%|████▎ | 2153050/4997817 [00:13<00:18, 153792.02it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2165649/4997817 [00:14<00:18, 153505.35it/s]" + " 43%|████▎ | 2168430/4997817 [00:14<00:18, 153254.04it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2181031/4997817 [00:14<00:18, 153598.33it/s]" + " 44%|████▎ | 2183756/4997817 [00:14<00:18, 153011.24it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2196392/4997817 [00:14<00:18, 153515.18it/s]" + " 44%|████▍ | 2199058/4997817 [00:14<00:18, 152771.69it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211745/4997817 [00:14<00:18, 153359.24it/s]" + " 44%|████▍ | 2214336/4997817 [00:14<00:18, 152533.15it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2227087/4997817 [00:14<00:18, 153376.49it/s]" + " 45%|████▍ | 2229590/4997817 [00:14<00:18, 152216.34it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2242478/4997817 [00:14<00:17, 153534.73it/s]" + " 45%|████▍ | 2244822/4997817 [00:14<00:18, 152246.04it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2257832/4997817 [00:14<00:17, 153331.02it/s]" + " 45%|████▌ | 2260129/4997817 [00:14<00:17, 152489.87it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2273166/4997817 [00:14<00:17, 153125.99it/s]" + " 46%|████▌ | 2275379/4997817 [00:14<00:17, 152457.91it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2288479/4997817 [00:14<00:17, 153046.84it/s]" + " 46%|████▌ | 2290625/4997817 [00:14<00:17, 152236.51it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2303800/4997817 [00:14<00:17, 153094.76it/s]" + " 46%|████▌ | 2305849/4997817 [00:14<00:17, 151840.02it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2319193/4997817 [00:15<00:17, 153342.97it/s]" + " 46%|████▋ | 2321245/4997817 [00:15<00:17, 152471.18it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2334528/4997817 [00:15<00:17, 152346.58it/s]" + " 47%|████▋ | 2336585/4997817 [00:15<00:17, 152746.15it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2349765/4997817 [00:15<00:17, 151169.35it/s]" + " 47%|████▋ | 2351960/4997817 [00:15<00:17, 153045.31it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2364972/4997817 [00:15<00:17, 151434.66it/s]" + " 47%|████▋ | 2367326/4997817 [00:15<00:17, 153228.56it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2380298/4997817 [00:15<00:17, 151975.78it/s]" + " 48%|████▊ | 2382719/4997817 [00:15<00:17, 153435.46it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2395754/4997817 [00:15<00:17, 152744.78it/s]" + " 48%|████▊ | 2398063/4997817 [00:15<00:16, 153381.39it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2411076/4997817 [00:15<00:16, 152884.98it/s]" + " 48%|████▊ | 2413402/4997817 [00:15<00:16, 153357.05it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2426567/4997817 [00:15<00:16, 153489.20it/s]" + " 49%|████▊ | 2428752/4997817 [00:15<00:16, 153397.32it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2441950/4997817 [00:15<00:16, 153587.93it/s]" + " 49%|████▉ | 2444150/4997817 [00:15<00:16, 153571.32it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2457394/4997817 [00:16<00:16, 153839.68it/s]" + " 49%|████▉ | 2459562/4997817 [00:15<00:16, 153732.62it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472901/4997817 [00:16<00:16, 154205.77it/s]" + " 50%|████▉ | 2475015/4997817 [00:16<00:16, 153968.52it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488322/4997817 [00:16<00:16, 154163.11it/s]" + " 50%|████▉ | 2490438/4997817 [00:16<00:16, 154046.12it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2503739/4997817 [00:16<00:16, 153004.46it/s]" + " 50%|█████ | 2505843/4997817 [00:16<00:16, 154040.82it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2519042/4997817 [00:16<00:16, 147381.07it/s]" + " 50%|█████ | 2521248/4997817 [00:16<00:16, 153702.86it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2534620/4997817 [00:16<00:16, 149823.79it/s]" + " 51%|█████ | 2536619/4997817 [00:16<00:16, 153488.02it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2550145/4997817 [00:16<00:16, 151413.71it/s]" + " 51%|█████ | 2551968/4997817 [00:16<00:15, 153045.28it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2565630/4997817 [00:16<00:15, 152427.20it/s]" + " 51%|█████▏ | 2567273/4997817 [00:16<00:15, 152959.52it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2581060/4997817 [00:16<00:15, 152981.66it/s]" + " 52%|█████▏ | 2582570/4997817 [00:16<00:15, 152668.38it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2596553/4997817 [00:16<00:15, 153559.70it/s]" + " 52%|█████▏ | 2597897/4997817 [00:16<00:15, 152844.82it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2612027/4997817 [00:17<00:15, 153910.24it/s]" + " 52%|█████▏ | 2613182/4997817 [00:16<00:15, 150670.35it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2627562/4997817 [00:17<00:15, 154337.56it/s]" + " 53%|█████▎ | 2628256/4997817 [00:17<00:15, 149400.44it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2643066/4997817 [00:17<00:15, 154544.82it/s]" + " 53%|█████▎ | 2643612/4997817 [00:17<00:15, 150628.22it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658563/4997817 [00:17<00:15, 154668.65it/s]" + " 53%|█████▎ | 2659103/4997817 [00:17<00:15, 151899.02it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674058/4997817 [00:17<00:15, 154750.12it/s]" + " 54%|█████▎ | 2674484/4997817 [00:17<00:15, 152464.99it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2689580/4997817 [00:17<00:14, 154890.00it/s]" + " 54%|█████▍ | 2689840/4997817 [00:17<00:15, 152791.05it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2705071/4997817 [00:17<00:14, 154543.10it/s]" + " 54%|█████▍ | 2705248/4997817 [00:17<00:14, 153173.60it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2720555/4997817 [00:17<00:14, 154630.16it/s]" + " 54%|█████▍ | 2720642/4997817 [00:17<00:14, 153400.27it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2736166/4997817 [00:17<00:14, 155070.41it/s]" + " 55%|█████▍ | 2736057/4997817 [00:17<00:14, 153621.44it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2751724/4997817 [00:17<00:14, 155222.18it/s]" + " 55%|█████▌ | 2751444/4997817 [00:17<00:14, 153694.21it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2767247/4997817 [00:18<00:14, 155078.59it/s]" + " 55%|█████▌ | 2766815/4997817 [00:17<00:14, 153676.47it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2782756/4997817 [00:18<00:14, 154978.09it/s]" + " 56%|█████▌ | 2782184/4997817 [00:18<00:15, 146027.40it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2798255/4997817 [00:18<00:14, 154977.38it/s]" + " 56%|█████▌ | 2797535/4997817 [00:18<00:14, 148188.94it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2813789/4997817 [00:18<00:14, 155083.56it/s]" + " 56%|█████▋ | 2812891/4997817 [00:18<00:14, 149756.66it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2829298/4997817 [00:18<00:14, 152520.30it/s]" + " 57%|█████▋ | 2828262/4997817 [00:18<00:14, 150920.17it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2844801/4997817 [00:18<00:14, 153263.29it/s]" + " 57%|█████▋ | 2843674/4997817 [00:18<00:14, 151866.33it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2860237/4997817 [00:18<00:13, 153586.93it/s]" + " 57%|█████▋ | 2858942/4997817 [00:18<00:14, 152106.04it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2875673/4997817 [00:18<00:13, 153813.68it/s]" + " 58%|█████▊ | 2874363/4997817 [00:18<00:13, 152731.27it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2891059/4997817 [00:18<00:13, 153744.34it/s]" + " 58%|█████▊ | 2889650/4997817 [00:18<00:13, 152715.44it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2906451/4997817 [00:18<00:13, 153793.40it/s]" + " 58%|█████▊ | 2905031/4997817 [00:18<00:13, 153042.21it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2921833/4997817 [00:19<00:13, 153778.25it/s]" + " 58%|█████▊ | 2920342/4997817 [00:19<00:13, 153004.24it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2937213/4997817 [00:19<00:13, 153645.48it/s]" + " 59%|█████▊ | 2935648/4997817 [00:19<00:13, 152907.67it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2952579/4997817 [00:19<00:13, 153613.36it/s]" + " 59%|█████▉ | 2950943/4997817 [00:19<00:13, 152850.99it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2967942/4997817 [00:19<00:13, 153281.42it/s]" + " 59%|█████▉ | 2966231/4997817 [00:19<00:13, 152725.36it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2983271/4997817 [00:19<00:13, 150146.86it/s]" + " 60%|█████▉ | 2981549/4997817 [00:19<00:13, 152858.39it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2998477/4997817 [00:19<00:13, 150708.16it/s]" + " 60%|█████▉ | 2996997/4997817 [00:19<00:13, 153340.92it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3014011/4997817 [00:19<00:13, 152080.61it/s]" + " 60%|██████ | 3012371/4997817 [00:19<00:12, 153458.61it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3029518/4997817 [00:19<00:12, 152969.20it/s]" + " 61%|██████ | 3027820/4997817 [00:19<00:12, 153766.56it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3045037/4997817 [00:19<00:12, 153629.76it/s]" + " 61%|██████ | 3043238/4997817 [00:19<00:12, 153889.92it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3060406/4997817 [00:19<00:12, 153331.78it/s]" + " 61%|██████ | 3058663/4997817 [00:19<00:12, 153995.86it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3075743/4997817 [00:20<00:12, 152764.94it/s]" + " 62%|██████▏ | 3074096/4997817 [00:20<00:12, 154092.71it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3091023/4997817 [00:20<00:12, 152634.64it/s]" + " 62%|██████▏ | 3089506/4997817 [00:20<00:12, 153922.23it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3106414/4997817 [00:20<00:12, 153013.91it/s]" + " 62%|██████▏ | 3104899/4997817 [00:20<00:12, 153769.23it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3121808/4997817 [00:20<00:12, 153288.59it/s]" + " 62%|██████▏ | 3120344/4997817 [00:20<00:12, 153969.82it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3137276/4997817 [00:20<00:12, 153703.80it/s]" + " 63%|██████▎ | 3135742/4997817 [00:20<00:12, 153534.18it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3152648/4997817 [00:20<00:12, 153568.00it/s]" + " 63%|██████▎ | 3151096/4997817 [00:20<00:12, 153404.32it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3168071/4997817 [00:20<00:11, 153762.45it/s]" + " 63%|██████▎ | 3166437/4997817 [00:20<00:11, 153363.50it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3183450/4997817 [00:20<00:11, 153768.33it/s]" + " 64%|██████▎ | 3181930/4997817 [00:20<00:11, 153829.95it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3198898/4997817 [00:20<00:11, 153979.27it/s]" + " 64%|██████▍ | 3197314/4997817 [00:20<00:11, 153423.59it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3214297/4997817 [00:20<00:11, 153771.27it/s]" + " 64%|██████▍ | 3212657/4997817 [00:20<00:11, 153324.94it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3229715/4997817 [00:21<00:11, 153892.00it/s]" + " 65%|██████▍ | 3228003/4997817 [00:21<00:11, 153363.54it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3245105/4997817 [00:21<00:11, 153859.37it/s]" + " 65%|██████▍ | 3243340/4997817 [00:21<00:11, 151587.92it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3260519/4997817 [00:21<00:11, 153941.22it/s]" + " 65%|██████▌ | 3258504/4997817 [00:21<00:11, 148147.58it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3275914/4997817 [00:21<00:11, 153716.78it/s]" + " 66%|██████▌ | 3273956/4997817 [00:21<00:11, 150013.39it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3291386/4997817 [00:21<00:11, 154014.60it/s]" + " 66%|██████▌ | 3289544/4997817 [00:21<00:11, 151741.78it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3306788/4997817 [00:21<00:11, 153609.50it/s]" + " 66%|██████▌ | 3305094/4997817 [00:21<00:11, 152854.93it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3322285/4997817 [00:21<00:10, 153972.38it/s]" + " 66%|██████▋ | 3320616/4997817 [00:21<00:10, 153555.41it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3337683/4997817 [00:21<00:10, 153858.51it/s]" + " 67%|██████▋ | 3336160/4997817 [00:21<00:10, 154115.62it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3353124/4997817 [00:21<00:10, 154022.14it/s]" + " 67%|██████▋ | 3351730/4997817 [00:21<00:10, 154587.03it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3368625/4997817 [00:21<00:10, 154316.93it/s]" + " 67%|██████▋ | 3367278/4997817 [00:21<00:10, 154851.47it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384057/4997817 [00:22<00:10, 154300.14it/s]" + " 68%|██████▊ | 3382904/4997817 [00:22<00:10, 155270.93it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3399488/4997817 [00:22<00:10, 154131.51it/s]" + " 68%|██████▊ | 3398434/4997817 [00:22<00:10, 155112.16it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3414954/4997817 [00:22<00:10, 154286.04it/s]" + " 68%|██████▊ | 3413947/4997817 [00:22<00:10, 151516.41it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3430466/4997817 [00:22<00:10, 154534.16it/s]" + " 69%|██████▊ | 3429264/4997817 [00:22<00:10, 152002.54it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3445934/4997817 [00:22<00:10, 154576.71it/s]" + " 69%|██████▉ | 3444687/4997817 [00:22<00:10, 152661.60it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3461392/4997817 [00:22<00:09, 154214.46it/s]" + " 69%|██████▉ | 3459988/4997817 [00:22<00:10, 152762.54it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3476836/4997817 [00:22<00:09, 154280.38it/s]" + " 70%|██████▉ | 3475342/4997817 [00:22<00:09, 152992.88it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492331/4997817 [00:22<00:09, 154479.71it/s]" + " 70%|██████▉ | 3490806/4997817 [00:22<00:09, 153484.06it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3507875/4997817 [00:22<00:09, 154766.34it/s]" + " 70%|███████ | 3506159/4997817 [00:22<00:09, 153394.70it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3523352/4997817 [00:22<00:09, 154673.95it/s]" + " 70%|███████ | 3521538/4997817 [00:22<00:09, 153511.49it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3538822/4997817 [00:23<00:09, 154679.04it/s]" + " 71%|███████ | 3537056/4997817 [00:23<00:09, 154008.32it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3554370/4997817 [00:23<00:09, 154917.78it/s]" + " 71%|███████ | 3552632/4997817 [00:23<00:09, 154530.44it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3569906/4997817 [00:23<00:09, 155047.44it/s]" + " 71%|███████▏ | 3568087/4997817 [00:23<00:09, 146968.50it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3585430/4997817 [00:23<00:09, 155102.12it/s]" + " 72%|███████▏ | 3583451/4997817 [00:23<00:09, 148896.74it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3600951/4997817 [00:23<00:09, 155132.30it/s]" + " 72%|███████▏ | 3598891/4997817 [00:23<00:09, 150504.59it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3616465/4997817 [00:23<00:09, 150887.26it/s]" + " 72%|███████▏ | 3614435/4997817 [00:23<00:09, 151958.53it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3632029/4997817 [00:23<00:08, 152284.22it/s]" + " 73%|███████▎ | 3629881/4997817 [00:23<00:08, 152697.73it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3647567/4997817 [00:23<00:08, 153198.65it/s]" + " 73%|███████▎ | 3645255/4997817 [00:23<00:08, 153005.77it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3663094/4997817 [00:23<00:08, 153810.84it/s]" + " 73%|███████▎ | 3660584/4997817 [00:23<00:08, 153088.81it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3678598/4997817 [00:23<00:08, 154174.29it/s]" + " 74%|███████▎ | 3675916/4997817 [00:23<00:08, 153156.17it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3694138/4997817 [00:24<00:08, 154536.99it/s]" + " 74%|███████▍ | 3691295/4997817 [00:24<00:08, 153344.25it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3709658/4997817 [00:24<00:08, 154732.73it/s]" + " 74%|███████▍ | 3706697/4997817 [00:24<00:08, 153545.60it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3725206/4997817 [00:24<00:08, 154954.44it/s]" + " 74%|███████▍ | 3722057/4997817 [00:24<00:08, 147836.83it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3740779/4997817 [00:24<00:08, 155183.88it/s]" + " 75%|███████▍ | 3736974/4997817 [00:24<00:08, 148222.56it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3756300/4997817 [00:24<00:08, 155152.62it/s]" + " 75%|███████▌ | 3752284/4997817 [00:24<00:08, 149654.65it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3771876/4997817 [00:24<00:07, 155332.15it/s]" + " 75%|███████▌ | 3767574/4997817 [00:24<00:08, 150612.24it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3787433/4997817 [00:24<00:07, 155401.94it/s]" + " 76%|███████▌ | 3782880/4997817 [00:24<00:08, 151337.73it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3802974/4997817 [00:24<00:07, 154579.57it/s]" + " 76%|███████▌ | 3798151/4997817 [00:24<00:07, 151743.76it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3818510/4997817 [00:24<00:07, 154809.04it/s]" + " 76%|███████▋ | 3813408/4997817 [00:24<00:07, 151987.69it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3834118/4997817 [00:24<00:07, 155187.73it/s]" + " 77%|███████▋ | 3828722/4997817 [00:24<00:07, 152329.77it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3849726/4997817 [00:25<00:07, 155451.03it/s]" + " 77%|███████▋ | 3844014/4997817 [00:25<00:07, 152505.38it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865281/4997817 [00:25<00:07, 155478.17it/s]" + " 77%|███████▋ | 3859286/4997817 [00:25<00:07, 152568.18it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3880873/4997817 [00:25<00:07, 155607.51it/s]" + " 78%|███████▊ | 3874625/4997817 [00:25<00:07, 152812.08it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3896482/4997817 [00:25<00:07, 155748.19it/s]" + " 78%|███████▊ | 3890029/4997817 [00:25<00:07, 153178.11it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3912058/4997817 [00:25<00:06, 155484.01it/s]" + " 78%|███████▊ | 3905349/4997817 [00:25<00:07, 152911.02it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3927607/4997817 [00:25<00:06, 155333.66it/s]" + " 78%|███████▊ | 3920784/4997817 [00:25<00:07, 153341.49it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3943141/4997817 [00:25<00:06, 154982.06it/s]" + " 79%|███████▉ | 3936119/4997817 [00:25<00:06, 152961.72it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958655/4997817 [00:25<00:06, 155026.48it/s]" + " 79%|███████▉ | 3951508/4997817 [00:25<00:06, 153228.71it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3974166/4997817 [00:25<00:06, 155048.76it/s]" + " 79%|███████▉ | 3966960/4997817 [00:25<00:06, 153613.34it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989742/4997817 [00:25<00:06, 155258.99it/s]" + " 80%|███████▉ | 3982322/4997817 [00:25<00:06, 153448.22it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005269/4997817 [00:26<00:06, 155095.77it/s]" + " 80%|███████▉ | 3997668/4997817 [00:26<00:06, 153357.40it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4020928/4997817 [00:26<00:06, 155541.32it/s]" + " 80%|████████ | 4013004/4997817 [00:26<00:06, 153315.74it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4036483/4997817 [00:26<00:06, 155356.37it/s]" + " 81%|████████ | 4028336/4997817 [00:26<00:06, 153114.29it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052019/4997817 [00:26<00:06, 155307.81it/s]" + " 81%|████████ | 4043648/4997817 [00:26<00:06, 150591.11it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4067550/4997817 [00:26<00:05, 155236.21it/s]" + " 81%|████████ | 4059148/4997817 [00:26<00:06, 151895.49it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4083074/4997817 [00:26<00:05, 154917.67it/s]" + " 82%|████████▏ | 4074741/4997817 [00:26<00:06, 153091.67it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4098566/4997817 [00:26<00:06, 146375.09it/s]" + " 82%|████████▏ | 4090233/4997817 [00:26<00:05, 153635.51it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4113914/4997817 [00:26<00:05, 148417.52it/s]" + " 82%|████████▏ | 4105801/4997817 [00:26<00:05, 154243.63it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4129242/4997817 [00:26<00:05, 149832.62it/s]" + " 82%|████████▏ | 4121409/4997817 [00:26<00:05, 154791.86it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4144613/4997817 [00:26<00:05, 150968.60it/s]" + " 83%|████████▎ | 4136946/4997817 [00:26<00:05, 154962.42it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4160035/4997817 [00:27<00:05, 151927.64it/s]" + " 83%|████████▎ | 4152492/4997817 [00:27<00:05, 155109.62it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4175344/4997817 [00:27<00:05, 152271.67it/s]" + " 83%|████████▎ | 4168015/4997817 [00:27<00:05, 155143.19it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4190658/4997817 [00:27<00:05, 152526.24it/s]" + " 84%|████████▎ | 4183654/4997817 [00:27<00:05, 155513.87it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4205984/4997817 [00:27<00:05, 152743.35it/s]" + " 84%|████████▍ | 4199207/4997817 [00:27<00:05, 152050.97it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4221286/4997817 [00:27<00:05, 152822.28it/s]" + " 84%|████████▍ | 4214599/4997817 [00:27<00:05, 152599.26it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4236607/4997817 [00:27<00:04, 152936.93it/s]" + " 85%|████████▍ | 4230003/4997817 [00:27<00:05, 153024.35it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4251907/4997817 [00:27<00:05, 145817.28it/s]" + " 85%|████████▍ | 4245402/4997817 [00:27<00:04, 153309.38it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4267342/4997817 [00:27<00:04, 148286.68it/s]" + " 85%|████████▌ | 4260774/4997817 [00:27<00:04, 153430.83it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4282888/4997817 [00:27<00:04, 150383.39it/s]" + " 86%|████████▌ | 4276259/4997817 [00:27<00:04, 153852.65it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4298490/4997817 [00:27<00:04, 152044.25it/s]" + " 86%|████████▌ | 4291697/4997817 [00:27<00:04, 154008.59it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4314035/4997817 [00:28<00:04, 153050.11it/s]" + " 86%|████████▌ | 4307133/4997817 [00:28<00:04, 154111.76it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4329574/4997817 [00:28<00:04, 153744.85it/s]" + " 86%|████████▋ | 4322547/4997817 [00:28<00:04, 154109.59it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4345105/4997817 [00:28<00:04, 154209.34it/s]" + " 87%|████████▋ | 4337986/4997817 [00:28<00:04, 154192.24it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4360685/4997817 [00:28<00:04, 154683.14it/s]" + " 87%|████████▋ | 4353407/4997817 [00:28<00:04, 153783.33it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4376194/4997817 [00:28<00:04, 154801.46it/s]" + " 87%|████████▋ | 4368869/4997817 [00:28<00:04, 154032.24it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4391740/4997817 [00:28<00:03, 154996.89it/s]" + " 88%|████████▊ | 4384273/4997817 [00:28<00:03, 153880.56it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4407302/4997817 [00:28<00:03, 155180.16it/s]" + " 88%|████████▊ | 4399689/4997817 [00:28<00:03, 153960.54it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4422871/4997817 [00:28<00:03, 155331.88it/s]" + " 88%|████████▊ | 4415086/4997817 [00:28<00:03, 153819.81it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4438421/4997817 [00:28<00:03, 155381.33it/s]" + " 89%|████████▊ | 4430560/4997817 [00:28<00:03, 154092.28it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4453995/4997817 [00:28<00:03, 155487.70it/s]" + " 89%|████████▉ | 4445994/4997817 [00:28<00:03, 154164.58it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4469545/4997817 [00:29<00:03, 155411.76it/s]" + " 89%|████████▉ | 4461435/4997817 [00:29<00:03, 154235.10it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4485088/4997817 [00:29<00:03, 155401.16it/s]" + " 90%|████████▉ | 4476872/4997817 [00:29<00:03, 154271.84it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4500632/4997817 [00:29<00:03, 155411.74it/s]" + " 90%|████████▉ | 4492300/4997817 [00:29<00:03, 154190.22it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4516174/4997817 [00:29<00:03, 155209.29it/s]" + " 90%|█████████ | 4507750/4997817 [00:29<00:03, 154279.94it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4531702/4997817 [00:29<00:03, 155229.08it/s]" + " 91%|█████████ | 4523179/4997817 [00:29<00:03, 153985.77it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4547306/4997817 [00:29<00:02, 155470.53it/s]" + " 91%|█████████ | 4538578/4997817 [00:29<00:02, 153723.53it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4562854/4997817 [00:29<00:02, 155331.40it/s]" + " 91%|█████████ | 4554001/4997817 [00:29<00:02, 153873.29it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4578388/4997817 [00:29<00:02, 147448.98it/s]" + " 91%|█████████▏| 4569399/4997817 [00:29<00:02, 153901.77it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4593898/4997817 [00:29<00:02, 149657.49it/s]" + " 92%|█████████▏| 4584887/4997817 [00:29<00:02, 154192.18it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4609368/4997817 [00:30<00:02, 151129.17it/s]" + " 92%|█████████▏| 4600307/4997817 [00:29<00:02, 154017.58it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4624875/4997817 [00:30<00:02, 152288.33it/s]" + " 92%|█████████▏| 4615743/4997817 [00:30<00:02, 154119.11it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4640314/4997817 [00:30<00:02, 152906.93it/s]" + " 93%|█████████▎| 4631156/4997817 [00:30<00:02, 153933.78it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4655803/4997817 [00:30<00:02, 153494.62it/s]" + " 93%|█████████▎| 4646550/4997817 [00:30<00:02, 153794.33it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4671257/4997817 [00:30<00:02, 153802.55it/s]" + " 93%|█████████▎| 4661930/4997817 [00:30<00:02, 153604.14it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4686669/4997817 [00:30<00:02, 153895.43it/s]" + " 94%|█████████▎| 4677291/4997817 [00:30<00:02, 153189.45it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4702162/4997817 [00:30<00:01, 154201.34it/s]" + " 94%|█████████▍| 4692776/4997817 [00:30<00:01, 153678.87it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4717639/4997817 [00:30<00:01, 154368.96it/s]" + " 94%|█████████▍| 4708145/4997817 [00:30<00:01, 153652.86it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4733081/4997817 [00:30<00:01, 154162.68it/s]" + " 95%|█████████▍| 4723512/4997817 [00:30<00:01, 153657.16it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4748501/4997817 [00:30<00:01, 154009.56it/s]" + " 95%|█████████▍| 4738893/4997817 [00:30<00:01, 153701.57it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4763970/4997817 [00:31<00:01, 154210.31it/s]" + " 95%|█████████▌| 4754264/4997817 [00:30<00:01, 153504.60it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4779393/4997817 [00:31<00:01, 154123.36it/s]" + " 95%|█████████▌| 4769615/4997817 [00:31<00:01, 153247.32it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4794807/4997817 [00:31<00:01, 154105.05it/s]" + " 96%|█████████▌| 4784940/4997817 [00:31<00:01, 153081.02it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4810237/4997817 [00:31<00:01, 154162.41it/s]" + " 96%|█████████▌| 4800270/4997817 [00:31<00:01, 153145.18it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4825680/4997817 [00:31<00:01, 154241.45it/s]" + " 96%|█████████▋| 4815618/4997817 [00:31<00:01, 153244.30it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4841107/4997817 [00:31<00:01, 154246.31it/s]" + " 97%|█████████▋| 4830943/4997817 [00:31<00:01, 152781.07it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4856552/4997817 [00:31<00:00, 154305.23it/s]" + " 97%|█████████▋| 4846264/4997817 [00:31<00:00, 152895.24it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4871983/4997817 [00:31<00:00, 153994.32it/s]" + " 97%|█████████▋| 4861611/4997817 [00:31<00:00, 153064.51it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4887443/4997817 [00:31<00:00, 154172.58it/s]" + " 98%|█████████▊| 4877009/4997817 [00:31<00:00, 153337.36it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4902918/4997817 [00:31<00:00, 154342.78it/s]" + " 98%|█████████▊| 4892368/4997817 [00:31<00:00, 153409.94it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4918444/4997817 [00:32<00:00, 154616.11it/s]" + " 98%|█████████▊| 4907726/4997817 [00:31<00:00, 153457.78it/s]" ] }, { @@ -3083,7 +3083,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4933928/4997817 [00:32<00:00, 154681.62it/s]" + " 99%|█████████▊| 4923182/4997817 [00:32<00:00, 153785.56it/s]" ] }, { @@ -3091,7 +3091,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4949465/4997817 [00:32<00:00, 154885.99it/s]" + " 99%|█████████▉| 4938561/4997817 [00:32<00:00, 153783.97it/s]" ] }, { @@ -3099,7 +3099,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4964994/4997817 [00:32<00:00, 155003.99it/s]" + " 99%|█████████▉| 4953978/4997817 [00:32<00:00, 153897.59it/s]" ] }, { @@ -3107,7 +3107,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4980530/4997817 [00:32<00:00, 155107.15it/s]" + " 99%|█████████▉| 4969368/4997817 [00:32<00:00, 153894.61it/s]" ] }, { @@ -3115,7 +3115,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4996041/4997817 [00:32<00:00, 154803.83it/s]" + "100%|█████████▉| 4984758/4997817 [00:32<00:00, 153605.50it/s]" ] }, { @@ -3123,7 +3123,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 153673.72it/s]" + "100%|██████████| 4997817/4997817 [00:32<00:00, 153435.77it/s]" ] }, { @@ -3362,10 +3362,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:43.886161Z", - "iopub.status.busy": "2024-02-07T22:19:43.885903Z", - "iopub.status.idle": "2024-02-07T22:19:58.548875Z", - "shell.execute_reply": "2024-02-07T22:19:58.548259Z" + "iopub.execute_input": "2024-02-08T00:00:06.385092Z", + "iopub.status.busy": "2024-02-08T00:00:06.384772Z", + "iopub.status.idle": "2024-02-08T00:00:20.964006Z", + "shell.execute_reply": "2024-02-08T00:00:20.963327Z" } }, "outputs": [], @@ -3379,10 +3379,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:58.551285Z", - "iopub.status.busy": "2024-02-07T22:19:58.551078Z", - "iopub.status.idle": "2024-02-07T22:20:02.354281Z", - "shell.execute_reply": "2024-02-07T22:20:02.353681Z" + "iopub.execute_input": "2024-02-08T00:00:20.966344Z", + "iopub.status.busy": "2024-02-08T00:00:20.966137Z", + "iopub.status.idle": "2024-02-08T00:00:24.772469Z", + "shell.execute_reply": "2024-02-08T00:00:24.772011Z" } }, "outputs": [ @@ -3451,17 +3451,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:02.356481Z", - "iopub.status.busy": "2024-02-07T22:20:02.356293Z", - "iopub.status.idle": "2024-02-07T22:20:03.761295Z", - "shell.execute_reply": "2024-02-07T22:20:03.760735Z" + "iopub.execute_input": "2024-02-08T00:00:24.774618Z", + "iopub.status.busy": "2024-02-08T00:00:24.774283Z", + "iopub.status.idle": "2024-02-08T00:00:26.116018Z", + "shell.execute_reply": "2024-02-08T00:00:26.115366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abf433ee486a49889c3915e424953a34", + "model_id": "70498ba46dda4093ba603778995e76b6", "version_major": 2, "version_minor": 0 }, @@ -3491,10 +3491,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:03.763597Z", - "iopub.status.busy": "2024-02-07T22:20:03.763413Z", - "iopub.status.idle": "2024-02-07T22:20:04.335755Z", - "shell.execute_reply": "2024-02-07T22:20:04.335196Z" + "iopub.execute_input": "2024-02-08T00:00:26.118532Z", + "iopub.status.busy": "2024-02-08T00:00:26.118335Z", + "iopub.status.idle": "2024-02-08T00:00:26.677134Z", + "shell.execute_reply": "2024-02-08T00:00:26.676500Z" } }, "outputs": [], @@ -3508,10 +3508,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:04.338171Z", - "iopub.status.busy": "2024-02-07T22:20:04.337853Z", - "iopub.status.idle": "2024-02-07T22:20:10.510631Z", - "shell.execute_reply": "2024-02-07T22:20:10.510083Z" + "iopub.execute_input": "2024-02-08T00:00:26.679373Z", + "iopub.status.busy": "2024-02-08T00:00:26.679192Z", + "iopub.status.idle": "2024-02-08T00:00:32.802449Z", + "shell.execute_reply": "2024-02-08T00:00:32.801973Z" } }, "outputs": [ @@ -3584,10 +3584,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:10.513006Z", - "iopub.status.busy": "2024-02-07T22:20:10.512502Z", - "iopub.status.idle": "2024-02-07T22:20:10.569613Z", - "shell.execute_reply": "2024-02-07T22:20:10.568972Z" + "iopub.execute_input": "2024-02-08T00:00:32.804452Z", + "iopub.status.busy": "2024-02-08T00:00:32.804276Z", + "iopub.status.idle": "2024-02-08T00:00:32.860364Z", + "shell.execute_reply": "2024-02-08T00:00:32.859839Z" }, "nbsphinx": "hidden" }, @@ -3631,25 +3631,47 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c5fc60a011f478ebb70ebe314c2c57e": { + "04cf97e28dc54e9e8ad9b5cad5a1f640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e88b7cbd81ec4799be04b90b0f573df2", + "IPY_MODEL_f74b883c262a452dbe93b2d5f75d2310", + "IPY_MODEL_604b254022624d5fa1f0d5ce00717a7a" + ], + "layout": "IPY_MODEL_3fd0a98738d9423197f5aa0943aefb02", + "tabbable": null, + "tooltip": null + } + }, + "103bbc3ca3ac4dcfba34d609ab3401f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "22d942bf7a87444da02c7c20bd4910c8": { + "2043eeeca4644a31b8f49647f6a2c502": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3702,7 +3724,48 @@ "width": null } }, - "2b22ce7632384103bfb532a95a042ce4": { + "2c23cdff36d443ceb4a978630497cab2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "346d07b85b38438389fe133e9a418479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42320f8ec99345a8a1d7b3743692570c", + "placeholder": "​", + "style": "IPY_MODEL_b918e3f2902845c992e2ad99e1bd5c7a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "3a07ea846e4e4da4b9e3d078bf06d668": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3755,53 +3818,60 @@ "width": null } }, - "359a0c7c06574cd79a1df91fca1753fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_95c37d202f1b4e74b31a3b6ea23b57ee", - "placeholder": "​", - "style": "IPY_MODEL_9553a7077d62470e942998ee95b9c71b", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "37e3e49c8c874ce5875e52a48a409eab": { - "model_module": "@jupyter-widgets/controls", + "3e80361896654b9fbb2d3cdda124e6bf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5310f63af03c448bafde34420ad575dc", - "placeholder": "​", - "style": "IPY_MODEL_8129239368ed4dc9b5b1f61d4c690601", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:02<00:00, 22.06it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5310f63af03c448bafde34420ad575dc": { + "3fd0a98738d9423197f5aa0943aefb02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3854,7 +3924,7 @@ "width": null } }, - "5fd6745edeb14f4ab19844d3fe8866d3": { + "42320f8ec99345a8a1d7b3743692570c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3907,92 +3977,88 @@ "width": null } }, - "651dd97d88794c158ac403cb3c7735e9": { + "5059974e71574e4498b7c49142eac459": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1af3509b6d1462eb403501270f043e1", - "placeholder": "​", - "style": "IPY_MODEL_7df2290308494535889d78cc19f6f628", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 443.65it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7366aa89459c4323941d0f375f98ee15": { + "516f602a1da94152b495bff09963ecc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f94881c5ed114484a8718388dbf7f8d4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d1795d50fcc748b790e1deefd918106a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_346d07b85b38438389fe133e9a418479", + "IPY_MODEL_6c8638463fca49d5ac7672e74d4ac28f", + "IPY_MODEL_c0353adc3e9e4c0c90c48a657b747da6" + ], + "layout": "IPY_MODEL_ac8230aa76d6480e86bf2f6603b01482", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "7df2290308494535889d78cc19f6f628": { + "5345a96c9cae4e928a6e1a1c125e7ce8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "8129239368ed4dc9b5b1f61d4c690601": { + "568eaefdf60e4e258e477a3b0cf2674c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e80361896654b9fbb2d3cdda124e6bf", + "placeholder": "​", + "style": "IPY_MODEL_6e4eeba27ffb44cf9cc05b55fddd701f", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "8271ac55c2564cf7b8afdee5bf7bd183": { + "57e56153287f4b06ad3a7b451296be74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4045,7 +4111,30 @@ "width": null } }, - "924f64d2fdbf458ea8d923ef45ab99c7": { + "604b254022624d5fa1f0d5ce00717a7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2043eeeca4644a31b8f49647f6a2c502", + "placeholder": "​", + "style": "IPY_MODEL_2c23cdff36d443ceb4a978630497cab2", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00, 1.46it/s]" + } + }, + "67bcc31fd41b4667ad691485ff610fad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4061,7 +4150,33 @@ "description_width": "" } }, - "9553a7077d62470e942998ee95b9c71b": { + "6c8638463fca49d5ac7672e74d4ac28f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7755b2634e14aafbccebb4f6e64de73", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5345a96c9cae4e928a6e1a1c125e7ce8", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6e4eeba27ffb44cf9cc05b55fddd701f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4079,13 +4194,63 @@ "text_color": null } }, - "95c37d202f1b4e74b31a3b6ea23b57ee": { - "model_module": "@jupyter-widgets/base", + "70498ba46dda4093ba603778995e76b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_568eaefdf60e4e258e477a3b0cf2674c", + "IPY_MODEL_86232ca075be441790e1f542ddfb5a71", + "IPY_MODEL_a9599f5237b44a3db3f3e53cdf188800" + ], + "layout": "IPY_MODEL_b1e04cba90404290baabf2dcb33d0f58", + "tabbable": null, + "tooltip": null + } + }, + "86232ca075be441790e1f542ddfb5a71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e3bb7c90f954f5989152c60322ea693", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67bcc31fd41b4667ad691485ff610fad", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "8e3bb7c90f954f5989152c60322ea693": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", @@ -4132,7 +4297,30 @@ "width": null } }, - "9db709e8796d4663b3ab4076e3a7abe9": { + "a9599f5237b44a3db3f3e53cdf188800": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57e56153287f4b06ad3a7b451296be74", + "placeholder": "​", + "style": "IPY_MODEL_e007fc188f6545bc8c178075c8e5371f", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 22.74it/s]" + } + }, + "ac8230aa76d6480e86bf2f6603b01482": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4185,33 +4373,7 @@ "width": null } }, - "a0a6acb581394b1ea4c7f7aac9f16e56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8271ac55c2564cf7b8afdee5bf7bd183", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_924f64d2fdbf458ea8d923ef45ab99c7", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ab870be927044154a9d2c007c5f1ac74": { + "b1e04cba90404290baabf2dcb33d0f58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4264,31 +4426,25 @@ "width": null } }, - "abf433ee486a49889c3915e424953a34": { + "b918e3f2902845c992e2ad99e1bd5c7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_359a0c7c06574cd79a1df91fca1753fe", - "IPY_MODEL_a0a6acb581394b1ea4c7f7aac9f16e56", - "IPY_MODEL_37e3e49c8c874ce5875e52a48a409eab" - ], - "layout": "IPY_MODEL_5fd6745edeb14f4ab19844d3fe8866d3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aef4eb7fc2264bf7ba91be0aa175ec26": { + "c0353adc3e9e4c0c90c48a657b747da6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4303,15 +4459,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2b22ce7632384103bfb532a95a042ce4", + "layout": "IPY_MODEL_3a07ea846e4e4da4b9e3d078bf06d668", "placeholder": "​", - "style": "IPY_MODEL_0c5fc60a011f478ebb70ebe314c2c57e", + "style": "IPY_MODEL_5059974e71574e4498b7c49142eac459", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:20<00:00, 1.44it/s]" + "value": " 30/30 [00:00<00:00, 442.51it/s]" } }, - "b2fc35848fc74364ac28195032d870ea": { + "c395077a208e4a06a79fbb862d6ddcc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4329,31 +4485,7 @@ "text_color": null } }, - "be506591e8ac431dabddd430053816e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e76f660cdb0f4fb18531762f6b7a3a29", - "IPY_MODEL_7366aa89459c4323941d0f375f98ee15", - "IPY_MODEL_aef4eb7fc2264bf7ba91be0aa175ec26" - ], - "layout": "IPY_MODEL_e95f4c3e917b4f5fbba46be5f7f6f31d", - "tabbable": null, - "tooltip": null - } - }, - "c17ddc75e18d4da39b0de12e5b18a200": { + "e007fc188f6545bc8c178075c8e5371f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4371,111 +4503,7 @@ "text_color": null } }, - "d07ca6a86c524696bf2f66ee1603b173": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1795d50fcc748b790e1deefd918106a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d33a86d6efe94493b4b31f045603d488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f41092a7d59842b9ad606a8f302d363f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d07ca6a86c524696bf2f66ee1603b173", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "d79c9ddd7877446ab1df1603b14668ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22d942bf7a87444da02c7c20bd4910c8", - "placeholder": "​", - "style": "IPY_MODEL_b2fc35848fc74364ac28195032d870ea", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "e76f660cdb0f4fb18531762f6b7a3a29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9db709e8796d4663b3ab4076e3a7abe9", - "placeholder": "​", - "style": "IPY_MODEL_c17ddc75e18d4da39b0de12e5b18a200", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "e95f4c3e917b4f5fbba46be5f7f6f31d": { + "e615a970c954413db367b2d9fef60135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4528,7 +4556,7 @@ "width": null } }, - "f1af3509b6d1462eb403501270f043e1": { + "e7755b2634e14aafbccebb4f6e64de73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4581,84 +4609,30 @@ "width": null } }, - "f41092a7d59842b9ad606a8f302d363f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f8e42fb70e364942b5126777ae7364b8": { + "e88b7cbd81ec4799be04b90b0f573df2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d79c9ddd7877446ab1df1603b14668ea", - "IPY_MODEL_d33a86d6efe94493b4b31f045603d488", - "IPY_MODEL_651dd97d88794c158ac403cb3c7735e9" - ], - "layout": "IPY_MODEL_ab870be927044154a9d2c007c5f1ac74", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed35e6eff2d34dc99d89e28b6b2db842", + "placeholder": "​", + "style": "IPY_MODEL_c395077a208e4a06a79fbb862d6ddcc9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "f94881c5ed114484a8718388dbf7f8d4": { + "ed35e6eff2d34dc99d89e28b6b2db842": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4710,6 +4684,32 @@ "visibility": null, "width": null } + }, + "f74b883c262a452dbe93b2d5f75d2310": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e615a970c954413db367b2d9fef60135", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_103bbc3ca3ac4dcfba34d609ab3401f1", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 12339b227..76a108569 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:14.552650Z", - "iopub.status.busy": "2024-02-07T22:20:14.552302Z", - "iopub.status.idle": "2024-02-07T22:20:15.660995Z", - "shell.execute_reply": "2024-02-07T22:20:15.660436Z" + "iopub.execute_input": "2024-02-08T00:00:36.774281Z", + "iopub.status.busy": "2024-02-08T00:00:36.773817Z", + "iopub.status.idle": "2024-02-08T00:00:37.788765Z", + "shell.execute_reply": "2024-02-08T00:00:37.788231Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.663590Z", - "iopub.status.busy": "2024-02-07T22:20:15.663114Z", - "iopub.status.idle": "2024-02-07T22:20:15.681900Z", - "shell.execute_reply": "2024-02-07T22:20:15.681417Z" + "iopub.execute_input": "2024-02-08T00:00:37.791351Z", + "iopub.status.busy": "2024-02-08T00:00:37.790846Z", + "iopub.status.idle": "2024-02-08T00:00:37.808738Z", + "shell.execute_reply": "2024-02-08T00:00:37.808220Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.684620Z", - "iopub.status.busy": "2024-02-07T22:20:15.684012Z", - "iopub.status.idle": "2024-02-07T22:20:15.726274Z", - "shell.execute_reply": "2024-02-07T22:20:15.725730Z" + "iopub.execute_input": "2024-02-08T00:00:37.811101Z", + "iopub.status.busy": "2024-02-08T00:00:37.810591Z", + "iopub.status.idle": "2024-02-08T00:00:37.832882Z", + "shell.execute_reply": "2024-02-08T00:00:37.832424Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.728677Z", - "iopub.status.busy": "2024-02-07T22:20:15.728247Z", - "iopub.status.idle": "2024-02-07T22:20:15.731824Z", - "shell.execute_reply": "2024-02-07T22:20:15.731348Z" + "iopub.execute_input": "2024-02-08T00:00:37.834758Z", + "iopub.status.busy": "2024-02-08T00:00:37.834499Z", + "iopub.status.idle": "2024-02-08T00:00:37.838471Z", + "shell.execute_reply": "2024-02-08T00:00:37.838045Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.733742Z", - "iopub.status.busy": "2024-02-07T22:20:15.733561Z", - "iopub.status.idle": "2024-02-07T22:20:15.742811Z", - "shell.execute_reply": "2024-02-07T22:20:15.742380Z" + "iopub.execute_input": "2024-02-08T00:00:37.840544Z", + "iopub.status.busy": "2024-02-08T00:00:37.840142Z", + "iopub.status.idle": "2024-02-08T00:00:37.848401Z", + "shell.execute_reply": "2024-02-08T00:00:37.847982Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.744804Z", - "iopub.status.busy": "2024-02-07T22:20:15.744628Z", - "iopub.status.idle": "2024-02-07T22:20:15.747139Z", - "shell.execute_reply": "2024-02-07T22:20:15.746697Z" + "iopub.execute_input": "2024-02-08T00:00:37.850450Z", + "iopub.status.busy": "2024-02-08T00:00:37.850150Z", + "iopub.status.idle": "2024-02-08T00:00:37.852760Z", + "shell.execute_reply": "2024-02-08T00:00:37.852223Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.748959Z", - "iopub.status.busy": "2024-02-07T22:20:15.748786Z", - "iopub.status.idle": "2024-02-07T22:20:16.268470Z", - "shell.execute_reply": "2024-02-07T22:20:16.267865Z" + "iopub.execute_input": "2024-02-08T00:00:37.854671Z", + "iopub.status.busy": "2024-02-08T00:00:37.854370Z", + "iopub.status.idle": "2024-02-08T00:00:38.366943Z", + "shell.execute_reply": "2024-02-08T00:00:38.366411Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:16.270985Z", - "iopub.status.busy": "2024-02-07T22:20:16.270796Z", - "iopub.status.idle": "2024-02-07T22:20:17.950965Z", - "shell.execute_reply": "2024-02-07T22:20:17.950223Z" + "iopub.execute_input": "2024-02-08T00:00:38.369355Z", + "iopub.status.busy": "2024-02-08T00:00:38.369010Z", + "iopub.status.idle": "2024-02-08T00:00:39.953418Z", + "shell.execute_reply": "2024-02-08T00:00:39.952805Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.953912Z", - "iopub.status.busy": "2024-02-07T22:20:17.953172Z", - "iopub.status.idle": "2024-02-07T22:20:17.963171Z", - "shell.execute_reply": "2024-02-07T22:20:17.962746Z" + "iopub.execute_input": "2024-02-08T00:00:39.956230Z", + "iopub.status.busy": "2024-02-08T00:00:39.955488Z", + "iopub.status.idle": "2024-02-08T00:00:39.965485Z", + "shell.execute_reply": "2024-02-08T00:00:39.965052Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.965362Z", - "iopub.status.busy": "2024-02-07T22:20:17.965053Z", - "iopub.status.idle": "2024-02-07T22:20:17.968689Z", - "shell.execute_reply": "2024-02-07T22:20:17.968259Z" + "iopub.execute_input": "2024-02-08T00:00:39.967556Z", + "iopub.status.busy": "2024-02-08T00:00:39.967205Z", + "iopub.status.idle": "2024-02-08T00:00:39.970941Z", + "shell.execute_reply": "2024-02-08T00:00:39.970507Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.970666Z", - "iopub.status.busy": "2024-02-07T22:20:17.970397Z", - "iopub.status.idle": "2024-02-07T22:20:17.977942Z", - "shell.execute_reply": "2024-02-07T22:20:17.977363Z" + "iopub.execute_input": "2024-02-08T00:00:39.972919Z", + "iopub.status.busy": "2024-02-08T00:00:39.972669Z", + "iopub.status.idle": "2024-02-08T00:00:39.979374Z", + "shell.execute_reply": "2024-02-08T00:00:39.978962Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.979985Z", - "iopub.status.busy": "2024-02-07T22:20:17.979656Z", - "iopub.status.idle": "2024-02-07T22:20:18.091893Z", - "shell.execute_reply": "2024-02-07T22:20:18.091396Z" + "iopub.execute_input": "2024-02-08T00:00:39.981265Z", + "iopub.status.busy": "2024-02-08T00:00:39.980978Z", + "iopub.status.idle": "2024-02-08T00:00:40.092266Z", + "shell.execute_reply": "2024-02-08T00:00:40.091698Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:18.094062Z", - "iopub.status.busy": "2024-02-07T22:20:18.093720Z", - "iopub.status.idle": "2024-02-07T22:20:18.096596Z", - "shell.execute_reply": "2024-02-07T22:20:18.096144Z" + "iopub.execute_input": "2024-02-08T00:00:40.094466Z", + "iopub.status.busy": "2024-02-08T00:00:40.094078Z", + "iopub.status.idle": "2024-02-08T00:00:40.096691Z", + "shell.execute_reply": "2024-02-08T00:00:40.096261Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:18.098529Z", - "iopub.status.busy": "2024-02-07T22:20:18.098202Z", - "iopub.status.idle": "2024-02-07T22:20:20.077737Z", - "shell.execute_reply": "2024-02-07T22:20:20.077090Z" + "iopub.execute_input": "2024-02-08T00:00:40.098593Z", + "iopub.status.busy": "2024-02-08T00:00:40.098420Z", + "iopub.status.idle": "2024-02-08T00:00:42.020458Z", + "shell.execute_reply": "2024-02-08T00:00:42.019691Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:20.080833Z", - "iopub.status.busy": "2024-02-07T22:20:20.080047Z", - "iopub.status.idle": "2024-02-07T22:20:20.091704Z", - "shell.execute_reply": "2024-02-07T22:20:20.091118Z" + "iopub.execute_input": "2024-02-08T00:00:42.023533Z", + "iopub.status.busy": "2024-02-08T00:00:42.022782Z", + "iopub.status.idle": "2024-02-08T00:00:42.033585Z", + "shell.execute_reply": "2024-02-08T00:00:42.033121Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:20.093925Z", - "iopub.status.busy": "2024-02-07T22:20:20.093490Z", - "iopub.status.idle": "2024-02-07T22:20:20.122307Z", - "shell.execute_reply": "2024-02-07T22:20:20.121770Z" + "iopub.execute_input": "2024-02-08T00:00:42.035536Z", + "iopub.status.busy": "2024-02-08T00:00:42.035222Z", + "iopub.status.idle": "2024-02-08T00:00:42.066169Z", + "shell.execute_reply": "2024-02-08T00:00:42.065646Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index 14b0188fb..a33793a5f 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:23.034108Z", - "iopub.status.busy": "2024-02-07T22:20:23.033949Z", - "iopub.status.idle": "2024-02-07T22:20:25.644096Z", - "shell.execute_reply": "2024-02-07T22:20:25.643492Z" + "iopub.execute_input": "2024-02-08T00:00:44.559964Z", + "iopub.status.busy": "2024-02-08T00:00:44.559768Z", + "iopub.status.idle": "2024-02-08T00:00:47.083313Z", + "shell.execute_reply": "2024-02-08T00:00:47.082784Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.646761Z", - "iopub.status.busy": "2024-02-07T22:20:25.646232Z", - "iopub.status.idle": "2024-02-07T22:20:25.649662Z", - "shell.execute_reply": "2024-02-07T22:20:25.649125Z" + "iopub.execute_input": "2024-02-08T00:00:47.085963Z", + "iopub.status.busy": "2024-02-08T00:00:47.085456Z", + "iopub.status.idle": "2024-02-08T00:00:47.088646Z", + "shell.execute_reply": "2024-02-08T00:00:47.088220Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.651772Z", - "iopub.status.busy": "2024-02-07T22:20:25.651399Z", - "iopub.status.idle": "2024-02-07T22:20:25.654323Z", - "shell.execute_reply": "2024-02-07T22:20:25.653903Z" + "iopub.execute_input": "2024-02-08T00:00:47.090601Z", + "iopub.status.busy": "2024-02-08T00:00:47.090279Z", + "iopub.status.idle": "2024-02-08T00:00:47.093338Z", + "shell.execute_reply": "2024-02-08T00:00:47.092797Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.656427Z", - "iopub.status.busy": "2024-02-07T22:20:25.656112Z", - "iopub.status.idle": "2024-02-07T22:20:25.696715Z", - "shell.execute_reply": "2024-02-07T22:20:25.696251Z" + "iopub.execute_input": "2024-02-08T00:00:47.095320Z", + "iopub.status.busy": "2024-02-08T00:00:47.095018Z", + "iopub.status.idle": "2024-02-08T00:00:47.117162Z", + "shell.execute_reply": "2024-02-08T00:00:47.116660Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.698892Z", - "iopub.status.busy": "2024-02-07T22:20:25.698436Z", - "iopub.status.idle": "2024-02-07T22:20:25.701940Z", - "shell.execute_reply": "2024-02-07T22:20:25.701520Z" + "iopub.execute_input": "2024-02-08T00:00:47.119103Z", + "iopub.status.busy": "2024-02-08T00:00:47.118781Z", + "iopub.status.idle": "2024-02-08T00:00:47.122228Z", + "shell.execute_reply": "2024-02-08T00:00:47.121782Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.703894Z", - "iopub.status.busy": "2024-02-07T22:20:25.703566Z", - "iopub.status.idle": "2024-02-07T22:20:25.706909Z", - "shell.execute_reply": "2024-02-07T22:20:25.706467Z" + "iopub.execute_input": "2024-02-08T00:00:47.124229Z", + "iopub.status.busy": "2024-02-08T00:00:47.123895Z", + "iopub.status.idle": "2024-02-08T00:00:47.127280Z", + "shell.execute_reply": "2024-02-08T00:00:47.126831Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed', 'getting_spare_card'}\n" + "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.708983Z", - "iopub.status.busy": "2024-02-07T22:20:25.708666Z", - "iopub.status.idle": "2024-02-07T22:20:25.711641Z", - "shell.execute_reply": "2024-02-07T22:20:25.711082Z" + "iopub.execute_input": "2024-02-08T00:00:47.129237Z", + "iopub.status.busy": "2024-02-08T00:00:47.128922Z", + "iopub.status.idle": "2024-02-08T00:00:47.132004Z", + "shell.execute_reply": "2024-02-08T00:00:47.131534Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.713626Z", - "iopub.status.busy": "2024-02-07T22:20:25.713301Z", - "iopub.status.idle": "2024-02-07T22:20:25.716436Z", - "shell.execute_reply": "2024-02-07T22:20:25.716011Z" + "iopub.execute_input": "2024-02-08T00:00:47.133964Z", + "iopub.status.busy": "2024-02-08T00:00:47.133652Z", + "iopub.status.idle": "2024-02-08T00:00:47.136698Z", + "shell.execute_reply": "2024-02-08T00:00:47.136289Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.718429Z", - "iopub.status.busy": "2024-02-07T22:20:25.718116Z", - "iopub.status.idle": "2024-02-07T22:20:29.429090Z", - "shell.execute_reply": "2024-02-07T22:20:29.428554Z" + "iopub.execute_input": "2024-02-08T00:00:47.138634Z", + "iopub.status.busy": "2024-02-08T00:00:47.138333Z", + "iopub.status.idle": "2024-02-08T00:00:50.729967Z", + "shell.execute_reply": "2024-02-08T00:00:50.729315Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.431649Z", - "iopub.status.busy": "2024-02-07T22:20:29.431416Z", - "iopub.status.idle": "2024-02-07T22:20:29.434206Z", - "shell.execute_reply": "2024-02-07T22:20:29.433681Z" + "iopub.execute_input": "2024-02-08T00:00:50.732784Z", + "iopub.status.busy": "2024-02-08T00:00:50.732432Z", + "iopub.status.idle": "2024-02-08T00:00:50.735259Z", + "shell.execute_reply": "2024-02-08T00:00:50.734700Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.436191Z", - "iopub.status.busy": "2024-02-07T22:20:29.435874Z", - "iopub.status.idle": "2024-02-07T22:20:29.438880Z", - "shell.execute_reply": "2024-02-07T22:20:29.438478Z" + "iopub.execute_input": "2024-02-08T00:00:50.737214Z", + "iopub.status.busy": "2024-02-08T00:00:50.736909Z", + "iopub.status.idle": "2024-02-08T00:00:50.739581Z", + "shell.execute_reply": "2024-02-08T00:00:50.739056Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.440688Z", - "iopub.status.busy": "2024-02-07T22:20:29.440515Z", - "iopub.status.idle": "2024-02-07T22:20:31.731024Z", - "shell.execute_reply": "2024-02-07T22:20:31.730409Z" + "iopub.execute_input": "2024-02-08T00:00:50.741554Z", + "iopub.status.busy": "2024-02-08T00:00:50.741265Z", + "iopub.status.idle": "2024-02-08T00:00:52.955848Z", + "shell.execute_reply": "2024-02-08T00:00:52.955096Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.733921Z", - "iopub.status.busy": "2024-02-07T22:20:31.733231Z", - "iopub.status.idle": "2024-02-07T22:20:31.740520Z", - "shell.execute_reply": "2024-02-07T22:20:31.740077Z" + "iopub.execute_input": "2024-02-08T00:00:52.958573Z", + "iopub.status.busy": "2024-02-08T00:00:52.958020Z", + "iopub.status.idle": "2024-02-08T00:00:52.965371Z", + "shell.execute_reply": "2024-02-08T00:00:52.964862Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.742564Z", - "iopub.status.busy": "2024-02-07T22:20:31.742256Z", - "iopub.status.idle": "2024-02-07T22:20:31.745803Z", - "shell.execute_reply": "2024-02-07T22:20:31.745375Z" + "iopub.execute_input": "2024-02-08T00:00:52.967398Z", + "iopub.status.busy": "2024-02-08T00:00:52.967027Z", + "iopub.status.idle": "2024-02-08T00:00:52.970968Z", + "shell.execute_reply": "2024-02-08T00:00:52.970539Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.747786Z", - "iopub.status.busy": "2024-02-07T22:20:31.747469Z", - "iopub.status.idle": "2024-02-07T22:20:31.750335Z", - "shell.execute_reply": "2024-02-07T22:20:31.749834Z" + "iopub.execute_input": "2024-02-08T00:00:52.972799Z", + "iopub.status.busy": "2024-02-08T00:00:52.972623Z", + "iopub.status.idle": "2024-02-08T00:00:52.975944Z", + "shell.execute_reply": "2024-02-08T00:00:52.975459Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.752406Z", - "iopub.status.busy": "2024-02-07T22:20:31.752088Z", - "iopub.status.idle": "2024-02-07T22:20:31.754796Z", - "shell.execute_reply": "2024-02-07T22:20:31.754356Z" + "iopub.execute_input": "2024-02-08T00:00:52.978048Z", + "iopub.status.busy": "2024-02-08T00:00:52.977628Z", + "iopub.status.idle": "2024-02-08T00:00:52.980927Z", + "shell.execute_reply": "2024-02-08T00:00:52.980389Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.756820Z", - "iopub.status.busy": "2024-02-07T22:20:31.756510Z", - "iopub.status.idle": "2024-02-07T22:20:31.763078Z", - "shell.execute_reply": "2024-02-07T22:20:31.762532Z" + "iopub.execute_input": "2024-02-08T00:00:52.983081Z", + "iopub.status.busy": "2024-02-08T00:00:52.982752Z", + "iopub.status.idle": "2024-02-08T00:00:52.989594Z", + "shell.execute_reply": "2024-02-08T00:00:52.989175Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.765349Z", - "iopub.status.busy": "2024-02-07T22:20:31.764941Z", - "iopub.status.idle": "2024-02-07T22:20:31.990470Z", - "shell.execute_reply": "2024-02-07T22:20:31.989930Z" + "iopub.execute_input": "2024-02-08T00:00:52.991604Z", + "iopub.status.busy": "2024-02-08T00:00:52.991288Z", + "iopub.status.idle": "2024-02-08T00:00:53.215514Z", + "shell.execute_reply": "2024-02-08T00:00:53.214999Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.993806Z", - "iopub.status.busy": "2024-02-07T22:20:31.992872Z", - "iopub.status.idle": "2024-02-07T22:20:32.169989Z", - "shell.execute_reply": "2024-02-07T22:20:32.169440Z" + "iopub.execute_input": "2024-02-08T00:00:53.217866Z", + "iopub.status.busy": "2024-02-08T00:00:53.217475Z", + "iopub.status.idle": "2024-02-08T00:00:53.396736Z", + "shell.execute_reply": "2024-02-08T00:00:53.396217Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:32.173948Z", - "iopub.status.busy": "2024-02-07T22:20:32.172981Z", - "iopub.status.idle": "2024-02-07T22:20:32.177939Z", - "shell.execute_reply": "2024-02-07T22:20:32.177455Z" + "iopub.execute_input": "2024-02-08T00:00:53.399160Z", + "iopub.status.busy": "2024-02-08T00:00:53.398767Z", + "iopub.status.idle": "2024-02-08T00:00:53.402668Z", + "shell.execute_reply": "2024-02-08T00:00:53.402187Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 408427f4d..552855170 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:35.313990Z", - "iopub.status.busy": "2024-02-07T22:20:35.313816Z", - "iopub.status.idle": "2024-02-07T22:20:36.922275Z", - "shell.execute_reply": "2024-02-07T22:20:36.921658Z" + "iopub.execute_input": "2024-02-08T00:00:56.196767Z", + "iopub.status.busy": "2024-02-08T00:00:56.196596Z", + "iopub.status.idle": "2024-02-08T00:00:57.333399Z", + "shell.execute_reply": "2024-02-08T00:00:57.332829Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-07 22:20:35-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-02-08 00:00:56-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.249, 2400:52e0:1a00::845:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... connected.\r\n" + "169.150.236.100, 2400:52e0:1a00::1069:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" ] }, { @@ -122,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -136,14 +136,7 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", + " inflating: data/train.txt \r\n", " inflating: data/valid.txt \r\n" ] }, @@ -151,9 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-07 22:20:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.33, 52.216.44.121, 3.5.9.100, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.33|:443... connected.\r\n", + "--2024-02-08 00:00:56-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.65, 52.216.34.89, 52.217.194.57, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.65|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,18 +167,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 32%[=====> ] 5.32M 26.6MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 96%[==================> ] 15.71M 39.0MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 40.1MB/s in 0.4s \r\n", + "pred_probs.npz 96%[==================> ] 15.71M 73.8MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 75.2MB/s in 0.2s \r\n", "\r\n", - "2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -202,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:36.924800Z", - "iopub.status.busy": "2024-02-07T22:20:36.924609Z", - "iopub.status.idle": "2024-02-07T22:20:37.975651Z", - "shell.execute_reply": "2024-02-07T22:20:37.975124Z" + "iopub.execute_input": "2024-02-08T00:00:57.335654Z", + "iopub.status.busy": "2024-02-08T00:00:57.335468Z", + "iopub.status.idle": "2024-02-08T00:00:58.349948Z", + "shell.execute_reply": "2024-02-08T00:00:58.349412Z" }, "nbsphinx": "hidden" }, @@ -216,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -242,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:37.978094Z", - "iopub.status.busy": "2024-02-07T22:20:37.977720Z", - "iopub.status.idle": "2024-02-07T22:20:37.981475Z", - "shell.execute_reply": "2024-02-07T22:20:37.981015Z" + "iopub.execute_input": "2024-02-08T00:00:58.352415Z", + "iopub.status.busy": "2024-02-08T00:00:58.352000Z", + "iopub.status.idle": "2024-02-08T00:00:58.355349Z", + "shell.execute_reply": "2024-02-08T00:00:58.354896Z" } }, "outputs": [], @@ -295,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:37.983434Z", - "iopub.status.busy": "2024-02-07T22:20:37.983151Z", - "iopub.status.idle": "2024-02-07T22:20:37.986159Z", - "shell.execute_reply": "2024-02-07T22:20:37.985712Z" + "iopub.execute_input": "2024-02-08T00:00:58.357557Z", + "iopub.status.busy": "2024-02-08T00:00:58.357166Z", + "iopub.status.idle": "2024-02-08T00:00:58.360004Z", + "shell.execute_reply": "2024-02-08T00:00:58.359557Z" }, "nbsphinx": "hidden" }, @@ -316,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:37.988170Z", - "iopub.status.busy": "2024-02-07T22:20:37.987840Z", - "iopub.status.idle": "2024-02-07T22:20:47.095100Z", - "shell.execute_reply": "2024-02-07T22:20:47.094496Z" + "iopub.execute_input": "2024-02-08T00:00:58.362059Z", + "iopub.status.busy": "2024-02-08T00:00:58.361747Z", + "iopub.status.idle": "2024-02-08T00:01:07.375886Z", + "shell.execute_reply": "2024-02-08T00:01:07.375279Z" } }, "outputs": [], @@ -393,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:47.097690Z", - "iopub.status.busy": "2024-02-07T22:20:47.097345Z", - "iopub.status.idle": "2024-02-07T22:20:47.103018Z", - "shell.execute_reply": "2024-02-07T22:20:47.102553Z" + "iopub.execute_input": "2024-02-08T00:01:07.378420Z", + "iopub.status.busy": "2024-02-08T00:01:07.378100Z", + "iopub.status.idle": "2024-02-08T00:01:07.384174Z", + "shell.execute_reply": "2024-02-08T00:01:07.383731Z" }, "nbsphinx": "hidden" }, @@ -436,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:47.104811Z", - "iopub.status.busy": "2024-02-07T22:20:47.104636Z", - "iopub.status.idle": "2024-02-07T22:20:47.452942Z", - "shell.execute_reply": "2024-02-07T22:20:47.452409Z" + "iopub.execute_input": "2024-02-08T00:01:07.386092Z", + "iopub.status.busy": "2024-02-08T00:01:07.385770Z", + "iopub.status.idle": "2024-02-08T00:01:07.712835Z", + "shell.execute_reply": "2024-02-08T00:01:07.712280Z" } }, "outputs": [], @@ -476,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:47.455228Z", - "iopub.status.busy": "2024-02-07T22:20:47.455038Z", - "iopub.status.idle": "2024-02-07T22:20:47.459456Z", - "shell.execute_reply": "2024-02-07T22:20:47.458974Z" + "iopub.execute_input": "2024-02-08T00:01:07.715171Z", + "iopub.status.busy": "2024-02-08T00:01:07.714983Z", + "iopub.status.idle": "2024-02-08T00:01:07.719127Z", + "shell.execute_reply": "2024-02-08T00:01:07.718612Z" } }, "outputs": [ @@ -551,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:47.461295Z", - "iopub.status.busy": "2024-02-07T22:20:47.461140Z", - "iopub.status.idle": "2024-02-07T22:20:49.817383Z", - "shell.execute_reply": "2024-02-07T22:20:49.816736Z" + "iopub.execute_input": "2024-02-08T00:01:07.721205Z", + "iopub.status.busy": "2024-02-08T00:01:07.720894Z", + "iopub.status.idle": "2024-02-08T00:01:09.991203Z", + "shell.execute_reply": "2024-02-08T00:01:09.990397Z" } }, "outputs": [], @@ -576,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.820516Z", - "iopub.status.busy": "2024-02-07T22:20:49.819779Z", - "iopub.status.idle": "2024-02-07T22:20:49.823692Z", - "shell.execute_reply": "2024-02-07T22:20:49.823151Z" + "iopub.execute_input": "2024-02-08T00:01:09.994297Z", + "iopub.status.busy": "2024-02-08T00:01:09.993597Z", + "iopub.status.idle": "2024-02-08T00:01:09.997604Z", + "shell.execute_reply": "2024-02-08T00:01:09.997062Z" } }, "outputs": [ @@ -615,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.825615Z", - "iopub.status.busy": "2024-02-07T22:20:49.825439Z", - "iopub.status.idle": "2024-02-07T22:20:49.830967Z", - "shell.execute_reply": "2024-02-07T22:20:49.830515Z" + "iopub.execute_input": "2024-02-08T00:01:09.999626Z", + "iopub.status.busy": "2024-02-08T00:01:09.999251Z", + "iopub.status.idle": "2024-02-08T00:01:10.004932Z", + "shell.execute_reply": "2024-02-08T00:01:10.004388Z" } }, "outputs": [ @@ -796,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.833007Z", - "iopub.status.busy": "2024-02-07T22:20:49.832708Z", - "iopub.status.idle": "2024-02-07T22:20:49.858073Z", - "shell.execute_reply": "2024-02-07T22:20:49.857632Z" + "iopub.execute_input": "2024-02-08T00:01:10.007156Z", + "iopub.status.busy": "2024-02-08T00:01:10.006650Z", + "iopub.status.idle": "2024-02-08T00:01:10.031991Z", + "shell.execute_reply": "2024-02-08T00:01:10.031546Z" } }, "outputs": [ @@ -901,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.859992Z", - "iopub.status.busy": "2024-02-07T22:20:49.859817Z", - "iopub.status.idle": "2024-02-07T22:20:49.863878Z", - "shell.execute_reply": "2024-02-07T22:20:49.863329Z" + "iopub.execute_input": "2024-02-08T00:01:10.034012Z", + "iopub.status.busy": "2024-02-08T00:01:10.033696Z", + "iopub.status.idle": "2024-02-08T00:01:10.037460Z", + "shell.execute_reply": "2024-02-08T00:01:10.036924Z" } }, "outputs": [ @@ -978,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:49.865694Z", - "iopub.status.busy": "2024-02-07T22:20:49.865524Z", - "iopub.status.idle": "2024-02-07T22:20:51.295184Z", - "shell.execute_reply": "2024-02-07T22:20:51.294642Z" + "iopub.execute_input": "2024-02-08T00:01:10.039392Z", + "iopub.status.busy": "2024-02-08T00:01:10.039074Z", + "iopub.status.idle": "2024-02-08T00:01:11.408481Z", + "shell.execute_reply": "2024-02-08T00:01:11.407944Z" } }, "outputs": [ @@ -1153,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:51.297251Z", - "iopub.status.busy": "2024-02-07T22:20:51.297061Z", - "iopub.status.idle": "2024-02-07T22:20:51.301790Z", - "shell.execute_reply": "2024-02-07T22:20:51.301246Z" + "iopub.execute_input": "2024-02-08T00:01:11.410630Z", + "iopub.status.busy": "2024-02-08T00:01:11.410275Z", + "iopub.status.idle": "2024-02-08T00:01:11.414236Z", + "shell.execute_reply": "2024-02-08T00:01:11.413795Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index f7b5c0e67ae4608cbfe3ffb61983b9e11ffb0ecb..81c1adab74b6994d191ec2adcac7618019c252a1 100644 GIT binary patch delta 8762 zcmeHMONeDx73KL(A+3of*sX#|y=$RPY*Xj6&u2R_qJu!1jym!a+VdS)YKLSfO>C5Q z;7A9#AQ(H7hzUaXAUr1~F%Wd76G74_9dN1{Wabaot^2CGO0mww;e)CgG?%;YK70Mn z?rX1~z4rRq8!wzuPkgN&T=q{swQqAM$+XBSOP17%thqFmqt^JPkZLJ5`1YM!XTEpq z%mTmfSl>Fc++pg|m*iaH=lRW*`cmo-3qE{j1Dr`WU!8l3`0Y-(%X`A`ZD zgv%NL`tjoF&Ukna1s{3riGVXs& z>EYR|c4rBfvW)mj>Xy0hy`7sU4$ zEASl?PbCDZS7`}KROewSA0BpMtouD)IRKHf4p}T?;U_eV`PG6M4*Tx zugwPIpLQF2qoCJe;rR`WEG%VHOd z54HwqKqEsMu;rMuN54rWu;+*3?D*KXgjnCWU;K12Kv-mwlAVQYKxR05S=i)Qiviuz zrkh^zxf^$S@iuj%$NPRJc0aB!+$CCp+EY|5l5~V)1ks?sb<$!(5V#G|EZbtWZGaDj zm;!UnKwZ|Eeavn{wBC45Ql|sT|Da{>u|6#sqf?($0=={6btDY^Uxd8lN0$sc_|NwQ`bN26q5Z=gI48m8NoJ$|a;`IhbOg z=QRZgX#rf43~OqdE^1T!n329)9a4ko-E+& zuZg{tb56sUh_y0Q8_0p|P%~Q}l4l+t{w@^l)wh>lhV;XfWkdKd7@A`}sf)765IA;N zMV^}(8bBs35{JP=Lal6=gEF;*>KvvtQ4GF!dfhNHtXFdOvfI1j!B48Zz_Vf8xgpLCownK?M|l0hu$oQ` zG}s8N+M;rkGs$*qi-lsrK%=GTm~mDb|Kh+)qu1B}F8+eJ7)~!azW5MatXFZ4ix>9c zVuX)EB$YBWrj|jYI86`&n5!%C$di3_l@Xyz^OXwM*kZyr8t{pu$>WD7NxA*|fb9oW3yA&&R+J%KZ_3y8bnd}!phZBfz3$UY|fA_ z1bIZPO}apL)7L2ln}tTk*s_+U;nagg^qrIM0R3lYJXM4)7^4pXagD1g@DGksZJOxS zoQ0xO@>ukJDDOT?X=kr-vc^LX2#1$1g|ETB_zrrC>M5)UGS;$xF)DR{(Q z*ljH`LVal!S?24irGEZMu-VBl-qxL#Qdr9gOW)eeE3f{f9D zTgYeB5^i;7lY3X4n&Z{qE!EJeco=&h-Bv8GL-%^-K>VP) zdf32myYtxYJf;oKcIR=&y|z1#?apJn^Ekd--0nR7=elLP^Vse@wmXmQ&I9}V?at$9 k&9dEj{MRaHyYtxYJhnTJWB+0O|KEA|^>070vwqjV0nO~qjsO4v delta 8806 zcmeHM&8uBk73X?)kZ3)@V$;KB=eA?Lnz*4n?X zz224A_pZFYckRXFD%5B7`KQ{``@t5SoKh;-=)6iLd1*OSlFi28tXA=t9qVPReEjbiZavPq1Pn;NEd3X7QSjlX)uZ@f}6ur#K z$dF}>&YG6&@QD-0_QvyP#Sa&q)R~+QGBv{#jES+yP<3<6p`|>icb0qON1hdbTJ+n? zJ2yP@o8`IQZLe*H>-UKL;lAH4KioH`JQ<}mB~L^?8|6Zbc=6_*{Z|kBINMni{jy)H3cq#t&)wQ+gfM~8_PR+`C_L{*ujr1G4Z zW#AThxcZ*h8y@?P5aYE6#LpMKVPiuLxz(J>co)33n1LecGnW>|>o163FJ`L`3NPBv z6n9fQYIy#NSe+(&;q&|7e)8nSi>LdO7@kT7ugq2w7ae@?PQ@T|1yIBI>c5vyCG<`HyaiE~Nkyb7{CqW?A zMYFAv#|K_U-@Q=;q9zr!Gvp%}QnS;^MC&=&RED?yw*2UZWpkB>3(twK^mB#REW39Q z_jeGN+@h(m0-aUH>{AR;WzQ~E$i@M~Klcyugy^Ji?8)ntB)KLNjGu-zJ(Vq@y|IfFUl4;J^=4v3T z@Xi!T6ZDLgN|ZKQk~5l%uz+MEu`wa)L{gL178K=!_Qv1;Q~Y3YY5Q?yejkr!pnCM_ zxv7D5gSaL>*3Gmvo$;w*|5M^vuUjI^KA4~-ED>iQlhw9>JtS?#K}@F5wUD#HgBX({ z8##H)WUa;Mw6%4O>H~}Gr3xj2xnydgq*INS%Maf{Yg8~>3%4jCk;#++^vOsQH5R3k@pSI8$7vC=0BQCjuc)>6%(w+glfPMx?FHVnkG9K%%tJrfQNS zZf$t$aR40|^3RJdY_B`KbOz=&S9Wb~XZOYZs~VLWJg$b2@gqxza%4T&-~E)mW~B`CyOrHgDn zAbWZ<>B&Qz=;#u(MjPA<9F9QZHX)4*C1t~CO3j(x9H1Uq8xPUtV?n102Zab}pBhhhtT|fNtKjO>XOxX>&{wwb7 zl*28Cv$9jNH~^n-S?AOcfEAT>_U~#osa6x5sh$G93Y5IS02(xu<%Hl9$b%{; z{7m2wKa$jR^3d9vrBaBTaJmi0X6nWXma5xc7Ic{IXD@wCJkpzFT};6_1OZGMF+MRa z;3ifF|2z!y9ilk+GU;4l92MR!Oo|ArMS3^&E`D{zH&UM9hOVH1teOR$HdoFSfWj#QJE=J; zxS!yNusy&!pc=}V-L0rR`t;1SXyVwLr^JKZOj8FGd+vhx(QXs6 z+l1^kA%{D<-6mw)3TEwRyG_V$6SCWc%-uTg4wJi0$a?p(+l1^kA!2qVvD<{aZ}qa< rgsgvmHn%p|{32<$3E6EzcAJpx3z*#|5j#UjdYH1od#+@h2D=Kd3#h)luMRq4HOt={u)i3p zgUj%*qa{!*JJ1P^G$t;N4u|o9deb$=Lw7an9&QfQf1eIFn-jLgDc_dMK@iy?4- zv!5)$Y>j3k_d0cbl{rt$cZ*vi;3e2R_9Q6!8=y9J*l~>`wvJN5X!0g7PPOMzMoqm4 z`RoTUT?Q(8K7#ponKcL*g}7qgut2!h+IqnRS4c}HWj^-}?k#$s!gJd*MH%uK(TGf7 z20QJDa+o7drKbd&U)aUx@H)sep$B#U@WPigtKp3=f?Jz@bK&{!gVjMFS!G8e{1L$lT#tV~W;vx@T0IpM8Q zQZOyFq0Bn(i6=sH!`j1G+r~rjpDD;ceT7|jR$xc|V;;UvFORR5O|Oy~=sDY8Kizx$ z#Ho7O0{@9FbFwm6&8ObNuB=pHa_MM(a}i!EPsCOGrwl_NVW6W93Il zeK<5~iaTNi##nJJBsR`S#G~;H1+JCkm?Q);b_%o=pbe-?`NcZe-&xI$AEo+aW9-_{ zU>L18U1PK`bua<9{QCzemL1p&@*@Fsc2u+O_4lu=4Okff%ivzelU=zO0FV9-T7cPL zv%ax=u-P07-M@#mX60$tgW~R0@CN)l_6#Wc8lX0E*awyjVA46nA}1DcrzKI+M{lf% z`OGIURR$`0K7;v>StQackEpfMFsq$H!3m+H4%T4LNIts+JB!{I@bb>gM9vsZfhePy z@ziK9k+)n^%MA^D4ZHXX-U68l1UaQ8A|Wz?y$Q}aYq>W{F=cEEo8Op&UB%-sa1N9c zx&0NMFQ))rL!B8N4c9WHU(ZxJ6fYxXG)kt^W$Cb4l(j6<7-%#aGqK9gs~}e?M{bR1 zVGk55Z{ZBch}6Pii_>JvoF|$vi?!ntMV#!?MKbFpC}02Z8$?;@;v}V(ANmff8BqjB z9tG9buo%6jlnE+>h>{o;#b!NT3u}T+RGDR*2&)_qG-$+V;>cSeZRlY-#g3VC97#q! zvqo_dbR-l7B|KZ#Q@XyTr*v^kk63^QH4;jk;4BN*&G5)jXx5tjmGSXvRte5{oV+z5 zx^!yJXqhg{1}vnreJQcW!_ b%uNlAfGP|UlbTt%+F7|6x3h9Fg)0I8ejgPG diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index b8ba3c9d06a7c83adf2713fc8de7e7177e0f698f..cc83d8d1b5d2b93a4cfebea8184ab469ac941f61 100644 GIT binary patch delta 62 zcmdlWu|Z-(BBNnJR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S)?#5j)&0E*cZFaQ7m delta 62 zcmdlWu|Z-(BBP;2N|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP8NsRNj0845TE&u=k diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 5fb0ebb0138add48a93a000c582c0283ced25a43..c0747b2b13181a29257590ac42be62c9c39a54b8 100644 GIT binary patch delta 68 zcmX>zf&I(`_6_?u4GXeTv-8c1iuFyCEmD$<(-JKWlMO5lOwv*eQj=5C43iU$jDXn0 WA}KW`#ni$)t@%CY_V=8OvHJi`q!=Rr delta 68 zcmX>zf&I(`_6_?u4J}fNjN)@s^YtxElZ_J13=It}OfAjK4HJ_S%?(V`5>reJQcW!_ X%uNlAfGP|UlbYXiZhz0o7`qPu1}zpL diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 468becfb180b856528a0089d1ccdca403ffadf0e..25b6f75ac98d13ae0afacdc634739c152e7a75e6 100644 GIT binary patch delta 13623 zcmeHMTdZ7F8D?e=)}lxnXt@;5Yz`DeXuIwgcmRwfD)(TGNK0AQwzQVg5;P_V6^&6I zzzlYW#Arl70iz-zVae5&AEqrr;mOVFB&}(7e~*Bg^`N&=hZgkt>)uUhUy1zSx-|jwfbpGx$Mr6;rQM`TK=nZ_oX3t{t#`(R|yL9Wn z_fD&@+KUx7~S~T#^ya=>7Q9!pOCQ7ntLN64<tF{gn zGV#&|AyF!Vd)#24BuDLq3RKat`^4bIUhOD;tPO6D5y6Bq#3iDb7S<-Njh!Y^jN2wM zj4Ow1=)sCKAAGdGezT^V^zILDKCo?Zay`MbkR|Fta*kaDj{=I4Y8|sq+IML^_fWNM zu&^?(wdHx*c;7GkU+vv%3wN}Ly7<@)H*df8`j1?7&Gtft#$~Gu$F{iblBU{Ht*eWf z;cm}A^g?xFEl{l{dyWFtf=3GKV2TPtsU%<^b`*JA2Sa8IQ!=x}obc8?z_(VLQa#|FizOTFNN7gt$M`>GAL@93Kb#>SnN|TD!1vZim$1 zf(iI!5X@ymS<*rz>kWmdDhKG0kXV``s;gPZaEgpD#v#L852DQsDL9^uwg`mmfQ#nLCF=CCvrv{dVwv_t@ zTC!BGh0t;$c|%f&-InX2-&W@@cttX_faR10HBjpeg))Q~cpqju-JXI^5vN$<6tXP> zn~<9n**h!XSKF0mjBgwFzt^iH_acD=jj~w~unrXfDdk#GPgPLkXRfYZ>@BPqxg(Mx z?s3JaupzYh>)-lkZ8U6?oyA;&3c~_Hy^T=@D9yrqi91GLMQ?#>4gL7~Um60cAw7vJpQdU@&t!GqCkyZ@<#5?_)%7G_P z`{=vQSvqM4*mJn2f2>eCTx;&7n-Z)oQOLNKk1H+o-X1fn<}_d~>IN^uYZGRP zu?nq`%9+DX9fKg62x5|vJ~5G*&@5O&&=H}Fh{ky;k8kl5YJ+P=G7(C_tf8AQZD%er z_qLOhuEi^E;EIz5Hx6|ncH81LM@|}?T%#e*G(&uYLAN8c(TM_uQ2PXjDS&?so0zSZI)N**WK)aLk%~ma&8c@RkSrt;f}kZzp@Xn= zG&IkgJ6Jm=4^~h0hFnRH(FUr@AL@>e$*1${|%u;+3?X`hj+BpkaIHr8UU@BrV zLnFly1^u6}*}w>aW4rS1+P$37pD+rljY4n*;H4Ze3!^F0OhCq6yH|*An!7Knt}O>% zvvFWhRhTgfcwaQH!n5o#*aN3KrBK3Nwm6w)GGrJT!a!ypv46qfG6{Nplx;hjuza>w zk(Y&1!UBLp7))k{5l7L0k1&}rM{D)z-Z?9W?;Y+_jLudJJT27fs%mio;*E(W2IZL1 z2}qv_q3u19lGn*LSH9d|JDq>QF&m6ibyRTB2F)NwCO%{l0(=eEojvR1oKT1HP=F!F zy(Bby${E`9?*Zce_gsxO(fop8krnJA#n3do-K0uBS4 z&!9^T$7Y$bFqk~*KGEu}d{@g_y;6xD552<4wb1KYy}Fp&6835l;AbFu=y0LjFpQBW ztAlcA*EM>(?i4z60|#l_LWX052qZvMLOU1*a?z1YeNZ>#Y^PP4!ZI0!b~1yC(e-mI zMN0w;+S$8K0gF5M)3)lyT9tw$Bhq~S*6RI$Dq1}BZURIKHpO%ml;U&pw)K$gcpHkc zZDAKJ8a~0PLE=8bIYaMSQJ+x^rO+v9$3awBiTMoEh5(ZS_^^RYM7^`253Lz|uQx31 zqI01u$De|6?~ZES(8Fvv8F3C8tr}DgSHW=n7$#9P+@1gEbPxwlh~Swzf`JR3J1DFx zW;KZ^t*vY4wwQMcmN0t`NdmR4(0IymH_%lbQ9mk;I~Q7rI~^kxLQV&_d-g&8xZWgY zyi>-P#HE7a>U*IGKcB@G;wa)Zs; z&^-Uy%AER#f1EJ++PP}m!#me}YW@;2e~FmCM9g0z3hyBEmx%dG#QY_qZ4Box5%ZS_ zGk=LV_Hwi2LFX?K^OuPEOT@o?SpE_+e~CE$ a4QKumF@K4ezeN0BzC`Hpxw{6>yzgJ;`+al( delta 13354 zcmeHNeaM|<8TWkHT!}e0=jOKeJZ^2KzHayTM~2#mk?AxELv8c*{(Lv5?sb#=BWx^_ zKK#S#s1HR&nkFKZCU$~QCrMC|U`kj~DpVl#M?xq>V87>_^Un7ezBfTZe;gUIjr)DB z`?{~|cm00Xb?v#ASN-bcRS*4WB{lH?o4YRU-(h56PEksYv`SMKoF+26C`gjlXh|7P z5a%CxdF7*5^dF2fUx_pQJ#kC_hJ7dZAB!7S%vRgBaC>(DnSE>ehvIDioOnk6Phms< z$*`&aeEiUV`XiU;r`LRP??Ja~ZvTN@bJw|pH>Lx@9fZf9wf+-1YNm*WAM1>xX~;<;Pkl_g|jx^&gnu+V}Ho`X89z*xq$>|KWOL|08>@ z{NH?fZU5@0R`!3f_m=)S*REYVpKiQy@AdO@2N&FdG}qjHc(a$@)jGL@-}M*vZCW|J zb#v+dFZXTiclNF8|MZ&8{adeDjb~feKYO40?|kWztFAq3rXtZGhSYK4N%PAonY0p$ z`Jl6LssF;gpD7Z7l=U%0iq{*_~n>0f&9S@qjK*Ir+R%n(%PS<+TmMA(u@X~;=1CM45?yZfE% zyHzBS2ctX-J_t*lb254Sn5Gda;`CtEm7Q<4DtL<=W|l=Zl<{c16V4cu;7%galVEhD zwcFiYGg$ai`xD(tr-YdTFi!(~ z5Y86N#-SHg!J?`UKMFt2xTn2-yHeZvzW47qxO?+3Jl=5Rmv&TBq??h3FfTw!IWVM5 zsGs@yqFcpsH8}Nz&No_zO5xdzq`2UtSIq6a&xqjwZJm&~*CByZp-|k#emFzZfdrvQO+*tx_QHG;x3>)6udB$gwGMY3E(AQLrKqQKf1iAq+c0d9!o)Ls+EeM|;iBO-{*aD_yL zr;10?pmyEh#k<*A1>7wC_hu7>zv;6#8|I$R@xGgAbArp zS&M|cQY=hV7{oXWsdQ%Ci4>yuUI0LZ+ayq;@|e^FL%j^r3NWznG+8`mLiRe;Q<_Oy zN@@k`vcCAa_9eZ7-65yde|fI`_MSy8XDJH^JPF$xH$(=q=qO|uAtR(6d8MOi4VBxf; zTtHbx>A2zw1t@r7@FJ2~IG!ZjuUD<a^lPDQlutPRLarG(}nl* zV_rLXrr_8cw5DugjtqGU$z>q%9nlH`!$R?-Jf^jtvXaFZ1QaF{2%%+?B$P`CX0!%s z7`VZUx3zC;^-N$4S}f44fkqTD&pe)0<4*)F&ESTgbpG0^N_Ok}Uu}O3rXs;giVc-vVqE3yTTO5vGAO(7%0FIesK{-g=*tYk2~rP;GUezJJbIOT z+WWf|Pv|l=dSWgK(u=r2sK`7*aPsW59WxqbDY%B>(3FaxI2vD$Oaa3oT5LM#!G5M%;-8H z%#!pe1rGh0M@Z`-H%Zg6HiZ!XmtF?|jMz+5#1!M-vbAJ=47q~wA;mqgxpPVt0Thn6 z$Gbxl%j_dFEF(OEJB8Sdz0sT`ZlQuRhc|e1Z5nt{YPn|AFV+oU4a}c0nZq%`&>J}L zTtsnU1oXeybC!&boG95G@!EIK>}=RU*>=7ZbkOOFNyZIr6qG{^p-xhC$HGf#7o92% zNXDI7Aw+BvKcyU=cLhIh@%_?;V?lH3JN;W#KD00ro@D5@V<|u)u{@$RZTH2m?>DjyVc!V zf9uT7@%6FicTTO)tT~A~i0X$CB}OtTMU3t+_Co=4&WH*Xeuh}caTD4rj2Fi^D+EPOBBzv?lc#OrrH5P3}Sweny`q(F;t`~*q{W4(J~@Fqv<1t2ABZH zgy|n?T6Ke_A>|m9Vcbgx0Y9ET{-)I{7_NW28?08c+prp`KXp~-_)2l8!={zQ1Q{MN z+))ATC<7RKNL+C=MOxLu_Yu37KJ00Pdmz{j+LnHMBS;x)O!EY3iZHM>V}LPam}?Bl%c}(whbyrR{)gBbP+IJ1WXqJZ?UPGMB{W3@a6?X zLw(alz;qEXv8S0X0*-FCr;C82tB2_#V7dsHE&`^DfW;NWsF4fPMZj>6GF=3eM)Bj( zi7(9Jr;C8M-abqh0gIcHqjMAdvz%pj8`DL=bP+IJ1T5K5O-@9ni-4sIi0L9=x(Imd SbQ# diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index b80c9d15cc456dc291547647a65edbc30c029a4e..fb687834deebdeaa8c4adac53775f82bd1e5e034 100644 GIT binary patch delta 3246 zcmZ`*Yfx3!6=toyIp^MU?h_OmCq_s!zM^swK};ivp;kvwRFwEY1b*4pP= z-~PUD?|VPmHemav0sD@+lS{+J&%H2yNqJIgVR}(P%EJ5!$%UZ_p>Yd~LdAte3zG}; z$Bwms#-$e&7Zs(Zk6(D8%N_X+Z)w)=I8-b*p6SM@sK-l}6laM2wJcWrPzj${=c*wV zMb8^dcmJREgDBdnpb&q|M8h#i62D&s?N-NTNIiyL^d(#cog&x{mG&RCIKqb&-H~T_m8rTnYGviv+yRm4KMyCWk_9rC?qV_YQ>|i54p^SK|cjUCl|~mCJ%T-;j$FihxT#U`BOqLZ-PAf10}+&c+1F;FA2-m_(!CSTiP zkYk$+a?D<-9IG(MvB@rStjR%YG?ZhD4`H=oZ`%eU$Mnx6+Bw6@X}}>S+>{-%O#jB| z9B9Us2K36#NKyF`4AlK@^$zKE)=<%JbO?N8Q1n||=)9JAJEv+Q9Q?;-9>Rna557T`R&{#J~bSdPDN9`|l#1`hM6 z4YfNf<&B6@9wp~Bhs?iCC8xcUt_YjK(>;A^&i5!aVXoCt!{QNNbhu=CY%WW!>4MEi zTt{5ATq<_I#+m_ZY3i?3%|kMl(bTyf3jLzKF=BTOTWo#yI-AGEo$V}FFO_dy^jK^E z$WC*y`!$xOS2?AfyVyjI=#_hdi0IkDdhkt~r8FefOWu$5k|V}m<{N-B0` zdzB?HRqSkJsc5fOp-%EDN8nFl)(N&2S2|!TyeiXEK4zbrSnDM(vb{FWHmkgq9rECA zuku1GqGIU<)@tJWilP3Bs(ESuTfIv470$qAUJCIdu2?a5ng zRt)?`0yy_~i$p2+QIt!46lHt46b_yiuWEcM{>@8C-sPax`;>4kI&U-JIFX<0vvH33 ztlKfX*@V;gkzej~%pv?!13HNOAE-#=KOpk;G!^T7q~23LQtyb*Q4fA3@^zku1N}<8 zlu`T(z+^ue*C-LkSc}H+JjBU1rSRV9 z8z-6`<%_L5<9HSqabtL{eoMYt>$f&e;0L+*G{m!X?x#|922bR8R87D*zeq^ocX6m+ zxnSRliuMgZnQ%6npM4lyV*j%|Q%{lr(E-vQ1EjybQU$luPglusKN&C~Kz61DlmQnP z@#;93ErFcR&xC-DHq$y%$rIwCP&S;;&so%XxRzJOLAh+uU9459hWL6iPr;mkx(w6g zf3af0S{RHe0rKL30C}-5(3j-59WJ{hm%b#Q=;xwa68U(*iE~>&8U47^p*VkeADh3c z4zW2#YIq)CF%3ogq delta 3453 zcmZu!d2p5070)^M=6!Epva!^b1T-NiBtc$S#N?$TiX(|(5ro=-0MZ!Nq>Wt|$`T1C zAO=D?ED46vPO&o%6bfHc)>u*mu@%k8Qb7<%p$dYQfkKqtd(T&rar)1D_x)7Q$I7UM+&qxwh&%E_vw7r7(@Emti(7 zt%j4d@>Lvlf0ayi!=#6Ht$+e}gJRW?geyLz@N4iP6%LSY^<~x%XGt%$t%jKOmMBdr zE3;_c2QZKd>!B5!1#Qoevv9vfE$c-T_E5`07!2JhtqyzIpDh9pcKLxwQ%;}ALea*E|cG)uMiS=Jxe_XE;(MZF~7NzAue$V54FfOigYN;=C@tOr|`j*B& z4;U9`AE^UHJMTESIsqTzZL7ZJR-Sc%A2f>bxK&?pIS=<(w5kEC@GC(#x{HPIFh%^B zO6SzEH-ZIEk=O*j*20YQYqPs`p^TqKk2ubbd?mp$TlSn>b1*16ybDt{j`sp$l! zxH`1q0?nLAsn5Xx$kXd6_H}FHS@@8fHg^|K;Y~p~LRLd%rwFWY*Z<*4uKkxc;U`{L zsYw%Q(WY_N>~bdhnv$f&}5l9Mo&N~)YBV6n$eYlG6kFw5|8K;7}m z>`VHT6VMrY-H(oizz4;&xeBwf(8EE6cn)e~Cn;>O7X|QAI_%b*98as&r8swb=zL79 zqr#OkWY0^(O9^!L2bfITOTnU=aiZp1JKuxD>~n_2PtPh9KfHhDVgl`*FUEKMeP#)I z;Y4RhYRz+6aU#W()39C3%!du^1bH|y`(2!v&n%M|TK*c&v7cOuXMjeo#zN~$P4l4F z{^>HDh%}k70ODvfVUnF*i_JhEZB%&)xy>Q&*k>EC6(4YO$NtP~IuviK+R++hKyQ8BSE=@4!jQxrUej(*@&>ot za<6VTRoQh7_zI49n?&O!$L^I(n&7UNNlzo~CvtPG6s* zo^79ti6=5(vEGQeY8jhZDt?o$%0%nXt!`a4xS#zgGZIW7l?kI@w4Vc+=HoyX`MIzU ztQT|aIjh8ZpxRBM5T2tOTST(Gqh1uLirgX!)Ei78N%r`)Vjs|;ts-Vs_?51+Y>VF7 zDq3+Nv#A$Tq+R*0r#WT?Olb_*AYPF03@tw8xMfxA$43V2vzx?m2`}iKm_-hFYm0bX zs@bDJo?&mA4I1699ybj;LfgoPEDdGT!3G?M&3;bS8(qvd1UO?QzZbzI_>&>zVfMCW z+@+5?8QY=P&M<2*w75RN3ESi6gk9;v+|G_Q9u%k5yDn&I-Zd$pNblK4kBQyttrIjQ z@A?IUhfj(3eb^_cE8exyU|sy_(A4>A^lN|cLV)u$Ho$rMbATttq##d>2|=ggf6Ruh z7R@&=$ZrIEg)Li09n`!Ma1EPoGa$8G6_4WVpqUR7^shuZw@#Gf#{nJ^haFRg6qgUZQ3uc{jba)s~U4IXa~hRkgu7~<;og-q0- zjHYDBA~;UlGURMJpDpLuwSDCUpt`6mbe+@;>+FO5xDG z?-2&sk9+LL72`)045xyaT!a(D9JKL@M`s|bK%VT46=BZ62u(0I%wu|1*oi9_#oTx09lyHmYkyn|B8u$1U3F3( z3&73$ruw@Yd1Gz6yzW<*qL#Zd-`a1m2s?3>op{GF+^P*fjV~)*=1v&lI1W$XI1Wvq z$WqL;+i%JyP;*-GIX9^bnsiKpefpM6M3|v>GU<~Q(9OE$>_qR#bhR_PPF&N$4`R)0t_8~j{pDw diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index c4f3517ffab2d9a9148f8698dbebd18119eafe88..d33a32bfff12e13946e05cc1e4ab128000f6f37b 100644 GIT binary patch delta 6665 zcmeHLdvI078FxRDd-FgbaBuESkef>s2$+!b*gX$GNEC^@O0ZNBiRL`LUY-)7w3reE zv}jP$o4P*68ES2(#g3pBiL9Un-G#uwE;s&qO;QM9o-Lw(flo|9a1x&}3aEE)iv7i^LLb$;{Mlzag*E!;?23 zD@uy8iIxVD%{eOD(f09rqz9@1udhUeJG07WqR9d>A#PldTQ3gc<4Gcka_6Z z1nqkdHKG-PZVf&92C69@v>W_OPri>9gpI;fdHV3UO!wRfeR>*7(9OruvdsTBPoSIL zM$5o0q-7zr8mc21aT|fENG3TaPFtTuiST(o_!8QG3~8eV5Dyt^gqaa~%`8|LTg{iy zB4?b@Zl+47ZtdylsYw-fUE||tlSR7Z?3T1;m|+#t{4kf z0hC16}v)^}|)xb!O7oa8>&nXYI!1#&yXd zq^hF64<3xee9-+#+=f^Ii`moXi$Ynx!_kCkqY5+W1(hsuTcfAwwnTlpE27@Jm9Q=Z zKlNqv;o4|G)rc4~PWN!T2Oy{<7zuZ<&H`c&fdcoPyOOMvV;!qt2^{98% zIj{`T$3$oh5r2fjWO$x_MxY@)+aHK#vxc@Sfa$*DXe2$LK!g{Ezw)LFhSR!m=*nY@FEW6>~c!#V2Q7L z`&2mL?GpeHy{;aba>hy#QvJD^*14nT?q^UDtC@HtFp*n(6k&)AF8(T_pUW_Q$iE*D zC_zm*wi2PseM5BV9H^kn6qpD}&MsR@rSuO9j6@||A?nxDceu#pF1iG5=H?@Qif=0S zW8Ti)G|8K-!3KnSxOf3{mj_|*DEGsT+PV30^qxW#MBtlgz9uIEPX-ZqJR5-o{q0P6 z2_5mt`A!bCabmA~&&-1J5qd9&HTPgF^fO<9E}RWdqmw!EMCgV<#!$)7o8yoedOWW$ zcGBhsxF2pQ%Mv(zR=I1LS^wD_?7L$H74@~|ny9myrYn$L~uw$&sYw1%>5axmxn}GfL3Nzu_ zT-mmZK;p7fOZ?(nmUv)3)Mc0W?|cy9o*Xltu>iK9ter0w!lkg!wb>+&`06#dC7wxkpyOE<_iYFoynPC6vRbzyBml_=;K3od3aohBv@d*8H)?V8xp zB~h1Ey7VE4(2rL^x%b3=Xh%ualnqmqbz8DAwj4os42umpwx;NYj3saBZSVogyE;Ak zCM-_oS=^0`PbR2==Dpizh$yH4U8!9#hVrYsa2)bg)MA9ANHQo*D3X+;D zh^j1VhAOJq(PYzhBt=#oNfRX5RCLOikE46;fC9RI4~+7fH^QAL=}3~G>Y^kVhJ$VF znwIP;lI*Ig%zh-ppXISxdr>|dboBcm=7-^vd*=yQScMf=u!v#^#Keki>JpK#D@dwk zi-zptAXG^P2a76;mrDdJ5!uk$cY>%BEa<8$$=bK`a*3&6j3vcz1T3;7u!$o(M8&Mf zyg8It(#QjZj(H!1{5S@qHiaQm2oa_W>eUEmMCCTw+zkIRBXGtNkmmK zE!}o((-GZlVt)Tu4xM-aB3|c5a5LJHFLc#x)%nerUAcJ4+zS_7nJAJyoB1=;(oek<19w0TmE=^Xv z*mNwSxgv9gX*jG7G)ojUHpvt%KkI|K%nKyQ-@G_{daN+(=cD7}0@I6bi{AB@4^O_5~2wUOyW8d9C6r4q}rv0zyamJMtu zmL|v;i|kfFGQ5VnVSPc~Yl8rEr(c};;+I=)`SLhdJD>Bi#rgfLB$*fIWZHT^+?e;| z3Zi}b+&q15vbTtVedqMK$=>{im1dsTj%;b3J~vOFo2Sps;JW>Xdv21_>}}u73Vypi zl{WktMMFn|FW#&B;TH6q_gO#u5zuz;-cRA!2v}a>-Fy-{0NqN9zJOGC8oSu&(o(dw z0n`ya=|1}47tk6`u@CC5bFZV1Er)3ZJ?Z8OI`2!E$tKfnU&4$nx3W9xooPOGXS&aC z`GlQJkG1Wo3U)D{eu4E<7o}h1kA3Nb?2#UeSo0F^?FQBy;=MNuSo2rjyQ7dbf8)KI zN?3E4_Z~QtH81ntJEK_h3h#Y5T4Zf6?_M~THLvm>zXngg#(VrqC;d9_@r#i38@#v5 KTk{pWEBrsq&A^fX delta 6216 zcmeHLd2p5073Us80tf=hdoK?NjMHfy8|;)iI%@5-DKfH6(b7fId%rI{lC<>u+Zq13 z@4S1?ch33Uv)tv=ZA03>xaz=@K>Y?&$!W43QAR;VgY=()GIe%!Cm-TFouq** z#LQnwG8p{_ax1~A<76gT8qVO6cgYd_({WN;;tt5Ba&MRAch)8Fa5Wi=OFtota7H`% z3ckfDvMM-pitHs&oyc3G=WGHMg<=Ej8s8w zB7by@LJS=DIT&~hr8-$svME>Eu*Z0-Yg5yq*Yq8@kG6cW)oK(V!1X_P4W%+rG zf}6;1WhPjO{QOlDgZ96ZiDRHG59x2lnJO&;hq5^J_NFDNYpgaLfyaPl81RoFuM& zgG|a#X)7}tkc;FLK5qk8^oBA$# zjqvDwe4qwK6=_tHf};%HA=oknCiVQkiNXkcr3xBK6k+eBBz{O?UL+w&ph1B=P4blw z4?=e`%q*GKE&DWs@da%sNrC(w!E80um)sc1g&5YpOa|Zu6Eb+B8dUOKth^Q~!<4@a zf_gkS2Bzc0=`fm%z?svb4z5m#yd+lzuTO_Z2&opciG1x#8dRmCkd>vvtc0sle1WE3 zCR&T4Xe~;KXpsfTwT(o20~{x-g~l@6Q9{h(CBpe!a91tdNXWM%#vji?DvX#FGV$C@ zI7}WY@XGTY_asYJhP>3J$gL2Dx+AwBny+mqQMvqgHrV3#U$fx` z_-BfDjhaCngey+v`0Tnlkrd}v;ITPS$=idp2x@*b7Y2&2YHk7fqH3PqoHaQ=KRvLZ z{q_d9u3LKr{-gmUqV)Ve7(5rYkZuJdaqm31oy@wV<+}MWt>^=e5=Y!jCY5Xz3)!9u z9-R+|NaQ8C8B+Y1@UATwd>fo3RkJL<^5!5!SUjdpg#gUy&(0vqtPr7&0s ziw?IZ{JuPF;(fe*0v9fWov=!Ud@R|+F2sC#4p}DZ0tPm<>eBb45u@R{Uiwk^V0`F;p;n=ts z#$#xu@qb!rjI108t>Atix&XV4{AvZvCXYvc)@4Bvj7?ddrq8B6yx zQ&nWsW~M6XvZ2eG<1yW5nk-Sv3|>D5yGce>G{g6)p-Hx;>bh)8j-hiwMbmZPV1B3) zPrm@E;PJKa28s7!>w0LYjIoX%w(tfqrWpohsBXC$qaKx+r%JAESc;|lrmLD%@m0(2 ziOIGV#kGCUkoc+1vSmZzhcL-urtUcWSQpABf?-?XDUwkP#bu`By1v90i=XWrS945D z(L7(3Iar}L5u7;zPm*{a9_H?5Vy%DF0&6OD!=tvOnKFlhoF>*wFu*f6hd)-8>3iQ7jyX8Fc1ufan{A(e^6#aCs* z#Bd3G*OP6X-y#%Velm3}*V84LN85C$YqMUV))kePm}2nD1XCr)wLRCRo?$VQxxP#F z?rKz+>H17@9mCR9#>1;xzOH+^%WTV1+%O}`dRAks526|~an_N8ni`g4CBFhWR5zJo z@@!Q&4&Gc`D*LkUP|0<1hp3vU!%&9<(p{=*o~lw_T$;ul)pk`wax7|x-RNR9x-zpQ zTU8{9X{tmOTUJy@ku_V^eVu9DvQah0xFBPgzOmLhrUm)O?jJEBN?6U)Ret;97dT7f zgln0$&)1fxuVg7SAU}t-MHz(}O!qw7^i|$_OxLtjThl48IVSs*>QU2(DpHnYnb)pw zI*O!vx@pQBw&hdLVKQ~Ro{%d4zi}BKY5^(U_{D-8&4Z&diB8eg9u=wcHse^_e;zJX z)%YFP_c=J`>4wi#JvjS1tSPFDxnknMO_0Q{@4*l}aSZOnj-Nua_LUqPqR7E0Bzz5HPjx(Nt1@W8Jl?{`Z^OX(r%7)4O-X$4#-YAshl@0UChIwVf z{L*ijwQw{oo(Csm?aL%t{AzToE&U80Ap3&dpTRyLqk=i-p|d}nN(ainp%uskJa_@J za5#mdyI=-s#U)+*ar#0zzT5>8bf)oi7fk2kKdk9LZOa7yqP#tKm_M~_&$aT$hwZrw z;n>OVzuPxvNAjzCZuv<5hVZrA*Tv5>xkmnzE9DPGxh6sF06tiPI#$F7TTqV-;DaNm z`v>#E71aKreDDPI(batL1@-ALiH|D;IjfWpSwV?6?%Ya2i5Hz*PEg{xBX^geNRT4^ HZzKN!=Ho*7 diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index e099ab08d8f093d499bce9e122ab7dc57473dffb..c7af032d0c7e87366c354a1b81198e17131420dc 100644 GIT binary patch delta 44035 zcmeHwcX(7)+PLRTqmxhq2qZ(Ofs~m$ckawk6G9Cwp@j}pfgng#Y&0v1D;VVX>3%9U zL{UN1(RCHDes(~`f(2Z4?Gh`ZyZ+vCQ)V(U`}^bfJ(RUb-%~(hh0H;Bw_?&E}v$^!qu+P8`5^#+uGl!iPPhW8ljjw z7%((VcZUK2!yEJZTmerw91BH*8lg(tskOiT-c}{DiPNw9{VtCy;tR$?dQ=Ywyqe$d z3+NG_5!OPwpU|c4gy{Y``hADf=k){vVYd+r1OvLE1w(Eup-bBd(RElnb*{zGJ=IHJDWktn zzH$Wrs+w(8z39#2+TVL$dGnbz z((kI?^3N^8uhzG;c$#?foz6g^-?ewn=NCz6Q|>8Zc(wDZKG?79D+B)Q-SAb0g#I;c zEUx6d)`ec~bM<5tVbw$xhu zh%~rn;;AQWLfp_wOjVmd5-zJz=+lA8nA%(>J<_MExyQs{3)IF}3Ncx#8RMi2s}a9C zI8M5;@ZbLs1F6q$tN2o={Bl_&d}>y?94vhCrVi2EuI`>HHJdk3Xaop*X{FS;s4lLQ zCDI#EHGhb<@#0oum{eIafCy9__+5-t*UhMfRL{?lL+ZL-l_}m6>c?5K$VAjUydhk|s}8&&z!pYa zn=95xYGuI-N@PA4XP1D>B3L{c5^c>sdrGCBD<6x9rgnBoz0hakE|YF6mdGjTSN!lI zF^RmgkXuL>;Fm>QM9<`otBz*WJSO`d;v8nB1b9h zM$sm|`f?lzH8JT^-)|Ko)ROtsTkV`LM{tiSf3BBy=Ro1O=40_{0F& z#ilA&%26!-gbs3KYKjGnT;|!7dzGwEYyV3ukt1_d&067=!*Z&-h5M57<-8oVezO?k z(28K8VCYQ^vOpc1N;h&}@sPG9};xJQp5abm(WC@jbyBKZK zBs-*}ndu}WtEP8|1G1l!_20({`Zub-dEsm|=}s6x!<=k`a-?74tiJVsCaC^*iOq6~ z6E$J4qsgQiEk5CmQKewS5QJ`UaEM^+Zdpxd$Tc z116ot2z#G%+fH$p+(#rFE4Zq9&+Lxs$=0%)ya#cb*1z6F{MEgH_=Ji08%F%{m9mp6 z+$C}?hUSC3rVkaepwMh!(bDD7!RD9*icPz*n3p0gdpGsORdPJ`?x=3NUo=Pf`aCG9 z9RA&`S1H#Dl@ z+)G}@Qrv+oE$yamy-wyP;D>}PJF()GH(QFWD9A7*hB7QB8Gz?`4~omw{f~fIo;Bq- zfO6!k-6i5B`Oj|E$KUqIPr9i+Lq#e64Gx1C^DvS=-c4<9CWcE#F7>hIs**vLNwQNe zN61I8PkZJ5yXaoM`Fn@3s){G!XL(I?2Q>kB&~3?+A9SmBzgHjwxoq0U5$uC*s$_UA zo%f)iS$e61J>=K2GMB=Ey6y>Klaq2eD4%1Jd(sHoi{TTOIuHh`fyvI$lKBzvgmaeZ)lg99Hf@goWz5eGqdWAbA+iUlC8CodC-j zzbhgf68LrQ7t7>PM&fuGk-W!hf16$B0O<2oakYBofLJ1$s^C76qjndG4$|ITRTNr& zlKI`$@k3G<-C6H>-C6I45LK`4toO0qN$;b(v)<CQ?&f-t#&2$fDma-e`p|67H~7nsgdCe;rzFG!;TZC%M>`mf!2vit}!-3U_P zWVy#==_pp-k1Q2B==Z(dX|jB-I}OJVu=(EZ9Hs%5rYu5qLwEJ#WHAt^LX2Jle;`To zH75Qk6IUl*0;f3Moo#r^B>pjC|Cxx}>Guz$8?qsGCTgEyC!p4?Eo2ip>cUqbuRk~i zoW-Re1vJ_;lGmxktD?Wm>5ijGbU~Ck)w^GE3cK3t7c6 z)k{BVBA4_an~Ei><`9nuweBGBy{HG7RcxWI>exrJspvtb6?b5j*YO=Pd20`KXpkjO z{Dr{Pu|pz5EW+P?<@_FG)Mt8-QSCoq_xapy|6%ABQHKtTDUb{rzS z+T*WevmR%@i%+(2{Ep~8=s}hhKQl)svF`gGoOn>-yB=iOW<6=zIfd=tF$*;IKH%T; zf}%Mid=ErCA_g-XG!awkOk82=oRX`)YR{XXP2|dA2MWDvfO@a}52QLkl^g|= z9DJ`em;GFJe%M^}Qpewdk%dgy3I09i3P*3#NRPA5TF`ggNt-H;2tV_M>3T{=qD;_+ zOhgb#+v=q+Ic2a1P7q=Y)!cAUu2zTN1NW^)77V$$CyjCOC`*Apv9~At#9rczVq|l~ zxw|L(#F6^0Z}eoJ_?$_%z;2(AY-(OJ(OkSyhr&*6yScpXGl$&Oll-GeFZPcN1l`5D z*xd#ULL_$rejNDMeI(pgZ=tTUtKgCZOSB|ukH3;#rI)HWZW^T%V$OvM2m)dN*7ujb zUhF09u}$wqUNWHqSdDl3LV@ed98$_d2>@-8$w)IX{JQcL^|YEDy#I(DlIBU;i=q1_g3Z#hy>aPzw;m zMSf~}_Yz)vF5=yZ$|M&MccV$1)vjqdVl&l}8?65)%(L(G;vDWRP!Pm=@f&eWvEgJd z_Jfne1^GcAMEp}P4*8vXQ^@bwn?rs1Doj%cmH1%ySw0s}h!oX#pw|X-~{n{N2ub&o(9k9WlZ2LvMIrdmJl&i8VK?!x?N-sn z9Nnl@<&209O~36$AwsjOPiOI37wF@%H#Pn5n3R18lKK{v&Qap4UKAzXq8f6K@*lxH zy7poBIJ*z00>ypE=7aihDgb|JIvSm<9;gKRYQ3#r105NytMD0EYxX9m6gjC}13D`710LJ#LBuu(5={aa(CrJC8fr z3wHP6+-%(`fZqk|V-E0~$;$-f+E0Dh)~)h5Gn$H(&D3rGhV0Lg zM+;==Li0cM2SPOed(@mi#5kk^+h4;|P|+EoV-_Ox^r3{>)rS@ZU^U9@MhUq@hVs~y zbMx4gm*{UJG!mtSV?F1BVd#+B`P!T?~199ve7r zG7!c-d-K@9&`5w(34oO7U6e;d{%v*WH*mZCe*_%!5#}O5gt;COSq%j+wY)x{jvtp@ z)xr7FYPs0yQ76t89V~v>|H#S9ws%Jo# zdAyNh+q48WU1PAgyKSPyL2?}`mTheYaz$Z8mZs{^o;oB*R~qoEn*$XGJZ1xpcIYI4i4*SkyK^)kofiC2Q)c@N&_QKU_NekH_N$W_n zT?3k?+J`2q{m*&3fZ1?dfNZSJBi~(>N4^VgO1@j!3Ve4*U-sQQ`_}LD><2z^r{^++ zeX?(Zou0q-1q|j||4y)*xziJpeh+W+;5MR1!8Xshc79KC;P}SW*R_cEi@xj&vLE}x zt!=;;{%!igM(pt$`$ASf@`Y=-ihTiqNt1->v%a|1R*pQ-Y=K+HSb+VVF)6q(`mxov zB0{YnTWt(;;n<9oBl~gqnwJGE4FmF!H)v{07FZH!;pUoxHQZRF0sA>+DQGM+g*x6r z9+21cV-;W34>xmogXPYCs-zR}yuBaotvo_9+IJxJ?MMly4mLWGD*=)o!bLsSqOMAnh}i{6ma6A?Sg;g zvrXSa%pU=R7-deHHU1#JIF5} z?Dpe`2qv36d9^Gl;K}9#tQ(}Z=ffc!E<&i>pUbcak$nmnAHlw#Ph-AmET1xqBX%{< zZmE*<8JFW9hzsQE_J_p-D!`pOP&SQKEnhAXHy~O=USGh|%wq*)fkz710`Qj<`2}Km zsDLf-4)=Mh04*>XrdrxN_!7H(MoiLbLP9&iQUk!!obo^cts|Nhay0lBfgS)vXaXW~ z9~968uzAo=`tYEEb`Sc(qWS{ZJ!t1^wAbFJQ0*zV_$d$VQOIT*RLEZO1L6-9vYDu0 z6q1=L3du}A!IHbkG!v|t*Bi3X@e9IqE5zM{0YDYbFP6ZcTVeMg1@UEt>?Hq2pv8qe z@UJkbpTf!wOkI^5;B9MxEDZd`NXa8$N79hyf&t_{ZpilPK&9vnq8=OqL6Jn zXOMIYP761`AqwF@)o|lJ!r-=z^1{VMq+hjrFpkwCw(bU#rwrt24e)|_;kqHve4wOB3uLdA-1ghJLp;HV*gM9;GY`a^IRIq1IB-{!%3biPeBa6TnJlQ}N7Y!??>cBqR?HpIn)7XH$}>yDTPy4b8C?lafLW?kuGv-ZF~ zOI>VMXe2tXo|?V*4Nf9K_RzB??|B;E1JFzfl|$YV03-Kb69VLk+EaB@1RU1OQS%`sLw`XgGeixMc!ML`*CNkjLa6)ex%?7^G zO$NRUd#7}2bEvw?STpF7=b;Kxl;CD`W?Hyaol36LrQkPLi@n+EN>YWrB8 z7#+hA<`O`JQJIKb2nEg38y0=Rm9l*kC;WG@Q`1$=*`lKi(9yFTl&Uc^keKAB?9{Hd zQ+*ozi<_-79$EPT)PU~MLSyxnVPzAItYW8vO&y;mFO*J=++!@Z+u)=Y-2;HpQk@CY z33uZZKW3=o%Vd_r6iSJGnBi-M0W-rNkfOaEwI?L_&}~_%B@s=B2HomqE7nLh`xInz zpvs&k&6B_>rhFCHP{Hy!s4yM`gJgf8#$HE|C*0(99WMl#VArwCu`0A+R^7s-KU*U~ zsuWzO>Xw@8i%jM!k+}=qj}E500q3Nkb;NHO&*pbzV#jsN;feN+ZIBc z+veezv;;d;199*U=tnV$fV>`_c0d8oEo8!Y{UHUd{ft)KRt0$XX=K>HYh+lkAsP0r zMPS%(;i4Fx-+u)v!F(c9C&RYV*|6}J>~kS<)Ldu7y15T*g3|e3sm@xw2>T4t*|5+^ zfK&;9WLSqzK`E?mJ4aSX2f(9A3AYsrVA9lE4sa2yVytDMOu3l=dk*eE!k|srEvvp; z{h(d1vsYY&tY4zDS8OxoxeP0>2i9>lK!xjca*KO)a*Hdl{W_i90)QzX5vB|E#sMki zo`W>}>d*ws$Uon3ND?jehC^+qdcj^Y1-lM;d|qc)`-lazUxSrL)w&h1OnnDr0WX6t zj z3OKNjFW)RXw^2`2z?$ZP=Y?H*@YIeLQgs!07^_jM$~_|6#JAlcOQmv55xMHtmk0zS z)%>~w9G|+Vz}^3Lw|rONY6UJ4nBC#Dv#3E2%T5U=VUX(=!gaNPc@_j$-y~e$!9zo; zjsN>WIZ>*|i|NiAw2)QID{xRWufPTLc)z{!bD_pXL_Y$=EE?~@LCb}Y$R_qKSLs^M zi$C6WRfGTi1*ddKRNU&oTe1UQ1f<-w%YbxU3$SZKphycs*yCIO4$^du=-RA5=jD(R zZTX%eUXAM-NZYvxHo%hD0id%^PXUiQTw46#KG0eh|LFuqehM3tNDE_9$a`8gwWmxB zVTlK)K!1`Ky3KuDYv|RRCeJjjB@@EN`LIHH-Ts!QCmKc4KFfI`9ktVMmPt_{2ZFh ztBe6(?Nvtjg#j`PE)oVB9pi6R&VRs7+|5IH%G)`Frf~b4Nb4@7MSD~ZD&IbYX1yne z;H+mqf?aM$n%(()b~FE`6a06u@!BDDp%HH|0uS{8nagySE+tPN4B^T6BSiA<5T3KX zH#s|smEYEJW~cI3T*f2(cZrK_pUVsh^yymTn@wu3H3A#8*BTqEqGK`1E{`|iYmME$ zgtSO2=Cr7&xPG&HOfl!9Un47{iW_Wp4=;wf%G~TODz4k?o@)g+bg2xuT8f_J3XnlC z5qFshOZ^nMx|oIk36ZZXX0u$&tT}41aw8zdOoR$o6q8N17gHwk1GZmL%$W!P(^O8F zmKC!tn0&o0xJ8cBS<)0j&9-x;;K?+4fh&njW%w=JpP1}`dM>vCFU5=XA-zlL~TKrobsDY;_@H)qDC7e#fU&@Mg#C#G^;&r*~ zp_FoW9?I#oYbdAFUJ`34r_<0#fK&;9lurLxLhGdRp{$w!0{mFQNi|WZfda0RaOWGY z7i|`nL9%Kn`_`oc=>-G+1$9cu1H5@Dd$D~Dt=Z2EwKu5wvQ1gfKA_usiZnrFx z-!t?!hs7pqSpDC!`a#pQlCd?hERoJq_L{Dxto~Bft+|EOUtG%Shrgu73glx@DXCwC z>-)_sB@>8MSk+%HD`n+FHGxeu!ASXmQd0g6rL6p^*cJeIT+tAI0}7!0Hf#Jir(aE3 z3ui7WSSi~!apyZVqtJyZ)cnlUeR|jSNyu8|7sO_OgI@IchF)`5-6=HeSU4 zV7=Ed6YHJ@5zzstaG;ce%loA?yk=wjfl@X(z@njs5u#nCjh8ty{FEd$6xUOvyPPv! zuKq69K>W9sPn;Ttul>*aCn%xFPpQ&>LWkk%_3=Bfy`bL$%Yr`R7xYyH%`Hy4I2J=W zPnMF$icD3L0nX!E(^P$z34Ygd80#m5oth0Jr-i=cv;?>d+zmE_*BXet@3@&w6ZUNi z8=36Sl#(Fi|1H?%TbtHCs{r?&YXvyBEeK$gQrz;CQrvZ+$wv$s9nC_`}xp9N3|xhst7|e5dWz$8X-$ zG*i;k_ikI;yWU$)qG*1{#VFQ~pdlPNE!BY>7&)u4uIX_03@X@%)5z&IoJP)t*lr)r zBL`s7TQovcGpzB*nWuRhtS=gfs}8M%y-VGIC*~-d>f}9b&wkW1!H)o-!NMXLbyfp_ zdbvwbM!r&cDatWuIFF2}B)eLg4OW|I%DxsmOaP%F2Y`MwDhQ}%7>$a;i$Go&6{{0R zh5jd&BZ2!i;L5b!Y5S*^;$q~szr1J|dH?ER==~z3mO3rJ%6o^i-|raCe*Y>@DjGn{-sX9Uk0 zn-Sm{K!U!14Hou80et^ISonGidFS&#SomVs1cykw@Xe|RsdtG%BY1BAFJv?@g7b)p zBPd-_5B3HXjUT~-;Rft6W&{m}*a#d9c12ZcPY;W^ZV2#iTsIhm(HPNqP^4dU+q}ps z4UGS2)m<-`=~d}h-5rQT@-%V@pz$KUR@=K-ewJ-UV%jQNt7R_B*(#%h=nKCO6j?m7#Yj$UHSPhYtuD)CIcy}a zF?XWuu%f`*8$}3EXs4Go;WudNuwk(l17RBeuQX3&8m2wXko)LT*rpHsj0Ro zvfxQoFFxxTOSwyt)fSr*hC`}-ima^qZuLW8!$=+ik0J|eM)D9)reqIcWi?9HUD5eC zRcszf!{EM=I1JQWuf+xzfKgOlKCj{5I1D-y){90q9tNpTvyee@{6E<$sTaWXjZ|AD z9dIwT(FLrRO*x-LkzN?dY5Xx$&d0Ix{dzf7h987_mn-O2{|og(sdKUMBCbGR7dCa9 z-;$MjTc(~DljT&~GO1a%k7EDYhuqna9v!s{iG1;+7+>RvYfCq4FX#^*t&idvz&(m) z09iSTR$`M!QS=v+Rf!)w5+6`{4v|)jV!uA0x`~yl7;ehQjV9gavCHM^;2`kpm35GI zs;=NN`u4a{^8+}ajf69j`!a4_4c zDQpZkz>-zpuU@u{(Jb40$YzVt?8`kzv$q_<%5JJ=7>vhb!z>vh8-Mqe&=1oXI|1!y z+0c7CmVrEw%DkQ!sRy$$8cNid=M%ubbk=ARGaac(^H5OF)*Ekz2@LoAPF08>^cJ& zhKFlKdv)kMOFvcKUJO-xD=bca^6y!uMo-xuGpTh!Bp;N~?pF;H%jGJ-Ywmu%hse#% z$Y;xN{vM+K7$C~v3CId&9`iqW3X$!?Od!^TV`2u(J0d0jC2V1-axzo zYSKar+(R8xy**Sa7Xg4LAQy}Qg?6l7dR|M_zRGfwymCzSfrm!R%f?jKT%IqN!lQDl zEgj&+5`eO;YH@+3`?e-xiWnMyZIQ(<P)CoBiGRGr5|Q#PQb4i%fCR+i-Ske^qE?ogG$VfV= zn^#y0WZSy7-&epfb#2?am6m?8XI4Pvi7v)idw7g)NzYhD=Yb<>LNA;c^oz$yqEVs#T$5sdLfiuaq zmMaiPM|yJdPto6(Tj%$;&K%kyni42(cQuyL4Rq zy~{0~AQ>4)A!038ssUG8E|ojRafrB*D=9>*8%H4m5LQeh77pad(qyAu+kl0)O%~o{ z7T(=xc}1QuS=fq*zZn<*^=eC{kYYTsa5Gn`8#h@F$jtG~!W~>mEPTl<0K(I-u(JUR zCF5BOgU6E=R$gbhTh18ITG)+J&2y%nQ*^@ql??4Zx(ifRFGAf|gG zfl%1*_Pg9#P!EPZ-f*lMUzX+ers)JPeG+hWZj%Kr<%hEzUm&N26RM9-)MUR2)xk1d zwx2+pwwVB9Jq_^Ys=Oz>L~8KzOqKlLeimNvB|yV?(r(pmw@%_gsv zS@1q2LP}a)Ie|<&hk2b@%d5S5_q4Me-!Qw?ho%LR6>V>>L_nM)51ahIPW;D@++i6e z#8>qKv_M*)PlzwM3z!$b6ZejGX61?nGKzYIp)K6Vgj2&)~~npSFLwJh?-wc zAu0lRAw&hs>w^2CT@W?bl~b6yq@2RkLcopFV^C$@WND|$y|ykgP)@-;nZ`iYnYdRS z`Y+t=J}*n|K-}JV%>x$S+47lk9;Btn=Kk{d#V=aEIa|J2PI2NEvvSWTmb|m&C#*C3 zDXK-%yvlkKQ4bM2um&!Jl#|+$`Iy{-ZP%`X$46!bjgLpZx0Z@F{VU+S2_JhafFHm| z-wNfv!`ff=t{|t*tRScU6U?(s%(G3*Gb%6y#XDK8ON2O2ExXk+))8p|SXWfUkJ_xC z3UMV?^0TInC1y*LCf1-3id**IW65`1z%Aq&ODo7@0X4>fKVf8p$;b;PBhQkE{bXT< zI{vx!GWADu>+RVCK*CG5RtPE7F8E%Cp$vU+6Z4bPY-eEgQ9+==Y7)hK!<6n0tL#(QR3ON4Yy zq%1(KZv%+^h}ea7AGfhS3V(SrzJbBW)sqO`+=5-bRR?QlId>wt`YgZ#u0DNYovY`x zw_YVzPb61gHIZCB2wb46Pgk4o2k!!=D1}Kvf0x>yWnC!mVZ?Va;@cg!#9^OT?V8!%@c?prU?QI77t5!h;gGdY=DnaNbi_dxazsEuCb$&^Hsk3IQ#lY% z$E%hdtXQ|8;?CrettJt}@)YYwes6O6T`i{^O;4C6foPhM zq_a-(r;Dt23Au0*rhQ%1xH&1>Ltyp$xG|nTpsHhXk)8q z6Ibjk>favg8}ep=f@OyKTDQ989Sj9^6<+HkY^$gCNL^d5VVwzWjM2#$Q~6P^mh49p z`dd4T_gT5E=egy(fC+r*$fP=7vihx`h@Ys3a)qrv`TZnvs1GM`ig#oZr+9zjQSjVA zf9papljsKaLlU`@iA2ui243YHU>(_1lwhYJjsUVfcrrWGfXQT^jNX$I94bd0=w>x! z7r<5PPnxMe@~83rtzF;@x{m1b$?EtRTYoW`eCqWPR*yw&;bwe(cLT!yWpaFKnRTy4 z+>Q--)w?4d9M_r+72~bFE#e_;=v(cKwzvNmH6R!5tIMO=@*3t-oUgiNSv!hznZI*t z`C~7-h*_jLImwIeYzcrikN6Bp3~}t_o@(7BYXDvhLUs3>br?-lVF#O2{dKanpUT*1 z%~lsrwoaAyDY&4VEL%+ht>oKrEeTbbS6ll!_L#6sk6W|UQypzRW$u*vA-vb*YyHNo zc+aWUCJw1hQ5CBlxoXI90FKuK50FC}z#TT>aH*9f&wHw3j`eCehghNMedd&e(0NRC zool^So->7g{O!5cu5u;zb~lBNv|NTaGR(F1ZrNbTT-*DSdC>a`>Mf?I*XCIV0U~z# zkCCUDQ^@I)NPccQ{lOpv&->GW(xWGgHzbocT8bl zpE-qdge3emEqQJ}F@@*mZ>FG&*H2uVqDd21yQzuuwS6kj*OsX?UjsZvO(2IERAv&n zQ!Ul#`PL1|nm?wF&bJOvUgvC4t_4I09%MiTu>K(_8hAP8(H;M20_(lBw=r+DwcqUZk|d?zZMXH z(yyLctMvHzbFDLk+&PuBe)m+;`t`sGOj*#4wLWwz&sj;R+p7c1V9t7%Q6FK{Z@?L= zxol__KepVO>5xB7t#|lrX+<$gK27ZM?7x}2Q=pQE z8#HV+8z@>meUXsNlgSc>r}wV5u52S)O=}RI zZm9?jhxaqt=1{kxwl%cms6*aPfnUf zJ~?C>Tf;Yvee$MC_Q@plHHec1vVzTPvrF{lPmP^daTVJ+T+GN%Y zjx3wGmLkh{%$7WAs^JZjpM$mhaAb)vOB7j>G;@1vjx4tywoaGhW`GzprDT@PNN}Hf zT2~)>%a>gHKx>X75n_#_$X=vXHiM(c%K8R-oEp@zUDkH0`c3O0dD#rkaW)ZE3L;QN zLF5S&NqrExtsax(Np6jAKVrSGncO|2K>#^W4>&;XZvgWdH<0%w$@Z=3eHVNT-uKZA z^1kx20I@}jVrNaE&bA(bBWxU96fSo zHjExus+pfzZ%tSPkC>SlJ^V8{dU$72^vIb>OKzY>n=wh!oTbF4*2QwZNi0%FEDkH~ zULt|eHA#dnF$rDBgd(RU)RYPBG70UhBZN!)E7hv6lcYMBMC@sk*ght<^R&d;FtHkw z*tbcrjt`Nk|>$UgWxESrxa5*OCB{+D$n{-p)*E&qbel5c9;;(z?hT8MxwOn}jm zFiDi*0fnz*Nrg54%o5pFY**H!g*==(RSuk7esj`%b*)&G8X7dBK*>vfj zQ?J8kkW}^@o-#%?Xn4VFs9h%Slhfw#oH386(itn{Qq65`tB+mP(ebj`zkb?S*#O(C z+**yfXK^Q6%potE(_rd2R1Z8rZfyYftqF&@XOb|moUiptTP}Fz-Z|uzyMa5HJ?@`_ zUWtcltaF`}o}2yda+Av0W|1 zJJf}D)!v#*<~;x+U~2mKT#7tmuFC9T8=jd&$d$=~hX^%M-EwWiq-`D%k@Fhlr^gN3 zY@xmwV1w%|1Fd#7*l){KznyO_RK`GCd-cBG)<*rUsjWa=jm5nKYl|Naw6#<4Qg>=C zR1XHAIHRt3#ULp5>(8xS)PycpXFS^9HtYX6rPnX8=87IDF5JYq$I^kep95%*Zu2;n zX3yhT+H77zECr=dEd2w`Y-ZdV+Yw`Fm6*mloI*Mj6V>)yxR){S9??}zECxA`7uniN zr&E>awvKAUa9ex3tI%b@hZ9^wVN>_eC|mn&qis#p_xr5vmFsznO^FiFr>g|&)_)8) zJBN&h9;G&`#RnfeIsOW4!BMY6L#diOZEFp^A1DC=|4Y;|;ffuql3rkV9%^IRJhiyg zHbNaNwRM2Uh;3c}U&*S@$pGXXhTGtU(El5>vgrFd;&OJK40t!HW4$Tx?;~ty|F39V zJ=wBWgjQ<_7*R-`Y6F1ZintaE#EIBO&m+*LzGv;yFnP?7_2`~_7pzySQ zE{_$O){{cfjb_YSGX`Sb>pYBJ;bHV54kLK~?O59;@j14%tNv)AAwQi*k?xR5^2K?l zi*(yFc^T9u$Z2)!V8dzbGBs#|E%7YS2qsQreS$oV^$b!D5AYNT=Fa7LEJ>Ps)vx8Y z$K~W8Ph$_7a^obP)bkNFaH4H`@`TkXlarihC)#?;^MZ8~)(YUN!G!fhykL@Tsa0MU zr0o5%N?TZN0tO*_A2-c566)2qX^vY1Z`gd+xgnJf|wMKw<_;tK@B(NGLNtEJX&v$c)i z_N;B9RTa;&H_b78o`?~RM!ZH$2T&sz)uUd248FwW4!Av@c=06rt-|SZg~L8y)G&OJ zm>!4(LwYC@)gwS47zle~Cfa?i?eB>6EHtaMPsu(l)v(%fm90qas942c|3YF;5U3Bzt0^%{+Ml_ zaE2n0fZOl(7_Mkc_k|-N!xhvc9{7$Mbk=>oc*QXLlOjF!gWc_}?9-D}&eiaerdF5Q zyErwE9tNZ6VJ!$BIn!Mse^?KPBA#$C>~i~jaPc?EJQ1Hi;?i~a_MAu4JrRE>768e@ zhURxi+?rtuqldf(d}huQjQQX@ZeFl+FzAgM-l#`|@5Kdm7A7YRbyf40&7G5mqUyHV zR$k~X42&BJp90FgCm15rQxKdc2J?ug;je8EVvRB1ndhXC#3 zw~eu1E!L*7Q!daST|Ry8xCz6CkDZ&&PZN8mQ(Nxre5ZPNyRE%5t%TsOJ=DHO>^7$n z0r_<;6pm5 z$~G}A<>Q48m)d`otyPW(7zyZsaM%y-7jgwdo=`Lv_C;VMx(zKDuhH%2TAhAZRQLEi z(Le+~;TQ9|{O}>fXg~`Z?x5eJyZmu5>r=vMgkyeB&;X~0Q5y02f?iL=<@ZJd9`F`D zWDdP_G}V?uhdV7v4kRrvwRg>l!uJ<_y4$V!T|PY!0OQ9(L6=MOMxz14h{WBu+du}8 zDj1BqqrQMYsKe(H0~(0o)1rPO8V>k8p;{SY@Cis?G~|X)D(b#y5OBHzx-07O2DLC) z9!K0hk$qZ?#@X=kR^EHCRG54)wG*fxr_>5P;(l1}fKL04jL_zLD}l?UTa?cHw6%1I+3yx!8* zlSW-m0Ags=;|sg}ksy4rF%}4W47V!~gOTKh$-{I|-RpM;f-x-^_G-G})BUl4FBJ1f ze4d~`rujYbl1cVkgwyNx8h*_iiTDG4@MBNF1t0VbYTy9|I7b*>w1rwN;qiazZa#3B=V-VE+UNCZFyGCQ^burE73&UqC z;Y*<|%@2|W4ft}Yrn$nV&qh5_x7V+^b$2+TyFemWET(zG(Fi!UPjh+9DK9N~obsIM zXtLWbx(lBFhy*o{I~0ipJ)m;kOB5vz#Vm)^7vtr(KHZ93;Fa&Fd7KKgcAzrK1g~ra4>V$OGBP!J!d+SEKZjvZ5@j= zc;OJgJ%(pLpW6e2&JPz?F*ow~1KuD+1+Ulex;;J@ywT?|oXhGmE~h^l4ST)OSOmV2 zsuR}`L!u#903wqX^M_C!?czKN)0r%BT&45d#NO%DS2qgN2?!a1ISPGlx8I9KHNxPz z8brhhd^0y@KqlaF>pmQXF{_&Om92SB5C&M(1&WGjs?77cz+>Iy7lJG@q+uo7i+^hq+t-1A@%kf-k{-%!5nXd zXgY5nUzh3FCAt`HNU8mXUytY>%@5zq)q{~(%nzA^C#?3oWzUMcKCtbCB=oc#1YHV8 zWLm-?lv}-j($+$)Ibv($gn2vwQ->!8<6n2fjNys-qi*=@ZYYGAN~0)~9n_;*7{Y8Q z9EOBE07*6m&8XMqatB>L)I+EEx>@!e!Wj;R{2ni$fdvF)Gy%UC^1z4}gfk$5d1-Ql z+&V1>B-ZK4!paWCI(X22_JDxl@%Vg&9?cnD9bCNhoal zBEm6WPy@~Tqak0T5R~pS$PEW6xZ!CG8Sy3#yL8^1*gKsnYX_+_t%UU%Dwxh6GkmZ> zge=H#K~Cz`-H@>bT!E+yW|%r<%(gmR0azgFQMU&&B3OO-{DE-D4`aZ9OdFO<=8Orx z=MQLs7))HSSc!!o7lC=$=g|VLkk1z|N3%I$rlU?HG!0#zFl$F>K=-&Idv<$*u&RPN zBLq2H5K^~TDCF_Qf)r63E_$7MP>+EM!2My>3rpr;B&xZiURaCiZjaaNi99Xzbw>VljVKBNiuMXKae7WAG1wvk57*=+=5%p=BS4)xdL2~O3LV~LWF+X*| z!pa+P1${9e(CH5rb^V4n)6&X6nSft(9IU>^y&qbhR|Y`7N>w>OPv zEVli($VtP8nfs-o&2p7>ws&>vklVpn3;rcIV0$SBOLfR-U~$`MI)NRw80;3nM!65X)ri7A08IXn+8DTU z(;{ZHfjuHv*J1JxqZLwmNPNPOGJ#VEV0#F@C-qojv`NE<3JSX$cE3(fyKZ>48R9W| zowITPy(TUno`QroMtb-w1HABr-NmRc8gaRTu>{um6#qTY4NQ>+pia${5 z_|zhQ3#uDNI)0LS$EZ!C9A)x{pn7MNqg!Dsc;nlq=I1Spo?oy$y7b)TE4Nk+ffwp* zYH?056g{V4;ffWjqARvm`LM3vd1~5xYrjraufrQbHnlo;)yi`gMwi$1d10DbG}@6P z_smk8M#CrOcf#}Jn{v-nnZHU9`66{y_@2Ulz;4ObuRUvq!XH?Z9_*2zH!awKWuSf9LV*GWY3H-AJe;r-h z6#hLIf39u@|18B{`0mrHW%vtUM_9ESf8i^%s#f4HeA83aO8kZI^r>2fzwmu8Rp;R^ zd>cpA`S=ST-mhAXzwl}6stfQJK5tufA^yTgmZ~laon-~A!T6#vju(ZzHKa-|a=7GQ zL&`nRF-+bc!l#)Fuv}5$@TiRO4riyE02&?~>fRC`hpoC9N;m8ne-`|w_Eb3TlP{V$ zo;Pv4ZQ_73;LznWAr)NcI6K2cv!IoUhM~VVp}#Ys&k8dKP)-GXf9nM3&SB=iW0?8R zGohiJ3i|tu1n6NVbcqQ)(S(L_DrjGu1n9*kbd?ExkqHguRL~cp zP6d6ST>|tz6Z-Ea^s6Q`lxv}z&v10E)%oM?6QDmgp+7aDe>S0^TnpXMVh?s`2n}EI z%AD+Q%T^ImxyVu7DjbEPl`5}rc$1C&W5)#0{tW6fK}RvDFC}Q;>;%v-gU&NSmoezP zl%Q)mCxC8Z(2XYOO$@p*CFnC<5};KntFM zLA1$w&cY?pt>b#xHrZF4yJ~qjx^+PwzH!VPC}-s~#3vn5c6Do%_1<39RD#~Es%8%B zeb@YYgMX3;>oQ>rOxVE;TTlnv(A*E?CeWR3!cH||=QHfol(0W^Pk`NE!mc%8H#6+o zl(7Du39$E>u=kj-k2CB&DPb?^l>qyu346$d{g`17rG$ODcLMCcOxRNlE1SnCAc<2c zfgO1Xz`bH*B+*^D<~fE--GuF~4n!Ldjh2^e?bE5b`$m%hJDb4y(J~=+QJ0bmrU3f81@|#7QR-KLf&VK5@3HY zVNWnDd_x|PW0S%!ro!Y0J-51XWp-Cqq!K==_OeBVU)4I_kNEi;=p*PH$I;sn?xDsuxU-?or5 zoUDaBOl+##6^%p6b3+qg-3(i3!VWQE3sb^2<4-7>zAE4~YDl-zgk505R;GlV0AE|9 z+>rcST*|QPOxP_Z?7Eb&Tlp(>wRCqe>`oK*Zzk-{l(6ser@d-n-(uLqChR{<*uyDd mvqvZJ{BMT+&4g`H#d`jYV0$&3uzzlv+UQwjYRWB+^8W+P{7={b delta 46340 zcmeHwcYIV;_Bi*>n;8;nNCR~q1rmA_mR@s1!KL<@3qp%}>aKv@=hie$cX{0&%@^=_R9Dy+bgChjSNFIyJ3y#D z|3e?9EiJQYF4gbxdjq;#)17{YPuD^Ld&nEK2b{Xw?$aXb@GDaSJ=97sYMQ619+%JI z5BuDz*Qq-_J}qpw`|Lj5?shp{!AQ^HSEYnGG(7vEmX*Az&Fyh}wUDOzRA0d9v%9=u zhX+XNc8}lTQiCp%DkiuWu)|NX zrGi1(wvD|j$L8`oybiz1AJX)I)2%uEet*d2aq3>x>C{~zH_4U~2xV)xVB$=Z?y*M} zzcPaU{_B-@@UK|1(bQRtTFd)K7Qfns>mIRZEw@EHudT!98Q1epP~SeX=aqDXe#r9r zEN*h?PO*0n%NO6?&x#`VzR^BX@m6|VZPUNL@fub{4!v=w@wbn-!ptm@C*Isp2iYeP zwcw$HZ#~_Hd-TYr6Pxf)*ONN@d1%JTl^p&GZ2}t{v3*s9O(VW?W7CyiwZ^8%=5JhB zeEA!NJ5!2HFP`yYlj-M7Y>Kr1RmbAk zU!O3uCReaY= zF`=UGXR>r0phF#4jui$7hQ}**{lwaHmkSNuR0*@VQDYmID{f$t0x?%Ky(61oj7bNJ zq%LZ#JWH{cyIgWW`U8C!khtb7Y>s1qQ2D>II4Bc9MQ7x)uW%$##D*Liljvu3q#+cM zc)=!Zq^6AJnb)tfIXvQY2bRq|fBj*uX|UHW5*lEH-R?N)k^q6q-R`KRC}tBj1xX9- z8J=l&W25Z;K%fuZZ_wJ7TI1*=5cXbd?9MESbfV!N(il+8`o<(=1{i&*2a=LR-z{Sg znH0U;2@ay!(?Sx zXP4!`P&n*hOS6UT4&GI?I>4-ARXO)^hdui6Sat~~0342a@@eM;=A@_SdlOhoZUTJq zwS&76A%8M+TNHP>LqqEnGY+zHDv6B;S#NrZ+Gn!MIdh8*zp$a=zkPW*bBL0DybpJ1 z(U6~IaucA7%PV+qta&WR(kvYudYqrSKIV(TN~JGW4PSh2K=8$CybtuIAgv%q^o@CJ z9PjARuO4NKnZcck-kHEo&qQpu{`lMCwwKmW$XI>|Eo4f;8@?`yAaQZ$sUj zy#&3Di`;Qj3V7gegx1%TEfzDT)Vbrc0%Rom-DHn_vJ|(GT2~yZpTTK z#35s28@oMD*hUW7pb(vNb<88hoGE*UWtv^yayzI3rnf24C1ZPAYLDZQ=#%ToM4!A) zx}=6)`7Bft-Espe-ELr=xUhZ3Ugp>2MvlMh;8*2}y#v@l{OcRU%B*e7bFyo%$Q8TN z*wC9?59Ru1iiOZ9+T^9(EIt8ydS2W9*{ zp#LEoX>Er%t8zu<;5sIkQxw1-Rw1(aR`Wh1}>qNA^%WcwRxxe<==1rOuOJ?SE3mZitvzvNF_K++_ z)r)N8oM(wq*+fTV?T7UI>OAncb;Howw8^r?^_oXzB*6%I1E1(s-RcLiV+q& zV(pFq-{p$@Ojew833O;qNmVEFa{rv^u`V?Zc5NGoVhG(BD7n0s*2`9mtS`xp?7hG) z&fLhHqPi1rEE|UjmDa-6$f{+E&NWK9Or7}db=&Mmn*-Lm|CS&&5ka{Wi-v1zc;T2x9d=U{1}>7f)Qr zM9;5z6Y=-{wTmh7M9R%CWa?0bMMHDL0Dx`F4CZtq_Y69))(Y1q`Ae4i{9$csJ4{pxKhC-e+oP;CVo}`cS3q%V z8&Jl$^*BQJ1Fjgi9>zlN0*YH=dp`e~KUN^8=rh>zFffLg!e2EwJ%yG322MCdsqlOO zMU>+OM%dpAq+`#xa_$`D|Mp3?g!LgJ)|U~fcL91|t{2ecEWlD$ zWaqaRiEU4Th1DX-Jh7)IYsY4bil^C6>_#cs;!m5h>xFMWETmeuVVbt|xl--=$bEtd^rl_7}190Gq|zbd?73 zA=b6*D%D1XW?e~bg_A*S+-CgAb zy|1gBpl@`g3Ho|hnxO1;5-?J6x})`5r2I-(IY<9PVC*|_@Kwm7m2Of4-yukoZZt)q z4M!SLEmZ%CEHD1N9e=Sa*+|!J(nh{Vv=`-2oO+ZQte)#C=WA&%UXIbino|7fN?GIznq^<%&t_2(WW6|aadidP>-an`X5-ev|S-;6q2(1&)FdOv-c#-)aujCtj&;8Mxj)wM?yIfszXG5 zzZV}~D3#hA!3GyfrNV}^fi9{)gk&{CmT}^@C`6^Qxnj?UtcJC~hH{}E2FIRWC^fmS zmT546Ds5P7`NJrPjq_N)wpg7wr>+%O9Dz*kDi9If^R0$JZBd|`Kp<2o6}A+TLiZHX zJa32XTSzd0?v#Q10igxW^BiovLOgJk4S?Mg*vj~Y4Ho?r){_JiOBB`zlB~wE94wUc z+lKhB6w3MinUu)V2`i6_eaAs3AAt}svtMbzlW<^8q7XQAL-}EcBeV~0MLebYbisbW2sr# zJgm7mc9JQ4On13fyxv&n$M1AtV(Xy+exxDxOhtIMln3&&Tm zGi8x|Up2G1QM?z${%;KLz>e2_#WgvcUp|*|?K!i=<)pMKLpqq+ym6;iAW7!MZ|t z#-4ex(4`2hvqZ4p>gEHXJtupFwwW`gJ9#0yC2kFQmW>+N0IrkB5dAEGNky+NA`fHf zkCKf+8KiZO>W3rAWHB z{Sxe{BAHXZDLIQpKY;3AhXKNz^3$JLSH!doAxuf>iqD(E*&FVNd=D(p(nnyckV6O= zO*1Po+FT@k+=oB1-rP+_EiV6wp2hwSY)H1f+}+4PGm53|#v#cT#nR0c7E8Z71}h7S z#pyH5&hv`N!}TgglN3jP2G^S>GSYY#>ET+)XEI45mR>AIc4oujbipl+PaN*dJhGVa zD;tv4SeU7XFjJB5#A0bkiwt2VV&%MIX-QO=1EPSRn3Z5E}!u__n@ zvBt&*mM81@mSQln9&=1{ibl^V8NJ-^+oCjKP4K@+#<6ae>Bwy}4zVBjid4^Q;v2r#@gAEX4L;iOgL9nN|%% zX-tV2Qo_a{V>+n#ummD06gu=^Ba%q5!;s=)BzOxr2-t_>4;xY}!^%B|6jZn$*h3lv zfW(oofFq?b@1t%@s^(inWf>ceJlDbBBs@QmV(LJPMZp7Y?=phvo=pkL!TCALjtnwlUKWJs8^7J00n~QspZf-!3 z={=-w0G~#Rhz;#w>?)B2q#ig&>c>GG*i#yry1PhvTR10kseY#_ZhNm#LBy+ zEXRIqO$p+ivS|CL83%A;O}M~%6YeX$p2J#rLzXk(Qf(f#WWB zd6-$8w((KcUC5c2(k2hf#=1^{>e?u6tf8CI3-aCjG}DM0-gJM(ZA8_d==kAGl8eCyc;E zw|;<-6=h_DYzi?Jrz%b9VpbQf@Cm>f9mG2bHMWe5a6uUv;d`=58X*uMOCV}}%V?|O zMkLmkuPq~+Vz;>$lgCCH}cmPYZWZ7B_`v0j+>i_#PsgIm;)CU+;rH2oKKZm?ru2{Z6Qkmsa z9bO6LMku*r8CfoU`IiVbv|OqKvIqlR>?s9DlPSx%Vrf;5>R|IkjS8-3-=AK~w}{ya zA7CRKTwR<%B4p+A!W1tij|*;Q+802mH^nplBXb0j9ce_A=tSN?rjY-zK|#TSCh+S{MY zy)3TxBs*anZ2$G;vzz&> zIc0w$&kGHck(ONOjPFU4b`NmD^sgC`A5YD=q18w?x+F@l8#7%TK zROqIXR{%it3Kqh8K?*>|0YlTLf)9Yz5o~AlZp?11q-^Polxq-?3;{OGQRB38rBiKv z;%6BEUgHW?dX3BAA^>hJ-=UHh->H%{aQI6(To)vJo2VHCx!e{e`aIO(t8~gg>4j&U!X|^I}xB3 z_=4L9ICA@h1pFx3+p3b=FSCku7Sx4 z-mtF?MGDTAN(9Rm`BUUXM-W1%dO)YsgO4=QZ!f#l?_k9F2qZxL5}yy@svPQf(Z#T# z0*O-+8(j>*tb) za*~h0im;v3zQ#_Ge3Yz`Y6lvm3nEx!$L)tfh9Hzq{@$9|jq;|ItbcOBcGU|u0g2xR zcmMGC`O*5ZtHJsQrC_b6z#3{dK9_I+CH{m5{K*zR)W{Y_SjC>pSU-dP#_w3acSy6aI^=9GbI@!ramd*Ye@UqqpupW7GDE16 zFe4mty3d5_8F1NZ8obJkbz{xD9Tup&{7b z=3bMd+=~-^w)k`w+@bQq?x~Lt6MPSE!*6p)FFFsY-wdoV_&?|%FDk12K=uLPk6v^( zLfq>hWk2sAWzUsWQrUn^o|PzV754=AC{b}M8zTAyp*O(v;vgSFOxfq+U=Xsoj~&u! z|5viJE<|!?40crb0r! zOBVCYtu6REvqvk3tHf{-?+)XUR%=w7ILo%c4OX}$B6cr?k=^8!!+npG+VU5a`Yz<- z;CDE2pxIMf7ekVD2l6uZP&VPSgRghW#hK(?w>ax<2mtG|VeOI%@R1=vtEC{o2TnPa zz85=}@?LNh0<6m|H=r0_{qMxnc8>y|nHxdAQgYy(%hOOc%!5~MY?)l4k zMViUuR_VO`hPAxC`0ZMrjx}Q9b^INAsJqwhrxF~X-%Ag0P~I0GqC2kVaFyMyg72=o z$}Wzq;{|b5c&;sOzmY$OwQ!mJD)G@e-cC$k&zl)F@>;tXzkzS4!|W4Bryz3ht+eRU zjl5%<2HCp1VYUth$kvSv)vZOZxr2}64RUCAVh#-mkVDra+;bQIf;Gr;p&hc^`u6Yd z=1nb;H@`21jW)QYAaBPTg`0oyQf*Y(!^iSS(U}q|((Vjgl$WK*i)V0?&Z9>?5Al;M z^3^ZJl2rR&-Ln4rM}S4gYtDM(8?1K*%T~PQsss6VJl6$yge*l!Ihl+d+*BAuJ9^KP z(2I`n=0^NIO}g-hcc&q#z)SN^ATQJj|C3Ae2pTU*s!Q``LWzF;Gz?XT6qn#j8 z*>27gv*;^e%t<h9~1##dmdAoQT zlF9b>!KO@o8VVfa(wI_mI7!KRnAct1T+*L%mWBOg&H{fa|9Gh>xc_-@jEh${H%XZF z{V``5&j93K%we@0(D%XypCv%b{ljVAtrw*6!{iXg&?Z6~$i8pGK!DQ9lx~<={JlK<}X-N1%I{0Kwq}T}6Eh zEB`}1k{K^meAl0np!5n_=xq2HBI$SiDG6dn#J-QYBm0B?jjwFZ*U=Pm>$-D1z}vzN zVVWwuvT<8tcPgRF^h&|LFgJtQ!iXS=Bt0srpdML{qVRC^`z6@lzF*bw)-liIem>Z{!vkXQS+_}$o`Crnj0%( zd+f8oPr(aq^zsBf$qjaVOibC{H-_^^B>grH=PdrMA@XUg`%;dig$gIc-mmzju&JE! zJ+H8SkL@QaWP<#*99;_$dP5xgnvXWShd)WW%BHS zI!t+g#!5$}R4NtJN>nPGI_&xlGCA61`3-^IsF0iM?|;YP(k2N&mo}4eyg*VHkDucE z`Nfqq?(9NHKwvw4);N=wZN!e!uB0_B4T#?e62M(bwhQYA!$mG&F0WDY>nmfb01{MB z*9<5A06Klcp#3`0hI@w11Z}W?6{By-L;5GhA3yS6*>5zymTt1D{~4gre1N>%SSss~ zKHmG|pCQ|Rctr>$A&y`D4DfvhNGtLVkW00h1IX=7A0XWx{6*&_)c?Zto&qdlFTu><7ljV=McK0tb?0od{~NP-^fQ-gIstULxRafwESBLm1g{XBq{XcgFgWPr3l zK&EvRQF?Iz?yU3n110t02$(fc8dcdq*|EV`Sv*iur$XUC@)Q6_lnCp^0puw-NIlzR zTEfQ}*dq~p>;PJYjTu0zFfW$mDlF4%TFBQ7luEdKpj5)&29gqX4U|fNzciLLNNM{( zse}U(X8%B`gm(;XV-e;JKtLrxBOy{HAd(Wc4J0M}1jKQPwVNUExM5Dli--OOZWaO)|< zBoE`JAyB~}(pKL=q^%2NmDCpC(-;%67I4I3Y^75okK8eK;2W@Va~*0T!@ttbD%%By zY+>Xv1rD0<>~yJ=&Em((g)!M=d7doe=^VhLEMj9T7&DLscT!;Qe}5}eHZC+`gA@5i z?&T*NoSP&s>m1}I29jB99!O?!IhLeZT$y27$eu^eZvN~bX%$}#BCGg(khBW;OUhk{ zgg${$#;KV$m|!e}rB!qsEG>8u!n7MqR>3Udc(IA@`dO(SaLF)^4kE+oJy-^jWr%YW zc%xwulf#2(KGK>=D|gVn33#KpRG|W_nX>UAF>*{9EUjS`(wi_?TEjvqm{8lpNY;X2 zIB{1X#O%Rj3RezBQ?Oi0RV1*y20B4L<0VWhQ5-usl6|HRiBP{hBY|LfmQ<96NnlDZR`jFJ!A;98X@+8BoIKh*E6;d=2%%_3$k`;hX+x1up%w;(JyW}9IyyX z%KeC;lB<#S;X$Z>I8O&fNaIdVZ$v8@BIz$>m`4Ccak0E3T3{IE} zP4dj`1|(WEMB2h=2{v+ww1rti$QCT?5C$%rbp;%Fu?Sp19lC6STS-U`&)m8WL5qO9 zty+Pp2JUcUgUkSlQT`CJ2Uy^q`|Uzl4BP1%AuMpu4OxniaZ9jN7;sgm4&&OR?BI-}W!&kj`# zX`ImdQ@zp%FYChlsc>`gfAIEWeP@jIeag2VllK3F?7wv*=rm-$Thih(-&8M7Hr8Y+jHEp&7%GkSb`&}v zrIP1O@RA%%3p#IVO11UpO~*K?B_*wQ#?9@QM zAD}HtHgSFhV(er_Z4gUfi=@}FMKw3ap8(#e^a@Y zaG@g@!E?ex$-*CuxA3!UqQD#abt4_SMcHV-3AbgEia$FhruAtQGdz?MfWS~n0IIMg z6M)?waQ<6RaKrikbr_j4dkiT!*&||&*E9(JXuY93&mpY`hmj$(_awyI2tju(*q1S` zTYH0N`<%vuod4U1?|^Fz@JIUm2Zm7=kUpHU0Lx2A`2ms92fXFI!^oQXI*(X#Giz^^ zpQV5|FW^;kcyV5(O;p}LNoyvy#@TT)sJ8V`^$LfJoWnq|@E(ac+80c=>u|DT))(tt z*4I%!?{G3>vAZ7txQCM&*9;e0e;6S*oVkK`>xzHm`cJ&x-(=3tAKuuP&w)1-GI&m` zW2i>znB1S}o20pM&j4y~g(;p$(w;4e_00MK_F}C-LmOL3$QpxWl2`z_F!h6wlq*K0|%$1z-U#Yg< zDQ_PHPWgl3a+&k)aB0fF%K?D*oA|F_Zt#XQ`<1#vSAsuA>SsXPnAdh5K@Pmb2l~|nugTYs& z6L;L;qZ;kGCU3qc?xtZ|8!i4#>0~fjbujgIy$eEAa)flyKmZ+dN1_%U(b%*T_TAQWW^JKU(ykNs-LNgOQ%UyS z5G+Z*9yR)P2E}`Dgv>o&Hv08FR=!~LiwXxupiOfCqyR%$Vdzu^FKG`m6cUfG<4rkn zJ1v>C$zYO*dRj_l`30pqh4vu#O1>FRdnNBuO}!1T91S*{H&WVgr;)K;H+`gBFe&Lk z#x=5j*Udf>=oq_hoklj;b%VFi;m!$uvV@*+*G-(NWlH1wHldNyN?IUo-$-dCmyVRy zpN5qejg(eGg=Hhj_pKjEA-oy3FB>T>1dwTjiPDUb#-&!`U%&B2McR17r^J=q1BNhJ zNcSFCH{ja&SwooCSot*cvJV`d;`5Ur1ZWoED&b=$R0VA5*fcF2k4=Zk-qWsIGIn1` z$~+t1rGZmZo|7(^m(AyM$rw_$zx2_ywfPD0~>PA86|!jV|sy?jiO;FH0qkw zm(bnA@L6E+sg-=_jp=I)K3+t>YLt9qT1Y}nm;#6?8#ShBDSm|Q|+sxB8NJw%5$UO zdcD@Zt*N%I^}lzO@uSq3gN=}lXRPDpHsihKB9I3l4_>0=h~|?`yZC81njfsFNc{L@ zQwbk!jN*9eT}fo|MJ(K3EvrPO8D0^bKGn31msN@U|0p9^ zRpj*5r98VzESY9%M<8=euC4IN05&t)cDhMtd?sLbE{*Kbl-AR$VA|5_0&|LC`i7z# zE-+od_<|~Fw6k%PrdLIaXPSbXudI??&&%n~uR;?a{DlORQ<*yF9c0J_{*`j!jNfmU0VbNITCA9!=@S7bljvkt#hU1 zf^B7eGZK2axWTAa&o<@4M`3nd2209QZzvjPqiJaWFow469Mes#Gqp!PnhW<~N7L|H zM$6$vFc@Awy-FO)VuKRL^U~-mb4^V-A2b?Au9NuBJX0wj1spo7>4QcacCkX7o@-js zqJeElaKpxC5V(Ti(#Gmq(Z&{2Bhvq3fvGmeXURg~b7idU&_YuYv_ zM@M{jtK#!TrfU#q;bKssBx}g{55moh$=KAkAavoJMZxlTDQT!zpJS-6ZZOn;E`gyw z*kGt%1ttzJdr9p5iz$a}{J>JvHSCM}(f(YH_8Z1%zce~hGdVM|eb^@cmh z93$OM>oMeZ`Y$)F=cQw$+u4Hh7LSSMUu4Q*yzdzDJGaV8aplFPt9aEIxi9}WsucTg zG-6HR7>YHmu|`D^POmTxOcdcBLxjr=5iXS?*e*4_!nYbC>_x(nG0}>Zrb&$dU5fCS ztQ1FAnfCLjA;LbYtQTRU6ahXKat;xmH$*sLi14Wt;fd9zyI2#k_br)PSzkrkzmJJN za)rso@P*U2OcmC*WTmiQX}SeIkO+0fk$sc0Er+STUXWj0-@1rLU-N%LeeL3|XG2j^x$+&8E8jfpAz=RZWGjQ-=Ls_+qA}+jWmy3*Z+p z=>wH1f#3s`>|H~`K(^J=4Epm{HDnideyBR)8{y=@4kdi7T4?i>q1Gk{0Txub-n0g8 z8s+~ATZ$DIWpky53|89!Gt*Wh4K@Q|JJ;Z=8hykQ8%-7T9g6iEO&4*khOD=p0WoS5 zoMlwjNbAj|O5yueS})$*{MFPSoE_AtoYjaWdCD+rx)daGXtFoadvy_&5z_*;qF%b? zBwe)gW>~B7O@?^INMU_V^pP#5e=&Z$lt?ow|0&?ajX!9J)Qf8CMY=(Xw47=vc{`g5 z2Q(AfNhMEA-Ui|E309P3QIBW}0K! zl3sVZ=Q}u!|8p!&R~8kgtx9QBJ8c@k+8i6(q{*`7bGp~Q2@k;f;8-#9U8NU)bu8L9 zz&7HWk-+!T=0;99&d3SJMe~0!{f+TXKW*9~)`h21TF`Mq&?7)FMiE9U(HInO`G#SA$L z>>6ZZ4@5us19owm$`5tDI8Nqcd$8BhanUJE8PC`|Vt2mMLA=P7GX4=#Qu#aMM6pSE z6#r6eeo!LFG$?_^V>BW%x%{Awk_+#i)${}FqBMw)r!?r#ahPG=4=3{2L>W-W@iYgl z<7Ec)Cyu&|$A(?JkuP#?<^7!b0cFNNx_A)k9So4g^;T;u+iG7Gt zmPBl!w$>i9fei6sDJ0)%jLl8;(rtk%bhj-C9Fzs_HesCH(KMTKC*!RqV6r%jx0^sJ zg<@%e@`6#FBU*M*T)a5ec5xTwa%>}Y_m!vg_0Eh8uk|^NKEmWpqH4*J=5T#T)LFR$*zLA$n8@i^ulFP50Kns-BKnfNp zt0u?=%E%(+Q+~^Y$o>b1^P47+{rqKuw4YTIQrS;c3u!;sbyqs^mnHodi9T%O=TA_2 zz<1BmqqBP`L(|v^(Rv7&&qNgY(+TzFb9{m{pI5Q}_2%>3gqZm}GeMfq7^Al_^Pz5a zoJiejKaslCc48EK`5Y7XOq7mm2O>EqMsMq-JY?d-CX(a2$EduipVHmLCr^})>rq*Y z_5!b4?5kCZdFP38DB4bpNz(?Z&|Gek(j+sN{bJNW#mU#fd*VajlVZ;sko~Up@>`9% zmt>t7I!Jkg-!~B#oa6b!KpNMYP{y^U^)&l}Rzz$0o(OzTZV~ zjIx8bnMA8ikz1{F<{c1P#kxh+5OeC<4q#hptgUU0(ihvvZ2v?_*d!VJ6IhsqZ<8W} zf7V#A+HsRez12VothQ>BwA%N_D%bP*lgMi4P9m$FFiEPaYEsN3j>bxCrrNu`A*LE$%#!1SR ziLT{$Q7~Bqp3@l#T%4-P&dva3r%v5C~ zsT{6&UFBCoh~k#EM14w=w-}xP=8*RJYSJK|2-M=`@ip+uWhIj|-KnIR9-jd5^1%%6&_e9~pf0rE-Un_*pl|7W5$eGbtQDWDEt6uaoL| zs6rRAL`sD&Bym`_wUh?nTdoXcaQ$ezQbxN%6;t9S)3gtb1-4yata7hoPu`B{s zP(_aF5rYOeD)zSo8d0MS9ajEI<-#`XVS?DY!rD6Kvz~|%AfLq!BoO)C5QKbJLdVRl z>I2>B^^h!mg2;pTu_<7ty~O?$3(s6jFlH&kMb!Gv) z$#Ep`Zr4gI->l4NoiK5BicdBx!xJ4xXTxr$ZBhF3l~ZGmd<96+AcyT7J-kJk!1>y# zhT~`j+FUU;y6`6DRk&_CRXUD|+mwNP2NF@S?$vF|Ui^E-Ey`5BH&)&9R^p{uD9>ARJVyyrCXWu?=IMe#K9Hz)2; zZcO7Nr%8X)AH^Ovt=``Zo+kZ`HZ9KI0CJrQ3#UncqZ>Vr`5WvTUoCmAk~}Y&CYPN@ zb}N1}zh#>AIM*TOP1B;0N0eq3e&00mINOZM&!12xnfa3-27apaepyT2W{VV!ubC#t z;*xrqE`lobHfy9zl&~b2!_z{=75o>^C{y_NAf4QT&Nv1AY+y9cwTc{i+ml%Pax3yH zJbk(xwS&m!)HL)byn|8qmaG#m9DroAWV+0D?9*ko17&g|?-_`g?F=yxKQQXhdHnIb z5=`e4r^jbIAH}d_wi7lmO|3}`8P^gz(oAHuG4~ex-vB$fdOF#`mD9-%R!^7t#Z_-A z_wnu1DWu&poviFy5Er-YS5J>Qi&N8Nevv>v3(5DOEiL#a#QtLn?H^%A{IOEX<*N2- zvGW~eSDd5xdV0L0_-Hyg3Ruwq2^W73`S#?%6P-ls1fHGidGZz)NGFwkK|?2XwYdNN z1diGT@f^EcAYGH~0&-1&e-4g?4LFW9IF3o+_|L-$94|`XILF`^k{kj592|Q#;3y1^ zn-e(BJf<`iuOCfF-kwNcd%wZ<9?2GnoP(|2fbC&}?fVIA=YIlh4}YA%w#kh6@%@j% z_B+WIh}8LwvuL$4y5UoWGoCwx4hZi1Oj*PWXV3vb)#u8z_PM}-4zO6m-T&Mf(iaao z#}pVPhMiEBv`+8?&xwDZP$ngAHg-nuFoIt&qs}q3o(g;$IEJy&Cr>JEIiClN@tf=8 zk?~aFvzjxbwy%`O7{6o&MwCwCr>|iKtU*F*`XzP3`^3&XbB;*csF#6$YQX zq?nZICJfx`t!1ivo!LBrzW~x2(dPj4y@8Rv-I}6LLhXmGWmfx9Otf~QdcBfuL4F5j zQdawIeH&%GpUO5|dppD*R&dq(tmX^(A2VfKvdofk3Ca|gP8y^zx$Pi)j)sc+Qnp2x zq?uP)SqZhqCAQzjkY!@qD}g|>43bl3>dn-qOb{D$l^lP zzFF~(?ZH_xaO|E%fdg>s%oMm$xJuyGExNCrxj*9{&64?NNrPc%odBzfwK?VmiL?7{ zVd-FQbiy~*u%#6p%$4wYjJ?Cn#gWB13N4+?zBqewNB`Twe44?ln+PR#>a4j{M={L4 zXmMxrSB!V{$uziUp4kOoV<)gH0&r*y4L9YPm&O3P*~|msGrSD}qPJolLXe;8B?(J4 zCkRr}K+WR|LCqm?yr{sJr$l|v5K@(bFO%$$UIQk{;sqWTS{TU zHL@J;M~p5ux0Q8Y#Ok`0nX_bFpRzi*6=f1GTWlyZx0blC)YX|aRd;D(?|qQ;ZwM>4 z=zS&T>HmM&w<zl$K5SE>!d~#zd*lN?>5=z<6*btVgfTNro!u$T?bL|erd4AM zeaE~qDfW*BWBy+`=0Aghz}b`7rkXS0^Gu2&o>yT6_vq$!;L$XU<(1UbJ+9@4~r@7EYhJEU;*)IHsGk|2O+x z=`xT1f6S78Q=x|+7jJpnWzQ*7YgYFIC6k9kB0@hiCHAT24*ypao?-kT;QtF=&5he9 zpyb|uxjel`_M0+6v)8@yzX=91(ncTs;PR<-k6cYT`BMltov%Sr^ ze7Rrv+{z&4Cm*@UFGJyVea!3ldOu}xH~7g%UTm;kix?&@y84F!NBT7e|Ic z^3||?Xk2@=#|ZQ7tPbGhNb@8JanQIZ5(xeYi`ka82K0$!vqDPf^vd!)bxcyon zq&eI{rzaHFgU)~_s5t|6d%&Y4;q~i&d%)#YL&1R0 zqXnbtSo02M^Sc8^?GGDY+jGU=MMxS zx;Y#mpu?xx;U{c0ZzvG(`5XaPG=Hc0DVD2;+`gd4<+J-Wr_=6n`U3%PIPA4MydICP zic?!GZKJI(wcNu}@)Z@Yo7I$T#YTVKy25td;Rh|~@FTGJ z3%dR~eP{s>jAto=@v~&{{Mb;K#+Z=Olxmxb2 z8UVkCT5#EArM3chIPCZPLf!z}A99A>@Y}m#x9)d2++o%2^7(Z`Td96QSnOI2Qrpg$ z*Rs{;R+(xq0Jg)cr_8JxGidOrnW+pl9y-O~ISb(1ufC(^Y+I^+3H7h$Vw*z`*u9}( z2+T4JKZP9f1y!db9CSH#-3LE(Y}jg^>IsDOP|%}$wSY6^5Ba^}P&nxJI=!HKO&5D- zTe6~iE;Qf3Y?>QH^!bBc(6JMKl-Ua=>kQiA=Z7`7GaP`s@b&X96?gHkxt6ghnQuUY zol$Fn%qHN~^?=s}zftT5U3&cnUIA8*)P8BRU>~eU5 zZolC?z_EqGVVACZ0^m8EZkO)!!;EtV-D*ICU$FMdPUNLvD*C@})@-R*qT|rSv{jbQ zWnO2wx4{(idBA( zg@WSeO)9gDhfXzau~~NRuKAoa%W~n@yglI5y>`DFT)nRQJ@$~x8E}O)Rn@&B|9ETw z0!|DC@C)8Puh$6!<_`x0aD_1(@T;2LAM!+D_H1XifbN1HI}f?RKzuLtZDX;u7kb$LNdhV!6fwPPEECI9@VMY?fzgm=+GTu z2ZTcWt{Mgq84&VPFcxddESfD9TN&b}|IM5S1{Zcg)b%++PViPBh&LRBX{37LN8&?v zdr)>HPxb1MnfTm6FLVTcSl$n5htqA>9Gb2|O=5_%IRbvrGxW!yd7R*Sd@ipq>;Zkd zfdgbKhVw|pT{@3c%4&aH;Meu#ABOhby;c#ox-%?l=N zhxn#?0N&;G`yGyu3o@^e+YX>w$e4K{m&X@!_#A$}Uxyqu0KPdChAMj~sH$PRt6_Lc z#a?`S&@w6|V{z&MiziPH__YuuRso;tc0y(gnHU(K!w%MK5BbB<(_1Wy6kABsAwh%L z69ip@>^@cXfC~X*)-|UaI!rlbUJ&B42f~2g?be+EHS7bwY!5;n1W&F|Kmf72373Me z$biU|lC3xvwT!lf!99e*oWibv7ZQ6FBAU|Et3M*XaW%03jLDM~Hzw zUnl^=LE7sKJ0XisoNBp&AOvk!DClr`f=+MPqX)w(=qwy^*&(kMduGS-<5c{&eqzy5 zaj%WM(nhGg#09?Pz8+O1f1>XT~8$PCl7v%4tG)T}~e!m^!aL@-~A#C^i z!sHm_Qm*13=DS(0+wJhW!m8$l_^pFK@xofyr>ii@!H0tN*7wGrLIAlqO~KzTsz0%e z@VX!=aCpjfwehTjuq>AxcDo9RPyiMpVTaQJ9wqE_2ZXO6mT5sU?Fqu#9N!dist&gv zQiCc40C&)?!(t^a)l8u^HGVRsveS5ISYe-Q4CU0@XK9yr&Yn3!a^{5t0f(xE9a>Ps z1jX<5K$;DS2&6Z#unol$GuUGZ1l&HC-|lvTWqZBQXS*ZdaY4rAhvkDzGc~VYb;5oO zE)ikf5CYW(z)?FKn&$Mv%BW$mOT}6I!7SA_$WqVAn9@vf8@DuvpPTf6{_LvH>BRjJ z$bw)!1RD!ZFE|xYn30;<(N};)K(-u&oC`4A5GS1OFnCf|06xhMy9v@{@&i7=)FR2CG^v91J$vOR<4^gFZE+h9JL$y)dw8 zw>{tsz-$b7e6T*OTcxJpE)z|A3g&geue12mY;6I{V~3V>5<0=Xsc!Jj9={9Ld%9os z2STvL5C$#zf_B5%*j#>G-MYXebXW;uy6K0g1qm|DT-_CNH(czc(3&THPNlNjc<5AP zh{5l8Cd|MT-I6oV9d?4jf;)FZRDwM~(2h5tL70L7AA(RP&DI9Ss)I`ndSPI|UOkYI z+TDPK8=f%D>e5X}ko*A+HV`2xf|%#DXgC8?ah5YM72^go(Bt=M zzJSXPOENcDrArUE{9Yd{58w?um!r;^k8Z zdC0b4WvM{|52>`*2@?xk8+bswQw@5edk;Y-ofkrf0+KlbA*VBBhy7OAVTMWU@rGc5 z>y_c$rbBAy3q#cM*ugvbG~JDRH?T4fdBTv$gpKK!il_7@&J;XRGaj)$%aY#Dp%>1- zu(zuAQdRg}Ubo#-?v|g4mVNZOG=CUGg@7D{U?0$-AFu@Q!+7fmm=9fPVpN(7B?4r4$i_4aV7B5tUCTwwFPuL&v@`~@0BduI)PhCJE-YIXx+t_XRAzty zkxB3_^}4nTL%yYD!R3qR&kgu448^d=%n+x%)}po?UR_()Ea+Q0uWarD-)v<5>nu^$ z%UZZP8(tV$mksY@l{I)BD+aX*Thl_mWtWsKSQHFxUcN4Ep%1<~d&y#;0iVIE-30(^ zYafK~7Ot)RrYZjWUK;+pJRSd?0$(y-TYEFX;GnFfaac<|2N>wv>b14l#kJIrwY6iQ zH*0HA+_fMf{)_UhtwlN3E}xTwEL#WR6_;VP8StmJDKM^WgHMm(Qzky00x@c{@aaPk zrM4|TtpIUqv+)T(J6ziipYTJ7wX56XBYr@wHV2>Z(@nJ<@CiSAQPxujr+FX3XcbaSS@Cn~ut+nA3zQR+Rk5BkI%<^?D!iyGNxNy;hp_xlVVH~)1 zEdp~d#5dof2YXxZW$+93n?_qTHbAthvJQrKxR;Ezmh%BYacCs`0{EnUR$ER5P=nWO zy0pNz$!aU1v}I~_6ZlVPqkzI9NnpMtaG4}9p9nbl+@Q#~z}lg;L1Ru!gN8)CNuq9% zsCP-!Ey+>uZxx5SU!p!GQD2v+PbEkFPwP0;FD2>;iTbldJ&_#M)21OR&kTvv6;_qC z7JH{!2lM<8eix*Sw}!tXt&MuSDl-nbkAdu!$RiA7*yBuwygw@rIbD5_FoL_H3s%y4QwbU z!>-DU!@l3ZzQ@3R!oY?yV#is)Kyz{n7;K9p`Hn&IO@rj821zI<6R1^}IP5_38iijJh{fH&G_V4TwM=)1xS_R|KaSmw!zBPaZSx2$!3acy8Z{JcD zhdNZE4l+g5u3K~mIiY8>j#5_PMA`ge)CH7RPX7Ki$b zM19&oJt$G1PKvtQ9*6psL_KMs{vuINCPn?h(GZnq&6Uw2LmXcN9=2evoFEzSH&JKn zt;u!vwKI-lUxQ*VNpYk>u~!m`_nw8~L025but5=Cs6`nsG$;ln#Y8*UrpF;~Fp$?t z9sP1SZk&8 zXwq6m3eYJsorGXtW zu%X<@r2gA9xk;&&aU>rwNZxCZe9|BZ%_32KGw^_J;;G Xlo7kIVJ?`Np4pfF|{yHYyQaD{*jXrh?%y3YkWTQkgLqkIgQ%f^*!^Gr7a|6?~#1s>QR8va} db5lbjpbCS;q~?#D?H@TAftYFgM^5IM!2r2@7~KE> diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 386c6440cbfe20809fc39bf430528137e5154190..e2192bf3bc48b875e0eea61b91802622e0cfa145 100644 GIT binary patch delta 62 zcmZ1=xj=G5AfsVHR%&*>c~P;xX|hF1l5tw1rD3vxrGZIWia}~}N}6GEqLC30n^+{J Qrlgo!n5S)SVwB?s0Dj^Va{vGU delta 62 zcmZ1=xj=G5Afus0N|8}~Zfd^1g=w-;qM4zgp@pfXnYm$Na-z9`Xev Qp%GApL1NP8CPq1K06%jPaR2}S diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 5acd1cdfaa49895d8ff2afdc284821cc9f740f4f..87e9eeebbc00f6f03bb157735f2d79ef628bb9d3 100644 GIT binary patch delta 72 zcmZ3mkz>I|jtzS_4GXeTv-8c1iuFyCEmD$<(-JKWlMO5lOwv*eQj=5C43iU$jDXn0 bA}KW`#ni$)t@$ly`&&-N?Qc1mHuC`hs(~3U delta 72 zcmZ3mkz>I|jtzS_4J}fNjN)@s^YtxElZ_J13=It}OfAjK4HJ_S%?(V`5>reJQcW!_ b%uNlAfGP|UlbYXhw!h_M-2Rr6X)_-HTLKp> diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index f7af43f9324174f909da3ea51d739fd5881ff266..acb5f218b32070303eff5881a8f93171271eddea 100644 GIT binary patch delta 2471 zcmd5;T}&KR6yBK?fn7{Xw6KJqUZ~1$r3+MAz!Z$3HAbvyT2tFb!`_{_+nHf@W;^!| z%_cPqgr-4xsdpQpB&dlo@u`w|QeHH%(P&IbQ;a6I5fkyn2jBF?)N==RSvK0*>Vpr= z+`ad^=X~dU-&yvz<>33P!HV&UOY^@jR(xGOkTJ-p-RscKeM+C2d@_amyOpl~uAY?I zMHDsFt>C?T;jgDJNmO-TUvH{YwH4Y)ZP!r9&PUGmEI3$-pa-BAB@jp$QbV+%$1?#iu|CLu1%<2}QO8kyK(L zk`~qI)@j&FA*K-@84CgVxFA2GQ~r2!Q>+kjpsF5?jYbfPOKHr*uT7{4bQ{Z}rEl-OtsRo*?-(7mn9SsUL2GvN}ymE59!NqxnV zTJPvYA!NzrlOd7vP(yLB%Dq`gzGGwXww{+nI`7kHE7Ay;xVi+kp3v9gE&s-`;*A6U z#_?NI45piML*+woA2U#>zHy`a!aS9RD#`qT@Y)kvP>a5(@vkOY_z&@_+#T;4&%?Lj zOzT|-GVf~bMjv1|9POLepUS(9XyTvF=)H_+>3H$QsUFGYzkhaAI_Gs-~Onoa!U45{MMrbwPoPfWsawN-@MTx2g7{v;~_Z^ z=C!AG@!OZ{W(}p}82G&s_8E@WG&ENj6SDZ9i&Fg?BZ(&bFk`o2g7h-$o_p{;! z9jLs#Sx9-Fcla|mKanOq`POVuy6VlZt_7tzKKavo(na3B7KL9YN7fppX>P6^ADIgW z0@KEPP&~5_iswat=Q=cU+L#t=S8IU(q()T@xZydY8eT>oejphkv08weMp&%Q!EK{P StR|}A@sL=pc&$Glm;MCK9d-l& delta 673 zcmZ4Xkoo%sX4VGQsW~q;vYzF%wMZ#4iqB2W*S9cDHcB)zG&Hm@wKOv~OiWHRH!w|0 zOffM?HMO)bH#IZ@sxU}Q(oe}xF4iy3FD*(=om|MQwb_#EE{|{rBLhQnPHJLaPGXWm zT4r8KvBKp25=xr`#Pt{_pGe@D+#;bSV2Gw-^L~kWjEpxXpBG;bRU(nOat&`@QlEEH3B||WRkiyOS z@-Z7W$6c3VWJ=+h?5JoUkjTZrkfEKyoS~7SnW5!dwt3f$%}h*1AW5Cc37s756-*go zS&3Ye17_I@qA9Lpnw+>uYqESe&t$zj@=X0)lQ*t$X6oUZTv(|*`F)reQzzGC!?miD zzubAlv;rh4JXwFQ8Pigb0v)D_K*ROg z_CADP&~2GAx!~ym#g0`YmoUms4tuA;7&p28oiwB9h)(jAreJQcW!_ X%uNlAfGP|UlbSzrZvV*1xN9Q-Dt#9L diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 138868692ce5fe5f292c4cd800b0463827735509..8b4925deb624a651033ede75b8bcd23fd1dfdeb7 100644 GIT binary patch delta 16629 zcmeHOd3+Q__NU$?lY{_rhLB@2xes!5&($-490Do=B9U9&kjX(9P|hIu0~KABQ;tRo zQACu(6J853Z6GQI`*{s3;yFxG3KKURCvEx;v9e_W$LBW_b19_r3Rh^{T3? zC;$4S(>q5y#@!l!PsyIRCz9mZfw~#9l)3XN+%?`>zq7vDC)Y?m$yHw~)z#G2%Qe*w z2ma^s`s-?I-Cm_Wcp|B5L(esG{$hLcpT&0BD>>A2-}F%J$CA4EO6{`ZQG6bkRPOSs zS*z-MUJ^sU!l*xee#N}&HZ&yQf8AEavNQP!rp~K`UNhutTZydeTC2%|X74A%dJT?c zA;pMou-u{Du7cASoFY93wZ;O*7K?>gcBY(yhZiPV)zdqABsgS;OZG_WxtsfRc9hyZ zip%G7D@wUUw-u9V>V};Ll`aMqr~3X*yB@(b98A8o64b^=ds>AT^;|;_b?urslNu*j z{i!WARe3BsHc+tP_ESWi@kEcc#A%qrZJ2g3ng+YCu7r#^vJ>ZVD`$#A3VK zsW^Rf>`jDka%_$8dEH)@;*-jKe2uV;YM-gkU}{_|+6loUZ}#pCI-aS7tVX9Jyk@i> zI@<+}{&|(Mu4t!mKclgsbchjNL;jlpg6l)4h;2kW$iv`ck=ITLQ~p8A3yD_yy-u&8 z>?^`$$3u+6>(Q+^xQn_apQ~KrD~^3sI}8W#ev23ySZfb}=)ed-aM*!L$Z2$XjRiLc z9cjvlDKB@<740&;m=!x>Y6u$pZBWL;9uUKKy8w8ZBf$sL-b}RS z-tTf5%8c`LHLvtyyW;ZVUoSr}T_oWVR&sb;PPbPomwaq*$sN-^+d(E<18eQX=wieO zPJQQU$X)1i8Oz-=`0zQ*96v95?&$Ud#7qKljHPcq5OX32o4z7BquL}goX0>T4?Y8z z?T0Z(G5AQ5mE2GJO(N-5w~QUmH_xsT_a-|%UPbYhJNWKN#+cP?W;H`lE!10}2A3VH z1hSA;k0%)k!aJYvqGl2Ayk=x{3q89jN`w2+Zm9zuFp2bug&aKh@hL(^@x=6cnX!;t zs+$82Hk`mi$pdaYG1rldcx2V(rqv2b6N)ayA$vSdZQZntZK;>V{YUf+nMKhz;|8BP zh3Ar+5V&a{=}E7uB1u{lWBZZbW^K-|WlSsDg5_3XL8A`(B%{FxQ@_PS%9X|}nPSW= zqv)IC4z4+aXW{Q=kZh~R>-9Ng&apPdos!q(@|1h{frRduX;czWcw!bxPWr=4Qm#ia zD+G`JfG6VZvq(-@E0U@XhCN49&+Im|{yLjf#DWP9`Wer~Z_bUx9MxIRd6Af-DFmPU z^%h9FXJ`k~f&HOl2a|^2mOmB|Ra#x-xy&H9EyO!zMxg`8cnByfvD5BNzh`tnL* z?QDooUH7ZDazwoGl>^4bv=N1g*cc)lr+9E)A{TA@3O&?=73XR#r zg%xRs*TDkI=)8v2$R){M*)540i514}bxUr1PI(`*+C zWU{VVik`4*GCS!bi&UpME~i-6C$y%nbxbq7p)hF03zN~Nm(WLcR+sTw{w?%lX5Xq+ zi`>WMimG^dRXVL;RdGv-&+ByRwpOQ8c6dCFaz&zR9wO7g+nTzFDxz*kep0JuBCLp6 zXj_RWiC2`w5EfgLJMn(j4AhsOyUa2H!Fl;w=!$|wzzs2>nO2Y%b}fSHS}rOQEqNAH z%;d*MO+K=}MB)prlvqu6`P_8d(1)Sn3&ibwmC!&60Iyq2mg<8Z5V?8>HE8iYir`Sj{o9CK(Q`C~Ga!tZayAk`M1^ zq9mTGtq)zVad&6lIL2zC=bbIb%v^Ba*md!_o~)HWXnHucxU?*D498SU?BT z)IIN1!N1bfv9n#Y>!l-J+nKX6Ig+U2lXrgX+7*mCqMgkgo2ja&%eN z*iaZ)VZkg?0#nmzb}>|FGiL;hPNqX{BiF+|;qFD9yIbER>)`|LE}=VvK9U})e~Tm$ zI3@h03Ly<0BzM72>2yd>7?_YHgcyVanwbBA@S@pgp72?e!Bfo7h@?3AZL$!CWUv$y z`ZA<}88rVN70ppt@+>)JM_mxS*tgpgkJ9=QeH)_hlTVZ`?i;d_nneKrN> zpfq)aW%Oi=I&-*Y6zh;+QLn1Fp2R!(hJCMLxLAChsTiYrwA?#;F(DLPlS^t{d9?<_POEUN_a$vY%a-eHedSE+1b#Erhbk~ z^|4IM5Qf5snd*trKJq@DGX>e@B|>GZ`4CxdQf{c zWWvuG>WP`d%$`DgW)d6SHjQ{7-4-HWlDkOvOKlxG%wrAg!w*QX$3~y7fqulv^z7>4 zs*d!N!4Q`ui{W&ex^9shUC^;_kfCOtUbayB71oFKRq+@L3x5(Hon_z6ajWGt>Y?S;3^62E#=m8~p)?O|71iYYFs2(?M_-efum)qW#X2`)!w@ z!jcVv5%?p}CCkWWhb+P7@6p-(GA5hHE%e+uavxM#LU(^pJcRC@L&~wOyA41uY{$^r z`ZG%?;XHW;V04z~#iKuxVi=#rX-Ap!0?EcPbzN#7I_m;9^t3FM^zqTpE|4sghvI%B za|tu%+@E6H56I%%MOTxj?{wTNzaaPPvIO^cXL0UVW-;#bL%;q)9<;z?S)BY`7!@O5 z%@R{}B^|O9pCk7#g=`prb~sf{Zh)TnjP#@D|0HSff#%_e@X#bYJi8B4tZ-I1IITJO zNORD{9B92D9P}_bNR4astLvr~sB5QAgiJfzCX&+Zkviwm-OrPb^jIRy!aHtPbsc`O zL#p=RS3c@wpTD-g&f~1XdnK2@-djThNpPFemR8P^0TuIV=1!kIf1tKPuwJt_uehD; zacp(tF|ZR^8Ax{AWr_{WmuBaiEA+Nw{YuoAx5cX$5AND4G857m2+LKM-ZY*b)Y>Dv z;LuL68*a6WU67e9v4@6thHL`sP?>FmLP&Rafi19&M>#OTD};RKy@>@k5J5#i)hwW* z;y@L~zbbxa_58Yp8`zpMlN|~o;pK(HQ^^#?T=a`s(fg`XufK%uzKztfBgq;#CxRTt z4A0o~TV~M{)@ryPRaH zPv6xW24zQxnvw#y!8O^OsB0PYq--knhM!@kh{3PP=A^=nuvo-koz8`H&I)l{Amau0 zCr9jL5SLQiwsXTlnVWf5T&O$^E&+HnTQsxn2IvoavUxM3?3WB&;l)@6b!S39cr`p0 zdN>n2gbm`h*@vFDK_R@)21~7M>qPmOEZD`yd86OR;%ueSZ)VhZ>0Ue7;J0ki<3DHf z9{(|0^!So&umkkU;XU3xNA&m~*`mjP6p8ZfD0+{tY$hKD+@kFOv>TJ zuV-Jx!zC4h4z=iIs)Hd zq^xW+%0Yqu-(u8nuc%*vg!N0yW%V0Ia(VfB z=JM?^^tA+&2{?0k`J`M?zKmS4KcW)fAETGC2GgCE_Cc( zJms}A=g!2177l?FLNgvAU1`OKB$=Pa$Tf7xZhWAaYKw!b^JwBwI3P6s91aBu|Ix8! zp2R=L(Q(7zEG*6wbzo;Ze86r-L;1epAhU7KJc;K^PpI@#r~@rUe2|;SF}PI(x3$+nI(d?w`y2A~;B8p) z$MQM9yYfSLGF$}Y4KeoAA4Gvy(JABiseG~Q?8?_Sj+xtGg4?r#+tbmxJ>xfV+q1yP zt+haKYbj{K?dh1@j*bsKSqrs5SH6Tj!ftrR>!x7!G`JZqDWE5&!8Q1zujv(1tnSZC zq&GA`BMdIUTc2!hGf`tbWjbskFr`4$>0kh@{LD&pAIc}q!0i=(-ZTS7kOge0v}0gC zCWD=W;$LRK1RUmP`WZ9fX}q>;_Br}`xSN?Cza9#jU9hE*Y%#bvdpD%9abDZWy4sqV zuZpLRS+Ea26PFBKXTx+jsD(aj0hE!ZX55YkF+~2{pGmL!4?b>0;BToBng?t;h5RT^#S~VZ;pjRz~~B@hP- z3;D{^SSUK9x=?fm>MXqv-0(&Le_k?yFBRZ(ZbR@L8u&v39Iq7l6PfdN*lvM+0{uk| zeV2xgN_@i-=;jiw6Mc88ke|{{7Di5KZ!d#8ffVsm8fD4uVdm|e`7xxQF1Gr3qWgE}$h?r8yj z+5HHvj05<$8*0y+aRv z1UpIF?w1_E+mW^$vs5bRk9)yp_sUK;zH6+laXKXz=7e9XP@Hm&$M3chvh`Zda|}C)Fy|3KAh>>fSmnAHPylTdVjzGJd(<#Xh;wLT1@iI~9MuA)hwg z^L*NJEb{s70A!XsB=6`;@Hc>RmMkf?=lJV<=of#NNOJgGZeP9EhrziOr&n?Ku@JJp zT5VlZu`=|ePk)WK(Kxl&E$8tmz?Vh8IS=^>GTv*ik``?Io=BF!s|ECm zAK+53mC*G+z?D-AN;-5{9@vNX&C3HmR9qfl>dR4&{olq$8youIR}KRA;OB4|-%03-npEj{i?CogaUiOJyqz5*$PxwGG_(wQMU|$KImdfK&0xy=(rC=EbZXzzkg@h&IM zk`{*OlVE`8)>jLmOJ5N}R^LbnD2oR1mqY_Zzc7TNL0qnbKv^`1hm#BtHDQRU8pIqO z1j?d8oa$(RSQUm?u0d?pL7*%eL|G>T#Is?DziAM!>L5@S4PtI*1H{K+h+`VWw>k)v zMS}=+F+e1gY88nq6&2}K8mS1%qCxz2kpV&qLzHO{19cE6iv}^In*m~S7-E73F--@7 zvS<)@b~ixW7KXS*gIKGBKv^`1Lp=--kB1>1(IB4JL7*%eMAu#hh$CT$CJo|K9R$jv zL5xo^K>Qwt_(g+AE{jwIWziru_clNjlxaoHEfYm`=^#)R4dUOa28c0Xh*28Ebvg)? zMT5xW-^mJu*NcT=h(-qc4x(%bxz$)v!S&egR>NYeKvsZB1 zI+T$f4sB1Nr3SWzaUUoP{gH3!O5iCS@BX5O#6W65WOA z9qShsd~1$*aDRuw{@yC1mls*i!$&%ID8oFsyQF@vmqn79AJ;BVjrcaV+0*&3r*ma= zZi(eBfbvM`Q5N0P;r4lI(tFA**JemsIh|ckBk}OyLKYX{RQ~&?~ delta 25925 zcmeHPd3+Q_+NLVWOad5zK<;C55Xd#@p6R&~K}Y~OuL z0Ywo-1>-uqejdPzx}LbYy6UF_t1IXtpn`aR?_1R~)7_aP=zjk#zn@O0>OG(LeX6Q^ zjyK-z`oaG0@kgwAMB=uxfFGG}`xHlW56U<>g>X70pUdr4H#hZB$K4fw zhPT`X74^cfVt2ERJ;@~*Lt-f@1|`K%m6*!OM&Bm1Y|7$U53K$SY{t9{W8he*cYh=@RR(a?yhXiBU7=#7b%^i>K5ce}1)ZrSIQkvo~m zKplrucF0bL$1Zy~chZMMQNUi+DHvdgre|{0?!IjT&A3eAH3}2j<_&2k4J=VcO*921 zN@z6-uTZBvwQpQ`h@=mW1OkK>4TNZVrj*)KRV0)P%X6!)JU+?e_Bh=ELM6Kaa+gB^ znz`+=m)9s`NGvVIsAVivEM=3+_KWVGK+`XC@oII5R6Vvj{S1RQHg^OWnqCt{-f58c z8ltOl@mhuTV-D=a4TnhD;PB~ST#hJyqNthO4A_)tQ4cLjvB*BRfojEk78c#Z;W=J}=b~l|@%JQ4 z&RUtDKp?u?0^EbDITfGcc7@Ic*qUD1;qfXiyIb7*k`q3ZngN?wx~2r% zcOB#mSTo*iAK}CHIx9oMW9(g1)SwUtxeLkPpZTE?SW)F|0UnxD+wcBv z0?nN(d&GtqE>cBZdL-2pDHbz3mX0qs=7dsq#3r1__I^JeA~{2&V8gY%QGCW! zHYM5q)X$5ly8peFKR!sVB}r>Z7t#g)`SU1wh^V=Dr6nkm$K_%qK`W)t;q|&;cXW&0 zQGGd@h}!+`qR0mPr3nO1`;V_r*JM^Dk~AJ*$O%;8!YH#>Z|EC&*6&XwaE5Ok)Kdc)`wB#^H;NSqY3_S8#U~_sDhb*Z(kEW=XpG-`4mfM^z7d)|ZNp_Dw zCud}5G`&VmL$i0vfXTJr-wSZfo#zN13Bre+Zqfs+hvW{AspX3jE@+EmAe=nILS^>p zADId@$~h+nPU+Dwim7bM)BjOAR5gw{-0J>qsTQB)lVPXnnMX2`9qKqg<|0&Q!5jX8n_FP@lMYVE2=4X_|jrfzB|Phf8s~ z?Jg%jV&{&Gt>-i986l6Yj`8Z;`hTo|66DQu%7INGY`}a;Flr)6@`iUpuga)r2pIHr zH0cOb7{C5CGSn^ioam{dVl<>Wp>9U1Oo7VU?sB?yl?|TX7TDaf+wF6D)VbefCd=hE zx5w@BI2DK8E4F&u=uRkB8x;*ubw>XTgT8-jHJM2B=R4i{+J*_4{Fr768H<}gvNMWj z8C*(+kimeyy5T*WVjgxjIZSLLVu1xAM+2)f`XD3jG^d`MVhO%nd)0Bif#8OPD9%POU1M6 z1vZbyAX&<%~h|rXSrYP3-ze zc!33D*N62T1F&fVu%npw`3P7Wy__Ru`4Wd_u_dF3lg<+)aQq=o+hg zZDyA)Eu~{VrSt1sE(}65Dpo%rGST{>QwCzBw@y_3IOYN!zWY%JdvXX-)MJ~vvu}rx z-fEA{*RY4jklFNwEcLB5F1kBQJ#h00`Z>ZR^eTUW#WFa-FH9II6 zpN-U{8QHwiPN7hr>>xE^HlWX^Kp(03Q5I5@_}H##WVH1sRDz)ZGr6Y^AhH$3ard|+ zb<-yq35wg}aIH%qx!rs+P}1juH#^0n&$x5VB3U{SBiGE5IUOWJq&gpS^jH((Ah?Oy zdQ#02xe}adfomWYzi!G#Qqd*Z>RY#;ZH>ce7z&UIY(N`ja(m;l!;nht@kzGGldVi7 zS^7kgJ7ly;AiG2G+WYFGT~e12Xxvz|L^p{l*9Ynl7oFt%30lI+7?uj!}}aw0)5&W?G@+nEogK|a6}H@f~Mn0 z#p>;e);=gV74)=S2m}Hq_!OAHRxilmyU?N>u?uCO7L1`N?n2yK9z+Mdz5yOIt~#2X z;P5z{UVN&N)6M6F2UPfsN*3pwxN#k1vUD7#Ac9ad}{#hvZ5{&-<=H5nr2qxVZM^B2R`SmxD zArJuskqBIAtw-g+kP6T)fbg_)~F3sf&{;H7R?YVrxzh5|YpwLE8(pUhq z0ewCN`pAMyaybkBk}Fu?MlBc%uz5NSNv!la;1R1siq0%xouoLNfsY2z zNjeJyPt$^7JJK5}KOIB-0|T_!#;JB8=2~FWQ?1&D%b#Tm&UhHvNb=M{x1VX{e=9al zx3M;)n`J7BC~WXXlA?}VpGFGA<&y1LS=?@(t>Xr@(8KaakaUh<#IQqT48ezFq!V=7 z10p3IPTK(81dr5(jqgcPc@!m`wj+?6Bamyr|GiNBJ+3hx zH*j)k5F-n>kSG3@u1QPZmdB|&#kkFl*ELLar$dE)Go-Aya=HmW%(JsLVRk?RB=Li= z*Z_%vt4QLOAc@(sdq^YeaTZBdH$MIh{Sl!OH$bOsNMdqIq`PZjmi1D!cf!W^!>s(E zV0u2^4=eKdCOiv;O7epYhFOil7Cv<%0ACOFljp7UxQ*WkjbZZr(36+H?z3Eu2967< zO^Y+ z3^kgpg){v3*a~f?mm;Pf>$M2LCHZ=WFA>mh{g_tvW@;#V7LH>_6iL7^&afi5(-kd8*`0Dfghe^zk(GJPO|fj z6rZRSzV5h8K;n)?3h2RRJgbjF8|(1)T6#6mY_~q0nql(za}v4e0YJ(8n#?UBHRHn$6t- zPdsizB^W|U+_AYQCq%ZQm_FcDd;XlpY<-Bubvx1=c4Ha-7yU#GAM1C(r~I6DmzV7? zCoMr6Lw=JDLu*b6MRd;Zuoi019SEk!x(-p;UZ7|CUIFTAoY@W6z;u579N+{@e;?sX zQF}};PaLxbWner&bua`SoW+f9E9gk|rCxQ(59u6NIeHdBhJ`@oZ<5i;ArrNyZNm5t z+GMX2=q{1$81)Ggi)JVU=l2564G72ygtLt%7xL!33x~SGHQ>mvt%aQJAcbt_8ruYf z!1i<}zy@qzZDjj-q4E#@omuNl{Ri?^M3NgZNgxmI^AaQm`#i84_xbxmw68DZw7?H>pU-dD(J?-x!VM4@&>Q=HUcHlWX^Kp$y;T_HcI zzgH+u>JOt9j0JelU0nmAA@6;7RL@nA^6(x5(AnpRy0gm;hwO1F9=qg1%3lJHQ_(=} zZ!uuxyD&8Dw;Kxe<_QGQV{OO8j~D8x-nEFg=;JtJfoo_{ejQiDsh-OQe-xnlPLzT1 z0M)?|Qk@(9sxS=IeRyWilcOdOVpa%8erBI6v};aV+W_KZAD-Ef;J5rnLm?0c7I6@t zMi{D!kl^gy*GLcb;>(MzPvPKLfgisf4LHGu4su9wuJe`XIHdSB02fgFaTCQw#RvVy zNVVPkyv{UWIM~g{mup39JcFqLJCNA(q2xep;4c#U`4F+U7I9*4DdNO_1(6a5_?L<} zvEd~^%spuDg(6PuFG7N!7ja_$B%J;Qg-#)cg4i${(C1U2kHp?p#EG5VR}lLp)Pk`9 zvAL^fAv8F(Z}q{E8yZ1@cdAwZx!o=WzG~-=v7f_x9Qa*5b$9#BxT%_jbAF2jyU%H8 z%z&{Gzsp#tIjj2e=G=z}xcllEKDIA1-0~XEjAA?YYd7Zn@8Ny~{v7NL6oH`t z!NCqRZ#K8-?AwvxH~9FmogH(MBsnUkp?1>%1vvP@eTvRR&1su3APS}g)rZA`G+Z?1 z=D$JU`5r>D81ZbQcM2fi#-TMqAT9jwRpM{$cAbI-(w=KO1)zA2f3}Fz{xu`*&)52D z$ZwBZqkh2Be*}T&c)Hg2F3$>T^q`4tsP)m>^5J2ZrJ2Q4;t966i0hLXB8{X=HA8}6+Y z2Ykp*JY!}l!^qhYC1wsIqq8HZ^9r+bj}tF{NO}ZgvKQ-_a!xVd3lHN=EnLH1$gc+# zbCygi<}CRVr(r0-60m`_=Jv{pS@#iSLT^W)#dP6gzq6-CkU?Q*S=W(dOmR3pb7x)$ z{$MZv7Q?t2<8PxYMc~J9=vEOpzixvlVG{x=h|t0{%2>~d({psUHycY*m^uB5us|cy-p$TvmHAnNMeenX2;DRq;KW`v-cWr39J+o<5SP9`k5x zJgc1npUhaoJ(Z|$KG4TH2fa1-XV1=n18{XFg-1=j;J*lEkbLsS;G%-o`Y9N#7 zYdjmv%@EM0{y@`wHZF~HwP*pp+CZx5eqH3(YVobAPTktjNUZc2=))Um$2=8@V-{*! zf4UU3x|ATYBHvBg1a`O?pNHbvEwjii$F=5{V4~?6C0e4SN|z)^9zR7C z>!VSuw#T!bR{^-QW|K@h9851KwRC8SdSHx?)|9XV%SjO{pF=L8btS5N!3Z*)4eC!T z=tz*vrfH;xz15edus3?r9NOGpJuqvCIqYXd_pN|HfuFaO_$SOIHPpAg3!5cn9NI%>r@{ZH)JSvVgb= z-42lm&Ta$yVjbt4JrwVsvWPrM>C=!H@~q!d*oya{xP)WNmXdsURad2Fuw6@ukG@l? zk_;bHt|xgg?mzE(as@#_4)zfQds``A$$OeSeXDikie=D|zi5d6C=frz5%23CeIwZv zN7KqUgclCG>!C39>NZ0}BAozm=e*DF4`!RLi<3Bdd2 zKBvpm?33!)6Dqmh6HBUK;aQdQ8m^dm`IQ5;B>`Dh7FuiiCg4(5hQ}ud-B4!enw!gT z>!_s5%Akm)tjCQcK^-ut2V1_DbnTXhikP1+rFVEr^sO?nSFTt`9-~Lf#O5NQ{1;{Z z+ZY_t=r14%d!<_pvXgg`4K%r2Y%T-DAm3a*FXNjFSmcqsfsyo&YkjSZJ$yIGNh%2h zfm?~WzBO!cFM1grTF%#;nsO1;H}{Zbbb7f6Y6R*}D`&5+CqL3TAP6yy)y9(VCD+o$ zT1=D0AdhKEIgbep@|d83aYZtFpC-INF1&Boyx+HpTu)!tyw{=8z2)qh&E$LfzVLpD zHumTH$kp_)=6$vp@m3&$kY7P3T>O{ zYHOHPH*cP8&TRcwCsZa=iA#e8|Cd{FQGoHnZDbIw!SQmw1;P;9Mz-PZ;o3Q_Y99w+O_UTzcLfn&!~Xae0+;eTNVNh9Q4oPc-kpUSsx zzy$U{qEC<&cYvzwq zvu8!k<~|KIyP3%k1!}g;&TF>R&UZe)!qk@?Mv`Kw~Mq;+PzZ8lirnlKZCIye<4rd z97pOOQIPsrAXT=PWYKD{h36-4B}d6sDNy?NUb30cNtJxJ8eb_88UV705C}y<=nH|+ zB8UqP2-j7bdPyL({uPqQl3p<#5bgtEeN(Ne6iv0N($G}bRYq&7ZxZ~wUL~o7?$Ti5 zN2r$tOfWX?b+Q}hI83K>Fqzk-UlQ2*H^?!1Sa0XJumfY3eXtm$$Br3OFGF0v+DO%+!Eo|NaSfO8qXz{$}I!H#)w*`DK_QXLz z6J9xdiUxSqKgs)qeyM5jQhy^fzLfm8eMYA8Nv`6Kg6vruvfDogWHV)fY?{oG?JWyr zXCH!lD(aLuvXU&2%?4RS7KEZ8J3=6Pk<5{uDu+eZeZ;hCECo3|sPkk5wVKEVOsC4x zFr8rWpZE%%F3^oKZ?CDkw%c}`ETWIgtmJDljqa4;v?8&mzJ}Z2M`d_ilCSRDl4QM5 z!+H8Q?Ih_2qWsX^ev<5q)SI@!U| zn}trD4u9G&q?N8+PP1sE&g?8<7KY%^I4v;67@;HRqTpO_O79HJ@n}{Cr~1dyzA(kX zX^EpJ>3#5HLr|2J@pLDu)F#k-@s$HGTf`z33RB$kwRV2c0wKNzA>u;uR|jwB7ahEv zx3*YmJpIhUyZN9)bn_b^irxI81A0okAAuh{!h2+shnqAHd%A;%UQXfROegoy-6;sO z>ftn;7KBp%y1U4oz@!&Nv<7{@j$?;}-U7Dt(nc1EE5< z^CG`h}yXggrfbSKIZnEP4Yc9ocHpfFXU)MVKpfJ5__z>& zctH_;v|HhQ^qhiyRKzwG(T(&Yfx`zH4ljZzw$XDKNz_jLTJvycF?i_e5+1BB?jhbK zJY3L^-a`vr9BG?NAl)5A(L=l|mWQ7#{@x|@*#tTgepL@1Cj8qD44>cv>dMStNpDIY z>B0pc7C~ayJ?k3j5`99fd{GHY$oZ_{FXIdf8czKQG|$$+FuA-_zgh zp(*~8F1mu)>f|O@qpPXjSr2aox@2E{v%}paH#Pa1+-^r*v+M`iFA4l)P}C6IY`c$6 zitX4|MbFM_keZttWS2vdlLX{Q5s!d z7yM9Jg9jpLsB5Ti@^b9;#j2~XQ|g^wZv*`FpHk;+tXJSW+x5PtrUsAFSl`qbHoJy8 zXM@A-XmEPmPQ_a<`x=_%I`|ni#pA1Mlp5=`>|zGPvx^x4&u+|UnqzlL(wG|f)zpH8 z3(IWrMefnqh;e>rN} zYW|-&>ggulPJ{jSDi{P*3y2igDmmCai|H`B!o~i%n4UXBg}uJ5^*MM;xvljEqH}bu3N2m1@|7S zme9WvTIPnMl|4SSwZEIywb3Ee=Y|tpE*rOno=I_R3oT>z8)*Mt#h?cXzXRWxhe!AQ z;4ijwDcwfT3s{(-S!mE%z%k82VqEK3H#@eBW(G`USWTuD1x#J1nYvYH3dbUvnx1Gf zwKZUBi)QMNI#W0n(bWA(CR6(Yre4=feXKKuV-Zaq>S{1`e$v_$c)o%E*z-5g3H1Ab z<&&Cat0x3LjzzRw(cNHq8!hl?bBcWb5|(V4=rh^7YjG?{uaVCpZLsdsdya4e#! zn|hf{9SxZJw`S^RohclPXzJAzlc{vCR>3}AQNdzws2Ol9qNyHzOr{10Obygbjn$dL zv52P5OEsBl4Vbz_Gj)y56plqSb$6P{lo~L#QZuz#X9~w6n))Q&Wa^oKsXuF`UeTGt zv52OM;O8w2%hzWCQwKFu-{?%?SVU7Z#ZQQYR>EYTR>5xYiBaTWwl7pc9E)h`G4aC* zAyb}!Dfk&xZfdB`6plqS^^N#8ddSp_fT@c#Q?qrZa4e!JFMJWsfK^+-)J>WxrZa_O z5lt<$nM^$qF!i`*YM0Iwjzu)JM||HYl;DQ}Q~%IR9oCt`v52Oug{G+DtF#Kj!*LFK zuc}Z5aV(;#(eOz`16CCQQ>B`zYMm(@i)d<<_+)4(!N~zr6E#zfI#W0nFlC1w7S0s$ zvu4h2S~KRGxLYmr=FGpMp=nJ^34Y#0+rit4wNTlcTWAAa9I(Ei%K!By+Jn&BbmkXu z^G?=$AMI)XB0juD(>wlO#&aZu`E3F74_2|W?x){Uzs@?0LGVh|{Z*l`uTAKblRv=6 z3g8qXoct}|}l>Ye-;aB`}OHEyM^(WL57bHG>!Cvlce pWfE`EWl~hFbzpw=*5+-LP>0S*el>UE(!+Ir=bTKjtb2r>`+x5-v>gBd diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 42faebda688d600cad4daa967b107101c084f47b..a884bbc40224b3305da2cee1d0f7c7ccc3cd3262 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213VL?`EcD{L0vA$`tMM{!!TB4<4vVo<6Nm`0QYH~`NVRE985fGbL SB&DXLm|B>pZO&#ib^-vfP84eZ delta 64 zcmbQ&&N#1~af213p+!oOQG9M{zP^QNvQeU$p`oFLsim2@VPbNkxq)d~Vv31Ds;Q-g Sxv8NMP=!Ha(&lVNVreJQcW!_ X%uNlAfGP|UlbWA$Zhy+jc+e04BKQ_o diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 5461b94d379674e1d17c9308bc337aaeca712e80..468214b539f881c387402788131e1bf1886cf905 100644 GIT binary patch delta 98815 zcmafccbrwl`Tlpyy-SC6ciCmRz3tr#EVmc+E3Qh5M#ZSH%L*#R0u~fC3SW)J5(7~g zjVKW86)cP~7Kla@8xT!279!CYTcjAf;_rFiIWyazJTfpfZ_bHxPcNKt=J?!<;>;5=C-s$5Gm@ob_N1A~6KBjkDK(=noyK3b zc*2P@XXc89lP>;X;AI~StixYD{u=Pth(8zp-1uw4-vInknnCy*jK3lH8;ZYS_#2MD z5%_Dy-){J8!Cx!>+VD3Lf9?3|z~3nRb>eTd{9vGGuYLTvRQ{xVGToP&*;mS@a_JMY zrQ8W8os=w<@|hE7%n+X(=DGO)n`p`5o{@E9Mf1U)7O}|V9Vs@!Aou#QXX$`IGCSj> zQsKmOapsI%_QcYO#lD%P6LK^9X6E`*C*`wAvF$L=|NVbc$)$&To;#?nDEeOa_!^42 zlBnwn&KB?8=4r8vZWw!tMd7>M6DT*y8Mk{*s;@5=#H!Cdts)>jO^uXRY&h0CQH;OK z(^`hP6wirwd4e_U@{YSa-_+Fr#2@eR1Zvo2)4iTfcS9+c5u1m4+r`TD9=E%c%J(Ew zVpW~*BysP9p51E0_pJALU72K=YXe+G>h3^`-2EZXVfE~&Ww{!&gzmUKFj+kQl&9J9 zHE$6!g?LAM&bpbDmQ_QEu zrf2-KN#uyeY~BI73GB&=yVv7qbJ&&B;urlbvTg$u64v{nr%h}h;dN=J-go^INn%SG z+N3Bmq|c{vGoB9GNl!yyZAa+y_V0M>GbFH-6&oJZ0!x{s2p*yZ=2H$3KUyZ)lg*}t}BW44|+yX zHEhVD3i;oQ%n>Mms{?2Pkm^Ym#9pscwN6*K)cq&YDo^>h=co1XS+dSElB*!It^FV} zMLlM<fVN+D}UkC`l7UwGPVz>w|r z1tL_Do|&%w0-|ihINb6TLR8D)tFJsm(I=vJK%eMo$QIJec6HAo9WAbOM%$ZU&-Y{s zq#{tmF5Bw7v(N>Ch6K1(avaUqAUG&4G#Q3FSXNzH31gjjSCjmOXoJjS0Tf{M0@34Ln$fa5D$@L0Uy4X?d zc-c2mOfPubY{+mf-p|`A?k#9eRaBLq{71q2ZCwqY?@QibwOQ`ByEp1?Oyx>BikQcp z%V2DlRDB*~xy848BO8M^DLhNEg4JfZu$RPe^2Kvd$1FO2&_Ya;IA}jjN4TMbqLA&T z&GOm(NQ|M=cJc2?I(H|F96Oo9R7mCXmY8fl(~}k({_CA3hG)Gl5;N45s!EWA7>Btj z$9{Qv#DS!SlPfifZ~f< zS3q~O;)Jf*;-RBZ*9_1^KuE-HJA3L=6IyQZ2k7mpyD%H#|YI%h`~@=vFFz3#?L z5uGwM4)k;w$!zFI%ob;yg(w&R&$48pC!G@ao`oNy$}B%S3sGo*T`Zd89gU6$iN%id zyC;gL&%rZC18$4uyL0f^s4&WX&&BUwX%#ch^9C!8@{aTH+c%UlS+V&nF9zG$R7yOtMSw>0&Z^E1e{6xdgRP`4FV@ zfrOyLY*RJ=nxBT6N~aH!3@#9{*vS`MOV7eoGL_4Tt*?7W4#_0P22#09vY18iSN#fV z5RTp489T{PXOa?y#qWd%*|3;)J>v7*8@-3uTUo4n1y5ok7bAX)v5XGU5KTaMlghj# zpfTVClp}L)zuEgyorBZ(K&L5vsBG{#3Kl2wOu}W zxA%iOaoMA$%w=9rJZehgw9CkSsOzq5vY09pi3xSz;j;M^>M`?qJZnjzE+IWZ)~>@8-kdk^ zurjcg2e=2_#jS6k|LO;n|9OMMM$9T~#5w;E-(>OF77QNPO-0RO`)msa4^?Kl$3Hk| znx`pkB|mzr&fLi&S8k=cm@46EOM7`^HQS{x@RiQsTwi+HBVH>|%D z@``#N4QI(;=~L9r?}sLeBV9fWXEoHMaxIDZyZKthZ7xl!l&cKoYc3xIR{MO}V%i+FIEkMp5?!(*)rfkKu z-F%}o8TT8--FzbrVwj*MTxFGVHy`FzG>u98YO60)WtE;bXsE}4cKy*lFPa#70G?b$ z>027}X$xo~fF@Q^_JD0x>3LH12#@cGdg4h<@{M+JYBimTlB2UBB0}624@!<+Mq3*w zTc)|q@B2@krqPK}aw}7!uoDjs`G#R!TgZtGD11F8)s`g3%@J4Se65)5)OL3&Tj-(Z za~waGHd5kbZd|L}z1w#rCW8y2x8&<|r#Y>9*Zz8puU!L83do7kB_C!?!OiI#U{*9& zj`e+lsb6I_sh9Wo!rEx3-PuFMPABmqiekG`Mf76yPI@wxe53)~44~!2eHegdbovIE z#j0h|78%T==$t%wg0Iu!!Mo^0fugrrE(B>N6h30o+dOBKP z-HlnKJQu$qlg)|o^8&NQ1^ZAHwajjqdoUA@!ncYS_VEoj2s`W;iU(!$zEpnl;0%ap z(KE5h;*mp8dW>8xz{ONz$05G3!)nu}2sML>R!$KvE2zgi@(2ShC@n`V-Qi zd35rl4nvLAMmy6rhmnLNmNQU)e2oPf6Y_iXkB&hE%I&AjMvj@1Ho7QrQf@rPH@luw zq8OtU14@0AmC`moc?y1X0ZMJz zQMyjdJs`Q7CqH|kuiXJ@rnL)wk!rL2dLas5Z5Q4POvaRf&iKR&e14im&X&Z|vwfb% zbP1DR!zYJki|?2F+T6LKf$+MN&tv-dz>9rR+rhHR8!q*W2_>yA9H7FTpRONg7_Dg*gtj2BdGE~*tZu02MeF1kP=8-d`%G;2`1Al39 z9E%$1N*VzAP(O0wpo@JWciy(MLn=3}MXp-nJE~qWH7`V5*nv9y$>Ow2eXZJwFii$M zQQO0&`tlmzwmKWo$)O`+TkYgCmidOe@!x{j-01HR)89hVDB#(ZjNxS%!D%nY+`xLU zUPn?~`Bb&vh6E<}ufGX$*m3DrYMZ4ZsMz|X?se)*}3*(1U9`8<=Q)=|j65H0HWoJ^A*ceGYNu^m{bQe`KN*r8+ zXfTm_!JY6dT8VNXNayj(dwnsJ-ZI|)w|h~mG>J~R{V|iHgFyDKp$3viJD{>-AuN*@ zeRp7m8IROL-z4#) zM|~q}q7V?N&pP~U%C{ax3~D+-OT-D-K2sj&NTA;(HBDG)N%oYAj!@*&nM#mjQEiu} zKFz_PK70+vpNdO$wur{41|lNF^N{ zqol;v-=Z&Dza4#qfECh@X0#LpfflG4iuB$vT#e8d%Z-997E#F{FeHSZJKw8LQ$NY0KBZ9L+E%JnqD2zzIb&$VP+3#QH znJl1cq~$?~$qS-l<;j`mcb`zOEEkyF3)&B2l^0cbZJw2nvnR%jV!vKYS=k0HyAP~%2HintVC z86a1F9vzpKLFrsP_%E7y+W&$Bcuv-Yy3CZ5nMAYuo+p z;_^W?Xk`6hKO__~syBD1k~|#dwPlFtFi4X^(&FQ0lwYUUR$15$<*zSfsE5G&l49X- z3~uwcYd|L#D13)Fw#`4R61n~AHoxI9$x;4jWlH%~yB|Z%LNbM#Sa*mYL$xF}o6MgR z<)5D_v__f;=}B?f!w$RhsM{HAk$d_5N78CIxhy`+kGXJmQ8fw@+8mgn(<;!l8b=4` zbs_&Jv?{JSjUVLbVo+YT%ett4gu6bUT6T!v>rNN4w8DpJp4sB&G5(R39TT)AUda^=Pw9NJhabNSxiDs^5_?jCjNQR? z)p$SJdS&_*Da6AvIud`8Lh&20y3Fxt$mFtOd@M0XEFa@#Mj6ELp!_jo<$Rgv;yqD#V|QCTH>dnzT^i!I(|@uT0*@gb z*C%g7CY=#=Z+K@@`3H%cCZhRh%nht3n--fVQe!A{_#7SW*hwUS?8uGSW6&VYEs22RAqrf9wSxglv1WUsC z0{!GDGJf*%^z>_WPUqho0E#xckrJz)d26c;|9Nn03ZD|;`CwTKsvhbG%xpTz=p$loTL zPo=U`YGmMP1P$h65Az>wr6r@-_p(^C=s6q#Py}pT9P+oyS@WpS+FK?3%@HOiJK@V` zQ1^mYrn<4{eup3L$9gKJCGn;zDKX>&6V!GXF?-k-Qwp*O&Xd(8-k9z|tzG|ICk9CvC_48H$t<({J#HsyH~; z=Pu%IrjSxqCR4(z)6(Twmw|$jSZc<86h@i|>A^(Ay$cb*YP;NaDLr&4If_5Zt&$5K z=qUxthd{&i-R0EPST5Rn`=l%I*sZi$5~@k$+NB+Asp+)Ouc3Hgh|BT7{2g&>J);bu$)F|d=8UW`8KNHxs#2Orr$S(wrMRLd$QR7UUZztt@IDqDBgSs#YE+!=*1pgQH{vAR-*5r z^v(bFw~FM8sHBRK=NMKz?jI<2U#-MJMcl2=CuC& zR@{b~h$c+(&<&M}w7Hny)qi}izoQa>GV~T004WFbXn39EO~LQp>p!+$tlHskV_E2v zu+~l+-|t_IQQnH@{6iYa&radC@`9{L1;ozGy2o1o&bn$JNb0h!cJkXE@3rli@(c>MM-$`A0cM81`B*aw(>HkA@v;EIN}0yMq)b z>FE!Yp(i*>4sPQIO_&(tGFFkwU#_P%RVaxK_n;Cy@v^_EK8IJ}_aaIgwu(71(9kYw z3RX=-{^403(3V8+8h_ieo%Bjw0^gb*|5SlW*rvQRh&K>L2x)j_vb{8L`>5w>Tw4tY z5>=Z_Uh*PI!W;V1wtyECl-OC!%YL&&>J<#CEdZM{2`GuvUcsoW!YF_D3iWZc^oE}d za}tV#M}t?siouUY49l~x(nH!xudTO_cnuw#wzgS0&OU4Wna5r`s|kP2S54qTnKar{ zp8q;TV33Gcquv1lJmK@$e8e*o@vZ(28^BvJcCDiLCvWvfZL>cdhngE1gs<2qYM?UZgH6S3m0%0#Ov8h2W#B?Y}4bz4=&J2R0wIMlVCp8=gr*VQP zt00wpa^ZgworVm0o!)Q!n61Zq;No8e=ZM%h7%plvHtv@&mnUX^gQ`(slxw~rDVWJ$ z^)7~8lv40MluLH`M`^PrSij5PRbi8ZzNcba{yJe#T_9Frljqb0LU_BtQ<3TsW(%<* zki^Q!e=unp{|1jtIx18Fp7;%o^Q!D}&42&~xRhLl8C+uXi=oK^rS7mC2(fe7<&V~| z%Rxf|80TstlYD$#K?B}4G5-Pja+%GUs^L(v9hNziiv#D5nHr`!xA(TMdY3eiGgIC7|A>>|Zl~0EPr_s+@64Ukxp!pHWj(zb^ zSwA5#3d0bdVIhbnSHUB8O$c;3?V4XkVu1#mNhhDTPasw^`E_v$44y3_cx9ktV2-yI z(#Fd*7h^vPMo{=zPZ!geEuNRJ8T2N#2+;qyo1m#GBtkG8|^q4_Xpij12*! zeoD2C9jw|0r0!8H%|Qd+)(xVw843*!vx92kQB>8c94>;2+72HcgSa#nG7z%kFcJc- zn33ge87w4cuqK7&DIhUdwOw}1q-bz@=)m#UlLIc}6xoQokiv!xW}nyZ3e6ELuV4VQyp*d+V0c+y1?V6bXHn?N$&D{7?B935Ifx>ywro2r;KPI& zrmQgqKzpli|5>0@1DJOspd{Y^S)i-ZDDxLm^ol8**)wI=RNSBjFGhnZ#|`6;7Nb?w z#^kca6uR1=cy9r*p(DJIB-{?DyM?Er9m7`9+%^W7V=_MsDu3Bt0{K zL)Dnl+8RYdu|3OxYH)~oCQ|AIXi{qB6=T}u%$TDhE(aS zKn?TLHwJcKPkcGE@l`S_P~)4snfe)=n#L^F12`#LQr!$qV7+on0IOOWaWj$;ZMULg zR9fYXTY1!k*PI<20@!cIEPO<}cn1xbEI^Z-a|ex;%8l}=J9wB>ZWSNgMI)qgqs-n- zeMb^wRw^~#yXj?g1trmp+U}X8g2S{^en6UsZPTrNl2-WtRIsLYne8kinYhXd2BW z^3oAhjdJA;)}pX;R8V#rQqly; zw7-L<(khp{K(RqujB-8?jIIXb?$lw=2?P|Yneb9}aAhb7$gMo5))z=N_>=7;0Nd9k^VgM_r)zILu+C0PGqAsm6c^h=pOupzJ)V|XtobIr+xUkO^Q}%ou1X6~I zvF`!$WZ>_0|ckaEQfta;il|yE1f$un!ma4s609m!3}%pfU_QchL=G#p$1dtqfr=K9~IBr_@XU zid85%+c&<9H;XkRf}M?+s!?{$wE1)NVA^PtjQfJxhPLa(eJw#un`o<@`sS~=^ToP` zR^f7EH6nwWw)fAlg*EwUpxu?tI`Jlj7fDL20&65p^gR%1dHBsBw7^lUL0!|F&40k; z=(V2*Ipj+2wn@R537=$7XXsYQg!P?31bqAa2Br=wKcH9#1&>6=Zt|+j= zf;%8IGJp{)C^6e^d2mQR8X7!?jvj+-?ZY&9XEHk~2C>Olhp{`!_HPdEpo7O2neD>S zF?OfRV=X~69vm6N3ML*i?qnJ(09I^{?F@FJx+JLkQ4KQtKtOjIYpCEPD#AdS6 zlsq0#DwU^6VR)6weo(n+Vvu_9GIHapRQBh(V{(w@x-jQHe|Zom5HNFtWgB`;T6tg) zlU)|zW}qat9vH-2mt|~#Q5`p(a1d3@lvsa$(8E?fY1(*5&|?|3f8QyniWxLalah~# zt~i7$p|a|v4<8zgJ1IHgh{LGbW%3v^Q+a8Q`1rxtmx02La^;NOoz7wI0ekQcL{qZO zlzj2)o>qC_G1N&TxmdDaa5N5q(o6*(rbL-LG2pTg%|peut%l~l}`X!QSXpni>ODlo!uNMbSu;LNKYc05zr3 zDvwzZ#H=WpQO7Z8Q8YZx-}}% z9`f}l$dYxz4l(cPU?W}ck;~BmX*$jYDRdi-Gr<5WL7oJ~DnM)$fVWt>5w9AGM$i$mG7IQ@;0O!JoDEa8znPOqKfSQ+fDaL4coo#0|z&>rkEV_UJ3WijpZC(=}v{K)5Y_DYgYE}tVwnIcvojU<#ghc$KU{kils zI-F8@3dE9Aq{RhK2l3)tj^ZZ)s@|i&*-XM1SFs|5U!)<+V|fyS_Ck54#ke%L%Ra*JyB7MlkAh=s0(G=axb!iC z$&04JAt9U@10Qx+(I8^kwjh?zF)2&{wvr>Gy|x9%RhXD$#WqB-0(fXgaBR6rB5mAV zkJ&W}oK=20#JcKXOc|j3SZt@sGeWJX0qw!8``EiXY*prt{w4Ja5@%7@kl^b zQ6a;5N%G{K6wrZ}U=Ta-CWRM8?>5xT3b2tt!PHND8~lv++tzZGJ5WXYcg=iH;mYN( zW!4TCRzz@4bT3P;D`#M(m*5@@PDyWnpgh?fIvuaEM6C5gzkP;;BGewSnm{^@5R8Cuc?LZeuKx%RCsf;-DOhShpuDt&q_U^c zf}2nCV%~%Rj&?sAY!iDA40T%MCJBnoxwBlwU5Uw$N0QufYVF5z`|;}=73y${3%?Bx zc41!LYKvAUgclk;W;uBG(1^-Z9@W`!sIH~(AAK-iR4C8u{J9$7pb2;qL4 zg9e5MWA+Sluc}cJ%p;o%!lC90l(uf5JZbTGIOG$@Zwpp=GV$n0=>0k_s!eQM&)YlX zt-!D$Mwe+xEQBhKGbWg(92aUA_fHO?v&^9H{^L*^ z_9b&JcX*)+V`svUM+}%Uu-9w5yE1aWyii&#j)s&(3mQ#eCZ4hOJ(BE&$2QkYE2>c zJsZ6QUGssKL$^26n96!bLb0*&DqD%6;PGm+yzBxLorqAI+m`(jU7sSej^LgV@+c<_ zo4g>RyEY{Ma}ks{IgJyR;0Xre$gMr#-KYg$~;60ZfwA^1UP?5fCUxt;Td43oE$NG|>r zi74S#5#0x1gB*5kecutDBbGdlfkZl2hVBLw@7QJCcWN0bO<5}D;8*m&E<@+7!2R*N zC~uMaEHp{nd;>Z+c5@(a-GHj5jW*35zX@T~sqLC(={ocPRsq3bCttIiS_n-vA~qhn zs){zQ@zlw@HPo-AG}fZ9vcZRdAdHVq8oJI3{%QH{Y6=y(a;Pj?o?cuIF_sJez?O@E z9*m}$%4wHBx}5^0sdNq)FH)aYo&3o=DNaQUT~_T1jU1ZhYY{OyTk64aVIERumxVCT zo7YK3l_jYRm&cJ3s~Ysam=^Q)>>epw)>6EPW&S$UMwNv~9T%P?Zn^=#oXUZ)CY?P? zwCywfg-4>u=|JWh>Bp1-^muxCR3>75AHI;E; zs=vL#eS}4293aBvUGA{|78foJteOxm*JlFv@no=<1=l6ry3IVTg@3;d*rJyWlu6WerTeIV6l30cKR{*hifRwAJNJ0z+!6 zs|MvhBf#NDI9 zcqyu|%5O%IAeghN_E|iZmriJGA7^OB%yCmfH&B)rZ{ zbIHH?DNZ(pW(<0PzhE%#T>5@bk9fTn@#eg1N3_COSaE%M2f57emRJ~bY^bfplAOf-Q zIbzG+_|?$fEsQ!(EMlZcl(!PZgg#ax_|0f)mXxtust|@ULin`^%CG`Qd<5vcQi-r% zoL)d3H;{wv{sKudh$#dll@-FyiVG3hJ&X&-i^U{%F+&$RQJfXV0Cuj}w09U!RSlpI zMX!hTq2^wM+?eYz|Cst2_QKBZg_s7|Me}jtPBL#;h)uA?{lZ>jH5?1~3u74LNXrzj z?gs_NY!YvqgnC|;_<+e2k8B2$cdFbNP^r^2FYO)17_|Z!)*BwN zoLK!ZM1%7*Gpxk6alwA!u@0kQcyAgtjS7a3CzUvVwM5iN{T zHep(GBYtmurb=T7AYpg}^`cJNc7z<=-v+wI;{Kzl0x6F|xK%7!8O948yU`xkNusnL zehSM~CosGSLU$$TAa6UK>Qgzn@kLBbnKZG(_lmyo*DmqkS;)PB!#JoSEVh_2L(*f; z4tpI~6SjfUOM+N+b~sVPE}xziKD1s;J~!;qsLmFbqA@KGLti*I?5j**xQ8!9P^|K3 zZw<=iDd7+6#MJZcB3C96m!EH!trC=Xo)(T`+B}uU6s}U6#{N?4wTac*7^(wdmfC8& z{PgVbJOmbGB3THxS%FoAMrQ?XNJ(Ztm^^-A*i}hv97$h)j<1~`j?um>tO1fbtpDIb zHNNx@+VGBuZB!P7*X9(O7PdK`9qz6L$k4^%`FJ|AgZ>@y=1yMf!HXz*ji*jwc%d)R zFDkFT6q^_-$c-x$+C{1)mQ9ya2-E2_cDpH&8O)>eu39D1hA_2@9Zi^URU)eaIc*6- zsL6Czm}n+9HF#1gEmxhw5G$4apz`r+5XVY(f zzy8U)!hLu$b9yTu+@r*N-29-;ryVt}Nug~_C1x{^xi9=Vp3-H^+7seTaWt##dCQvc zNcvh>M)dVWI>aK0u|B>s0Ev8i4N0U+1gqh36u@!>GZS#k$}N(D2q(;ezJjNZ;^R-} zutf4IgKk9Na2!`#HP4TJPcbuQi>D32s*(7q#}OwSlEyU(EtZga43+|i_~(cPPltWw zkQyy-93iL8M_^-w_m3Pc^z2Fnd#HU8?>&o3h^!Q%xw`*^>SwHm=kh;s zY;Qp3$qM{n3c2TBC`Rm#7-3RL@pBu4yjG_-B{0-b8SD>~cl?zi zW>}3=-M^@ZRHb#Y$>3`gHS}L5YS<;5!+-gbRK%?Xc@1hzm8HPE6`svlg12N=;);Q9 zO+Eh~6hwG)sA%qtJk>qfmdrseVpq6fwp2PX2kXE8Ng=KFg3K|t+2Jt#U)0JC31!CYaQM|us;sz|0{cJh%9_R=YO4n!aU%IWicy{j z)Rc(jB`^XmV`u;jO9A8y0w1iL=P+kuF;32#pL6f8dFuny~ru8;B7d;E~dpc)Afu|PkV{L&r4 zAdE?;MIundq`V6gihMR=vV)qSgN?j2CT9+cVB}@kv|T`wvjk;6Z=uj`F)|RrExMSP zO9hc@I*S(+9+Nx?rN$0EywG4k(in^+s;siBHG<*uUEzp_v4bO#(a=L4YAiB767d70Zc3cAVmp{6NHm_|u+CY^0_D zZ68O!ZVi;QIJ{7q(fXTr$D7Yd!N~M_3tF6t;9?Vkww;fgwMdEsF2N$R z8)?JfB83_vmhM5}!swh<9Cf&wMRJeGpjs&)GSD9=AKC*g%JS;lKZ5i2M61>wArhU0 z%}O}E6!3lSsYtLNOa>-IhB-O44-}Ra#K9+j+Z&;mnH(-{B6+CdIAp@lvBRcN!`1-Z z{>Ybo|7J=ALnv)l>G`Sk?G!{#AuNc~tB2Mf_mB8(#BDJRI3P0Cw$c}N1ryCW0I{+G zmm*qobYzSx!xn?Pa3-~z-=6mLDS4m6rXRx_Y$z~ z4lOj-?8F*?iN0~zHaq5UYFC7!YVMDA#hhCg;vf+8V9aX}!v{qe?;5+!C61(4Wh2I8 z?a^pew%zs^aSS!80w&J;t}vqTQ55mye{shoi^5x@1I3Y>bg>7+G8R>i;m${_N8p38 z@~9aUBsgN_ku?$J-v5ePn#fHdhK@DacAM&%lPFBp4lJpb!-Uz8gbIVDBvduJJ_xrz zyoRq9zjHc5WbAk`%=Mrybj?FWtF+36^CB1mvRMfrmb(4CILY|S2u|x44TQ@<6w!5O zqMjKuZU=$KlCfi2<>zN2DmG#qhA+@LQx@7Rk6S=ZrI^G#`%)3{*5i2geRqaW5$~QJ zp>MEgJIauvXa9i}l;@~!XV0>ejsh7dHsE*AGjFrRT#1iRW1gnPq35{I6NCP+Ru zrs<#pgPAhOP(~Ib6xEcySlAQ31(DJH`Q3CeMI@8O`yVO7-KGWgN!7itK-)KV+{aL$ zkEudYH+HdB+U2WPP)yjIx+BtAhYLk7z{O_>2wpgdoUEDzIue@1VVC<}jo+agkG!dvQI;#9L8%;uwDiDkZGP z)4kRxd#g=CkVS&xk9DSIj0)SdPM)}%>J8mG#6P|Zoq*o{t_x2C zcniihCcqp7^mWDzxl0d9w8^s`pkJTO^hQ^$dhh9st7Tgcs1j zZ8HwBV~v6i$*g`dvTwa;+i1K}tx-JCKa4bDGK5m`w$d9n;vu5k4L*QzBHywR3M){{ zoAVg{ROIh?DWJ*0$?=On(%7cNmo-2$W-^oLcll0imTV(5v4p38 zT4}cJ%7gc*|K$ZW45eEuOm3JYXGgVZj}{q1G_HNIxlJ-II+Ag$gFl=^9{U#cj^+8-1kheq#Ogfc-~K_b9W;)`#(b*Z1zPY{ zC#P)rHjbSez_A(<*;Q(R4Zl-jd&65_#2! zcw@9mUxUHc-!FsfKRnLOWAMT9X=TWo5q;!S8t7_-Kkb8O)_0$x$2L~HesplmxegC_avO{0kcG5}!$cAB7X7#oRAw&|3zgNgDR&zn~th9JihS^_4D@VRkz2 z_cc{<3_m%r;EMR z+Y02W!7wTTAh$&bp=vCw%neiwruw=u3WB(-f~#TaSmV{r z(V%U{Glx3omz$$Kwvp0upPbt*`Xxrhn!`#wtySl%i8=8Dt)vA@thkEtfru3>ENkJA zv?o4W{B$&w7}Qb%vE80!Fy=hnlcZL+tUgF&>Y=$$V15gTUXz7publm?R$ECc-{@#;qt4=+MVP0YhXdK(eNo8_h7XxAmK8JiRrNyo7`uFAUsA#j^RJAy zE;}vSh-*&aq%QowW)j*;8ERa`Ym*S5+L%mCCQ-FParjhS7M-ObmA6lgcGDLy#NPWx zy>y7XsE!;!mmgEw7JwfKZ^n27hAf=c(`L6a%g+yvo{bBnFu1WYa9N0|aMw*j+{wwt z4IxC0tH3nttV5%N%2|yU6k+#78Kd_4*WnPv7lJe&8^yYB5jW{tPbt=vquWOa!t516 zmL_Ay#1(c)@N;U?any#89y?T3tY{{U`M4pmE^@SSL(00!F$eP_eblOId$P8EJ##ao z_+$o-dr)2UVAd61GQ+k2y5ZpUInkg&Fv&&;zDYYb+GDJk@5NO$yxZgFbE7ly&V#;f zZL|&55KB#pi@fP?Xi)1qJD4ajCRPD`(hhQ;l&;_kyGs{34nipYSHz(l+*BCIeeH$qJ|mJAzl5I(dF_0SL+7er<(ZkVJJ6P3du zbputuB%a|U1vjat%~xFhwgPQRBe)WkkgV{oM4PI#%K0m)%AsOzC`H@Eg!7}ALxqFt z*bi8Z2Ia&I+0xZ$QMC~H&T6VWVXBm#m)_~Io zn4ywJwPmQ~%^zX@*F1KS?M2@j)3DqkT7gADtu+P#k^)L9G;!8>s-D%suasSqMI&~;_boMopSIt9tk_qCPI6#wNGs05oj$;ezZ-Eh-rHB2^!lI z`_WI0D9t>N6AshTDkAo}B^4L$+5V*oFF8@sDP4t>YzWy22QZ#VY43!$(rGpJ2 z^g%(W@zV&?31e`Fjh2}V$>HH=El?)D<98MEWIg0WpB5xJ0gIALqS>H_hrpJD&gJ3d zF?vtYJlafpbmmSPIjSMnh4UK45*~0SKDcNYrw*+x8LX)y0Y3ds39?F41&B|;!;1n$G4j33Wy*^_k|SJ z@zjgv(Ds<$fuTHv;aCQAx{Fm#^1Vpx%zDeg=%kf8e88DLEvHl}KZ6@qrLqFG$|H}6 zqh?l88&@T=AJ@MoVtDr9yF}D=`YvJiRb%_}Yb(akl_WC|)4Ny9+knq_ zi{K%Cob-Y!H@Y*8xPj2_L&zFek-m3#429305W}Zkpmyc#n1{X+4n^F;peU&AngmKP z1XO7`OQzVq59*&b>!c|BIBm0&o;oo$%q`yDD>l%Da}V?iadpgFj}2w~4ap@Z#YR?w zIP1rskv#H%Shx}+NB#)p;|Ii!taqYY7sSwCu&Zidzc?s{uO{31QUZKcU2(s7P%Kgj z@;wSnKK|g?Cv}yu@!kKB@^TTe?R(E5)Q2Q7#^{|8!{v#yCiCxtB6lf;Zzq*Uu--x7O)XF zBPB8NEaYs`9p;{b7Daopr4mxF=1|Ll9+T3x_fd_n4y9U3}vhAa`exs@2av3sK79`$}X?J41E?|&$#2v z*rBjd#ZeHl(UkEWJ9GtagXrqKa3u^fMFf) z`nl>xR5D}7{grf$WAmN(P3ij`j?|04@Zhr{%c+tvfB<3rnN$%Mw);#G4J$O40o_cP z7n4_@veoco);m{Fg)2w3;~!U{(v?G;Av?x?ON|Ftco$if3r~IOz^LLu7Y$c6L<0gk z5j1TbqF-f}C*4UEk5ikXTWnnUpiHwFTvI|CjaDhAN=&|X4-Z*uVFJo@QL6k7yB|YW zEY0GVMc3RhSXIXo?zgd)S4mz!I0es!hB#dF^44{+GicO`GqrYM8^9}eEr?AOjVmzd zs6gGED@PE$b-Aa7$@WKMO;xnok#+Xtc}-UC>?}fY zX%RuqMHreoQ$a;f4g0!(#s)cMkbo+yJZKxruSs-L zDt&d*O*^RUxG4}bvM4*gNrdBUSUU`U8T&;I^QJFR>Z;T-_7(l~Z0DbzNyO4Xe3EGV zHWsoGeAtBPfAlR{f=O>#<;~yH?_OyZFYMBpa_kg^^nXt!#|`7U1z;--jbrFnzx+#d zo;icj{4=n$K=FGV_6FF+<~PQ+%AdQt(3IJM^1#=>vuXoc1B!2XaOM^f%0J#=uGc)@ z4eUZgHaxUFhw_C2oiDMNcsSF76&a?wRCy0F*rld!pWhN#bsY2-uX&sBYuB} z6&L1U7w45-E%KEX62QsP<=`>dj)@3Gw`%{c$-?z5M#PG)5}%4#R6;iK0qvxyCh_x# zOaG29jv{UNq!CvBNLw*YPfEUj^{hZw$VS|ZTdZ%7

^#@Ue=-q{ikHgzJd{L2yrHfD{ z24JjM2^~CxYl{RE#ei&~2X8TWBFz$~OzFak*KA0tl>|XSH*0)pjRBYTPx}BL zM3FPPX3}_(cv0{Ue5#pw)kEsv`*)3U(ozaLXK3rHM4jB@Pwx7PrcyPx?Fp5!AM#u? z8`S{U9%3Q=!Y(hSic%T+8sdkz{rAXuT>*nMDWoJ;&g&X)tc_$H9OF>hYiKpQn|ooAuuRXFkM^@V3q=V%b)uzUe(pD{b~|9%1L2@UWt2BI3+ zkity*%7$?WvqMuqggyH$uFD~D?o;nD) za&2oB^KR^-YZ7zn(&hDMc8z0iTIqKt(b+?1*AFF-M=z&NqqZ{?tFraOF5kSF`a)#P zeIdR=@Bl_aDNNM!&Gxg!b+>i}DquImY4PT*sNUtC4S)pSD!SHyh~al)7*Y=60$s{AEe^jE&8!^5W$Bvt(K~s7MddZT#`U$kb%_k-aNXk`sV816@*$E z6_c}paWTJQhFlsOmw~v?UsDg1Jn$-mjW6`-QW;{0?-joz!PuILiI2&65>RY0ONk93 zxc`)%4+yT`m9L$E71ze(ru97fB4U#-wontZnlER?%Go5qGel+0iu(cOl&5*vRYq+* zS#N)ye|`ovndi>8*2i)BFO3bC+#@Y|u`6Wkxa@Y?%`3R%%2Xr+DA*a%230iviGu za%~H|kFKPj1W+@M4v5usmyf^CLo5O}e1zvU(W>5a`!}&R(&g9AgkuOs*@~rGy2d;0 zx;QfTF%PpepSBBVGo>IR4ajw$V4Q_-HsYKlRTq3>7Y8M<$%jU~r+o%l2BNRL0m_PX zpW$b%GRq;Kcb$bXH!)EK&`dnw{pd^0M37-heuZAmcxbb{=;iFL$>N16 z@lLK;xb($B4JW=yIo>uq*f#aV(T7*1UlES?)J#7ug`W+B7djlms?ecfJkC>8P!)7x zlxAUAA0rGqgp0_$$}B~Znh@Kk1>>~T##CrRlf;Wt3>9I93Oc&PlM~T&RX$Eo4&Ren zk0CTp5EJXyX~|yk46T0B`92mzmmp^8ookjj+8gg6$ALDE2~omv+^QJw!O<=4r|ojv zM5w~|U$Fmt3r2+_@ckN`5oS(aibj;e<*;@YS{#=6obDQzCr^dG+L+K9`}2K&e>5X} z*a9zvOYe`j4=$;1Akh`dG(|c~tUM%+6G0ju;=t45{X-BygAFv8I;nf$Pf#H(ct*Sv zn;D8~u5|R_@vv>j+bl9mi?uW2<8cca=cJSK@!Mw(M^&s&|Lzec^RncVkEEKI#^-aL zif{!OJr@f&Yqb6NI38Oy@qa^*3s>}6zLr|{&B|X+rw9TRy@$s~qg`9)Kp+P**V>K~ zYLrvo;c-k{Ya=GEVa!U`Op27YT1np_Ayr8)Jt;mG`|R)8Bf`Er^{z&qSr%LgG*qj%BcdBN3|W3E*9DB3*%{RwNf+9#tR`y19tLl zi{dG5btXS_G3uK;hi7d`2~uqc^8i^qZRbCS8n^O1^jdZTRjpKl5@|~I2g;SdK%Fz> zGte7ayxeC%S46u4YtocZma1WwzN=9EoNUGe;!GhNOmg+rsD-$92|IXAtZ=3h(`?O$ z46c+B-h-YB%EmiU)j_cLv`5FZ$l=QnFYIu~Td~2A{bXdM z+`JBP!8SsSYEa>@KM%vU>GVC`$9{{SGH(E^PZ#M1a}G(BS$dv;EJcH#3}XmRPFoHq ztDq3v_Xyr}UuRVvK5{Jc<8DE6x z!EWoV|B82uHMhl^aIZl*B+q}IG_aM*iDQsp!e;BK;+U8405t&43n{L?58??Ymr|!d z`PECLqS~o@GlE!UmKSa&5hxfpT`I~dl;t?Z0#uz4#yK1dOLrfz2 z@*I?*_4k9y*Iy%X?ArSQ5AtwO7P}%|_DvK=y%hJBky8rVRfQDz^3DhGq~>)3@`yJ{ zp`kPmP}tosoqTHx3C*KrI)&mJmFk^P3msr5v1B3%y%IuZsvk_2-XoFBtwgeqy6IMn zw1|}wixU#lwj0KIoRyRxkU&GH?LrHzK_&P6IF5_tx}U=BY4W+nvRugcQU;?pYk8${@?5FYl>cz$vrlIiKSZtz1=k z2_nw*pX1lG0gNc9EX?=w#_n(G92mwRmeZuKOhFtOvD2WYZj7pMzm-!Twx?sx>;Cv$ z@x@O3b|c1iH(_|I(xaA3YjCd^Gox<{yzN#$%A`#kJqK6Of-*dAK#sD z<2qy<5X8Du93ru5hc9NSc@ZVb2AdR^Cp|Q7)lRf_hm}tH#`VSd?i1@Z;pS2|vSLCU z;2qIDNoY+?mUmeSh@$Z`v69`vTDN=m*L5{nm9m;nm+skpRl|V)`JcM~p?@M6@%GB2 z_wGIz3$gg#ucfwxMG@>!qSuAp_w5eZ5C*dZl}Ky1m^TyEneHT0ej1c-?2F*>KBeA6 zyF0N(gX#D!;n7LmQG;j)0gVY}Ya}*7UK*1}PDb>qT_8~vpoYtqsniy6+ZZ}A3SUzi zUs|MbXX@bY%WK(tk3;0D)63nbb<UM-J_# z5w#)HfO!9KlRHP=Dy{tApLWyxP7>R7rme!Tr$ED=bPnfw`I-`OaCaD!!x|o9V7jLS ziZC3miOCy|qqfE1sy@^xro>GplLbpsl!V}RV+^jr21#k#L7Qd!3DmF*k+v&A)iiSX zOo~gcl*Z*oq(~PT6A9S8$HD0jv;hO`(TAe` z8VE&HnNg6c&2qu%h*7nj6;+$%H}gplF3H4D&>^UZP8n@t^Q%~wSa)uBu-_ElpNq)% z<1T-?kSd=-Rh+;}ACI3b@)w}$*$5WnRgM>3fT~w*mw&y0s$Ml9To;)FP!^*sB6TCs z&#zs4?a!`_&l)-B?gPb!3u9Ti@}lndaC9??U2e8q+#P^lJLQmDGARagrBo@zu5+m; zGnk6L9w-itrWcCWGkyR{>7nz)i#U%gT zRTRG@rrMPtRorw5GojYi9}k_2Cm7C`=@eF#Fg>15_Kt+{^SqkyaVKmLAv2 znM-dm^QI)kFsyyKPzuD3vJ1MCP5_IS7T;m1nK$#;wkGpWhwSd9YZ#BN07! z`%0`LV6h4;Sz@aJx$~B8-0uA3g?6#Z{FLGve&^gyA;k?ZxC0DQF_%)pav3%O(rJg} zedsc648I>?xX55tclWXv@Gz^!86h|p|8UMfY~ew>%SJDu8zg7eXYobln-yj z-{-MzOuNDdoi0kO5S#&+EQ}svRH&gedTh+Wx&Fy+%)M57v7nkB6aUbS`yUtG+l{Fd z%=_Yd%m^3GEn|Ba-*V5vvJu>nKpV}nMp~5@Ur4{|&)v8H^4Znh9{%l>KgUh^tFf}t zY2$|9=(I6aD(3gU*p15{-?*)NbOpchXT>#rZ`sJ>Wx5eqX~mWE>ei%B{)CEI#DiZU zSQ5+fwMnHvqdHXE<@Uev@R-soZJb`+dN}U|JRFn{VTS8>FQ5~ww#(CA=i#yDGU+F5 zGxEMNS0cVh*caUn4^Tn_n=dW#e$5wT6~JF0$|zfx2GP~s7R zcX@=XVbEcB6yETlr@InVzC3IH#188C746b5sD%+NPya)b*Xc>Hp@pzSCFr2t^E2xI zZCc|8b!Ek|^W@@e_@W#0m}z{VN~E$0d|WMq$MtE?;Z1z*E{u*0fZGmJDa>n?#KXJr za~V6pa|L+Zux`014oOR?zq(MwUWAw$Pfn2wv4m5V&gn|QxY zoY@HZRiI!&Rc5)xpBP7@VA>?B8c`A>mSik(wZn*+YWj?9LA=PT3p3^9qh7a`6cRB9hAZKb$?QZTUul%!8sVfdS-&;e&RW%7;^3^09hdN7 z<0%eAY&|C7MPH8l%kjot_h@34xG{!bqf~{F5LeRJ@r*zx$RBceGMku<-4Ar^>-YqA zKM=qlg@A@GV>g+cl1O9}znz?U_AMrMVc&zrW73lhE8_}>7j{ofbBSm7O$;4)-8uRd zf7QP{C2`8$iAynZEaGEDt2z?6f;Wu`4Yc5U60=EP2uH*W*rdP=g(~fE(stRkPvTq} z*AiRv^aQ?luGsk48Z<^V8-dzOKxVoYAn%@-80w@m9uTVYcQVQBlmzCHH}0Ll!dMCi z5G_e`Pn&h_b5U<1>cB9qOIThhvVF8&E;}fJA?*44p{WomQXh7=iRlTR1!BkMQxlWK zpo#tBBo0SPYWd2}pCmApy>DzH)K3aQLThI%S09GPg(`%7+~~VIMDm~nuCm6YBz73R zfzJ_aJ1`NgfN=>jV00&Y9E6Hh+x2tomu)+inj7JHD~!sGN4Do2g639@Z8#*6b(kAf zL5S^!>51=nqPT)>|HBfQ+8&`92`{Dt(pfriJO`DM4!@}#&nL64|JUBR2gq3cf4muX z5yg^Q7Ax$sGtZdWx$JHv$|aS{R!UUN%+BPNOP8-Gw^E{%O&nb%UC3=W)pQdoDI&_9 zVkxCklu}Cl-shap%zSqC$e+J|>W|j*e9rszIiK@+&hwmkp7WfC*)Wbpo(p^D`YY{J z6P>3Fm9c2nvEjM+im5EG)-qR-q*_*8g%d~WPDQFdLdKD5>d`mhIf+;0OGf457gon! zI7b9zhv+jDQTg$SDExYz??v|-bOSeGE~qpWiVnSz^MnHR#mz#`blfcbWlS!fU3^!B zV@;Wl4$nP54lD`aIy?3%Zb|?>gOKfnf&s_em5T=!Rr|)PA%O|im3`yYkh_zr*C*sQ zOcyglxp+eYpZ>tr9~qJ#L-oop8maSQ$1&)DNh4;;OQU#T3=*E)9oNLJx-a)uJ15G9 zjEl-%&+IBb7>8p{E2S;26cZlEwNiy~V{H2axz$dKojX2J7fy@~d@xr&QIzxavX9P4dU_f6)RFfbWY{`n;oOIn*KCHg4&Wa7i{%tr2y%_H3+rGaq!KE$5j2{9xbK*uV;>k-j z;un=P#?E;=_clAHANy8@Cc*0FFG9;Et+XVVh|SCP$8ja^=2owSONbC*ydn}77oEQ* zw;d9ckDpLTkd6(LPB9@36I_?%-Y@pQg~KmkF3@Euj%-r_JfFan4fSYs#zz=>X$Lwy zX;Dvm5gxv&k;Ln2Y1ivZb6u%62F>^cMUgx@Rlf&dxQ^__Q z>WRHrBti-bV*?JNhbhkJcXR6tH%_E+n7YP&x)c3X$tu|!?m}OyXi8xB9YTjQW9RRQ zS0q79$Oa#l9S;YGoNtsbpEVxs(xQ-G5KTxKe%LxTsL&gguVwR@H%@ zw_ZFB4kR0;iU${F^Dmm39F^laZ2TBFg#lIp zKDa8Ew^Y%l7%^m%i(9H-jiy+`#txjav@Pxu*EGzvQ43tEI8&@xIYnbtprGo$J&(s<__F|?sK*S^E(R)a7s&bdMrbd%x-qoipF#p6Uj9RRR-o{ zJG$6s&v3LNc06p10HvHISR)elI9|n_VpH`}`15le7}LL0B~kZEdKLU>^$VOb%LP8U zx+TKKP)SaYP_vKrwZ;LRwBU+R;70#Ud-<9+M%q zx0mdDS|Pn41yZ3`yhJS7%$A@bl)N}iS53Q#4Z2EpxFjv1Kr9LW6%>cBap2lIsnC&z zr4!@}6Sh^thyx4#n9Jrz~?C5}_ z3GRx?zBPHdqnoe>I+~~2LEbmefy-$MIj*#YD%MGQO(+M4(5bNc9M*uz zb~F~7dpR(u@!)d`{yA?UcZjuRMJryJmR1#NUPTk$n8uB1wG71iA?RPqYHRCgAm$ay zQHj(g0&QK8)tN(1@VDZb3h*XpGAcqpnQCT~fAVq@x*rILkTsp0_YWs`Eb? zV;=67;#Qzs0_gbxID250J1>A6da?k9=mT)Trx>eBqX-VeG_=Ao4h-Iv_SkY9sl=T> z5FZ0_4V0(Sge`%TF|z%PwsM>UqxQ-Q8J=0uZ9MWfGKJ2rO;`kme%T<*Z?Ojve!)Kz%ve(Y37c5;6L^TAYy zxAN{-<^$+(mG_HY)8k$xJx+hnwQp@0YEX3Cs z@>EQxGsdbt>cEX0=0hh-N%bR086wH0ErFFW8urH?obA9poD^b0B||l-&YLSwllZNO zyCR8$Q6{ZWuNRLn(a;sFvYoJ^lS-OXOe}F!ODUk`YQ>-X=gG^O#>*(QNi7(U__CN< z$4F$vXrjyv7)yecVP-6 z3X8Ixj>Z@gN{V`c2NC38{a0;}pUBe`1mH{Trt+ZFi+#HiDN3S}3Pj*FDn_q%{GKKr zT#PdxZrk7=t2uUR;X~R`h+6rYTc}xSZ7>}vvth?4ZF0qSz+4@?y zjg~^KjUQ$VDMW zSt>Xj25$W7#f-|<&cPyUozZs7I)}fqBzD<02Yv!JUGK=zMp+FUa+0SHxh3lzZIh;i zt3TE|0+n~iKHDjOl(%Q@fxl;ORER_OuU#3U_-;xNzKnyvB3ZyDBCgbVCH8q_>arZ#Mg3X**|5Pf}cOhplbhcrZbj_OmtJBZ+ zR*}9H>C1DS|KMgpf<)!TmzJ_7 zj_#__ll##lBuO=Ta&MIcXK!2C=t&Ee*NvXsofHglA|_GV%$bHE3oaccgPrjOk1=@z zPkXUSCUT4Iv%A`q89--ot=FxNT zLaeikvt_DPPGE82HML^_r#sb#4*?N)K)&;&E!7;CPAsH~r8-r0`nJ&7OupZjmycVm zYdSeIvDhchQJ-WE6-|3Nv$>@{< zy|#pb>Jclt%8A)D$^8gQ!w{6$B>3_gC$35OQRfk>J2|n=eE@R+X%VHT2Ecd1BvCL0 z#P;Gqdcq7*6;=Rl_%n^rQ88HfZW_cLDkK-ue(rbG?W zLdZ~ZKa-3I$$rp1Jz)Zr+pp6H2aTPk_75LKG^h#4zfzRRjATsN%=n)?)8I~i`I6>CMY08wR!on^QlGe8oNR%l zQAsy1ZGK*C>l7y@bv${KvjxYO3wh2_01<40Pd(v?u2dl5A<+hD+JjUlJ>2ww6L*B) z4pt06mPr5-tzZOvKOL#BT7ZwriWXyJzeS(NYY=4(aan0H#fh~z;wC)DmZm&0cnbP$ zVs{nn)-OI>{iy7=(tvl8Rg9XYVq7#8y*6n}z>ZHvuTAbx(!Q82J8jaEP}t_8(d zm!`@ys8mQ(0*?UD8mYTuS1!O{B>_s5M&-#Zhs1Wh;Kbav=)Fi|*1PCy7%QUY@;HE0-Tz{bZ77w4MJ+08SJ=^*6a}0mYB1| zi6L`hKbGi{2W7tadWjsiCibKJoFlF3$2Pwu&p~p(2u^pNFEOQuTlEmFN}X+zyAzbr zr8s%>(hAc5U3rp8>`s*a=M|(ru{-Yao7H-pEKjDWIvyw=zzGZ=(8JQX@-t5=0=zuN z&3Km!^L=r~QDLMQwN^a<>iv=IV%m-_cAglu2kFyd{cuSJmRcY|m*J%v8GY9V+2vB` z39*be)yTxrO)_k(9g1IUiLlXWEy z4_q!8>(f(gRn#d~ye6$&tDsYC_BglSE*Wx)HLg?lE%VxF4hvAg# zgc*}<6#AA!$Z?7dZ))H-;uI_{z2lIKH^m&6{`qa9RtaoUT6|az#tU$R8K1ak5zDE# z>Pww7Phm)&YR8Kum;-?Br$RQ0)xFM7jyi|fA`7g`8r; zcM&jkO0MC4?Q!Sdwo2rgc;?ZMw2gJ2&S~<)jpVVWrd_de((~@K8iVF3Jc706?5o%M> zmDc%HBuhOYe)?Ri4Kv_%e1-b%TuYANB`Q%~k*=vN14>%rf;%%3zAFmKGh`gNF^q*Z zWgN1$UOBr`jofE8vM_n0vJs)+S8^juj``zC*#ejaA!l~>Xe{H=Ch0CsG4;mdYo>!q4N1Hnas%KhKo0C8=>0VyjRY3XoKTn#%zF-a_0hk^$nrGZu)#d>#31 zG^FYR?J!vYw|r%RLYXh(CXJ+y#j-8@gw*?0gc_>eC`m?`w4+xkW-`L04eOc17VDgA z;fG{$cU+PTFKHvmCa2ZZF5JH~+hE`Ql9)U_+iTzPlCW*ezEu7#+mvlpdoCOACvU~Z zsO+xxlT_#g{?^I4+Fom+dT+Vf0$Hf~LXnY?)7B27QmUO$wy27on_m)Z)?`~Yr|9gp z>WMxZn-*4kNvdEd`84il<4dA*xucD^;cN?cS!5mqh4LJzI|x2Ysy~C4Z1tpBwmN<( zd049_jg85e`rh^B3-MNbHs;}YtTcPKg~HY$XP|xHLQ!-*Zn?_Z4M2hWvn{bY4+Z)y z6k9svjJ4e+W9TY3Cr@wFR_cnzqRf6T%3KOa0HcL-&$U|c2-Gnp15n>xOJ-QtQ60ln z|73=fwno~PTK!qN`qg5xs*k|)w(M#4g_M&Oa_959{?*jR{DmU;c6M7kO3Dgr87e$^ zS$5m%8(*@WH8{8D645Lp-iMO@aVV*_O&&@~+iB{yiK_9YtOoL0{!TWY)wHvG;%N0| zwM2P43+rOmXm+Q#xxgA>{|imKAlq;M11gtwwY~l#QTA%~71ckG>bi?;;^N<}hGJ4X ztA)MxB2n}+Sa)`@YRU3tA6xC_{Fr&RSk=Y4LN|GVFCWkRb!WwzUFfXp(fQL|<7bX! z0oE9D*Lc`Tqr5GN_15qy9s4DV)R9tcqpVQJMfym&ZjnCxKbAYMMhP4$)zn6x zMe0zo4@1et*}f*T*W~I2K?dgxK6`MR!EMph8>9*a)j8@gPO9Rl1&vy2%6PSsjI#*$Kz* zQxwH!S>o|U`hY=6RXHVVFD71Lbr2&uTluVV_Z ziH~SDt5prFyEYhl!OJR_w)WEC7wx)RX*S&WoMbh}H#(Zuu69Tk^1ZCn*&BryXJ4HD zt=fsZ`#6>D|DtI_+XedHlTJ2mqOr|i7Sk`Y`eRB?;z=)(c3HfJ$Wq_a)No|7h9c{7 zq+}SJB2Ts{(r}?|QnGUCM`S(5>m4%#O>5eQv3eYnM$}`{6;?^yFY<#G+`C$h#h@## zny0D3%epCIS6XXqA4quCto^MU*w%<+6Rbe&P*1C7hW!f^LI+JhC7tY!bs1>cYukUM z=4p_lcFq`KO*+^9x7yi841CpUknUC%UCFF%O|xt}Bp*}ca87^&H0Ts@#RQxXT#NNF z;#iFDwpjtuW}@Y?cVDcWR_h}vT^5U%Ct5Gq`z;nlldLXwY~vi$NS`D+V`t(d0R}&A z(#6D)nSQZ(bK5#%&SYzd?U6b6K>yHUk+IimsY0C=n{^jo5r`W`pYJ zx($XdTukSpBXg`a_7{|!oVr6x7TeCcV{p#URyEE#3#Fzl7Qvx8e*684O|A#>d#vhn)`d0fwU(&kO-x*jqw@FI zeT%Kq>h?^vQ#EK4`|m31Jo~S@CRK)(!}a@CL;EhO!uDhp(#7-}GtZCR`kJ-eX6qwb zykp_5pGTV3i1mwEb#1mGYERk~@E?sm{f708t;(1sHZl6a%qF7hJ65J`qAcLCjS-b+0F*+tUE%3Gaec#CcSBm6dT^LY9=Z7OwV-K zUW-$Due4msHt>>6Z?&6bn?#q)?&G@178Sp*v?BJsXoP#LOYOUsB(t_%>|bMLi>j-v zL-t>ly`I=SD>GpKSru~Hz7&Jrw;I{EFOf&edE%KLa5;%C5o><1x`2CfHMkcn)!gPw z6<5@m+p?i;X{>w=5@2tyj07!EC7kwFOI3s0GDYdfxTei`-^ygrqwiaH+apW$!5mtO zcdD&7#EomM*XmANYCG#TdCc5YMIAGDEfqz7qJQ5hND#Hs_n35+U;K~6T$s>FHsq0 z_jYx(O%Qc=<0v_~OdTb*6Qa&utCc)u*pDw0I7nKHW_zp`?e&&RI~^!>mdiuQY5xl} z^i11v8GSwR(EC?P%z;3=I7&!mi|b7AQTWk_07EJ%%w`M&8%;~9`#C`&sNH?u3fIqXCC|2%T<=` z@U2c=7cOU~u1@={v?>$O$ev!AlkC%UHEs9LDYs78pMy|d3D!y6yx8RjaH!Zkt9BXs2jlABQ^s3KRV)@rrT2;6{Yu1*W zeA|TB(XXw#_9`b(ZFTaQ&@Hot{h#IP&{0`EAx3{|HA)tE{#&c1J)@KtIQcDp^_*BP z>TI|A*;^(}N>o&mSx@~#9uwlH!>IoRO1}OY~3HxaEmzhMTUKp zu+t@0pL&wmPkuu8{Jc~hQMS#oNk^>_wz?-uEB5ijrMizFDwWyC3f4bcZk6a`RnEBt ztZ#m{?zS}&qkpF{Kz*_059=Lq-Er%cj1FZLSuWA%PpiGnAxr!1^~=;nm&5G80d`{& z)?dSJJptI{6xeMVHcG?#SB5qH1F+|kuz4}mY=kZ2!xYdP8uXe5&8rM5_zR$KlAy12 ztrng_t!lnfF~n0Ec2dK>DpOsBhj{%z)?42%yYJDWYy+{o`Q%sith$t9a2Ba=0);?#f60tPpH@*&JV`ceBfGTYlf4XJ3mz5 z4 zy-n~ba+-QeWq5s;6|soZ>g(6)|ujxEz(NtTk1;7ir_hOunJyA^3sphIjeJ+~s z3l$W2!+C+cAeKun4n=TT&MWpu^ZmuRb?T1yxifgyeeR5olYK5y?Da0q9_AmR(U1Ht^lXed+=$ScMeA{J1d*%K$h}`jA7M=`a||4+lee)Xgy6D}=Wx-FZlb z4+#i*qHdg6B5u58njggZMR&8jGdR^joXMvQqC*Ey_VC-=yWJPM-Oj8mEWj6F-OU>< zb_cNkc2V@UD87?Xh_gu; zr<**S9s`B3jBfHAiVheKdp*%&pC{xC1oDH$SUMix&5K3@9(OcY%=;P+TW?+%r)GZ$ zXIsqAcSk%?%ycO(j)wffd=K?CTxI^vFxVRW|jiPj%VpY@#4uN8vav;d_qhq3j z;v^i7<^}S7;rQj?3{LfNdM2N`vmIXLax}}2;OUCri$!sxz7Wm?#ol0k2p?m?8jGO_ zZgXwKX{+8!9raAqW(NDFzCKGn?}7T zfUXKD=665tYCPvDSB==J4_(jL&g4F;qswzf$1Vi zuub;0|Hha9jW19Cd!S-R`u`qZcCvL6Mf+XN#mpNrYl=auGV7-Y)XmMwDeArPSa9snxrq* zBWYP_yQNwsk zdPhSpZ7#}>qIEN0)var3DK<^gw;GXjatv`QVb@nh@D0SNJYvHn`=>GYI9dxwkjIHy zicOQWOA{`ALQ4fn7iuXsP10$ZT>8G2t|sXgEyboux~VBii{6dLdH7Y~Srv~H8zx!3 z=G|;_I570X_EeyL(*d#5T_D)UdNl3h*Qb1VUo3P%RSzxh5gCn zFfGNVNjfQ)OYhgxdrA73mSWQ+UF+b|TFM2lKz*}utSZDFf}mc^z?`dB+I&DGMJm`+N8mSWQ+-R0)etF^QbNrPI7O_Q`) zUR=5hajNQ$jfv5_5vQswHcYaxH!hRcl^3+|Ir6wdOR;H^F7$EfCN14S(!E-WO_TJ9 zpG!|@>2Z>#i7gG#y4W;H^YTd=+>bcdG)7vQzJckwh*Qb1VUmq0;2wKuVYfGQQm)fd zY?`F+6msdUS~`-Xmm#q>id#imKxtpiCt-^Alw^9H`M6OR)c zCfS1*agRr|$M4AFpV}ifP14OBxwL^O$wJ%Kds8=2D>1qiDvM2%w04zCfSPa+#^=wlES>V zbW$$WQf!)}zhB0sH)-hrk`C8WY?`DOUCyObwR8$eXKN`oP11X=AnE)+<8dxU$-m-p z$_>LHb={TR<1X!SJ9+#@d&H(mTB{eA+QpXkXrg~eT1S)@pmnink{0#mQiqndd0V$` zp_XFPB%RZTq@(R_Ok*3>zldo+9oMb7rM*9C>_DOR;H^W?jvtFKX!m zlD?{?*fdEa*Kp~lTKWk|ztB=_nxrrHC28jx@i>2dTeLVEaZc`rmc@oi_S3c8V+%3= z62#f;9o@3+v=o~rsjnZGUaqCxN!m|Kv1yWyy`D>N)6!8SovfwUG)dp>PtuG!h*MSf z@ptgu&Ul>IFv+Uiz&)rK4{(Z zR_fMmEsA;~G1xRoKO0EW@&<@g2`^eH)-*(%N`?)StYMIQ9HNC$@;F9Iv1yXt5aQBD zwe%5^KC7kJG)d=&x%6!$Y8zz|}$~~SVGOk0* zp8c+F*(Tyxf3z$%P0~>}b17aQlu|EAyJ#skP14r}bLl`Wy@8~+Xel;L(vw3-I=L0% zR6g%}R|H!lPE}cKm}D0Z;~vYja2a`ArKQ+3Nv90w(%o9RgQVYTDK<^gk8k19Dx$0y zO?1{O-MSh0{wP`(nR|4tT-{SbY}_iWI0N9;2M7@Ci54LJjqi!h zz0d+&j;YKBd2AZ@KaKSFlYhYh_ZtC!P3M4D2(X+0t2tn~5zzS|4%kD0odh_{0XvO= z`)3fqa}8SHeVqdQ&FG63c%Nm!COSV{IRhIW=Kd|x=i;wSVS5h9H3I6)c>1lSTp3y{9Y2cj&5 z7U1$8M)@yux&J#ze=GUFmjiA!0t%ksfM*Esqyki|z>`M(_$Rr39qB)y3T)#Q_`nEw z?LV)Kupu`AhvVa3t65uTYY~TRglQFcxpyxT@ z5CIMn;5Y{yGy-0DfdguPsIyQDe`OY$e#o*=OB9t>&cb&uazFtA`~>L60r*J00nlzC z2LuUl69GnYz)eQL?Ta{IIsv8H~{Yh8AAAbF$e4=z%BxO z#{s*HfJ>KhK-xN;1v~!AEYw@avS1f2VwJP-z%mYS5x_x!4jkYx0yZw^fa?fw4FMt? zaE%dAw~PZO5nwz49_E1YM!uX4bj z1o)i*H9lfl_}vJ|ew_naeWcUa0)J&1^EjY|So1;UG!Bb#Ku-c(PJjU%aJdms`UVI5 zj{vt3UN-jVDW1WMB_$zbJ=3|z`hN5Ic#l_f7=LX`T+-gLx8Uc@GA#=WdwxQ zazLH+ItSDCdC9M!+*$Ip8k>{6T=T zKVdoe!w5LIjRRVLqLX+5{>mhJ2{6gtu8x?0q;d+|?BMcVB)@{>H*o(~7y-BJ9Rh6RfOm|5-3K|~TLOGdfZsUaYa^if z*Bp?sN$22P{FOOqzDXzXXalrB1{PFGz3W?ih|4b|c|OT6Be}c-jp>Rez@l$BAWVQk z1Q^W$gN%S5zvY032r!KRPjJ9ABf$F|2fRjrR|xPv0aiCXO$*%lJ(qt;@;xN~f&1TM z^uO{44yg92&OlZCl^Ll2DeFd6MOp32Ik5l80d4|V1n9^CmJ!hXCl0ut0M`=WW&+G? zg%&XRf9NQe-$U|=B%jIsPc#Cy9OHn+1XxIbH#q<+t{GaO!7m)Jl>l1^aDW507y$#0 zbHFJAoFqWa%{m8z9H(i4XMg4L?9DobE%8^T&_{CB3tEcF4JxPb>)$w_Hvz6Bz>OSm zr4f+(I|tlJfIA3qKL^}l1dRNH1LhOp83HUPfIAN@U<%;XlU%-@=eh32+GkuGWA#g=hei z`lElidIYJ5k@{}#ewYz(j!iC5MN_>ookiFGF#^260go90SJ^pWH33!TfuuS`JJXDoxY#j)JV322ed0qqG;K!6?`fNv@q z0MTk3P)vXz0dD1hpb@aRItR=kz;psUNq}d&p#@C-kJjMw*GayDvF(00(?e* zg9PYw&1o8-(Rp0{H_87bd9AH10eGpykboQOb3o2koxxW4D>LZlfL6lOt#SsRYrp}0 z2+)%NH*r8uBjB5c959vu|0BRu0@N9R7BKmDHs| z2Yh4%yxxQZjuYS*0qomY4vrZCe`az((``Bj=i{%;fr9}1gJ=O;&&nC-)Qro!k^EAU zU&H-hY6RTZoC8J@U^oHBbHH#TV0{(`%q75V0=&opvyFh-7jVED0=!FrPdVUSBjB2r z9Pk|hz9GQx9Po`1@OUc@sJC6`pbq}Z9JJWZl2}K~?_W6!U$#yHmfA>PxLu6CrCnES zCa04W8s#l>lJX_?2&p5OI=_l_H8F!%txO}oveuanoUrPFy$^Y9N z@UjswGmitd6X0_Ke8mBu8v)zA9PkeT{vyCRJ6R6?G6K%`6TmhZEwEGN(AHWU8}9CE z4=}mC_09_O!_GgcUqBof(0Xjm{sYgX@t+tp)cvx(h*-TeYanO!s>q7Jk@$Q*4`v(z zu%N4~%mW-S#tb-IzyS*g@T>-ualo@?fa^j6Y?+#DjgPf{H`jk`*5B5iSKwEwz|R^` zWmhsA_MgpwH#%@Yvt2qLO+?8!G=Y-?n(V5Ok9ZrNx`+e16QGL*^yPpqX22yE6JY+s zXadsTqV*HF{uZ--YA0TS#|bb;176~QIcC5oojKq=0<6-2%^a}G49K{Y1HLD~w;J#V z2YhP=T-${Jqi3TDcIzBuh~Q-8;DX&Oi5a_%Ie4-wufRnFxKIPG;D8Iwfc@P#AWDF+ z2Heg8VKbohWgPGb0UpwTr#avuGhk>B0(5>V*#xg?{fAutnpwa6a$bRQs=${T@Dm4o zX$Bm>f&-nE>(yc&t^gj-nY_{|wj9Fza)M@Cv+1fY&u(9S6K_1`Hp{ z0S5@MPXmr}z&1162+fcpt>uLeBE0r#2#Ye#XwasuFk1F{KLa=;QZ;OtuoAYYr0 zH^DZoKg9Lh%=+H9@e0`X>m2;80k!wD9QzkGvb1-H+uRsq1 zbkl(AIG~#u@XiDdxRn4SHDD44j5GsmlQ`f>0?gHbMI12K4CpqQ0P;QjcoVGA`p>w2 zjamQTJ-h-(r~=<~FbFkteUI9M=@-*O54#+bD zexJbsHxXcf1`Owb0cOBOk8r?L0!-0>*&Hy%47g_|0pyGQ@g~3u9I^@C<@%*&{kjrf zfn8LA?Hce62W&S3YR%#R`&T*%|7bv+uUHcPF$0Po;{XQ%+KAwf2%(Sz+I(fq;+)w8 zknjB4NMEG&A+9en>-Wsz6&O!|aT@R-2aGcVvgUHYiv(Dp0k3kv0y7};I0t-6fKN2w z3l8|i40!no0?6e6;!W_Y)~A2Xa`3BJ|I?Ga0xiDQNo*!Ozaj_iIH1|r#vJ&b=77ry z&|L%iaX@!7VC*v-a2o+eX~1L-7-a^$JC6Wzr2rf0AJ_Vqx&CppzRG-Ffwcs9PXj*Z zfcMOR%bw$a9|`ci2K>bV-k;ewNl^@)U|8M*KD5uNi+n{Q2?Mg1yN(y_#247LHHYtzajV=ioap_ zYsFt1{@U?39Dg178-c%(_#1`4(ek~%oxAT5KBjVXA$QEYa^~oKsZcHC<{>|&a=ASB z=rRoRDq_b$oxk}1d##$)+1@Z#44u*0D$eQ*3>RBxbq<%i|FCmapYXh+iGKm|Pe!cxBr#cx zzqPZ?g|;ZPERMdlGvY#;IU`JZ&#j#wG`K($_So+`!!E=T*0H{`pTDtO5*wc~;wsgO znDc&ckyw9c=P->~>VWkW%i{MBbq1RAncBFaJAU_(3-lg%!=E9rsgx;*Z36=x{Z$PtW-C1vvFwS|0xH2FzEV~@ zScS+Ast_HZRkZ<%x&7j;^6{skwXu{DYd-I6w~A3wb2X)6Y$j?OZ^>KCq}GEq6Q+m< zZi8AEu?Zx#y$3G&duM;Btrne4F<&l=&EG{AiI?B*9M)XcsP$U_#c%P0mpUW$;v%;P zTIJ<0p*c1q&Mq1>NENtoQ|DyS{eEYwkBI9yT=;5d)DzoGv4W}JcomJ(18eG!Uhj-} zAV=h$Z*&guH|DBh>%hPWOG~bj?J0@1mj)M*);5h=h017A?EX?`sJWW6BCRq7CbkVt zx5_2&bpE)J0wY5Ms!Ut*R^aB(JNF`~?e*b{UhNDkUK83(p^8_&-}zxf{lFcs>kQQk z9QAMLY(}@Ap&H!j&zI2=7RAsdp#|d3PdnRes6{~~@zJOF;Y>s`nMGvqxK=skKMMu*P3N}Ltr8L7xioyX}nQ32m6SGYoKjM_9J!da(;8* zTl6PhcVs?X&;4;fe);A~F{=xqn9ZXf%q|Tt5Hm&vT7CH%?6!e{XibFtbRe>?% zk!W}!F;zS=B+zaHesl(u!q-Cru^OwKG!(h7F^jpaI!WTTDCCW;fq=g$Unz-gCj~}` zGe-sJXTsaH-&d;U@SxndBG6$eLv8QLi&gn< zt7JS5E$DmTkY#P&Xbs9gbOnxSv{0o@(QD!gcKO z=y6op3dIt}99kE2=gVU5?#V@BP$AIfLGjb)%RM=fnG|RfhZh2aJUD)S!V7X$A+P`g ztD@LE0|UV!<$zBSZw&^giMizfhE)zs)1I{#y2AD4z#tcDNMA1pzQMrC5vU>YeKmmb zSRF*}wM!u3Z_Z?LuEHx~d@~VR+)n6d$f+cLxdF z&>QY8uK$4$-IS^3#D*1tU}LrjCZKASav{gD&@Hiqf(8u z5YmIk2eKV;*!{{b=P#xnz1AIB57%*j{5a~|wT^X)14(Y;o==TGTZ_nO80)2uX!TvN!K zPov+xjHf^93C002g%^p;CHUFP8bCA8mwGB0aq$YUc&+l;6_j%_D{{*j!+^=+ z`g8CL)IhJCgRFb4GWtu(y4Nfsm!YsZFHU-S-g(rpb5u3ZurU^^6sg8Uk!0%X!jyCRqo) zJmxage_y7O&1J>*mmr{!E#%NCX#vCh`C1SX!cKdO3M$H9Uquf|6|nYMJP0kos4#Sd z>a?IEqUoGb@{MchIcd}B0BAAky8dPoJsUephu8HM z%Y4C6enro3_alDrzdY+^z&(?k!NlTyx1_jey%wmEtX8G->pMyl(CP4uW&n! zurR|=HPr<#i)FEGkMsiZ(M>$;)fft&u&PMkj2_F5(RMlGZmKN`u<8SoWsi(a787qn zZ)syXNSt~b>T#`IUV9JKm0Cc&zTTv6)fLW_Y`ULXZUMs}t{BaQT(PRAa99T(lNQoK z2u zN~vIpp*e<`m&O*ULMc@>f+keT;4LC`Gk!+fjGvdxSvlw#HOwV{t4!FRM-ePV1v#;w z-iCh2HXE+P|E7kyUar^Ho3zz0Vx_(LSt=1s6jn*Z@Bz6h%^Malvxz6!&aIIJ;@Fqb zqZ)^SPKTVh;bjbAdI9CXU#8xb(V4@7=z0|E<|6`A!~?HsR)X+crUY~1v)3^4GZES> zcYU3@*BZMxY`ae0$s*TmCsCO)-k6-Ca`}qxWg%)9x&z~)WwA?N<+Pco%s>uHkHs3u6Q}n zp^H#82cDoHwLa7~%fpDJCRSpx4z!X zHzg{_uoF;Cji*2Qenm~KHiRVh5_0_40nEN+%lVwEK#REyMvDz2V+%w}W3bJ3&g^fW}RZc)@RMb3KdI$>HhFS_1>9S$LHgTg*ld1}+F!_Qni27>i zOw5-pL5%oGhRgj2eS!hZ$y7wcUjrT1@1M`%g>A=HOaQ+PACS+WmnoF+L+E!gh-~$ha@u2{(<4hd@s8dLDyMY@ z7dAE)vtm*;*yiTuF0_J@LVdFwJk$`2>CO6}TpbF2+n|{}fsh;SHSp_5Fz9cpRI04E zpHfpPV=iI)VZp`Xl45X}uUyu+#Y}ilH6ymCg0Z@>a~ES8c$akWkVb|h^Mb8T>YYRJ z#`E7X!4893KZYU}I}ZpB7ny2spp~>Yp6M?d8~muj5O{KSb&r*^x}l%+1P5V?i+aJs zf}Q>hRLaN3=NHGm5~xeHsfLB!hxT2HPX&jhRL&I*i$`xJ17x!I;HjyqRVCk4S`OF-b#2%vg1r?Q-Km z)KwIaanzzi>-EDa+hj&YMmLkQ;I90- z*~quHTOw#rS5f{Pj(F%3YKUR!BIv6n!`+cA~p#gO;7H$b)=7yPb4Tk(!ZNs5W{ zf*4qN3FPr7pr7)UGdYaA@pE^G>wXdBMI~Cn;n~|!%Y(zc4m5WPhpaewIf~p9O^ZV) zyJ)yo-nks*VBy=&MFj#RcDxjwCQd#z*x>*S;l@*gafjW()$cSEhXXPpfzwSMC=Ex* z$)^VgV{BW(nubGLp+b`dJjL|=)xmauu~Oe-zq5mh`oZ$bvxAE~mwe|0cg$6X$FK`@MwP)0pTRe50*2P2AS z_DC-hP&C|^alli&-c%8azhZ#f%Grn3YE4>bt{J#S)0} zaj1^wh-7;%CkgTDz1%;OzUoyS6mZ36x}k=ZGVTx9e*Z`#Jh2?ZY`374Q!YpGT!XQ zR45bgSQFfVe%eWFBB3+Zd*q?(f*%ln+MdVT2APXBM#%~Yy z6_4K$9MFVy>N-wyK0-^r@Y&#?dK5R^|7@^6_iN7u6ZIlw@_EvQw+KsDi5493y34xy zh*w^P1daL&gqBDgdMYcV2}ZHDi09Pe*U)lkO?>XSgEdVGo21*MY{v&_Ytu9ju|7Zuuza;nk4P()#yG zEZcUX7jMXmxtoHc#GF?-Q+UI%x;LooaDreau)s307T}1(>S(E?I=Mr>L=TRz?f2rB zwS+P!cXT9_Lk(ACEt_7(d&j?Ig9S!vt zfj%MBBnNC5_v;f%x)7BSX1%FTh-zlNu#Fv|4sk(0533_~SpN{z6*1PPT8h0~ll`?Z(+fH)45m1uQMu&6X5urh}JE4kvHyjY^XsOWjW~M3zE(skcHVh55)dM#! z3AKr@-C$oU66>ZjuRx!%dnkmltzuqrP^hiH!BN3!Zj7Wk@Bt3IB(%T*4i9e%mq$Yw z@!Bc486cQCA`(W)dxAG5sNC>)WYuCw6$7YT7V84o47ylcJ0^s8DJSSB5YN4>l~BxI zt`uFMisap!#j#Y7Sjn7uW~g0kh=lw;709cVAMF~#y8=bm;OX5$7}&d^Cdv@gUOb-4 z)EVYy+OoJVi*j`WcF-4D(wL#eN0cmSL_35io;169OsL&o!C2P`gA}90oY+=DHFY5z z$P-*+t5C=w{j4MreJRJ$wAo|VzcAMJxe zZA2q$7#j*;(ij`}c)QJo2ZTmwGbWj_!!TD656%w7Fv)0n`;}P^`%!2KO0ZIN$YLUF zubC=dnTKXcF%H;@6yaH+E_a~jTr?}x;NjFk7avTeUWZOTdvGY?Z^R%2T1JS$vqLS- zm~_dj_i6|l-drd0nB0Kk#Syeq>TGYc@6m)s&ZL4 z%-Fhu(bx)1Lk~TUY8knsyhpKp+tX32AQTS)nujxPn{A$jOQ~LI9_`M#ujl^v6RCG7 zRg{1xtloFdxb@Uf(qU{-0eQLOT-2II{QBsz@gpl59u?lR8Z;H+VN6E|NJ#1cZMYu&C3n0HSO=A1s^aFvq?%}}Co$%P?%~w(@#b9jX`cP+69^>q1 z9>I>Oeb%F2J#tNGu!hiEYabswhU#w~mj}Tk$ z4Pj7OE{aRf9?K#}*>-f(sNtAOg2EUU8}W#7$E-PLY@2*@edvfrv34h(|D=z}CY(2R z8j0&Ku6rUhK!q9)Lko>@56000z;w>B>4IW-H0Myq#Ks3R2F%Oi z+z>B#FmvutC_E>#j)J~x_}BMl~6SUz7j?m1=Rzfa$=yB)sUZ|JeOOo zSw6glniDzeiiIIDlW{+w%WaU`MUz5UvMzGd$S2XlT(mldWLX(8Nm`gZ=V|I73K)Y= z>Jtt$;@r%(r#g=nnP<^2YpcIn$NT=))JOd|#an|~h~(Z5J9LPe~&>7yFZ(b0?} zcnTljz>6dYlb;&vYcO@F;^B{|)1#5b26PIUr$fFLMGVW%(2?~K=t?L`6V*&nin8+) z>h0=MLZ6kFdVv@GhuTa53vZLY4h8VM!@Mwt0JKFQ`8Cxr4|3GksNEi;-0(F@H3_?z}9^;a2p<7$2;SQVA9Dc%0asS|p0m@MvRiA$w1z zB$h|RsT!+%G#Wl0eI`g|?h!`&XJ_?*d1wL*nF@AZD$p=}KOvl~2grCb++>p(|7ClG z6LtMBPoa)scQcmfNCIjvT7N}tJB5gmJ`|vZVcbVpkz`<4Y3%sHsEMw?;P_wTsVEpx zS`=IO8O)qsl?acpq6jl=N{XT*z(KcXp31|}nGmI>ZpdAjyTxKRHUlU*xk?@nNM5ys zoDqJsUoUtvs-Q#6ToJ~jrkE?}g=JFMT+|RULlBoKd9cJ@K>5=JRD8WevcTRV-&;hrvw)|*uANx(=fid@Y%3}m zSqofxzOvU_CYPaEDR(0c4>$BOeAFeGIV>d2&Y_#gYm`{sE#hsg#GdCaF+{lgms)lHL-~O zB$11#CQ`$<20hS(cAwE0=m^V`s6-vRoO}`0MYv-tv#yKyCq(l22eL-`na+V5Qb|)0p7n>T@HhhO247xMNf2R8hGZ zLnIC$yQVqiW_13>YSaAvX7xa}Xteu#x9U_4Ij6eUZ8XY5Z^4=DY$~9V4Ve{QBHr2< z9%0*CVMhhbIA6KM&Of0C$FX}Ww#D+1C;ovdBioS}c8RN4!F}Q`H-`s^#V>{jSdlJ| zbMJN8e7h{93!%_!6Y0YjQ`@ECoKZ6pfG0Tsip%SUFi{XDm!Zl_&_ixllDwvz1M$&QlLlGan zcVuYZXOV!0QEsq>K$`ZM$wF%5czWiJ7pYLdDzg3vjtOy$8kHaY3_TMxWayv<&jf8& zSzxNcuTqI?hTNXp**s^F2HcgrtFD?AzgiZXcSLg%3Jm zNd6zVy!~w|Da8*dSOMcOw4ejTp!W=|1A6#96qGkW4tk%;$!ivc5Ai#At@6wdsg$Zk z>;thy6)*O)?M~F z#*`W{Y}-Dkaku5~AR6}tm68UG``p$@vN@;C4*zSvqEag2oP!aBK_t2>UQ&RZkv_Cl z2Z|wIF++<5(1S6g3saG_z;O2~5q_JcK$L)wV+6lJLC**sM}=e2K@f(siVo%`$^$P| z?A9FN*IA27`;(%&{_Fjbp_m2ClrhY<%LxC*3kdgcEXs|y6dA85QEm*Am}rx8LpX@{ z!NADjcrgSu7n4G=bJJ7Bh9MC=$24H*NR(}MFzqumvJ>xwI>4{e7c>2l`u=}xji8vY z8ictGt9L*QwkDvDqa($KjiU6OF!DffMqE9LIO{?3{ZWzQXwzVJ^)unoe#?L3UXdew z`Lf6QT_BS3c*?zlk;a}%pc3)v06xY2U?4K831qeKx0HDoVki$86KSeT zc>?LEAM?bx2)*4Fal(l7(6kR70_8)lP&5J?&J0M?H2{lL42gPx>{CP`D7IC5MKGga z1)v;`^eG~j9VL;}L{301te`mR5TQg&%C3MHcZrNa4~@xEvFvIpmjZSzY`jC23sm5` z6AMB=f=v|Y^puKPK!*3As)PWMogEoX`x>_WC_PP}OwfUlKimBl4QZ$~%d;j^h4MO6 z{_8mJoJy4n8!tHXe#|#n`%4#zhZaV#5{|`3g|#RQ``Y$HJvZ}3D6ZVfB+1QA; zY|6V&5%I38<^v*~+Kzn(NC1PKC1_7X&feH_V3AyRK;+W~uk+mpMpD{lyAC;sT5}RhP|D+`m9Oh;!ZV<>ldR_z3 zK8&6MZh(S-TC==%HdUV*Zz#~|62CfajxGgN>oF5r!RV zq@mU>f4C@u7Z(L=J3lfSy9YqUQy{FtMzEYuL@dE;mFt&8@QUI!3s&H@%HRo9eM(rY zv9gb&FV?|;r%#TIHV86LNLCD5PCcOIk3J09;G+ObmZS1Cltct|1sw(^w_m~@fQjcu z28ju$Mh01k-(p#MY9#G+W{RgyMb+^*?mRy-N__J(L%`JR{e#n~_GEL|#;melt`sn+ z;$I$FA1I#uWdt{KXdJbl@H`0^<-yPfP|t>@v61a(XVVj#qfpMHG1#Po*mR{Dq>Q!! zpCW^f(GD^SY1C9NpG!|{LuExk5Z**6S1#v$FNn0_`a4w1OEGT8-~#=OTgw1!F}H9U zd;qt#I4~M~V1G7gxo{4IVXKtGwVEYS=I<6^$hvcYFf# zFGsFHaTv4T;<#o_1TP`l*|N&_)=-=Fn#JICCH4(So$bEUNMQR zhqlN&7KqCA@LeFl1L4=pt^Op^CU3r#%7QlYW&aVObpd9?$aadDy@nnRV02?wLyE&} znEKpK#o+ZG1TFQvPu&n{!^5qJHJ4SJA{~A6bS@LeGBMz$Q)8nf9(V>FU{E?ac7%+i zd%@&-894!uD0-j&XQaKqBaZe#Ocm$ehrUC@ZraE0i*(nAWb6HrW}DR=w(A3tbT47& zKM;xIZ6t%?6f~mStm1jS;!^DKs6GmL2EfZ2es>J4e)edjyVfk9d^EDOQQ1*QBaAyM zx?u~LnaYLzYfEHItyyLtkNE0Q9rA=u*~ubrd;((=x=aeIV4LtH%;IWLy&Vf0Mq}TP z##$6s6{kOn`eECf$*wkJeZ4I*8;>xGpvtBYY{{A~AYzmiLx|yeb4w)cusgWs{v+}q zT$`Y|OvIs2nAGhwcstm0&!Z>vWpM!B5|b-rY3Du<&>?1&zhr|g3e1q2u6ls%_c{i< z79FMJx9BpTp_)O@NFBw3G#vz`>H%`;KQYjC(3uQCkja3PO1||bY8P6cvqQ*d@gBwR zx{JgWAD}aH!5B;8Rq448B4g{>8|X#1`XLn&qO3M=5z+?K)jJ{q8&O=l?}&`^+L-6M z9aKDqM|t11Gcwj=lkiTVSHt)-9K~%wI47!ZvRM5AHJFSAV7oc4RmC+VFMfc2w8ku_ zeT5c+*J|u`7#SUfLzQqAbOalj?(~trLU2tM(@ffddR1eVw||4yVQ93o+({jtmqW(B zr{BMXyCW#;xJwaFUTk5YK_X`!FL(;Vjv|68D)TjFxxgPi0k5qE>>A?SDqa_%X> z%Du(Ixvw$Hr~5{m9X!}g&8c$sYrXdv5Jl&NOPjbgjBde3Ok8Tf+k6%Zfx1K6Xe_Xg z1?E{oJwTq@N+LJ{wG@4nMMsZymZ8`Pv)Nck9YB6KoTL~wJA%d3iImJ>=Nxq z4_CT1fVy1jD*0R+Mqdj>Zd??t(ni}XH1C=}&5VoUW!v`ZqrKz};pqHEas1wP8cM2_ z29ID)k41;pxEKoYKr9;U9hUv$(JvcZD%20AQpk(bCPvX2sJyulc~+8&Gnc~)#LRI~ zbac9w6`P7b-6c8)V^>N8+8k-DJRb8*y7c>N2BY6f%Awy%!_C5J z9I|`#J9R0U{rl;7`~cnclIOtZCq`*dmBSfb`~scLnH>7@q07fE5`AI4*V%70-&y%UQs9-5$*}7;aRv8Nw{T_%6)6iC92q7#(d8VPQ*DlXH z9oc58Nk`L9uc&w=IOoi0r$G!6@=oJgBBBUwm;XK!*{^j+{&l)8_j$h{2{gWD3D^)! zPjFtjg#=6nWiuMY2#UZgY3Qm4$Qv&p5#-MzEHb{w2EYGk9m5&WWYCeS2gm`xA|aa0 zBn}}aaVL>najELM^Oh0}#WCH(gQ=w(P#8JP1}dyI&zQT@&aRFI(JLwsob#vXihOJ} z)h6tgL$jybEt!+2-mbn970Lp%yLk0VR49*8j`=NBD34XF+7!j>Jo3cUnnA9)npDu0 zK3pD!ET+qO&TXMs`2fbHg{;O}73O~QLInn^#s^ocQG8y$xehuSaJ_FnI$Uf$DoSrL zM9hy|NWq#ndVGWWRT$|>*G1&sH$jw>P=}DN`XLYA!Ucra@3r4Waa$YRqlDY(u$db- z4bhkv#e~PJg^zUNHAU6wD`JXAG4(Z`;-M|UHrcw7pRYidZ9-GBQqYB_BMEC!ScP?3 zjAUI_}>-LQkG@sjM{i z)A>S$-MA^TSZsJAioJgtHrXy_>C)bvPvDW(3n(W&Nh3o>Em0JtuJ0Z3S3C_2giI>F zL;i}VPmNjL^w%hce>HaT%vPPe^~*4e?A(TW*@$V~HQz;X1D#bZasLyRYUy_N+abwU z&CvQ9d1y`8wbz4R0h+LqWl;Tt&}P7$1F_X~=?hdFvskL6MCq1BEcm}0osT;%v=P-x zaY0WCr-2NhyqV^?m#HGwL_ktkFA@8^MkBdO5vLGQ8*x!9)@by^3rWI!wE=Nh5r_9a zdLr8Gv^K#ihOCIU$xGj&kpa68{ftzQJEmRcX?NQ?>#xx*?>KM>bkB&<*iw+jyMnkMJWD!GF zP#oFm0v*Kprr4(q4q}rb=yPR=NF8xE`(h}nB9@A@Ob9;V35?tNe}dsCWDc-VkQT7a zRyHc@VDgm#F%%gyT4{mt%ule_2n9A&=_?u7P}=%xLAl3}7z(d8NQ<-bVf|p7M=6KJ z(A{NdrxP_IOo1cge6QNVkukg-X#kTIxSSgsVQw24OV^s^*CR;}yDL4!gLjAN;@Qp^ z&chOqO4#C=S&jw8jBb=vr3RF9@kIv*n@Jpp39ZDPT=KaPiNNQmaCVwS;9eMUX})`r zfC!9I4T23%SOG;>4iy+J8arDWH<|zu`c``Ai92+Vo3`Uk! zq|;$WITj*0_>Fa}O}er>Ml*dHFu8ynoeSc!1AODCzGVw|HC?+f*3nnp`--UwqiTqF zZ6Y#~H9iB3kEJi*_2}>Lkd;CV^W_|!Eyth}%l8)6|*kCh>ftag-hP`;^ki_#ySmb>0%fsekR4z2C{w@Kx!Ft*(54E z@Zz}!P4sZdiXk&&^L;sEq(>3oj&|x^v2L#~uT4I`7Zp}*z>X=Xd&aEDIbh$ZR9LuC z8=ZqGtPH)`@d*^D!F#xYm0W`H>>mO-4oqoPSV^9>A2lfsW1NIq z-3utMJB&neB#W|G`GyJ>r2+|S(S#_fv_2~Uxfj z>vmO{W4?QjkG1=K6@30r)dovp6$iliDxGl)V*v+j)dj$G!^PT@Q6cTv7WGS3#dYht z+hx=8*qlZSrGmnA2uS&Ui)$9gf(`^P|BCO8#j!CCJAEvQsZKaG_F01iFad`iZ!$nh zn1FYG78_23FC3UcC7>&waLa#LY`g_m*o|Kp!(Plx4Y+J!tlMeFMMM;olhLzd%V^XD zG9=O_R<4QB9Z$^2gD}Vm=*Sw6*P*EfG~Ab*ixur&xDSE2-XmKsh$ZkETt$y(X)I;% zxd^q%3#EpoN*l!cIf1xy>*QG43E-MR9GK%nWph_jd8rtq!US%6Ha10Eho+^YYh6%! z$ghXMk-*cxp;GkVCIJ+s$(iAHL{C}GMOvXFXI!MEYF5AEymxghh`B}!0wqBO(Q^%+ zX~qmLET8e)$jWPCbMdQFfJv$mca$yr0ajuUSrfx`-!9BBUcDwZ)`K}{zgZLe9FvCi zLx-=^nK4N^LQh@?b&c2xu;S2I5MR|OnRgv%3pCLt0VgsJ%8ZdeUB&M?58eu0#4_Ya z>I1<-Z#h#*Qjp!ruGz1G7GtzI#@r4OnnU}xBlC59uit=NH(_N>Y;28>5NAoeE)+Ag zq|93lDeKK87wl)aNJWF^b3I7DCaJjr!rbYzcuru}4va;?HSn-CcrsF)2SmY)sbiOW z-%stU)*q$OUC;lK2VzMK&F~H@wuj>#mLx2hT9+v=e-t&%4P%QZ;Jmp1Q5r$HB5@xV zZlk43l>?7ajboHVVe>UGO+nGJ}|ahPPs2an>!d zem%<^yN2y1+jnh$?o#|XpGh@x5pCz8FTL#h zH0?@q)-VVwv@xe~?_m3b`r_a?xF=+}g=;NcIJ)m05HE zZ-lK{iR~%)z$bk>%u?D9_d?e=-1BHGhOBroT$+ZbT|q8>9Tk&#XU600;-mYpJ&$<# z3It1|73+3LJ|2tPyav;}&;Jv3v<~l@C!E=-37hd2RaM+ch!1+0s)}vV7{&2rK}{c` zs=8q;(F3lEX&<7hx*^=|f&OnT_NLwXA(bPe^uyA(D2bDgXZ>UcDyxC$3Owf9v;&pZ znCT8Xi);ADRC)$60hv#922|OZfJ;B2YKoBz_LGL=cyQC=wYA+2g7BGBgP|%AmM1kd zEY>loJeY&vZFVny1u0EH#Kz|_F556Xjt945;dt94j4Zf-e}OJLuJ?t;=U5x zZgW|>P4;PtAApT#UIP?Rprkuy8%q+2(+vkC}KxwwBlx-MS^5885qeNS*4Ps1>SRS;N+v0mQ zijO|Bgf)|sSh2+_V&zCfZ-D~FRY3SfJuW68qu=A;NNin4{G|r*@lH#P$I&pEpTy(f zVCozd$NYK)^X?m3W(;e5h*HFOD!rW7;6XU z6y(lq91nLxr0oI{Ov+9kd2AuhV`kh>VmEY4IY7}Xtv ze4OoslyGmLylYn!h>kieKB@^pV(El%LCo2K8i_&~=8A<2-X542x+1+`GCUzZ$VsbX zAkLi^n@|335|t9Zl7a=0UE={C?rzl^vJRSt8fOrY0jY@JPK%?H)BcuKemIQ^h|P2N ziDNSv)9~`lWBbH0IHmwXG)cCqRUZMiPIM{_* zv2yzS_=$7_FrI!_#oPOqX}OWY#KgBSkBoxA=d(3Bz@Ra2bPeB29CuUwO>*DS6l=cuFHRd`sImWuFrlF$N0h^CSdS#ow%I@ z2OPgVj`2mYj6I{&LYm5$mv`vE`9llw1F>XuV?tP)Ie?k&`8mm80BLkK6r37V0NIxcES58K#8*)E4TthY-gSyj-)qjMoMZcHNvsn1&8eT)E6*qddMmM@76ow;r14cJ z1E`0<<}El2{mzAydq%Q1$FX5Uv2hzmG0+{p<9Wyp@o*zXfBAW&#EIaFzlO7U&4O0gB;or%b*9g+ff@Z$^Jd?rMX>>%Wb+*&zg4To5r<`x};x zH={7L)pA769f=Zyaqqs33Zjfpxrl8qa9hUQwYA=_MfA6Ee7}?MiqTOAlSlo5N`*PI zZHYFKc|VRhM&{)jrUhBC#>a1QL)RD#J1I|IOm4lK%BC(Rw9H<3<@9?{8N_3&Q7_JV zINl#Kl34PC>Hv0v+;K;0v0%Y&h;GK9-CA63Zm5xJ+VAnLo^=n#_iPl0{1!!Sd+40| zQ2mHPZA4?~b)2y1s?uTYWzLylz^by9(%?tpFE)t7u5l?aeujj9h&rj*MCU(-u_&fg z^Vr8pzd#eduOU`_GiH(a=1)|=41li%=X>bpwg=HI*=F|7UWoU_zdeOlk7h!|=4t|$ z(7hkW#Q=!9d=mQfB@d%9yFvP3B2(V+FxrzF<3Pc@yKlwIhX*#H>BsP_>NQmUjp{UR zd`AP~I-SYTHx>D540)~M!52~b2FJjWa9kt*Aeu>iOzwP&%yzTR!)?8rNnp@`PYIo`}O;%ihM_j#@5_Yc-6` zRzHc;+1{TZ%Mg+l=K}j#l+q%f`fq%gatf3-@|B)4BS6D(l`D zwEX|Y(Ee{Ka;)c~q2L$5ws&mZN2BAZkb6EwB{UfJqBB+%-+qb;SZkO2{|9Bw>$N+B zszyV#Mac6YsW0LoH*S+I{vtlM7fjy&1q!(rP`ve3d`vHxEc};7_BhLmc~Gj+*#dnC zO>K09I@}U%FpMn;%aXe8I(B(RLjt`s`|Fy7-M|PEXZ<-jRX`i=TXDmN6XMV_*9YbM z&Deiu9-Y9q5+1d3YGmcaMcn9wQ=$Ox)17X~3cH4$>% zSQ1i01SM9|P7WC!Pep=-=dzf2YyvB`SPY6ey}? z7bV(OAD_VItPrGTgP%rG=r9c%PAD1M8z}!-g&;St34|(>8854xy;~xSaU2~GAZ_^K zFW>sd&%D5%sA&eG`TZL2ANgO-IFZB91UQJ%JA}WY8u^7N!&M#aLa@gLZ)})0J|Z!$)+|4tkvJJ&5rDJ)<#Yfq;r?byB5XxzTnZ~=?LHH8+0twaPB zsiel*W<0Vm0N*wggRdz^qNK1X5xttun+f8s4P}MiyuJeqb7Kzbd*-6NdZA`uN;f2L*Hm51S1JT@GafNs5aV)!3!N;rn8v8T%0%x>zO!H zc#*D#ii^u^#_@@$6Et*}AD*=`t<4{@A_%tBplhmeH~{c z+6NSPU%3^`Ww`bH1g;<_{yH8I8z=hS9AxtJL|?<+-@z_cUW6*z3$I*v2367w#t{y^ z^uYbI(y@u*NWZ_^0c{Ce zo3XfH6`}`L@qGE%9=}0VUCec$Dk;~SgTH-yAyG&e+ zpy>EG%)aXqQG*z&RqODxYkzH(|5}IoS7R1~Z$z7~ah`J{Y8@RmnYq}K(OArh*WL*% z7Lb6OKJP>Wb;7vCGMA$jYUqg7!npGiFSr}&+~Py)sWU-r!^Q+Iz9u`bPD2YunHDc$ zh7x+>F2uo>+ejUW#bzQP%FcwH4yS*|orw{6K-0Qlwj~M6J{aUf2}beovxSdaZKJlT<6cX7SY1R?7V2SQIkwR~k3sqro_&uXBVOr>bRh zWgFCle0W22dT^fMQ6W8Jy(lg?LcF@R?dSjCr#MAZy0pZANHt(*aojzd)_9! zh82}l+8+6GdBg762oqGZ0 z2Ro<@GRi`9(B|(GM_H6Ed;d=pJ+nNHiuB47H9UepR0pfqHYBe;9< z;i@)_4EeI&89VUKU2wsD81BI?OUS_jUVTt@e@k)zV&^QC8*$=goSWRAKcR86!CDkn z6_A86bB+D(tCNsaV-}Ev!E%jVj%-SH(N&2#yqTb!=t3N9-RB8*(&Iqz4q3ql-aJcj z*i{5iub%Bg1}4A2Cj$+; zJD3I9pf`BokmLy3NQbMQJCd{p#&>=3sltIB_|$+#F#ApjHkD0CVy7&+FBPHf^5%{t z$_i$zoZ1o<9Z$Va-y<2qSFenRl}(HGl0A}Rdqw4_(Nuc9gbtXT9MgNK2v9-d{TPoL zDoAWMDyWY=K_7Zf17M31UgL0XYXarOwxfmP#gESqeG#W}RFFfYisM`Hl*nE@eziw( zoMxtQt1Jxtq7)TmFTwpM+u5oY{B}1LWC_!BXoNvuxk{f!;QnMVRO6tXhWrfSS|I3b z_F82!N5u$VZgOo_Az2}tY07G!JwQ)!^*m6F<9Y+-6-6q=ULsM7V|$HkuO!jK;L}H9 z#U}JHYxYTEJ5?D^S?g*^6lKs?&AA+K^$R)RK{6qU$t7p3hUC!`lBZ*qnfA?YU!KI~ zBr8M<#cE^?28lhjX8Fb*B(BySx-g&SWsyfrP6quVb40Q)>Q@ev-nK6MKqxwHf-8?n zhCDcS1QT8nhwPh-)g#aja{a!^MUCu%J4ip})gB+uU;qe04p!$F6Or}t0B zdjn-?M)JFc-cYg60an)P@XD(XKv~iOZd|OhJDzkU^eg-g=LLe~`tYQ)AWT&ODjB8y z?5HL{>NC#Y9FoM05n{v}%afz9u^9k=$XSc)XFy0(gj$*nsW|?o^YKR{FaxqS~ zqUf;lW+5$v^xz3O{3KL&V^#sH{+Mi)r=3LQ1VpS|gmPl0@B!UZ#pF|x5o0$z7oL*r zF;)l7ho?~KXd2_*=QOl&ZFRUWI*oe83cdLt!wnfRU`c3+c;+W)R=Aj3SzGXWi6i}- zcg)>tb2FI*zhd9J0(r-^j~E+siKqa2$DSgloI+0#gBdaipmDN}aj=c~B_!BvCIT90 zoLnd3=JTKeXEkUs6vcprVO-&k-5B(l0BFI5zq_ZJMdsJE1xq_&CKm&;RhJ|)UK<}S z`|=Vh4tP^>jK-%-GwO0qlm@=4tLcmbeOica`h==@9hl>p_t;-k`Dk7p25GVX8TQU) zR8CbqQzqSvVMwlu9aX&QvQYf$s$|F@Sf(HZSD`W%c<$z zoAhZ=G@OF+YQB!jzP`iM>(I5=$K;jQQTwS6ipSQX*4M}6@ZZt1tB6l~p$d-RTZ@W$ z`b;5jV!RmYFd1c`e5(_qSYn&838V(%tDG#TB#*g;M_ZXZ*GSfhkIv>+-xr)F&bl{= zkufM8m=6hpatZ``AwNSU`NHo>VBN4sA+NWvgYHlRgug4%^(p##^*lm0~lfrbM}ovnUN_c)RXX z!($h(jzq!f%+y9+|HtGg+OkD6g^y6PE0<{F6W?vH&m+mG4Yeo;*ByU=As%j~)-f88 z?>~|}8NV*sS3R4=7AA11&*5zOa}r;J)Ibvev2FLRRuR~ejM#QVG;d3?pMyx-#mc`V z$JcTH*I$xp9{$n=Ei9tM`vbLz2#q%_tOc)E*gL3I)B>`)EqM|TfDu75{3=4M-KT4+ z_{*PB?^F?;r(+O1q;3#?^D*x)Ty`*$-AR{av{A2i?}tS>Z+Eyf2fO|FX<} znDMa}vGvO&roY@qnfwZQXY0nlCr4}7$aeJ1zHcxPAb%&a_czIm*C?<32D$cH#Z%u| z={e$M=zIFnb0rLzsm|c88kz@ORZcAw=YNU%icgkX5I!0Jh_l^OYnCVbyYQp4H~+Af zx6Zj{a$?B)c#FwlmjCYCh2Ok}3E9`_I=zn{&;~>PPD{3RiC7*M9AlxG;I3ondtgYxX&$#P>a5o) zSL{n|&}$ZV><0;6t8Cn#8eS1IUz~UB2f)+sC z!Lumu96_1%afI5R_x3(rQ7b~_Uy&jI<7>@w>mek-5b2~LfCj9TBL|6`d3YB_H6>i| zQdK{HwLn#E+xs|Yxnx=wR@D}DVO`pbH_Ynl@5{jN`0uk~slAE>084oZ}aCeMNJ#lu>6CbS1rvc1|`dqIQJuD2T`zUAUPUSIMd& z^^cc!MU5S^Rk&gnBkDCvyT%)<^5#wc{$VDO!)vKo(Xio-sa+%Z2f!IV z>}}yIoqlrz+LjB%+C~w>@T_>{1~jm`kj&kP4v?`G`*gLlT6BUmu;=XxgKz1Ixl#0N z%sK0pE(~mu7ZYb8^443>71o8s3%6MrsR6^0&#BLmoiV`jeNW}Qp4WjjG?!J;r z(+!(gD8*>l4LV{kyq79-rG)8yG)u0`q~2PgBefU-yHGz+TBReoUW_AorS6S~NH0g~ z3Pd{)DU=rKaME=Xx*SDq9I%^EakF3#hz*6v7Ly#3>j8`NtpU1TZGXa{srnHu?0s{PW}6 z3d>%j9}@whVXwecf&63aMO=&+D*XHzoW)dDn`iQe{M&oIp#d{>hQ;>(^GEbRrZd~v zS_>VRSj-pH2DIZoL&`RS&2N|mLY>|885O)Ig6G3KKc`2sf;N8uVilr3p84LF828zj zq04-Q-oUo23^3hgU(r+9hD=C9-&9h}=t?$=H$LlXc6c~~+rOcnpjd?(RX#=B3}Ky5 zfU=R|<8X>buG#_QyXq* z7QgWSsg> zH4b$DG3MW~SYe6kgVkystwA|$3@V*sRhke))oz-2dYYS)U>zp#1xJi_na*jK5A~qd z*>uMLx>yQh-CF-iSt_G4wrH>@>_A3efjd|6`G(1<2)?(d5$s$pmFT)vs2T4K;EfVD zRj710K>hw4K-0uiNQ)*@*|o?Zql?yv`r2_S3(OeWjY`Ncnk+y}viGPpyQk=?9Ngig z8WVP>;6culXV4Ti2)4Nrf(^PARA2lwDnOg%j>#w)_NE4;&0_nw)RB~U9~I)lw46Ga zTreFaQ%k3{)C+lcA1a(m1%szmcciSV6On7W?UCp5uR9dsNTA+K#1*Cwx-L-kFe z^HcPxQ(Qw%2m7HTs>1-_er0CcNK%Y@qo!#;iYl40Yj21#X@kVLuRaDnS#uRzYaDut z87wPD4#39l3CE@4Hmc+h+Jo&x7aoV6$V9p@`Oo80r{GISxW;tSEM!@Q&>h8-#pb1{ zgh8<3P?7apmde#w<(y@y0XB_sUip($w$}NrpQOg(DT>jcqk3W5g5DrcK% zR*1RU~w**v}VVs{h^i#i;% zGIGd}vhlrva?SZ@Ie3c)cUG)Iy2y?S+c_jXMZ9qZs$Lxs;xhH3Wbk6NqRZK~qUHpd)tey6#pvcr{9mnYUk+ z!gdWJBAdQ{Tzr67;uY8+a$mN%Wk0_f;US-NB}3H&3P-Y zRj2b-EWUM?=!n#e^GC%qoNs+zX|sScYv^5qx%QpSw^Z zHkXND9d#qNZXzLc!4l`T3FkW11yU>n$4V@KK1f10NU@9>v+Vp6x;8~aS*7i!a94dB z7lsN^GAt^VQEQjK-HiUt=AwEF z?<=DcU|RXDR9bAfG1cP3SCJhtV$#|`o4n{rDh&o$h>B7>lMnqXIyD0s!nyCIx}Ag+ zN10HBeV?Hssf|i+L(gW+w*MvDs6g-njE_U4()>Dy{TH}rSiJB=s#6U4Fy;4`FhyGfi!W*r1xk@O$c9R21NlECET~Eq9(+Y&Sat0S%gZPMF?#YTpl2xS#HZ?=jG!t@$__ z&1FZE3p8Z7{J?a~0pJ8h5ifUz%dbmk>X_vfpQa9M6#F!#qZX>9agb_L&o!mv4onk@ zP;)w4$1aC|k$S&D%=V{s{?w15vLSBpn|wI!@~W>=WAL?xOc}2$EC{=+@N~sj>{*Zv z-~ovv5|s)Isx{yJMS3|t&%it^MY)TeKf`&H7f7a!X(}b9)-F$OPWN|`nE+N%C*Z&S zG(Ai4)c-h@#@9BpIR3Q*-^_ppw5PG@7InOzKycxkv85bzpc=a%zLj*&AMojqV+N(^ z2@1YtW78PMafsky4~hlt$;1(^DM?Sa2eUcf9Ga#_sl{nxAjz2z;Yi%u}X;s_~I7mef1@XsJI_nA6 zm~2a@@yOyp(uTn&R5Ub4%#rAMiP!(3EVeX$ObqArZ4qOb;4COvrjs)^!n)ty~R(+oF_t%iou z!^Nf5v=3K^t-Le3w^4-0qzgC1kd^UZG&u&Uow(YoVV5+`Z`TinM7)E#Fh}UQyQME~ z>eKXp4gW{~iAX#!Ngg&aJp*r+7+j;xjbQaS_l#9G>x~!sJH^tY&@k~m9)}aoKa&#| zYx;jV$d~s-*>VbKGVT0R&@m={14ij4+>qhLuh8w_HL==39x@fh+)FTi2WO^ggI}AT zMsJ$O?P>h*Q|%Sa89OI`ms%pOoPo~SgHqpy_gZYEJQDTD19Iq)G_GphduEyj!pyAN zDTk>ONFxu#qr%1v<>t9~RM>W#?ePQCG#EB)CgR;$CKHs39r42-r|GF)#@oltwfNs6 z7WPq?_(bXgA!eX`;>4hZp#>1eitt4Dn&p*8QmbV9+PT!@C@OxQvl2x`n4y9aJj;p7 zX_g)Hs7=<`1$)T;T)??(?33pU^fVLu4+? zFBen4sQ}87V&aeWum&5^Omh!R=NtisY557%Y1aC`Gs~oGX;vwJy^J(qw;}2b6$Kt` zxRZ%jWA6GXb(98aA%xarzW*t8Q8jk?<5Nk50w@h^qoV+|C{sEemCD8p*_o#!U$u7m zkJCvi4y{SYNGO7A~Z^ zR>Kv!DV@Q#A7j^flJ{Or<%HW|Fc5~24spWmX&)*B-cvDAL)-sRTv5zZxjj%X$b$=Q zd<}|fhBvfr>qD(FaT)apDmwcIu7QB=*wi^yKw3oPw@H+CD}k>!QqOM^aANY4>(dxJ?|PR@h|@!?xXYD2 zCnit1iAox4#n_Ex)MMEZHJHEl1MTP^-7tpp73?iz-I?A%`S;s-RL!B3q+dmeRZSRG z-?foO)dn++5Sp!Hmoxvsqw3lKXwz9>T~^lQb9d3etU~uB8CjUp%+bZ}e8i1~;RLPI z0h5*FP@w|N;0~F(pv?V|pWY=bSNsf5@9S?c)aEx_(jXOXpkRrs>R||1;p@qj~_mVa`eD7H(Q~LtFL$ta(e;gs=uUv z)F}3R(Ztj5teEKvYw^sB=xbFlmw+Z6@e+!%)-DG>oqn%D{P-1oINw;iOVU_Kk?)PCwMRY(b&&Kf`6lEuI zJ5b!OhJBVe>HeI`m;=I%F<5}V0q?zk+KFchPM=j#H1DTz-w82JJP(U8My~-iVaH49 zF|5NNHs5Za;h|#l>5yw)v3{I7A)CK|DjexVql*-}aU;QiZhGUzZ4qjl>vw7F2zQ}) zgcPx)Sr&JHhX(G(nt+L+4Vd){e9r@DMB@0%7yP12QK~dQZ0N=S+F*vU*w~E$w6WW4 zS2cFi0NNlX;{N7tjN*;mjtKj@QCgTdqHV8ST6sJyH-8t!)?H|FAmG9%3?o$14puYSCEX0M#c4Q4tw zkBhd-mq&K*(b#aBnA6Z5a4BhiTrA+(!8uqW}Q8(HBMMI#5%aP(Cf$kR?8us&M zj#8}4SJ%_Q_gbhsfCnxW^NNr0+Ke9!`!6xg98Pv$;;~~GSMI?A!~>I1MR9vcP0Yq_ zECo&M>RyOJIZ!O9%;_GDZ@^95ADa@+Dt9Lx=0>D(NOyP1ZIYlE;*9pGB%hwzoyF-; zLrT${+7HKd2h|mItG-L)qP9{Vx4K(5_bi=+CYGtvC3OV$vB0V&pcatV6}nHQH*w63 z&sJS9?o+iWc?1s;U2fcFJ-oX+kMqFJU<1lnrF)Qv*?@x7Ss69y8dUy%m+rZ~zL%e) zXFE0?(m6#OKC%1UW^B>HsWq$EnsGHbtq-ia8e1?RJ>h}-Fx-P_N|ax&H&Ax$(fw15 z@xjc+Hv+R1V8t8Ss@XVw{olRtliHxo3Gq36!N7zWL|!$yd!UohAS63ik4(m=b@#*2 z=&)`~Z&z_;s%g*ASf%@$X`)r^cX)Tgi_?e{(~$UH!QtI`FNl3{6*2n{@pid-|89Jj zW%_K0Q3;@;La7xCrHkv?!*jX|4!cb^>POx9^2+>qCciGaTj!aqklhYjcM!F`LIDS* z@!SbCXR35WX*nLIB+Ul!{Y<)DF(a-z90lj`pV>FnDt$*#nU`&)dS*pQi!+vcIXY`Y_5*nB9VmG3AT)sPBw;b9}rexHI5iV>c-N<%?+A>c4l1`-i5usqj@{apNMv5spHgd6H%eoWsABn zCcRc7o1BlQAvUh&U%SRlK}>w0DNY)DeSCU@5^6lY@Z9vVbK}#US5wArem4DKdl9V+ zkejZW=IF?pOh~U^LSGi&vV`ry6Vi>VYGd0bq?ave+=PFhSS(}QbzB?kIw{@B2dey2 zEU!T`eL`UpGUWFLDjh>A2R+o1IJ zW~i7)Uou5JQk^p9pOIcsZ#W*K7TYj0-9U&QJ|&n}Xc?^PWUnm6gd=RZHUo23l*1C^$upLpQkBEM`SmoE2tQyuU})kO9%K%o^fl^ld**ZhF)S@t#gagQ!NEHZQviQz0AKDw_>sMVmAG( z#p(U=E{$6{up6C<1mw%?q50`eEtP3&ZGO7Xx-5MQTa63S|H1svxGfWCw><8gyHJ2d z%lR!>^;9~BT}^SqNoq#y3|3E+6N&T$T?L3PmWHZtQc0 z^*xL53o3XRj~?`Y#dU{a%({#dusPz7bvlh2lBRgB_%S3yk7FU8h(f04*U_m87iEv) zxo2HA&FnjiDzVJOlTSHrdgWHkj>JU)q5Yt6VA^Zy$*XcsV4eu=lC$Xi{9uUti&#ZdCzU z(}7~*`Me4aJ`%?qRKFQGABb>L3}8oAc3?cN)z3+D_=>AUmV{+z6$c-dYst<@W}f1~ z%3uV!GKt5E^RrQTW~^A1#<$28BXkk1UN538rb+-RSBKTA!=sgI(=l1LqSfmWtsff- zB2Ol18Gb#P2df7~u*Fmsd1C_yTKG$uXd1x)&hSSxWwK1)|s9(K)q8DXZOqD3m zKu+@!-)6(E4ZV3CXh1eu7?v9ezV`sdM$MIsF zA33}~?5JBtB$x9PTeo#I6^H+FMIzZr3Oex4Bc7bD#`*^xl@u%S#IJ`OcnM!T@lPR# zGZBkKgI-MA7TL%21hLuqJ@)BA_C^~=YgLPxQCOUVt;G<5dL1*cK#2ungR&ic?QtDS z3-972gUT78yN;Uis@D};7u!1ivZ=bbEmVlZ72?q;VtcxvM#z|qMG#C3b5JKu;uKe!=1?!lo%EwBV%_dQ)hOmn z0+nNCpa^mFE=SYE8RPLZ#i~whJ;@`&lr8KbNJouN>*Z)rOb@GEj~SM|9L{1oyuHPX zW^qJ#r~4fdyQ1cPr5anYbY%5=JL(tHnuh!Kb{NHUis5~|9lzO%sZI1^xJaHXry@^1 zBfRqbSOqFNOFr#{PnMCh|IJV>J^yG8J>EITLoKO`E$GiHQ7UBN5+t64W}KP?W}GE; zG1nkomn9XeOzIePh?oYA?XgnUIBHXj_;MjmQ0O+r!6#fRN*G1wjWw*U@#vw7sCXVz-b$$v zn>n68>bMS{z9{o2UQ6l7`ah2cx^>;Owc>g7*w%H^Q1S%+XtNY1(0U^JWb3*Kyf@K- zACG;O;SO}W19^TOwn;!_etv6={}SF*xp&i1U*r;er?UC&P)fs&VF!QGB?Hul=Fcpi$_J9{ji2laAn z(_RPOc6U699x<4O#UJP{`DsVk;T|)g#jC`>P9hH_b+?^@J@YcE1qc%-_GTS+;P>C3 zUpZ2xeiIKXZc>a|CZ0hS1zSY-$r*%YURF(R{*?dRt9ve<%OY6rxp+?aWfkjs+|dA! zIxoh%GA^vYz;a6YRz}2S>ToKe(1lp1Qx2cS;CmCUvte^^gjMX6V*s8++?>n+nG+ud zMNFp7GI!(*a%Wyw&1Ii;T*1_nxH$`no{Q%|24v;nqjQcF9uPhg4f_k@e2)j61E!MV zEYy>ZR4n;3RX89V_aEL4A{?(y5lg**+ezBWuJ6R@*4&nuOo~vN#u2VEZ6Ow)P7%xh z*-=%oWdexAbgo*8wYtQc-L~tT_<)Cz5O%BJ;b6Fm&2?%yCo32Ef<3XD-;VN5e0(dG zSd7?K{>>ZQv1En_1P_ zM4RTp`p%$MA>cg;PBcHffx-xAgp;=N#d*2(0()e6XH!cn_v__a{uY}DYw6@Bz=9O7 zpM4da1JDz~FxJ$gg77YzV=TL_b1+^b(p9{bmd5U??DQ+C@md;L5Qa8Xc3#0N1rv!I z>QmntunZ|crz9SdpPwH#?r%Jsy}pn*J$?$lS&lA`QZiL#r7BZ~VqV4ui6OkNU52-u z%WLx}xCYa<>pO42y}@l2PQ%on>nb}_6&2qG#cx& z1?;MiK(I1|@7r#x;KauhEG5RFHvDKiUNMRazp|n7i$Ijie8B|syo*_}nW;PwX^RIE z2hfE-q`54Duu@xg)}`?vEKS^w2*SE-0Ue!i#xmME%aq9q1TY&-MuHh*Saw+pRdS`X z^G2NJX6i6$7&*yJ}F>i-36J>cA?uMZHK)Mk?(c2squvG4d62 z1fAte*oHSmLw(}f*J-I*TL{G2vUyw>28kHiiWe|P4$b6in{E3mM)^rrzMHGqme;(g!`>poE)(%J=z{fLaZKh#SlrUq z`46hCBqf5o8r7`>Z-Aa)0K2U4;IOk2zVTya%tH7WgFIo+5==f!Ze zq1RcPwSjGHYJ~k~=}XTOz0lzm)nm0Q*JrWaz0l$5b+M-RJ4a#63B#CrCgPJu#aNpGS!V~2Bb9LS3C zP7FpyOhZ2@^@R+BE1?(1j3iD+d$lyC#qRm>I$)Veo8$d}_Z9x2lPdBrk?gmf z1947}@KQu!MP(@!gX^dBC!VD;^B@AUt}DoGGey5CPOqZs5<6Ur=7^9|`IZ8in3>C! zu*a1i9+Ow6h`l|F_brm(IhP$4PGiBWO@_K^8mA~MX)YdCX`MFae1~^2mQ6Dkh|0`` zYA?3>J>C%89OA=aY!r^cm1u~Wm_1EjzrwOxanFL^!IaIq5~Dt=kV z$HcHG?lTh-zb&6#uhs2e@5FD_;z(>^z7yXks&C>0;o?g6;3jn5B`(LZmOC@>)8FHv zwuhbrhrUqHAp$C?%RbDgHE^6C^MW|PY+keDwvmmwx z5xpXh7}J6=+{Rr0f$X={ydNr}#5W$ChL$PgEvm9(F~_h(9NDqtupB6Jqw#R0Rm}JA z$asq+tEM(?R>UgJnmW^N)=@cdE@C%Mia@VMZavP!#7b%misKcFE&w~s;^5_9>h)zq z|K>eP(FC}kc>=udIECh-*Tw3c<_%UV<2mNTAz_-2TxOg_qb;U4Eq6YPmU|UtZ0=d! ze6ONq$IqFWGX2Kw#(dvkOkFy}msQVRwO`)^s$S_;XC`5umccng-Q zDM|ijLby>0HtAcnejS2KjiaX~n6reB(!SG-GSUM-`CJU1R#JaHa<&8#c za%}@cVN;C>URi#=FbvUT6jx$w4pwX;lU4^Y5hv@2tHk24F_n$RD#_KRSp?=Tu2jq} zPv+Gnvr~jad_}Tj`4rh{(||`Az=wBgfqu-AE*_<&##$^Khf*X;ONr%sV1?OvsXR)l z5*~%BSd^C9G;2j^DHXGs={!nHWpY-OmQvw1I*p2UHoLu%X5T-T6|6|@RBmo6R#@+y zYh&I2G-|OgTN(}7;^qeSvg=?}w5?!CZlf9-J36`Ej31NBv(c@L?wF5@ok~PYz$BNT z*lvU^y)|BCS*99W2Vk`l4m!AUYrM)VWgSu$U+ew%Toyi`8f1NZMj6{>HZ0w!%}!+3 zyVZXEJeGa0!(WDHw=(PQfxk`X8&pi>a)o(p&Wfg^Sb^VYXRE-nTOrRUKCf2`29W>8 z?8F61cxf){nr*a{A&BM?&tu`G+aflut(q0HoIh)8;C&#k9iH*4<#3$LjBPa=)6Teqjcj2Iw!O}? z(14v-l3dF^a~_t(HBA?-1PuUXT8(wvTMuv3TO#)bJS8sdG!jK)u`Q8kN-HD9Hk0Rm zB9`I1F_`BqgzxNut%2lcB&&^B327Cu%azCG z@ut#(f)V#F&kl26!fFkxp~&2dh7u124JDvpSBoNjzHBLnxVKc~i?@`U=8Kk+xSwBa z!3u6Myf$nYauXUc+DBrA=~J4@%~S?pf7G^yx7@LL#oGrPi`Jp|H;Wj}!>?SwTE3z( z3+#z@MxpH~W<$kJJ<+75{fYTjyRgrkFM5x}lRTf(c_OtrS8_OP&?230C zomfUkqbb(@dHF;QzU?2H#BJDe6mlkS0X=HVzl&G+Rw}A*xwpdk?Bve0J~k?;v;5j8 zyog+7#oq^!wOwhWpyxGR_8iyqYnz*<*}--ni9@i2p$)7{wh?3-ann?IRbklj~A5?T;a!Kc%)# z=(9kn#|Oq6x3LGt8H4S6$>lD~WypS3IxE|a+daL2t$W&d&;FZqR`wpc2)?_ob7 zTx5!;O~S5Xepc9AY|g7jwW&`v^Vl5=S;L=<#=I#eG+T(r)u7}w-ba;>ZGYA{TFrJF zPukYjffdH$ZSl&hMl)Mmej%-@d!en=@P17P+<0B7Qpi~|7JkhL*qbcmMc9nx_ee(X z_nI-x_N3);wB^zM_(G*v%e`T&EoXa8q?BD_)%Q@eELQV9qxp4g_NxZA1jOSfu>s$` zgvHnrBfp$&El;1$KC4`*dfCp+g@$LM20QU%z52FkBAfQH3t9Isjas(HW&Va+`Aduq z_`uj{v!552e6jv(jA}MpId)*ZVU+0vKV@P|*BW2j5^658v0;;v>#~{~jbvMWp1@Nc z7fTI~^h?G+TP>d2pI}=oZx&(gVnU^xk;!_yV6CID#y0hAQY!{ygKbHJiW%xH4c#vd zwbvNR+6zPfv$8cwW^3L@$kwuA*4~xY=16OkG}i9i4{HZ4Yx||OEeBxjw_?`5k=D)% zYxez%S$IHGzZ&DC2aWG-DJ*;lt*2gW>LH`L9k(w;gIze1Tn<}@qK(#Lr#~@%wzc8c zovh-o70cOLvWlM?8ThB=r$%er9a1yo7oo}j)EEj)!=uK%wp?Lr>g1HtxU%@DQP19T z37fLX@Xa`ed#_$B@tE#XRrzQvNOGPRtMn~PgG-~sNqM6iNVq>E9)ng~VG+wrUxkPlm z37_G5yjQBg`rMs7Bqbcl!{&9-s4puJ#+;ULQMuck?R zJ`jbEn=Hk)!5H({T&X3fiRs&(xCGltKGn!)vU zw$|*(StH*T;ZhnqUb#|@vYii!bS(Q^yfbUT9o%GV!Y>7Ejac{ZWJVI%#0QdZxUP_L zQ)=pgra@Gl{Tt(Yd%}#R)DLBRXEelK0f0QoxG4Lr(kVk8PEmR-Gxe(PjK;Qnk=izc zRs7zlXIW}-6uH-vvFQ4gf}&Zy9zQVl7|m@}*p$mg3Tx9NxkduVirdZj3w;;b>SZI4 z(7J$vf8%ds<@M2G7JHDzyA+F@C~on#E3o*SwD=5JoE~$nynaD3gKv<*S1p6~X9{G8 zs1)WvyK9YoM**ACqnW=f0a>A96yO;b1ObhME}(g>$i1BAk_n>GiqZ zfH&q@;~G*rCD$Fy3FC4g$B#GZp+F=rGcOQ`Mm+(yH{!uQZwHcG)nYBDx+d9Da=l(8 z%nd~Iq9LCzr@J=WQm&DOycrp;&ezUCx7n@? z_CMyjE+sQF7pK=p@`7Rh*3*|8c4y`Ub28nLTptb)&XE~dwZPS@bc0A{UXItF<;%*; z!J6KHFPwvo_d+6l9UBjRNTz2*um6+r7OzcWvA5_TJZOyG2u9 zs}vhO;AG?KyK3Ue`fs6Ox^kaXS6WIQK4E5ga{SR;j|cN3eQ3Ve(KstB7fm@YD;F~n zag)h*o9hXN{JDO2UJlxARwNj5M?JaGXkIQ}MB}JxhIU(>Zby_$ARNv@YY64|yqR8X zrJd`}!@ehZp)B0M{*t%jHL@XZ$A8a&XvTCqhH_C|p(t8fAQ$(GH{uPW{RRV3Z#Wo6 zeOqCr*;=4Wcav+&Q@scb+c~IvnMO zi^)$GKN8We`p_|Cefm4(ob~izfmlyGSGs7W&*zJSDteE>t zH$Y>}3An>PPbnEgHkNAj*w|-fkK$H!8 z-c_CLJK(BBcj2{atmu7pttMMEb@<;)Ghp6@*9b3H-i2A%ZzG)J_vhdfwJ!&ilNHXx zt>x$Sl*_jsH}Ap}Y&Me@@a1Oa;SR;>`e-;S7bhPfJN|Ga6v_#Tr1Caw5O(AFnG?Yp zeB6N%Pc-by3E~MA&I#dB62+>{&Ta-(ZK6*=LNjsJUp$?M@D$vV5^i& zcR1G{^ylVSVKm6X6lHXGn7|fAXOa_&pclytcyfI?0ZeJdNndzq#;VkHEwrV0gHdnP z7s|=X!H6Lz>c<@8s6R98%L@C@bA=OW90wFslERn#;L9CUlv$jMiK+!Rcq|TL6@zx%^f>+#C0|SU-EVy zcQN~41uXKJtE0`%7JcUO*=}GbKXWy)|5CupeeQBSReG7N)C&V%u$RLBH^|9g8!9S0e?Nt|LO^g14i<{@P)M0fKmLfda;$CyLQ>^Z!Kfphi16#uP@lLle_Nv{*Glq#=+z#HWwRZ8LO$bi?_&_V7+_8mlSCGry@A%pbUH!owJ zuU$99;p8M0zPOB?+>zn25qpK$AN6ebdX>FlxyUlUfFAhD)z02*xy*5`o(z{wkA7EOMIR!xzeGoo+x~jiT~lSJ6Z?u}-y!xDJv+RX%5ETbtz`EQ zyH?MxsjaeK6Z@59e_hU|9K33{SL&!})fKXoE3rA>p_J>dkfmG+bM!Q|+qSOChE}j~ zpJd=zT~2l&GN314NLI-RdF?IPp~Uvqvmez{*-6AsknF2qk0Dq+TCIVKt{}8PqMONW zfu8M|qOzZZ{X8D*cSIi3lW#Uu$;6eih!a@$WfWBPm9mHvR%(m*R3nwmAl50_Rx6q3 zB!bnWO>b1uo`l{l(L8c{x1N2diOP;6_DRXUOze|-wjfny7Z5vFvL6sTSI=H*suCh&5v5Vhkc%~<1w6l8&Y_v*SJzE_r z*kzTh+D-z!pU_Tvw7j9BBM5y|pwF&i2Yy7Pda|oaC1(@)rXZJ)(>L|#v{LCQ8C2Pg#IBR<-WawwxN5i~ zvQ+dOp=Ts|iQJyiyImJj*`yCx_zJqG?sZYd4IuERd*u(bg=}k~lFdJm^%Iort;7cP zZ2Oifn?r0L$qxH~Whb~@Ha$A2m5RPd=nE2kjoiMVXZN>O*_Fg%Xu`wYLhLd-K?T+LJf(wUM*|L(6e9N zqO$j{X0}RL6D*weCGs9UnbuAvpC+$QNp>=^PwCmg?NxRmvGXLmdNn&)^{T-x@1UZG z2t6RtQ{?u5-tF(Vs_fsZ*@0^DU@NSV#q@`sY;~JTrmm5-)0h=zpmu!3HeRExo~Jvh zY*%7$m+S*;SV1iWt4FuruA+|~_h1 zO6+z$JENP*{!Huz$zm4ixcXNO_jq>|Om~XTxm~Yk zeLYq78)DB&_BUeB>e-R^s_gaaWFc2!p0+6Dly$O@tE|%&@`n3Vwgs_SlI^&THFP3e zJ(_U8islj;mgvLeHmqlFeL!VjLZS@Rt;q1}L{8L`FFmM|tH|qe$$m)eay|QTZzK~~U>Y)(()*}s8JX@hV#XzS;ufhyXK z(9RNlklc3Gv*RC9*^wLAxLZ)S!s+uwKBgyk4pPat$?Gi1<`X+h&sH9yvb%}hA=#r~ zJ6tu`JBO<1FN9u{sC}a> z-lAt4J*u)phV(AF~ZfOeTS>)OhTti^nG$WUC%ChOl1oB5GGi1JYXL-tClUIFL?P~#nz22xP!@5mLU|8B z*1>h2R^d#7GYD=&Fk~J4;4>=Ri{PFF_b+5~A_!Q|zB68B#}hk_*jLCgWS!%4&#Lg^ zLN+Ce>Lqq9u?zI9@x01@LXHm-{1w5Fb&emNpu$%O{)^yBo7u4bSB*IKg330-w0Zs- zy2)l)Pl3&{o*?TS|20vCyA#}n;NAp7*1_2?TJT~%U!OZ3A=q{h#SdhNI`p}hEOe3m z9b#vb-vWXm>)_r0Q{g=X?sIcm~09 z35KkL`_CY_>S!zCja%4-(N@F|b?6eN`u&dlo+H1P$uDFb{PRo|uKuAc>ZA{4aW(o- zmNjG@ob{Rtw<5SX!JP<(tb@nAPVk9wh?v-%580-t5iy|h}owJw$%bkYC6;IAfj)m)a(a`fq|OZQ|9Zl@xyj>Rb&wBFu0@ZDU?Xs4Vx66Vy2!^b4 z+hdsu-%4;hg6|<1vJQS@xe5;>crd|F5e!)epIkxkg?A7zv1~ir|E?7=L>-#CO7**i z*iGd30QrTig9pY`_V=s6(5tRsHrQHkbSkCm6C0erlZxPbT;!g5M$-vJU=my$Y`;coo6h35KkL zuiHrQd-EmRKFE=%91X(Q)@${D(oZJL-5T6L)O8c zZdTz32)>WtfdoU=!Sy~QxX%ZOnAm4_vNo#`F`*E3Xk@GEcPX)p$nScBA?x6|+f?{d zf)5jXmSD&_`1|cDY}+Nv`X7R;?2=^-SqFP|671fHh>2~wi&fo(hzW(LLm%6v`n{9b zZo6b1hY5zPgV*j>;U@?lN$^C1A?x5$dsX;7g5M^1Il+*1aJ!ErJY$;`@a|pg#5OBn zh&poOKGp4S`d}IpJ2#3`1D~F{*d58fuu~Sk%h&puJ7jcx&4?9hMPmte> z)##KiX6%Ti7u zVnQM6&|{}nzt0mpp8QTH7_ts-a7Kmm30_R_27)2$;M}t+e3al%2>zO2$U1ob*92ER zhloFtMSW#2yKoK>eoa)y>Y_pGKHH8R?pu!FJ$$F~4PnLBC!H{+Efr|v^|B8r-?XZtczJ!Pgg{VVo{;c|agxI0v zcO1cxb#Sj=RQL^oUnO_}!H{+E>|a%QE5VxyK1eWR9em~z!DIijBK~e4>+`o2F+?4j z{=4e8)_z&i)%VMiZn9ri6J#AcPJ$up;Aj3(;jaijN$^huL)O7NuBdRO z1G22kACP5T_khecWF1_|#y4n*PeBe4>?OD@!H{+E9d;G&P4N8$43cgF9AL;YJ5#RW&#$tIACDJmQ!*hg@?!#G?V zA?w*Hja0S|u@4YCm>fgaIlim03cqle6^=(G6U&HwPS3u2qslHL$4d#`L@;EX<1d=1 z@Nt4aCHR}eY|ezMM%);?wOUWd(x1qpwtXUt`ua~~QA5@_?$=C(4T94NZb2|)9lSVA zh3_HwPJ(j@hOC2sN>|~h2!4X#mp);`UPj1zHt1B@dBna)>?(2$S?Bl(Lxm3@@hhlg zV!tHzBRyN_QrSPq@oxl|J0i;(vd(d$TZJ1RkrkD4L{^mN2+PK*X4?@h+sUJ{w-eiu z*!##aWS!&5nJPT|2=ly(h>3lM*oXD(VXw-*MUG!5coD&nb&hZFtMGP$KP31tpf^iI zd;_gJ>m86RR-sM*1K%p~AG$g zgQo1{Lzt^jlT{t$_7`8f_Dz-wVqa1Y-Xy_p61+(Zx|*xtKneDf;7AGf(}It*P{C;u zoFc)uB{)S3e$Y|{*Gq7X1b0htjTZd7l?tAf;Asi|BEi#I@aCITunL>=nA>BocvLiH zY=l|xh}*?QU4=Z~Mn!QR4M+WiwwEYG9l9r5MZ*$(kkBC#g{VW5Zc)*R5`CV~nG%Jl zL+@#;qRSg>&;cD)w1-6RA~Y&dh&puXZ7MoeqGJgCpF|<*&|f;K=zNL3PiRb{ z5Orv%vx;=NtBT&pk|v>Y8XlLGgFU`D z3Q>oa>#m}mC3+j7y(9`zhjzY0MIV#sBZQ8ZC`29l%AG1YOQLTOx>%wRb?A}1R21Lq zc&u9q#ir;yR){(@`5qO$DA6AYy&_SFIyBrvMQ>mQGvT$?XR?HwvBK%_3Q>o?-%~|z zk!Tx2yGsd-4#Np6lCZB^O0St#L3pUV=i&%*DZgdytCwtZAIB+&q&9V7}- zhrSS2(TGHQ6FO9)5OwHB5fz;z(FugUDp80!v|6r;VxcmRwSZ8}!Q-())S*42D*CxZ zj}iKvL?Pitd!?HbRd`6rv72I$TA6lIVFtOR+f{ z;1!|{tv^CV>#`|@DB;?e*UcxOr%4o|4$XO7McYa=o6tKX3Q>p78>ym$Bszf5(GrEI zLw^{hqBA5qmC$!33Q>nb8!=Gli5 zu6$CKa08aT2bBX+huX%fXmg1M3B6UK5Orw#aVnZ4(LRI@lPE+TI_YT@eNmz>5c--# zA?ncm&!{MNKH#w~BXo;IA?nZ?&#LGb5vn72(B&_xDBel(Vmd(RDTzYVp})VRqJK;D4?-)jf)nrxQHQpASw&OXoYU~y z__VAX9NfxLh&uG?$tv1aqPG+JfJ7nc(Ct%H^l^y}C-gaqLe!xZr>f{2iM~bXQi(#; zq1~sc=q`zFC-hT^Le!x%rmN`B61_mEjdlMK#RO4@9-pD2$!yrSDB(I^$r4VNC`28a zGE+s{N%Uqy@02J+9U6UAMF&fCAfZo46rv7Y@S2J;iB2Q*J&8ipq32&$(M=LvPbj|O z^J0RiLw#?m=r8TBWEJ8a< z6rv7In4_Y(5)BjjutXv1&|BYD(U&ATko?^p1+IlIU_mKa?m$9s2RRDvI$2 zFQ(53{XwD-b!e^kRkR#C`47-CXJrZ3WQBH*i;Ft+{<$jZk*JH%n##}Yb4q7XUSM9s>Dt7Ija^)2V={(o;eh>rjO diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index 9f171f4259b28142f9b2118c5bdf89102635aab6..ffb7a6aecc8d14212ec04740b1f7fa5505f3f43a 100644 GIT binary patch delta 64 zcmeCX%-naGdBZwR!-A~T?0oa0VtvzOipfF|{yH+kBsM{e1xK1s3=K delta 64 zcmeCX%-naGdBZwRLyMFmqxjs^e0>YkWTQkgLqkIgQ%f^*!^Gr7a|6?~#1s>QR8va} Tb5lbjpbCS;q|Ns^*WU*Kt(Fw_ diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index 853fa8f9fa1a71c1d1d5d75edcc02feda9066ff8..dd4cea2a61bf50ad9c3ce7d588c2500591600360 100644 GIT binary patch delta 471 zcmbPtn|0o8)(tB-4GXeTv-8c1iuFyCEmD$<(-JKWlMO5lOwv*eQj=5C43iU$jDXn0 zA}KW`#ni$)ZSze|r-I3WRlbw$s>LT?t5TmVU9CLXuu5U_p(^RgflU%(YRblz);bDc zDmf!DFFiHBATw|B$13H?q1A5WYQ0)>Zu&fZM(N2fYBeWMsS};-SSL66YrX8`O|{aK z4eCTD3)U%cfo+QcTNhm?$rMvNIdPBJreJQcW!_ z%uNlAfGP|UlQ!SvbSmIV&PdElPmM3g%$vNoN@seY8Kd}Qqbjq>EY+%$UsXv>ZmUw5 zY*#Hld484FFxH90XaIW;G~q$n}3I4!kkvTc)$SXpLqVtjs4d~RZKNorAYVo?f6<@AfPzyK;} hV&O|qEh)*&OOG!uNGwW?pS-2fiXQfCzTR~F6#!2Lx#$1@ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 339f73c03267213a250bcd651d5435c030991887..90d01e1ab60a647c63d2c176a7830697d8771abf 100644 GIT binary patch delta 8473 zcmcIp30zZGy7zoQHnxN$fUH45K$8$c!dehq5Eqo{bkufK5CS18ptx1rQKq#WtXA=$ zXSCGau}U;)9O3t+$1D1zBg}vt-scL^Zmc= zeE;)(=icjE4}zb+5FEHPXzjK)13#2zHrXsQ8gu3}XPB#VYo=$_R^??@8}baM+8TqU zx~4X>y2@yz|C@5BTWV^|xjD7=@1>#HvRsY9kWc?JXJdKs)80QTaa_3+-z(nWDc)T2 zmiNzQd}7E9Pm#QM67CqP@)6l1h8aQo;$uy7EJd=+>^yy@*`POOW$QBy2Cc?uVmTNs zhWyMbdY7MR$j-wvOHE5D7N;(i=AYFb1o zE*|;w0gL|SgvNQ-=9zqxDNC={YpNR?8Z6awEj9Xft9VMgRk7k<_vuq_d-EubI!>q4 z>qZaBXx7j_^$i+>KC{{7dEA=GD!jiw8dq!-#pRjv^m(Sy8qI~J*w+Hzn>JJ4yV*2p z+4|fpTvcVl8MTA)<;q%r;L3-Eopo7wbDhE;P-tH@y%qkqY|B};WtJ4BzXX?99+}{; z{DiCR@FRRga`w);B#3ypjCi0W2{%qt;}A=T-<-;9^?st*Ui2e;L}=VuS7^U9qYls- z{CGnX-q8?&-Br&+6u^Js@ErHKB+MIead}W>*U!N@YizMLK*(FhZku}m* zF7DH3-gIkldQ1DW?P=Da70W!lNTsgr;w8ne&X?gybBaaD+yky!pj@*+gHO%rLOPuB z$}Ai>w*e-t#E&mhN!>dKpI^9jpxHzxN2WeA&#ccjYc*!0-k6!K&ob$A^PInOC}`4~ zbMR}wniT4#j-}5P;1i1__{%Y(pUk@gpPgGCZDQ+k_*7=n8AN&lkRHEO6703CQhe;0 z>HnXlr7xM{v$R!9o}y%l0)E;UHCQ&kL|^E4aZ6F3K02MzU^M9rMxEhDrR}jqVVq6+ zDT55hJLeaRM)1W6JMwEZj_<|^3#;*iSAwy1*+G1Mak=Q{OeYDqypV+tJ=cO8a6kLR z7dIeOf!kWOIH5H}RL3;NU_)yqvQVK}G>r+WsEHC6?~~)}t-*q5>RZc`5qcVbwOC1d z-UpqyiYZQ&;4SOYVGO(U!`IdY3l2xxyI)$3(0X^6IZSyi4U>uwtgJzA@K81;{GDeg zF&FKW;I%IwM(?v&*f4C6qn;?>*H zMHT|h#YwZqqXn!u=su6M=av3&SAsjcqH*zH<(iH(h?0`8egmV$&$1vYDSoEI2ns1y zBq!kF1sbN@)3G`*Crh7;6E_ye<(T!xa?g{-=ss!I;5MwrPrf?9tsTg;@oY;BD#WMS zwYce=6t&=%*W&QWjbXhLGDnlf6}N24!>OBW{(z_a33Kq!%@O{Aj?KYnf-9!@dA7E3 zQhaf<0adxAq8GRnx2^BbdFD!^@t12C!8|Fsp@6}nUo(x-E)94d;Wm1ZuH0H6tnld8 z!4VJF1IKS0CS~3ZM2(khOX)4eORfaa3Ra4Q7ItVq+>frJ4BnB8XKWw&@G=>2 zZ+n(MVAR9H^*e^5Ew0GHtJuO`m9i57AD>)?cDoQ!8%JDA7IDS(xbkH^tP)lqzcWu* z{q>!N{#L(h=MXpEyXeEN0Eo~<4|q5~#(mFgasGh+gXX`uT#Gia+&^W>q78iKZ=ySY z5Z?T|bht0YC0#?|u9ToLs6W16Ai{gTmBSq=sj7z*d(-RV10YI9P$n7)DtaA*w9rRJ zZhV5G&>dP0CBAl040%#Kdv_z+ZU1U_6oQd5d?QgyD$-D(yi_K%p*78#ZXHVNGsL8*3dncHVSbr3_!)n+(giW2xIQE^{O@o6axd@G?gd5QcLvUpOW* zz~z3I+x^}@T&DmDy#{^pf&cme-eD$bWb-wU;Ol?f!;H4PlkI7H(rr6=Un&D`yjKVp z+`?P?@?F|v-%W>`Zs3h~xtrNXO=1Tls#J#2ltSOi?Z*xKO`r}Ys2io@$_};o1E=z( z{dth$AwT4l*T44yGUJwgMNk;biWYAUb{1HqsjZ)B(RftY987C75ysIAtqcA2RsVEJ z`4Ok5rRNHu+9Sd-L2mEt6ah4IAOWAe5r{8;Fi?ETZ4`-(AEv-_9)^E*Vt&?l!MP>F zaY|PVYz^kyauc=n+?E|QzpfYI9V%uU@(&!=!uDXkA%Vg@9V*;&Fo^BQ&bAn!wLEui zn8IflUO{&2AwcjAuM1qDmp|=e7skO2AxE-WP5a^9!&@OB1Xp$EgCvCSyr2;LQTHIA z7q(|&j|_qsH}LF{Y8OzUjRmb6s5qL)0OtNX<{nY&G4^XmUq&#VYsgW&j$PvT*#U{585A4j_Y-RXGvy^!4oS9W{x>{EL^v-5Crkn6^}b%Qij4K=Ra zMpL1xv8OZOGk2_((_>jImg_Cg>Svsp5C3G;USkf?CdzV8?O^8X%Fc%|!IQgZ_E8omzcDbL&P$;yr>6 zukq@R1o%%OJbUgWVWdfc`t}Yua-$m!_1&k(Vdq^10zl#JqfHvl`+-VW>74+j1Y%tP z30I?G6d}k8X6Lqc&@nhC2#N%q{BZJ%WRwi~f?GCmD%{AiSd{BR?r76tx(mURbdy~G zGnwlKlJq4mV5vS4UT^^fC7?krBrzive&a?u5|GOoIg*HCf$nDZL_kxsB%(5>kpS&; zL-87P*yWEsMjYpeEI-^iY)i)(jocvLX(p^yg2nsE9LsN7} z?}B#eXpxt@p}RV&DLBN8%nmoQT8|bngstlvwyttHAE7>3U3IrEIi7)H&<8m4fs*Vo zLna)Md-w0Va@uAoWR(Fmq0gBb{>8x@ILo!P&?Ofdm}>c)`ZO>*^?d^029jt*AEE%# zmV)>@m-ybJ(}V!$unZ+TvQPqO6nwOPAf`>iQK1fI!EOYGzm~QX-P&Ja&{PsMjx>v znxI?3rip;Wlc~c|61wO@$ll@T9T&8!6s4kDZs=+$%Ain*mij9kf%<_Yf;UdLf~*^X zj4rE{WhjJvI|B8G7&ktq4E6WGGeFCs_c+zYXnV}?M)-A zhyT5q+e`ZCk(Bfa5uEgj2yfEMBRJ_BM$zqyX0FRbqoAIvXyJ(nPB|(kTe6V>{4+j8 zV0>MK7vq?D^8tqDl12ha{{8Oh?vJKrH04He@lyOmA zAk!sPB`6Da2|*~^2s4RVJSMPDADi>}*vYtWtK1573_n7r6#PJ~>E!4>MrS~fl2b%Q z>;Q2h?yDTgJbw@#bpjDkfRZyUG4>WnM(rciJ zN#IHJ07feLW12LG`pZ@F8RMfE9^`J`u2Yo9S|#HVRj(U^lHKpPl}gUy@{iCJ1WS~> zbb&xHc)(`#IYzdVVBa2#@{lxoJI$IHu!x!yss1(?8owbPwA+; zi5AC)E3fclUpV(artuh^)14|g5pXvS{z`LV4ZKZ|x*K?(5Rf(SZ&oAi8wqM=?T@Ja(RUVQ>eM4Z>RR9?L9X0AQj z^P@ca#)ysxG2|t=lJYPSUBjPL4oNAT4Mv|cq*z?w6sC`d-7<8A3De1!aug}97Z5kC zT|zuY>u!}7ttBd9F8k!Uj>J!e^}ZC`6e#$5DwIRA+D(BxN$o{Jhhy$E(2J0fBxOQ8 zIbeaokgsNYLSv+w{6mb4{+n6zTuW7r-u3pDMpx*xm|aT)jNukwR6G7z3o=A+_{Q1D zmX@UEZ2H9A!HUaXLPANWmF~l4H6O7}YHuQEsU7qKR3pF&3a~S^l`Cjro>~~Nvq)1e z7*G<~k_*EXK0)3T7~HG&V$iPkW>6TgC)7fFI#|v})xv;9=ShzOip8a3K`6}E9-0Gd z$TNb}&D>!j4r9))_F^uHX3I`gpZqMO@-kR_&)E)g`ZDdCi@=BB{3|dE43WJA>LR@e zoIz5q!Z%P9$-Yt5LusVz`&3DE5!K`bdX3?tNY2eH30;ydl5r#VaoJ2-u0tD|;ZXKK zbO3CNbm+c=uLEE~BvIXlLKrF|6K;bUM#;(Y+mH+cBgvlIkP1aAa`rZ8#R+udtjMk< zx~Y&YvGt=_tcYtSO_w1qz}6T^>hD0wk_A-SY8y&F+_l<9(dX4x+dwWUq7$Ok#yqrg z%T{VZ@8?0+L1Gl+mc3(($^H8vVL-=Sm>>^{qM;*g zheWKVw$Lc@;4Zul1y1u^r};=Ir3FKK@OcYA= zhwd`%sK-jn2R0o?O-)Qadg`Xuxpk^@OH1o!=A-)5t?c9dJ@#yd5$$+Smp@?dwbpN~ z?{9tATKl&*Pkg3+^@cilQOKJ2b_X9-+KML4w2z-&Tc1;uKha)YV6)kZ@*M?*w(5!1 zh1UE>t0(1IYx5mNh50r+v9MOxcz#lb7pMx&c6+hiTAZ7YHT@s!emenw*ZdELfkP=;2kOT=0!)HfF<1%+j7oaBhxSm`t>q&U)ICxi$+GChD z8PFf_<8=*@{c>m%w7cZv+FjaKCc`h(H=>tmY2v{RZruA9UTFT31iW`fh0%mu2Deil z6g0cWrOs$-U(lZJ3Td5!H8ZCueID5zPHr5EdgHprUr}GYY5H{h;jB7EYXe5NjH zb-hX6?N*Do*DLY-IZmUE2Jr?48OPv}mAGw2BI^TxNjiREeuc59$CWX7cSDQ>kKN(0 zMMLHNxwX)F5Jls*kqLO^qGMcfW&SutGRD9LnSq_(r-4ZvK)ctZ5pAT(sz5wgR6S zo`^g48epbEn30T3xPN&RPFs8$o>pMn%3<<)>Yzn|=Z~~QGqo-wmRMU=?)i1e0R;OM zxYLw{t5&E(7g5VSxOzn&ocN>zPATxU#9W1Q4i&#emZT)%jwxz67o6~%crpdS=Pcg} z=Ui%ZLV?dEC*h}C6|je2E@}?rZatpW&20!|N-0_kU2%g%YXOszMgr#&ykI54ze0oS z*Qn)7sDW0A$F-b9S@_I`DB-jWWyzlu#lA>4q)2k+(xbqdhl{~E2P>Z10+picr*P%; zk*JO3%%$|@4AtTh&&RNg-Tg>9YNAna+Z=~npg|rdqlF}G9yKq6S|v>y{&h)j;>P@h zK0DW*I<}Plq)nbxV(#`cj@;#2a_vsD*`Rp~gcStPAH`0x6Q{tbNj)x;GR|@BPDmz5B>m!^AUdJu%bJ6=WMXQ^$ z<2*Oe0C#0O=B5MIrEzNn<5!#&G?%hSn2WYWXq8)nwmG+OE!=88GXwLdIovaDMc z%{Qm9QAI6qQ)M*X`KS>;wmdEWPFDN!HvrFAt1mX^+JpY(!0lb>`$0-y!b>y@-}0@l z@Y|{@l+J1V&X}2?R`E9aGc}c~d|6dEnIM=8Xv=&nWl+xCzNqAdyq*+tN}fdaZ|BIj z%l@>&itc1#*B)&QH8{7izS++DW|+#?H*mMAYu1p?fk`ShYhI;$tX8qMd4yV*QA_fy zG~vj$Il;LOixpR|v*DfNL-Dv(N?o4SVk6DbNJ*ViXSQ1M@PD-pzRAvfvt6SfA1g$x zdsYi^_=8muT}Pb)b2?p$4?X9=meuZ_73Ws_oeR5G6ynF9QN&i=`~dee3HL*>QRI0a z&B1yV{u*0hrzm?}l+g|$BUIsJM$f2lYx`qxL`5H23gJ-&Qq+p{!W@J6QA81j$hjl z2gB6DwccnT+^rV0eUJkNt7)gDc>eJGeKIr&SM3`L)oQ_(30dG&3r#7=NKNQ*RQ{5{q9T^X*v&WoOkE#J#viy9Yh zEr*?I`easar#1#R5$@Rf6xC__#0h3O%7(*gyeT%9iVkc`joKpls&w_OB!hm38h^hn z1>OyGGyLU5x~AdfQaDd_%)|MYAMED)2g&!rSFR9^XXkbU!kZ8F#g}*NrIuTF7Wgkf z@i^&?JSv&6tB_mC;OOy|+7S6_?(!k_= zhiC83gPJgU2+P22r}Xmw;nw)-ZU@ZtlV2C*O>3g?l2;pHaTv`RL$iWKC4y<57%Fdg zIS!vcU4qsVc{cvWB&Wi2$r%b~5HKis*_jgP@N*8LysFsX`Q){$2o8slVUd8VW(DJK z_w<#Aiuz=437qy@7s=&4Zq10#eO!#Q_Qt}MFkWky!g#HH6-H|<6@Rn01{C3V#J+nV zB%IgUwJ=_5#N?)01CqltDQJ*3pum#AQ@Uq1jj;XM0kBJ@oMjzLv8 zPE0C>`?=xBaQxxHOdx+~B6}aogvpZPi9-{KLg*|+iNZn?GQne#>cKY>nTk@IPMud0 z2PtVVEF9nH6XW^*jg<)g#I2tT$NM`gf&8Hn(vB3uZl+K@7tUUIw5^#Kb!K9Bnwl8- zMSGK(rATJs*|S{c#@f1BwRIC~Eq+e}x{3nHpg;r(NJ0V`^b8zUd%}+%L+~ZXaP?R` zT;brp3>R{W$j(H~+~e^GVRSx^3f?(>(kCY?P!yFXeCY!nVy>>6WEN47xKz=IrykED zoQe*bPgD{I99yQuKngBAIU5E<5Ek_K&6D})E@nR{0_Xf~ISh(m_MzF-zCT{|RU$rY zQ$T41%WJ_~*42K+%}A z9Xj9TW3VW$D%N`v-u;sTeNS|WQq$cds%g^&M|Mq!DO}zo{28R_MnQ5UZ#Z)#Z@BnK zKHNY4XL&I6i)0<=h~yoY8p%73*xa(?0;kpr?D*^=OpIhxd%ql|!qiCCdlMshO^GTt z&=>erxbVE4EaFA6@-~}T!zM@eg;>}kZe)|Vk>|yYd~+cl;2__~esLo&iW?y|+7l?p zH!T9OZzj$&@uH>y=u2Tn3?lEe7mRS8`K9l)I`(bFbK|Qb1q5l>X>%)u`fH@8<=cmX zb!&bOColKpNBlrCBp9EYWAViOm=X+H4L@NW7Z)`DlBSR^XeXd`$=>}6G&}^gaKmL9p??HQ0rFQGerN;Jsg`NPsg;UL(^K)OEHyD> zDEdaC475w~up$zT>F%M^r^88>3UL))WJyHt`4oaei!!A}qqN9`E(C-fBJ5V8A^wM9 zAIf+gG5=9=HBE=^mRwOCD7CCUiG4~GIw=C+2aaBnsy-TxV$0}6RnZJBA=@LPeUXNa zAa8{peT|@k+m~utqEM-DxDc87L*hQBQk81OJdMH)DP=;b2_SSL79;ac>xDj+ z!7Ic)Ice1_1B;q@|*xP^IH9$+p`-DrAs~gevvv zhax_%^F~-u9~pe4;hF(jaAM2bIK1^MxWK^F5##~8(?3sd04J`qA~5lRA^q&!%JUhh(_b)Y^lP*Q&H zKsjAXR%7=|$_>TH&f|Srj7nj$q`0pHB}Pi_Tf&_-IEBO z*j&@lXmNre|HCG=q@&Rqa_fdJ2;sxXbp%yIb2NJ)TuQw84WoX7`b~5L)<*MQETi6* zM)UCyU^*y-j)!95)KS8lCz|ut5zTqq5zTp9bqrlX@OCui4V@IMnUD>CiRPyoV#C^y z_-At=!2gI4-iAL!OT2x@y!y4_%#&zqJVfeQ8$L+EhUvX^U!r;Okte=kM}Z*rj5q5! zm4awe76QM-fmP3+{Quz6E-saN#w7{o&m~$aoUVdF+5nuUP+?&*Y=v=pHoga^KoZoF zc$Pe)z9*)}={ZyJp|{R$a;VTR73Kt1O+S&q&r_iZR_WQ(vsgtoCzA~dH%FF2s*4DQo&2KVSWgF`c59fJSVv(9^0&pHns5=M*% z6A&B5AaPF_)C9OM6|Rnl>2QN)lmCC>I&&Vj?!LROG}J8N6J&C3=7jn2!>6#85vCnCW4R-ySbScNuvV?PIz46Yiz zd0)T<85}hVy)Hs2w5f%MEwQ3 z2lYnb-mjrI954zEUqi*hqr`f-yN!HATkaOfk#M=2u3t{p(ce=^*)4b1Gsyw^d$ucv z{MX!_Ya;u<+nq=LxbLGM`|{}({p#W_pjY(7;4Y+BbWFL6=oPJfw}W2M#Jh{>)m&us z+AhIK1do`=ps)lR++$6GY$;_UXt*(t_(BOuPsz&L6CaZcVM&KD}-wX0C|zl)9tjsO4v diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index e1e7b3580..7df3c5f84 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index d84dc1be3..de35e30ef 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 6939de730..caf107126 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index ec836b743..c4931019a 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index b78fee999..4f154be30 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 5b779141e..5701497fd 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index a1bb4c374..c98db501c 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 2931c3f3b..a5da30c44 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 496ff82ba..374b56832 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -19,7 +19,7 @@ "Quickstart\n", "
\n", " \n", - "cleanlab finds label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find label issues in your multi-label dataset:\n", + "cleanlab finds data/label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find issues in your multi-label dataset:\n", "\n", "

\n", " \n", @@ -28,10 +28,10 @@ "\n", "# Assuming your dataset has a label column named 'label'\n", "lab = Datalab(dataset, label_name='label', task='multilabel')\n", + "# To detect more issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", "\n", - "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}})\n", - "\n", - "ranked_label_issues = lab.get_issues(\"label\").sort_values(\"label_score\")\n", + "lab.report()\n", "```\n", "\n", " \n", @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -553,6 +553,16 @@ "print(f\"Label quality scores of the first 10 examples in dataset:\\n{scores[:10]}\")" ] }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d6", + "metadata": {}, + "source": [ + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset.\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks)." + ] + }, { "cell_type": "markdown", "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d5", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 18e5c833d..1fed0cdaa 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 206ce0d9c..cd3edb0ed 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 5e6ecaaa9..e2ffc2a97 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 928c700d4..0bf8faadf 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index 0e04ce609..382d08d62 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 11a5c643d..b8651e3af 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 2cb39ad6b..2328cbcda 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 5b7f7c3eb..07cbc934a 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 75, 76, 83, 85, 86], "generate_noise_matrix_from_trac": [0, 1, 75, 76, 83, 85, 86], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 31, 33, 35, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 78, 79, 82, 83, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 41, 43, 45, 48, 50, 55, 58, 59, 60, 72, 81, 82], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 55, 57, 58, 59, 60, 78, 87, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 74, 75, 76, 79, 81, 83, 85, 86, 93], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 78, 79, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 86, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 74, 75, 76, 79, 80, 88, 93], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 88, 91], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 33, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 41, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 46, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 61, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 92, 93], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 55, 58, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 74, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 33, 35, 48, 49, 59, 61, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 33, 35, 41, 48, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 55, 58, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 62, 72, 81, 82, 83, 85, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 33, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 74, 75, 81, 83, 85, 86, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 55, 58, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 55, 58, 62, 72, 81, 87], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 93, 94], "made": [2, 4, 14, 31, 35, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 79, 80, 82, 86, 91, 92, 93, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 79, 81, 82, 83, 86, 89, 93], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 81, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 31, 34, 35, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 37, 41, 50, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 70, 73, 83, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 33, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 86, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 55, 58, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 74, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 81, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 33, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 78, 79, 80, 81, 82, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 33, 34, 61, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 81, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 86, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 74, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 31, 35, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 37, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 79, 82, 86, 93], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62, 81], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 33, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 61, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62], "longer": [2, 40, 41, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 86, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 81, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 41, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 31, 35, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 33, 35, 61, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 55, 58, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 33, 35, 61, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 33, 35, 48, 49, 61, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 33, 35, 61, 62], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 74, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 33, 35, 48, 49, 61, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 46, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 61, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 10, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "union": [3, 4, 10, 41, 45, 46, 52, 58, 62, 66, 70, 81], "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 88, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 79, 80, 81, 82, 83, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 44, 54, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 88, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33, 34], "amongst": [3, 8], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 86, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 35], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83, 86], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 34, 36, 64, 66], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 41, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 19, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 48, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 86, 88, 90, 92, 93, 94], "With": [4, 34, 79, 83, 85, 90, 91, 93, 94], "usag": [4, 34, 49], "issue_summari": [4, 8, 11, 75], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84], "someth": [4, 5, 31, 35, 60], "123": [4, 75, 76], "456": [4, 74, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82, 86], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 74, 75, 79, 81, 93], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 83], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 86, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 78, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51, 79, 93], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 78, 79, 83], "violat": [8, 78, 79, 83], "assumpt": [8, 78, 79, 83], "changepoint": [8, 78, 79, 83], "shift": [8, 78, 79, 83], "drift": [8, 76, 78, 83], "autocorrel": [8, 78, 79, 83], "almost": [8, 78, 79, 83], "adjac": [8, 78, 79, 83], "tend": [8, 30, 39, 78, 79, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 83, 88, 89, 90, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 88], "subpar": 8, "special": [8, 44], "techniqu": 8, "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 78, 81, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 19, 24, 75], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18, 19], "underperforminggroupissuemanag": [8, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16, 19], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 75, 80, 85, 87, 91, 94], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 82, 85, 86, 87, 91, 94], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 31, 35, 49, 60, 75, 76, 82, 85], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "map_to_int": 10, "is_multilabel": 10, "hold": 10, "abc": [10, 20], "is_avail": [10, 82], "multilabel": [10, 13, 42, 86], "multiclass": [10, 13, 41, 45, 50, 86], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58, 81], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 83], "ab": [16, 83], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 19, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "get_health_summari": [19, 21], "ood": [19, 24, 59, 60, 75, 76, 79, 82, 83, 88], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "regressionlabelissuemanag": [19, 25, 26], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 91], "priori": [20, 83], "global": [20, 31, 35], "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 44, 54, 57, 58], "scalartyp": 21, "covari": [21, 62, 90], "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83, 86], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 83], "null_track": 23, "extend": [23, 42, 82, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 82, 83, 85, 87, 88, 91], "keepdim": [27, 81], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 74, 85], "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 81, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 41, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 33, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 33, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": [31, 33], "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 33, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 33, 35], "__call__": [31, 33, 35, 37, 41], "add_modul": [31, 33, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 33, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 79, 82, 88, 93], "requires_grad": [31, 35], "bfloat16": [31, 33, 35], "cast": [31, 35, 74], "buffer": [31, 33, 35], "datatyp": [31, 35], "member": [31, 35, 41, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "call_super_init": [31, 33, 35], "immedi": [31, 35, 88], "compil": [31, 33, 35, 49], "cpu": [31, 33, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 33, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 33, 35], "dump_patch": [31, 33, 35], "eval": [31, 33, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 33, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 33, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 33, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 33, 35], "state_dict": [31, 33, 35], "set_extra_st": [31, 33, 35], "build": [31, 35, 82, 91], "picklabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82], "pickl": [31, 35, 87], "get_paramet": [31, 33, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 87, 91, 94], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82, 86], "named_modul": [31, 33, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 33, 35], "load_state_dict": [31, 33, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "inplac": [31, 35, 85], "preserv": [31, 35, 45], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 33, 35], "prefix": [31, 35, 74, 94], "remove_dupl": [31, 35], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 33, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "named_paramet": [31, 33, 35], "register_backward_hook": [31, 33, 35], "deprec": [31, 35, 38, 74, 79, 81, 93], "favor": [31, 35], "register_full_backward_hook": [31, 33, 35], "removablehandl": [31, 35], "register_buff": [31, 33, 35], "running_mean": [31, 35], "register_forward_hook": [31, 33, 35], "with_kwarg": [31, 35], "always_cal": [31, 35], "won": [31, 35, 75, 76, 81, 86], "possibli": [31, 35, 78, 92], "fire": [31, 35, 80], "register_module_forward_hook": [31, 35], "regardless": [31, 35, 75, 76], "register_forward_pre_hook": [31, 33, 35], "And": [31, 35], "forward_pr": [31, 35], "register_module_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 55, 58, 83, 87], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_module_full_backward_hook": [31, 35], "register_full_backward_pre_hook": [31, 33, 35], "backward_pr": [31, 35], "register_module_full_backward_pre_hook": [31, 35], "register_load_state_dict_post_hook": [31, 33, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "register_modul": [31, 33, 35], "register_paramet": [31, 33, 35], "register_state_dict_pre_hook": [31, 33, 35], "keep_var": [31, 35], "requires_grad_": [31, 33, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 33, 35], "share_memory_": [31, 35], "destin": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 74, 81], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35, 74], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 33, 35], "storag": [31, 35, 79, 93], "dst_type": [31, 35], "xpu": [31, 33, 35], "zero_grad": [31, 33, 35, 82], "set_to_non": [31, 35], "reset": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": [32, 33], "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 33, 35, 81, 82], "initialize_lr_schedul": [32, 33], "lr": [32, 33, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87], "epoch_decay_start": 32, "80": [32, 78, 86, 90, 91, 92, 94], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": [32, 33], "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": [32, 33], "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "adj_confident_thresholds_shar": [33, 34], "labels_shar": [33, 34], "pred_probs_shar": [33, 34], "labelinspector": [33, 34, 81], "get_num_issu": [33, 34], "get_quality_scor": [33, 34], "update_confident_threshold": [33, 34], "score_label_qu": [33, 34], "split_arr": [33, 34], "mnist_pytorch": 33, "get_mnist_dataset": [33, 35], "get_sklearn_digits_dataset": [33, 35], "simplenet": [33, 35], "batch_siz": [33, 34, 35, 64, 66, 81, 82, 88, 91], "log_interv": [33, 35], "momentum": [33, 35], "no_cuda": [33, 35], "test_batch_s": [33, 35, 82], "loader": [33, 35, 82], "set_predict_proba_request": [33, 35], "set_predict_request": [33, 35], "coteach": [33, 73], "mini": [34, 64, 66, 81], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 37, 41, 52, 54, 60, 68, 70, 81, 83, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87], "psutil": [34, 36, 64, 66], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "batch_result": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 88], "aggreg": [34, 37, 41, 50, 54, 57, 60, 70, 81, 83, 85], "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 37, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 87, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "64": [35, 78, 82, 83, 87, 91, 92], "01": [35, 60, 62, 74, 82, 83, 86, 87, 88, 91], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 37, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 74, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "remove_noise_from_class": [37, 45], "clip_noise_r": [37, 45], "clip_valu": [37, 45], "value_count": [37, 45, 81], "value_counts_fill_missing_class": [37, 45], "get_missing_class": [37, 45], "round_preserving_sum": [37, 45], "round_preserving_row_tot": [37, 45], "estimate_pu_f1": [37, 45], "confusion_matrix": [37, 45], "print_square_matrix": [37, 45], "print_noise_matrix": [37, 45, 83], "print_inverse_noise_matrix": [37, 45], "print_joint_matrix": [37, 45, 83], "compress_int_arrai": [37, 45], "train_val_split": [37, 45], "subset_x_i": [37, 45], "subset_label": [37, 45], "subset_data": [37, 45], "extract_indices_tf": [37, 45], "unshuffle_tensorflow_dataset": [37, 45], "is_torch_dataset": [37, 45], "is_tensorflow_dataset": [37, 45], "csr_vstack": [37, 45], "append_extra_datapoint": [37, 45], "get_num_class": [37, 45], "num_unique_class": [37, 45], "get_unique_class": [37, 45], "format_label": [37, 45], "smart_display_datafram": [37, 45], "force_two_dimens": [37, 45], "latent_algebra": [37, 73], "compute_ps_py_inv_noise_matrix": [37, 39], "compute_py_inv_noise_matrix": [37, 39], "compute_inv_noise_matrix": [37, 39], "compute_noise_matrix_from_invers": [37, 39], "compute_pi": [37, 39], "compute_pyx": [37, 39], "label_quality_util": 37, "get_normalized_entropi": [37, 38], "multilabel_util": [37, 86], "stack_compl": [37, 42], "get_onehot_num_class": [37, 42], "int2onehot": [37, 42, 86], "onehot2int": [37, 42, 86], "multilabel_scor": [37, 54], "classlabelscor": [37, 41], "from_str": [37, 41], "__contains__": [37, 41], "__getitem__": [37, 41], "__iter__": [37, 41], "__len__": [37, 41], "exponential_moving_averag": [37, 41, 54], "softmin": [37, 41, 54, 57, 66, 70], "possible_method": [37, 41], "multilabelscor": [37, 41], "get_class_label_quality_scor": [37, 41], "multilabel_pi": [37, 41], "get_cross_validated_multilabel_pred_prob": [37, 41], "transform_distances_to_scor": [37, 43], "token_classification_util": [37, 94], "get_sent": [37, 44, 94], "filter_sent": [37, 44, 94], "process_token": [37, 44], "merge_prob": [37, 44], "color_sent": [37, 44], "assert_valid_input": [37, 46], "assert_valid_class_label": [37, 46], "assert_nonempty_input": [37, 46], "assert_indexing_work": [37, 46], "labels_to_arrai": [37, 46], "labels_to_list_multilabel": [37, 46], "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "true_labels_class_count": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 74, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "qualnam": 41, "boundari": [41, 75, 76], "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 82, 85, 86, 87, 90, 91, 94], "scorer": 41, "typeerror": 41, "12": [41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "alias": 41, "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 82, 83, 87], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "aggregated_scor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "42": [41, 79, 80, 82, 87, 91, 94], "452": 41, "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 53, 54], "ml_scorer": 41, "binar": [41, 42], "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "pred_prob_slic": 42, "onehot": 42, "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot_matrix": 42, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "nbitbas": [44, 54], "probs_merg": 44, "55": [44, 80, 82, 87, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "new_sum": 45, "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 88, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "obviou": 45, "cgdeboer": 45, "iteround": 45, "reach": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "BE": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "joint_matrix": 45, "num_possible_valu": 45, "holdout_idx": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "allow_shuffl": 45, "turn": [45, 72, 87], "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 88, 94], "bottom": [45, 55, 58, 87], "to_data": 45, "from_data": 45, "taken": 45, "label_matrix": 45, "canon": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "html": [45, 55, 58, 59, 78, 81, 83], "allow_missing_class": 46, "allow_one_class": 46, "length_x": 46, "labellik": 46, "labels_list": [46, 52], "keraswrappermodel": [48, 49, 72], "keraswrappersequenti": [48, 49], "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76, 81], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": [51, 53], "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": [51, 53], "overall_multilabel_health_scor": [51, 53], "multilabel_health_summari": [51, 53], "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": [52, 53], "per_class_label_issu": 52, "label_issues_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "corner": [55, 58, 87], "xyxi": [55, 58, 87], "io": [55, 58, 74, 80], "keras_cv": [55, 58], "bounding_box": [55, 58], "detectron": [55, 58, 87], "detectron2": [55, 58, 87], "readthedoc": [55, 58], "en": [55, 58], "latest": [55, 58], "visual": [55, 56, 58, 75, 76, 82, 90, 92, 94], "draw_box": [55, 58], "mmdetect": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "issues_from_scor": [56, 57, 65, 66, 67, 69, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": [56, 57], "compute_badloc_box_scor": [56, 57], "compute_swap_box_scor": [56, 57], "pool_box_scores_per_imag": [56, 57], "object_counts_per_imag": [56, 58], "bounding_box_size_distribut": [56, 58], "class_label_distribut": [56, 58], "get_sorted_bbox_count_idx": [56, 58], "plot_class_size_distribut": [56, 58], "plot_class_distribut": [56, 58], "get_average_per_class_confusion_matrix": [56, 58], "calculate_per_class_metr": [56, 58], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "low_probability_threshold": 57, "scores_badloc": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "box_scor": 57, "image_scor": [57, 66, 91], "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "down": 58, "bbox_siz": 58, "class_distribut": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 78, 80, 82, 83, 90, 91], "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": 60, "AND": [60, 79], "get_epistemic_uncertainti": [61, 62], "get_aleatoric_uncertainti": [61, 62], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "display_issu": [65, 66, 67, 68, 69, 70, 71, 91, 94], "common_label_issu": [65, 67, 69, 71, 91, 94], "filter_by_class": [65, 67, 91], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "highlight": [67, 71, 75, 76, 78, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "class_index": 67, "issues_subset": [67, 71], "filter_by_token": [69, 71, 94], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 82, 88, 91], "02": [70, 75, 76, 82, 83, 87, 88, 91, 94], "03": [70, 78, 80, 82, 83, 87, 88, 91, 94], "04": [70, 78, 82, 87, 88, 91], "08": [70, 83, 87, 88, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "link": [72, 74, 80, 87], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "huggingface_hub": 74, "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "ffmpeg": 74, "system": [74, 78, 79, 82, 91], "backend": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "opt": [74, 76, 79, 93], "hostedtoolcach": [74, 76, 79, 93], "x64": [74, 76, 79, 93], "lib": [74, 76, 79, 93], "python3": [74, 76, 79, 93], "site": [74, 76, 79, 93], "650": 74, "userwarn": [74, 75, 76, 79, 93], "stft": 74, "return_complex": 74, "view_as_r": 74, "recov": 74, "trigger": 74, "aten": 74, "src": 74, "nativ": 74, "spectralop": 74, "cpp": 74, "863": [74, 93], "_vf": 74, "n_fft": 74, "hop_length": 74, "win_length": 74, "attr": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196311": 74, "319459": 74, "478975": 74, "2890875": 74, "8170238": 74, "89265": 74, "24": [74, 80, 83, 85, 87, 91], "898056": 74, "256195": 74, "559641": 74, "559721": 74, "62067": 74, "285245": 74, "21": [74, 75, 80, 81, 82, 83, 87, 91, 94], "709627": 74, "5033693": 74, "913803": 74, "819831": 74, "1831515": 74, "208763": 74, "084257": 74, "3210397": 74, "005453": 74, "216152": 74, "478235": 74, "6821785": 74, "053807": 74, "242471": 74, "091424": 74, "78334856": 74, "03954": 74, "23": [74, 80, 82, 83, 87, 91], "569176": 74, "19": [74, 79, 80, 81, 82, 83, 88, 90, 91, 93], "761097": 74, "1258295": 74, "753237": 74, "3508866": 74, "598274": 74, "23712": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9708": 74, "probabilit": [74, 93], "9976": 74, "986": 74, "002161": 74, "176": [74, 80, 83, 86], "002483": 74, "2318": 74, "004411": 74, "1005": 74, "004857": 74, "1871": 74, "007494": 74, "investig": 74, "040587": 74, "999207": 74, "999377": 74, "975220": 74, "999367": 74, "18": [74, 79, 80, 81, 83, 87, 88, 90, 91, 93], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85, 86], "516": 74, "1946": 74, "469": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_25": 74, "7_nicolas_43": 74, "6_theo_27": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_yweweler_35": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 88, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 83, 87, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 88, 91, 92], "006940": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91, 94], "014828": 75, "107": [75, 76, 83, 86], "021241": 75, "120": [75, 76, 92], "026407": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 88, 91, 92], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 88, 91, 94], "51": [75, 76, 78, 80, 83, 87, 91], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 93], "runner": [75, 76, 79, 93], "329": [75, 82, 87], "359": 75, "338": 75, "34": [75, 80, 83, 85, 87, 91, 94], "54": [75, 80, 82, 83, 87, 91], "039122": 75, "53": [75, 76, 78, 80, 86, 87, 91, 92], "044598": 75, "105": 75, "105196": 75, "133654": 75, "43": [75, 80, 82, 83, 87, 88, 91], "168033": 75, "125": 75, "101107": 75, "37": [75, 80, 82, 88, 91], "183382": 75, "109": [75, 80, 87], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 82, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 93], "92": [75, 82, 83, 87, 91, 92], "259024": 75, "583757e": 75, "91": [75, 87, 91], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 82, 83, 87, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "26": [75, 80, 82, 83, 85, 87, 88, 91, 94], "047581": 75, "090635": 75, "129591": 75, "65": [75, 87, 91, 92], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001908": 76, "58": [76, 78, 80, 82, 83, 87, 91, 92], "003564": 76, "007331": 76, "008963": 76, "009664": 76, "0227": 76, "is_class_imbalance_issu": 76, "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 90, 91, 93], "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "is_null_issu": 76, "is_non_iid_issu": [76, 78, 79, 83], "859131": 76, "417707": 76, "664083": 76, "970324": 76, "816953": 76, "375317": 76, "641516": 76, "890575": 76, "531021": 76, "460593": 76, "601188": 76, "826147": 76, "752808": 76, "321635": 76, "562539": 76, "948362": 76, "090243": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013445": 76, "025184": 76, "026376": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 83, 87, 90, 91, 92], "94": [78, 80, 83, 87, 90, 91, 92], "78": [78, 80, 82, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 83, 87, 91, 92], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 82, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87, 94], "187": [78, 80], "27": [78, 80, 82, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 86, 87, 90, 91], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 88, 90, 91], "96": [78, 80, 83, 86, 87, 90, 91, 94], "lt": [78, 79, 80, 82, 85, 88, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 82, 87, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "visa_or_mastercard": [79, 93], "getting_spare_card": [79, 93], "apple_pay_or_google_pai": [79, 93], "beneficiary_not_allow": [79, 93], "change_pin": [79, 93], "card_about_to_expir": [79, 93], "lost_or_stolen_phon": [79, 93], "supported_cards_and_curr": [79, 93], "card_payment_fee_charg": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "_util": [79, 93], "831": [79, 93], "typedstorag": [79, 93], "untypedstorag": [79, 93], "untyped_storag": [79, 93], "fget": [79, 93], "__get__": [79, 93], "owner": [79, 93], "400": [79, 93], "data_dict": [79, 83, 85], "85": [79, 87, 91], "38": [79, 80, 82, 87, 91], "9710": 79, "981": 79, "974": 79, "000146": 79, "982": [79, 80], "000224": 79, "971": 79, "000507": 79, "980": [79, 80], "000960": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 90], "095724": 79, "148": 79, "006237": 79, "546": 79, "099341": 79, "514": 79, "006485": 79, "481": 79, "123418": 79, "008165": 79, "0000": [79, 80, 83], "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 91, 94], "574915": 79, "31": [79, 80, 82, 83, 85, 87, 88, 91], "575507": 79, "575874": 79, "792090": 79, "257611": 79, "698710": 79, "182121": 79, "771619": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 82, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 91], "88": [80, 81, 82, 83, 86, 87, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 91, 92], "32635": 80, "32636": 80, "47": [80, 82, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "93": [80, 87, 90, 91, 92, 94], "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 88, 91, 94], "41": [80, 82, 87, 90, 91], "44": [80, 86, 87, 91, 93, 94], "71": [80, 82, 83, 87, 90, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": 80, "035": 80, "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87], "98": [80, 81, 90, 91], "452381": 80, "459770": 80, "72": [80, 82, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 91], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 88, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 83, 87, 90, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "nbsp": [81, 83], "cleanlearninginot": [81, 83], "fittedcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "tmp": 81, "ipykernel_6061": 81, "1995098996": 81, "deprecationwarn": 81, "dataframegroupbi": 81, "include_group": 81, "silenc": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "482": 82, "720": 82, "872": 82, "195": 82, "584": 82, "stderr": [82, 88, 91], "sphinxverbatim": [82, 88, 91, 94], "78it": [82, 91], "59it": [82, 91], "24it": [82, 91], "40it": [82, 91], "62": [82, 83, 87, 90, 91], "55it": [82, 91], "66it": [82, 88, 91], "42it": [82, 91], "32it": [82, 91], "31it": [82, 88, 91], "04it": [82, 91], "70it": [82, 88, 91], "22it": [82, 91], "79it": [82, 88, 91], "493": 82, "060": 82, "878": 82, "330": [82, 87], "505": 82, "623": 82, "28it": [82, 91], "46it": [82, 91], "01it": [82, 91], "99it": [82, 91], "69it": [82, 88, 91], "45it": [82, 91], "60it": [82, 91], "41it": [82, 91], "65it": [82, 91], "54it": 82, "86it": [82, 91], "63": [82, 83, 87, 88, 90, 91], "94it": [82, 91], "49it": [82, 88, 91], "476": 82, "340": 82, "760": 82, "328": [82, 87], "310": 82, "601": 82, "61it": [82, 91], "03it": [82, 91], "57it": [82, 91], "37it": [82, 91], "87it": [82, 88, 91], "50it": [82, 91], "39it": [82, 91], "21it": [82, 91], "17it": [82, 88, 91], "08it": [82, 91], "19it": [82, 91], "75it": [82, 88], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7714": 82, "3772": 82, "3585": 82, "166": 82, "3651": 82, "27080": 82, "873833e": 82, "40378": 82, "915575e": 82, "25316": 82, "390277e": 82, "06": [82, 83, 87, 88, 91, 94], "2090": 82, "751164e": 82, "14999": 82, "881301e": 82, "9569": 82, "11262": 82, "000003": 82, "19228": 82, "000010": 82, "dress": 82, "32657": 82, "000013": 82, "21282": 82, "000016": 82, "53564": 82, "000018": 82, "pullov": 82, "6321": 82, "30968": 82, "001267": 82, "30659": 82, "000022": [82, 94], "47824": 82, "001454": 82, "3370": 82, "000026": 82, "54565": 82, "001854": 82, "9762": 82, "258": 82, "47139": 82, "000033": 82, "166980": 82, "986195": 82, "997205": 82, "948781": 82, "999358": 82, "54078": 82, "17371": 82, "000025": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "637318e": 83, "896262e": 83, "548391e": 83, "923417e": 83, "375075e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87, 94], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "695223": 83, "323529": 83, "523015": 83, "013720": 83, "675727": 83, "646521": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 88, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "69": [83, 90, 91], "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "196": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "121": [83, 93, 94], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": 83, "194": 83, "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87], "169": 83, "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "156": 83, "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "300": [85, 94], "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "na": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736118": 85, "757751": 85, "782232": 85, "715565": 85, "824256": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070564": 85, "216078": 85, "119188": 85, "alongisd": 85, "244981": 85, "208333": 85, "295979": 85, "294118": 85, "324197": 85, "310345": 85, "355316": 85, "346154": 85, "439732": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "606999": 85, "a0015": 85, "609526": 85, "678571": 85, "a0011": 85, "621103": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "ranked_label_issu": [86, 92, 93], "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 91], "275": 86, "267": 86, "225": 86, "171": 86, "234": 86, "165": 86, "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87], "216": [86, 87, 94], "265": 86, "159": [86, 87], "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "begin": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "290": 87, "286": 87, "285": 87, "224": 87, "231": 87, "293": 87, "235": 87, "289": 87, "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": 87, "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "219": 87, "239": 87, "240": 87, "209": 87, "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": 87, "237": 87, "207": 87, "204": 87, "84": [87, 90, 91], "205": 87, "223": 87, "153": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": 87, "173": 87, "297": 87, "317": 87, "192": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "138": 87, "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "suppli": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000242946": 87, "3300460146483339": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "170498071": 88, "458752": 88, "4545271": 88, "76it": [88, 91], "3309568": 88, "18583304": 88, "64it": [88, 91], "6193152": 88, "23121327": 88, "9076736": 88, "25243096": 88, "18it": [88, 91], "11960320": 88, "26449931": 88, "14843904": 88, "27180695": 88, "17727488": 88, "27645215": 88, "20611072": 88, "27960133": 88, "23494656": 88, "28127845": 88, "26378240": 88, "28294948": 88, "20it": [88, 91], "29261824": 88, "28399986": 88, "90it": [88, 91], "32407552": 88, "29288533": 88, "37421056": 88, "35559850": 88, "43909120": 88, "44377286": 88, "88it": [88, 91], "52068352": 88, "55525436": 88, "53it": [88, 91], "61669376": 88, "67657342": 88, "80it": [88, 91], "73203712": 88, "81953829": 88, "84672512": 88, "91732954": 88, "67it": [88, 91], "96272384": 88, "98948948": 88, "10it": [88, 91], "107741184": 88, "103611942": 88, "25it": [88, 91], "119275520": 88, "107040423": 88, "130777088": 88, "109403134": 88, "82it": [88, 91], "142311424": 88, "111129043": 88, "58it": [88, 91], "153812992": 88, "112217547": 88, "05it": [88, 91], "165412864": 88, "113296111": 88, "93it": [88, 91], "66708420": 88, "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "unusu": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "636197": 90, "499503": 90, "843478": 90, "776647": 90, "350358": 90, "170547": 90, "706969": 90, "984759": 90, "812515": 90, "795928": 90, "identified_issu": [90, 93], "141": 90, "659": 90, "367": 90, "318": 90, "305": 90, "560": 90, "657": 90, "688": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "926": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "area": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "15347": 91, "153458": 91, "07it": 91, "30769": 91, "153898": 91, "46197": 91, "154067": 91, "61604": 91, "153518": 91, "76957": 91, "153377": 91, "81it": 91, "92295": 91, "153281": 91, "107770": 91, "153758": 91, "56it": 91, "123147": 91, "153622": 91, "15it": 91, "138510": 91, "153513": 91, "153862": 91, "153440": 91, "169207": 91, "153375": 91, "184566": 91, "153437": 91, "200027": 91, "153789": 91, "215446": 91, "153907": 91, "230924": 91, "154166": 91, "246392": 91, "154317": 91, "261824": 91, "153630": 91, "47it": 91, "277224": 91, "153736": 91, "292639": 91, "153857": 91, "308121": 91, "154142": 91, "35it": 91, "323536": 91, "154021": 91, "27it": 91, "338991": 91, "154177": 91, "354437": 91, "154259": 91, "369864": 91, "154160": 91, "91it": 91, "385349": 91, "154364": 91, "400786": 91, "154238": 91, "416218": 91, "431732": 91, "154520": 91, "13it": 91, "447185": 91, "153245": 91, "62it": 91, "462512": 91, "146732": 91, "477889": 91, "148766": 91, "493335": 91, "150430": 91, "33it": 91, "508611": 91, "151113": 91, "523989": 91, "151901": 91, "84it": 91, "539401": 91, "152559": 91, "554825": 91, "153058": 91, "570237": 91, "153371": 91, "585614": 91, "153487": 91, "601012": 91, "153632": 91, "616379": 91, "153190": 91, "63it": 91, "631701": 91, "153034": 91, "14it": 91, "647041": 91, "153139": 91, "662439": 91, "153387": 91, "00it": 91, "677783": 91, "153400": 91, "95it": 91, "693146": 91, "153465": 91, "36it": 91, "708494": 91, "153436": 91, "723849": 91, "153466": 91, "739196": 91, "153373": 91, "26it": 91, "754593": 91, "153549": 91, "34it": 91, "769949": 91, "150908": 91, "16it": 91, "785470": 91, "152179": 91, "801022": 91, "153170": 91, "816526": 91, "153726": 91, "832085": 91, "154281": 91, "847655": 91, "154701": 91, "863128": 91, "154543": 91, "878688": 91, "154857": 91, "894280": 91, "155173": 91, "909799": 91, "153932": 91, "925196": 91, "153134": 91, "940720": 91, "153757": 91, "956290": 91, "154335": 91, "971837": 91, "154670": 91, "43it": 91, "987409": 91, "154980": 91, "1003021": 91, "155319": 91, "1018554": 91, "155043": 91, "1034111": 91, "155190": 91, "83it": 91, "1049635": 91, "155203": 91, "1065196": 91, "155323": 91, "02it": 91, "1080813": 91, "155572": 91, "06it": 91, "1096371": 91, "155143": 91, "85it": 91, "1111933": 91, "155283": 91, "1127467": 91, "155297": 91, "30it": 91, "1143078": 91, "155537": 91, "1158632": 91, "155524": 91, "1174185": 91, "155271": 91, "1189714": 91, "155275": 91, "1205250": 91, "1220788": 91, "29it": 91, "1236320": 91, "1251850": 91, "154837": 91, "1267335": 91, "154514": 91, "1282844": 91, "154680": 91, "1298407": 91, "154960": 91, "1313976": 91, "155176": 91, "1329577": 91, "155424": 91, "12it": 91, "1345162": 91, "155550": 91, "1360737": 91, "155607": 91, "38it": 91, "1376313": 91, "155649": 91, "1391965": 91, "155908": 91, "1407556": 91, "155321": 91, "1423155": 91, "155479": 91, "77it": 91, "1438785": 91, "155724": 91, "1454384": 91, "155801": 91, "48it": 91, "1470014": 91, "155947": 91, "1485609": 91, "155913": 91, "1501201": 91, "155784": 91, "73it": 91, "1516780": 91, "155559": 91, "1532380": 91, "155687": 91, "1547949": 91, "155528": 91, "1563502": 91, "147324": 91, "1579008": 91, "149552": 91, "1594563": 91, "151300": 91, "1610073": 91, "152415": 91, "1625549": 91, "153107": 91, "1640959": 91, "153398": 91, "1656429": 91, "153784": 91, "1671823": 91, "147620": 91, "1687245": 91, "149534": 91, "1702248": 91, "145716": 91, "1717722": 91, "148327": 91, "1733212": 91, "150249": 91, "1748683": 91, "151562": 91, "1764179": 91, "152568": 91, "1779561": 91, "152939": 91, "1794870": 91, "152948": 91, "1810300": 91, "153350": 91, "1825723": 91, "153610": 91, "68it": 91, "1841251": 91, "154108": 91, "1856784": 91, "154470": 91, "98it": 91, "1872234": 91, "154379": 91, "1887674": 91, "154351": 91, "1903137": 91, "154430": 91, "74it": 91, "1918581": 91, "154231": 91, "1934021": 91, "154278": 91, "1949544": 91, "154560": 91, "1965001": 91, "154544": 91, "1980514": 91, "154717": 91, "1995986": 91, "154624": 91, "51it": 91, "2011449": 91, "154571": 91, "2026907": 91, "154431": 91, "2042351": 91, "150939": 91, "2057814": 91, "152025": 91, "2073170": 91, "152476": 91, "2088594": 91, "152999": 91, "2104043": 91, "153442": 91, "72it": 91, "2119443": 91, "153606": 91, "2134833": 91, "153691": 91, "2150260": 91, "153861": 91, "2165649": 91, "153505": 91, "2181031": 91, "153598": 91, "2196392": 91, "153515": 91, "2211745": 91, "153359": 91, "2227087": 91, "153376": 91, "2242478": 91, "153534": 91, "2257832": 91, "153331": 91, "2273166": 91, "153125": 91, "2288479": 91, "153046": 91, "2303800": 91, "153094": 91, "2319193": 91, "153342": 91, "97it": 91, "2334528": 91, "152346": 91, "2349765": 91, "151169": 91, "2364972": 91, "151434": 91, "2380298": 91, "151975": 91, "2395754": 91, "152744": 91, "2411076": 91, "152884": 91, "2426567": 91, "153489": 91, "2441950": 91, "153587": 91, "2457394": 91, "153839": 91, "2472901": 91, "154205": 91, "2488322": 91, "154163": 91, "11it": 91, "2503739": 91, "153004": 91, "2519042": 91, "147381": 91, "2534620": 91, "149823": 91, "2550145": 91, "151413": 91, "71it": 91, "2565630": 91, "152427": 91, "2581060": 91, "152981": 91, "2596553": 91, "153559": 91, "2612027": 91, "153910": 91, "2627562": 91, "154337": 91, "2643066": 91, "2658563": 91, "154668": 91, "2674058": 91, "154750": 91, "2689580": 91, "154890": 91, "2705071": 91, "2720555": 91, "154630": 91, "2736166": 91, "155070": 91, "2751724": 91, "155222": 91, "2767247": 91, "155078": 91, "2782756": 91, "154978": 91, "09it": 91, "2798255": 91, "154977": 91, "2813789": 91, "155083": 91, "2829298": 91, "152520": 91, "2844801": 91, "153263": 91, "2860237": 91, "153586": 91, "2875673": 91, "153813": 91, "2891059": 91, "153744": 91, "2906451": 91, "153793": 91, "2921833": 91, "153778": 91, "2937213": 91, "153645": 91, "2952579": 91, "153613": 91, "2967942": 91, "2983271": 91, "150146": 91, "2998477": 91, "150708": 91, "3014011": 91, "152080": 91, "3029518": 91, "152969": 91, "3045037": 91, "153629": 91, "3060406": 91, "3075743": 91, "152764": 91, "3091023": 91, "152634": 91, "3106414": 91, "153013": 91, "3121808": 91, "153288": 91, "3137276": 91, "153703": 91, "3152648": 91, "153568": 91, "3168071": 91, "153762": 91, "3183450": 91, "153768": 91, "3198898": 91, "153979": 91, "3214297": 91, "153771": 91, "3229715": 91, "153892": 91, "3245105": 91, "153859": 91, "3260519": 91, "153941": 91, "3275914": 91, "153716": 91, "3291386": 91, "154014": 91, "3306788": 91, "153609": 91, "3322285": 91, "153972": 91, "3337683": 91, "153858": 91, "3353124": 91, "154022": 91, "3368625": 91, "154316": 91, "3384057": 91, "154300": 91, "3399488": 91, "154131": 91, "3414954": 91, "154286": 91, "3430466": 91, "154534": 91, "3445934": 91, "154576": 91, "3461392": 91, "154214": 91, "3476836": 91, "154280": 91, "3492331": 91, "154479": 91, "3507875": 91, "154766": 91, "3523352": 91, "154673": 91, "3538822": 91, "154679": 91, "3554370": 91, "154917": 91, "3569906": 91, "155047": 91, "44it": 91, "3585430": 91, "155102": 91, "3600951": 91, "155132": 91, "3616465": 91, "150887": 91, "3632029": 91, "152284": 91, "3647567": 91, "153198": 91, "3663094": 91, "153810": 91, "3678598": 91, "154174": 91, "3694138": 91, "154536": 91, "3709658": 91, "154732": 91, "3725206": 91, "154954": 91, "3740779": 91, "155183": 91, "3756300": 91, "155152": 91, "3771876": 91, "155332": 91, "3787433": 91, "155401": 91, "3802974": 91, "154579": 91, "3818510": 91, "154809": 91, "3834118": 91, "155187": 91, "3849726": 91, "155451": 91, "3865281": 91, "155478": 91, "3880873": 91, "3896482": 91, "155748": 91, "3912058": 91, "155484": 91, "3927607": 91, "155333": 91, "3943141": 91, "154982": 91, "3958655": 91, "155026": 91, "3974166": 91, "155048": 91, "3989742": 91, "155258": 91, "4005269": 91, "155095": 91, "4020928": 91, "155541": 91, "4036483": 91, "155356": 91, "4052019": 91, "155307": 91, "4067550": 91, "155236": 91, "4083074": 91, "4098566": 91, "146375": 91, "4113914": 91, "148417": 91, "52it": 91, "4129242": 91, "149832": 91, "4144613": 91, "150968": 91, "4160035": 91, "151927": 91, "4175344": 91, "152271": 91, "4190658": 91, "152526": 91, "4205984": 91, "152743": 91, "4221286": 91, "152822": 91, "4236607": 91, "152936": 91, "4251907": 91, "145817": 91, "4267342": 91, "148286": 91, "4282888": 91, "150383": 91, "4298490": 91, "152044": 91, "4314035": 91, "153050": 91, "4329574": 91, "4345105": 91, "154209": 91, "4360685": 91, "154683": 91, "4376194": 91, "154801": 91, "4391740": 91, "154996": 91, "89it": 91, "4407302": 91, "155180": 91, "4422871": 91, "155331": 91, "4438421": 91, "155381": 91, "4453995": 91, "155487": 91, "4469545": 91, "155411": 91, "4485088": 91, "4500632": 91, "4516174": 91, "155209": 91, "4531702": 91, "155229": 91, "4547306": 91, "155470": 91, "4562854": 91, "4578388": 91, "147448": 91, "4593898": 91, "149657": 91, "4609368": 91, "151129": 91, "4624875": 91, "152288": 91, "4640314": 91, "152906": 91, "4655803": 91, "153494": 91, "4671257": 91, "153802": 91, "4686669": 91, "153895": 91, "4702162": 91, "154201": 91, "4717639": 91, "154368": 91, "96it": 91, "4733081": 91, "154162": 91, "4748501": 91, "154009": 91, "4763970": 91, "154210": 91, "4779393": 91, "154123": 91, "4794807": 91, "154105": 91, "4810237": 91, "4825680": 91, "154241": 91, "4841107": 91, "154246": 91, "4856552": 91, "154305": 91, "23it": 91, "4871983": 91, "153994": 91, "4887443": 91, "154172": 91, "4902918": 91, "154342": 91, "4918444": 91, "154616": 91, "4933928": 91, "154681": 91, "4949465": 91, "154885": 91, "4964994": 91, "155003": 91, "4980530": 91, "155107": 91, "4996041": 91, "154803": 91, "153673": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "aim": [91, 94], "domin": 91, "extratreesclassifi": 92, "extratre": 92, "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858371": 93, "547274": 93, "826228": 93, "966008": 93, "792449": 93, "646": 93, "390": 93, "628": 93, "702": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a00": 94, "845": 94, "connect": 94, "443": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "80mb": 94, "mb": 94, "directori": 94, "inflat": 94, "17045998": 94, "16m": 94, "octet": 94, "32m": 94, "6mb": 94, "71m": 94, "0mb": 94, "26m": 94, "1mb": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 6, 1, "", "call_super_init"], [31, 3, 1, "", "children"], [31, 3, 1, "", "compile"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_full_backward_pre_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "register_state_dict_pre_hook"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 6, 1, "", "call_super_init"], [35, 3, 1, "", "children"], [35, 3, 1, "", "compile"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_full_backward_pre_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "register_state_dict_pre_hook"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "__contains__"], [41, 3, 1, "", "__getitem__"], [41, 3, 1, "", "__iter__"], [41, 3, 1, "", "__len__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"], [46, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [37, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [43, "module-cleanlab.internal.outlier"], [59, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [61, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "dataset": [[30, "module-cleanlab.dataset"], [51, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "experimental": [[33, "experimental"]], "label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[36, "module-cleanlab.filter"], [52, "module-cleanlab.multilabel_classification.filter"], [55, "filter"], [64, "filter"], [68, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "util": [[45, "module-cleanlab.internal.util"]], "validation": [[46, "module-cleanlab.internal.validation"]], "fasttext": [[47, "fasttext"]], "models": [[48, "models"]], "keras": [[49, "module-cleanlab.models.keras"]], "multiannotator": [[50, "module-cleanlab.multiannotator"]], "multilabel_classification": [[53, "multilabel-classification"]], "rank": [[54, "module-cleanlab.multilabel_classification.rank"], [57, "module-cleanlab.object_detection.rank"], [60, "module-cleanlab.rank"], [66, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.token_classification.rank"]], "object_detection": [[56, "object-detection"]], "summary": [[58, "summary"], [67, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.summary"]], "regression.learn": [[62, "module-cleanlab.regression.learn"]], "regression.rank": [[63, "module-cleanlab.regression.rank"]], "segmentation": [[65, "segmentation"]], "token_classification": [[69, "token-classification"]], "cleanlab open-source documentation": [[72, "cleanlab-open-source-documentation"]], "Quickstart": [[72, "quickstart"]], "1. Install cleanlab": [[72, "install-cleanlab"]], "2. Find common issues in your data": [[72, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[72, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[72, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[72, "improve-your-data-via-many-other-techniques"]], "Contributing": [[72, "contributing"]], "Easy Mode": [[72, "easy-mode"], [78, "Easy-Mode"], [79, "Easy-Mode"], [82, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[73, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[73, "function-and-class-name-changes"]], "Module name changes": [[73, "module-name-changes"]], "New modules": [[73, "new-modules"]], "Removed modules": [[73, "removed-modules"]], "Common argument and variable name changes": [[73, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[74, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[74, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[74, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[74, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[74, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[74, "5.-Use-cleanlab-to-find-label-issues"], [78, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[75, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[75, "Install-and-import-required-dependencies"]], "Create and load the data": [[75, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[75, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[75, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[75, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[75, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[75, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[75, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[76, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[76, "1.-Install-and-import-required-dependencies"], [82, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[76, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[76, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[76, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[76, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[76, "Get-additional-information"]], "Near duplicate issues": [[76, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Datalab Tutorials": [[77, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[78, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[78, "1.-Install-required-dependencies"], [79, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [92, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"]], "2. Load and process the data": [[78, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [92, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[78, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [92, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[78, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[78, "Label-issues"], [79, "Label-issues"], [82, "Label-issues"]], "Outlier issues": [[78, "Outlier-issues"], [79, "Outlier-issues"], [82, "Outlier-issues"]], "Near-duplicate issues": [[78, "Near-duplicate-issues"], [79, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[79, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[79, "2.-Load-and-format-the-text-dataset"], [93, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[79, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[79, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[80, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[80, "Install-dependencies-and-import-them"], [83, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[80, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[80, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[81, "FAQ"]], "What data can cleanlab detect issues in?": [[81, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[81, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[81, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[81, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[81, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[81, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[81, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[81, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[81, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[81, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[81, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[81, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[81, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[81, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[82, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[82, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[82, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[82, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[82, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[82, "7.-Use-cleanlab-to-find-issues"]], "View report": [[82, "View-report"]], "View most likely examples with label errors": [[82, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[82, "View-most-severe-outliers"]], "View sets of near duplicate images": [[82, "View-sets-of-near-duplicate-images"]], "Dark images": [[82, "Dark-images"]], "View top examples of dark images": [[82, "View-top-examples-of-dark-images"]], "Low information images": [[82, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[83, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[83, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[83, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[83, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[83, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[83, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[83, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[83, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[83, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[83, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[83, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[83, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[83, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[83, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[83, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[83, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[83, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[83, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[83, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[84, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[85, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[85, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[85, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[85, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[85, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[85, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[85, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[85, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[85, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[86, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[86, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[86, "2.-Format-data,-labels,-and-model-predictions"], [87, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[86, "3.-Use-cleanlab-to-find-label-issues"], [87, "3.-Use-cleanlab-to-find-label-issues"], [91, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[86, "Label-quality-scores"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[86, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Finding Label Errors in Object Detection Datasets": [[87, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[87, "1.-Install-required-dependencies-and-download-data"], [91, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[87, "Get-label-quality-scores"], [91, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[87, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[87, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[87, "Other-uses-of-visualize"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[88, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[88, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[88, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[88, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[88, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[88, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[89, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[89, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[89, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[90, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[90, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[90, "4.-Train-a-more-robust-model-from-noisy-labels"], [93, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[90, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[91, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[91, "2.-Get-data,-labels,-and-pred_probs"], [94, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[91, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[91, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[91, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[92, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[92, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[92, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[93, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[93, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[94, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[94, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[94, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[94, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[94, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [30, "module-cleanlab.dataset"], [31, "module-cleanlab.experimental.cifar_cnn"], [32, "module-cleanlab.experimental.coteaching"], [33, "module-cleanlab.experimental"], [34, "module-cleanlab.experimental.label_issues_batched"], [35, "module-cleanlab.experimental.mnist_pytorch"], [36, "module-cleanlab.filter"], [37, "module-cleanlab.internal"], [38, "module-cleanlab.internal.label_quality_utils"], [39, "module-cleanlab.internal.latent_algebra"], [40, "module-cleanlab.internal.multiannotator_utils"], [41, "module-cleanlab.internal.multilabel_scorer"], [42, "module-cleanlab.internal.multilabel_utils"], [43, "module-cleanlab.internal.outlier"], [44, "module-cleanlab.internal.token_classification_utils"], [45, "module-cleanlab.internal.util"], [46, "module-cleanlab.internal.validation"], [48, "module-cleanlab.models"], [49, "module-cleanlab.models.keras"], [50, "module-cleanlab.multiannotator"], [51, "module-cleanlab.multilabel_classification.dataset"], [52, "module-cleanlab.multilabel_classification.filter"], [53, "module-cleanlab.multilabel_classification"], [54, "module-cleanlab.multilabel_classification.rank"], [55, "module-cleanlab.object_detection.filter"], [56, "module-cleanlab.object_detection"], [57, "module-cleanlab.object_detection.rank"], [58, "module-cleanlab.object_detection.summary"], [59, "module-cleanlab.outlier"], [60, "module-cleanlab.rank"], [61, "module-cleanlab.regression"], [62, "module-cleanlab.regression.learn"], [63, "module-cleanlab.regression.rank"], [64, "module-cleanlab.segmentation.filter"], [65, "module-cleanlab.segmentation"], [66, "module-cleanlab.segmentation.rank"], [67, "module-cleanlab.segmentation.summary"], [68, "module-cleanlab.token_classification.filter"], [69, "module-cleanlab.token_classification"], [70, "module-cleanlab.token_classification.rank"], [71, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "cleanlab.dataset": [[30, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.forward"], [31, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[33, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [35, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [35, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [35, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[36, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[36, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[36, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[37, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[38, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[43, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[43, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[45, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[46, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[48, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[49, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[50, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[51, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[53, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[54, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[55, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[55, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[56, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[57, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[58, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[59, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[59, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[60, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[61, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[62, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[62, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[62, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[63, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[63, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[64, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[64, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[65, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[66, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[67, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[68, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[68, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[69, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[70, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[71, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 75, 76, 83, 85, 86], "generate_noise_matrix_from_trac": [0, 1, 75, 76, 83, 85, 86], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 31, 33, 35, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 33, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 78, 79, 82, 83, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 41, 43, 45, 48, 50, 55, 58, 59, 60, 72, 81, 82], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 86, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 55, 57, 58, 59, 60, 78, 87, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 74, 75, 76, 79, 81, 83, 85, 86, 93], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 78, 79, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 86, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 86, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 74, 75, 76, 79, 80, 88, 93], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 91], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 33, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 86, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 41, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 46, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 86, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 61, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 92, 93], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 55, 58, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 74, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 33, 35, 48, 49, 59, 61, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 33, 35, 41, 48, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 55, 58, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 86, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 86, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 62, 72, 81, 82, 83, 85, 86, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 33, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 74, 75, 81, 83, 85, 86, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 55, 58, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 86, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 55, 58, 62, 72, 81, 87], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 93, 94], "made": [2, 4, 14, 31, 35, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 79, 80, 82, 86, 91, 92, 93, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 86, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 79, 81, 82, 83, 86, 89, 93], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 81, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 81, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 86, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 31, 34, 35, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 37, 41, 50, 52, 53, 54, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 70, 73, 83, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 33, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 86, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 86, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 55, 58, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 86, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 74, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 81, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 33, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 78, 79, 80, 81, 82, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 86, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 33, 34, 61, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 81, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 86, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 74, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 31, 35, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 37, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 79, 82, 86, 93], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62, 81], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 86, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 33, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 86, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 61, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62, 86], "longer": [2, 40, 41, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 86, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 81, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 41, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 31, 35, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 33, 35, 61, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 55, 58, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 33, 35, 61, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 33, 35, 48, 49, 61, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 33, 35, 61, 62], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 74, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 33, 35, 48, 49, 61, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 46, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 61, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 10, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "union": [3, 4, 10, 41, 45, 46, 52, 58, 62, 66, 70, 81], "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 88, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 86, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 79, 80, 81, 82, 83, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 44, 54, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 88, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33, 34], "amongst": [3, 8], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 86, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 35], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83, 86], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83, 86], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 86, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 34, 36, 64, 66], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 41, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83, 86], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82, 86], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 19, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 86, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 48, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 86, 88, 90, 92, 93, 94], "With": [4, 34, 79, 83, 85, 90, 91, 93, 94], "usag": [4, 34, 49], "issue_summari": [4, 8, 11, 75], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84, 86], "someth": [4, 5, 31, 35, 60], "123": [4, 75, 76], "456": [4, 74, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82, 86], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 74, 75, 79, 81, 93], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 83, 86], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 86, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 78, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51, 79, 93], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 78, 79, 83], "violat": [8, 78, 79, 83], "assumpt": [8, 78, 79, 83], "changepoint": [8, 78, 79, 83], "shift": [8, 78, 79, 83], "drift": [8, 76, 78, 83], "autocorrel": [8, 78, 79, 83], "almost": [8, 78, 79, 83], "adjac": [8, 78, 79, 83], "tend": [8, 30, 39, 78, 79, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 83, 89, 90, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 88], "subpar": 8, "special": [8, 44], "techniqu": 8, "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 78, 81, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 19, 24, 75], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18, 19], "underperforminggroupissuemanag": [8, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16, 19], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 75, 80, 82, 85, 87, 88, 91], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 85, 86, 87, 91], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 72, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 31, 35, 49, 60, 75, 76, 82, 85], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "map_to_int": 10, "is_multilabel": 10, "hold": 10, "abc": [10, 20], "is_avail": [10, 82], "multilabel": [10, 13, 42, 86], "multiclass": [10, 13, 41, 45, 50, 86], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58, 81], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 88, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 83], "ab": [16, 83], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 19, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "get_health_summari": [19, 21], "ood": [19, 24, 59, 60, 75, 76, 79, 82, 83, 88], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "regressionlabelissuemanag": [19, 25, 26], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 91], "priori": [20, 83], "global": [20, 31, 35], "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 44, 54, 57, 58], "scalartyp": 21, "covari": [21, 62, 90], "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83, 86], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 83], "null_track": 23, "extend": [23, 42, 82, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 83, 85, 87, 88, 91], "keepdim": [27, 81], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 74, 85], "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 81, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 41, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 33, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 33, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": [31, 33], "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 33, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 33, 35], "__call__": [31, 33, 35, 37, 41], "add_modul": [31, 33, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 33, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 79, 82, 88, 93], "requires_grad": [31, 35], "bfloat16": [31, 33, 35], "cast": [31, 35, 74], "buffer": [31, 33, 35], "datatyp": [31, 35], "member": [31, 35, 41, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "call_super_init": [31, 33, 35], "immedi": [31, 35, 88], "compil": [31, 33, 35, 49], "cpu": [31, 33, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 33, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 33, 35], "dump_patch": [31, 33, 35], "eval": [31, 33, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 33, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 33, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 33, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 33, 35], "state_dict": [31, 33, 35], "set_extra_st": [31, 33, 35], "build": [31, 35, 82, 91], "picklabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82], "pickl": [31, 35, 87], "get_paramet": [31, 33, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 87, 91], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82, 86], "named_modul": [31, 33, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 33, 35], "load_state_dict": [31, 33, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "inplac": [31, 35, 85], "preserv": [31, 35, 45], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 33, 35], "prefix": [31, 35, 74, 94], "remove_dupl": [31, 35], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 33, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "named_paramet": [31, 33, 35], "register_backward_hook": [31, 33, 35], "deprec": [31, 35, 38, 74, 79, 81, 93], "favor": [31, 35], "register_full_backward_hook": [31, 33, 35], "removablehandl": [31, 35], "register_buff": [31, 33, 35], "running_mean": [31, 35], "register_forward_hook": [31, 33, 35], "with_kwarg": [31, 35], "always_cal": [31, 35], "won": [31, 35, 75, 76, 81, 86], "possibli": [31, 35, 78, 92], "fire": [31, 35, 80], "register_module_forward_hook": [31, 35], "regardless": [31, 35, 75, 76], "register_forward_pre_hook": [31, 33, 35], "And": [31, 35], "forward_pr": [31, 35], "register_module_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 55, 58, 83, 87], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_module_full_backward_hook": [31, 35], "register_full_backward_pre_hook": [31, 33, 35], "backward_pr": [31, 35], "register_module_full_backward_pre_hook": [31, 35], "register_load_state_dict_post_hook": [31, 33, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "register_modul": [31, 33, 35], "register_paramet": [31, 33, 35], "register_state_dict_pre_hook": [31, 33, 35], "keep_var": [31, 35], "requires_grad_": [31, 33, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 33, 35], "share_memory_": [31, 35], "destin": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 74, 81], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35, 74], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 33, 35], "storag": [31, 35, 79, 93], "dst_type": [31, 35], "xpu": [31, 33, 35], "zero_grad": [31, 33, 35, 82], "set_to_non": [31, 35], "reset": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": [32, 33], "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 33, 35, 81, 82], "initialize_lr_schedul": [32, 33], "lr": [32, 33, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87], "epoch_decay_start": 32, "80": [32, 78, 82, 86, 90, 91, 92], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": [32, 33], "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": [32, 33], "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "adj_confident_thresholds_shar": [33, 34], "labels_shar": [33, 34], "pred_probs_shar": [33, 34], "labelinspector": [33, 34, 81], "get_num_issu": [33, 34], "get_quality_scor": [33, 34], "update_confident_threshold": [33, 34], "score_label_qu": [33, 34], "split_arr": [33, 34], "mnist_pytorch": 33, "get_mnist_dataset": [33, 35], "get_sklearn_digits_dataset": [33, 35], "simplenet": [33, 35], "batch_siz": [33, 34, 35, 64, 66, 81, 82, 88, 91], "log_interv": [33, 35], "momentum": [33, 35], "no_cuda": [33, 35], "test_batch_s": [33, 35, 82], "loader": [33, 35, 82], "set_predict_proba_request": [33, 35], "set_predict_request": [33, 35], "coteach": [33, 73], "mini": [34, 64, 66, 81], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 37, 41, 52, 54, 60, 68, 70, 81, 83, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87], "psutil": [34, 36, 64, 66], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "batch_result": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 88], "aggreg": [34, 37, 41, 50, 54, 57, 60, 70, 81, 83, 85], "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 37, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 87, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "64": [35, 78, 82, 83, 87, 91, 92], "01": [35, 60, 62, 74, 82, 83, 86, 87, 88, 91], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 37, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 74, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "remove_noise_from_class": [37, 45], "clip_noise_r": [37, 45], "clip_valu": [37, 45], "value_count": [37, 45, 81], "value_counts_fill_missing_class": [37, 45], "get_missing_class": [37, 45], "round_preserving_sum": [37, 45], "round_preserving_row_tot": [37, 45], "estimate_pu_f1": [37, 45], "confusion_matrix": [37, 45], "print_square_matrix": [37, 45], "print_noise_matrix": [37, 45, 83], "print_inverse_noise_matrix": [37, 45], "print_joint_matrix": [37, 45, 83], "compress_int_arrai": [37, 45], "train_val_split": [37, 45], "subset_x_i": [37, 45], "subset_label": [37, 45], "subset_data": [37, 45], "extract_indices_tf": [37, 45], "unshuffle_tensorflow_dataset": [37, 45], "is_torch_dataset": [37, 45], "is_tensorflow_dataset": [37, 45], "csr_vstack": [37, 45], "append_extra_datapoint": [37, 45], "get_num_class": [37, 45], "num_unique_class": [37, 45], "get_unique_class": [37, 45], "format_label": [37, 45], "smart_display_datafram": [37, 45], "force_two_dimens": [37, 45], "latent_algebra": [37, 73], "compute_ps_py_inv_noise_matrix": [37, 39], "compute_py_inv_noise_matrix": [37, 39], "compute_inv_noise_matrix": [37, 39], "compute_noise_matrix_from_invers": [37, 39], "compute_pi": [37, 39], "compute_pyx": [37, 39], "label_quality_util": 37, "get_normalized_entropi": [37, 38], "multilabel_util": [37, 86], "stack_compl": [37, 42], "get_onehot_num_class": [37, 42], "int2onehot": [37, 42, 86], "onehot2int": [37, 42, 86], "multilabel_scor": [37, 54], "classlabelscor": [37, 41], "from_str": [37, 41], "__contains__": [37, 41], "__getitem__": [37, 41], "__iter__": [37, 41], "__len__": [37, 41], "exponential_moving_averag": [37, 41, 54], "softmin": [37, 41, 54, 57, 66, 70], "possible_method": [37, 41], "multilabelscor": [37, 41], "get_class_label_quality_scor": [37, 41], "multilabel_pi": [37, 41], "get_cross_validated_multilabel_pred_prob": [37, 41], "transform_distances_to_scor": [37, 43], "token_classification_util": [37, 94], "get_sent": [37, 44, 94], "filter_sent": [37, 44, 94], "process_token": [37, 44], "merge_prob": [37, 44], "color_sent": [37, 44], "assert_valid_input": [37, 46], "assert_valid_class_label": [37, 46], "assert_nonempty_input": [37, 46], "assert_indexing_work": [37, 46], "labels_to_arrai": [37, 46], "labels_to_list_multilabel": [37, 46], "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "true_labels_class_count": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 74, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "qualnam": 41, "boundari": [41, 75, 76], "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 82, 85, 86, 87, 90, 91, 94], "scorer": 41, "typeerror": 41, "12": [41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "alias": 41, "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 82, 83, 87], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "aggregated_scor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "42": [41, 79, 80, 82, 87, 91, 94], "452": 41, "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 53, 54], "ml_scorer": 41, "binar": [41, 42], "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "pred_prob_slic": 42, "onehot": 42, "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot_matrix": 42, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "nbitbas": [44, 54], "probs_merg": 44, "55": [44, 80, 82, 87, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "new_sum": 45, "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 88, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "obviou": 45, "cgdeboer": 45, "iteround": 45, "reach": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "BE": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "joint_matrix": 45, "num_possible_valu": 45, "holdout_idx": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "allow_shuffl": 45, "turn": [45, 72, 87], "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 88, 94], "bottom": [45, 55, 58, 87], "to_data": 45, "from_data": 45, "taken": 45, "label_matrix": 45, "canon": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "html": [45, 55, 58, 59, 78, 81, 83], "allow_missing_class": 46, "allow_one_class": 46, "length_x": 46, "labellik": 46, "labels_list": [46, 52], "keraswrappermodel": [48, 49, 72], "keraswrappersequenti": [48, 49], "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76, 81], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": [51, 53], "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": [51, 53], "overall_multilabel_health_scor": [51, 53], "multilabel_health_summari": [51, 53], "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": [52, 53], "per_class_label_issu": 52, "label_issues_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "corner": [55, 58, 87], "xyxi": [55, 58, 87], "io": [55, 58, 74, 80], "keras_cv": [55, 58], "bounding_box": [55, 58], "detectron": [55, 58, 87], "detectron2": [55, 58, 87], "readthedoc": [55, 58], "en": [55, 58], "latest": [55, 58], "visual": [55, 56, 58, 75, 76, 82, 90, 92, 94], "draw_box": [55, 58], "mmdetect": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "issues_from_scor": [56, 57, 65, 66, 67, 69, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": [56, 57], "compute_badloc_box_scor": [56, 57], "compute_swap_box_scor": [56, 57], "pool_box_scores_per_imag": [56, 57], "object_counts_per_imag": [56, 58], "bounding_box_size_distribut": [56, 58], "class_label_distribut": [56, 58], "get_sorted_bbox_count_idx": [56, 58], "plot_class_size_distribut": [56, 58], "plot_class_distribut": [56, 58], "get_average_per_class_confusion_matrix": [56, 58], "calculate_per_class_metr": [56, 58], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "low_probability_threshold": 57, "scores_badloc": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "box_scor": 57, "image_scor": [57, 66, 91], "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "down": 58, "bbox_siz": 58, "class_distribut": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 78, 80, 82, 83, 88, 90, 91], "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": 60, "AND": [60, 79], "get_epistemic_uncertainti": [61, 62], "get_aleatoric_uncertainti": [61, 62], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "display_issu": [65, 66, 67, 68, 69, 70, 71, 91, 94], "common_label_issu": [65, 67, 69, 71, 91, 94], "filter_by_class": [65, 67, 91], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "highlight": [67, 71, 75, 76, 78, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "class_index": 67, "issues_subset": [67, 71], "filter_by_token": [69, 71, 94], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 91], "02": [70, 75, 76, 82, 83, 87, 88, 91, 94], "03": [70, 78, 80, 82, 83, 87, 91, 94], "04": [70, 78, 87, 91], "08": [70, 83, 87, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "link": [72, 74, 80, 87], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "huggingface_hub": 74, "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "ffmpeg": 74, "system": [74, 78, 79, 82, 91], "backend": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "opt": [74, 76, 79, 93], "hostedtoolcach": [74, 76, 79, 93], "x64": [74, 76, 79, 93], "lib": [74, 76, 79, 93], "python3": [74, 76, 79, 93], "site": [74, 76, 79, 93], "650": 74, "userwarn": [74, 75, 76, 79, 93], "stft": 74, "return_complex": 74, "view_as_r": 74, "recov": 74, "trigger": 74, "aten": 74, "src": 74, "nativ": 74, "spectralop": 74, "cpp": 74, "863": [74, 93], "_vf": 74, "n_fft": 74, "hop_length": 74, "win_length": 74, "attr": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196311": 74, "319459": 74, "478975": 74, "2890875": 74, "8170238": 74, "89265": 74, "24": [74, 80, 82, 83, 85, 87, 91], "898056": 74, "256195": 74, "559641": 74, "559721": 74, "62067": 74, "285245": 74, "21": [74, 75, 80, 81, 83, 87, 91, 94], "709627": 74, "5033693": 74, "913803": 74, "819831": 74, "1831515": 74, "208763": 74, "084257": 74, "3210397": 74, "005453": 74, "216152": 74, "478235": 74, "6821785": 74, "053807": 74, "242471": 74, "091424": 74, "78334856": 74, "03954": 74, "23": [74, 80, 82, 83, 87, 91], "569176": 74, "19": [74, 79, 80, 81, 82, 83, 88, 90, 91, 93], "761097": 74, "1258295": 74, "753237": 74, "3508866": 74, "598274": 74, "23712": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9708": 74, "probabilit": [74, 93], "9976": 74, "986": 74, "002161": 74, "176": [74, 80, 83, 86], "002483": 74, "2318": 74, "004411": 74, "1005": 74, "004857": 74, "1871": 74, "007494": 74, "investig": 74, "040587": 74, "999207": 74, "999377": 74, "975220": 74, "999367": 74, "18": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85, 86], "516": 74, "1946": 74, "469": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_25": 74, "7_nicolas_43": 74, "6_theo_27": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_yweweler_35": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 83, 87, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 91, 92], "006940": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91], "014828": 75, "107": [75, 76, 83, 86], "021241": 75, "120": [75, 76, 92], "026407": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 88, 91, 92, 94], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 91], "51": [75, 76, 78, 80, 83, 87, 91], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 93], "runner": [75, 76, 79, 93], "329": [75, 82, 87], "359": 75, "338": 75, "34": [75, 80, 83, 85, 87, 91, 94], "54": [75, 80, 82, 83, 87, 91, 94], "039122": 75, "53": [75, 76, 78, 80, 86, 87, 91, 92], "044598": 75, "105": 75, "105196": 75, "133654": 75, "43": [75, 80, 82, 83, 87, 91], "168033": 75, "125": 75, "101107": 75, "37": [75, 80, 91], "183382": 75, "109": [75, 80, 87], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 93, 94], "92": [75, 83, 87, 91, 92], "259024": 75, "583757e": 75, "91": [75, 87, 91], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 83, 87, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "26": [75, 80, 82, 83, 85, 87, 91], "047581": 75, "090635": 75, "129591": 75, "65": [75, 87, 91, 92, 94], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001908": 76, "58": [76, 78, 80, 83, 87, 91, 92], "003564": 76, "007331": 76, "008963": 76, "009664": 76, "0227": 76, "is_class_imbalance_issu": 76, "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 90, 91, 93], "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "is_null_issu": 76, "is_non_iid_issu": [76, 78, 79, 83], "859131": 76, "417707": 76, "664083": 76, "970324": 76, "816953": 76, "375317": 76, "641516": 76, "890575": 76, "531021": 76, "460593": 76, "601188": 76, "826147": 76, "752808": 76, "321635": 76, "562539": 76, "948362": 76, "090243": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013445": 76, "025184": 76, "026376": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 82, 83, 87, 90, 91, 92], "94": [78, 80, 83, 87, 90, 91, 92], "78": [78, 80, 82, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 83, 87, 91, 92], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 82, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87], "187": [78, 80], "27": [78, 80, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 86, 87, 90, 91, 94], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 90, 91, 94], "96": [78, 80, 83, 86, 87, 90, 91, 94], "lt": [78, 79, 80, 82, 85, 88, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 87, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "beneficiary_not_allow": [79, 93], "card_payment_fee_charg": [79, 93], "getting_spare_card": [79, 93], "card_about_to_expir": [79, 93], "supported_cards_and_curr": [79, 93], "apple_pay_or_google_pai": [79, 93], "lost_or_stolen_phon": [79, 93], "visa_or_mastercard": [79, 93], "change_pin": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "_util": [79, 93], "831": [79, 93], "typedstorag": [79, 93], "untypedstorag": [79, 93], "untyped_storag": [79, 93], "fget": [79, 93], "__get__": [79, 93], "owner": [79, 93], "400": [79, 93], "data_dict": [79, 83, 85], "85": [79, 87, 91], "38": [79, 80, 82, 87, 88, 91], "9710": 79, "981": 79, "974": 79, "000146": 79, "982": [79, 80], "000224": 79, "971": 79, "000507": 79, "980": [79, 80], "000960": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 90], "095724": 79, "148": 79, "006237": 79, "546": 79, "099341": 79, "514": 79, "006485": 79, "481": 79, "123418": 79, "008165": 79, "0000": [79, 80, 83], "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 91, 94], "574915": 79, "31": [79, 80, 82, 83, 85, 87, 91], "575507": 79, "575874": 79, "792090": 79, "257611": 79, "698710": 79, "182121": 79, "771619": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83, 86], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 82, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 91], "88": [80, 81, 82, 83, 86, 87, 88, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 91, 92], "32635": 80, "32636": 80, "47": [80, 82, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "93": [80, 87, 90, 91, 92], "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 91, 94], "41": [80, 87, 90, 91], "44": [80, 82, 86, 87, 88, 91, 93], "71": [80, 83, 87, 90, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": 80, "035": 80, "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87], "98": [80, 81, 82, 90, 91], "452381": 80, "459770": 80, "72": [80, 82, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 88, 91, 94], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 83, 87, 88, 90, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "nbsp": [81, 83], "cleanlearninginot": [81, 83], "fittedcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "tmp": 81, "ipykernel_5828": 81, "1995098996": 81, "deprecationwarn": 81, "dataframegroupbi": 81, "include_group": 81, "silenc": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "482": 82, "720": 82, "643": 82, "195": [82, 94], "435": 82, "stderr": [82, 88, 91], "sphinxverbatim": [82, 88, 91, 94], "80it": [82, 91], "66it": [82, 91], "74it": [82, 91], "69it": [82, 91], "95it": [82, 91], "20it": 82, "00it": 82, "73it": [82, 88, 91], "56it": [82, 91], "76it": [82, 91], "82it": [82, 91], "63": [82, 83, 87, 88, 90, 91], "79it": 82, "02it": [82, 91], "94it": [82, 91], "493": 82, "060": 82, "627": 82, "330": [82, 87], "505": 82, "443": [82, 94], "30it": [82, 91], "67it": [82, 91], "44it": [82, 91], "58it": [82, 91], "62": [82, 83, 87, 90, 91], "31it": [82, 91], "86it": [82, 91], "83it": [82, 88, 91], "72it": [82, 91], "61it": [82, 91], "92it": [82, 91], "96it": 82, "65it": [82, 91], "19it": [82, 91], "54it": [82, 88, 91], "476": 82, "340": 82, "622": 82, "328": [82, 87], "310": 82, "436": 82, "37it": [82, 91], "18it": [82, 91], "97it": [82, 91], "09it": [82, 88, 91], "04it": [82, 91], "53it": [82, 91], "46it": [82, 91], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7714": 82, "3772": 82, "3585": 82, "166": 82, "3651": 82, "27080": 82, "873833e": 82, "40378": 82, "915575e": 82, "25316": 82, "390277e": 82, "06": [82, 83, 87, 91, 94], "2090": 82, "751164e": 82, "14999": 82, "881301e": 82, "9569": 82, "11262": 82, "000003": 82, "19228": 82, "000010": 82, "dress": 82, "32657": 82, "000013": 82, "21282": 82, "000016": 82, "53564": 82, "000018": 82, "pullov": 82, "6321": 82, "30968": 82, "001267": 82, "30659": 82, "000022": [82, 94], "47824": 82, "001454": 82, "3370": 82, "000026": 82, "54565": 82, "001854": 82, "9762": 82, "258": 82, "47139": 82, "000033": 82, "166980": 82, "986195": 82, "997205": 82, "948781": 82, "999358": 82, "54078": 82, "17371": 82, "000025": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85, 86], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "637318e": 83, "896262e": 83, "548391e": 83, "923417e": 83, "375075e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87, 94], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "695223": 83, "323529": 83, "523015": 83, "013720": 83, "675727": 83, "646521": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "69": [83, 88, 90, 91], "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 88, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "196": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "121": [83, 93], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": 83, "194": [83, 94], "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87, 94], "169": [83, 94], "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "156": 83, "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "300": [85, 94], "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "na": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736118": 85, "757751": 85, "782232": 85, "715565": 85, "824256": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070564": 85, "216078": 85, "119188": 85, "alongisd": 85, "244981": 85, "208333": 85, "295979": 85, "294118": 85, "324197": 85, "310345": 85, "355316": 85, "346154": 85, "439732": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "606999": 85, "a0015": 85, "609526": 85, "678571": 85, "a0011": 85, "621103": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "suppli": [86, 87], "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 88, 91], "275": 86, "267": 86, "225": 86, "171": 86, "234": 86, "165": 86, "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87], "216": [86, 87, 94], "265": 86, "159": [86, 87], "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "begin": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "290": 87, "286": 87, "285": 87, "224": 87, "231": [87, 94], "293": 87, "235": 87, "289": 87, "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": 87, "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "219": 87, "239": 87, "240": 87, "209": 87, "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": [87, 94], "237": 87, "207": 87, "204": 87, "84": [87, 90, 91], "205": 87, "223": 87, "153": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": 87, "173": 87, "297": 87, "317": 87, "192": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "138": 87, "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000242946": 87, "3300460146483339": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "170498071": 88, "1802240": 88, "17679640": 88, "48it": 88, "12124160": 88, "67499577": 88, "03it": [88, 91], "23003136": 88, "86235389": 88, "32899072": 88, "91230976": 88, "11it": [88, 91], "43384832": 88, "96066497": 88, "78it": [88, 91], "53739520": 88, "98584790": 88, "93it": [88, 91], "64028672": 88, "99955094": 88, "01it": [88, 91], "74874880": 88, "102643580": 88, "85164032": 88, "101368779": 88, "28it": [88, 91], "96403456": 88, "104721663": 88, "106889216": 88, "102308446": 88, "63it": [88, 91], "118259712": 88, "105670851": 88, "32it": [88, 91], "128876544": 88, "102956737": 88, "140181504": 88, "105850590": 88, "150798336": 88, "103312662": 88, "70it": [88, 91], "161841152": 88, "105282046": 88, "90it": [88, 91], "99133860": 88, "68it": [88, 91], "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "unusu": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "636197": 90, "499503": 90, "843478": 90, "776647": 90, "350358": 90, "170547": 90, "706969": 90, "984759": 90, "812515": 90, "795928": 90, "identified_issu": [90, 93], "141": 90, "659": 90, "367": 90, "318": 90, "305": 90, "560": 90, "657": 90, "688": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "926": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "area": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "15387": 91, "153859": 91, "88it": 91, "30953": 91, "154916": 91, "46445": 91, "154862": 91, "43it": 91, "61949": 91, "154930": 91, "24it": 91, "77467": 91, "155019": 91, "92969": 91, "154441": 91, "07it": 91, "108414": 91, "154378": 91, "14it": 91, "123962": 91, "154726": 91, "139435": 91, "154613": 91, "154933": 91, "154724": 91, "64it": 91, "170450": 91, "154858": 91, "185960": 91, "154931": 91, "05it": 91, "201595": 91, "155359": 91, "217166": 91, "155463": 91, "26it": 91, "232796": 91, "155713": 91, "22it": 91, "248368": 91, "155024": 91, "263872": 91, "154707": 91, "21it": 91, "279344": 91, "154411": 91, "85it": 91, "294786": 91, "153675": 91, "310155": 91, "153084": 91, "29it": 91, "325465": 91, "152924": 91, "81it": 91, "340815": 91, "153092": 91, "91it": 91, "356125": 91, "152796": 91, "371405": 91, "152624": 91, "10it": 91, "386668": 91, "152387": 91, "84it": 91, "401907": 91, "151622": 91, "417070": 91, "151606": 91, "432286": 91, "151770": 91, "447464": 91, "151738": 91, "462721": 91, "151984": 91, "477975": 91, "152147": 91, "15it": 91, "493202": 91, "152182": 91, "16it": 91, "508476": 91, "152345": 91, "523738": 91, "152425": 91, "539030": 91, "152572": 91, "554288": 91, "152516": 91, "569540": 91, "152488": 91, "584949": 91, "152966": 91, "60it": 91, "600453": 91, "153586": 91, "615876": 91, "153775": 91, "631317": 91, "153964": 91, "646849": 91, "154369": 91, "662330": 91, "154500": 91, "98it": 91, "677819": 91, "154616": 91, "693283": 91, "154620": 91, "708746": 91, "154483": 91, "57it": 91, "724195": 91, "149330": 91, "739415": 91, "150169": 91, "33it": 91, "754739": 91, "151072": 91, "770174": 91, "152041": 91, "12it": 91, "785615": 91, "152744": 91, "99it": 91, "801159": 91, "153547": 91, "816774": 91, "154323": 91, "42it": 91, "832233": 91, "154401": 91, "847796": 91, "154767": 91, "863276": 91, "154708": 91, "878750": 91, "154184": 91, "894171": 91, "153911": 91, "40it": 91, "909620": 91, "154081": 91, "925183": 91, "154541": 91, "55it": 91, "940724": 91, "154798": 91, "956285": 91, "155038": 91, "35it": 91, "971790": 91, "154956": 91, "987286": 91, "154826": 91, "1002769": 91, "154658": 91, "1018250": 91, "154701": 91, "77it": 91, "1033721": 91, "154399": 91, "1049162": 91, "154388": 91, "08it": 91, "1064700": 91, "154682": 91, "1080169": 91, "154502": 91, "1095620": 91, "153934": 91, "36it": 91, "1111014": 91, "153453": 91, "1126460": 91, "153751": 91, "1141915": 91, "153987": 91, "1157315": 91, "153646": 91, "1172782": 91, "153950": 91, "34it": 91, "1188178": 91, "153569": 91, "49it": 91, "1203670": 91, "153971": 91, "1219312": 91, "1234865": 91, "154946": 91, "23it": 91, "1250438": 91, "155179": 91, "1266015": 91, "155354": 91, "1281583": 91, "155450": 91, "1297301": 91, "155966": 91, "62it": 91, "1312991": 91, "156242": 91, "1328616": 91, "155989": 91, "1344327": 91, "156323": 91, "1359960": 91, "148351": 91, "1375464": 91, "150281": 91, "1391084": 91, "152008": 91, "1406706": 91, "153246": 91, "1422423": 91, "154405": 91, "1438109": 91, "155134": 91, "1453665": 91, "155257": 91, "1469349": 91, "155727": 91, "1485018": 91, "156012": 91, "89it": 91, "1500627": 91, "155976": 91, "47it": 91, "1516230": 91, "153762": 91, "1531868": 91, "154536": 91, "52it": 91, "1547362": 91, "154655": 91, "1562834": 91, "154496": 91, "1578361": 91, "1593837": 91, "154526": 91, "1609292": 91, "154082": 91, "1624709": 91, "154108": 91, "1640152": 91, "154202": 91, "1655574": 91, "153955": 91, "25it": 91, "1670971": 91, "153956": 91, "41it": 91, "1686509": 91, "154381": 91, "1701951": 91, "154392": 91, "1717391": 91, "154191": 91, "1732903": 91, "154468": 91, "06it": 91, "1748426": 91, "154695": 91, "1763908": 91, "154731": 91, "1779465": 91, "154980": 91, "1794973": 91, "155008": 91, "1810474": 91, "154706": 91, "1825945": 91, "150553": 91, "1841366": 91, "151623": 91, "1856852": 91, "152579": 91, "1872563": 91, "153923": 91, "1888219": 91, "39it": 91, "1903953": 91, "155491": 91, "1919523": 91, "155552": 91, "1935132": 91, "155711": 91, "1950707": 91, "155602": 91, "1966388": 91, "155963": 91, "1982054": 91, "156169": 91, "1997673": 91, "155736": 91, "2013248": 91, "155496": 91, "2028804": 91, "155511": 91, "2044356": 91, "2059960": 91, "155488": 91, "2075625": 91, "155833": 91, "2091209": 91, "155266": 91, "2106737": 91, "154717": 91, "2122210": 91, "154334": 91, "2137645": 91, "154040": 91, "2153050": 91, "153792": 91, "2168430": 91, "153254": 91, "2183756": 91, "153011": 91, "2199058": 91, "152771": 91, "2214336": 91, "152533": 91, "2229590": 91, "152216": 91, "2244822": 91, "152246": 91, "2260129": 91, "152489": 91, "87it": 91, "2275379": 91, "152457": 91, "2290625": 91, "152236": 91, "51it": 91, "2305849": 91, "151840": 91, "2321245": 91, "152471": 91, "2336585": 91, "152746": 91, "2351960": 91, "153045": 91, "2367326": 91, "153228": 91, "2382719": 91, "153435": 91, "2398063": 91, "153381": 91, "2413402": 91, "153357": 91, "2428752": 91, "153397": 91, "2444150": 91, "153571": 91, "2459562": 91, "153732": 91, "2475015": 91, "153968": 91, "2490438": 91, "154046": 91, "2505843": 91, "2521248": 91, "153702": 91, "2536619": 91, "153488": 91, "2551968": 91, "2567273": 91, "152959": 91, "2582570": 91, "152668": 91, "38it": 91, "2597897": 91, "152844": 91, "2613182": 91, "150670": 91, "2628256": 91, "149400": 91, "2643612": 91, "150628": 91, "2659103": 91, "151899": 91, "2674484": 91, "152464": 91, "2689840": 91, "152791": 91, "2705248": 91, "153173": 91, "2720642": 91, "153400": 91, "27it": 91, "2736057": 91, "153621": 91, "2751444": 91, "153694": 91, "2766815": 91, "153676": 91, "2782184": 91, "146027": 91, "2797535": 91, "148188": 91, "2812891": 91, "149756": 91, "2828262": 91, "150920": 91, "17it": 91, "2843674": 91, "151866": 91, "2858942": 91, "152106": 91, "2874363": 91, "152731": 91, "2889650": 91, "152715": 91, "2905031": 91, "153042": 91, "2920342": 91, "153004": 91, "2935648": 91, "152907": 91, "2950943": 91, "152850": 91, "2966231": 91, "152725": 91, "2981549": 91, "152858": 91, "2996997": 91, "153340": 91, "3012371": 91, "153458": 91, "3027820": 91, "153766": 91, "3043238": 91, "153889": 91, "3058663": 91, "153995": 91, "3074096": 91, "154092": 91, "71it": 91, "3089506": 91, "153922": 91, "3104899": 91, "153769": 91, "3120344": 91, "153969": 91, "3135742": 91, "153534": 91, "3151096": 91, "153404": 91, "3166437": 91, "153363": 91, "50it": 91, "3181930": 91, "153829": 91, "3197314": 91, "153423": 91, "59it": 91, "3212657": 91, "153324": 91, "3228003": 91, "3243340": 91, "151587": 91, "3258504": 91, "148147": 91, "3273956": 91, "150013": 91, "3289544": 91, "151741": 91, "3305094": 91, "152854": 91, "3320616": 91, "153555": 91, "3336160": 91, "154115": 91, "3351730": 91, "154587": 91, "3367278": 91, "154851": 91, "3382904": 91, "155270": 91, "3398434": 91, "155112": 91, "3413947": 91, "151516": 91, "3429264": 91, "152002": 91, "3444687": 91, "152661": 91, "3459988": 91, "152762": 91, "3475342": 91, "152992": 91, "3490806": 91, "153484": 91, "3506159": 91, "153394": 91, "3521538": 91, "153511": 91, "3537056": 91, "154008": 91, "3552632": 91, "154530": 91, "3568087": 91, "146968": 91, "3583451": 91, "148896": 91, "3598891": 91, "150504": 91, "3614435": 91, "151958": 91, "3629881": 91, "152697": 91, "3645255": 91, "153005": 91, "3660584": 91, "153088": 91, "3675916": 91, "153156": 91, "3691295": 91, "153344": 91, "3706697": 91, "153545": 91, "3722057": 91, "147836": 91, "3736974": 91, "148222": 91, "3752284": 91, "149654": 91, "3767574": 91, "150612": 91, "3782880": 91, "151337": 91, "3798151": 91, "151743": 91, "3813408": 91, "151987": 91, "3828722": 91, "152329": 91, "3844014": 91, "152505": 91, "3859286": 91, "152568": 91, "3874625": 91, "152812": 91, "3890029": 91, "153178": 91, "3905349": 91, "152911": 91, "3920784": 91, "153341": 91, "3936119": 91, "152961": 91, "3951508": 91, "3966960": 91, "153613": 91, "3982322": 91, "153448": 91, "3997668": 91, "4013004": 91, "153315": 91, "4028336": 91, "153114": 91, "4043648": 91, "150591": 91, "4059148": 91, "151895": 91, "4074741": 91, "153091": 91, "4090233": 91, "153635": 91, "4105801": 91, "154243": 91, "4121409": 91, "154791": 91, "4136946": 91, "154962": 91, "4152492": 91, "155109": 91, "4168015": 91, "155143": 91, "4183654": 91, "155513": 91, "4199207": 91, "152050": 91, "4214599": 91, "152599": 91, "4230003": 91, "153024": 91, "4245402": 91, "153309": 91, "4260774": 91, "153430": 91, "4276259": 91, "153852": 91, "4291697": 91, "4307133": 91, "154111": 91, "4322547": 91, "154109": 91, "4337986": 91, "154192": 91, "4353407": 91, "153783": 91, "4368869": 91, "154032": 91, "4384273": 91, "153880": 91, "4399689": 91, "153960": 91, "4415086": 91, "153819": 91, "4430560": 91, "4445994": 91, "154164": 91, "4461435": 91, "154235": 91, "4476872": 91, "154271": 91, "4492300": 91, "154190": 91, "4507750": 91, "154279": 91, "4523179": 91, "153985": 91, "4538578": 91, "153723": 91, "4554001": 91, "153873": 91, "4569399": 91, "153901": 91, "4584887": 91, "4600307": 91, "154017": 91, "4615743": 91, "154119": 91, "4631156": 91, "153933": 91, "4646550": 91, "153794": 91, "4661930": 91, "153604": 91, "4677291": 91, "153189": 91, "45it": 91, "4692776": 91, "153678": 91, "4708145": 91, "153652": 91, "4723512": 91, "153657": 91, "4738893": 91, "153701": 91, "4754264": 91, "153504": 91, "4769615": 91, "153247": 91, "4784940": 91, "153081": 91, "4800270": 91, "153145": 91, "4815618": 91, "153244": 91, "4830943": 91, "152781": 91, "4846264": 91, "152895": 91, "4861611": 91, "153064": 91, "4877009": 91, "153337": 91, "4892368": 91, "153409": 91, "4907726": 91, "153457": 91, "4923182": 91, "153785": 91, "4938561": 91, "4953978": 91, "153897": 91, "4969368": 91, "153894": 91, "4984758": 91, "153605": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "aim": [91, 94], "domin": 91, "extratreesclassifi": 92, "extratre": 92, "ranked_label_issu": [92, 93], "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858371": 93, "547274": 93, "826228": 93, "966008": 93, "792449": 93, "646": 93, "390": 93, "628": 93, "702": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a00": 94, "1069": 94, "connect": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "mb": 94, "directori": 94, "inflat": 94, "17045998": 94, "16m": 94, "octet": 94, "71m": 94, "8mb": 94, "26m": 94, "2mb": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 6, 1, "", "call_super_init"], [31, 3, 1, "", "children"], [31, 3, 1, "", "compile"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_full_backward_pre_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "register_state_dict_pre_hook"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 6, 1, "", "call_super_init"], [35, 3, 1, "", "children"], [35, 3, 1, "", "compile"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_full_backward_pre_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "register_state_dict_pre_hook"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "__contains__"], [41, 3, 1, "", "__getitem__"], [41, 3, 1, "", "__iter__"], [41, 3, 1, "", "__len__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"], [46, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [37, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [43, "module-cleanlab.internal.outlier"], [59, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [61, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "dataset": [[30, "module-cleanlab.dataset"], [51, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "experimental": [[33, "experimental"]], "label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[36, "module-cleanlab.filter"], [52, "module-cleanlab.multilabel_classification.filter"], [55, "filter"], [64, "filter"], [68, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "util": [[45, "module-cleanlab.internal.util"]], "validation": [[46, "module-cleanlab.internal.validation"]], "fasttext": [[47, "fasttext"]], "models": [[48, "models"]], "keras": [[49, "module-cleanlab.models.keras"]], "multiannotator": [[50, "module-cleanlab.multiannotator"]], "multilabel_classification": [[53, "multilabel-classification"]], "rank": [[54, "module-cleanlab.multilabel_classification.rank"], [57, "module-cleanlab.object_detection.rank"], [60, "module-cleanlab.rank"], [66, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.token_classification.rank"]], "object_detection": [[56, "object-detection"]], "summary": [[58, "summary"], [67, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.summary"]], "regression.learn": [[62, "module-cleanlab.regression.learn"]], "regression.rank": [[63, "module-cleanlab.regression.rank"]], "segmentation": [[65, "segmentation"]], "token_classification": [[69, "token-classification"]], "cleanlab open-source documentation": [[72, "cleanlab-open-source-documentation"]], "Quickstart": [[72, "quickstart"]], "1. Install cleanlab": [[72, "install-cleanlab"]], "2. Find common issues in your data": [[72, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[72, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[72, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[72, "improve-your-data-via-many-other-techniques"]], "Contributing": [[72, "contributing"]], "Easy Mode": [[72, "easy-mode"], [78, "Easy-Mode"], [79, "Easy-Mode"], [82, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[73, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[73, "function-and-class-name-changes"]], "Module name changes": [[73, "module-name-changes"]], "New modules": [[73, "new-modules"]], "Removed modules": [[73, "removed-modules"]], "Common argument and variable name changes": [[73, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[74, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[74, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[74, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[74, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[74, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[74, "5.-Use-cleanlab-to-find-label-issues"], [78, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[75, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[75, "Install-and-import-required-dependencies"]], "Create and load the data": [[75, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[75, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[75, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[75, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[75, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[75, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[75, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[76, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[76, "1.-Install-and-import-required-dependencies"], [82, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[76, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[76, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[76, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[76, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[76, "Get-additional-information"]], "Near duplicate issues": [[76, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Datalab Tutorials": [[77, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[78, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[78, "1.-Install-required-dependencies"], [79, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [92, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"]], "2. Load and process the data": [[78, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [92, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[78, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [92, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[78, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[78, "Label-issues"], [79, "Label-issues"], [82, "Label-issues"]], "Outlier issues": [[78, "Outlier-issues"], [79, "Outlier-issues"], [82, "Outlier-issues"]], "Near-duplicate issues": [[78, "Near-duplicate-issues"], [79, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[79, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[79, "2.-Load-and-format-the-text-dataset"], [93, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[79, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[79, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[80, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[80, "Install-dependencies-and-import-them"], [83, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[80, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[80, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[81, "FAQ"]], "What data can cleanlab detect issues in?": [[81, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[81, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[81, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[81, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[81, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[81, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[81, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[81, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[81, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[81, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[81, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[81, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[81, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[81, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[82, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[82, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[82, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[82, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[82, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[82, "7.-Use-cleanlab-to-find-issues"]], "View report": [[82, "View-report"]], "View most likely examples with label errors": [[82, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[82, "View-most-severe-outliers"]], "View sets of near duplicate images": [[82, "View-sets-of-near-duplicate-images"]], "Dark images": [[82, "Dark-images"]], "View top examples of dark images": [[82, "View-top-examples-of-dark-images"]], "Low information images": [[82, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[83, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[83, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[83, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[83, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[83, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[83, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[83, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[83, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[83, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[83, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[83, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[83, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[83, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[83, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[83, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[83, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[83, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[83, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[83, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[83, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[84, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[85, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[85, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[85, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[85, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[85, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[85, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[85, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[85, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[85, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[86, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[86, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[86, "2.-Format-data,-labels,-and-model-predictions"], [87, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[86, "3.-Use-cleanlab-to-find-label-issues"], [87, "3.-Use-cleanlab-to-find-label-issues"], [91, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[86, "Label-quality-scores"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[86, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Finding Label Errors in Object Detection Datasets": [[87, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[87, "1.-Install-required-dependencies-and-download-data"], [91, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[87, "Get-label-quality-scores"], [91, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[87, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[87, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[87, "Other-uses-of-visualize"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[88, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[88, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[88, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[88, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[88, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[88, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[89, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[89, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[89, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[90, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[90, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[90, "4.-Train-a-more-robust-model-from-noisy-labels"], [93, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[90, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[91, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[91, "2.-Get-data,-labels,-and-pred_probs"], [94, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[91, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[91, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[91, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[92, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[92, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[92, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[93, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[93, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[94, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[94, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[94, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[94, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[94, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [30, "module-cleanlab.dataset"], [31, "module-cleanlab.experimental.cifar_cnn"], [32, "module-cleanlab.experimental.coteaching"], [33, "module-cleanlab.experimental"], [34, "module-cleanlab.experimental.label_issues_batched"], [35, "module-cleanlab.experimental.mnist_pytorch"], [36, "module-cleanlab.filter"], [37, "module-cleanlab.internal"], [38, "module-cleanlab.internal.label_quality_utils"], [39, "module-cleanlab.internal.latent_algebra"], [40, "module-cleanlab.internal.multiannotator_utils"], [41, "module-cleanlab.internal.multilabel_scorer"], [42, "module-cleanlab.internal.multilabel_utils"], [43, "module-cleanlab.internal.outlier"], [44, "module-cleanlab.internal.token_classification_utils"], [45, "module-cleanlab.internal.util"], [46, "module-cleanlab.internal.validation"], [48, "module-cleanlab.models"], [49, "module-cleanlab.models.keras"], [50, "module-cleanlab.multiannotator"], [51, "module-cleanlab.multilabel_classification.dataset"], [52, "module-cleanlab.multilabel_classification.filter"], [53, "module-cleanlab.multilabel_classification"], [54, "module-cleanlab.multilabel_classification.rank"], [55, "module-cleanlab.object_detection.filter"], [56, "module-cleanlab.object_detection"], [57, "module-cleanlab.object_detection.rank"], [58, "module-cleanlab.object_detection.summary"], [59, "module-cleanlab.outlier"], [60, "module-cleanlab.rank"], [61, "module-cleanlab.regression"], [62, "module-cleanlab.regression.learn"], [63, "module-cleanlab.regression.rank"], [64, "module-cleanlab.segmentation.filter"], [65, "module-cleanlab.segmentation"], [66, "module-cleanlab.segmentation.rank"], [67, "module-cleanlab.segmentation.summary"], [68, "module-cleanlab.token_classification.filter"], [69, "module-cleanlab.token_classification"], [70, "module-cleanlab.token_classification.rank"], [71, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "cleanlab.dataset": [[30, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[30, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[31, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[31, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.forward"], [31, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[31, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[31, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[32, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[32, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[33, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[34, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[34, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[34, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[35, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [35, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[35, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [35, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [35, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[35, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[35, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[36, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[36, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[36, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[36, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[37, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[38, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[38, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[39, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[40, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[40, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[41, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[41, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[41, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[41, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[41, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[42, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[42, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[43, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[43, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[44, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[45, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[45, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[46, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[46, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[48, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[49, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[49, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[49, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[49, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[50, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[50, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[51, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[51, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[52, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[53, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[54, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[54, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[55, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[55, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[56, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[57, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[57, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[58, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[58, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[59, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[59, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[59, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[60, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[60, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[60, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[61, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[62, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[62, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[62, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[62, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[63, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[63, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[64, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[64, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[65, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[66, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[66, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[67, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[67, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[68, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[68, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[69, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[70, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[70, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[71, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[71, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index bf1bb0225..41c5d0795 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1274,7 +1274,7 @@

5. Use cleanlab to find label issues -{"state": {"bb5894e2b38c45c194efd20f8c3cbe66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60b527de43034970b1308b099653ea53": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "02b46780ae3f483399e08d2e6ff8eab2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb5894e2b38c45c194efd20f8c3cbe66", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_60b527de43034970b1308b099653ea53", "tabbable": null, "tooltip": null, "value": 2041.0}}, "e617431224a74447b3168997dee691d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0e4ebf8d49e4f038e5a57a3736f1527": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe3bcc7d9bf948039e3be396079d45a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e617431224a74447b3168997dee691d1", "placeholder": "\u200b", "style": "IPY_MODEL_f0e4ebf8d49e4f038e5a57a3736f1527", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%"}}, "f248fc8f51004a06b30e02a83397236b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff8cf12f43ca4d13a1017fbff08fe9f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f358d8bedbb43768725d491407bfce8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f248fc8f51004a06b30e02a83397236b", "placeholder": "\u200b", "style": "IPY_MODEL_ff8cf12f43ca4d13a1017fbff08fe9f6", "tabbable": null, "tooltip": null, "value": " 2.04k/2.04k [00:00<00:00, 445kB/s]"}}, "9d41a343cf504fc2878761980bd12889": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff1fa9c053ff44b6819529a9bf6f509a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fe3bcc7d9bf948039e3be396079d45a5", "IPY_MODEL_02b46780ae3f483399e08d2e6ff8eab2", "IPY_MODEL_3f358d8bedbb43768725d491407bfce8"], "layout": "IPY_MODEL_9d41a343cf504fc2878761980bd12889", "tabbable": null, "tooltip": null}}, "11c7035432e343fb93816c86129b8adf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79351f8482fe4216b6609e0f2c2f5d0f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "314fd2a192634790b5db62a3957f85ac": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_11c7035432e343fb93816c86129b8adf", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_79351f8482fe4216b6609e0f2c2f5d0f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "05fbe93d9d004d09b7a9891b7f6adbe2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "707ef7472aa046e0af876676bdeb0e1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "88e025fac457476e857a0ed0172c8ebf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_05fbe93d9d004d09b7a9891b7f6adbe2", "placeholder": "\u200b", "style": "IPY_MODEL_707ef7472aa046e0af876676bdeb0e1a", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%"}}, "6372cda2727c44baa0af02192d868905": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ceda72b1d5049b5a8049ad58afd02d9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "47d60ecdbe0a4f409818f97dffc6439c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6372cda2727c44baa0af02192d868905", "placeholder": "\u200b", "style": "IPY_MODEL_2ceda72b1d5049b5a8049ad58afd02d9", "tabbable": null, "tooltip": null, "value": " 16.9M/16.9M [00:00<00:00, 198MB/s]"}}, "eaa3e635e6d845149a49424039f11a4a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bba729c19a594f33892a4024225287f9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_88e025fac457476e857a0ed0172c8ebf", "IPY_MODEL_314fd2a192634790b5db62a3957f85ac", "IPY_MODEL_47d60ecdbe0a4f409818f97dffc6439c"], "layout": "IPY_MODEL_eaa3e635e6d845149a49424039f11a4a", "tabbable": null, "tooltip": null}}, "2ea45f78382040ef970a525ca19405dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8bb345f6d81459fa75f4555635255d2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "018c961243dc4a2ab609ecd13bf21b1c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ea45f78382040ef970a525ca19405dc", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e8bb345f6d81459fa75f4555635255d2", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d4ac54bb95434214887e6908f7417cc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "918ea5972c8a43b4b372a06b881f8d52": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c96f0f9cb7694a33982acab6e5ac22c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4ac54bb95434214887e6908f7417cc4", "placeholder": "\u200b", "style": "IPY_MODEL_918ea5972c8a43b4b372a06b881f8d52", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%"}}, "3095c367a4c74a08854abcd7622d7a72": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d60c4c9975014fc6918fb9394f823e45": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b69d30f9f6bd496e950e0a7253129c59": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3095c367a4c74a08854abcd7622d7a72", "placeholder": "\u200b", "style": "IPY_MODEL_d60c4c9975014fc6918fb9394f823e45", "tabbable": null, "tooltip": null, "value": " 3.20k/3.20k [00:00<00:00, 769kB/s]"}}, "87af3d337e4c4f56b8de8653ffbcf2fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf3f0473f1a24d82986d6c703fdff8de": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c96f0f9cb7694a33982acab6e5ac22c1", "IPY_MODEL_018c961243dc4a2ab609ecd13bf21b1c", "IPY_MODEL_b69d30f9f6bd496e950e0a7253129c59"], "layout": "IPY_MODEL_87af3d337e4c4f56b8de8653ffbcf2fa", "tabbable": null, "tooltip": null}}, "e831980da61448918a716f1d888c714a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d84cb363c6b490cb8afa2ab45a2daee": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "92bc2ade5f1a4d98b4659c1d3a64feed": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e831980da61448918a716f1d888c714a", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5d84cb363c6b490cb8afa2ab45a2daee", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "d916d408a2f44a8992d77870d9ae75bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0aa84448e3f405b9aeee1a3005ca7a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "99d0bf7b85e74ac2a356f2a9fff98e37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d916d408a2f44a8992d77870d9ae75bf", "placeholder": "\u200b", "style": "IPY_MODEL_f0aa84448e3f405b9aeee1a3005ca7a2", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%"}}, "9340c56a375c49e89e8e3b127db43593": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea839efc9eda4c81be312c0e78c8f734": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6a87e23c3c664f00ab0368cbb61ca901": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9340c56a375c49e89e8e3b127db43593", "placeholder": "\u200b", "style": "IPY_MODEL_ea839efc9eda4c81be312c0e78c8f734", "tabbable": null, "tooltip": null, "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]"}}, "1366b1442bcd477f91d3b1f2c79ccf71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "578b918f0b334af9a2793c197fe9a32c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_99d0bf7b85e74ac2a356f2a9fff98e37", "IPY_MODEL_92bc2ade5f1a4d98b4659c1d3a64feed", "IPY_MODEL_6a87e23c3c664f00ab0368cbb61ca901"], "layout": "IPY_MODEL_1366b1442bcd477f91d3b1f2c79ccf71", "tabbable": null, "tooltip": null}}, "1797a298ca2148919567beaa49cc33d7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06630781720c42d199dca36dbc67bb87": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8fc50970ec7644c6825dbf8f10bcced8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1797a298ca2148919567beaa49cc33d7", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_06630781720c42d199dca36dbc67bb87", "tabbable": null, "tooltip": null, "value": 128619.0}}, "1602afb154024a839e7eb2baeadf14c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db3add3863d748748c253c014e2faf03": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ba1608cb15441918fffbdb0112aa1f8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1602afb154024a839e7eb2baeadf14c9", "placeholder": "\u200b", "style": "IPY_MODEL_db3add3863d748748c253c014e2faf03", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%"}}, "3a569a86618c42dc86af61139d6acadf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f853c6490ccf49c18f81d8894a4fd3d4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c7316533a256479abb53524380df0dd4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a569a86618c42dc86af61139d6acadf", "placeholder": "\u200b", "style": "IPY_MODEL_f853c6490ccf49c18f81d8894a4fd3d4", "tabbable": null, "tooltip": null, "value": " 129k/129k [00:00<00:00, 9.21MB/s]"}}, "6ee9b3701a494b97a2c8644af1e520cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8ffabec7ae64c16bd74b38130d34b65": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1ba1608cb15441918fffbdb0112aa1f8", "IPY_MODEL_8fc50970ec7644c6825dbf8f10bcced8", "IPY_MODEL_c7316533a256479abb53524380df0dd4"], "layout": "IPY_MODEL_6ee9b3701a494b97a2c8644af1e520cb", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e0528fbb6b84426681be3552bcfa5be7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3130c2baa2ca43b8866db622c29120fc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "04300f6af0e2499abc98d7c0019ae68c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0528fbb6b84426681be3552bcfa5be7", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3130c2baa2ca43b8866db622c29120fc", "tabbable": null, "tooltip": null, "value": 2041.0}}, "293f95aa421a4889bf08ad2176227a3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6c9f629d18240d7a6b98ac06c78293a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aefceca0700b4c62b24820c53e63d7f9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_293f95aa421a4889bf08ad2176227a3a", "placeholder": "\u200b", "style": "IPY_MODEL_d6c9f629d18240d7a6b98ac06c78293a", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%"}}, "3de28429f250445fa8516dbacd9be6b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b247055147c47c2a71d10020cd84176": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d982ece3b4e14443adc855de84443142": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3de28429f250445fa8516dbacd9be6b4", "placeholder": "\u200b", "style": "IPY_MODEL_1b247055147c47c2a71d10020cd84176", "tabbable": null, "tooltip": null, "value": " 2.04k/2.04k [00:00<00:00, 499kB/s]"}}, "99d97c19f0dc458bbece97f7d70aff29": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "049baf23826b4af093eff7678dd9f29d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_aefceca0700b4c62b24820c53e63d7f9", "IPY_MODEL_04300f6af0e2499abc98d7c0019ae68c", "IPY_MODEL_d982ece3b4e14443adc855de84443142"], "layout": "IPY_MODEL_99d97c19f0dc458bbece97f7d70aff29", "tabbable": null, "tooltip": null}}, "654f7806575d45a9a93e8a5c0d6424c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4c65529fdc840279cfc12be44b62fb9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c8da71bd884e46109202edc2ee6ab409": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_654f7806575d45a9a93e8a5c0d6424c0", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d4c65529fdc840279cfc12be44b62fb9", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "bac330bbb6a4449a8fbf7ad2fb9720e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf487e1807424afba2b22b5f777c96a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b39dbdd24a234f3982e2b78d6a3a6ca4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bac330bbb6a4449a8fbf7ad2fb9720e7", "placeholder": "\u200b", "style": "IPY_MODEL_cf487e1807424afba2b22b5f777c96a2", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%"}}, "abe7c4e2a2194914a09f1d5bd6432fec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c5385e8b4cf43428bb9acc7bf7b1b4f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f620b009650b49f69c70d93caed3431b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_abe7c4e2a2194914a09f1d5bd6432fec", "placeholder": "\u200b", "style": "IPY_MODEL_6c5385e8b4cf43428bb9acc7bf7b1b4f", "tabbable": null, "tooltip": null, "value": " 16.9M/16.9M [00:00<00:00, 192MB/s]"}}, "d48b4a1fa40646a3bec001eabc934939": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0595d525f4e448ab899ecc84c2c97ac6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b39dbdd24a234f3982e2b78d6a3a6ca4", "IPY_MODEL_c8da71bd884e46109202edc2ee6ab409", "IPY_MODEL_f620b009650b49f69c70d93caed3431b"], "layout": "IPY_MODEL_d48b4a1fa40646a3bec001eabc934939", "tabbable": null, "tooltip": null}}, "62bd4894905e4e87a345db49d46d4165": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "59c2bdf1dad14b51966cb22a618f131d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "857398c0b7f442608c58fc97f1061a9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_62bd4894905e4e87a345db49d46d4165", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_59c2bdf1dad14b51966cb22a618f131d", "tabbable": null, "tooltip": null, "value": 3201.0}}, "ede528c5216046cfba4a067472e5124d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d8bf5983d3844eb8ff2f91414a189f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f816adc0ed2b4d56be8bf200373ef9aa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ede528c5216046cfba4a067472e5124d", "placeholder": "\u200b", "style": "IPY_MODEL_3d8bf5983d3844eb8ff2f91414a189f4", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt: 100%"}}, "666271d492134ef0b03b8ec9578b7998": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06290fbe33a34692b6a4159ab260ce9c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fc8d050fc3f448ee9399813ed8e667f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_666271d492134ef0b03b8ec9578b7998", "placeholder": "\u200b", "style": "IPY_MODEL_06290fbe33a34692b6a4159ab260ce9c", "tabbable": null, "tooltip": null, "value": " 3.20k/3.20k [00:00<00:00, 841kB/s]"}}, "69fd182a930c4068837b29ef749fc1bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ae177114d464deba94c0d078154bdf4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f816adc0ed2b4d56be8bf200373ef9aa", "IPY_MODEL_857398c0b7f442608c58fc97f1061a9f", "IPY_MODEL_fc8d050fc3f448ee9399813ed8e667f4"], "layout": "IPY_MODEL_69fd182a930c4068837b29ef749fc1bf", "tabbable": null, "tooltip": null}}, "e872326b222549548e420a960ab1959d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73bf2556b81f44f2b96275a8445d1cf0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "efad4ad3f4a54a6994d42d4a6b5132d8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e872326b222549548e420a960ab1959d", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_73bf2556b81f44f2b96275a8445d1cf0", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "481f68c008f94fc598a9ef7c2cce6da0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e6e92ecdf7e4d9eafaba693dc09a3c5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "668783404483450b8f426724d2f89cd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_481f68c008f94fc598a9ef7c2cce6da0", "placeholder": "\u200b", "style": "IPY_MODEL_7e6e92ecdf7e4d9eafaba693dc09a3c5", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%"}}, "2a411ecde9e54d31b05f5cc5733557f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ef834011f39489aafc203ff4a85829a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2c996374e678491788c459e1dbc99a01": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a411ecde9e54d31b05f5cc5733557f7", "placeholder": "\u200b", "style": "IPY_MODEL_9ef834011f39489aafc203ff4a85829a", "tabbable": null, "tooltip": null, "value": " 15.9M/15.9M [00:00<00:00, 227MB/s]"}}, "2d4fdb5e6e5b487387c870752b01cd9f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79d69ad0f5d64b55b2c38c5a74f7b121": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_668783404483450b8f426724d2f89cd3", "IPY_MODEL_efad4ad3f4a54a6994d42d4a6b5132d8", "IPY_MODEL_2c996374e678491788c459e1dbc99a01"], "layout": "IPY_MODEL_2d4fdb5e6e5b487387c870752b01cd9f", "tabbable": null, "tooltip": null}}, "7e072d86b5c74dcb93b0e3f2038cc23d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b5d2f843fa24204af224bc21fdaf056": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cad92de12db6453a8c477718a7af5c66": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e072d86b5c74dcb93b0e3f2038cc23d", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0b5d2f843fa24204af224bc21fdaf056", "tabbable": null, "tooltip": null, "value": 128619.0}}, "61d8c620b2004dcbbf7642355fae0c8d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0df3f598e42449c692311ec643f0d43d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f01ef992cbbf4ff19aa1fcca3a0d11ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_61d8c620b2004dcbbf7642355fae0c8d", "placeholder": "\u200b", "style": "IPY_MODEL_0df3f598e42449c692311ec643f0d43d", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%"}}, "baae0b1fb874444ebed0ca5b86534711": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d65f6dbb468c45f5833700dc76ef4722": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dd0085e26ee6480aa6a013494fb70534": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_baae0b1fb874444ebed0ca5b86534711", "placeholder": "\u200b", "style": "IPY_MODEL_d65f6dbb468c45f5833700dc76ef4722", "tabbable": null, "tooltip": null, "value": " 129k/129k [00:00<00:00, 15.9MB/s]"}}, "58eb5f1bb6f543b9b6d320bd4dc8a583": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68ffad4d65d54523b62a4a5eccb50913": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f01ef992cbbf4ff19aa1fcca3a0d11ed", "IPY_MODEL_cad92de12db6453a8c477718a7af5c66", "IPY_MODEL_dd0085e26ee6480aa6a013494fb70534"], "layout": "IPY_MODEL_58eb5f1bb6f543b9b6d320bd4dc8a583", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 6f50fce62..292e02cfe 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:18.361812Z", - "iopub.status.busy": "2024-02-07T22:09:18.361636Z", - "iopub.status.idle": "2024-02-07T22:09:23.711531Z", - "shell.execute_reply": "2024-02-07T22:09:23.710898Z" + "iopub.execute_input": "2024-02-07T23:50:00.107221Z", + "iopub.status.busy": "2024-02-07T23:50:00.107063Z", + "iopub.status.idle": "2024-02-07T23:50:04.972205Z", + "shell.execute_reply": "2024-02-07T23:50:04.971588Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.714287Z", - "iopub.status.busy": "2024-02-07T22:09:23.713904Z", - "iopub.status.idle": "2024-02-07T22:09:23.717701Z", - "shell.execute_reply": "2024-02-07T22:09:23.717275Z" + "iopub.execute_input": "2024-02-07T23:50:04.974847Z", + "iopub.status.busy": "2024-02-07T23:50:04.974485Z", + "iopub.status.idle": "2024-02-07T23:50:04.977602Z", + "shell.execute_reply": "2024-02-07T23:50:04.977185Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.719659Z", - "iopub.status.busy": "2024-02-07T22:09:23.719476Z", - "iopub.status.idle": "2024-02-07T22:09:23.723985Z", - "shell.execute_reply": "2024-02-07T22:09:23.723572Z" + "iopub.execute_input": "2024-02-07T23:50:04.979500Z", + "iopub.status.busy": "2024-02-07T23:50:04.979321Z", + "iopub.status.idle": "2024-02-07T23:50:04.983925Z", + "shell.execute_reply": "2024-02-07T23:50:04.983480Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:23.725972Z", - "iopub.status.busy": "2024-02-07T22:09:23.725707Z", - "iopub.status.idle": "2024-02-07T22:09:25.249850Z", - "shell.execute_reply": "2024-02-07T22:09:25.249225Z" + "iopub.execute_input": "2024-02-07T23:50:04.986003Z", + "iopub.status.busy": "2024-02-07T23:50:04.985618Z", + "iopub.status.idle": "2024-02-07T23:50:06.549578Z", + "shell.execute_reply": "2024-02-07T23:50:06.548944Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.252557Z", - "iopub.status.busy": "2024-02-07T22:09:25.252169Z", - "iopub.status.idle": "2024-02-07T22:09:25.263474Z", - "shell.execute_reply": "2024-02-07T22:09:25.262738Z" + "iopub.execute_input": "2024-02-07T23:50:06.552344Z", + "iopub.status.busy": "2024-02-07T23:50:06.551958Z", + "iopub.status.idle": "2024-02-07T23:50:06.562444Z", + "shell.execute_reply": "2024-02-07T23:50:06.561881Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.296003Z", - "iopub.status.busy": "2024-02-07T22:09:25.295584Z", - "iopub.status.idle": "2024-02-07T22:09:25.301465Z", - "shell.execute_reply": "2024-02-07T22:09:25.300981Z" + "iopub.execute_input": "2024-02-07T23:50:06.593982Z", + "iopub.status.busy": "2024-02-07T23:50:06.593548Z", + "iopub.status.idle": "2024-02-07T23:50:06.599022Z", + "shell.execute_reply": "2024-02-07T23:50:06.598581Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.303281Z", - "iopub.status.busy": "2024-02-07T22:09:25.303109Z", - "iopub.status.idle": "2024-02-07T22:09:25.749448Z", - "shell.execute_reply": "2024-02-07T22:09:25.748880Z" + "iopub.execute_input": "2024-02-07T23:50:06.600905Z", + "iopub.status.busy": "2024-02-07T23:50:06.600729Z", + "iopub.status.idle": "2024-02-07T23:50:07.080952Z", + "shell.execute_reply": "2024-02-07T23:50:07.080367Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:25.751700Z", - "iopub.status.busy": "2024-02-07T22:09:25.751373Z", - "iopub.status.idle": "2024-02-07T22:09:26.514501Z", - "shell.execute_reply": "2024-02-07T22:09:26.513900Z" + "iopub.execute_input": "2024-02-07T23:50:07.083112Z", + "iopub.status.busy": "2024-02-07T23:50:07.082774Z", + "iopub.status.idle": "2024-02-07T23:50:07.698361Z", + "shell.execute_reply": "2024-02-07T23:50:07.697874Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.516952Z", - "iopub.status.busy": "2024-02-07T22:09:26.516772Z", - "iopub.status.idle": "2024-02-07T22:09:26.536940Z", - "shell.execute_reply": "2024-02-07T22:09:26.536500Z" + "iopub.execute_input": "2024-02-07T23:50:07.700875Z", + "iopub.status.busy": "2024-02-07T23:50:07.700453Z", + "iopub.status.idle": "2024-02-07T23:50:07.720767Z", + "shell.execute_reply": "2024-02-07T23:50:07.720213Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.538937Z", - "iopub.status.busy": "2024-02-07T22:09:26.538682Z", - "iopub.status.idle": "2024-02-07T22:09:26.541623Z", - "shell.execute_reply": "2024-02-07T22:09:26.541204Z" + "iopub.execute_input": "2024-02-07T23:50:07.722821Z", + "iopub.status.busy": "2024-02-07T23:50:07.722441Z", + "iopub.status.idle": "2024-02-07T23:50:07.725646Z", + "shell.execute_reply": "2024-02-07T23:50:07.725101Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:26.543564Z", - "iopub.status.busy": "2024-02-07T22:09:26.543237Z", - "iopub.status.idle": "2024-02-07T22:09:41.167409Z", - "shell.execute_reply": "2024-02-07T22:09:41.166804Z" + "iopub.execute_input": "2024-02-07T23:50:07.727549Z", + "iopub.status.busy": "2024-02-07T23:50:07.727193Z", + "iopub.status.idle": "2024-02-07T23:50:21.686992Z", + "shell.execute_reply": "2024-02-07T23:50:21.686381Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.170099Z", - "iopub.status.busy": "2024-02-07T22:09:41.169730Z", - "iopub.status.idle": "2024-02-07T22:09:41.173537Z", - "shell.execute_reply": "2024-02-07T22:09:41.173080Z" + "iopub.execute_input": "2024-02-07T23:50:21.689932Z", + "iopub.status.busy": "2024-02-07T23:50:21.689619Z", + "iopub.status.idle": "2024-02-07T23:50:21.693998Z", + "shell.execute_reply": "2024-02-07T23:50:21.693471Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -689,10 +689,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.175544Z", - "iopub.status.busy": "2024-02-07T22:09:41.175252Z", - "iopub.status.idle": "2024-02-07T22:09:41.882562Z", - "shell.execute_reply": "2024-02-07T22:09:41.881983Z" + "iopub.execute_input": "2024-02-07T23:50:21.696250Z", + "iopub.status.busy": "2024-02-07T23:50:21.695894Z", + "iopub.status.idle": "2024-02-07T23:50:22.394154Z", + "shell.execute_reply": "2024-02-07T23:50:22.393570Z" }, "id": "i_drkY9YOcw4" }, @@ -726,10 +726,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.886194Z", - "iopub.status.busy": "2024-02-07T22:09:41.885276Z", - "iopub.status.idle": "2024-02-07T22:09:41.891871Z", - "shell.execute_reply": "2024-02-07T22:09:41.891394Z" + "iopub.execute_input": "2024-02-07T23:50:22.397720Z", + "iopub.status.busy": "2024-02-07T23:50:22.396797Z", + "iopub.status.idle": "2024-02-07T23:50:22.403356Z", + "shell.execute_reply": "2024-02-07T23:50:22.402877Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -776,10 +776,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:41.895266Z", - "iopub.status.busy": "2024-02-07T22:09:41.894373Z", - "iopub.status.idle": "2024-02-07T22:09:42.014766Z", - "shell.execute_reply": "2024-02-07T22:09:42.014141Z" + "iopub.execute_input": "2024-02-07T23:50:22.406771Z", + "iopub.status.busy": "2024-02-07T23:50:22.405875Z", + "iopub.status.idle": "2024-02-07T23:50:22.531248Z", + "shell.execute_reply": "2024-02-07T23:50:22.530652Z" } }, "outputs": [ @@ -816,10 +816,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.017421Z", - "iopub.status.busy": "2024-02-07T22:09:42.017053Z", - "iopub.status.idle": "2024-02-07T22:09:42.026022Z", - "shell.execute_reply": "2024-02-07T22:09:42.025558Z" + "iopub.execute_input": "2024-02-07T23:50:22.533546Z", + "iopub.status.busy": "2024-02-07T23:50:22.533179Z", + "iopub.status.idle": "2024-02-07T23:50:22.542292Z", + "shell.execute_reply": "2024-02-07T23:50:22.541760Z" }, "scrolled": true }, @@ -874,10 +874,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.028007Z", - "iopub.status.busy": "2024-02-07T22:09:42.027689Z", - "iopub.status.idle": "2024-02-07T22:09:42.035320Z", - "shell.execute_reply": "2024-02-07T22:09:42.034866Z" + "iopub.execute_input": "2024-02-07T23:50:22.544390Z", + "iopub.status.busy": "2024-02-07T23:50:22.544079Z", + "iopub.status.idle": "2024-02-07T23:50:22.551630Z", + "shell.execute_reply": "2024-02-07T23:50:22.551177Z" } }, "outputs": [ @@ -981,10 +981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.037273Z", - "iopub.status.busy": "2024-02-07T22:09:42.036949Z", - "iopub.status.idle": "2024-02-07T22:09:42.041027Z", - "shell.execute_reply": "2024-02-07T22:09:42.040574Z" + "iopub.execute_input": "2024-02-07T23:50:22.553693Z", + "iopub.status.busy": "2024-02-07T23:50:22.553372Z", + "iopub.status.idle": "2024-02-07T23:50:22.557201Z", + "shell.execute_reply": "2024-02-07T23:50:22.556671Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.043089Z", - "iopub.status.busy": "2024-02-07T22:09:42.042704Z", - "iopub.status.idle": "2024-02-07T22:09:42.048359Z", - "shell.execute_reply": "2024-02-07T22:09:42.047911Z" + "iopub.execute_input": "2024-02-07T23:50:22.559234Z", + "iopub.status.busy": "2024-02-07T23:50:22.558929Z", + "iopub.status.idle": "2024-02-07T23:50:22.564278Z", + "shell.execute_reply": "2024-02-07T23:50:22.563751Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1152,10 +1152,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.050308Z", - "iopub.status.busy": "2024-02-07T22:09:42.049989Z", - "iopub.status.idle": "2024-02-07T22:09:42.161793Z", - "shell.execute_reply": "2024-02-07T22:09:42.161209Z" + "iopub.execute_input": "2024-02-07T23:50:22.566348Z", + "iopub.status.busy": "2024-02-07T23:50:22.566033Z", + "iopub.status.idle": "2024-02-07T23:50:22.680300Z", + "shell.execute_reply": "2024-02-07T23:50:22.679806Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1209,10 +1209,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.164076Z", - "iopub.status.busy": "2024-02-07T22:09:42.163750Z", - "iopub.status.idle": "2024-02-07T22:09:42.270803Z", - "shell.execute_reply": "2024-02-07T22:09:42.270219Z" + "iopub.execute_input": "2024-02-07T23:50:22.682360Z", + "iopub.status.busy": "2024-02-07T23:50:22.682086Z", + "iopub.status.idle": "2024-02-07T23:50:22.787241Z", + "shell.execute_reply": "2024-02-07T23:50:22.786768Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1257,10 +1257,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.273107Z", - "iopub.status.busy": "2024-02-07T22:09:42.272726Z", - "iopub.status.idle": "2024-02-07T22:09:42.377361Z", - "shell.execute_reply": "2024-02-07T22:09:42.376788Z" + "iopub.execute_input": "2024-02-07T23:50:22.789319Z", + "iopub.status.busy": "2024-02-07T23:50:22.788985Z", + "iopub.status.idle": "2024-02-07T23:50:22.889567Z", + "shell.execute_reply": "2024-02-07T23:50:22.889085Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1301,10 +1301,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.379634Z", - "iopub.status.busy": "2024-02-07T22:09:42.379175Z", - "iopub.status.idle": "2024-02-07T22:09:42.483476Z", - "shell.execute_reply": "2024-02-07T22:09:42.482909Z" + "iopub.execute_input": "2024-02-07T23:50:22.891545Z", + "iopub.status.busy": "2024-02-07T23:50:22.891171Z", + "iopub.status.idle": "2024-02-07T23:50:22.990254Z", + "shell.execute_reply": "2024-02-07T23:50:22.989797Z" } }, "outputs": [ @@ -1352,10 +1352,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:42.485522Z", - "iopub.status.busy": "2024-02-07T22:09:42.485311Z", - "iopub.status.idle": "2024-02-07T22:09:42.488885Z", - "shell.execute_reply": "2024-02-07T22:09:42.488370Z" + "iopub.execute_input": "2024-02-07T23:50:22.992236Z", + "iopub.status.busy": "2024-02-07T23:50:22.991963Z", + "iopub.status.idle": "2024-02-07T23:50:22.995630Z", + "shell.execute_reply": "2024-02-07T23:50:22.995182Z" }, "nbsphinx": "hidden" }, @@ -1396,7 +1396,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "018c961243dc4a2ab609ecd13bf21b1c": { + "04300f6af0e2499abc98d7c0019ae68c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1412,43 +1412,135 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ea45f78382040ef970a525ca19405dc", - "max": 3201.0, + "layout": "IPY_MODEL_e0528fbb6b84426681be3552bcfa5be7", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e8bb345f6d81459fa75f4555635255d2", + "style": "IPY_MODEL_3130c2baa2ca43b8866db622c29120fc", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 2041.0 } }, - "02b46780ae3f483399e08d2e6ff8eab2": { + "049baf23826b4af093eff7678dd9f29d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb5894e2b38c45c194efd20f8c3cbe66", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60b527de43034970b1308b099653ea53", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aefceca0700b4c62b24820c53e63d7f9", + "IPY_MODEL_04300f6af0e2499abc98d7c0019ae68c", + "IPY_MODEL_d982ece3b4e14443adc855de84443142" + ], + "layout": "IPY_MODEL_99d97c19f0dc458bbece97f7d70aff29", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null + } + }, + "0595d525f4e448ab899ecc84c2c97ac6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b39dbdd24a234f3982e2b78d6a3a6ca4", + "IPY_MODEL_c8da71bd884e46109202edc2ee6ab409", + "IPY_MODEL_f620b009650b49f69c70d93caed3431b" + ], + "layout": "IPY_MODEL_d48b4a1fa40646a3bec001eabc934939", + "tabbable": null, + "tooltip": null + } + }, + "06290fbe33a34692b6a4159ab260ce9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b5d2f843fa24204af224bc21fdaf056": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0df3f598e42449c692311ec643f0d43d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b247055147c47c2a71d10020cd84176": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "05fbe93d9d004d09b7a9891b7f6adbe2": { + "293f95aa421a4889bf08ad2176227a3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1501,23 +1593,7 @@ "width": null } }, - "06630781720c42d199dca36dbc67bb87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "11c7035432e343fb93816c86129b8adf": { + "2a411ecde9e54d31b05f5cc5733557f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1570,7 +1646,30 @@ "width": null } }, - "1366b1442bcd477f91d3b1f2c79ccf71": { + "2c996374e678491788c459e1dbc99a01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a411ecde9e54d31b05f5cc5733557f7", + "placeholder": "​", + "style": "IPY_MODEL_9ef834011f39489aafc203ff4a85829a", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 227MB/s]" + } + }, + "2d4fdb5e6e5b487387c870752b01cd9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1623,7 +1722,41 @@ "width": null } }, - "1602afb154024a839e7eb2baeadf14c9": { + "3130c2baa2ca43b8866db622c29120fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d8bf5983d3844eb8ff2f91414a189f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3de28429f250445fa8516dbacd9be6b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1676,7 +1809,7 @@ "width": null } }, - "1797a298ca2148919567beaa49cc33d7": { + "481f68c008f94fc598a9ef7c2cce6da0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1729,48 +1862,7 @@ "width": null } }, - "1ba1608cb15441918fffbdb0112aa1f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1602afb154024a839e7eb2baeadf14c9", - "placeholder": "​", - "style": "IPY_MODEL_db3add3863d748748c253c014e2faf03", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "2ceda72b1d5049b5a8049ad58afd02d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2ea45f78382040ef970a525ca19405dc": { + "58eb5f1bb6f543b9b6d320bd4dc8a583": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1823,7 +1915,23 @@ "width": null } }, - "3095c367a4c74a08854abcd7622d7a72": { + "59c2bdf1dad14b51966cb22a618f131d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61d8c620b2004dcbbf7642355fae0c8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1876,33 +1984,7 @@ "width": null } }, - "314fd2a192634790b5db62a3957f85ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11c7035432e343fb93816c86129b8adf", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_79351f8482fe4216b6609e0f2c2f5d0f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "3a569a86618c42dc86af61139d6acadf": { + "62bd4894905e4e87a345db49d46d4165": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1955,109 +2037,60 @@ "width": null } }, - "3f358d8bedbb43768725d491407bfce8": { - "model_module": "@jupyter-widgets/controls", + "654f7806575d45a9a93e8a5c0d6424c0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f248fc8f51004a06b30e02a83397236b", - "placeholder": "​", - "style": "IPY_MODEL_ff8cf12f43ca4d13a1017fbff08fe9f6", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 445kB/s]" - } - }, - "47d60ecdbe0a4f409818f97dffc6439c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6372cda2727c44baa0af02192d868905", - "placeholder": "​", - "style": "IPY_MODEL_2ceda72b1d5049b5a8049ad58afd02d9", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 198MB/s]" - } - }, - "578b918f0b334af9a2793c197fe9a32c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_99d0bf7b85e74ac2a356f2a9fff98e37", - "IPY_MODEL_92bc2ade5f1a4d98b4659c1d3a64feed", - "IPY_MODEL_6a87e23c3c664f00ab0368cbb61ca901" - ], - "layout": "IPY_MODEL_1366b1442bcd477f91d3b1f2c79ccf71", - "tabbable": null, - "tooltip": null - } - }, - "5d84cb363c6b490cb8afa2ab45a2daee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "60b527de43034970b1308b099653ea53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6372cda2727c44baa0af02192d868905": { + "666271d492134ef0b03b8ec9578b7998": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2110,7 +2143,7 @@ "width": null } }, - "6a87e23c3c664f00ab0368cbb61ca901": { + "668783404483450b8f426724d2f89cd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2125,15 +2158,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9340c56a375c49e89e8e3b127db43593", + "layout": "IPY_MODEL_481f68c008f94fc598a9ef7c2cce6da0", "placeholder": "​", - "style": "IPY_MODEL_ea839efc9eda4c81be312c0e78c8f734", + "style": "IPY_MODEL_7e6e92ecdf7e4d9eafaba693dc09a3c5", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]" + "value": "classifier.ckpt: 100%" + } + }, + "68ffad4d65d54523b62a4a5eccb50913": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f01ef992cbbf4ff19aa1fcca3a0d11ed", + "IPY_MODEL_cad92de12db6453a8c477718a7af5c66", + "IPY_MODEL_dd0085e26ee6480aa6a013494fb70534" + ], + "layout": "IPY_MODEL_58eb5f1bb6f543b9b6d320bd4dc8a583", + "tabbable": null, + "tooltip": null } }, - "6ee9b3701a494b97a2c8644af1e520cb": { + "69fd182a930c4068837b29ef749fc1bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2243,7 @@ "width": null } }, - "707ef7472aa046e0af876676bdeb0e1a": { + "6c5385e8b4cf43428bb9acc7bf7b1b4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2204,7 +2261,7 @@ "text_color": null } }, - "79351f8482fe4216b6609e0f2c2f5d0f": { + "73bf2556b81f44f2b96275a8445d1cf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2220,7 +2277,31 @@ "description_width": "" } }, - "87af3d337e4c4f56b8de8653ffbcf2fa": { + "79d69ad0f5d64b55b2c38c5a74f7b121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_668783404483450b8f426724d2f89cd3", + "IPY_MODEL_efad4ad3f4a54a6994d42d4a6b5132d8", + "IPY_MODEL_2c996374e678491788c459e1dbc99a01" + ], + "layout": "IPY_MODEL_2d4fdb5e6e5b487387c870752b01cd9f", + "tabbable": null, + "tooltip": null + } + }, + "7e072d86b5c74dcb93b0e3f2038cc23d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2273,56 +2354,7 @@ "width": null } }, - "88e025fac457476e857a0ed0172c8ebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_05fbe93d9d004d09b7a9891b7f6adbe2", - "placeholder": "​", - "style": "IPY_MODEL_707ef7472aa046e0af876676bdeb0e1a", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "8fc50970ec7644c6825dbf8f10bcced8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1797a298ca2148919567beaa49cc33d7", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06630781720c42d199dca36dbc67bb87", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "918ea5972c8a43b4b372a06b881f8d52": { + "7e6e92ecdf7e4d9eafaba693dc09a3c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2340,7 +2372,7 @@ "text_color": null } }, - "92bc2ade5f1a4d98b4659c1d3a64feed": { + "857398c0b7f442608c58fc97f1061a9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2356,17 +2388,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e831980da61448918a716f1d888c714a", - "max": 15856877.0, + "layout": "IPY_MODEL_62bd4894905e4e87a345db49d46d4165", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5d84cb363c6b490cb8afa2ab45a2daee", + "style": "IPY_MODEL_59c2bdf1dad14b51966cb22a618f131d", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": 3201.0 } }, - "9340c56a375c49e89e8e3b127db43593": { + "99d97c19f0dc458bbece97f7d70aff29": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2419,30 +2451,49 @@ "width": null } }, - "99d0bf7b85e74ac2a356f2a9fff98e37": { + "9ae177114d464deba94c0d078154bdf4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d916d408a2f44a8992d77870d9ae75bf", - "placeholder": "​", - "style": "IPY_MODEL_f0aa84448e3f405b9aeee1a3005ca7a2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f816adc0ed2b4d56be8bf200373ef9aa", + "IPY_MODEL_857398c0b7f442608c58fc97f1061a9f", + "IPY_MODEL_fc8d050fc3f448ee9399813ed8e667f4" + ], + "layout": "IPY_MODEL_69fd182a930c4068837b29ef749fc1bf", "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "tooltip": null + } + }, + "9ef834011f39489aafc203ff4a85829a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9d41a343cf504fc2878761980bd12889": { + "abe7c4e2a2194914a09f1d5bd6432fec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2495,7 +2546,30 @@ "width": null } }, - "b69d30f9f6bd496e950e0a7253129c59": { + "aefceca0700b4c62b24820c53e63d7f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_293f95aa421a4889bf08ad2176227a3a", + "placeholder": "​", + "style": "IPY_MODEL_d6c9f629d18240d7a6b98ac06c78293a", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "b39dbdd24a234f3982e2b78d6a3a6ca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2510,15 +2584,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3095c367a4c74a08854abcd7622d7a72", + "layout": "IPY_MODEL_bac330bbb6a4449a8fbf7ad2fb9720e7", "placeholder": "​", - "style": "IPY_MODEL_d60c4c9975014fc6918fb9394f823e45", + "style": "IPY_MODEL_cf487e1807424afba2b22b5f777c96a2", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 769kB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "bb5894e2b38c45c194efd20f8c3cbe66": { + "baae0b1fb874444ebed0ca5b86534711": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2571,102 +2645,8 @@ "width": null } }, - "bba729c19a594f33892a4024225287f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_88e025fac457476e857a0ed0172c8ebf", - "IPY_MODEL_314fd2a192634790b5db62a3957f85ac", - "IPY_MODEL_47d60ecdbe0a4f409818f97dffc6439c" - ], - "layout": "IPY_MODEL_eaa3e635e6d845149a49424039f11a4a", - "tabbable": null, - "tooltip": null - } - }, - "bf3f0473f1a24d82986d6c703fdff8de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c96f0f9cb7694a33982acab6e5ac22c1", - "IPY_MODEL_018c961243dc4a2ab609ecd13bf21b1c", - "IPY_MODEL_b69d30f9f6bd496e950e0a7253129c59" - ], - "layout": "IPY_MODEL_87af3d337e4c4f56b8de8653ffbcf2fa", - "tabbable": null, - "tooltip": null - } - }, - "c7316533a256479abb53524380df0dd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a569a86618c42dc86af61139d6acadf", - "placeholder": "​", - "style": "IPY_MODEL_f853c6490ccf49c18f81d8894a4fd3d4", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 9.21MB/s]" - } - }, - "c96f0f9cb7694a33982acab6e5ac22c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4ac54bb95434214887e6908f7417cc4", - "placeholder": "​", - "style": "IPY_MODEL_918ea5972c8a43b4b372a06b881f8d52", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "d4ac54bb95434214887e6908f7417cc4": { - "model_module": "@jupyter-widgets/base", + "bac330bbb6a4449a8fbf7ad2fb9720e7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -2718,7 +2698,59 @@ "width": null } }, - "d60c4c9975014fc6918fb9394f823e45": { + "c8da71bd884e46109202edc2ee6ab409": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_654f7806575d45a9a93e8a5c0d6424c0", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4c65529fdc840279cfc12be44b62fb9", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "cad92de12db6453a8c477718a7af5c66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e072d86b5c74dcb93b0e3f2038cc23d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b5d2f843fa24204af224bc21fdaf056", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "cf487e1807424afba2b22b5f777c96a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2736,7 +2768,7 @@ "text_color": null } }, - "d916d408a2f44a8992d77870d9ae75bf": { + "d48b4a1fa40646a3bec001eabc934939": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2789,7 +2821,23 @@ "width": null } }, - "db3add3863d748748c253c014e2faf03": { + "d4c65529fdc840279cfc12be44b62fb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d65f6dbb468c45f5833700dc76ef4722": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2807,60 +2855,71 @@ "text_color": null } }, - "e617431224a74447b3168997dee691d1": { - "model_module": "@jupyter-widgets/base", + "d6c9f629d18240d7a6b98ac06c78293a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d982ece3b4e14443adc855de84443142": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3de28429f250445fa8516dbacd9be6b4", + "placeholder": "​", + "style": "IPY_MODEL_1b247055147c47c2a71d10020cd84176", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 499kB/s]" + } + }, + "dd0085e26ee6480aa6a013494fb70534": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_baae0b1fb874444ebed0ca5b86534711", + "placeholder": "​", + "style": "IPY_MODEL_d65f6dbb468c45f5833700dc76ef4722", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 15.9MB/s]" } }, - "e831980da61448918a716f1d888c714a": { + "e0528fbb6b84426681be3552bcfa5be7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2913,41 +2972,7 @@ "width": null } }, - "e8bb345f6d81459fa75f4555635255d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ea839efc9eda4c81be312c0e78c8f734": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eaa3e635e6d845149a49424039f11a4a": { + "e872326b222549548e420a960ab1959d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3000,43 +3025,7 @@ "width": null } }, - "f0aa84448e3f405b9aeee1a3005ca7a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f0e4ebf8d49e4f038e5a57a3736f1527": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f248fc8f51004a06b30e02a83397236b": { + "ede528c5216046cfba4a067472e5124d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3089,49 +3078,56 @@ "width": null } }, - "f853c6490ccf49c18f81d8894a4fd3d4": { + "efad4ad3f4a54a6994d42d4a6b5132d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e872326b222549548e420a960ab1959d", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_73bf2556b81f44f2b96275a8445d1cf0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "f8ffabec7ae64c16bd74b38130d34b65": { + "f01ef992cbbf4ff19aa1fcca3a0d11ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1ba1608cb15441918fffbdb0112aa1f8", - "IPY_MODEL_8fc50970ec7644c6825dbf8f10bcced8", - "IPY_MODEL_c7316533a256479abb53524380df0dd4" - ], - "layout": "IPY_MODEL_6ee9b3701a494b97a2c8644af1e520cb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61d8c620b2004dcbbf7642355fae0c8d", + "placeholder": "​", + "style": "IPY_MODEL_0df3f598e42449c692311ec643f0d43d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "fe3bcc7d9bf948039e3be396079d45a5": { + "f620b009650b49f69c70d93caed3431b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3146,54 +3142,58 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e617431224a74447b3168997dee691d1", + "layout": "IPY_MODEL_abe7c4e2a2194914a09f1d5bd6432fec", "placeholder": "​", - "style": "IPY_MODEL_f0e4ebf8d49e4f038e5a57a3736f1527", + "style": "IPY_MODEL_6c5385e8b4cf43428bb9acc7bf7b1b4f", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 192MB/s]" } }, - "ff1fa9c053ff44b6819529a9bf6f509a": { + "f816adc0ed2b4d56be8bf200373ef9aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fe3bcc7d9bf948039e3be396079d45a5", - "IPY_MODEL_02b46780ae3f483399e08d2e6ff8eab2", - "IPY_MODEL_3f358d8bedbb43768725d491407bfce8" - ], - "layout": "IPY_MODEL_9d41a343cf504fc2878761980bd12889", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ede528c5216046cfba4a067472e5124d", + "placeholder": "​", + "style": "IPY_MODEL_3d8bf5983d3844eb8ff2f91414a189f4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "ff8cf12f43ca4d13a1017fbff08fe9f6": { + "fc8d050fc3f448ee9399813ed8e667f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_666271d492134ef0b03b8ec9578b7998", + "placeholder": "​", + "style": "IPY_MODEL_06290fbe33a34692b6a4159ab260ce9c", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 841kB/s]" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 7adc6f4f1..54048929a 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1076,7 +1076,7 @@

Functionality 2: Specifying nondefault arguments
-
+

@@ -1472,7 +1472,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"f27d8d03bb7a4b9c80ec66879eba1d42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af54435c28a94ad3a9d70db593b5a3e5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8e20c89702ef461daecccbb5da8848ab": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f27d8d03bb7a4b9c80ec66879eba1d42", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_af54435c28a94ad3a9d70db593b5a3e5", "tabbable": null, "tooltip": null, "value": 132.0}}, "a9fa597efa5d48e59d7f343f74918d9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb4f3fe3fa91465da8d8e7461df5ba6e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2796c1b17ef34cd2924b19c570f1ba19": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9fa597efa5d48e59d7f343f74918d9e", "placeholder": "\u200b", "style": "IPY_MODEL_bb4f3fe3fa91465da8d8e7461df5ba6e", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%"}}, "2821f5f639ba4ffd9334637e6f72a8f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d96baeb2794b4526b8c5e3e90431ba55": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "49bb714cc50743d4ba856e9f230e86d4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2821f5f639ba4ffd9334637e6f72a8f6", "placeholder": "\u200b", "style": "IPY_MODEL_d96baeb2794b4526b8c5e3e90431ba55", "tabbable": null, "tooltip": null, "value": " 132/132 [00:00<00:00, 10686.54 examples/s]"}}, "ecad1f34aefc443ca975a3be167d184c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fde4d4047cc04f52b05c97287dfdab6f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2796c1b17ef34cd2924b19c570f1ba19", "IPY_MODEL_8e20c89702ef461daecccbb5da8848ab", "IPY_MODEL_49bb714cc50743d4ba856e9f230e86d4"], "layout": "IPY_MODEL_ecad1f34aefc443ca975a3be167d184c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"ba00a80584da4e25999bd64658097477": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8340d103f0ae4a1c9c28c150537d321a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "923d794e2ac04e25b34fa7031a457daf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ba00a80584da4e25999bd64658097477", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8340d103f0ae4a1c9c28c150537d321a", "tabbable": null, "tooltip": null, "value": 132.0}}, "6aa4b5d7697a4ed0bc096aa15d54b031": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6fa4e74a8cff48f9a59390c7cf9bdc68": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "112602ddf49c4bf785b9bad0c12fe160": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6aa4b5d7697a4ed0bc096aa15d54b031", "placeholder": "\u200b", "style": "IPY_MODEL_6fa4e74a8cff48f9a59390c7cf9bdc68", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%"}}, "9553827654b745bf83b8b620248421b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc883be33a264afa82c5f8909066a0cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a809642ae1c44d1bcb4435dfeba74f1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9553827654b745bf83b8b620248421b0", "placeholder": "\u200b", "style": "IPY_MODEL_fc883be33a264afa82c5f8909066a0cf", "tabbable": null, "tooltip": null, "value": " 132/132 [00:00<00:00, 11705.53 examples/s]"}}, "8dccc6dba8764969a34bcdd2d2695a48": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc591f1bc33243c09e4539d5f7f93d6e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_112602ddf49c4bf785b9bad0c12fe160", "IPY_MODEL_923d794e2ac04e25b34fa7031a457daf", "IPY_MODEL_5a809642ae1c44d1bcb4435dfeba74f1"], "layout": "IPY_MODEL_8dccc6dba8764969a34bcdd2d2695a48", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index eb98a395e..2aa010cbc 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:45.766597Z", - "iopub.status.busy": "2024-02-07T22:09:45.766116Z", - "iopub.status.idle": "2024-02-07T22:09:46.894614Z", - "shell.execute_reply": "2024-02-07T22:09:46.893994Z" + "iopub.execute_input": "2024-02-07T23:50:26.079478Z", + "iopub.status.busy": "2024-02-07T23:50:26.079305Z", + "iopub.status.idle": "2024-02-07T23:50:27.150586Z", + "shell.execute_reply": "2024-02-07T23:50:27.149991Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.897320Z", - "iopub.status.busy": "2024-02-07T22:09:46.897025Z", - "iopub.status.idle": "2024-02-07T22:09:46.900128Z", - "shell.execute_reply": "2024-02-07T22:09:46.899610Z" + "iopub.execute_input": "2024-02-07T23:50:27.153138Z", + "iopub.status.busy": "2024-02-07T23:50:27.152874Z", + "iopub.status.idle": "2024-02-07T23:50:27.156022Z", + "shell.execute_reply": "2024-02-07T23:50:27.155466Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.902250Z", - "iopub.status.busy": "2024-02-07T22:09:46.902067Z", - "iopub.status.idle": "2024-02-07T22:09:46.910749Z", - "shell.execute_reply": "2024-02-07T22:09:46.910239Z" + "iopub.execute_input": "2024-02-07T23:50:27.158108Z", + "iopub.status.busy": "2024-02-07T23:50:27.157782Z", + "iopub.status.idle": "2024-02-07T23:50:27.166233Z", + "shell.execute_reply": "2024-02-07T23:50:27.165798Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.912794Z", - "iopub.status.busy": "2024-02-07T22:09:46.912478Z", - "iopub.status.idle": "2024-02-07T22:09:46.917349Z", - "shell.execute_reply": "2024-02-07T22:09:46.916928Z" + "iopub.execute_input": "2024-02-07T23:50:27.168113Z", + "iopub.status.busy": "2024-02-07T23:50:27.167802Z", + "iopub.status.idle": "2024-02-07T23:50:27.172764Z", + "shell.execute_reply": "2024-02-07T23:50:27.172228Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:46.919340Z", - "iopub.status.busy": "2024-02-07T22:09:46.919163Z", - "iopub.status.idle": "2024-02-07T22:09:47.102840Z", - "shell.execute_reply": "2024-02-07T22:09:47.102218Z" + "iopub.execute_input": "2024-02-07T23:50:27.174817Z", + "iopub.status.busy": "2024-02-07T23:50:27.174498Z", + "iopub.status.idle": "2024-02-07T23:50:27.354014Z", + "shell.execute_reply": "2024-02-07T23:50:27.353508Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.105419Z", - "iopub.status.busy": "2024-02-07T22:09:47.105218Z", - "iopub.status.idle": "2024-02-07T22:09:47.478382Z", - "shell.execute_reply": "2024-02-07T22:09:47.477797Z" + "iopub.execute_input": "2024-02-07T23:50:27.356243Z", + "iopub.status.busy": "2024-02-07T23:50:27.355969Z", + "iopub.status.idle": "2024-02-07T23:50:27.726314Z", + "shell.execute_reply": "2024-02-07T23:50:27.725725Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.480753Z", - "iopub.status.busy": "2024-02-07T22:09:47.480556Z", - "iopub.status.idle": "2024-02-07T22:09:47.504355Z", - "shell.execute_reply": "2024-02-07T22:09:47.503906Z" + "iopub.execute_input": "2024-02-07T23:50:27.728588Z", + "iopub.status.busy": "2024-02-07T23:50:27.728237Z", + "iopub.status.idle": "2024-02-07T23:50:27.751646Z", + "shell.execute_reply": "2024-02-07T23:50:27.751190Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.506265Z", - "iopub.status.busy": "2024-02-07T22:09:47.506078Z", - "iopub.status.idle": "2024-02-07T22:09:47.520161Z", - "shell.execute_reply": "2024-02-07T22:09:47.519724Z" + "iopub.execute_input": "2024-02-07T23:50:27.753586Z", + "iopub.status.busy": "2024-02-07T23:50:27.753257Z", + "iopub.status.idle": "2024-02-07T23:50:27.767865Z", + "shell.execute_reply": "2024-02-07T23:50:27.767424Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:47.522067Z", - "iopub.status.busy": "2024-02-07T22:09:47.521889Z", - "iopub.status.idle": "2024-02-07T22:09:49.194798Z", - "shell.execute_reply": "2024-02-07T22:09:49.194164Z" + "iopub.execute_input": "2024-02-07T23:50:27.769928Z", + "iopub.status.busy": "2024-02-07T23:50:27.769614Z", + "iopub.status.idle": "2024-02-07T23:50:29.339727Z", + "shell.execute_reply": "2024-02-07T23:50:29.339121Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.197488Z", - "iopub.status.busy": "2024-02-07T22:09:49.196806Z", - "iopub.status.idle": "2024-02-07T22:09:49.221374Z", - "shell.execute_reply": "2024-02-07T22:09:49.220928Z" + "iopub.execute_input": "2024-02-07T23:50:29.342327Z", + "iopub.status.busy": "2024-02-07T23:50:29.341776Z", + "iopub.status.idle": "2024-02-07T23:50:29.363862Z", + "shell.execute_reply": "2024-02-07T23:50:29.363291Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.223702Z", - "iopub.status.busy": "2024-02-07T22:09:49.223201Z", - "iopub.status.idle": "2024-02-07T22:09:49.241727Z", - "shell.execute_reply": "2024-02-07T22:09:49.241144Z" + "iopub.execute_input": "2024-02-07T23:50:29.365917Z", + "iopub.status.busy": "2024-02-07T23:50:29.365594Z", + "iopub.status.idle": "2024-02-07T23:50:29.383708Z", + "shell.execute_reply": "2024-02-07T23:50:29.383160Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.243746Z", - "iopub.status.busy": "2024-02-07T22:09:49.243416Z", - "iopub.status.idle": "2024-02-07T22:09:49.256057Z", - "shell.execute_reply": "2024-02-07T22:09:49.255592Z" + "iopub.execute_input": "2024-02-07T23:50:29.385827Z", + "iopub.status.busy": "2024-02-07T23:50:29.385426Z", + "iopub.status.idle": "2024-02-07T23:50:29.397799Z", + "shell.execute_reply": "2024-02-07T23:50:29.397365Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.258061Z", - "iopub.status.busy": "2024-02-07T22:09:49.257720Z", - "iopub.status.idle": "2024-02-07T22:09:49.279982Z", - "shell.execute_reply": "2024-02-07T22:09:49.279381Z" + "iopub.execute_input": "2024-02-07T23:50:29.399711Z", + "iopub.status.busy": "2024-02-07T23:50:29.399540Z", + "iopub.status.idle": "2024-02-07T23:50:29.420343Z", + "shell.execute_reply": "2024-02-07T23:50:29.419747Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fde4d4047cc04f52b05c97287dfdab6f", + "model_id": "fc591f1bc33243c09e4539d5f7f93d6e", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.282086Z", - "iopub.status.busy": "2024-02-07T22:09:49.281743Z", - "iopub.status.idle": "2024-02-07T22:09:49.295746Z", - "shell.execute_reply": "2024-02-07T22:09:49.295286Z" + "iopub.execute_input": "2024-02-07T23:50:29.422227Z", + "iopub.status.busy": "2024-02-07T23:50:29.421911Z", + "iopub.status.idle": "2024-02-07T23:50:29.434983Z", + "shell.execute_reply": "2024-02-07T23:50:29.434447Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.297847Z", - "iopub.status.busy": "2024-02-07T22:09:49.297623Z", - "iopub.status.idle": "2024-02-07T22:09:49.303905Z", - "shell.execute_reply": "2024-02-07T22:09:49.303324Z" + "iopub.execute_input": "2024-02-07T23:50:29.437032Z", + "iopub.status.busy": "2024-02-07T23:50:29.436723Z", + "iopub.status.idle": "2024-02-07T23:50:29.442271Z", + "shell.execute_reply": "2024-02-07T23:50:29.441861Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:49.306143Z", - "iopub.status.busy": "2024-02-07T22:09:49.305836Z", - "iopub.status.idle": "2024-02-07T22:09:49.323660Z", - "shell.execute_reply": "2024-02-07T22:09:49.323089Z" + "iopub.execute_input": "2024-02-07T23:50:29.444286Z", + "iopub.status.busy": "2024-02-07T23:50:29.443974Z", + "iopub.status.idle": "2024-02-07T23:50:29.460426Z", + "shell.execute_reply": "2024-02-07T23:50:29.459872Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2796c1b17ef34cd2924b19c570f1ba19": { + "112602ddf49c4bf785b9bad0c12fe160": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1445,15 +1445,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9fa597efa5d48e59d7f343f74918d9e", + "layout": "IPY_MODEL_6aa4b5d7697a4ed0bc096aa15d54b031", "placeholder": "​", - "style": "IPY_MODEL_bb4f3fe3fa91465da8d8e7461df5ba6e", + "style": "IPY_MODEL_6fa4e74a8cff48f9a59390c7cf9bdc68", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%" } }, - "2821f5f639ba4ffd9334637e6f72a8f6": { + "5a809642ae1c44d1bcb4435dfeba74f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9553827654b745bf83b8b620248421b0", + "placeholder": "​", + "style": "IPY_MODEL_fc883be33a264afa82c5f8909066a0cf", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 11705.53 examples/s]" + } + }, + "6aa4b5d7697a4ed0bc096aa15d54b031": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,56 +1529,41 @@ "width": null } }, - "49bb714cc50743d4ba856e9f230e86d4": { + "6fa4e74a8cff48f9a59390c7cf9bdc68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2821f5f639ba4ffd9334637e6f72a8f6", - "placeholder": "​", - "style": "IPY_MODEL_d96baeb2794b4526b8c5e3e90431ba55", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 10686.54 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8e20c89702ef461daecccbb5da8848ab": { + "8340d103f0ae4a1c9c28c150537d321a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f27d8d03bb7a4b9c80ec66879eba1d42", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_af54435c28a94ad3a9d70db593b5a3e5", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a9fa597efa5d48e59d7f343f74918d9e": { + "8dccc6dba8764969a34bcdd2d2695a48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1608,59 +1616,33 @@ "width": null } }, - "af54435c28a94ad3a9d70db593b5a3e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb4f3fe3fa91465da8d8e7461df5ba6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d96baeb2794b4526b8c5e3e90431ba55": { + "923d794e2ac04e25b34fa7031a457daf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba00a80584da4e25999bd64658097477", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8340d103f0ae4a1c9c28c150537d321a", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "ecad1f34aefc443ca975a3be167d184c": { + "9553827654b745bf83b8b620248421b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1713,7 +1695,7 @@ "width": null } }, - "f27d8d03bb7a4b9c80ec66879eba1d42": { + "ba00a80584da4e25999bd64658097477": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,7 +1748,7 @@ "width": null } }, - "fde4d4047cc04f52b05c97287dfdab6f": { + "fc591f1bc33243c09e4539d5f7f93d6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1781,14 +1763,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2796c1b17ef34cd2924b19c570f1ba19", - "IPY_MODEL_8e20c89702ef461daecccbb5da8848ab", - "IPY_MODEL_49bb714cc50743d4ba856e9f230e86d4" + "IPY_MODEL_112602ddf49c4bf785b9bad0c12fe160", + "IPY_MODEL_923d794e2ac04e25b34fa7031a457daf", + "IPY_MODEL_5a809642ae1c44d1bcb4435dfeba74f1" ], - "layout": "IPY_MODEL_ecad1f34aefc443ca975a3be167d184c", + "layout": "IPY_MODEL_8dccc6dba8764969a34bcdd2d2695a48", "tabbable": null, "tooltip": null } + }, + "fc883be33a264afa82c5f8909066a0cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 27e694d83..38a0df9fa 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:51.944305Z", - "iopub.status.busy": "2024-02-07T22:09:51.943895Z", - "iopub.status.idle": "2024-02-07T22:09:53.035775Z", - "shell.execute_reply": "2024-02-07T22:09:53.035210Z" + "iopub.execute_input": "2024-02-07T23:50:32.050037Z", + "iopub.status.busy": "2024-02-07T23:50:32.049655Z", + "iopub.status.idle": "2024-02-07T23:50:33.121241Z", + "shell.execute_reply": "2024-02-07T23:50:33.120710Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.038346Z", - "iopub.status.busy": "2024-02-07T22:09:53.037927Z", - "iopub.status.idle": "2024-02-07T22:09:53.040885Z", - "shell.execute_reply": "2024-02-07T22:09:53.040446Z" + "iopub.execute_input": "2024-02-07T23:50:33.123591Z", + "iopub.status.busy": "2024-02-07T23:50:33.123252Z", + "iopub.status.idle": "2024-02-07T23:50:33.126067Z", + "shell.execute_reply": "2024-02-07T23:50:33.125643Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.043051Z", - "iopub.status.busy": "2024-02-07T22:09:53.042662Z", - "iopub.status.idle": "2024-02-07T22:09:53.051658Z", - "shell.execute_reply": "2024-02-07T22:09:53.051179Z" + "iopub.execute_input": "2024-02-07T23:50:33.128077Z", + "iopub.status.busy": "2024-02-07T23:50:33.127739Z", + "iopub.status.idle": "2024-02-07T23:50:33.136454Z", + "shell.execute_reply": "2024-02-07T23:50:33.136019Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.053597Z", - "iopub.status.busy": "2024-02-07T22:09:53.053299Z", - "iopub.status.idle": "2024-02-07T22:09:53.058208Z", - "shell.execute_reply": "2024-02-07T22:09:53.057763Z" + "iopub.execute_input": "2024-02-07T23:50:33.138407Z", + "iopub.status.busy": "2024-02-07T23:50:33.138099Z", + "iopub.status.idle": "2024-02-07T23:50:33.142931Z", + "shell.execute_reply": "2024-02-07T23:50:33.142378Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.060288Z", - "iopub.status.busy": "2024-02-07T22:09:53.059980Z", - "iopub.status.idle": "2024-02-07T22:09:53.243898Z", - "shell.execute_reply": "2024-02-07T22:09:53.243265Z" + "iopub.execute_input": "2024-02-07T23:50:33.145229Z", + "iopub.status.busy": "2024-02-07T23:50:33.144779Z", + "iopub.status.idle": "2024-02-07T23:50:33.324549Z", + "shell.execute_reply": "2024-02-07T23:50:33.324005Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.246458Z", - "iopub.status.busy": "2024-02-07T22:09:53.246117Z", - "iopub.status.idle": "2024-02-07T22:09:53.569144Z", - "shell.execute_reply": "2024-02-07T22:09:53.568560Z" + "iopub.execute_input": "2024-02-07T23:50:33.326802Z", + "iopub.status.busy": "2024-02-07T23:50:33.326501Z", + "iopub.status.idle": "2024-02-07T23:50:33.691854Z", + "shell.execute_reply": "2024-02-07T23:50:33.691275Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.571195Z", - "iopub.status.busy": "2024-02-07T22:09:53.571004Z", - "iopub.status.idle": "2024-02-07T22:09:53.573886Z", - "shell.execute_reply": "2024-02-07T22:09:53.573439Z" + "iopub.execute_input": "2024-02-07T23:50:33.693985Z", + "iopub.status.busy": "2024-02-07T23:50:33.693672Z", + "iopub.status.idle": "2024-02-07T23:50:33.696518Z", + "shell.execute_reply": "2024-02-07T23:50:33.695930Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.575899Z", - "iopub.status.busy": "2024-02-07T22:09:53.575585Z", - "iopub.status.idle": "2024-02-07T22:09:53.610611Z", - "shell.execute_reply": "2024-02-07T22:09:53.610139Z" + "iopub.execute_input": "2024-02-07T23:50:33.698376Z", + "iopub.status.busy": "2024-02-07T23:50:33.698197Z", + "iopub.status.idle": "2024-02-07T23:50:33.734067Z", + "shell.execute_reply": "2024-02-07T23:50:33.733496Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:53.612587Z", - "iopub.status.busy": "2024-02-07T22:09:53.612283Z", - "iopub.status.idle": "2024-02-07T22:09:55.294395Z", - "shell.execute_reply": "2024-02-07T22:09:55.293723Z" + "iopub.execute_input": "2024-02-07T23:50:33.736250Z", + "iopub.status.busy": "2024-02-07T23:50:33.735898Z", + "iopub.status.idle": "2024-02-07T23:50:35.324293Z", + "shell.execute_reply": "2024-02-07T23:50:35.323707Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.297112Z", - "iopub.status.busy": "2024-02-07T22:09:55.296398Z", - "iopub.status.idle": "2024-02-07T22:09:55.312678Z", - "shell.execute_reply": "2024-02-07T22:09:55.312224Z" + "iopub.execute_input": "2024-02-07T23:50:35.326786Z", + "iopub.status.busy": "2024-02-07T23:50:35.326145Z", + "iopub.status.idle": "2024-02-07T23:50:35.342690Z", + "shell.execute_reply": "2024-02-07T23:50:35.342116Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.314716Z", - "iopub.status.busy": "2024-02-07T22:09:55.314404Z", - "iopub.status.idle": "2024-02-07T22:09:55.320693Z", - "shell.execute_reply": "2024-02-07T22:09:55.320168Z" + "iopub.execute_input": "2024-02-07T23:50:35.344850Z", + "iopub.status.busy": "2024-02-07T23:50:35.344539Z", + "iopub.status.idle": "2024-02-07T23:50:35.351268Z", + "shell.execute_reply": "2024-02-07T23:50:35.350723Z" } }, "outputs": [ @@ -941,10 +941,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.322682Z", - "iopub.status.busy": "2024-02-07T22:09:55.322374Z", - "iopub.status.idle": "2024-02-07T22:09:55.327895Z", - "shell.execute_reply": "2024-02-07T22:09:55.327376Z" + "iopub.execute_input": "2024-02-07T23:50:35.353405Z", + "iopub.status.busy": "2024-02-07T23:50:35.353065Z", + "iopub.status.idle": "2024-02-07T23:50:35.358733Z", + "shell.execute_reply": "2024-02-07T23:50:35.358315Z" } }, "outputs": [ @@ -1011,10 +1011,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.329882Z", - "iopub.status.busy": "2024-02-07T22:09:55.329574Z", - "iopub.status.idle": "2024-02-07T22:09:55.338962Z", - "shell.execute_reply": "2024-02-07T22:09:55.338443Z" + "iopub.execute_input": "2024-02-07T23:50:35.360561Z", + "iopub.status.busy": "2024-02-07T23:50:35.360391Z", + "iopub.status.idle": "2024-02-07T23:50:35.370073Z", + "shell.execute_reply": "2024-02-07T23:50:35.369622Z" } }, "outputs": [ @@ -1187,10 +1187,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.341062Z", - "iopub.status.busy": "2024-02-07T22:09:55.340748Z", - "iopub.status.idle": "2024-02-07T22:09:55.349834Z", - "shell.execute_reply": "2024-02-07T22:09:55.349389Z" + "iopub.execute_input": "2024-02-07T23:50:35.372076Z", + "iopub.status.busy": "2024-02-07T23:50:35.371747Z", + "iopub.status.idle": "2024-02-07T23:50:35.380435Z", + "shell.execute_reply": "2024-02-07T23:50:35.380030Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.351812Z", - "iopub.status.busy": "2024-02-07T22:09:55.351492Z", - "iopub.status.idle": "2024-02-07T22:09:55.358215Z", - "shell.execute_reply": "2024-02-07T22:09:55.357777Z" + "iopub.execute_input": "2024-02-07T23:50:35.382354Z", + "iopub.status.busy": "2024-02-07T23:50:35.382064Z", + "iopub.status.idle": "2024-02-07T23:50:35.388711Z", + "shell.execute_reply": "2024-02-07T23:50:35.388189Z" }, "scrolled": true }, @@ -1434,10 +1434,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:55.360252Z", - "iopub.status.busy": "2024-02-07T22:09:55.359862Z", - "iopub.status.idle": "2024-02-07T22:09:55.368697Z", - "shell.execute_reply": "2024-02-07T22:09:55.368160Z" + "iopub.execute_input": "2024-02-07T23:50:35.390572Z", + "iopub.status.busy": "2024-02-07T23:50:35.390398Z", + "iopub.status.idle": "2024-02-07T23:50:35.399536Z", + "shell.execute_reply": "2024-02-07T23:50:35.399098Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 69da62e85..89256cb69 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:58.185193Z", - "iopub.status.busy": "2024-02-07T22:09:58.185035Z", - "iopub.status.idle": "2024-02-07T22:09:59.240954Z", - "shell.execute_reply": "2024-02-07T22:09:59.240396Z" + "iopub.execute_input": "2024-02-07T23:50:37.883084Z", + "iopub.status.busy": "2024-02-07T23:50:37.882910Z", + "iopub.status.idle": "2024-02-07T23:50:38.892679Z", + "shell.execute_reply": "2024-02-07T23:50:38.892131Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.243686Z", - "iopub.status.busy": "2024-02-07T22:09:59.243159Z", - "iopub.status.idle": "2024-02-07T22:09:59.278797Z", - "shell.execute_reply": "2024-02-07T22:09:59.278254Z" + "iopub.execute_input": "2024-02-07T23:50:38.894943Z", + "iopub.status.busy": "2024-02-07T23:50:38.894684Z", + "iopub.status.idle": "2024-02-07T23:50:38.929710Z", + "shell.execute_reply": "2024-02-07T23:50:38.929146Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.281190Z", - "iopub.status.busy": "2024-02-07T22:09:59.280903Z", - "iopub.status.idle": "2024-02-07T22:09:59.401377Z", - "shell.execute_reply": "2024-02-07T22:09:59.400748Z" + "iopub.execute_input": "2024-02-07T23:50:38.931765Z", + "iopub.status.busy": "2024-02-07T23:50:38.931526Z", + "iopub.status.idle": "2024-02-07T23:50:39.058331Z", + "shell.execute_reply": "2024-02-07T23:50:39.057887Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.403384Z", - "iopub.status.busy": "2024-02-07T22:09:59.403180Z", - "iopub.status.idle": "2024-02-07T22:09:59.407799Z", - "shell.execute_reply": "2024-02-07T22:09:59.407346Z" + "iopub.execute_input": "2024-02-07T23:50:39.060129Z", + "iopub.status.busy": "2024-02-07T23:50:39.059952Z", + "iopub.status.idle": "2024-02-07T23:50:39.064178Z", + "shell.execute_reply": "2024-02-07T23:50:39.063670Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.409634Z", - "iopub.status.busy": "2024-02-07T22:09:59.409460Z", - "iopub.status.idle": "2024-02-07T22:09:59.417606Z", - "shell.execute_reply": "2024-02-07T22:09:59.417193Z" + "iopub.execute_input": "2024-02-07T23:50:39.066362Z", + "iopub.status.busy": "2024-02-07T23:50:39.065950Z", + "iopub.status.idle": "2024-02-07T23:50:39.076608Z", + "shell.execute_reply": "2024-02-07T23:50:39.076042Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.419486Z", - "iopub.status.busy": "2024-02-07T22:09:59.419287Z", - "iopub.status.idle": "2024-02-07T22:09:59.421813Z", - "shell.execute_reply": "2024-02-07T22:09:59.421375Z" + "iopub.execute_input": "2024-02-07T23:50:39.078928Z", + "iopub.status.busy": "2024-02-07T23:50:39.078751Z", + "iopub.status.idle": "2024-02-07T23:50:39.083266Z", + "shell.execute_reply": "2024-02-07T23:50:39.082562Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:09:59.423749Z", - "iopub.status.busy": "2024-02-07T22:09:59.423432Z", - "iopub.status.idle": "2024-02-07T22:10:02.368926Z", - "shell.execute_reply": "2024-02-07T22:10:02.368252Z" + "iopub.execute_input": "2024-02-07T23:50:39.086189Z", + "iopub.status.busy": "2024-02-07T23:50:39.085768Z", + "iopub.status.idle": "2024-02-07T23:50:42.065051Z", + "shell.execute_reply": "2024-02-07T23:50:42.064424Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:02.371956Z", - "iopub.status.busy": "2024-02-07T22:10:02.371532Z", - "iopub.status.idle": "2024-02-07T22:10:02.381528Z", - "shell.execute_reply": "2024-02-07T22:10:02.380946Z" + "iopub.execute_input": "2024-02-07T23:50:42.067604Z", + "iopub.status.busy": "2024-02-07T23:50:42.067419Z", + "iopub.status.idle": "2024-02-07T23:50:42.077021Z", + "shell.execute_reply": "2024-02-07T23:50:42.076618Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:02.383882Z", - "iopub.status.busy": "2024-02-07T22:10:02.383431Z", - "iopub.status.idle": "2024-02-07T22:10:04.216983Z", - "shell.execute_reply": "2024-02-07T22:10:04.216362Z" + "iopub.execute_input": "2024-02-07T23:50:42.078892Z", + "iopub.status.busy": "2024-02-07T23:50:42.078719Z", + "iopub.status.idle": "2024-02-07T23:50:43.738703Z", + "shell.execute_reply": "2024-02-07T23:50:43.738023Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.220917Z", - "iopub.status.busy": "2024-02-07T22:10:04.219625Z", - "iopub.status.idle": "2024-02-07T22:10:04.241581Z", - "shell.execute_reply": "2024-02-07T22:10:04.241080Z" + "iopub.execute_input": "2024-02-07T23:50:43.741956Z", + "iopub.status.busy": "2024-02-07T23:50:43.741196Z", + "iopub.status.idle": "2024-02-07T23:50:43.761486Z", + "shell.execute_reply": "2024-02-07T23:50:43.760971Z" }, "scrolled": true }, @@ -604,10 +604,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.245130Z", - "iopub.status.busy": "2024-02-07T22:10:04.244225Z", - "iopub.status.idle": "2024-02-07T22:10:04.255345Z", - "shell.execute_reply": "2024-02-07T22:10:04.254854Z" + "iopub.execute_input": "2024-02-07T23:50:43.764641Z", + "iopub.status.busy": "2024-02-07T23:50:43.763724Z", + "iopub.status.idle": "2024-02-07T23:50:43.774658Z", + "shell.execute_reply": "2024-02-07T23:50:43.774184Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.258823Z", - "iopub.status.busy": "2024-02-07T22:10:04.257919Z", - "iopub.status.idle": "2024-02-07T22:10:04.270597Z", - "shell.execute_reply": "2024-02-07T22:10:04.270094Z" + "iopub.execute_input": "2024-02-07T23:50:43.778049Z", + "iopub.status.busy": "2024-02-07T23:50:43.777135Z", + "iopub.status.idle": "2024-02-07T23:50:43.789631Z", + "shell.execute_reply": "2024-02-07T23:50:43.789124Z" } }, "outputs": [ @@ -843,10 +843,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.274181Z", - "iopub.status.busy": "2024-02-07T22:10:04.273266Z", - "iopub.status.idle": "2024-02-07T22:10:04.284928Z", - "shell.execute_reply": "2024-02-07T22:10:04.284408Z" + "iopub.execute_input": "2024-02-07T23:50:43.793061Z", + "iopub.status.busy": "2024-02-07T23:50:43.792169Z", + "iopub.status.idle": "2024-02-07T23:50:43.803071Z", + "shell.execute_reply": "2024-02-07T23:50:43.802586Z" } }, "outputs": [ @@ -960,10 +960,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.288692Z", - "iopub.status.busy": "2024-02-07T22:10:04.287752Z", - "iopub.status.idle": "2024-02-07T22:10:04.301331Z", - "shell.execute_reply": "2024-02-07T22:10:04.300828Z" + "iopub.execute_input": "2024-02-07T23:50:43.806458Z", + "iopub.status.busy": "2024-02-07T23:50:43.805573Z", + "iopub.status.idle": "2024-02-07T23:50:43.817839Z", + "shell.execute_reply": "2024-02-07T23:50:43.817365Z" } }, "outputs": [ @@ -1074,10 +1074,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.304987Z", - "iopub.status.busy": "2024-02-07T22:10:04.304078Z", - "iopub.status.idle": "2024-02-07T22:10:04.312203Z", - "shell.execute_reply": "2024-02-07T22:10:04.311804Z" + "iopub.execute_input": "2024-02-07T23:50:43.821198Z", + "iopub.status.busy": "2024-02-07T23:50:43.820286Z", + "iopub.status.idle": "2024-02-07T23:50:43.829526Z", + "shell.execute_reply": "2024-02-07T23:50:43.828987Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.315003Z", - "iopub.status.busy": "2024-02-07T22:10:04.314273Z", - "iopub.status.idle": "2024-02-07T22:10:04.321246Z", - "shell.execute_reply": "2024-02-07T22:10:04.320693Z" + "iopub.execute_input": "2024-02-07T23:50:43.831641Z", + "iopub.status.busy": "2024-02-07T23:50:43.831471Z", + "iopub.status.idle": "2024-02-07T23:50:43.837592Z", + "shell.execute_reply": "2024-02-07T23:50:43.837146Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:04.323382Z", - "iopub.status.busy": "2024-02-07T22:10:04.323031Z", - "iopub.status.idle": "2024-02-07T22:10:04.329588Z", - "shell.execute_reply": "2024-02-07T22:10:04.328964Z" + "iopub.execute_input": "2024-02-07T23:50:43.839485Z", + "iopub.status.busy": "2024-02-07T23:50:43.839314Z", + "iopub.status.idle": "2024-02-07T23:50:43.845958Z", + "shell.execute_reply": "2024-02-07T23:50:43.845400Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index d5cdbc5a4..d7da7c975 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -706,7 +706,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged'}
+Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}
 

Let’s view the i-th example in the dataset:

@@ -753,43 +753,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1523,7 +1523,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 18dadf034..d297bd27d 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:06.947323Z", - "iopub.status.busy": "2024-02-07T22:10:06.947148Z", - "iopub.status.idle": "2024-02-07T22:10:09.939027Z", - "shell.execute_reply": "2024-02-07T22:10:09.938409Z" + "iopub.execute_input": "2024-02-07T23:50:46.233862Z", + "iopub.status.busy": "2024-02-07T23:50:46.233691Z", + "iopub.status.idle": "2024-02-07T23:50:49.479909Z", + "shell.execute_reply": "2024-02-07T23:50:49.479357Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.941621Z", - "iopub.status.busy": "2024-02-07T22:10:09.941215Z", - "iopub.status.idle": "2024-02-07T22:10:09.944579Z", - "shell.execute_reply": "2024-02-07T22:10:09.944140Z" + "iopub.execute_input": "2024-02-07T23:50:49.482307Z", + "iopub.status.busy": "2024-02-07T23:50:49.482016Z", + "iopub.status.idle": "2024-02-07T23:50:49.485135Z", + "shell.execute_reply": "2024-02-07T23:50:49.484703Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.946445Z", - "iopub.status.busy": "2024-02-07T22:10:09.946183Z", - "iopub.status.idle": "2024-02-07T22:10:09.949100Z", - "shell.execute_reply": "2024-02-07T22:10:09.948667Z" + "iopub.execute_input": "2024-02-07T23:50:49.487098Z", + "iopub.status.busy": "2024-02-07T23:50:49.486785Z", + "iopub.status.idle": "2024-02-07T23:50:49.489812Z", + "shell.execute_reply": "2024-02-07T23:50:49.489306Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.951000Z", - "iopub.status.busy": "2024-02-07T22:10:09.950733Z", - "iopub.status.idle": "2024-02-07T22:10:09.991047Z", - "shell.execute_reply": "2024-02-07T22:10:09.990478Z" + "iopub.execute_input": "2024-02-07T23:50:49.491745Z", + "iopub.status.busy": "2024-02-07T23:50:49.491425Z", + "iopub.status.idle": "2024-02-07T23:50:49.528987Z", + "shell.execute_reply": "2024-02-07T23:50:49.528551Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.993279Z", - "iopub.status.busy": "2024-02-07T22:10:09.992913Z", - "iopub.status.idle": "2024-02-07T22:10:09.996608Z", - "shell.execute_reply": "2024-02-07T22:10:09.996099Z" + "iopub.execute_input": "2024-02-07T23:50:49.530871Z", + "iopub.status.busy": "2024-02-07T23:50:49.530546Z", + "iopub.status.idle": "2024-02-07T23:50:49.533966Z", + "shell.execute_reply": "2024-02-07T23:50:49.533472Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged'}\n" + "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:09.998677Z", - "iopub.status.busy": "2024-02-07T22:10:09.998368Z", - "iopub.status.idle": "2024-02-07T22:10:10.001537Z", - "shell.execute_reply": "2024-02-07T22:10:10.000982Z" + "iopub.execute_input": "2024-02-07T23:50:49.535879Z", + "iopub.status.busy": "2024-02-07T23:50:49.535606Z", + "iopub.status.idle": "2024-02-07T23:50:49.538753Z", + "shell.execute_reply": "2024-02-07T23:50:49.538216Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:10.003570Z", - "iopub.status.busy": "2024-02-07T22:10:10.003251Z", - "iopub.status.idle": "2024-02-07T22:10:14.583265Z", - "shell.execute_reply": "2024-02-07T22:10:14.582629Z" + "iopub.execute_input": "2024-02-07T23:50:49.540840Z", + "iopub.status.busy": "2024-02-07T23:50:49.540442Z", + "iopub.status.idle": "2024-02-07T23:50:53.722382Z", + "shell.execute_reply": "2024-02-07T23:50:53.721737Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0d885c1a34b04b04a65e76462bc7f8ae", + "model_id": "c122193addbf4629b7ada89af7819966", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70b899115926475ab4ca6289cac6f98d", + "model_id": "49733f926f10403491687cd4d40d244f", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "455cdf2910fc4c79acb1d3b1b36f013d", + "model_id": "e83d2ad65dac4e88a3f2ccde21d67f7f", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "617ccbb8f42e4c1da705cc6973aae912", + "model_id": "294346972e994e1c991aae390ff08179", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a965f31be8c34295846ad4a509228998", + "model_id": "9a65587ca1b94945af7dcc0cfc29a026", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c48d71673f824ce380d94b6bc999083a", + "model_id": "8e9d9888450346db8e3954d17cef036f", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4eef59cd705841408e36d8db6510b5db", + "model_id": "2dd173e0deec4bd6bc92ad03b5a7656c", "version_major": 2, "version_minor": 0 }, @@ -521,10 +521,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:14.586075Z", - "iopub.status.busy": "2024-02-07T22:10:14.585631Z", - "iopub.status.idle": "2024-02-07T22:10:15.504919Z", - "shell.execute_reply": "2024-02-07T22:10:15.504346Z" + "iopub.execute_input": "2024-02-07T23:50:53.724982Z", + "iopub.status.busy": "2024-02-07T23:50:53.724780Z", + "iopub.status.idle": "2024-02-07T23:50:54.607508Z", + "shell.execute_reply": "2024-02-07T23:50:54.606933Z" }, "scrolled": true }, @@ -556,10 +556,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:15.507830Z", - "iopub.status.busy": "2024-02-07T22:10:15.507434Z", - "iopub.status.idle": "2024-02-07T22:10:15.510302Z", - "shell.execute_reply": "2024-02-07T22:10:15.509822Z" + "iopub.execute_input": "2024-02-07T23:50:54.610305Z", + "iopub.status.busy": "2024-02-07T23:50:54.609824Z", + "iopub.status.idle": "2024-02-07T23:50:54.612703Z", + "shell.execute_reply": "2024-02-07T23:50:54.612237Z" } }, "outputs": [], @@ -579,10 +579,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:15.513318Z", - "iopub.status.busy": "2024-02-07T22:10:15.512296Z", - "iopub.status.idle": "2024-02-07T22:10:17.066860Z", - "shell.execute_reply": "2024-02-07T22:10:17.066217Z" + "iopub.execute_input": "2024-02-07T23:50:54.614977Z", + "iopub.status.busy": "2024-02-07T23:50:54.614633Z", + "iopub.status.idle": "2024-02-07T23:50:56.087451Z", + "shell.execute_reply": "2024-02-07T23:50:56.086626Z" }, "scrolled": true }, @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.071173Z", - "iopub.status.busy": "2024-02-07T22:10:17.069847Z", - "iopub.status.idle": "2024-02-07T22:10:17.092618Z", - "shell.execute_reply": "2024-02-07T22:10:17.092122Z" + "iopub.execute_input": "2024-02-07T23:50:56.091488Z", + "iopub.status.busy": "2024-02-07T23:50:56.090197Z", + "iopub.status.idle": "2024-02-07T23:50:56.112835Z", + "shell.execute_reply": "2024-02-07T23:50:56.112316Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.096131Z", - "iopub.status.busy": "2024-02-07T22:10:17.095219Z", - "iopub.status.idle": "2024-02-07T22:10:17.106575Z", - "shell.execute_reply": "2024-02-07T22:10:17.106103Z" + "iopub.execute_input": "2024-02-07T23:50:56.116330Z", + "iopub.status.busy": "2024-02-07T23:50:56.115399Z", + "iopub.status.idle": "2024-02-07T23:50:56.126920Z", + "shell.execute_reply": "2024-02-07T23:50:56.126444Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.109988Z", - "iopub.status.busy": "2024-02-07T22:10:17.109076Z", - "iopub.status.idle": "2024-02-07T22:10:17.115450Z", - "shell.execute_reply": "2024-02-07T22:10:17.114951Z" + "iopub.execute_input": "2024-02-07T23:50:56.130383Z", + "iopub.status.busy": "2024-02-07T23:50:56.129483Z", + "iopub.status.idle": "2024-02-07T23:50:56.135890Z", + "shell.execute_reply": "2024-02-07T23:50:56.135397Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.118760Z", - "iopub.status.busy": "2024-02-07T22:10:17.117868Z", - "iopub.status.idle": "2024-02-07T22:10:17.126824Z", - "shell.execute_reply": "2024-02-07T22:10:17.126445Z" + "iopub.execute_input": "2024-02-07T23:50:56.139224Z", + "iopub.status.busy": "2024-02-07T23:50:56.138329Z", + "iopub.status.idle": "2024-02-07T23:50:56.147473Z", + "shell.execute_reply": "2024-02-07T23:50:56.147004Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.128914Z", - "iopub.status.busy": "2024-02-07T22:10:17.128742Z", - "iopub.status.idle": "2024-02-07T22:10:17.136240Z", - "shell.execute_reply": "2024-02-07T22:10:17.135712Z" + "iopub.execute_input": "2024-02-07T23:50:56.149798Z", + "iopub.status.busy": "2024-02-07T23:50:56.149623Z", + "iopub.status.idle": "2024-02-07T23:50:56.156444Z", + "shell.execute_reply": "2024-02-07T23:50:56.155823Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.138165Z", - "iopub.status.busy": "2024-02-07T22:10:17.137995Z", - "iopub.status.idle": "2024-02-07T22:10:17.144520Z", - "shell.execute_reply": "2024-02-07T22:10:17.143902Z" + "iopub.execute_input": "2024-02-07T23:50:56.158506Z", + "iopub.status.busy": "2024-02-07T23:50:56.158330Z", + "iopub.status.idle": "2024-02-07T23:50:56.164895Z", + "shell.execute_reply": "2024-02-07T23:50:56.164300Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.146533Z", - "iopub.status.busy": "2024-02-07T22:10:17.146359Z", - "iopub.status.idle": "2024-02-07T22:10:17.155364Z", - "shell.execute_reply": "2024-02-07T22:10:17.154731Z" + "iopub.execute_input": "2024-02-07T23:50:56.166958Z", + "iopub.status.busy": "2024-02-07T23:50:56.166784Z", + "iopub.status.idle": "2024-02-07T23:50:56.175982Z", + "shell.execute_reply": "2024-02-07T23:50:56.175361Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.157360Z", - "iopub.status.busy": "2024-02-07T22:10:17.157188Z", - "iopub.status.idle": "2024-02-07T22:10:17.162733Z", - "shell.execute_reply": "2024-02-07T22:10:17.162088Z" + "iopub.execute_input": "2024-02-07T23:50:56.178038Z", + "iopub.status.busy": "2024-02-07T23:50:56.177865Z", + "iopub.status.idle": "2024-02-07T23:50:56.183444Z", + "shell.execute_reply": "2024-02-07T23:50:56.182795Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.165077Z", - "iopub.status.busy": "2024-02-07T22:10:17.164903Z", - "iopub.status.idle": "2024-02-07T22:10:17.170197Z", - "shell.execute_reply": "2024-02-07T22:10:17.169559Z" + "iopub.execute_input": "2024-02-07T23:50:56.185842Z", + "iopub.status.busy": "2024-02-07T23:50:56.185452Z", + "iopub.status.idle": "2024-02-07T23:50:56.190683Z", + "shell.execute_reply": "2024-02-07T23:50:56.190168Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.172679Z", - "iopub.status.busy": "2024-02-07T22:10:17.172506Z", - "iopub.status.idle": "2024-02-07T22:10:17.176201Z", - "shell.execute_reply": "2024-02-07T22:10:17.175552Z" + "iopub.execute_input": "2024-02-07T23:50:56.192661Z", + "iopub.status.busy": "2024-02-07T23:50:56.192345Z", + "iopub.status.idle": "2024-02-07T23:50:56.195806Z", + "shell.execute_reply": "2024-02-07T23:50:56.195258Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:17.178606Z", - "iopub.status.busy": "2024-02-07T22:10:17.178436Z", - "iopub.status.idle": "2024-02-07T22:10:17.183817Z", - "shell.execute_reply": "2024-02-07T22:10:17.183182Z" + "iopub.execute_input": "2024-02-07T23:50:56.197832Z", + "iopub.status.busy": "2024-02-07T23:50:56.197471Z", + "iopub.status.idle": "2024-02-07T23:50:56.202662Z", + "shell.execute_reply": "2024-02-07T23:50:56.202128Z" }, "nbsphinx": "hidden" }, @@ -1598,33 +1598,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06844a7db8a6422892d1acb1093405d3": { + "01a106c335cd4ec5a6a8b14ff1d5ba8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_974ed300109b4bed98388334741d7e20", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74bffb84a6eb4480a26355932844fbf5", + "layout": "IPY_MODEL_96544fa91ef044518cca58cdc8b7e90e", + "placeholder": "​", + "style": "IPY_MODEL_a9f88197d6d3487599e3bcf4cc14437f", "tabbable": null, "tooltip": null, - "value": 29.0 + "value": " 29.0/29.0 [00:00<00:00, 5.39kB/s]" } }, - "0935d34e934d4f82955d4a9dd06e95e1": { + "05ac06cc7d34426a9f564a521b6f5875": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1642,7 +1639,7 @@ "text_color": null } }, - "0a7f8e7552794e84871dff2662ca68c6": { + "081174bba3534f74bb5ef231d4b3fc4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1695,75 +1692,7 @@ "width": null } }, - "0d885c1a34b04b04a65e76462bc7f8ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e0526787ea344759f493ff3f7048f30", - "IPY_MODEL_94ba3436c83b4db9ba81e2bec475edd4", - "IPY_MODEL_e6f2f27575614660a8dd13e1ce1592ed" - ], - "layout": "IPY_MODEL_b830d17a17194985802b41acfc283bc5", - "tabbable": null, - "tooltip": null - } - }, - "0f436aaa0eda485f8feabba1220a17e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12eca47a10834c6395838a954baa15a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9fe06d39c12248debba0ce4f131d1b0c", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3e83a7c1d3504ca0ac014f3ddb23fa79", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "1daa511c5f96480a898ea35b444b1eca": { + "133eddeef7544847977f9757ebacf52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1816,7 +1745,23 @@ "width": null } }, - "22413209abe846cdbe1e339fca65b5d5": { + "1629e90242ff4712bf0774c4d7943ed9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1781eb1973d74e20986b1ac2f47913b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1831,31 +1776,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a7f8e7552794e84871dff2662ca68c6", + "layout": "IPY_MODEL_1972a9b3359a4b1abc2438b34e72ac35", "placeholder": "​", - "style": "IPY_MODEL_dfb7fa9cce6240e6be17ce35ae03b6a2", + "style": "IPY_MODEL_05ac06cc7d34426a9f564a521b6f5875", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "26bf4567f23a4ecdbbb4391039e47a1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "config.json: 100%" } }, - "294f544e4fbc4e68a974452deb9b095e": { + "1972a9b3359a4b1abc2438b34e72ac35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1908,7 +1837,7 @@ "width": null } }, - "2f4f8123d8ba4a888ed11e05b0c87d16": { + "1ac440e00f2e4511bc1a64dc9215f5fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1961,60 +1890,112 @@ "width": null } }, - "2ff3313f83984a09b2354f35ba8b7f57": { - "model_module": "@jupyter-widgets/base", + "283c8b33977b456ebc5a25d251743c83": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55d53572e1964c34bda15161a71f7592", + "placeholder": "​", + "style": "IPY_MODEL_d1ac4d9b3095413592ea9015d4a58175", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 433kB/s]" + } + }, + "294346972e994e1c991aae390ff08179": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a440225dab48494daf0d867e0a062c60", + "IPY_MODEL_533a2a80ff99434fbad2ef63edf9b216", + "IPY_MODEL_5af1c1a5fa7e4b0e87198be81c8c806c" + ], + "layout": "IPY_MODEL_f017d2f580b040638630015c72d627b2", + "tabbable": null, + "tooltip": null + } + }, + "2d4d74efbd824425870cbaf45c10f938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2dd173e0deec4bd6bc92ad03b5a7656c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_664ea7a324e443bbb27801624a919c05", + "IPY_MODEL_7df77100f86c42f59a817321411eb210", + "IPY_MODEL_42e820ce57d64326b13eb2eba7da616e" + ], + "layout": "IPY_MODEL_38d9a775cbf2416481cf86be42b1b571", + "tabbable": null, + "tooltip": null + } + }, + "2dded20223ec437d9b4f0724d519c76b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "340fe62c803045229af00190ee214ca8": { + "2f50043f1a0d4aada1f2ea15e26779a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2032,33 +2013,30 @@ "text_color": null } }, - "34c8f48cf7b3429383912dffe61081f1": { + "365ba1b09e7341489be8464655a555cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e12d0db22792490c99b19e69618087c0", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_828e8f4e5a684ae88f51ea6ae972b36a", + "layout": "IPY_MODEL_133eddeef7544847977f9757ebacf52b", + "placeholder": "​", + "style": "IPY_MODEL_53ae31ba2c0f4559a6bbe11311fa21c8", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 466k/466k [00:00<00:00, 28.7MB/s]" } }, - "36d01d15d38e4c90afc3997820731f1d": { + "36bf4419cfb34b2fb65dc8ca66ddeb57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,33 +2089,60 @@ "width": null } }, - "383aaede23d042d58e21efdc6823b5a8": { - "model_module": "@jupyter-widgets/controls", + "38d9a775cbf2416481cf86be42b1b571": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d4d46c545514392aa8b9666188c2c2f", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44be34defa9b4e3a8116c9c64f985d0f", - "tabbable": null, - "tooltip": null, - "value": 231508.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3e83a7c1d3504ca0ac014f3ddb23fa79": { + "4026be558dc041d182c88249f880078e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2153,7 +2158,7 @@ "description_width": "" } }, - "42466c5944084b1e9b24e6e9a2f21f0e": { + "4033e28a96fa4a59bb9a423171ca614b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2169,57 +2174,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b089b7ff67904e859e08f74eb4462cc5", - "max": 665.0, + "layout": "IPY_MODEL_43918fb3e44743d19d92614011500cf2", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_26bf4567f23a4ecdbbb4391039e47a1f", + "style": "IPY_MODEL_7288265f2e2a4b99ab54e05e23f5f0ae", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 2211.0 } }, - "44be34defa9b4e3a8116c9c64f985d0f": { - "model_module": "@jupyter-widgets/controls", + "40c2452148e54b80ad05abfeb95dab29": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "455cdf2910fc4c79acb1d3b1b36f013d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9cae2bb475d64e8ea6440578d75f46df", - "IPY_MODEL_42466c5944084b1e9b24e6e9a2f21f0e", - "IPY_MODEL_e38d5a36366d4cb4892d529cf4e51cfb" - ], - "layout": "IPY_MODEL_a265a663c76a43e1b927ff469bc5d2b5", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "486557d720934439a49a6e048ca63142": { + "42e820ce57d64326b13eb2eba7da616e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2234,15 +2252,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_294f544e4fbc4e68a974452deb9b095e", + "layout": "IPY_MODEL_bb8fa5d63e7f401ba6dd282294a14d51", "placeholder": "​", - "style": "IPY_MODEL_c105e79c89b848c98c79ea2425e07146", + "style": "IPY_MODEL_2f50043f1a0d4aada1f2ea15e26779a6", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 132MB/s]" + "value": " 232k/232k [00:00<00:00, 37.4MB/s]" } }, - "49d1dca865a4406f9fd081d76b25120f": { + "43918fb3e44743d19d92614011500cf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2295,7 +2313,31 @@ "width": null } }, - "4a73f1657df6418192b8e88b26bfea54": { + "49733f926f10403491687cd4d40d244f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_738a58ca6f7b4db7a157166614a2d23d", + "IPY_MODEL_4033e28a96fa4a59bb9a423171ca614b", + "IPY_MODEL_283c8b33977b456ebc5a25d251743c83" + ], + "layout": "IPY_MODEL_f48d4fa2009642d08bc01e8fe3f7baa2", + "tabbable": null, + "tooltip": null + } + }, + "4c1bc089fe3a44f99d3e97c6aa907ed2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,78 +2390,74 @@ "width": null } }, - "4eef59cd705841408e36d8db6510b5db": { + "4c6d24e1b8e140589b3f7206e752a847": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b56c9e208a93471cafa984931cfab2d1", - "IPY_MODEL_383aaede23d042d58e21efdc6823b5a8", - "IPY_MODEL_6dcc0a68a8624bf5b340aa9c48917f41" - ], - "layout": "IPY_MODEL_1daa511c5f96480a898ea35b444b1eca", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_deef1f9c7c854b4787e1291d7676ccfa", + "placeholder": "​", + "style": "IPY_MODEL_4d174d86825a4659a535d3f67ddd8f91", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "tokenizer.json: 100%" } }, - "5e0526787ea344759f493ff3f7048f30": { + "4d174d86825a4659a535d3f67ddd8f91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f4f8123d8ba4a888ed11e05b0c87d16", - "placeholder": "​", - "style": "IPY_MODEL_7ee455eacbd742bdb254f16dc1e68910", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "617ccbb8f42e4c1da705cc6973aae912": { + "533a2a80ff99434fbad2ef63edf9b216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fb88ef6b95a5461989853ce1b5f754ca", - "IPY_MODEL_8c226dcc1f7e4700bb2b27f77e40f8ac", - "IPY_MODEL_486557d720934439a49a6e048ca63142" - ], - "layout": "IPY_MODEL_bb249cbd8534453ba55520e924c7b81d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60796f28cf154144a6bacad76d5ff446", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1629e90242ff4712bf0774c4d7943ed9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 54245363.0 } }, - "6386e67f246a46c2a8167db4fbd4f50f": { + "5355024e5df14205a7c989138994be48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2472,7 +2510,7 @@ "width": null } }, - "68191e9841cf4fc3ad5084c453808bf6": { + "53ae31ba2c0f4559a6bbe11311fa21c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2490,7 +2528,7 @@ "text_color": null } }, - "6952ddc411c24d5a9250ef2f3f8fc46b": { + "54c548b22f99437abf98203ae4a700a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2506,7 +2544,7 @@ "description_width": "" } }, - "69e2a0e88f5b4789aca076d1397eeef0": { + "55d53572e1964c34bda15161a71f7592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2559,7 +2597,30 @@ "width": null } }, - "6d4d46c545514392aa8b9666188c2c2f": { + "5af1c1a5fa7e4b0e87198be81c8c806c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ac440e00f2e4511bc1a64dc9215f5fc", + "placeholder": "​", + "style": "IPY_MODEL_65e3df94b7524d67b789725d4178ebfa", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 162MB/s]" + } + }, + "5c42af812e744e9b81b5a6a33e0ce2ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2612,189 +2673,7 @@ "width": null } }, - "6dcc0a68a8624bf5b340aa9c48917f41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49d1dca865a4406f9fd081d76b25120f", - "placeholder": "​", - "style": "IPY_MODEL_b1a67674d9034ceea803f59c0cc261a3", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 4.29MB/s]" - } - }, - "70b899115926475ab4ca6289cac6f98d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b70a3bde8ab44d1a383656136a63d06", - "IPY_MODEL_34c8f48cf7b3429383912dffe61081f1", - "IPY_MODEL_c0f2fcd597464233b9df7c82e9338208" - ], - "layout": "IPY_MODEL_f4fb247100d34699900ba0b2436078d6", - "tabbable": null, - "tooltip": null - } - }, - "730e39295f384d38a7809341193721b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "74bffb84a6eb4480a26355932844fbf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7b70a3bde8ab44d1a383656136a63d06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f39b17bf56d44a99a5c3bed40eb29a2d", - "placeholder": "​", - "style": "IPY_MODEL_0935d34e934d4f82955d4a9dd06e95e1", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "7ee455eacbd742bdb254f16dc1e68910": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "828e8f4e5a684ae88f51ea6ae972b36a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "858df27692a24f74844cc2329eb49af6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8c226dcc1f7e4700bb2b27f77e40f8ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69e2a0e88f5b4789aca076d1397eeef0", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6952ddc411c24d5a9250ef2f3f8fc46b", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "9021471f58ab4bfd9bbe4dc26b025b17": { + "60796f28cf154144a6bacad76d5ff446": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2847,33 +2726,64 @@ "width": null } }, - "94ba3436c83b4db9ba81e2bec475edd4": { + "65e3df94b7524d67b789725d4178ebfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "663e96ddeae4405e8915682214e5f41c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "664ea7a324e443bbb27801624a919c05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf2ac6ab2e79499ca90d11cfe4224527", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d0d3c86b2cbc491aaa5eb6ab71d264a7", + "layout": "IPY_MODEL_40c2452148e54b80ad05abfeb95dab29", + "placeholder": "​", + "style": "IPY_MODEL_af88cbafd956443186aabd0ff6d2b158", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": "vocab.txt: 100%" } }, - "974ed300109b4bed98388334741d7e20": { + "6f651b05536a4cd9805b0594ac0233a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2926,76 +2836,39 @@ "width": null } }, - "97925e46e7544803bfa9bbd35f277a0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab4a58de1d1647f496edad461715aaa9", - "placeholder": "​", - "style": "IPY_MODEL_858df27692a24f74844cc2329eb49af6", - "tabbable": null, - "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.34kB/s]" - } - }, - "9a60224542464545b7c54c09f1ed9262": { + "708e85be24f2472c9002b8fd7d8ab151": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4a73f1657df6418192b8e88b26bfea54", - "placeholder": "​", - "style": "IPY_MODEL_b311be58b5184dfeb6b02e5beec356df", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9cae2bb475d64e8ea6440578d75f46df": { + "7288265f2e2a4b99ab54e05e23f5f0ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d752ef40d854b17bb45f92da198d00d", - "placeholder": "​", - "style": "IPY_MODEL_68191e9841cf4fc3ad5084c453808bf6", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9d752ef40d854b17bb45f92da198d00d": { + "729140e943504b57ace99650651ea1d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3048,7 +2921,30 @@ "width": null } }, - "9fe06d39c12248debba0ce4f131d1b0c": { + "738a58ca6f7b4db7a157166614a2d23d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f651b05536a4cd9805b0594ac0233a1", + "placeholder": "​", + "style": "IPY_MODEL_ac027eeeec8d46bbb3f5d08bc844df94", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "739c66018de446f48db6b585f8936d11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3101,7 +2997,98 @@ "width": null } }, - "a265a663c76a43e1b927ff469bc5d2b5": { + "78e9ebb162834213bfce2fea8e8fd18d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36bf4419cfb34b2fb65dc8ca66ddeb57", + "placeholder": "​", + "style": "IPY_MODEL_2d4d74efbd824425870cbaf45c10f938", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "7df77100f86c42f59a817321411eb210": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c1bc089fe3a44f99d3e97c6aa907ed2", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_663e96ddeae4405e8915682214e5f41c", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "8e289bbbfd1e4a2b8be1b6c58b2a5b86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e9d9888450346db8e3954d17cef036f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78e9ebb162834213bfce2fea8e8fd18d", + "IPY_MODEL_ffda121f1cd44363b9efc3901ed1f0fa", + "IPY_MODEL_01a106c335cd4ec5a6a8b14ff1d5ba8d" + ], + "layout": "IPY_MODEL_a612dc860dc94c72bb4ab4487f91d8de", + "tabbable": null, + "tooltip": null + } + }, + "96544fa91ef044518cca58cdc8b7e90e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3154,7 +3141,7 @@ "width": null } }, - "a499d7f12838442180a4cbdb3920f920": { + "96b3841f46794027a4931069701de656": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3169,15 +3156,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dd7233a7504d445fbd282ff1343a6fe0", + "layout": "IPY_MODEL_739c66018de446f48db6b585f8936d11", "placeholder": "​", - "style": "IPY_MODEL_730e39295f384d38a7809341193721b7", + "style": "IPY_MODEL_8e289bbbfd1e4a2b8be1b6c58b2a5b86", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 12.3MB/s]" + "value": ".gitattributes: 100%" } }, - "a965f31be8c34295846ad4a509228998": { + "9a65587ca1b94945af7dcc0cfc29a026": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3192,16 +3179,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9a60224542464545b7c54c09f1ed9262", - "IPY_MODEL_12eca47a10834c6395838a954baa15a0", - "IPY_MODEL_a499d7f12838442180a4cbdb3920f920" + "IPY_MODEL_4c6d24e1b8e140589b3f7206e752a847", + "IPY_MODEL_a562153720f0466ca6468834694f3b95", + "IPY_MODEL_365ba1b09e7341489be8464655a555cd" ], - "layout": "IPY_MODEL_b9dd625238174ebab9b1a516894b5590", + "layout": "IPY_MODEL_cfea3cab90dc4d4b8e5c12a36c64326f", "tabbable": null, "tooltip": null } }, - "ab4a58de1d1647f496edad461715aaa9": { + "9becc04773b84d3c8fa6a24cadf6f29c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3254,7 +3241,105 @@ "width": null } }, - "aef64cc2ded04950a68d8fe166bf68d5": { + "a1dc17837a20424680ae0627499e3789": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_081174bba3534f74bb5ef231d4b3fc4c", + "placeholder": "​", + "style": "IPY_MODEL_df0b59c454bd43bcadc10fd7b46c1617", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 71.7kB/s]" + } + }, + "a440225dab48494daf0d867e0a062c60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_729140e943504b57ace99650651ea1d9", + "placeholder": "​", + "style": "IPY_MODEL_a71782ebbaae423285c7e0c7cc938aa0", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "a562153720f0466ca6468834694f3b95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eff42f4744924c029089618d6ff32d26", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_708e85be24f2472c9002b8fd7d8ab151", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "a5fe42ca82c4420c820ad748a75d4efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9becc04773b84d3c8fa6a24cadf6f29c", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54c548b22f99437abf98203ae4a700a1", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "a612dc860dc94c72bb4ab4487f91d8de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3307,7 +3392,25 @@ "width": null } }, - "b0431ac60b4b4851a994c3f65b39fe27": { + "a71782ebbaae423285c7e0c7cc938aa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a9f88197d6d3487599e3bcf4cc14437f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3325,7 +3428,7 @@ "text_color": null } }, - "b089b7ff67904e859e08f74eb4462cc5": { + "ab60f70d2fef418893f80a8008c92281": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3378,25 +3481,7 @@ "width": null } }, - "b15b2120b9a64253ad75edebadfd55c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b1a67674d9034ceea803f59c0cc261a3": { + "ac027eeeec8d46bbb3f5d08bc844df94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3414,7 +3499,7 @@ "text_color": null } }, - "b311be58b5184dfeb6b02e5beec356df": { + "af88cbafd956443186aabd0ff6d2b158": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3432,30 +3517,7 @@ "text_color": null } }, - "b56c9e208a93471cafa984931cfab2d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6386e67f246a46c2a8167db4fbd4f50f", - "placeholder": "​", - "style": "IPY_MODEL_0f436aaa0eda485f8feabba1220a17e7", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "b830d17a17194985802b41acfc283bc5": { + "bb8fa5d63e7f401ba6dd282294a14d51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3508,7 +3570,31 @@ "width": null } }, - "b9dd625238174ebab9b1a516894b5590": { + "c122193addbf4629b7ada89af7819966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_96b3841f46794027a4931069701de656", + "IPY_MODEL_a5fe42ca82c4420c820ad748a75d4efd", + "IPY_MODEL_a1dc17837a20424680ae0627499e3789" + ], + "layout": "IPY_MODEL_cb2cf5748533424cba70d5177df7e7bc", + "tabbable": null, + "tooltip": null + } + }, + "cb2cf5748533424cba70d5177df7e7bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3561,7 +3647,7 @@ "width": null } }, - "bb249cbd8534453ba55520e924c7b81d": { + "cfea3cab90dc4d4b8e5c12a36c64326f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3614,30 +3700,25 @@ "width": null } }, - "c0f2fcd597464233b9df7c82e9338208": { + "d160a62e311e44c2a614b54fba944911": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9021471f58ab4bfd9bbe4dc26b025b17", - "placeholder": "​", - "style": "IPY_MODEL_c9f79242d5f9499285306c8816267e3d", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 408kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c105e79c89b848c98c79ea2425e07146": { + "d1ac4d9b3095413592ea9015d4a58175": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3655,49 +3736,56 @@ "text_color": null } }, - "c48d71673f824ce380d94b6bc999083a": { + "d3b4ea42869f406bb1415d13761b16c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_22413209abe846cdbe1e339fca65b5d5", - "IPY_MODEL_06844a7db8a6422892d1acb1093405d3", - "IPY_MODEL_97925e46e7544803bfa9bbd35f277a0f" - ], - "layout": "IPY_MODEL_2ff3313f83984a09b2354f35ba8b7f57", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab60f70d2fef418893f80a8008c92281", + "placeholder": "​", + "style": "IPY_MODEL_d160a62e311e44c2a614b54fba944911", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 665/665 [00:00<00:00, 82.9kB/s]" } }, - "c9f79242d5f9499285306c8816267e3d": { + "dab660c06f0646dfa8fd919ad168088c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c42af812e744e9b81b5a6a33e0ce2ee", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2dded20223ec437d9b4f0724d519c76b", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "cbc42ac422f34e828447b08b2c8086e8": { + "deef1f9c7c854b4787e1291d7676ccfa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3750,76 +3838,49 @@ "width": null } }, - "cf2ac6ab2e79499ca90d11cfe4224527": { - "model_module": "@jupyter-widgets/base", + "df0b59c454bd43bcadc10fd7b46c1617": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0d3c86b2cbc491aaa5eb6ab71d264a7": { + "e83d2ad65dac4e88a3f2ccde21d67f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1781eb1973d74e20986b1ac2f47913b7", + "IPY_MODEL_dab660c06f0646dfa8fd919ad168088c", + "IPY_MODEL_d3b4ea42869f406bb1415d13761b16c6" + ], + "layout": "IPY_MODEL_fe6c1ad7ef28465084828be32acd21c5", + "tabbable": null, + "tooltip": null } }, - "dd7233a7504d445fbd282ff1343a6fe0": { + "eff42f4744924c029089618d6ff32d26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3872,25 +3933,7 @@ "width": null } }, - "dfb7fa9cce6240e6be17ce35ae03b6a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e12d0db22792490c99b19e69618087c0": { + "f017d2f580b040638630015c72d627b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3943,53 +3986,7 @@ "width": null } }, - "e38d5a36366d4cb4892d529cf4e51cfb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aef64cc2ded04950a68d8fe166bf68d5", - "placeholder": "​", - "style": "IPY_MODEL_340fe62c803045229af00190ee214ca8", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" - } - }, - "e6f2f27575614660a8dd13e1ce1592ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_36d01d15d38e4c90afc3997820731f1d", - "placeholder": "​", - "style": "IPY_MODEL_b15b2120b9a64253ad75edebadfd55c6", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.3kB/s]" - } - }, - "f39b17bf56d44a99a5c3bed40eb29a2d": { + "f48d4fa2009642d08bc01e8fe3f7baa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4042,7 +4039,7 @@ "width": null } }, - "f4fb247100d34699900ba0b2436078d6": { + "fe6c1ad7ef28465084828be32acd21c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4095,27 +4092,30 @@ "width": null } }, - "fb88ef6b95a5461989853ce1b5f754ca": { + "ffda121f1cd44363b9efc3901ed1f0fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cbc42ac422f34e828447b08b2c8086e8", - "placeholder": "​", - "style": "IPY_MODEL_b0431ac60b4b4851a994c3f65b39fe27", + "layout": "IPY_MODEL_5355024e5df14205a7c989138994be48", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4026be558dc041d182c88249f880078e", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 29.0 } } }, diff --git a/master/tutorials/dataset_health.html b/master/tutorials/dataset_health.html index cbddb38ef..7be089a58 100644 --- a/master/tutorials/dataset_health.html +++ b/master/tutorials/dataset_health.html @@ -1045,13 +1045,6 @@

Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Mnist_test_set 🎯 -

- -
-
-
-
-
 
 Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)
 
diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb
index 4d4c8909b..a656e6dee 100644
--- a/master/tutorials/dataset_health.ipynb
+++ b/master/tutorials/dataset_health.ipynb
@@ -68,10 +68,10 @@
    "execution_count": 1,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:10:20.445577Z",
-     "iopub.status.busy": "2024-02-07T22:10:20.445400Z",
-     "iopub.status.idle": "2024-02-07T22:10:21.481005Z",
-     "shell.execute_reply": "2024-02-07T22:10:21.480362Z"
+     "iopub.execute_input": "2024-02-07T23:50:59.127525Z",
+     "iopub.status.busy": "2024-02-07T23:50:59.127102Z",
+     "iopub.status.idle": "2024-02-07T23:51:00.150396Z",
+     "shell.execute_reply": "2024-02-07T23:51:00.149892Z"
     },
     "nbsphinx": "hidden"
    },
@@ -83,7 +83,7 @@
     "dependencies = [\"cleanlab\", \"requests\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -108,10 +108,10 @@
    "execution_count": 2,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:10:21.483771Z",
-     "iopub.status.busy": "2024-02-07T22:10:21.483236Z",
-     "iopub.status.idle": "2024-02-07T22:10:21.486136Z",
-     "shell.execute_reply": "2024-02-07T22:10:21.485591Z"
+     "iopub.execute_input": "2024-02-07T23:51:00.153121Z",
+     "iopub.status.busy": "2024-02-07T23:51:00.152624Z",
+     "iopub.status.idle": "2024-02-07T23:51:00.155459Z",
+     "shell.execute_reply": "2024-02-07T23:51:00.154942Z"
     },
     "id": "_UvI80l42iyi"
    },
@@ -201,10 +201,10 @@
    "execution_count": 3,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:10:21.488244Z",
-     "iopub.status.busy": "2024-02-07T22:10:21.487938Z",
-     "iopub.status.idle": "2024-02-07T22:10:21.499556Z",
-     "shell.execute_reply": "2024-02-07T22:10:21.499007Z"
+     "iopub.execute_input": "2024-02-07T23:51:00.157665Z",
+     "iopub.status.busy": "2024-02-07T23:51:00.157286Z",
+     "iopub.status.idle": "2024-02-07T23:51:00.168842Z",
+     "shell.execute_reply": "2024-02-07T23:51:00.168305Z"
     },
     "nbsphinx": "hidden"
    },
@@ -283,10 +283,10 @@
    "execution_count": 4,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:10:21.501697Z",
-     "iopub.status.busy": "2024-02-07T22:10:21.501285Z",
-     "iopub.status.idle": "2024-02-07T22:10:25.286494Z",
-     "shell.execute_reply": "2024-02-07T22:10:25.286003Z"
+     "iopub.execute_input": "2024-02-07T23:51:00.170850Z",
+     "iopub.status.busy": "2024-02-07T23:51:00.170540Z",
+     "iopub.status.idle": "2024-02-07T23:51:03.496922Z",
+     "shell.execute_reply": "2024-02-07T23:51:03.496339Z"
     },
     "id": "dhTHOg8Pyv5G"
    },
@@ -692,13 +692,7 @@
       "\n",
       "\n",
       "🎯 Mnist_test_set 🎯\n",
-      "\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "\n",
       "\n",
       "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n",
       "\n",
diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html
index b4021fd5e..e05eb42bf 100644
--- a/master/tutorials/faq.html
+++ b/master/tutorials/faq.html
@@ -700,13 +700,13 @@ 

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1416,12 +1416,20 @@

How do I specify pre-computed data slices/clusters when detecting the Underp

-
@@ -1620,7 +1628,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index a7665e67c..2827a0233 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:27.452546Z", - "iopub.status.busy": "2024-02-07T22:10:27.452375Z", - "iopub.status.idle": "2024-02-07T22:10:28.497741Z", - "shell.execute_reply": "2024-02-07T22:10:28.497182Z" + "iopub.execute_input": "2024-02-07T23:51:05.455012Z", + "iopub.status.busy": "2024-02-07T23:51:05.454838Z", + "iopub.status.idle": "2024-02-07T23:51:06.473290Z", + "shell.execute_reply": "2024-02-07T23:51:06.472687Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:28.500549Z", - "iopub.status.busy": "2024-02-07T22:10:28.500102Z", - "iopub.status.idle": "2024-02-07T22:10:28.503908Z", - "shell.execute_reply": "2024-02-07T22:10:28.503487Z" + "iopub.execute_input": "2024-02-07T23:51:06.476374Z", + "iopub.status.busy": "2024-02-07T23:51:06.476069Z", + "iopub.status.idle": "2024-02-07T23:51:06.480293Z", + "shell.execute_reply": "2024-02-07T23:51:06.479735Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:28.505941Z", - "iopub.status.busy": "2024-02-07T22:10:28.505673Z", - "iopub.status.idle": "2024-02-07T22:10:31.465345Z", - "shell.execute_reply": "2024-02-07T22:10:31.464742Z" + "iopub.execute_input": "2024-02-07T23:51:06.482920Z", + "iopub.status.busy": "2024-02-07T23:51:06.482459Z", + "iopub.status.idle": "2024-02-07T23:51:09.338068Z", + "shell.execute_reply": "2024-02-07T23:51:09.337471Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.468561Z", - "iopub.status.busy": "2024-02-07T22:10:31.467758Z", - "iopub.status.idle": "2024-02-07T22:10:31.504646Z", - "shell.execute_reply": "2024-02-07T22:10:31.504063Z" + "iopub.execute_input": "2024-02-07T23:51:09.340898Z", + "iopub.status.busy": "2024-02-07T23:51:09.340331Z", + "iopub.status.idle": "2024-02-07T23:51:09.370728Z", + "shell.execute_reply": "2024-02-07T23:51:09.370021Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.507191Z", - "iopub.status.busy": "2024-02-07T22:10:31.506891Z", - "iopub.status.idle": "2024-02-07T22:10:31.538074Z", - "shell.execute_reply": "2024-02-07T22:10:31.537474Z" + "iopub.execute_input": "2024-02-07T23:51:09.373389Z", + "iopub.status.busy": "2024-02-07T23:51:09.373025Z", + "iopub.status.idle": "2024-02-07T23:51:09.401579Z", + "shell.execute_reply": "2024-02-07T23:51:09.400876Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.540560Z", - "iopub.status.busy": "2024-02-07T22:10:31.540268Z", - "iopub.status.idle": "2024-02-07T22:10:31.543180Z", - "shell.execute_reply": "2024-02-07T22:10:31.542750Z" + "iopub.execute_input": "2024-02-07T23:51:09.404372Z", + "iopub.status.busy": "2024-02-07T23:51:09.403951Z", + "iopub.status.idle": "2024-02-07T23:51:09.407421Z", + "shell.execute_reply": "2024-02-07T23:51:09.407008Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.545134Z", - "iopub.status.busy": "2024-02-07T22:10:31.544882Z", - "iopub.status.idle": "2024-02-07T22:10:31.547427Z", - "shell.execute_reply": "2024-02-07T22:10:31.546973Z" + "iopub.execute_input": "2024-02-07T23:51:09.409324Z", + "iopub.status.busy": "2024-02-07T23:51:09.409015Z", + "iopub.status.idle": "2024-02-07T23:51:09.411602Z", + "shell.execute_reply": "2024-02-07T23:51:09.411146Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.549452Z", - "iopub.status.busy": "2024-02-07T22:10:31.549197Z", - "iopub.status.idle": "2024-02-07T22:10:31.571926Z", - "shell.execute_reply": "2024-02-07T22:10:31.571367Z" + "iopub.execute_input": "2024-02-07T23:51:09.413787Z", + "iopub.status.busy": "2024-02-07T23:51:09.413391Z", + "iopub.status.idle": "2024-02-07T23:51:09.438151Z", + "shell.execute_reply": "2024-02-07T23:51:09.437621Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c25091c0e304b75a635d082e4c6a8ae", + "model_id": "1f0a59e748704a83935f5135d15c1d2b", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "05cb13f0b3d24b2c80ccb203c55bfb3a", + "model_id": "13ee7841383649f8b84f5a090929a0f2", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.579230Z", - "iopub.status.busy": "2024-02-07T22:10:31.578965Z", - "iopub.status.idle": "2024-02-07T22:10:31.585408Z", - "shell.execute_reply": "2024-02-07T22:10:31.584997Z" + "iopub.execute_input": "2024-02-07T23:51:09.443984Z", + "iopub.status.busy": "2024-02-07T23:51:09.443652Z", + "iopub.status.idle": "2024-02-07T23:51:09.449921Z", + "shell.execute_reply": "2024-02-07T23:51:09.449510Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.587392Z", - "iopub.status.busy": "2024-02-07T22:10:31.587038Z", - "iopub.status.idle": "2024-02-07T22:10:31.590434Z", - "shell.execute_reply": "2024-02-07T22:10:31.589989Z" + "iopub.execute_input": "2024-02-07T23:51:09.451774Z", + "iopub.status.busy": "2024-02-07T23:51:09.451528Z", + "iopub.status.idle": "2024-02-07T23:51:09.454944Z", + "shell.execute_reply": "2024-02-07T23:51:09.454496Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.592502Z", - "iopub.status.busy": "2024-02-07T22:10:31.592174Z", - "iopub.status.idle": "2024-02-07T22:10:31.598237Z", - "shell.execute_reply": "2024-02-07T22:10:31.597809Z" + "iopub.execute_input": "2024-02-07T23:51:09.456868Z", + "iopub.status.busy": "2024-02-07T23:51:09.456584Z", + "iopub.status.idle": "2024-02-07T23:51:09.462775Z", + "shell.execute_reply": "2024-02-07T23:51:09.462226Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.600071Z", - "iopub.status.busy": "2024-02-07T22:10:31.599903Z", - "iopub.status.idle": "2024-02-07T22:10:31.635926Z", - "shell.execute_reply": "2024-02-07T22:10:31.635199Z" + "iopub.execute_input": "2024-02-07T23:51:09.464784Z", + "iopub.status.busy": "2024-02-07T23:51:09.464418Z", + "iopub.status.idle": "2024-02-07T23:51:09.496417Z", + "shell.execute_reply": "2024-02-07T23:51:09.495700Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.638662Z", - "iopub.status.busy": "2024-02-07T22:10:31.638298Z", - "iopub.status.idle": "2024-02-07T22:10:31.672896Z", - "shell.execute_reply": "2024-02-07T22:10:31.672308Z" + "iopub.execute_input": "2024-02-07T23:51:09.498767Z", + "iopub.status.busy": "2024-02-07T23:51:09.498552Z", + "iopub.status.idle": "2024-02-07T23:51:09.526519Z", + "shell.execute_reply": "2024-02-07T23:51:09.525829Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.675572Z", - "iopub.status.busy": "2024-02-07T22:10:31.675187Z", - "iopub.status.idle": "2024-02-07T22:10:31.803427Z", - "shell.execute_reply": "2024-02-07T22:10:31.802840Z" + "iopub.execute_input": "2024-02-07T23:51:09.529394Z", + "iopub.status.busy": "2024-02-07T23:51:09.528909Z", + "iopub.status.idle": "2024-02-07T23:51:09.651328Z", + "shell.execute_reply": "2024-02-07T23:51:09.650790Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:31.806059Z", - "iopub.status.busy": "2024-02-07T22:10:31.805418Z", - "iopub.status.idle": "2024-02-07T22:10:34.901493Z", - "shell.execute_reply": "2024-02-07T22:10:34.900838Z" + "iopub.execute_input": "2024-02-07T23:51:09.654079Z", + "iopub.status.busy": "2024-02-07T23:51:09.653293Z", + "iopub.status.idle": "2024-02-07T23:51:12.638133Z", + "shell.execute_reply": "2024-02-07T23:51:12.637512Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:34.903881Z", - "iopub.status.busy": "2024-02-07T22:10:34.903524Z", - "iopub.status.idle": "2024-02-07T22:10:34.961241Z", - "shell.execute_reply": "2024-02-07T22:10:34.960728Z" + "iopub.execute_input": "2024-02-07T23:51:12.640414Z", + "iopub.status.busy": "2024-02-07T23:51:12.640232Z", + "iopub.status.idle": "2024-02-07T23:51:12.700289Z", + "shell.execute_reply": "2024-02-07T23:51:12.699728Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "fc603ddf", + "id": "ce26211e", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "3eef2541", + "id": "b06d92f4", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "bee6fe2a", + "id": "ea762ae8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:34.963472Z", - "iopub.status.busy": "2024-02-07T22:10:34.963133Z", - "iopub.status.idle": "2024-02-07T22:10:35.059654Z", - "shell.execute_reply": "2024-02-07T22:10:35.059063Z" + "iopub.execute_input": "2024-02-07T23:51:12.702418Z", + "iopub.status.busy": "2024-02-07T23:51:12.702105Z", + "iopub.status.idle": "2024-02-07T23:51:12.780616Z", + "shell.execute_reply": "2024-02-07T23:51:12.780126Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "bb0353d1", + "id": "ef415656", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "40fe9448", + "id": "01a67f53", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.062203Z", - "iopub.status.busy": "2024-02-07T22:10:35.061944Z", - "iopub.status.idle": "2024-02-07T22:10:35.130321Z", - "shell.execute_reply": "2024-02-07T22:10:35.129748Z" + "iopub.execute_input": "2024-02-07T23:51:12.783162Z", + "iopub.status.busy": "2024-02-07T23:51:12.782885Z", + "iopub.status.idle": "2024-02-07T23:51:12.844744Z", + "shell.execute_reply": "2024-02-07T23:51:12.844293Z" } }, "outputs": [ @@ -1297,7 +1297,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1325,7 +1332,7 @@ }, { "cell_type": "markdown", - "id": "f3c05afd", + "id": "01300d0b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1343,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "f74e26fd", + "id": "cc35bf44", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.132892Z", - "iopub.status.busy": "2024-02-07T22:10:35.132688Z", - "iopub.status.idle": "2024-02-07T22:10:35.142277Z", - "shell.execute_reply": "2024-02-07T22:10:35.141716Z" + "iopub.execute_input": "2024-02-07T23:51:12.847304Z", + "iopub.status.busy": "2024-02-07T23:51:12.847003Z", + "iopub.status.idle": "2024-02-07T23:51:12.864134Z", + "shell.execute_reply": "2024-02-07T23:51:12.863661Z" } }, "outputs": [], @@ -1444,7 +1451,7 @@ }, { "cell_type": "markdown", - "id": "1909cd9a", + "id": "3e6233f1", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1466,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "f4adae44", + "id": "dfdf91ae", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.144450Z", - "iopub.status.busy": "2024-02-07T22:10:35.144137Z", - "iopub.status.idle": "2024-02-07T22:10:35.163091Z", - "shell.execute_reply": "2024-02-07T22:10:35.162505Z" + "iopub.execute_input": "2024-02-07T23:51:12.866623Z", + "iopub.status.busy": "2024-02-07T23:51:12.866327Z", + "iopub.status.idle": "2024-02-07T23:51:12.886313Z", + "shell.execute_reply": "2024-02-07T23:51:12.885931Z" } }, "outputs": [ @@ -1482,7 +1489,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6061/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_5828/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1523,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "27025c00", + "id": "ec960a88", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:35.165075Z", - "iopub.status.busy": "2024-02-07T22:10:35.164775Z", - "iopub.status.idle": "2024-02-07T22:10:35.167916Z", - "shell.execute_reply": "2024-02-07T22:10:35.167398Z" + "iopub.execute_input": "2024-02-07T23:51:12.888153Z", + "iopub.status.busy": "2024-02-07T23:51:12.887892Z", + "iopub.status.idle": "2024-02-07T23:51:12.890674Z", + "shell.execute_reply": "2024-02-07T23:51:12.890305Z" } }, "outputs": [ @@ -1617,7 +1624,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05cb13f0b3d24b2c80ccb203c55bfb3a": { + "109440f4ecdb45e48bd5dfb4e921937f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "13ee7841383649f8b84f5a090929a0f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1632,16 +1655,93 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d25a1b4311564103b234c326b27f756d", - "IPY_MODEL_359df53dc8a745b0b4af77e7d5baa3d6", - "IPY_MODEL_2122bb3f9c314e79921caaf0ec520ced" + "IPY_MODEL_be264bec58f14b0baef628c118c9cb1c", + "IPY_MODEL_6bca8cbd5c784882be9b9ba1fb9ff9e8", + "IPY_MODEL_f7c08bebb30b4363b6071b0a91d776b5" ], - "layout": "IPY_MODEL_7a95ca857d02446596ff4b15e78f5474", + "layout": "IPY_MODEL_bc75ced40cce43a4a6c803441a092a23", "tabbable": null, "tooltip": null } }, - "07ad650e025e41db8a3a7f9d4903f4ab": { + "1f0a59e748704a83935f5135d15c1d2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e22079120aae4d4fbc3f623f7733332a", + "IPY_MODEL_7b3ab139d2d44ce09eacb3aed869a342", + "IPY_MODEL_f5b644426ae0412cbd5e3e574cbd2d2a" + ], + "layout": "IPY_MODEL_c104b9ca8f874df9b5176bc9dedbe1f2", + "tabbable": null, + "tooltip": null + } + }, + "26508857376d41e9a2a595519cc0e230": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "272500523da24571b2cba2f8ee1e5d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1694,7 +1794,7 @@ "width": null } }, - "0c1387d046e4406c9665c4bd481ca0bd": { + "3e2781d1b9ac498482800cefb6007621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1712,7 +1812,7 @@ "text_color": null } }, - "1de8c5ce9b044defa2fb6bba7b845f1d": { + "439705e7fbd747aa945a4286336cfeb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1765,54 +1865,33 @@ "width": null } }, - "2122bb3f9c314e79921caaf0ec520ced": { + "6bca8cbd5c784882be9b9ba1fb9ff9e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6e74a6135da64a6da9bff7774b1a3023", - "placeholder": "​", - "style": "IPY_MODEL_30857eeb9f4f4a9d9a4b6703ef52f007", + "layout": "IPY_MODEL_e14323e673094de292c5bcd867946d3e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9aad290993434b079a25a5cfae233e5a", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1904510.74it/s]" - } - }, - "2c25091c0e304b75a635d082e4c6a8ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_383d59cddf1044128cd6c9a36ef421b6", - "IPY_MODEL_4368ff0861b64772b1c876ce3677f85f", - "IPY_MODEL_44ce408123ef4dfa9f0ccb0b61d47dff" - ], - "layout": "IPY_MODEL_2f6d1355674b4154958d3f9fdc5c65d0", - "tabbable": null, - "tooltip": null + "value": 50.0 } }, - "2f6d1355674b4154958d3f9fdc5c65d0": { + "712d2f7be4a74b05a8620096c3529e53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1865,25 +1944,7 @@ "width": null } }, - "30857eeb9f4f4a9d9a4b6703ef52f007": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "359df53dc8a745b0b4af77e7d5baa3d6": { + "7b3ab139d2d44ce09eacb3aed869a342": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1899,40 +1960,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fde2b7ca73b8420dade7126a99c0db5b", + "layout": "IPY_MODEL_272500523da24571b2cba2f8ee1e5d82", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7348613891c541cdbedd0e8a595dfd07", + "style": "IPY_MODEL_109440f4ecdb45e48bd5dfb4e921937f", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "383d59cddf1044128cd6c9a36ef421b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07ad650e025e41db8a3a7f9d4903f4ab", - "placeholder": "​", - "style": "IPY_MODEL_bb33dbfe81ad4ab2838ae1c597cc118b", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "3e5b1ebb362940059efebecf082eab76": { + "7fb415c1e4af4299ae1ec87c915c9c4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1950,56 +1988,41 @@ "text_color": null } }, - "4368ff0861b64772b1c876ce3677f85f": { + "8f017318a7174e83bde2637e28023b69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1de8c5ce9b044defa2fb6bba7b845f1d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a7e694329b5941728726ce57f56210a9", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "44ce408123ef4dfa9f0ccb0b61d47dff": { + "9aad290993434b079a25a5cfae233e5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a78e0b16929d430bacf6a958a9660d4b", - "placeholder": "​", - "style": "IPY_MODEL_3e5b1ebb362940059efebecf082eab76", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1087339.66it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6e74a6135da64a6da9bff7774b1a3023": { + "a46f0c56a05b46db92524f027cd1a3f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2052,23 +2075,7 @@ "width": null } }, - "7348613891c541cdbedd0e8a595dfd07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a95ca857d02446596ff4b15e78f5474": { + "bc75ced40cce43a4a6c803441a092a23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2121,7 +2128,30 @@ "width": null } }, - "85cc0795390d430dba7bd02f2fc01dd2": { + "be264bec58f14b0baef628c118c9cb1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_26508857376d41e9a2a595519cc0e230", + "placeholder": "​", + "style": "IPY_MODEL_7fb415c1e4af4299ae1ec87c915c9c4a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "c104b9ca8f874df9b5176bc9dedbe1f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2174,7 +2204,7 @@ "width": null } }, - "a78e0b16929d430bacf6a958a9660d4b": { + "e14323e673094de292c5bcd867946d3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2227,23 +2257,53 @@ "width": null } }, - "a7e694329b5941728726ce57f56210a9": { + "e22079120aae4d4fbc3f623f7733332a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_712d2f7be4a74b05a8620096c3529e53", + "placeholder": "​", + "style": "IPY_MODEL_8f017318a7174e83bde2637e28023b69", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "bb33dbfe81ad4ab2838ae1c597cc118b": { + "f5b644426ae0412cbd5e3e574cbd2d2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a46f0c56a05b46db92524f027cd1a3f4", + "placeholder": "​", + "style": "IPY_MODEL_f62417094f504253a9df11954097f238", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1096550.07it/s]" + } + }, + "f62417094f504253a9df11954097f238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2261,7 +2321,7 @@ "text_color": null } }, - "d25a1b4311564103b234c326b27f756d": { + "f7c08bebb30b4363b6071b0a91d776b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2276,65 +2336,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_85cc0795390d430dba7bd02f2fc01dd2", + "layout": "IPY_MODEL_439705e7fbd747aa945a4286336cfeb9", "placeholder": "​", - "style": "IPY_MODEL_0c1387d046e4406c9665c4bd481ca0bd", + "style": "IPY_MODEL_3e2781d1b9ac498482800cefb6007621", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "fde2b7ca73b8420dade7126a99c0db5b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 10000/? [00:00<00:00, 1373335.52it/s]" } } }, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index b5419c9fb..b126679db 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -642,25 +642,25 @@

2. Fetch and normalize the Fashion-MNIST dataset
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1023,16 +1023,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:03, 9.78it/s]
+
2%|▎ | 1/40 [00:00&lt;00:03, 9.80it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:03, 9.78it/s]
+
2%|▎ | 1/40 [00:00<00:03, 9.80it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:03, 9.78it/s]

+

2%|▎ | 1/40 [00:00<00:03, 9.80it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 43.59it/s]
+
20%|██ | 8/40 [00:00&lt;00:00, 43.66it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 43.59it/s]
+
20%|██ | 8/40 [00:00<00:00, 43.66it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 43.59it/s]

+

20%|██ | 8/40 [00:00<00:00, 43.66it/s]

-
35%|███▌ | 14/40 [00:00&lt;00:00, 50.24it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 56.74it/s]

</pre>

-
35%|███▌ | 14/40 [00:00<00:00, 50.24it/s]
+
40%|████ | 16/40 [00:00<00:00, 56.74it/s]

end{sphinxVerbatim}

-

35%|███▌ | 14/40 [00:00<00:00, 50.24it/s]

+

40%|████ | 16/40 [00:00<00:00, 56.74it/s]

-
52%|█████▎ | 21/40 [00:00&lt;00:00, 57.40it/s]
+
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.69it/s]

</pre>

-
52%|█████▎ | 21/40 [00:00<00:00, 57.40it/s]
+
57%|█████▊ | 23/40 [00:00<00:00, 59.69it/s]

end{sphinxVerbatim}

-

52%|█████▎ | 21/40 [00:00<00:00, 57.40it/s]

+

57%|█████▊ | 23/40 [00:00<00:00, 59.69it/s]

-
72%|███████▎ | 29/40 [00:00&lt;00:00, 62.55it/s]
+
75%|███████▌ | 30/40 [00:00&lt;00:00, 60.95it/s]

</pre>

-
72%|███████▎ | 29/40 [00:00<00:00, 62.55it/s]
+
75%|███████▌ | 30/40 [00:00<00:00, 60.95it/s]

end{sphinxVerbatim}

-

72%|███████▎ | 29/40 [00:00<00:00, 62.55it/s]

+

75%|███████▌ | 30/40 [00:00<00:00, 60.95it/s]

-
92%|█████████▎| 37/40 [00:00&lt;00:00, 67.66it/s]
+
95%|█████████▌| 38/40 [00:00&lt;00:00, 66.20it/s]

</pre>

-
92%|█████████▎| 37/40 [00:00<00:00, 67.66it/s]
+
95%|█████████▌| 38/40 [00:00<00:00, 66.20it/s]

end{sphinxVerbatim}

-

92%|█████████▎| 37/40 [00:00<00:00, 67.66it/s]

+

95%|█████████▌| 38/40 [00:00<00:00, 66.20it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 58.42it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 59.00it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 58.42it/s]
+
100%|██████████| 40/40 [00:00<00:00, 59.00it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 58.42it/s]

+

100%|██████████| 40/40 [00:00<00:00, 59.00it/s]

-
5%|▌ | 2/40 [00:00&lt;00:02, 17.32it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 18.73it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 17.32it/s]
+
5%|▌ | 2/40 [00:00<00:02, 18.73it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 17.32it/s]

+

5%|▌ | 2/40 [00:00<00:02, 18.73it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 46.31it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 47.56it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 46.31it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 47.56it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 46.31it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 47.56it/s]

-
38%|███▊ | 15/40 [00:00&lt;00:00, 50.04it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 54.76it/s]

</pre>

-
38%|███▊ | 15/40 [00:00<00:00, 50.04it/s]
+
40%|████ | 16/40 [00:00<00:00, 54.76it/s]

end{sphinxVerbatim}

-

38%|███▊ | 15/40 [00:00<00:00, 50.04it/s]

+

40%|████ | 16/40 [00:00<00:00, 54.76it/s]

-
55%|█████▌ | 22/40 [00:00&lt;00:00, 56.70it/s]
+
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.82it/s]

</pre>

-
55%|█████▌ | 22/40 [00:00<00:00, 56.70it/s]
+
57%|█████▊ | 23/40 [00:00<00:00, 59.82it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 22/40 [00:00<00:00, 56.70it/s]

+

57%|█████▊ | 23/40 [00:00<00:00, 59.82it/s]

-
72%|███████▎ | 29/40 [00:00&lt;00:00, 59.22it/s]
+
78%|███████▊ | 31/40 [00:00&lt;00:00, 63.79it/s]

</pre>

-
72%|███████▎ | 29/40 [00:00<00:00, 59.22it/s]
+
78%|███████▊ | 31/40 [00:00<00:00, 63.79it/s]

end{sphinxVerbatim}

-

72%|███████▎ | 29/40 [00:00<00:00, 59.22it/s]

+

78%|███████▊ | 31/40 [00:00<00:00, 63.79it/s]

-
+
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
+
+
+
-
92%|█████████▎| 37/40 [00:00&lt;00:00, 64.79it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 72.02it/s]

</pre>

-
92%|█████████▎| 37/40 [00:00<00:00, 64.79it/s]
+
100%|██████████| 40/40 [00:00<00:00, 72.02it/s]

end{sphinxVerbatim}

-

92%|█████████▎| 37/40 [00:00<00:00, 64.79it/s]

-
-
+

100%|██████████| 40/40 [00:00<00:00, 72.02it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 57.42it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 60.94it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 57.42it/s]
+
100%|██████████| 40/40 [00:00<00:00, 60.94it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 57.42it/s]

+

100%|██████████| 40/40 [00:00<00:00, 60.94it/s]

@@ -1471,16 +1462,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
5%|▌ | 2/40 [00:00&lt;00:01, 19.28it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 17.30it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:01, 19.28it/s]
+
5%|▌ | 2/40 [00:00<00:02, 17.30it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:01, 19.28it/s]

+

5%|▌ | 2/40 [00:00<00:02, 17.30it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 47.46it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 44.67it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 44.67it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 44.67it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 57.01it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 55.44it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 57.01it/s]
+
40%|████ | 16/40 [00:00<00:00, 55.44it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 57.01it/s]

+

40%|████ | 16/40 [00:00<00:00, 55.44it/s]

-
55%|█████▌ | 22/40 [00:00&lt;00:00, 57.99it/s]
+
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.58it/s]

</pre>

-
55%|█████▌ | 22/40 [00:00<00:00, 57.99it/s]
+
57%|█████▊ | 23/40 [00:00<00:00, 59.58it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 22/40 [00:00<00:00, 57.99it/s]

+

57%|█████▊ | 23/40 [00:00<00:00, 59.58it/s]

-
75%|███████▌ | 30/40 [00:00&lt;00:00, 62.69it/s]
+
75%|███████▌ | 30/40 [00:00&lt;00:00, 62.31it/s]

</pre>

-
75%|███████▌ | 30/40 [00:00<00:00, 62.69it/s]
+
75%|███████▌ | 30/40 [00:00<00:00, 62.31it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 30/40 [00:00<00:00, 62.69it/s]

+

75%|███████▌ | 30/40 [00:00<00:00, 62.31it/s]

-
95%|█████████▌| 38/40 [00:00&lt;00:00, 66.45it/s]
+
98%|█████████▊| 39/40 [00:00&lt;00:00, 68.86it/s]

</pre>

-
95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]
+
98%|█████████▊| 39/40 [00:00<00:00, 68.86it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]

+

98%|█████████▊| 39/40 [00:00<00:00, 68.86it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 59.60it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 59.83it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 59.60it/s]
+
100%|██████████| 40/40 [00:00<00:00, 59.83it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 59.60it/s]

+

100%|██████████| 40/40 [00:00<00:00, 59.83it/s]

-
2%|▎ | 1/40 [00:00&lt;00:04, 9.41it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 17.72it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.41it/s]
+
5%|▌ | 2/40 [00:00<00:02, 17.72it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.41it/s]

+

5%|▌ | 2/40 [00:00<00:02, 17.72it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 46.65it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 46.61it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 46.65it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 46.61it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 46.65it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 46.61it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 56.54it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 56.92it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 56.54it/s]
+
40%|████ | 16/40 [00:00<00:00, 56.92it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 56.54it/s]

+

40%|████ | 16/40 [00:00<00:00, 56.92it/s]

-
57%|█████▊ | 23/40 [00:00&lt;00:00, 60.86it/s]
+
60%|██████ | 24/40 [00:00&lt;00:00, 62.96it/s]

</pre>

-
57%|█████▊ | 23/40 [00:00<00:00, 60.86it/s]
+
60%|██████ | 24/40 [00:00<00:00, 62.96it/s]

end{sphinxVerbatim}

-

57%|█████▊ | 23/40 [00:00<00:00, 60.86it/s]

+

60%|██████ | 24/40 [00:00<00:00, 62.96it/s]

-
78%|███████▊ | 31/40 [00:00&lt;00:00, 63.94it/s]
+
78%|███████▊ | 31/40 [00:00&lt;00:00, 63.65it/s]

</pre>

-
78%|███████▊ | 31/40 [00:00<00:00, 63.94it/s]
+
78%|███████▊ | 31/40 [00:00<00:00, 63.65it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 31/40 [00:00<00:00, 63.94it/s]

+

78%|███████▊ | 31/40 [00:00<00:00, 63.65it/s]

-
+
-
-
-
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
-
100%|██████████| 40/40 [00:00&lt;00:00, 71.59it/s]
+
98%|█████████▊| 39/40 [00:00&lt;00:00, 68.19it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 71.59it/s]
+
98%|█████████▊| 39/40 [00:00<00:00, 68.19it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 71.59it/s]

+

98%|█████████▊| 39/40 [00:00<00:00, 68.19it/s]

+
+
-
100%|██████████| 40/40 [00:00&lt;00:00, 60.49it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 60.54it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 60.49it/s]
+
100%|██████████| 40/40 [00:00<00:00, 60.54it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 60.49it/s]

+

100%|██████████| 40/40 [00:00<00:00, 60.54it/s]

@@ -1910,16 +1910,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 9.61it/s]
+
5%|▌ | 2/40 [00:00&lt;00:01, 19.37it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.61it/s]
+
5%|▌ | 2/40 [00:00<00:01, 19.37it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.61it/s]

+

5%|▌ | 2/40 [00:00<00:01, 19.37it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 42.78it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 47.94it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 42.78it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 47.94it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 42.78it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 47.94it/s]

-
35%|███▌ | 14/40 [00:00&lt;00:00, 49.03it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 59.02it/s]

</pre>

-
35%|███▌ | 14/40 [00:00<00:00, 49.03it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 59.02it/s]

end{sphinxVerbatim}

-

35%|███▌ | 14/40 [00:00<00:00, 49.03it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 59.02it/s]

-
52%|█████▎ | 21/40 [00:00&lt;00:00, 56.57it/s]
+
60%|██████ | 24/40 [00:00&lt;00:00, 62.18it/s]

</pre>

-
52%|█████▎ | 21/40 [00:00<00:00, 56.57it/s]
+
60%|██████ | 24/40 [00:00<00:00, 62.18it/s]

end{sphinxVerbatim}

-

52%|█████▎ | 21/40 [00:00<00:00, 56.57it/s]

+

60%|██████ | 24/40 [00:00<00:00, 62.18it/s]

-
68%|██████▊ | 27/40 [00:00&lt;00:00, 57.37it/s]
+
78%|███████▊ | 31/40 [00:00&lt;00:00, 64.86it/s]

</pre>

-
68%|██████▊ | 27/40 [00:00<00:00, 57.37it/s]
+
78%|███████▊ | 31/40 [00:00<00:00, 64.86it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 27/40 [00:00<00:00, 57.37it/s]

+

78%|███████▊ | 31/40 [00:00<00:00, 64.86it/s]

-
+
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
+
+
+
-
88%|████████▊ | 35/40 [00:00&lt;00:00, 63.22it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 72.97it/s]

</pre>

-
88%|████████▊ | 35/40 [00:00<00:00, 63.22it/s]
+
100%|██████████| 40/40 [00:00<00:00, 72.97it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 35/40 [00:00<00:00, 63.22it/s]

-
-
+

100%|██████████| 40/40 [00:00<00:00, 72.97it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 56.87it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 62.09it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 56.87it/s]
+
100%|██████████| 40/40 [00:00<00:00, 62.09it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 56.87it/s]

+

100%|██████████| 40/40 [00:00<00:00, 62.09it/s]

-
2%|▎ | 1/40 [00:00&lt;00:04, 8.50it/s]
+
8%|▊ | 3/40 [00:00&lt;00:01, 26.04it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 8.50it/s]
+
8%|▊ | 3/40 [00:00<00:01, 26.04it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 8.50it/s]

+

8%|▊ | 3/40 [00:00<00:01, 26.04it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 41.39it/s]
+
25%|██▌ | 10/40 [00:00&lt;00:00, 46.80it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 41.39it/s]
+
25%|██▌ | 10/40 [00:00<00:00, 46.80it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 41.39it/s]

+

25%|██▌ | 10/40 [00:00<00:00, 46.80it/s]

-
38%|███▊ | 15/40 [00:00&lt;00:00, 52.21it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 55.65it/s]

</pre>

-
38%|███▊ | 15/40 [00:00<00:00, 52.21it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 55.65it/s]

end{sphinxVerbatim}

-

38%|███▊ | 15/40 [00:00<00:00, 52.21it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 55.65it/s]

-
52%|█████▎ | 21/40 [00:00&lt;00:00, 52.17it/s]
+
60%|██████ | 24/40 [00:00&lt;00:00, 60.53it/s]

</pre>

-
52%|█████▎ | 21/40 [00:00<00:00, 52.17it/s]
+
60%|██████ | 24/40 [00:00<00:00, 60.53it/s]

end{sphinxVerbatim}

-

52%|█████▎ | 21/40 [00:00<00:00, 52.17it/s]

+

60%|██████ | 24/40 [00:00<00:00, 60.53it/s]

-
70%|███████ | 28/40 [00:00&lt;00:00, 58.08it/s]
+
80%|████████ | 32/40 [00:00&lt;00:00, 64.95it/s]

</pre>

-
70%|███████ | 28/40 [00:00<00:00, 58.08it/s]
+
80%|████████ | 32/40 [00:00<00:00, 64.95it/s]

end{sphinxVerbatim}

-

70%|███████ | 28/40 [00:00<00:00, 58.08it/s]

- - -
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
88%|████████▊ | 35/40 [00:00&lt;00:00, 60.19it/s]
-

</pre>

-
-
-
88%|████████▊ | 35/40 [00:00<00:00, 60.19it/s]
-

end{sphinxVerbatim}

-
-
-
-

88%|████████▊ | 35/40 [00:00<00:00, 60.19it/s]

+

80%|████████ | 32/40 [00:00<00:00, 64.95it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 54.75it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 61.46it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 54.75it/s]
+
100%|██████████| 40/40 [00:00<00:00, 61.46it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 54.75it/s]

+

100%|██████████| 40/40 [00:00<00:00, 61.46it/s]

-
+
@@ -3212,35 +3177,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -3268,7 +3233,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 1ddbcfb2b..b5eaf0560 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:38.419113Z", - "iopub.status.busy": "2024-02-07T22:10:38.418945Z", - "iopub.status.idle": "2024-02-07T22:10:41.179916Z", - "shell.execute_reply": "2024-02-07T22:10:41.179338Z" + "iopub.execute_input": "2024-02-07T23:51:15.881810Z", + "iopub.status.busy": "2024-02-07T23:51:15.881636Z", + "iopub.status.idle": "2024-02-07T23:51:18.606850Z", + "shell.execute_reply": "2024-02-07T23:51:18.606230Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:41.182330Z", - "iopub.status.busy": "2024-02-07T22:10:41.182041Z", - "iopub.status.idle": "2024-02-07T22:10:41.185719Z", - "shell.execute_reply": "2024-02-07T22:10:41.185287Z" + "iopub.execute_input": "2024-02-07T23:51:18.609445Z", + "iopub.status.busy": "2024-02-07T23:51:18.609155Z", + "iopub.status.idle": "2024-02-07T23:51:18.612709Z", + "shell.execute_reply": "2024-02-07T23:51:18.612173Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:41.187549Z", - "iopub.status.busy": "2024-02-07T22:10:41.187370Z", - "iopub.status.idle": "2024-02-07T22:10:43.573339Z", - "shell.execute_reply": "2024-02-07T22:10:43.572876Z" + "iopub.execute_input": "2024-02-07T23:51:18.614784Z", + "iopub.status.busy": "2024-02-07T23:51:18.614359Z", + "iopub.status.idle": "2024-02-07T23:51:20.434279Z", + "shell.execute_reply": "2024-02-07T23:51:20.433763Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "150b7b9c86184b3a81ec2e9d2c4862a1", + "model_id": "7fc3c32bcf1148368c0a1dd69f0726fc", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1075a3bfa6094847a1f22a2a826545d8", + "model_id": "33e6bf1a962241b9965f57093ccfbea2", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "67691e10a0ac4a259f3747a827b350d5", + "model_id": "8488030d7afb4e4c95288794d76c2b48", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f297df970eaa40368e0d02896d28f3b8", + "model_id": "75399c16f9a9462ab14c8fc2e9c2b817", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:43.575644Z", - "iopub.status.busy": "2024-02-07T22:10:43.575289Z", - "iopub.status.idle": "2024-02-07T22:10:43.579073Z", - "shell.execute_reply": "2024-02-07T22:10:43.578518Z" + "iopub.execute_input": "2024-02-07T23:51:20.436485Z", + "iopub.status.busy": "2024-02-07T23:51:20.436157Z", + "iopub.status.idle": "2024-02-07T23:51:20.440017Z", + "shell.execute_reply": "2024-02-07T23:51:20.439436Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:43.581168Z", - "iopub.status.busy": "2024-02-07T22:10:43.580868Z", - "iopub.status.idle": "2024-02-07T22:10:54.969790Z", - "shell.execute_reply": "2024-02-07T22:10:54.969260Z" + "iopub.execute_input": "2024-02-07T23:51:20.442272Z", + "iopub.status.busy": "2024-02-07T23:51:20.441887Z", + "iopub.status.idle": "2024-02-07T23:51:31.626856Z", + "shell.execute_reply": "2024-02-07T23:51:31.626349Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5b393b5be18c4614bbbe5748904485e6", + "model_id": "def052e51c5d4bc1b365fb7a46f00d5e", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:10:54.972318Z", - "iopub.status.busy": "2024-02-07T22:10:54.972030Z", - "iopub.status.idle": "2024-02-07T22:11:13.025094Z", - "shell.execute_reply": "2024-02-07T22:11:13.024547Z" + "iopub.execute_input": "2024-02-07T23:51:31.629265Z", + "iopub.status.busy": "2024-02-07T23:51:31.628926Z", + "iopub.status.idle": "2024-02-07T23:51:49.868014Z", + "shell.execute_reply": "2024-02-07T23:51:49.867458Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.027702Z", - "iopub.status.busy": "2024-02-07T22:11:13.027309Z", - "iopub.status.idle": "2024-02-07T22:11:13.033230Z", - "shell.execute_reply": "2024-02-07T22:11:13.032780Z" + "iopub.execute_input": "2024-02-07T23:51:49.870696Z", + "iopub.status.busy": "2024-02-07T23:51:49.870322Z", + "iopub.status.idle": "2024-02-07T23:51:49.876254Z", + "shell.execute_reply": "2024-02-07T23:51:49.875791Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.035125Z", - "iopub.status.busy": "2024-02-07T22:11:13.034795Z", - "iopub.status.idle": "2024-02-07T22:11:13.038441Z", - "shell.execute_reply": "2024-02-07T22:11:13.038047Z" + "iopub.execute_input": "2024-02-07T23:51:49.878157Z", + "iopub.status.busy": "2024-02-07T23:51:49.877790Z", + "iopub.status.idle": "2024-02-07T23:51:49.881768Z", + "shell.execute_reply": "2024-02-07T23:51:49.881250Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.040408Z", - "iopub.status.busy": "2024-02-07T22:11:13.040096Z", - "iopub.status.idle": "2024-02-07T22:11:13.048723Z", - "shell.execute_reply": "2024-02-07T22:11:13.048299Z" + "iopub.execute_input": "2024-02-07T23:51:49.883955Z", + "iopub.status.busy": "2024-02-07T23:51:49.883621Z", + "iopub.status.idle": "2024-02-07T23:51:49.892194Z", + "shell.execute_reply": "2024-02-07T23:51:49.891730Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.050685Z", - "iopub.status.busy": "2024-02-07T22:11:13.050442Z", - "iopub.status.idle": "2024-02-07T22:11:13.077420Z", - "shell.execute_reply": "2024-02-07T22:11:13.076808Z" + "iopub.execute_input": "2024-02-07T23:51:49.894038Z", + "iopub.status.busy": "2024-02-07T23:51:49.893778Z", + "iopub.status.idle": "2024-02-07T23:51:49.921230Z", + "shell.execute_reply": "2024-02-07T23:51:49.920805Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:13.079978Z", - "iopub.status.busy": "2024-02-07T22:11:13.079643Z", - "iopub.status.idle": "2024-02-07T22:11:45.583620Z", - "shell.execute_reply": "2024-02-07T22:11:45.582818Z" + "iopub.execute_input": "2024-02-07T23:51:49.923139Z", + "iopub.status.busy": "2024-02-07T23:51:49.922820Z", + "iopub.status.idle": "2024-02-07T23:52:21.122766Z", + "shell.execute_reply": "2024-02-07T23:52:21.122031Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.872\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.643\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.584\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.435\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:03, 9.78it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.80it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 43.59it/s]" + " 20%|██ | 8/40 [00:00<00:00, 43.66it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 50.24it/s]" + " 40%|████ | 16/40 [00:00<00:00, 56.74it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 57.40it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.69it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 62.55it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 60.95it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 67.66it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 66.20it/s]" ] }, { @@ -798,7 +798,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 58.42it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.00it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.32it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.73it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.31it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.56it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 50.04it/s]" + " 40%|████ | 16/40 [00:00<00:00, 54.76it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 56.70it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.82it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 59.22it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 63.79it/s]" ] }, { @@ -868,7 +868,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 64.79it/s]" + "100%|██████████| 40/40 [00:00<00:00, 72.02it/s]" ] }, { @@ -876,7 +876,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 57.42it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.94it/s]" ] }, { @@ -898,14 +898,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.878\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.627\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.623\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.443\n", "Computing feature embeddings ...\n" ] }, @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.28it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.30it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 44.67it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.01it/s]" + " 40%|████ | 16/40 [00:00<00:00, 55.44it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 57.99it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 59.58it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 30/40 [00:00<00:00, 62.69it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 62.31it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 38/40 [00:00<00:00, 66.45it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 68.86it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 59.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.83it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.41it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.72it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 46.65it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 46.61it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.54it/s]" + " 40%|████ | 16/40 [00:00<00:00, 56.92it/s]" ] }, { @@ -1024,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 60.86it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.96it/s]" ] }, { @@ -1032,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 63.94it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 63.65it/s]" ] }, { @@ -1040,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 71.59it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 68.19it/s]" ] }, { @@ -1048,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.49it/s]" + "100%|██████████| 40/40 [00:00<00:00, 60.54it/s]" ] }, { @@ -1070,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.760\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.622\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.601\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.436\n", "Computing feature embeddings ...\n" ] }, @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.61it/s]" + " 5%|▌ | 2/40 [00:00<00:01, 19.37it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.78it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.94it/s]" ] }, { @@ -1110,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 49.03it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.02it/s]" ] }, { @@ -1118,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 56.57it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.18it/s]" ] }, { @@ -1126,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 57.37it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 64.86it/s]" ] }, { @@ -1134,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 63.22it/s]" + "100%|██████████| 40/40 [00:00<00:00, 72.97it/s]" ] }, { @@ -1142,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 56.87it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.50it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.04it/s]" ] }, { @@ -1180,7 +1180,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.39it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 46.80it/s]" ] }, { @@ -1188,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 52.21it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 55.65it/s]" ] }, { @@ -1196,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 52.17it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 60.53it/s]" ] }, { @@ -1204,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 28/40 [00:00<00:00, 58.08it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 64.95it/s]" ] }, { @@ -1212,15 +1212,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 60.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 54.75it/s]" + "100%|██████████| 40/40 [00:00<00:00, 61.46it/s]" ] }, { @@ -1297,10 +1289,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:45.585975Z", - "iopub.status.busy": "2024-02-07T22:11:45.585741Z", - "iopub.status.idle": "2024-02-07T22:11:45.600179Z", - "shell.execute_reply": "2024-02-07T22:11:45.599732Z" + "iopub.execute_input": "2024-02-07T23:52:21.125104Z", + "iopub.status.busy": "2024-02-07T23:52:21.124865Z", + "iopub.status.idle": "2024-02-07T23:52:21.140126Z", + "shell.execute_reply": "2024-02-07T23:52:21.139559Z" } }, "outputs": [], @@ -1325,10 +1317,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:45.602241Z", - "iopub.status.busy": "2024-02-07T22:11:45.601991Z", - "iopub.status.idle": "2024-02-07T22:11:46.071339Z", - "shell.execute_reply": "2024-02-07T22:11:46.070732Z" + "iopub.execute_input": "2024-02-07T23:52:21.142411Z", + "iopub.status.busy": "2024-02-07T23:52:21.142029Z", + "iopub.status.idle": "2024-02-07T23:52:21.586244Z", + "shell.execute_reply": "2024-02-07T23:52:21.585702Z" } }, "outputs": [], @@ -1348,10 +1340,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:11:46.073789Z", - "iopub.status.busy": "2024-02-07T22:11:46.073607Z", - "iopub.status.idle": "2024-02-07T22:15:13.726179Z", - "shell.execute_reply": "2024-02-07T22:15:13.725548Z" + "iopub.execute_input": "2024-02-07T23:52:21.588565Z", + "iopub.status.busy": "2024-02-07T23:52:21.588385Z", + "iopub.status.idle": "2024-02-07T23:55:46.523357Z", + "shell.execute_reply": "2024-02-07T23:55:46.522791Z" } }, "outputs": [ @@ -1390,7 +1382,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "06bcff0001014bfb950d1828761c0eaa", + "model_id": "15a700e2959f45d9bc818012a4ac35cf", "version_major": 2, "version_minor": 0 }, @@ -1429,10 +1421,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:13.728842Z", - "iopub.status.busy": "2024-02-07T22:15:13.728169Z", - "iopub.status.idle": "2024-02-07T22:15:14.183497Z", - "shell.execute_reply": "2024-02-07T22:15:14.182926Z" + "iopub.execute_input": "2024-02-07T23:55:46.525817Z", + "iopub.status.busy": "2024-02-07T23:55:46.525191Z", + "iopub.status.idle": "2024-02-07T23:55:46.967520Z", + "shell.execute_reply": "2024-02-07T23:55:46.966995Z" } }, "outputs": [ @@ -1580,10 +1572,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.186298Z", - "iopub.status.busy": "2024-02-07T22:15:14.185789Z", - "iopub.status.idle": "2024-02-07T22:15:14.247703Z", - "shell.execute_reply": "2024-02-07T22:15:14.247163Z" + "iopub.execute_input": "2024-02-07T23:55:46.970176Z", + "iopub.status.busy": "2024-02-07T23:55:46.969807Z", + "iopub.status.idle": "2024-02-07T23:55:47.030546Z", + "shell.execute_reply": "2024-02-07T23:55:47.029858Z" } }, "outputs": [ @@ -1687,10 +1679,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.249928Z", - "iopub.status.busy": "2024-02-07T22:15:14.249599Z", - "iopub.status.idle": "2024-02-07T22:15:14.258029Z", - "shell.execute_reply": "2024-02-07T22:15:14.257501Z" + "iopub.execute_input": "2024-02-07T23:55:47.032998Z", + "iopub.status.busy": "2024-02-07T23:55:47.032735Z", + "iopub.status.idle": "2024-02-07T23:55:47.040993Z", + "shell.execute_reply": "2024-02-07T23:55:47.040535Z" } }, "outputs": [ @@ -1820,10 +1812,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.259872Z", - "iopub.status.busy": "2024-02-07T22:15:14.259698Z", - "iopub.status.idle": "2024-02-07T22:15:14.264612Z", - "shell.execute_reply": "2024-02-07T22:15:14.264180Z" + "iopub.execute_input": "2024-02-07T23:55:47.043175Z", + "iopub.status.busy": "2024-02-07T23:55:47.042830Z", + "iopub.status.idle": "2024-02-07T23:55:47.048286Z", + "shell.execute_reply": "2024-02-07T23:55:47.047803Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1861,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.266402Z", - "iopub.status.busy": "2024-02-07T22:15:14.266233Z", - "iopub.status.idle": "2024-02-07T22:15:14.771851Z", - "shell.execute_reply": "2024-02-07T22:15:14.771240Z" + "iopub.execute_input": "2024-02-07T23:55:47.050377Z", + "iopub.status.busy": "2024-02-07T23:55:47.050009Z", + "iopub.status.idle": "2024-02-07T23:55:47.563713Z", + "shell.execute_reply": "2024-02-07T23:55:47.563239Z" } }, "outputs": [ @@ -1907,10 +1899,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.774093Z", - "iopub.status.busy": "2024-02-07T22:15:14.773749Z", - "iopub.status.idle": "2024-02-07T22:15:14.782399Z", - "shell.execute_reply": "2024-02-07T22:15:14.781863Z" + "iopub.execute_input": "2024-02-07T23:55:47.565638Z", + "iopub.status.busy": "2024-02-07T23:55:47.565459Z", + "iopub.status.idle": "2024-02-07T23:55:47.573691Z", + "shell.execute_reply": "2024-02-07T23:55:47.573256Z" } }, "outputs": [ @@ -2077,10 +2069,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.784695Z", - "iopub.status.busy": "2024-02-07T22:15:14.784378Z", - "iopub.status.idle": "2024-02-07T22:15:14.792575Z", - "shell.execute_reply": "2024-02-07T22:15:14.792106Z" + "iopub.execute_input": "2024-02-07T23:55:47.575826Z", + "iopub.status.busy": "2024-02-07T23:55:47.575405Z", + "iopub.status.idle": "2024-02-07T23:55:47.582426Z", + "shell.execute_reply": "2024-02-07T23:55:47.581985Z" }, "nbsphinx": "hidden" }, @@ -2156,10 +2148,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:14.794419Z", - "iopub.status.busy": "2024-02-07T22:15:14.794248Z", - "iopub.status.idle": "2024-02-07T22:15:15.266167Z", - "shell.execute_reply": "2024-02-07T22:15:15.265586Z" + "iopub.execute_input": "2024-02-07T23:55:47.584184Z", + "iopub.status.busy": "2024-02-07T23:55:47.584014Z", + "iopub.status.idle": "2024-02-07T23:55:48.046048Z", + "shell.execute_reply": "2024-02-07T23:55:48.045495Z" } }, "outputs": [ @@ -2196,10 +2188,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.268447Z", - "iopub.status.busy": "2024-02-07T22:15:15.268135Z", - "iopub.status.idle": "2024-02-07T22:15:15.284704Z", - "shell.execute_reply": "2024-02-07T22:15:15.284211Z" + "iopub.execute_input": "2024-02-07T23:55:48.048037Z", + "iopub.status.busy": "2024-02-07T23:55:48.047862Z", + "iopub.status.idle": "2024-02-07T23:55:48.062692Z", + "shell.execute_reply": "2024-02-07T23:55:48.062251Z" } }, "outputs": [ @@ -2356,10 +2348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.287144Z", - "iopub.status.busy": "2024-02-07T22:15:15.286677Z", - "iopub.status.idle": "2024-02-07T22:15:15.293454Z", - "shell.execute_reply": "2024-02-07T22:15:15.292999Z" + "iopub.execute_input": "2024-02-07T23:55:48.064581Z", + "iopub.status.busy": "2024-02-07T23:55:48.064412Z", + "iopub.status.idle": "2024-02-07T23:55:48.069814Z", + "shell.execute_reply": "2024-02-07T23:55:48.069388Z" }, "nbsphinx": "hidden" }, @@ -2404,10 +2396,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.295629Z", - "iopub.status.busy": "2024-02-07T22:15:15.295278Z", - "iopub.status.idle": "2024-02-07T22:15:15.767384Z", - "shell.execute_reply": "2024-02-07T22:15:15.766576Z" + "iopub.execute_input": "2024-02-07T23:55:48.071509Z", + "iopub.status.busy": "2024-02-07T23:55:48.071343Z", + "iopub.status.idle": "2024-02-07T23:55:48.539232Z", + "shell.execute_reply": "2024-02-07T23:55:48.538712Z" } }, "outputs": [ @@ -2489,10 +2481,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.770046Z", - "iopub.status.busy": "2024-02-07T22:15:15.769833Z", - "iopub.status.idle": "2024-02-07T22:15:15.780284Z", - "shell.execute_reply": "2024-02-07T22:15:15.779737Z" + "iopub.execute_input": "2024-02-07T23:55:48.542136Z", + "iopub.status.busy": "2024-02-07T23:55:48.541942Z", + "iopub.status.idle": "2024-02-07T23:55:48.551478Z", + "shell.execute_reply": "2024-02-07T23:55:48.550999Z" } }, "outputs": [ @@ -2620,10 +2612,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.782972Z", - "iopub.status.busy": "2024-02-07T22:15:15.782761Z", - "iopub.status.idle": "2024-02-07T22:15:15.789772Z", - "shell.execute_reply": "2024-02-07T22:15:15.789237Z" + "iopub.execute_input": "2024-02-07T23:55:48.553910Z", + "iopub.status.busy": "2024-02-07T23:55:48.553723Z", + "iopub.status.idle": "2024-02-07T23:55:48.560475Z", + "shell.execute_reply": "2024-02-07T23:55:48.559985Z" }, "nbsphinx": "hidden" }, @@ -2660,10 +2652,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.792545Z", - "iopub.status.busy": "2024-02-07T22:15:15.792004Z", - "iopub.status.idle": "2024-02-07T22:15:15.996072Z", - "shell.execute_reply": "2024-02-07T22:15:15.995539Z" + "iopub.execute_input": "2024-02-07T23:55:48.562594Z", + "iopub.status.busy": "2024-02-07T23:55:48.562409Z", + "iopub.status.idle": "2024-02-07T23:55:48.763788Z", + "shell.execute_reply": "2024-02-07T23:55:48.763368Z" } }, "outputs": [ @@ -2705,10 +2697,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:15.998260Z", - "iopub.status.busy": "2024-02-07T22:15:15.998067Z", - "iopub.status.idle": "2024-02-07T22:15:16.006248Z", - "shell.execute_reply": "2024-02-07T22:15:16.005671Z" + "iopub.execute_input": "2024-02-07T23:55:48.765744Z", + "iopub.status.busy": "2024-02-07T23:55:48.765594Z", + "iopub.status.idle": "2024-02-07T23:55:48.772950Z", + "shell.execute_reply": "2024-02-07T23:55:48.772568Z" } }, "outputs": [ @@ -2733,47 +2725,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2794,10 +2786,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:16.008244Z", - "iopub.status.busy": "2024-02-07T22:15:16.008065Z", - "iopub.status.idle": "2024-02-07T22:15:16.207600Z", - "shell.execute_reply": "2024-02-07T22:15:16.206983Z" + "iopub.execute_input": "2024-02-07T23:55:48.774610Z", + "iopub.status.busy": "2024-02-07T23:55:48.774465Z", + "iopub.status.idle": "2024-02-07T23:55:48.966740Z", + "shell.execute_reply": "2024-02-07T23:55:48.966273Z" } }, "outputs": [ @@ -2837,10 +2829,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:16.209828Z", - "iopub.status.busy": "2024-02-07T22:15:16.209640Z", - "iopub.status.idle": "2024-02-07T22:15:16.214037Z", - "shell.execute_reply": "2024-02-07T22:15:16.213595Z" + "iopub.execute_input": "2024-02-07T23:55:48.968846Z", + "iopub.status.busy": "2024-02-07T23:55:48.968688Z", + "iopub.status.idle": "2024-02-07T23:55:48.972895Z", + "shell.execute_reply": "2024-02-07T23:55:48.972438Z" }, "nbsphinx": "hidden" }, @@ -2877,7 +2869,70 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "007cca45272b4a15865ee386417fca56": { + "096734e131e7446789cb828a670c4d33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "15a700e2959f45d9bc818012a4ac35cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e25684bca4d04cc586c2ae9653e92baf", + "IPY_MODEL_64976c7cec274e2cb599f9864d9d2b3e", + "IPY_MODEL_94bc8870033b400c828c994a4697989a" + ], + "layout": "IPY_MODEL_4bee7ed00ac6488f9434077c2e5ffff2", + "tabbable": null, + "tooltip": null + } + }, + "183ec1a8cefe4e868b0f39386c2db1e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2711254680224029b57c4b746e722522", + "placeholder": "​", + "style": "IPY_MODEL_dca81aa852a141c0b18590a7f7cf263c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "1ce7003827024b28a7d772ffcf95c3a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2930,7 +2985,7 @@ "width": null } }, - "00a8666c63fe45f283b11685743a81b6": { + "1ee143b057ae4463bf1a6f310045fe94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2983,65 +3038,7 @@ "width": null } }, - "06bcff0001014bfb950d1828761c0eaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b5b76bb51dd24c3386ccaa609dc70842", - "IPY_MODEL_423bc17c3a044d53a5de362b4d36e27b", - "IPY_MODEL_8347afc027284ba1863d50faee7fb11f" - ], - "layout": "IPY_MODEL_a51bf779db9d469c8cc33a8b24c8e7ca", - "tabbable": null, - "tooltip": null - } - }, - "07ce8ed7891c4ebeb9fefd6949c7b180": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0986b1a6d95d485cbe39462131805d4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0c988c95890b4f69b74f89e0c81d7828": { + "234cdeb4c2ad4b40b8c4cbd3cac01772": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3094,31 +3091,33 @@ "width": null } }, - "1075a3bfa6094847a1f22a2a826545d8": { + "26ad29a0928d4632b2a0122ed75fcba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e4965fe8a11c45b89b19f160a93c542b", - "IPY_MODEL_166baabd90ae4a70974b4d2f3b164fc9", - "IPY_MODEL_2aeff5887c2744658ab43b4d60c1fa69" - ], - "layout": "IPY_MODEL_a745f815281f456fbc80f4bdc464b2a4", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6de8542b53114be68c4e71576a77d58d", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f782ebbbd274491fa6c680f42c1bf160", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 5175617.0 } }, - "10f5705a3e4e4a5489fdffb09b3ae22d": { + "2711254680224029b57c4b746e722522": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,7 +3170,7 @@ "width": null } }, - "150b7b9c86184b3a81ec2e9d2c4862a1": { + "33e6bf1a962241b9965f57093ccfbea2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3186,42 +3185,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8e6ad75a2b144274bcc9ff9239778002", - "IPY_MODEL_b6cd68308d5e4a28b4407d8ee3829be1", - "IPY_MODEL_6ba0aea08e8643b78fb9dd4fadbd8604" + "IPY_MODEL_6cf83a63cad34d77a53d085e937274b7", + "IPY_MODEL_26ad29a0928d4632b2a0122ed75fcba0", + "IPY_MODEL_6fcdf7eb188047ea8070940e35a2c311" ], - "layout": "IPY_MODEL_6ffbbae9cb954f6a82f68b536f065ab8", + "layout": "IPY_MODEL_9b4cac2ed2814e8b9e247efc679c9223", "tabbable": null, "tooltip": null } }, - "166baabd90ae4a70974b4d2f3b164fc9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_38c29ede099f486ead043fd5488a0759", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07ce8ed7891c4ebeb9fefd6949c7b180", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "18293d50d4484b0393bfae1f7b74f293": { + "34b9ed23fedc419c93f8e11b3bba77d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3274,7 +3247,7 @@ "width": null } }, - "197fca20a4434a20984b059e49d64036": { + "3f16949cc8934b0ab3befc7da6f162af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3327,69 +3300,23 @@ "width": null } }, - "19b04ce129ed43bea80c3763311498a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fcc301f31d19462b97bdc821e4e82fef", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_be13cc6a5b264e5c998f323c75cc7bb5", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "1c7be1df6c5e4d32a0559e03971d081a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "26746b6b76004ae59adf81188c1fdd1a": { + "45819af2ac5246748f97bf8d73a8f283": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "29ac47e5ca144d298560f408c853cf1e": { + "45a1b9299e1845aab1844559b266af3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3442,7 +3369,48 @@ "width": null } }, - "2ac6b1ce136d47ef8d4c7d14c22c7116": { + "4a4f8f6ed26f4e04ade21e5c4c413553": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4b56c0a3af7b4854bcaa5e65e32570a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_234cdeb4c2ad4b40b8c4cbd3cac01772", + "placeholder": "​", + "style": "IPY_MODEL_d78d044a913243d8bf9346c6281d126a", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 71.9MB/s]" + } + }, + "4bee7ed00ac6488f9434077c2e5ffff2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3495,46 +3463,77 @@ "width": null } }, - "2aeff5887c2744658ab43b4d60c1fa69": { + "4c5bb1bea32c4cf4b4e27b2f03b4cd45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5156825dd8984f5390c32a26ec67aac1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_18293d50d4484b0393bfae1f7b74f293", - "placeholder": "​", - "style": "IPY_MODEL_7faa2feb4f15433b9d040ffbf537d6b5", + "layout": "IPY_MODEL_9d3ce37c18da435f9c36109f68013b0f", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45819af2ac5246748f97bf8d73a8f283", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 94.9MB/s]" + "value": 2.0 } }, - "2d482bad9ee041b79ba26875c7d1a80e": { + "578929fb3a044fb8b98da73290b779d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b98f676249946058d5415d4909e05b9", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_096734e131e7446789cb828a670c4d33", + "tabbable": null, + "tooltip": null, + "value": 1.0 } }, - "2ef38576452d4a8ca2641b46f9f35c14": { + "57bef00c454b4e879a865a60febb6b60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3552,7 +3551,7 @@ "text_color": null } }, - "2f2a551a941645a78fe4691c1f20b53f": { + "5b3a5d15a27842e893e424fbca85b9e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3605,7 +3604,49 @@ "width": null } }, - "38c29ede099f486ead043fd5488a0759": { + "64976c7cec274e2cb599f9864d9d2b3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d66b7bebee1c4c5a9bfb23d862bd89e4", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c83eb5b6161d4f85aa318bfa7112095f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "673d6eed56f44ff6ae4e58f52e19133c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "686948274691459e859ec29d1d6727ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3658,7 +3699,48 @@ "width": null } }, - "39470974b22044fcabdf343041f46c3e": { + "6c6fe37f727d4b6e8f95c49cb618852d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6cf83a63cad34d77a53d085e937274b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f16949cc8934b0ab3befc7da6f162af", + "placeholder": "​", + "style": "IPY_MODEL_80e4373e9d5d4f5083c3e92a61a83408", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "6de8542b53114be68c4e71576a77d58d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3711,7 +3793,7 @@ "width": null } }, - "3c5a1561976c4ff1ad4db4058a8c0127": { + "6fcdf7eb188047ea8070940e35a2c311": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3726,64 +3808,94 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_197fca20a4434a20984b059e49d64036", + "layout": "IPY_MODEL_e072741128074994b5fba0025ee966de", "placeholder": "​", - "style": "IPY_MODEL_2ef38576452d4a8ca2641b46f9f35c14", + "style": "IPY_MODEL_fc7aae1e798a48039208372e86ec973b", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 5.18M/5.18M [00:00<00:00, 69.5MB/s]" } }, - "3cb4a82173174d78a59af75f16489b2c": { + "70cc77e667df49dab4bde4d8dea9c5fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_10f5705a3e4e4a5489fdffb09b3ae22d", - "placeholder": "​", - "style": "IPY_MODEL_0986b1a6d95d485cbe39462131805d4a", + "layout": "IPY_MODEL_e04ff729cd6248debe23ad79acebf4bc", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_673d6eed56f44ff6ae4e58f52e19133c", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 641.77it/s]" + "value": 30931277.0 } }, - "423bc17c3a044d53a5de362b4d36e27b": { - "model_module": "@jupyter-widgets/controls", + "71185cb9b6c8422094d1c0f6d1d0147f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f4443875618434da0e9c191e0ace738", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d482bad9ee041b79ba26875c7d1a80e", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" } }, - "47f5060567b54568b0bcee09f764ad27": { + "713efc8818df493895a188556513706a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3836,7 +3948,7 @@ "width": null } }, - "4e64526cc3ce44e292359000779eb539": { + "73635cd35f554107ad27ff09c5a3deaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3854,25 +3966,31 @@ "text_color": null } }, - "515f681f9dab4dd392d167d2ea28a430": { + "75399c16f9a9462ab14c8fc2e9c2b817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a265c03419fb47d78575b3c0a5c8ecae", + "IPY_MODEL_578929fb3a044fb8b98da73290b779d0", + "IPY_MODEL_8141d17ba66a4fa79738072a90f4bd9e" + ], + "layout": "IPY_MODEL_9727eec2512c4933a9d698603b04afa7", + "tabbable": null, + "tooltip": null } }, - "5487841021704122bdfd383f3ecc760a": { + "7b617e68684d4328b814adff85313cd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3887,15 +4005,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f2a551a941645a78fe4691c1f20b53f", + "layout": "IPY_MODEL_1ce7003827024b28a7d772ffcf95c3a0", "placeholder": "​", - "style": "IPY_MODEL_bf49a26db85d4c928bd1f112e88d04ae", + "style": "IPY_MODEL_57bef00c454b4e879a865a60febb6b60", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": "Generating train split: " + } + }, + "7fb92d346357470cb4e334e9867b871a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b393b5be18c4614bbbe5748904485e6": { + "7fc3c32bcf1148368c0a1dd69f0726fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3910,56 +4046,107 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3c5a1561976c4ff1ad4db4058a8c0127", - "IPY_MODEL_19b04ce129ed43bea80c3763311498a1", - "IPY_MODEL_7bdda0e0e9af4e329762cac848c7afeb" + "IPY_MODEL_bdd9181360ef47cdb60a4d3587334477", + "IPY_MODEL_70cc77e667df49dab4bde4d8dea9c5fc", + "IPY_MODEL_4b56c0a3af7b4854bcaa5e65e32570a4" ], - "layout": "IPY_MODEL_47f5060567b54568b0bcee09f764ad27", + "layout": "IPY_MODEL_686948274691459e859ec29d1d6727ad", "tabbable": null, "tooltip": null } }, - "675dd88192524e39b8b2c590edca71dc": { + "80e4373e9d5d4f5083c3e92a61a83408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "67691e10a0ac4a259f3747a827b350d5": { + "8141d17ba66a4fa79738072a90f4bd9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da707b4db6684c0fa1f42dfbbfa15ec2", - "IPY_MODEL_e57ae3a3bbb847ecae1ef7ae2ed00f25", - "IPY_MODEL_cd2955ed357d49f78df0e62fe52334a0" - ], - "layout": "IPY_MODEL_80b35b7c4593476685445ef3025428eb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b66eff66d81e4438b9228605517b1593", + "placeholder": "​", + "style": "IPY_MODEL_f8a5a07864954ff99b69195ff03014bc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/0 [00:00<00:00, 628068.46 examples/s]" } }, - "6853885176e7477cb8135d6bfe80ff02": { + "8488030d7afb4e4c95288794d76c2b48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b617e68684d4328b814adff85313cd5", + "IPY_MODEL_a2eae19faf36409f8181eef097b68a54", + "IPY_MODEL_cab835ba7133491985672d5adf685b51" + ], + "layout": "IPY_MODEL_f643dd39622741d4a35fcf7a2d438eb7", + "tabbable": null, + "tooltip": null + } + }, + "8762f99816334281badb51b354443160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ac2c8c227bba40a594ee42bcdfd88417", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cac02aaea187408aae5a8c6677012f49", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "89515e7f66a14b7f958928ae0c7e4729": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4012,7 +4199,7 @@ "width": null } }, - "6ba0aea08e8643b78fb9dd4fadbd8604": { + "8ec2228212b74dae9b1d6b947be22df7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4027,15 +4214,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_00a8666c63fe45f283b11685743a81b6", + "layout": "IPY_MODEL_da231bdfa36744078ae247859bcb9b02", "placeholder": "​", - "style": "IPY_MODEL_1c7be1df6c5e4d32a0559e03971d081a", + "style": "IPY_MODEL_d5dac1c26a794eceb5b33cdac38e91e1", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 70.7MB/s]" + "value": " 2/2 [00:00<00:00, 629.07it/s]" + } + }, + "8eec55efd8174ae9b1880eb091282f8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3e1582141cd4032a0ff25cedc977203", + "IPY_MODEL_5156825dd8984f5390c32a26ec67aac1", + "IPY_MODEL_8ec2228212b74dae9b1d6b947be22df7" + ], + "layout": "IPY_MODEL_713efc8818df493895a188556513706a", + "tabbable": null, + "tooltip": null } }, - "6f4443875618434da0e9c191e0ace738": { + "9431d2713aad4a79b208a039fbb37fab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4088,7 +4299,30 @@ "width": null } }, - "6ffbbae9cb954f6a82f68b536f065ab8": { + "94bc8870033b400c828c994a4697989a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c5b2ed298d3c4fbda43a63faac09ec97", + "placeholder": "​", + "style": "IPY_MODEL_6c6fe37f727d4b6e8f95c49cb618852d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1562.36it/s]" + } + }, + "9727eec2512c4933a9d698603b04afa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4141,7 +4375,7 @@ "width": null } }, - "7b37caa92b634a88b72e54c5f100899e": { + "9b4cac2ed2814e8b9e247efc679c9223": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4194,7 +4428,7 @@ "width": null } }, - "7ba1ac52122646b58c5b9a4f176153ef": { + "9b98f676249946058d5415d4909e05b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4244,51 +4478,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "7bdda0e0e9af4e329762cac848c7afeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_007cca45272b4a15865ee386417fca56", - "placeholder": "​", - "style": "IPY_MODEL_26746b6b76004ae59adf81188c1fdd1a", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6531.80 examples/s]" - } - }, - "7faa2feb4f15433b9d040ffbf537d6b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "width": "20px" } }, - "80b35b7c4593476685445ef3025428eb": { + "9d3ce37c18da435f9c36109f68013b0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4341,7 +4534,7 @@ "width": null } }, - "8347afc027284ba1863d50faee7fb11f": { + "a265c03419fb47d78575b3c0a5c8ecae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4356,38 +4549,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e0d10aecc1b8464c94fddbea98f240d7", + "layout": "IPY_MODEL_9431d2713aad4a79b208a039fbb37fab", "placeholder": "​", - "style": "IPY_MODEL_4e64526cc3ce44e292359000779eb539", + "style": "IPY_MODEL_4a4f8f6ed26f4e04ade21e5c4c413553", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:38<00:00, 1627.63it/s]" + "value": "Generating test split: " } }, - "866395f01978484db997ca8002c94500": { + "a2eae19faf36409f8181eef097b68a54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0d2d9d153814469a1c5f837c963a987", - "placeholder": "​", - "style": "IPY_MODEL_c02b56ba484f4b5bb2383da56ef2baf2", + "layout": "IPY_MODEL_71185cb9b6c8422094d1c0f6d1d0147f", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a825e0188dbe47a195347df2c50c35d0", "tabbable": null, "tooltip": null, - "value": " 10000/0 [00:00<00:00, 576037.80 examples/s]" + "value": 1.0 + } + }, + "a4e2cd3cbcc1439b92a8f2e5001a07a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a825e0188dbe47a195347df2c50c35d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8cb1e055ca064cd6b11318325702ebf2": { + "ac2c8c227bba40a594ee42bcdfd88417": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4440,88 +4670,7 @@ "width": null } }, - "8e6ad75a2b144274bcc9ff9239778002": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df492ac34dc243af97c31bd624502099", - "placeholder": "​", - "style": "IPY_MODEL_973abcd851334a23a1270519eccaa3c5", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "911987d56e934f189bd14bb79602c280": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5487841021704122bdfd383f3ecc760a", - "IPY_MODEL_c855fae6b03a49cb953be1c8f51d44f9", - "IPY_MODEL_3cb4a82173174d78a59af75f16489b2c" - ], - "layout": "IPY_MODEL_6853885176e7477cb8135d6bfe80ff02", - "tabbable": null, - "tooltip": null - } - }, - "973abcd851334a23a1270519eccaa3c5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9f2a28910749459bb33e5ad7e62ad01e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a51bf779db9d469c8cc33a8b24c8e7ca": { + "b66eff66d81e4438b9228605517b1593": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4574,33 +4723,30 @@ "width": null } }, - "a6c96a8ee9564d51a056291e1e184f49": { + "bdd9181360ef47cdb60a4d3587334477": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d85cd0edb5d6484b93791a949f5eb677", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8738a0fd0a9491db1151ef381d35254", + "layout": "IPY_MODEL_1ee143b057ae4463bf1a6f310045fe94", + "placeholder": "​", + "style": "IPY_MODEL_7fb92d346357470cb4e334e9867b871a", "tabbable": null, "tooltip": null, - "value": 1.0 + "value": "Downloading data: 100%" } }, - "a745f815281f456fbc80f4bdc464b2a4": { + "c5b2ed298d3c4fbda43a63faac09ec97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4653,7 +4799,7 @@ "width": null } }, - "b0d2d9d153814469a1c5f837c963a987": { + "c5cb71c61f3d4544ace25a3110062e2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4706,108 +4852,46 @@ "width": null } }, - "b5b76bb51dd24c3386ccaa609dc70842": { + "c83eb5b6161d4f85aa318bfa7112095f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ba1ac52122646b58c5b9a4f176153ef", - "placeholder": "​", - "style": "IPY_MODEL_515f681f9dab4dd392d167d2ea28a430", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b6cd68308d5e4a28b4407d8ee3829be1": { + "cab835ba7133491985672d5adf685b51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ac6b1ce136d47ef8d4c7d14c22c7116", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_675dd88192524e39b8b2c590edca71dc", + "layout": "IPY_MODEL_34b9ed23fedc419c93f8e11b3bba77d3", + "placeholder": "​", + "style": "IPY_MODEL_a4e2cd3cbcc1439b92a8f2e5001a07a0", "tabbable": null, "tooltip": null, - "value": 30931277.0 - } - }, - "be13cc6a5b264e5c998f323c75cc7bb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bf49a26db85d4c928bd1f112e88d04ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c02b56ba484f4b5bb2383da56ef2baf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 60000/0 [00:00<00:00, 963377.32 examples/s]" } }, - "c44a23970a994528bfdc06bfcb012be7": { + "cac02aaea187408aae5a8c6677012f49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4823,33 +4907,7 @@ "description_width": "" } }, - "c855fae6b03a49cb953be1c8f51d44f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b37caa92b634a88b72e54c5f100899e", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c44a23970a994528bfdc06bfcb012be7", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "cc76dce215d548d892e41d3a7229508c": { + "d5dac1c26a794eceb5b33cdac38e91e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4867,30 +4925,7 @@ "text_color": null } }, - "cd2955ed357d49f78df0e62fe52334a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc1ff02cf5c94c70b74423fece694376", - "placeholder": "​", - "style": "IPY_MODEL_f4a04192e971448aaecf424bc4f41bda", - "tabbable": null, - "tooltip": null, - "value": " 60000/0 [00:00<00:00, 846818.07 examples/s]" - } - }, - "d85cd0edb5d6484b93791a949f5eb677": { + "d66b7bebee1c4c5a9bfb23d862bd89e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4940,49 +4975,28 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "d8738a0fd0a9491db1151ef381d35254": { + "d78d044a913243d8bf9346c6281d126a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "da707b4db6684c0fa1f42dfbbfa15ec2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8cb1e055ca064cd6b11318325702ebf2", - "placeholder": "​", - "style": "IPY_MODEL_e18168fd3de74d7ea007bfdb3a814603", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: " + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "df492ac34dc243af97c31bd624502099": { + "da231bdfa36744078ae247859bcb9b02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5035,7 +5049,72 @@ "width": null } }, - "e0d10aecc1b8464c94fddbea98f240d7": { + "db4d65560ff04257ad1532c0bf200fa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_45a1b9299e1845aab1844559b266af3b", + "placeholder": "​", + "style": "IPY_MODEL_4c5bb1bea32c4cf4b4e27b2f03b4cd45", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7408.76 examples/s]" + } + }, + "dca81aa852a141c0b18590a7f7cf263c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "def052e51c5d4bc1b365fb7a46f00d5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_183ec1a8cefe4e868b0f39386c2db1e5", + "IPY_MODEL_8762f99816334281badb51b354443160", + "IPY_MODEL_db4d65560ff04257ad1532c0bf200fa9" + ], + "layout": "IPY_MODEL_89515e7f66a14b7f958928ae0c7e4729", + "tabbable": null, + "tooltip": null + } + }, + "e04ff729cd6248debe23ad79acebf4bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5088,25 +5167,7 @@ "width": null } }, - "e18168fd3de74d7ea007bfdb3a814603": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e47d1549488742599209ede60f9bad03": { + "e072741128074994b5fba0025ee966de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5156,10 +5217,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "e4965fe8a11c45b89b19f160a93c542b": { + "e25684bca4d04cc586c2ae9653e92baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5174,65 +5235,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0c988c95890b4f69b74f89e0c81d7828", + "layout": "IPY_MODEL_c5cb71c61f3d4544ace25a3110062e2f", "placeholder": "​", - "style": "IPY_MODEL_cc76dce215d548d892e41d3a7229508c", + "style": "IPY_MODEL_73635cd35f554107ad27ff09c5a3deaf", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "e57ae3a3bbb847ecae1ef7ae2ed00f25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e47d1549488742599209ede60f9bad03", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9f2a28910749459bb33e5ad7e62ad01e", - "tabbable": null, - "tooltip": null, - "value": 1.0 - } - }, - "f297df970eaa40368e0d02896d28f3b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f37dedb7f52e45adb6f1791f0875f640", - "IPY_MODEL_a6c96a8ee9564d51a056291e1e184f49", - "IPY_MODEL_866395f01978484db997ca8002c94500" - ], - "layout": "IPY_MODEL_39470974b22044fcabdf343041f46c3e", - "tabbable": null, - "tooltip": null + "value": "100%" } }, - "f37dedb7f52e45adb6f1791f0875f640": { + "e3e1582141cd4032a0ff25cedc977203": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5247,33 +5258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ac47e5ca144d298560f408c853cf1e", + "layout": "IPY_MODEL_5b3a5d15a27842e893e424fbca85b9e3", "placeholder": "​", - "style": "IPY_MODEL_f8cf10ba3a9341a3aac3ac337cbf990e", + "style": "IPY_MODEL_ef5a2cf277c64341b028581a65c8220c", "tabbable": null, "tooltip": null, - "value": "Generating test split: " - } - }, - "f4a04192e971448aaecf424bc4f41bda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Computing checksums: 100%" } }, - "f8cf10ba3a9341a3aac3ac337cbf990e": { + "ef5a2cf277c64341b028581a65c8220c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5291,7 +5284,7 @@ "text_color": null } }, - "fc1ff02cf5c94c70b74423fece694376": { + "f643dd39622741d4a35fcf7a2d438eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5344,57 +5337,56 @@ "width": null } }, - "fcc301f31d19462b97bdc821e4e82fef": { - "model_module": "@jupyter-widgets/base", + "f782ebbbd274491fa6c680f42c1bf160": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f8a5a07864954ff99b69195ff03014bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fc7aae1e798a48039208372e86ec973b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index eedb2b4a0..fcbca0822 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:21.351866Z", - "iopub.status.busy": "2024-02-07T22:15:21.351677Z", - "iopub.status.idle": "2024-02-07T22:15:22.453306Z", - "shell.execute_reply": "2024-02-07T22:15:22.452757Z" + "iopub.execute_input": "2024-02-07T23:55:52.793906Z", + "iopub.status.busy": "2024-02-07T23:55:52.793563Z", + "iopub.status.idle": "2024-02-07T23:55:53.871456Z", + "shell.execute_reply": "2024-02-07T23:55:53.870917Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.455742Z", - "iopub.status.busy": "2024-02-07T22:15:22.455483Z", - "iopub.status.idle": "2024-02-07T22:15:22.634154Z", - "shell.execute_reply": "2024-02-07T22:15:22.633543Z" + "iopub.execute_input": "2024-02-07T23:55:53.873895Z", + "iopub.status.busy": "2024-02-07T23:55:53.873500Z", + "iopub.status.idle": "2024-02-07T23:55:54.047760Z", + "shell.execute_reply": "2024-02-07T23:55:54.047227Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.636920Z", - "iopub.status.busy": "2024-02-07T22:15:22.636572Z", - "iopub.status.idle": "2024-02-07T22:15:22.648321Z", - "shell.execute_reply": "2024-02-07T22:15:22.647894Z" + "iopub.execute_input": "2024-02-07T23:55:54.050158Z", + "iopub.status.busy": "2024-02-07T23:55:54.049974Z", + "iopub.status.idle": "2024-02-07T23:55:54.061117Z", + "shell.execute_reply": "2024-02-07T23:55:54.060658Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.650316Z", - "iopub.status.busy": "2024-02-07T22:15:22.649989Z", - "iopub.status.idle": "2024-02-07T22:15:22.883619Z", - "shell.execute_reply": "2024-02-07T22:15:22.883022Z" + "iopub.execute_input": "2024-02-07T23:55:54.062919Z", + "iopub.status.busy": "2024-02-07T23:55:54.062746Z", + "iopub.status.idle": "2024-02-07T23:55:54.297436Z", + "shell.execute_reply": "2024-02-07T23:55:54.296880Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.885905Z", - "iopub.status.busy": "2024-02-07T22:15:22.885576Z", - "iopub.status.idle": "2024-02-07T22:15:22.911960Z", - "shell.execute_reply": "2024-02-07T22:15:22.911384Z" + "iopub.execute_input": "2024-02-07T23:55:54.299486Z", + "iopub.status.busy": "2024-02-07T23:55:54.299307Z", + "iopub.status.idle": "2024-02-07T23:55:54.325624Z", + "shell.execute_reply": "2024-02-07T23:55:54.325176Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:22.914485Z", - "iopub.status.busy": "2024-02-07T22:15:22.913996Z", - "iopub.status.idle": "2024-02-07T22:15:24.619121Z", - "shell.execute_reply": "2024-02-07T22:15:24.618526Z" + "iopub.execute_input": "2024-02-07T23:55:54.327440Z", + "iopub.status.busy": "2024-02-07T23:55:54.327261Z", + "iopub.status.idle": "2024-02-07T23:55:55.923609Z", + "shell.execute_reply": "2024-02-07T23:55:55.922962Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:24.621699Z", - "iopub.status.busy": "2024-02-07T22:15:24.621099Z", - "iopub.status.idle": "2024-02-07T22:15:24.637180Z", - "shell.execute_reply": "2024-02-07T22:15:24.636739Z" + "iopub.execute_input": "2024-02-07T23:55:55.926111Z", + "iopub.status.busy": "2024-02-07T23:55:55.925634Z", + "iopub.status.idle": "2024-02-07T23:55:55.942989Z", + "shell.execute_reply": "2024-02-07T23:55:55.942452Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:24.639293Z", - "iopub.status.busy": "2024-02-07T22:15:24.639017Z", - "iopub.status.idle": "2024-02-07T22:15:26.071028Z", - "shell.execute_reply": "2024-02-07T22:15:26.070435Z" + "iopub.execute_input": "2024-02-07T23:55:55.944841Z", + "iopub.status.busy": "2024-02-07T23:55:55.944659Z", + "iopub.status.idle": "2024-02-07T23:55:57.319622Z", + "shell.execute_reply": "2024-02-07T23:55:57.319078Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.073837Z", - "iopub.status.busy": "2024-02-07T22:15:26.073006Z", - "iopub.status.idle": "2024-02-07T22:15:26.086788Z", - "shell.execute_reply": "2024-02-07T22:15:26.086329Z" + "iopub.execute_input": "2024-02-07T23:55:57.322169Z", + "iopub.status.busy": "2024-02-07T23:55:57.321580Z", + "iopub.status.idle": "2024-02-07T23:55:57.335184Z", + "shell.execute_reply": "2024-02-07T23:55:57.334645Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.089018Z", - "iopub.status.busy": "2024-02-07T22:15:26.088676Z", - "iopub.status.idle": "2024-02-07T22:15:26.166965Z", - "shell.execute_reply": "2024-02-07T22:15:26.166362Z" + "iopub.execute_input": "2024-02-07T23:55:57.337271Z", + "iopub.status.busy": "2024-02-07T23:55:57.336902Z", + "iopub.status.idle": "2024-02-07T23:55:57.408692Z", + "shell.execute_reply": "2024-02-07T23:55:57.408157Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.169567Z", - "iopub.status.busy": "2024-02-07T22:15:26.169069Z", - "iopub.status.idle": "2024-02-07T22:15:26.381855Z", - "shell.execute_reply": "2024-02-07T22:15:26.381243Z" + "iopub.execute_input": "2024-02-07T23:55:57.410865Z", + "iopub.status.busy": "2024-02-07T23:55:57.410584Z", + "iopub.status.idle": "2024-02-07T23:55:57.618710Z", + "shell.execute_reply": "2024-02-07T23:55:57.618185Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.383995Z", - "iopub.status.busy": "2024-02-07T22:15:26.383801Z", - "iopub.status.idle": "2024-02-07T22:15:26.401001Z", - "shell.execute_reply": "2024-02-07T22:15:26.400532Z" + "iopub.execute_input": "2024-02-07T23:55:57.620862Z", + "iopub.status.busy": "2024-02-07T23:55:57.620521Z", + "iopub.status.idle": "2024-02-07T23:55:57.636978Z", + "shell.execute_reply": "2024-02-07T23:55:57.636540Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.403060Z", - "iopub.status.busy": "2024-02-07T22:15:26.402733Z", - "iopub.status.idle": "2024-02-07T22:15:26.412648Z", - "shell.execute_reply": "2024-02-07T22:15:26.412212Z" + "iopub.execute_input": "2024-02-07T23:55:57.638931Z", + "iopub.status.busy": "2024-02-07T23:55:57.638611Z", + "iopub.status.idle": "2024-02-07T23:55:57.648032Z", + "shell.execute_reply": "2024-02-07T23:55:57.647545Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.414515Z", - "iopub.status.busy": "2024-02-07T22:15:26.414337Z", - "iopub.status.idle": "2024-02-07T22:15:26.507527Z", - "shell.execute_reply": "2024-02-07T22:15:26.506872Z" + "iopub.execute_input": "2024-02-07T23:55:57.650008Z", + "iopub.status.busy": "2024-02-07T23:55:57.649677Z", + "iopub.status.idle": "2024-02-07T23:55:57.735094Z", + "shell.execute_reply": "2024-02-07T23:55:57.734511Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.510067Z", - "iopub.status.busy": "2024-02-07T22:15:26.509583Z", - "iopub.status.idle": "2024-02-07T22:15:26.645559Z", - "shell.execute_reply": "2024-02-07T22:15:26.645002Z" + "iopub.execute_input": "2024-02-07T23:55:57.737432Z", + "iopub.status.busy": "2024-02-07T23:55:57.737237Z", + "iopub.status.idle": "2024-02-07T23:55:57.855160Z", + "shell.execute_reply": "2024-02-07T23:55:57.854608Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.647901Z", - "iopub.status.busy": "2024-02-07T22:15:26.647610Z", - "iopub.status.idle": "2024-02-07T22:15:26.651464Z", - "shell.execute_reply": "2024-02-07T22:15:26.650960Z" + "iopub.execute_input": "2024-02-07T23:55:57.857572Z", + "iopub.status.busy": "2024-02-07T23:55:57.857138Z", + "iopub.status.idle": "2024-02-07T23:55:57.861016Z", + "shell.execute_reply": "2024-02-07T23:55:57.860464Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.653401Z", - "iopub.status.busy": "2024-02-07T22:15:26.653143Z", - "iopub.status.idle": "2024-02-07T22:15:26.656733Z", - "shell.execute_reply": "2024-02-07T22:15:26.656187Z" + "iopub.execute_input": "2024-02-07T23:55:57.863057Z", + "iopub.status.busy": "2024-02-07T23:55:57.862660Z", + "iopub.status.idle": "2024-02-07T23:55:57.866556Z", + "shell.execute_reply": "2024-02-07T23:55:57.865984Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.658643Z", - "iopub.status.busy": "2024-02-07T22:15:26.658386Z", - "iopub.status.idle": "2024-02-07T22:15:26.695310Z", - "shell.execute_reply": "2024-02-07T22:15:26.694804Z" + "iopub.execute_input": "2024-02-07T23:55:57.868833Z", + "iopub.status.busy": "2024-02-07T23:55:57.868415Z", + "iopub.status.idle": "2024-02-07T23:55:57.905529Z", + "shell.execute_reply": "2024-02-07T23:55:57.905083Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.697492Z", - "iopub.status.busy": "2024-02-07T22:15:26.697153Z", - "iopub.status.idle": "2024-02-07T22:15:26.740554Z", - "shell.execute_reply": "2024-02-07T22:15:26.739987Z" + "iopub.execute_input": "2024-02-07T23:55:57.907438Z", + "iopub.status.busy": "2024-02-07T23:55:57.907262Z", + "iopub.status.idle": "2024-02-07T23:55:57.950758Z", + "shell.execute_reply": "2024-02-07T23:55:57.950272Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.742713Z", - "iopub.status.busy": "2024-02-07T22:15:26.742403Z", - "iopub.status.idle": "2024-02-07T22:15:26.841701Z", - "shell.execute_reply": "2024-02-07T22:15:26.840988Z" + "iopub.execute_input": "2024-02-07T23:55:57.952847Z", + "iopub.status.busy": "2024-02-07T23:55:57.952459Z", + "iopub.status.idle": "2024-02-07T23:55:58.044023Z", + "shell.execute_reply": "2024-02-07T23:55:58.043409Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.844347Z", - "iopub.status.busy": "2024-02-07T22:15:26.844156Z", - "iopub.status.idle": "2024-02-07T22:15:26.944490Z", - "shell.execute_reply": "2024-02-07T22:15:26.943909Z" + "iopub.execute_input": "2024-02-07T23:55:58.046632Z", + "iopub.status.busy": "2024-02-07T23:55:58.046286Z", + "iopub.status.idle": "2024-02-07T23:55:58.131106Z", + "shell.execute_reply": "2024-02-07T23:55:58.130530Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:26.946747Z", - "iopub.status.busy": "2024-02-07T22:15:26.946443Z", - "iopub.status.idle": "2024-02-07T22:15:27.154696Z", - "shell.execute_reply": "2024-02-07T22:15:27.154138Z" + "iopub.execute_input": "2024-02-07T23:55:58.133293Z", + "iopub.status.busy": "2024-02-07T23:55:58.133056Z", + "iopub.status.idle": "2024-02-07T23:55:58.344933Z", + "shell.execute_reply": "2024-02-07T23:55:58.344357Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.156796Z", - "iopub.status.busy": "2024-02-07T22:15:27.156608Z", - "iopub.status.idle": "2024-02-07T22:15:27.353494Z", - "shell.execute_reply": "2024-02-07T22:15:27.352882Z" + "iopub.execute_input": "2024-02-07T23:55:58.347184Z", + "iopub.status.busy": "2024-02-07T23:55:58.346751Z", + "iopub.status.idle": "2024-02-07T23:55:58.510583Z", + "shell.execute_reply": "2024-02-07T23:55:58.509985Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.355739Z", - "iopub.status.busy": "2024-02-07T22:15:27.355551Z", - "iopub.status.idle": "2024-02-07T22:15:27.361595Z", - "shell.execute_reply": "2024-02-07T22:15:27.361143Z" + "iopub.execute_input": "2024-02-07T23:55:58.512995Z", + "iopub.status.busy": "2024-02-07T23:55:58.512569Z", + "iopub.status.idle": "2024-02-07T23:55:58.518373Z", + "shell.execute_reply": "2024-02-07T23:55:58.517831Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.363428Z", - "iopub.status.busy": "2024-02-07T22:15:27.363240Z", - "iopub.status.idle": "2024-02-07T22:15:27.581468Z", - "shell.execute_reply": "2024-02-07T22:15:27.580881Z" + "iopub.execute_input": "2024-02-07T23:55:58.520271Z", + "iopub.status.busy": "2024-02-07T23:55:58.520096Z", + "iopub.status.idle": "2024-02-07T23:55:58.734987Z", + "shell.execute_reply": "2024-02-07T23:55:58.734456Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:27.583753Z", - "iopub.status.busy": "2024-02-07T22:15:27.583416Z", - "iopub.status.idle": "2024-02-07T22:15:28.654066Z", - "shell.execute_reply": "2024-02-07T22:15:28.653455Z" + "iopub.execute_input": "2024-02-07T23:55:58.737174Z", + "iopub.status.busy": "2024-02-07T23:55:58.736837Z", + "iopub.status.idle": "2024-02-07T23:55:59.819273Z", + "shell.execute_reply": "2024-02-07T23:55:59.818745Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index c986eebc5..faeef8745 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:32.145853Z", - "iopub.status.busy": "2024-02-07T22:15:32.145685Z", - "iopub.status.idle": "2024-02-07T22:15:33.233957Z", - "shell.execute_reply": "2024-02-07T22:15:33.233337Z" + "iopub.execute_input": "2024-02-07T23:56:03.103506Z", + "iopub.status.busy": "2024-02-07T23:56:03.103340Z", + "iopub.status.idle": "2024-02-07T23:56:04.118950Z", + "shell.execute_reply": "2024-02-07T23:56:04.118459Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.236597Z", - "iopub.status.busy": "2024-02-07T22:15:33.236316Z", - "iopub.status.idle": "2024-02-07T22:15:33.239477Z", - "shell.execute_reply": "2024-02-07T22:15:33.238940Z" + "iopub.execute_input": "2024-02-07T23:56:04.121683Z", + "iopub.status.busy": "2024-02-07T23:56:04.121265Z", + "iopub.status.idle": "2024-02-07T23:56:04.124434Z", + "shell.execute_reply": "2024-02-07T23:56:04.123985Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.241447Z", - "iopub.status.busy": "2024-02-07T22:15:33.241135Z", - "iopub.status.idle": "2024-02-07T22:15:33.248930Z", - "shell.execute_reply": "2024-02-07T22:15:33.248387Z" + "iopub.execute_input": "2024-02-07T23:56:04.126463Z", + "iopub.status.busy": "2024-02-07T23:56:04.126136Z", + "iopub.status.idle": "2024-02-07T23:56:04.133993Z", + "shell.execute_reply": "2024-02-07T23:56:04.133459Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.250950Z", - "iopub.status.busy": "2024-02-07T22:15:33.250645Z", - "iopub.status.idle": "2024-02-07T22:15:33.298657Z", - "shell.execute_reply": "2024-02-07T22:15:33.298050Z" + "iopub.execute_input": "2024-02-07T23:56:04.136023Z", + "iopub.status.busy": "2024-02-07T23:56:04.135616Z", + "iopub.status.idle": "2024-02-07T23:56:04.188425Z", + "shell.execute_reply": "2024-02-07T23:56:04.187883Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.300978Z", - "iopub.status.busy": "2024-02-07T22:15:33.300771Z", - "iopub.status.idle": "2024-02-07T22:15:33.318345Z", - "shell.execute_reply": "2024-02-07T22:15:33.317890Z" + "iopub.execute_input": "2024-02-07T23:56:04.190556Z", + "iopub.status.busy": "2024-02-07T23:56:04.190390Z", + "iopub.status.idle": "2024-02-07T23:56:04.206810Z", + "shell.execute_reply": "2024-02-07T23:56:04.206304Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.320328Z", - "iopub.status.busy": "2024-02-07T22:15:33.320023Z", - "iopub.status.idle": "2024-02-07T22:15:33.323869Z", - "shell.execute_reply": "2024-02-07T22:15:33.323430Z" + "iopub.execute_input": "2024-02-07T23:56:04.208783Z", + "iopub.status.busy": "2024-02-07T23:56:04.208482Z", + "iopub.status.idle": "2024-02-07T23:56:04.212185Z", + "shell.execute_reply": "2024-02-07T23:56:04.211662Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.325943Z", - "iopub.status.busy": "2024-02-07T22:15:33.325647Z", - "iopub.status.idle": "2024-02-07T22:15:33.356671Z", - "shell.execute_reply": "2024-02-07T22:15:33.356095Z" + "iopub.execute_input": "2024-02-07T23:56:04.214215Z", + "iopub.status.busy": "2024-02-07T23:56:04.213913Z", + "iopub.status.idle": "2024-02-07T23:56:04.240502Z", + "shell.execute_reply": "2024-02-07T23:56:04.240094Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.358903Z", - "iopub.status.busy": "2024-02-07T22:15:33.358588Z", - "iopub.status.idle": "2024-02-07T22:15:33.385755Z", - "shell.execute_reply": "2024-02-07T22:15:33.385132Z" + "iopub.execute_input": "2024-02-07T23:56:04.242411Z", + "iopub.status.busy": "2024-02-07T23:56:04.242089Z", + "iopub.status.idle": "2024-02-07T23:56:04.268227Z", + "shell.execute_reply": "2024-02-07T23:56:04.267681Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:33.388411Z", - "iopub.status.busy": "2024-02-07T22:15:33.388028Z", - "iopub.status.idle": "2024-02-07T22:15:35.180954Z", - "shell.execute_reply": "2024-02-07T22:15:35.180351Z" + "iopub.execute_input": "2024-02-07T23:56:04.270386Z", + "iopub.status.busy": "2024-02-07T23:56:04.270015Z", + "iopub.status.idle": "2024-02-07T23:56:05.942630Z", + "shell.execute_reply": "2024-02-07T23:56:05.942094Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.183842Z", - "iopub.status.busy": "2024-02-07T22:15:35.183215Z", - "iopub.status.idle": "2024-02-07T22:15:35.190451Z", - "shell.execute_reply": "2024-02-07T22:15:35.190006Z" + "iopub.execute_input": "2024-02-07T23:56:05.945098Z", + "iopub.status.busy": "2024-02-07T23:56:05.944826Z", + "iopub.status.idle": "2024-02-07T23:56:05.951226Z", + "shell.execute_reply": "2024-02-07T23:56:05.950773Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.192648Z", - "iopub.status.busy": "2024-02-07T22:15:35.192320Z", - "iopub.status.idle": "2024-02-07T22:15:35.204677Z", - "shell.execute_reply": "2024-02-07T22:15:35.204232Z" + "iopub.execute_input": "2024-02-07T23:56:05.953087Z", + "iopub.status.busy": "2024-02-07T23:56:05.952918Z", + "iopub.status.idle": "2024-02-07T23:56:05.965050Z", + "shell.execute_reply": "2024-02-07T23:56:05.964629Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.206669Z", - "iopub.status.busy": "2024-02-07T22:15:35.206301Z", - "iopub.status.idle": "2024-02-07T22:15:35.212711Z", - "shell.execute_reply": "2024-02-07T22:15:35.212172Z" + "iopub.execute_input": "2024-02-07T23:56:05.966796Z", + "iopub.status.busy": "2024-02-07T23:56:05.966628Z", + "iopub.status.idle": "2024-02-07T23:56:05.972874Z", + "shell.execute_reply": "2024-02-07T23:56:05.972451Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.214832Z", - "iopub.status.busy": "2024-02-07T22:15:35.214512Z", - "iopub.status.idle": "2024-02-07T22:15:35.217164Z", - "shell.execute_reply": "2024-02-07T22:15:35.216725Z" + "iopub.execute_input": "2024-02-07T23:56:05.974787Z", + "iopub.status.busy": "2024-02-07T23:56:05.974479Z", + "iopub.status.idle": "2024-02-07T23:56:05.977066Z", + "shell.execute_reply": "2024-02-07T23:56:05.976629Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.219050Z", - "iopub.status.busy": "2024-02-07T22:15:35.218733Z", - "iopub.status.idle": "2024-02-07T22:15:35.222281Z", - "shell.execute_reply": "2024-02-07T22:15:35.221820Z" + "iopub.execute_input": "2024-02-07T23:56:05.978834Z", + "iopub.status.busy": "2024-02-07T23:56:05.978668Z", + "iopub.status.idle": "2024-02-07T23:56:05.982198Z", + "shell.execute_reply": "2024-02-07T23:56:05.981653Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.224316Z", - "iopub.status.busy": "2024-02-07T22:15:35.224013Z", - "iopub.status.idle": "2024-02-07T22:15:35.226604Z", - "shell.execute_reply": "2024-02-07T22:15:35.226158Z" + "iopub.execute_input": "2024-02-07T23:56:05.984156Z", + "iopub.status.busy": "2024-02-07T23:56:05.983985Z", + "iopub.status.idle": "2024-02-07T23:56:05.986977Z", + "shell.execute_reply": "2024-02-07T23:56:05.986575Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.228645Z", - "iopub.status.busy": "2024-02-07T22:15:35.228343Z", - "iopub.status.idle": "2024-02-07T22:15:35.232335Z", - "shell.execute_reply": "2024-02-07T22:15:35.231904Z" + "iopub.execute_input": "2024-02-07T23:56:05.988801Z", + "iopub.status.busy": "2024-02-07T23:56:05.988634Z", + "iopub.status.idle": "2024-02-07T23:56:05.992758Z", + "shell.execute_reply": "2024-02-07T23:56:05.992305Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.234323Z", - "iopub.status.busy": "2024-02-07T22:15:35.234016Z", - "iopub.status.idle": "2024-02-07T22:15:35.263094Z", - "shell.execute_reply": "2024-02-07T22:15:35.262539Z" + "iopub.execute_input": "2024-02-07T23:56:05.994760Z", + "iopub.status.busy": "2024-02-07T23:56:05.994455Z", + "iopub.status.idle": "2024-02-07T23:56:06.022507Z", + "shell.execute_reply": "2024-02-07T23:56:06.022052Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:35.265344Z", - "iopub.status.busy": "2024-02-07T22:15:35.264967Z", - "iopub.status.idle": "2024-02-07T22:15:35.269602Z", - "shell.execute_reply": "2024-02-07T22:15:35.269145Z" + "iopub.execute_input": "2024-02-07T23:56:06.024458Z", + "iopub.status.busy": "2024-02-07T23:56:06.024139Z", + "iopub.status.idle": "2024-02-07T23:56:06.028445Z", + "shell.execute_reply": "2024-02-07T23:56:06.028024Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.html b/master/tutorials/multilabel_classification.html index f70b83f54..510f6d03c 100644 --- a/master/tutorials/multilabel_classification.html +++ b/master/tutorials/multilabel_classification.html @@ -576,15 +576,15 @@

Find Label Errors in Multi-Label Classification Datasetscopyrighted, advertisement, face, violence, nsfw]

+

While this tutorial focused on label issues, cleanlab’s Datalab object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc). Simply remove the issue_types argument from the above call to Datalab.find_issues() above and Datalab will more comprehensively audit your dataset. Refer to our Datalab quickstart tutorial to learn how to interpret the results (the interpretation remains mostly the same +across different types of ML tasks).

How to format labels given as a one-hot (multi-hot) binary matrix?#

diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index c6ef453c4..5e9a4d29e 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -19,7 +19,7 @@ "Quickstart\n", "
\n", " \n", - "cleanlab finds label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find label issues in your multi-label dataset:\n", + "cleanlab finds data/label issues based on two inputs: `labels` formatted as a list of lists of integer class indices that apply to each example in your dataset, and `pred_probs` from a trained multi-label classification model (which do not need to sum to 1 since the classes are not mutually exclusive). Once you have these, run the code below to find issues in your multi-label dataset:\n", "\n", "
\n", " \n", @@ -28,10 +28,10 @@ "\n", "# Assuming your dataset has a label column named 'label'\n", "lab = Datalab(dataset, label_name='label', task='multilabel')\n", + "# To detect more issue types, optionally supply `features` (numeric dataset values or model embeddings of the data)\n", + "lab.find_issues(pred_probs=pred_probs, features=features)\n", "\n", - "lab.find_issues(pred_probs=pred_probs, issue_types={\"label\": {}})\n", - "\n", - "ranked_label_issues = lab.get_issues(\"label\").sort_values(\"label_score\")\n", + "lab.report()\n", "```\n", "\n", " \n", @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:38.074145Z", - "iopub.status.busy": "2024-02-07T22:15:38.073970Z", - "iopub.status.idle": "2024-02-07T22:15:39.203313Z", - "shell.execute_reply": "2024-02-07T22:15:39.202712Z" + "iopub.execute_input": "2024-02-07T23:56:08.687266Z", + "iopub.status.busy": "2024-02-07T23:56:08.687100Z", + "iopub.status.idle": "2024-02-07T23:56:09.754564Z", + "shell.execute_reply": "2024-02-07T23:56:09.754027Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.205859Z", - "iopub.status.busy": "2024-02-07T22:15:39.205596Z", - "iopub.status.idle": "2024-02-07T22:15:39.414109Z", - "shell.execute_reply": "2024-02-07T22:15:39.413479Z" + "iopub.execute_input": "2024-02-07T23:56:09.757160Z", + "iopub.status.busy": "2024-02-07T23:56:09.756746Z", + "iopub.status.idle": "2024-02-07T23:56:09.946615Z", + "shell.execute_reply": "2024-02-07T23:56:09.946097Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.416970Z", - "iopub.status.busy": "2024-02-07T22:15:39.416561Z", - "iopub.status.idle": "2024-02-07T22:15:39.429574Z", - "shell.execute_reply": "2024-02-07T22:15:39.429157Z" + "iopub.execute_input": "2024-02-07T23:56:09.949158Z", + "iopub.status.busy": "2024-02-07T23:56:09.948714Z", + "iopub.status.idle": "2024-02-07T23:56:09.961413Z", + "shell.execute_reply": "2024-02-07T23:56:09.960973Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:39.431695Z", - "iopub.status.busy": "2024-02-07T22:15:39.431290Z", - "iopub.status.idle": "2024-02-07T22:15:42.066450Z", - "shell.execute_reply": "2024-02-07T22:15:42.065835Z" + "iopub.execute_input": "2024-02-07T23:56:09.963377Z", + "iopub.status.busy": "2024-02-07T23:56:09.963052Z", + "iopub.status.idle": "2024-02-07T23:56:12.619380Z", + "shell.execute_reply": "2024-02-07T23:56:12.618822Z" } }, "outputs": [ @@ -452,10 +452,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:42.068923Z", - "iopub.status.busy": "2024-02-07T22:15:42.068564Z", - "iopub.status.idle": "2024-02-07T22:15:43.411615Z", - "shell.execute_reply": "2024-02-07T22:15:43.411041Z" + "iopub.execute_input": "2024-02-07T23:56:12.621613Z", + "iopub.status.busy": "2024-02-07T23:56:12.621277Z", + "iopub.status.idle": "2024-02-07T23:56:13.971194Z", + "shell.execute_reply": "2024-02-07T23:56:13.970652Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:43.414000Z", - "iopub.status.busy": "2024-02-07T22:15:43.413818Z", - "iopub.status.idle": "2024-02-07T22:15:43.417446Z", - "shell.execute_reply": "2024-02-07T22:15:43.416934Z" + "iopub.execute_input": "2024-02-07T23:56:13.973499Z", + "iopub.status.busy": "2024-02-07T23:56:13.973162Z", + "iopub.status.idle": "2024-02-07T23:56:13.977165Z", + "shell.execute_reply": "2024-02-07T23:56:13.976701Z" } }, "outputs": [ @@ -542,10 +542,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:43.419309Z", - "iopub.status.busy": "2024-02-07T22:15:43.419135Z", - "iopub.status.idle": "2024-02-07T22:15:45.207494Z", - "shell.execute_reply": "2024-02-07T22:15:45.206816Z" + "iopub.execute_input": "2024-02-07T23:56:13.979194Z", + "iopub.status.busy": "2024-02-07T23:56:13.978885Z", + "iopub.status.idle": "2024-02-07T23:56:15.657571Z", + "shell.execute_reply": "2024-02-07T23:56:15.657005Z" } }, "outputs": [ @@ -592,10 +592,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:45.210051Z", - "iopub.status.busy": "2024-02-07T22:15:45.209488Z", - "iopub.status.idle": "2024-02-07T22:15:45.217636Z", - "shell.execute_reply": "2024-02-07T22:15:45.217158Z" + "iopub.execute_input": "2024-02-07T23:56:15.660326Z", + "iopub.status.busy": "2024-02-07T23:56:15.659641Z", + "iopub.status.idle": "2024-02-07T23:56:15.667026Z", + "shell.execute_reply": "2024-02-07T23:56:15.666496Z" } }, "outputs": [ @@ -631,10 +631,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:45.219651Z", - "iopub.status.busy": "2024-02-07T22:15:45.219310Z", - "iopub.status.idle": "2024-02-07T22:15:47.808437Z", - "shell.execute_reply": "2024-02-07T22:15:47.807942Z" + "iopub.execute_input": "2024-02-07T23:56:15.669181Z", + "iopub.status.busy": "2024-02-07T23:56:15.668872Z", + "iopub.status.idle": "2024-02-07T23:56:18.270814Z", + "shell.execute_reply": "2024-02-07T23:56:18.270242Z" } }, "outputs": [ @@ -669,10 +669,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.810738Z", - "iopub.status.busy": "2024-02-07T22:15:47.810301Z", - "iopub.status.idle": "2024-02-07T22:15:47.813993Z", - "shell.execute_reply": "2024-02-07T22:15:47.813455Z" + "iopub.execute_input": "2024-02-07T23:56:18.273199Z", + "iopub.status.busy": "2024-02-07T23:56:18.272850Z", + "iopub.status.idle": "2024-02-07T23:56:18.276268Z", + "shell.execute_reply": "2024-02-07T23:56:18.275699Z" } }, "outputs": [ @@ -691,6 +691,16 @@ "print(f\"Label quality scores of the first 10 examples in dataset:\\n{scores[:10]}\")" ] }, + { + "cell_type": "markdown", + "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d6", + "metadata": {}, + "source": [ + "While this tutorial focused on label issues, cleanlab's `Datalab` object can automatically detect many other types of issues in your dataset (outliers, near duplicates, etc).\n", + "Simply remove the `issue_types` argument from the above call to `Datalab.find_issues()` above and `Datalab` will more comprehensively audit your dataset.\n", + "Refer to our [Datalab quickstart tutorial](./datalab/datalab_quickstart.html) to learn how to interpret the results (the interpretation remains mostly the same across different types of ML tasks)." + ] + }, { "cell_type": "markdown", "id": "d65af827-aeda-4b6b-9ae7-b1f0b84700d5", @@ -707,10 +717,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.815974Z", - "iopub.status.busy": "2024-02-07T22:15:47.815684Z", - "iopub.status.idle": "2024-02-07T22:15:47.819808Z", - "shell.execute_reply": "2024-02-07T22:15:47.819250Z" + "iopub.execute_input": "2024-02-07T23:56:18.278300Z", + "iopub.status.busy": "2024-02-07T23:56:18.277998Z", + "iopub.status.idle": "2024-02-07T23:56:18.282388Z", + "shell.execute_reply": "2024-02-07T23:56:18.281980Z" } }, "outputs": [], @@ -733,10 +743,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:47.821661Z", - "iopub.status.busy": "2024-02-07T22:15:47.821392Z", - "iopub.status.idle": "2024-02-07T22:15:47.824553Z", - "shell.execute_reply": "2024-02-07T22:15:47.824004Z" + "iopub.execute_input": "2024-02-07T23:56:18.284367Z", + "iopub.status.busy": "2024-02-07T23:56:18.284047Z", + "iopub.status.idle": "2024-02-07T23:56:18.286987Z", + "shell.execute_reply": "2024-02-07T23:56:18.286563Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index bd98ee443..74d92a714 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:50.447928Z", - "iopub.status.busy": "2024-02-07T22:15:50.447758Z", - "iopub.status.idle": "2024-02-07T22:15:51.564104Z", - "shell.execute_reply": "2024-02-07T22:15:51.563498Z" + "iopub.execute_input": "2024-02-07T23:56:20.562684Z", + "iopub.status.busy": "2024-02-07T23:56:20.562520Z", + "iopub.status.idle": "2024-02-07T23:56:21.638239Z", + "shell.execute_reply": "2024-02-07T23:56:21.637675Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:51.566518Z", - "iopub.status.busy": "2024-02-07T22:15:51.566240Z", - "iopub.status.idle": "2024-02-07T22:15:52.801961Z", - "shell.execute_reply": "2024-02-07T22:15:52.801317Z" + "iopub.execute_input": "2024-02-07T23:56:21.640925Z", + "iopub.status.busy": "2024-02-07T23:56:21.640505Z", + "iopub.status.idle": "2024-02-07T23:56:22.688443Z", + "shell.execute_reply": "2024-02-07T23:56:22.687829Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.804419Z", - "iopub.status.busy": "2024-02-07T22:15:52.804219Z", - "iopub.status.idle": "2024-02-07T22:15:52.807410Z", - "shell.execute_reply": "2024-02-07T22:15:52.806937Z" + "iopub.execute_input": "2024-02-07T23:56:22.690921Z", + "iopub.status.busy": "2024-02-07T23:56:22.690540Z", + "iopub.status.idle": "2024-02-07T23:56:22.693716Z", + "shell.execute_reply": "2024-02-07T23:56:22.693271Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.809336Z", - "iopub.status.busy": "2024-02-07T22:15:52.809039Z", - "iopub.status.idle": "2024-02-07T22:15:52.815182Z", - "shell.execute_reply": "2024-02-07T22:15:52.814647Z" + "iopub.execute_input": "2024-02-07T23:56:22.695625Z", + "iopub.status.busy": "2024-02-07T23:56:22.695302Z", + "iopub.status.idle": "2024-02-07T23:56:22.701268Z", + "shell.execute_reply": "2024-02-07T23:56:22.700863Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:52.817367Z", - "iopub.status.busy": "2024-02-07T22:15:52.816989Z", - "iopub.status.idle": "2024-02-07T22:15:53.308064Z", - "shell.execute_reply": "2024-02-07T22:15:53.307480Z" + "iopub.execute_input": "2024-02-07T23:56:22.703196Z", + "iopub.status.busy": "2024-02-07T23:56:22.702938Z", + "iopub.status.idle": "2024-02-07T23:56:23.186186Z", + "shell.execute_reply": "2024-02-07T23:56:23.185652Z" }, "scrolled": true }, @@ -238,10 +238,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.310939Z", - "iopub.status.busy": "2024-02-07T22:15:53.310566Z", - "iopub.status.idle": "2024-02-07T22:15:53.315939Z", - "shell.execute_reply": "2024-02-07T22:15:53.315394Z" + "iopub.execute_input": "2024-02-07T23:56:23.188813Z", + "iopub.status.busy": "2024-02-07T23:56:23.188488Z", + "iopub.status.idle": "2024-02-07T23:56:23.193539Z", + "shell.execute_reply": "2024-02-07T23:56:23.193126Z" } }, "outputs": [ @@ -493,10 +493,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.317995Z", - "iopub.status.busy": "2024-02-07T22:15:53.317689Z", - "iopub.status.idle": "2024-02-07T22:15:53.321394Z", - "shell.execute_reply": "2024-02-07T22:15:53.320912Z" + "iopub.execute_input": "2024-02-07T23:56:23.195528Z", + "iopub.status.busy": "2024-02-07T23:56:23.195222Z", + "iopub.status.idle": "2024-02-07T23:56:23.199084Z", + "shell.execute_reply": "2024-02-07T23:56:23.198542Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:53.323449Z", - "iopub.status.busy": "2024-02-07T22:15:53.323111Z", - "iopub.status.idle": "2024-02-07T22:15:54.015545Z", - "shell.execute_reply": "2024-02-07T22:15:54.014869Z" + "iopub.execute_input": "2024-02-07T23:56:23.201119Z", + "iopub.status.busy": "2024-02-07T23:56:23.200823Z", + "iopub.status.idle": "2024-02-07T23:56:23.836419Z", + "shell.execute_reply": "2024-02-07T23:56:23.835758Z" } }, "outputs": [ @@ -612,10 +612,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.018097Z", - "iopub.status.busy": "2024-02-07T22:15:54.017708Z", - "iopub.status.idle": "2024-02-07T22:15:54.187878Z", - "shell.execute_reply": "2024-02-07T22:15:54.187411Z" + "iopub.execute_input": "2024-02-07T23:56:23.838728Z", + "iopub.status.busy": "2024-02-07T23:56:23.838526Z", + "iopub.status.idle": "2024-02-07T23:56:23.988464Z", + "shell.execute_reply": "2024-02-07T23:56:23.988047Z" } }, "outputs": [ @@ -656,10 +656,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.189935Z", - "iopub.status.busy": "2024-02-07T22:15:54.189745Z", - "iopub.status.idle": "2024-02-07T22:15:54.194222Z", - "shell.execute_reply": "2024-02-07T22:15:54.193779Z" + "iopub.execute_input": "2024-02-07T23:56:23.990471Z", + "iopub.status.busy": "2024-02-07T23:56:23.990165Z", + "iopub.status.idle": "2024-02-07T23:56:23.994186Z", + "shell.execute_reply": "2024-02-07T23:56:23.993763Z" } }, "outputs": [ @@ -696,10 +696,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.196260Z", - "iopub.status.busy": "2024-02-07T22:15:54.195894Z", - "iopub.status.idle": "2024-02-07T22:15:54.649689Z", - "shell.execute_reply": "2024-02-07T22:15:54.649109Z" + "iopub.execute_input": "2024-02-07T23:56:23.996117Z", + "iopub.status.busy": "2024-02-07T23:56:23.995822Z", + "iopub.status.idle": "2024-02-07T23:56:24.434799Z", + "shell.execute_reply": "2024-02-07T23:56:24.434220Z" } }, "outputs": [ @@ -758,10 +758,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.652534Z", - "iopub.status.busy": "2024-02-07T22:15:54.652158Z", - "iopub.status.idle": "2024-02-07T22:15:54.984855Z", - "shell.execute_reply": "2024-02-07T22:15:54.984298Z" + "iopub.execute_input": "2024-02-07T23:56:24.437281Z", + "iopub.status.busy": "2024-02-07T23:56:24.436886Z", + "iopub.status.idle": "2024-02-07T23:56:24.768783Z", + "shell.execute_reply": "2024-02-07T23:56:24.768200Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:54.987521Z", - "iopub.status.busy": "2024-02-07T22:15:54.987189Z", - "iopub.status.idle": "2024-02-07T22:15:55.470495Z", - "shell.execute_reply": "2024-02-07T22:15:55.469879Z" + "iopub.execute_input": "2024-02-07T23:56:24.771064Z", + "iopub.status.busy": "2024-02-07T23:56:24.770889Z", + "iopub.status.idle": "2024-02-07T23:56:25.250367Z", + "shell.execute_reply": "2024-02-07T23:56:25.249843Z" } }, "outputs": [ @@ -858,10 +858,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:55.475223Z", - "iopub.status.busy": "2024-02-07T22:15:55.474845Z", - "iopub.status.idle": "2024-02-07T22:15:55.916362Z", - "shell.execute_reply": "2024-02-07T22:15:55.915780Z" + "iopub.execute_input": "2024-02-07T23:56:25.254651Z", + "iopub.status.busy": "2024-02-07T23:56:25.254288Z", + "iopub.status.idle": "2024-02-07T23:56:25.662812Z", + "shell.execute_reply": "2024-02-07T23:56:25.662264Z" } }, "outputs": [ @@ -921,10 +921,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:55.920172Z", - "iopub.status.busy": "2024-02-07T22:15:55.919985Z", - "iopub.status.idle": "2024-02-07T22:15:56.369242Z", - "shell.execute_reply": "2024-02-07T22:15:56.368651Z" + "iopub.execute_input": "2024-02-07T23:56:25.666313Z", + "iopub.status.busy": "2024-02-07T23:56:25.665961Z", + "iopub.status.idle": "2024-02-07T23:56:26.090422Z", + "shell.execute_reply": "2024-02-07T23:56:26.089821Z" } }, "outputs": [ @@ -967,10 +967,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.372426Z", - "iopub.status.busy": "2024-02-07T22:15:56.372048Z", - "iopub.status.idle": "2024-02-07T22:15:56.587116Z", - "shell.execute_reply": "2024-02-07T22:15:56.586546Z" + "iopub.execute_input": "2024-02-07T23:56:26.093719Z", + "iopub.status.busy": "2024-02-07T23:56:26.093346Z", + "iopub.status.idle": "2024-02-07T23:56:26.281170Z", + "shell.execute_reply": "2024-02-07T23:56:26.280571Z" } }, "outputs": [ @@ -1013,10 +1013,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.589448Z", - "iopub.status.busy": "2024-02-07T22:15:56.589113Z", - "iopub.status.idle": "2024-02-07T22:15:56.788433Z", - "shell.execute_reply": "2024-02-07T22:15:56.787907Z" + "iopub.execute_input": "2024-02-07T23:56:26.283283Z", + "iopub.status.busy": "2024-02-07T23:56:26.283103Z", + "iopub.status.idle": "2024-02-07T23:56:26.463218Z", + "shell.execute_reply": "2024-02-07T23:56:26.462690Z" } }, "outputs": [ @@ -1051,10 +1051,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:56.790786Z", - "iopub.status.busy": "2024-02-07T22:15:56.790442Z", - "iopub.status.idle": "2024-02-07T22:15:56.793953Z", - "shell.execute_reply": "2024-02-07T22:15:56.793508Z" + "iopub.execute_input": "2024-02-07T23:56:26.465892Z", + "iopub.status.busy": "2024-02-07T23:56:26.465487Z", + "iopub.status.idle": "2024-02-07T23:56:26.468734Z", + "shell.execute_reply": "2024-02-07T23:56:26.468320Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 437a7de66..fb31fe1bb 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -730,16 +730,16 @@

2. Pre-process the Cifar10 dataset

-
0%| | 458752/170498071 [00:00&lt;00:37, 4545271.76it/s]
+
1%| | 1802240/170498071 [00:00&lt;00:09, 17679640.48it/s]

</pre>

-
0%| | 458752/170498071 [00:00<00:37, 4545271.76it/s]
+
1%| | 1802240/170498071 [00:00<00:09, 17679640.48it/s]

end{sphinxVerbatim}

-

0%| | 458752/170498071 [00:00<00:37, 4545271.76it/s]

+

1%| | 1802240/170498071 [00:00<00:09, 17679640.48it/s]

-
2%|▏ | 3309568/170498071 [00:00&lt;00:08, 18583304.64it/s]
+
7%|▋ | 12124160/170498071 [00:00&lt;00:02, 67499577.03it/s]

</pre>

-
2%|▏ | 3309568/170498071 [00:00<00:08, 18583304.64it/s]
+
7%|▋ | 12124160/170498071 [00:00<00:02, 67499577.03it/s]

end{sphinxVerbatim}

-

2%|▏ | 3309568/170498071 [00:00<00:08, 18583304.64it/s]

+

7%|▋ | 12124160/170498071 [00:00<00:02, 67499577.03it/s]

-
4%|▎ | 6193152/170498071 [00:00&lt;00:07, 23121327.17it/s]
+
13%|█▎ | 23003136/170498071 [00:00&lt;00:01, 86235389.73it/s]

</pre>

-
4%|▎ | 6193152/170498071 [00:00<00:07, 23121327.17it/s]
+
13%|█▎ | 23003136/170498071 [00:00<00:01, 86235389.73it/s]

end{sphinxVerbatim}

-

4%|▎ | 6193152/170498071 [00:00<00:07, 23121327.17it/s]

+

13%|█▎ | 23003136/170498071 [00:00<00:01, 86235389.73it/s]

-
5%|▌ | 9076736/170498071 [00:00&lt;00:06, 25243096.18it/s]
+
19%|█▉ | 32899072/170498071 [00:00&lt;00:01, 91230976.11it/s]

</pre>

-
5%|▌ | 9076736/170498071 [00:00<00:06, 25243096.18it/s]
+
19%|█▉ | 32899072/170498071 [00:00<00:01, 91230976.11it/s]

end{sphinxVerbatim}

-

5%|▌ | 9076736/170498071 [00:00<00:06, 25243096.18it/s]

+

19%|█▉ | 32899072/170498071 [00:00<00:01, 91230976.11it/s]

-
7%|▋ | 11960320/170498071 [00:00&lt;00:05, 26449931.31it/s]
+
25%|██▌ | 43384832/170498071 [00:00&lt;00:01, 96066497.78it/s]

</pre>

-
7%|▋ | 11960320/170498071 [00:00<00:05, 26449931.31it/s]
+
25%|██▌ | 43384832/170498071 [00:00<00:01, 96066497.78it/s]

end{sphinxVerbatim}

-

7%|▋ | 11960320/170498071 [00:00<00:05, 26449931.31it/s]

+

25%|██▌ | 43384832/170498071 [00:00<00:01, 96066497.78it/s]

-
9%|▊ | 14843904/170498071 [00:00&lt;00:05, 27180695.70it/s]
+
32%|███▏ | 53739520/170498071 [00:00&lt;00:01, 98584790.93it/s]

</pre>

-
9%|▊ | 14843904/170498071 [00:00<00:05, 27180695.70it/s]
+
32%|███▏ | 53739520/170498071 [00:00<00:01, 98584790.93it/s]

end{sphinxVerbatim}

-

9%|▊ | 14843904/170498071 [00:00<00:05, 27180695.70it/s]

+

32%|███▏ | 53739520/170498071 [00:00<00:01, 98584790.93it/s]

-
10%|█ | 17727488/170498071 [00:00&lt;00:05, 27645215.87it/s]
+
38%|███▊ | 64028672/170498071 [00:00&lt;00:01, 99955094.01it/s]

</pre>

-
10%|█ | 17727488/170498071 [00:00<00:05, 27645215.87it/s]
+
38%|███▊ | 64028672/170498071 [00:00<00:01, 99955094.01it/s]

end{sphinxVerbatim}

-

10%|█ | 17727488/170498071 [00:00<00:05, 27645215.87it/s]

+

38%|███▊ | 64028672/170498071 [00:00<00:01, 99955094.01it/s]

-
12%|█▏ | 20611072/170498071 [00:00&lt;00:05, 27960133.49it/s]
+
44%|████▍ | 74874880/170498071 [00:00&lt;00:00, 102643580.09it/s]

</pre>

-
12%|█▏ | 20611072/170498071 [00:00<00:05, 27960133.49it/s]
+
44%|████▍ | 74874880/170498071 [00:00<00:00, 102643580.09it/s]

end{sphinxVerbatim}

-

12%|█▏ | 20611072/170498071 [00:00<00:05, 27960133.49it/s]

+

44%|████▍ | 74874880/170498071 [00:00<00:00, 102643580.09it/s]

-
14%|█▍ | 23494656/170498071 [00:00&lt;00:05, 28127845.66it/s]
+
50%|████▉ | 85164032/170498071 [00:00&lt;00:00, 101368779.28it/s]

</pre>

-
14%|█▍ | 23494656/170498071 [00:00<00:05, 28127845.66it/s]
+
50%|████▉ | 85164032/170498071 [00:00<00:00, 101368779.28it/s]

end{sphinxVerbatim}

-

14%|█▍ | 23494656/170498071 [00:00<00:05, 28127845.66it/s]

+

50%|████▉ | 85164032/170498071 [00:00<00:00, 101368779.28it/s]

-
15%|█▌ | 26378240/170498071 [00:01&lt;00:05, 28294948.20it/s]
+
57%|█████▋ | 96403456/170498071 [00:01&lt;00:00, 104721663.01it/s]

</pre>

-
15%|█▌ | 26378240/170498071 [00:01<00:05, 28294948.20it/s]
+
57%|█████▋ | 96403456/170498071 [00:01<00:00, 104721663.01it/s]

end{sphinxVerbatim}

-

15%|█▌ | 26378240/170498071 [00:01<00:05, 28294948.20it/s]

+

57%|█████▋ | 96403456/170498071 [00:01<00:00, 104721663.01it/s]

-
17%|█▋ | 29261824/170498071 [00:01&lt;00:04, 28399986.90it/s]
+
63%|██████▎ | 106889216/170498071 [00:01&lt;00:00, 102308446.63it/s]

</pre>

-
17%|█▋ | 29261824/170498071 [00:01<00:04, 28399986.90it/s]
+
63%|██████▎ | 106889216/170498071 [00:01<00:00, 102308446.63it/s]

end{sphinxVerbatim}

-

17%|█▋ | 29261824/170498071 [00:01<00:04, 28399986.90it/s]

+

63%|██████▎ | 106889216/170498071 [00:01<00:00, 102308446.63it/s]

-
19%|█▉ | 32407552/170498071 [00:01&lt;00:04, 29288533.69it/s]
+
69%|██████▉ | 118259712/170498071 [00:01&lt;00:00, 105670851.32it/s]

</pre>

-
19%|█▉ | 32407552/170498071 [00:01<00:04, 29288533.69it/s]
+
69%|██████▉ | 118259712/170498071 [00:01<00:00, 105670851.32it/s]

end{sphinxVerbatim}

-

19%|█▉ | 32407552/170498071 [00:01<00:04, 29288533.69it/s]

+

69%|██████▉ | 118259712/170498071 [00:01<00:00, 105670851.32it/s]

-
22%|██▏ | 37421056/170498071 [00:01&lt;00:03, 35559850.79it/s]
+
76%|███████▌ | 128876544/170498071 [00:01&lt;00:00, 102956737.54it/s]

</pre>

-
22%|██▏ | 37421056/170498071 [00:01<00:03, 35559850.79it/s]
+
76%|███████▌ | 128876544/170498071 [00:01<00:00, 102956737.54it/s]

end{sphinxVerbatim}

-

22%|██▏ | 37421056/170498071 [00:01<00:03, 35559850.79it/s]

+

76%|███████▌ | 128876544/170498071 [00:01<00:00, 102956737.54it/s]

-
26%|██▌ | 43909120/170498071 [00:01&lt;00:02, 44377286.88it/s]
+
82%|████████▏ | 140181504/170498071 [00:01&lt;00:00, 105850590.83it/s]

</pre>

-
26%|██▌ | 43909120/170498071 [00:01<00:02, 44377286.88it/s]
+
82%|████████▏ | 140181504/170498071 [00:01<00:00, 105850590.83it/s]

end{sphinxVerbatim}

-

26%|██▌ | 43909120/170498071 [00:01<00:02, 44377286.88it/s]

+

82%|████████▏ | 140181504/170498071 [00:01<00:00, 105850590.83it/s]

-
31%|███ | 52068352/170498071 [00:01&lt;00:02, 55525436.53it/s]
+
88%|████████▊ | 150798336/170498071 [00:01&lt;00:00, 103312662.70it/s]

</pre>

-
31%|███ | 52068352/170498071 [00:01<00:02, 55525436.53it/s]
+
88%|████████▊ | 150798336/170498071 [00:01<00:00, 103312662.70it/s]

end{sphinxVerbatim}

-

31%|███ | 52068352/170498071 [00:01<00:02, 55525436.53it/s]

+

88%|████████▊ | 150798336/170498071 [00:01<00:00, 103312662.70it/s]

-
36%|███▌ | 61669376/170498071 [00:01&lt;00:01, 67657342.80it/s]
+
95%|█████████▍| 161841152/170498071 [00:01&lt;00:00, 105282046.90it/s]

</pre>

-
36%|███▌ | 61669376/170498071 [00:01<00:01, 67657342.80it/s]
+
95%|█████████▍| 161841152/170498071 [00:01<00:00, 105282046.90it/s]

end{sphinxVerbatim}

-

36%|███▌ | 61669376/170498071 [00:01<00:01, 67657342.80it/s]

- - -
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
43%|████▎ | 73203712/170498071 [00:01&lt;00:01, 81953829.80it/s]
-

</pre>

-
-
-
43%|████▎ | 73203712/170498071 [00:01<00:01, 81953829.80it/s]
-

end{sphinxVerbatim}

-
-
-
-

43%|████▎ | 73203712/170498071 [00:01<00:01, 81953829.80it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
50%|████▉ | 84672512/170498071 [00:01&lt;00:00, 91732954.67it/s]
-

</pre>

-
-
-
50%|████▉ | 84672512/170498071 [00:01<00:00, 91732954.67it/s]
-

end{sphinxVerbatim}

-
-
-
-

50%|████▉ | 84672512/170498071 [00:01<00:00, 91732954.67it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
56%|█████▋ | 96272384/170498071 [00:01&lt;00:00, 98948948.10it/s]
-

</pre>

-
-
-
56%|█████▋ | 96272384/170498071 [00:01<00:00, 98948948.10it/s]
-

end{sphinxVerbatim}

-
-
-
-

56%|█████▋ | 96272384/170498071 [00:01<00:00, 98948948.10it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
63%|██████▎ | 107741184/170498071 [00:02&lt;00:00, 103611942.25it/s]
-

</pre>

-
-
-
63%|██████▎ | 107741184/170498071 [00:02<00:00, 103611942.25it/s]
-

end{sphinxVerbatim}

-
-
-
-

63%|██████▎ | 107741184/170498071 [00:02<00:00, 103611942.25it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
70%|██████▉ | 119275520/170498071 [00:02&lt;00:00, 107040423.70it/s]
-

</pre>

-
-
-
70%|██████▉ | 119275520/170498071 [00:02<00:00, 107040423.70it/s]
-

end{sphinxVerbatim}

-
-
-
-

70%|██████▉ | 119275520/170498071 [00:02<00:00, 107040423.70it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
77%|███████▋ | 130777088/170498071 [00:02&lt;00:00, 109403134.82it/s]
-

</pre>

-
-
-
77%|███████▋ | 130777088/170498071 [00:02<00:00, 109403134.82it/s]
-

end{sphinxVerbatim}

-
-
-
-

77%|███████▋ | 130777088/170498071 [00:02<00:00, 109403134.82it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
83%|████████▎ | 142311424/170498071 [00:02&lt;00:00, 111129043.58it/s]
-

</pre>

-
-
-
83%|████████▎ | 142311424/170498071 [00:02<00:00, 111129043.58it/s]
-

end{sphinxVerbatim}

-
-
-
-

83%|████████▎ | 142311424/170498071 [00:02<00:00, 111129043.58it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
90%|█████████ | 153812992/170498071 [00:02&lt;00:00, 112217547.05it/s]
-

</pre>

-
-
-
90%|█████████ | 153812992/170498071 [00:02<00:00, 112217547.05it/s]
-

end{sphinxVerbatim}

-
-
-
-

90%|█████████ | 153812992/170498071 [00:02<00:00, 112217547.05it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
97%|█████████▋| 165412864/170498071 [00:02&lt;00:00, 113296111.93it/s]
-

</pre>

-
-
-
97%|█████████▋| 165412864/170498071 [00:02<00:00, 113296111.93it/s]
-

end{sphinxVerbatim}

-
-
-
-

97%|█████████▋| 165412864/170498071 [00:02<00:00, 113296111.93it/s]

+

95%|█████████▍| 161841152/170498071 [00:01<00:00, 105282046.90it/s]

-
100%|██████████| 170498071/170498071 [00:02&lt;00:00, 66708420.75it/s]
+
100%|██████████| 170498071/170498071 [00:01&lt;00:00, 99133860.68it/s]

</pre>

-
100%|██████████| 170498071/170498071 [00:02<00:00, 66708420.75it/s]
+
100%|██████████| 170498071/170498071 [00:01<00:00, 99133860.68it/s]

end{sphinxVerbatim}

-

100%|██████████| 170498071/170498071 [00:02<00:00, 66708420.75it/s]

+

100%|██████████| 170498071/170498071 [00:01<00:00, 99133860.68it/s]

-
+
@@ -1753,7 +1519,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index a17f8d98c..216232f6b 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:15:59.020657Z", - "iopub.status.busy": "2024-02-07T22:15:59.020490Z", - "iopub.status.idle": "2024-02-07T22:16:01.758945Z", - "shell.execute_reply": "2024-02-07T22:16:01.758382Z" + "iopub.execute_input": "2024-02-07T23:56:28.439526Z", + "iopub.status.busy": "2024-02-07T23:56:28.439052Z", + "iopub.status.idle": "2024-02-07T23:56:31.054002Z", + "shell.execute_reply": "2024-02-07T23:56:31.053462Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:01.761638Z", - "iopub.status.busy": "2024-02-07T22:16:01.761143Z", - "iopub.status.idle": "2024-02-07T22:16:02.096462Z", - "shell.execute_reply": "2024-02-07T22:16:02.095807Z" + "iopub.execute_input": "2024-02-07T23:56:31.056612Z", + "iopub.status.busy": "2024-02-07T23:56:31.056130Z", + "iopub.status.idle": "2024-02-07T23:56:31.365716Z", + "shell.execute_reply": "2024-02-07T23:56:31.365105Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:02.099057Z", - "iopub.status.busy": "2024-02-07T22:16:02.098634Z", - "iopub.status.idle": "2024-02-07T22:16:02.102883Z", - "shell.execute_reply": "2024-02-07T22:16:02.102346Z" + "iopub.execute_input": "2024-02-07T23:56:31.368552Z", + "iopub.status.busy": "2024-02-07T23:56:31.368013Z", + "iopub.status.idle": "2024-02-07T23:56:31.372079Z", + "shell.execute_reply": "2024-02-07T23:56:31.371533Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:02.105213Z", - "iopub.status.busy": "2024-02-07T22:16:02.104839Z", - "iopub.status.idle": "2024-02-07T22:16:07.269555Z", - "shell.execute_reply": "2024-02-07T22:16:07.268968Z" + "iopub.execute_input": "2024-02-07T23:56:31.374309Z", + "iopub.status.busy": "2024-02-07T23:56:31.373857Z", + "iopub.status.idle": "2024-02-07T23:56:35.799516Z", + "shell.execute_reply": "2024-02-07T23:56:35.798918Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 458752/170498071 [00:00<00:37, 4545271.76it/s]" + " 1%| | 1802240/170498071 [00:00<00:09, 17679640.48it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3309568/170498071 [00:00<00:08, 18583304.64it/s]" + " 7%|▋ | 12124160/170498071 [00:00<00:02, 67499577.03it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 6193152/170498071 [00:00<00:07, 23121327.17it/s]" + " 13%|█▎ | 23003136/170498071 [00:00<00:01, 86235389.73it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 9076736/170498071 [00:00<00:06, 25243096.18it/s]" + " 19%|█▉ | 32899072/170498071 [00:00<00:01, 91230976.11it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11960320/170498071 [00:00<00:05, 26449931.31it/s]" + " 25%|██▌ | 43384832/170498071 [00:00<00:01, 96066497.78it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 14843904/170498071 [00:00<00:05, 27180695.70it/s]" + " 32%|███▏ | 53739520/170498071 [00:00<00:01, 98584790.93it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17727488/170498071 [00:00<00:05, 27645215.87it/s]" + " 38%|███▊ | 64028672/170498071 [00:00<00:01, 99955094.01it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20611072/170498071 [00:00<00:05, 27960133.49it/s]" + " 44%|████▍ | 74874880/170498071 [00:00<00:00, 102643580.09it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 23494656/170498071 [00:00<00:05, 28127845.66it/s]" + " 50%|████▉ | 85164032/170498071 [00:00<00:00, 101368779.28it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 26378240/170498071 [00:01<00:05, 28294948.20it/s]" + " 57%|█████▋ | 96403456/170498071 [00:01<00:00, 104721663.01it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29261824/170498071 [00:01<00:04, 28399986.90it/s]" + " 63%|██████▎ | 106889216/170498071 [00:01<00:00, 102308446.63it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32407552/170498071 [00:01<00:04, 29288533.69it/s]" + " 69%|██████▉ | 118259712/170498071 [00:01<00:00, 105670851.32it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37421056/170498071 [00:01<00:03, 35559850.79it/s]" + " 76%|███████▌ | 128876544/170498071 [00:01<00:00, 102956737.54it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43909120/170498071 [00:01<00:02, 44377286.88it/s]" + " 82%|████████▏ | 140181504/170498071 [00:01<00:00, 105850590.83it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52068352/170498071 [00:01<00:02, 55525436.53it/s]" + " 88%|████████▊ | 150798336/170498071 [00:01<00:00, 103312662.70it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61669376/170498071 [00:01<00:01, 67657342.80it/s]" + " 95%|█████████▍| 161841152/170498071 [00:01<00:00, 105282046.90it/s]" ] }, { @@ -380,79 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73203712/170498071 [00:01<00:01, 81953829.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 84672512/170498071 [00:01<00:00, 91732954.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 96272384/170498071 [00:01<00:00, 98948948.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107741184/170498071 [00:02<00:00, 103611942.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 119275520/170498071 [00:02<00:00, 107040423.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 130777088/170498071 [00:02<00:00, 109403134.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 142311424/170498071 [00:02<00:00, 111129043.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 153812992/170498071 [00:02<00:00, 112217547.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165412864/170498071 [00:02<00:00, 113296111.93it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 66708420.75it/s] " + "100%|██████████| 170498071/170498071 [00:01<00:00, 99133860.68it/s] " ] }, { @@ -570,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.271763Z", - "iopub.status.busy": "2024-02-07T22:16:07.271561Z", - "iopub.status.idle": "2024-02-07T22:16:07.276376Z", - "shell.execute_reply": "2024-02-07T22:16:07.275905Z" + "iopub.execute_input": "2024-02-07T23:56:35.802008Z", + "iopub.status.busy": "2024-02-07T23:56:35.801591Z", + "iopub.status.idle": "2024-02-07T23:56:35.806302Z", + "shell.execute_reply": "2024-02-07T23:56:35.805886Z" }, "nbsphinx": "hidden" }, @@ -624,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.278274Z", - "iopub.status.busy": "2024-02-07T22:16:07.277964Z", - "iopub.status.idle": "2024-02-07T22:16:07.830552Z", - "shell.execute_reply": "2024-02-07T22:16:07.829958Z" + "iopub.execute_input": "2024-02-07T23:56:35.808410Z", + "iopub.status.busy": "2024-02-07T23:56:35.808083Z", + "iopub.status.idle": "2024-02-07T23:56:36.353076Z", + "shell.execute_reply": "2024-02-07T23:56:36.352508Z" } }, "outputs": [ @@ -660,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:07.832750Z", - "iopub.status.busy": "2024-02-07T22:16:07.832421Z", - "iopub.status.idle": "2024-02-07T22:16:08.355543Z", - "shell.execute_reply": "2024-02-07T22:16:08.354936Z" + "iopub.execute_input": "2024-02-07T23:56:36.355346Z", + "iopub.status.busy": "2024-02-07T23:56:36.354914Z", + "iopub.status.idle": "2024-02-07T23:56:36.873202Z", + "shell.execute_reply": "2024-02-07T23:56:36.872720Z" } }, "outputs": [ @@ -701,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:08.357548Z", - "iopub.status.busy": "2024-02-07T22:16:08.357358Z", - "iopub.status.idle": "2024-02-07T22:16:08.361026Z", - "shell.execute_reply": "2024-02-07T22:16:08.360580Z" + "iopub.execute_input": "2024-02-07T23:56:36.875189Z", + "iopub.status.busy": "2024-02-07T23:56:36.875002Z", + "iopub.status.idle": "2024-02-07T23:56:36.878463Z", + "shell.execute_reply": "2024-02-07T23:56:36.878026Z" } }, "outputs": [], @@ -727,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:08.362757Z", - "iopub.status.busy": "2024-02-07T22:16:08.362583Z", - "iopub.status.idle": "2024-02-07T22:16:20.966537Z", - "shell.execute_reply": "2024-02-07T22:16:20.965959Z" + "iopub.execute_input": "2024-02-07T23:56:36.880489Z", + "iopub.status.busy": "2024-02-07T23:56:36.880123Z", + "iopub.status.idle": "2024-02-07T23:56:49.380652Z", + "shell.execute_reply": "2024-02-07T23:56:49.380045Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "066739a4f86b491c983744119357f90a", + "model_id": "104aeedd0a604fe19bdfe63c8894bf8c", "version_major": 2, "version_minor": 0 }, @@ -796,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:20.968884Z", - "iopub.status.busy": "2024-02-07T22:16:20.968576Z", - "iopub.status.idle": "2024-02-07T22:16:22.543906Z", - "shell.execute_reply": "2024-02-07T22:16:22.543395Z" + "iopub.execute_input": "2024-02-07T23:56:49.383110Z", + "iopub.status.busy": "2024-02-07T23:56:49.382718Z", + "iopub.status.idle": "2024-02-07T23:56:50.973179Z", + "shell.execute_reply": "2024-02-07T23:56:50.972522Z" } }, "outputs": [ @@ -843,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:22.546319Z", - "iopub.status.busy": "2024-02-07T22:16:22.545932Z", - "iopub.status.idle": "2024-02-07T22:16:22.972593Z", - "shell.execute_reply": "2024-02-07T22:16:22.971973Z" + "iopub.execute_input": "2024-02-07T23:56:50.975995Z", + "iopub.status.busy": "2024-02-07T23:56:50.975507Z", + "iopub.status.idle": "2024-02-07T23:56:51.398007Z", + "shell.execute_reply": "2024-02-07T23:56:51.397417Z" } }, "outputs": [ @@ -882,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:22.974994Z", - "iopub.status.busy": "2024-02-07T22:16:22.974798Z", - "iopub.status.idle": "2024-02-07T22:16:23.625666Z", - "shell.execute_reply": "2024-02-07T22:16:23.625005Z" + "iopub.execute_input": "2024-02-07T23:56:51.400644Z", + "iopub.status.busy": "2024-02-07T23:56:51.400427Z", + "iopub.status.idle": "2024-02-07T23:56:52.063578Z", + "shell.execute_reply": "2024-02-07T23:56:52.063073Z" } }, "outputs": [ @@ -935,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:23.628615Z", - "iopub.status.busy": "2024-02-07T22:16:23.628134Z", - "iopub.status.idle": "2024-02-07T22:16:23.967563Z", - "shell.execute_reply": "2024-02-07T22:16:23.967044Z" + "iopub.execute_input": "2024-02-07T23:56:52.066513Z", + "iopub.status.busy": "2024-02-07T23:56:52.066076Z", + "iopub.status.idle": "2024-02-07T23:56:52.406672Z", + "shell.execute_reply": "2024-02-07T23:56:52.406143Z" } }, "outputs": [ @@ -986,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:23.969758Z", - "iopub.status.busy": "2024-02-07T22:16:23.969409Z", - "iopub.status.idle": "2024-02-07T22:16:24.216721Z", - "shell.execute_reply": "2024-02-07T22:16:24.216100Z" + "iopub.execute_input": "2024-02-07T23:56:52.408986Z", + "iopub.status.busy": "2024-02-07T23:56:52.408584Z", + "iopub.status.idle": "2024-02-07T23:56:52.649620Z", + "shell.execute_reply": "2024-02-07T23:56:52.649039Z" } }, "outputs": [ @@ -1045,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:24.219590Z", - "iopub.status.busy": "2024-02-07T22:16:24.219135Z", - "iopub.status.idle": "2024-02-07T22:16:24.306780Z", - "shell.execute_reply": "2024-02-07T22:16:24.306300Z" + "iopub.execute_input": "2024-02-07T23:56:52.652114Z", + "iopub.status.busy": "2024-02-07T23:56:52.651671Z", + "iopub.status.idle": "2024-02-07T23:56:52.738340Z", + "shell.execute_reply": "2024-02-07T23:56:52.737865Z" } }, "outputs": [], @@ -1069,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:24.309196Z", - "iopub.status.busy": "2024-02-07T22:16:24.308835Z", - "iopub.status.idle": "2024-02-07T22:16:34.736929Z", - "shell.execute_reply": "2024-02-07T22:16:34.736344Z" + "iopub.execute_input": "2024-02-07T23:56:52.740933Z", + "iopub.status.busy": "2024-02-07T23:56:52.740576Z", + "iopub.status.idle": "2024-02-07T23:57:02.887449Z", + "shell.execute_reply": "2024-02-07T23:57:02.886809Z" } }, "outputs": [ @@ -1109,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:34.739237Z", - "iopub.status.busy": "2024-02-07T22:16:34.738874Z", - "iopub.status.idle": "2024-02-07T22:16:36.458553Z", - "shell.execute_reply": "2024-02-07T22:16:36.458057Z" + "iopub.execute_input": "2024-02-07T23:57:02.889811Z", + "iopub.status.busy": "2024-02-07T23:57:02.889604Z", + "iopub.status.idle": "2024-02-07T23:57:04.558953Z", + "shell.execute_reply": "2024-02-07T23:57:04.558434Z" } }, "outputs": [ @@ -1143,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.461205Z", - "iopub.status.busy": "2024-02-07T22:16:36.460735Z", - "iopub.status.idle": "2024-02-07T22:16:36.666276Z", - "shell.execute_reply": "2024-02-07T22:16:36.665777Z" + "iopub.execute_input": "2024-02-07T23:57:04.561779Z", + "iopub.status.busy": "2024-02-07T23:57:04.561169Z", + "iopub.status.idle": "2024-02-07T23:57:04.762684Z", + "shell.execute_reply": "2024-02-07T23:57:04.762087Z" } }, "outputs": [], @@ -1160,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.668659Z", - "iopub.status.busy": "2024-02-07T22:16:36.668383Z", - "iopub.status.idle": "2024-02-07T22:16:36.671525Z", - "shell.execute_reply": "2024-02-07T22:16:36.671082Z" + "iopub.execute_input": "2024-02-07T23:57:04.765111Z", + "iopub.status.busy": "2024-02-07T23:57:04.764820Z", + "iopub.status.idle": "2024-02-07T23:57:04.768733Z", + "shell.execute_reply": "2024-02-07T23:57:04.768164Z" } }, "outputs": [], @@ -1185,10 +1113,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:36.673575Z", - "iopub.status.busy": "2024-02-07T22:16:36.673247Z", - "iopub.status.idle": "2024-02-07T22:16:36.681282Z", - "shell.execute_reply": "2024-02-07T22:16:36.680824Z" + "iopub.execute_input": "2024-02-07T23:57:04.770734Z", + "iopub.status.busy": "2024-02-07T23:57:04.770350Z", + "iopub.status.idle": "2024-02-07T23:57:04.778478Z", + "shell.execute_reply": "2024-02-07T23:57:04.777929Z" }, "nbsphinx": "hidden" }, @@ -1233,7 +1161,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "066739a4f86b491c983744119357f90a": { + "104aeedd0a604fe19bdfe63c8894bf8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1248,16 +1176,117 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ac761b251bf94ac9b0515c7eb6ee1128", - "IPY_MODEL_a1e5d5eb3b654519bf26e1ee9e662af1", - "IPY_MODEL_ca3c262c376348b19cf1a806479ad0db" + "IPY_MODEL_37c709610cb741598ce0fdabdd829a1f", + "IPY_MODEL_3c821a5c04e64080a5c2d282f35cf242", + "IPY_MODEL_b7cdd7b611234dd7b53f21dd82a37bff" ], - "layout": "IPY_MODEL_7e888ca97822424f9f86d33f0a92b841", + "layout": "IPY_MODEL_be9dd8679029459f89b7c573872bbc61", "tabbable": null, "tooltip": null } }, - "202ea01d0cff416598f8d3b0d2955b06": { + "321e616c64df4e09a970b3f7ec6cdbe6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "37c709610cb741598ce0fdabdd829a1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_78f759523bc5438db78dcf67a29e7173", + "placeholder": "​", + "style": "IPY_MODEL_696e209101d0447183117bc6c5127dfa", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "3c821a5c04e64080a5c2d282f35cf242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69b8a3af8a8046a3a365aa1b96478a70", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_321e616c64df4e09a970b3f7ec6cdbe6", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "47cbbee3f2fb454db90d7a7c5417178e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "696e209101d0447183117bc6c5127dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69b8a3af8a8046a3a365aa1b96478a70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1310,23 +1339,7 @@ "width": null } }, - "5cce777711da484bb13b928829116979": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7e888ca97822424f9f86d33f0a92b841": { + "78f759523bc5438db78dcf67a29e7173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1379,92 +1392,7 @@ "width": null } }, - "7e950bd1f02e4e56940be6dd48802232": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1e5d5eb3b654519bf26e1ee9e662af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_202ea01d0cff416598f8d3b0d2955b06", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5cce777711da484bb13b928829116979", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "aba4b388c9074a3db4555b9eec74dbed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ac761b251bf94ac9b0515c7eb6ee1128": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0ffc152011e4313bb22edae8168843e", - "placeholder": "​", - "style": "IPY_MODEL_7e950bd1f02e4e56940be6dd48802232", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "c0ffc152011e4313bb22edae8168843e": { + "8135528dc3304bc5887731c6b6773be0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1517,7 +1445,7 @@ "width": null } }, - "ca3c262c376348b19cf1a806479ad0db": { + "b7cdd7b611234dd7b53f21dd82a37bff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1532,15 +1460,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc78c8afb40d44d585718c7ac9cacbe8", + "layout": "IPY_MODEL_8135528dc3304bc5887731c6b6773be0", "placeholder": "​", - "style": "IPY_MODEL_aba4b388c9074a3db4555b9eec74dbed", + "style": "IPY_MODEL_47cbbee3f2fb454db90d7a7c5417178e", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 300MB/s]" + "value": " 102M/102M [00:00<00:00, 208MB/s]" } }, - "fc78c8afb40d44d585718c7ac9cacbe8": { + "be9dd8679029459f89b7c573872bbc61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 6460b1da7..f14378353 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:41.001585Z", - "iopub.status.busy": "2024-02-07T22:16:41.001035Z", - "iopub.status.idle": "2024-02-07T22:16:42.113233Z", - "shell.execute_reply": "2024-02-07T22:16:42.112677Z" + "iopub.execute_input": "2024-02-07T23:57:09.007821Z", + "iopub.status.busy": "2024-02-07T23:57:09.007615Z", + "iopub.status.idle": "2024-02-07T23:57:10.072485Z", + "shell.execute_reply": "2024-02-07T23:57:10.071948Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.115952Z", - "iopub.status.busy": "2024-02-07T22:16:42.115427Z", - "iopub.status.idle": "2024-02-07T22:16:42.133567Z", - "shell.execute_reply": "2024-02-07T22:16:42.133124Z" + "iopub.execute_input": "2024-02-07T23:57:10.074834Z", + "iopub.status.busy": "2024-02-07T23:57:10.074594Z", + "iopub.status.idle": "2024-02-07T23:57:10.092876Z", + "shell.execute_reply": "2024-02-07T23:57:10.092428Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.135930Z", - "iopub.status.busy": "2024-02-07T22:16:42.135528Z", - "iopub.status.idle": "2024-02-07T22:16:42.138579Z", - "shell.execute_reply": "2024-02-07T22:16:42.138043Z" + "iopub.execute_input": "2024-02-07T23:57:10.095294Z", + "iopub.status.busy": "2024-02-07T23:57:10.094881Z", + "iopub.status.idle": "2024-02-07T23:57:10.097914Z", + "shell.execute_reply": "2024-02-07T23:57:10.097396Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.140671Z", - "iopub.status.busy": "2024-02-07T22:16:42.140370Z", - "iopub.status.idle": "2024-02-07T22:16:42.204946Z", - "shell.execute_reply": "2024-02-07T22:16:42.204403Z" + "iopub.execute_input": "2024-02-07T23:57:10.099990Z", + "iopub.status.busy": "2024-02-07T23:57:10.099668Z", + "iopub.status.idle": "2024-02-07T23:57:10.155253Z", + "shell.execute_reply": "2024-02-07T23:57:10.154741Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.207190Z", - "iopub.status.busy": "2024-02-07T22:16:42.206799Z", - "iopub.status.idle": "2024-02-07T22:16:42.385929Z", - "shell.execute_reply": "2024-02-07T22:16:42.385435Z" + "iopub.execute_input": "2024-02-07T23:57:10.157365Z", + "iopub.status.busy": "2024-02-07T23:57:10.156978Z", + "iopub.status.idle": "2024-02-07T23:57:10.331972Z", + "shell.execute_reply": "2024-02-07T23:57:10.331386Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.388432Z", - "iopub.status.busy": "2024-02-07T22:16:42.388089Z", - "iopub.status.idle": "2024-02-07T22:16:42.607298Z", - "shell.execute_reply": "2024-02-07T22:16:42.606720Z" + "iopub.execute_input": "2024-02-07T23:57:10.334267Z", + "iopub.status.busy": "2024-02-07T23:57:10.334002Z", + "iopub.status.idle": "2024-02-07T23:57:10.541166Z", + "shell.execute_reply": "2024-02-07T23:57:10.540646Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.609580Z", - "iopub.status.busy": "2024-02-07T22:16:42.609148Z", - "iopub.status.idle": "2024-02-07T22:16:42.613684Z", - "shell.execute_reply": "2024-02-07T22:16:42.613262Z" + "iopub.execute_input": "2024-02-07T23:57:10.543123Z", + "iopub.status.busy": "2024-02-07T23:57:10.542912Z", + "iopub.status.idle": "2024-02-07T23:57:10.547063Z", + "shell.execute_reply": "2024-02-07T23:57:10.546643Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.615732Z", - "iopub.status.busy": "2024-02-07T22:16:42.615409Z", - "iopub.status.idle": "2024-02-07T22:16:42.621064Z", - "shell.execute_reply": "2024-02-07T22:16:42.620649Z" + "iopub.execute_input": "2024-02-07T23:57:10.549116Z", + "iopub.status.busy": "2024-02-07T23:57:10.548782Z", + "iopub.status.idle": "2024-02-07T23:57:10.554644Z", + "shell.execute_reply": "2024-02-07T23:57:10.554206Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.623161Z", - "iopub.status.busy": "2024-02-07T22:16:42.622751Z", - "iopub.status.idle": "2024-02-07T22:16:42.625299Z", - "shell.execute_reply": "2024-02-07T22:16:42.624875Z" + "iopub.execute_input": "2024-02-07T23:57:10.556665Z", + "iopub.status.busy": "2024-02-07T23:57:10.556409Z", + "iopub.status.idle": "2024-02-07T23:57:10.558873Z", + "shell.execute_reply": "2024-02-07T23:57:10.558458Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:42.627236Z", - "iopub.status.busy": "2024-02-07T22:16:42.626928Z", - "iopub.status.idle": "2024-02-07T22:16:50.819298Z", - "shell.execute_reply": "2024-02-07T22:16:50.818629Z" + "iopub.execute_input": "2024-02-07T23:57:10.560767Z", + "iopub.status.busy": "2024-02-07T23:57:10.560447Z", + "iopub.status.idle": "2024-02-07T23:57:18.597883Z", + "shell.execute_reply": "2024-02-07T23:57:18.597245Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.822227Z", - "iopub.status.busy": "2024-02-07T22:16:50.821588Z", - "iopub.status.idle": "2024-02-07T22:16:50.828619Z", - "shell.execute_reply": "2024-02-07T22:16:50.828176Z" + "iopub.execute_input": "2024-02-07T23:57:18.600502Z", + "iopub.status.busy": "2024-02-07T23:57:18.600144Z", + "iopub.status.idle": "2024-02-07T23:57:18.607142Z", + "shell.execute_reply": "2024-02-07T23:57:18.606625Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.830508Z", - "iopub.status.busy": "2024-02-07T22:16:50.830326Z", - "iopub.status.idle": "2024-02-07T22:16:50.834051Z", - "shell.execute_reply": "2024-02-07T22:16:50.833572Z" + "iopub.execute_input": "2024-02-07T23:57:18.609010Z", + "iopub.status.busy": "2024-02-07T23:57:18.608834Z", + "iopub.status.idle": "2024-02-07T23:57:18.612483Z", + "shell.execute_reply": "2024-02-07T23:57:18.611944Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.836017Z", - "iopub.status.busy": "2024-02-07T22:16:50.835693Z", - "iopub.status.idle": "2024-02-07T22:16:50.838791Z", - "shell.execute_reply": "2024-02-07T22:16:50.838260Z" + "iopub.execute_input": "2024-02-07T23:57:18.614300Z", + "iopub.status.busy": "2024-02-07T23:57:18.614127Z", + "iopub.status.idle": "2024-02-07T23:57:18.617088Z", + "shell.execute_reply": "2024-02-07T23:57:18.616563Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.840784Z", - "iopub.status.busy": "2024-02-07T22:16:50.840458Z", - "iopub.status.idle": "2024-02-07T22:16:50.843463Z", - "shell.execute_reply": "2024-02-07T22:16:50.843001Z" + "iopub.execute_input": "2024-02-07T23:57:18.618875Z", + "iopub.status.busy": "2024-02-07T23:57:18.618705Z", + "iopub.status.idle": "2024-02-07T23:57:18.621573Z", + "shell.execute_reply": "2024-02-07T23:57:18.621156Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.845383Z", - "iopub.status.busy": "2024-02-07T22:16:50.845063Z", - "iopub.status.idle": "2024-02-07T22:16:50.852852Z", - "shell.execute_reply": "2024-02-07T22:16:50.852402Z" + "iopub.execute_input": "2024-02-07T23:57:18.623300Z", + "iopub.status.busy": "2024-02-07T23:57:18.623130Z", + "iopub.status.idle": "2024-02-07T23:57:18.631019Z", + "shell.execute_reply": "2024-02-07T23:57:18.630588Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.854861Z", - "iopub.status.busy": "2024-02-07T22:16:50.854539Z", - "iopub.status.idle": "2024-02-07T22:16:50.974215Z", - "shell.execute_reply": "2024-02-07T22:16:50.973641Z" + "iopub.execute_input": "2024-02-07T23:57:18.632839Z", + "iopub.status.busy": "2024-02-07T23:57:18.632669Z", + "iopub.status.idle": "2024-02-07T23:57:18.751110Z", + "shell.execute_reply": "2024-02-07T23:57:18.750652Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:50.976792Z", - "iopub.status.busy": "2024-02-07T22:16:50.976387Z", - "iopub.status.idle": "2024-02-07T22:16:51.083738Z", - "shell.execute_reply": "2024-02-07T22:16:51.083123Z" + "iopub.execute_input": "2024-02-07T23:57:18.753135Z", + "iopub.status.busy": "2024-02-07T23:57:18.752961Z", + "iopub.status.idle": "2024-02-07T23:57:18.854301Z", + "shell.execute_reply": "2024-02-07T23:57:18.853737Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.086417Z", - "iopub.status.busy": "2024-02-07T22:16:51.085958Z", - "iopub.status.idle": "2024-02-07T22:16:51.565882Z", - "shell.execute_reply": "2024-02-07T22:16:51.565259Z" + "iopub.execute_input": "2024-02-07T23:57:18.856714Z", + "iopub.status.busy": "2024-02-07T23:57:18.856277Z", + "iopub.status.idle": "2024-02-07T23:57:19.344066Z", + "shell.execute_reply": "2024-02-07T23:57:19.343446Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.568859Z", - "iopub.status.busy": "2024-02-07T22:16:51.568362Z", - "iopub.status.idle": "2024-02-07T22:16:51.646362Z", - "shell.execute_reply": "2024-02-07T22:16:51.645818Z" + "iopub.execute_input": "2024-02-07T23:57:19.346737Z", + "iopub.status.busy": "2024-02-07T23:57:19.346338Z", + "iopub.status.idle": "2024-02-07T23:57:19.423350Z", + "shell.execute_reply": "2024-02-07T23:57:19.422787Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:51.648680Z", - "iopub.status.busy": "2024-02-07T22:16:51.648305Z", - "iopub.status.idle": "2024-02-07T22:16:51.658253Z", - "shell.execute_reply": "2024-02-07T22:16:51.657843Z" + "iopub.execute_input": "2024-02-07T23:57:19.425650Z", + "iopub.status.busy": "2024-02-07T23:57:19.425311Z", + "iopub.status.idle": "2024-02-07T23:57:19.434732Z", + "shell.execute_reply": "2024-02-07T23:57:19.434279Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 28d27fdf0..725a1c9fc 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -715,13 +715,13 @@

3. Use cleanlab to find label issues
-
+
-
+
-
0%| | 15347/4997817 [00:00&lt;00:32, 153458.07it/s]
+
0%| | 15387/4997817 [00:00&lt;00:32, 153859.88it/s]

</pre>

-
0%| | 15347/4997817 [00:00<00:32, 153458.07it/s]
+
0%| | 15387/4997817 [00:00<00:32, 153859.88it/s]

end{sphinxVerbatim}

-

0%| | 15347/4997817 [00:00<00:32, 153458.07it/s]

+

0%| | 15387/4997817 [00:00<00:32, 153859.88it/s]

-
1%| | 30769/4997817 [00:00&lt;00:32, 153898.57it/s]
+
1%| | 30953/4997817 [00:00&lt;00:32, 154916.01it/s]

</pre>

-
1%| | 30769/4997817 [00:00<00:32, 153898.57it/s]
+
1%| | 30953/4997817 [00:00<00:32, 154916.01it/s]

end{sphinxVerbatim}

-

1%| | 30769/4997817 [00:00<00:32, 153898.57it/s]

+

1%| | 30953/4997817 [00:00<00:32, 154916.01it/s]

-
1%| | 46197/4997817 [00:00&lt;00:32, 154067.93it/s]
+
1%| | 46445/4997817 [00:00&lt;00:31, 154862.43it/s]

</pre>

-
1%| | 46197/4997817 [00:00<00:32, 154067.93it/s]
+
1%| | 46445/4997817 [00:00<00:31, 154862.43it/s]

end{sphinxVerbatim}

-

1%| | 46197/4997817 [00:00<00:32, 154067.93it/s]

+

1%| | 46445/4997817 [00:00<00:31, 154862.43it/s]

-
1%| | 61604/4997817 [00:00&lt;00:32, 153518.87it/s]
+
1%| | 61949/4997817 [00:00&lt;00:31, 154930.24it/s]

</pre>

-
1%| | 61604/4997817 [00:00<00:32, 153518.87it/s]
+
1%| | 61949/4997817 [00:00<00:31, 154930.24it/s]

end{sphinxVerbatim}

-

1%| | 61604/4997817 [00:00<00:32, 153518.87it/s]

+

1%| | 61949/4997817 [00:00<00:31, 154930.24it/s]

-
2%|▏ | 76957/4997817 [00:00&lt;00:32, 153377.81it/s]
+
2%|▏ | 77467/4997817 [00:00&lt;00:31, 155019.01it/s]

</pre>

-
2%|▏ | 76957/4997817 [00:00<00:32, 153377.81it/s]
+
2%|▏ | 77467/4997817 [00:00<00:31, 155019.01it/s]

end{sphinxVerbatim}

-

2%|▏ | 76957/4997817 [00:00<00:32, 153377.81it/s]

+

2%|▏ | 77467/4997817 [00:00<00:31, 155019.01it/s]

-
2%|▏ | 92295/4997817 [00:00&lt;00:32, 153281.65it/s]
+
2%|▏ | 92969/4997817 [00:00&lt;00:31, 154441.07it/s]

</pre>

-
2%|▏ | 92295/4997817 [00:00<00:32, 153281.65it/s]
+
2%|▏ | 92969/4997817 [00:00<00:31, 154441.07it/s]

end{sphinxVerbatim}

-

2%|▏ | 92295/4997817 [00:00<00:32, 153281.65it/s]

+

2%|▏ | 92969/4997817 [00:00<00:31, 154441.07it/s]

-
2%|▏ | 107770/4997817 [00:00&lt;00:31, 153758.56it/s]
+
2%|▏ | 108414/4997817 [00:00&lt;00:31, 154378.14it/s]

</pre>

-
2%|▏ | 107770/4997817 [00:00<00:31, 153758.56it/s]
+
2%|▏ | 108414/4997817 [00:00<00:31, 154378.14it/s]

end{sphinxVerbatim}

-

2%|▏ | 107770/4997817 [00:00<00:31, 153758.56it/s]

+

2%|▏ | 108414/4997817 [00:00<00:31, 154378.14it/s]

-
2%|▏ | 123147/4997817 [00:00&lt;00:31, 153622.15it/s]
+
2%|▏ | 123962/4997817 [00:00&lt;00:31, 154726.37it/s]

</pre>

-
2%|▏ | 123147/4997817 [00:00<00:31, 153622.15it/s]
+
2%|▏ | 123962/4997817 [00:00<00:31, 154726.37it/s]

end{sphinxVerbatim}

-

2%|▏ | 123147/4997817 [00:00<00:31, 153622.15it/s]

+

2%|▏ | 123962/4997817 [00:00<00:31, 154726.37it/s]

-
3%|▎ | 138510/4997817 [00:00&lt;00:31, 153513.94it/s]
+
3%|▎ | 139435/4997817 [00:00&lt;00:31, 154613.74it/s]

</pre>

-
3%|▎ | 138510/4997817 [00:00<00:31, 153513.94it/s]
+
3%|▎ | 139435/4997817 [00:00<00:31, 154613.74it/s]

end{sphinxVerbatim}

-

3%|▎ | 138510/4997817 [00:00<00:31, 153513.94it/s]

+

3%|▎ | 139435/4997817 [00:00<00:31, 154613.74it/s]

-
3%|▎ | 153862/4997817 [00:01&lt;00:31, 153440.87it/s]
+
3%|▎ | 154933/4997817 [00:01&lt;00:31, 154724.64it/s]

</pre>

-
3%|▎ | 153862/4997817 [00:01<00:31, 153440.87it/s]
+
3%|▎ | 154933/4997817 [00:01<00:31, 154724.64it/s]

end{sphinxVerbatim}

-

3%|▎ | 153862/4997817 [00:01<00:31, 153440.87it/s]

+

3%|▎ | 154933/4997817 [00:01<00:31, 154724.64it/s]

-
3%|▎ | 169207/4997817 [00:01&lt;00:31, 153375.31it/s]
+
3%|▎ | 170450/4997817 [00:01&lt;00:31, 154858.82it/s]

</pre>

-
3%|▎ | 169207/4997817 [00:01<00:31, 153375.31it/s]
+
3%|▎ | 170450/4997817 [00:01<00:31, 154858.82it/s]

end{sphinxVerbatim}

-

3%|▎ | 169207/4997817 [00:01<00:31, 153375.31it/s]

+

3%|▎ | 170450/4997817 [00:01<00:31, 154858.82it/s]

-
4%|▎ | 184566/4997817 [00:01&lt;00:31, 153437.24it/s]
+
4%|▎ | 185960/4997817 [00:01&lt;00:31, 154931.05it/s]

</pre>

-
4%|▎ | 184566/4997817 [00:01<00:31, 153437.24it/s]
+
4%|▎ | 185960/4997817 [00:01<00:31, 154931.05it/s]

end{sphinxVerbatim}

-

4%|▎ | 184566/4997817 [00:01<00:31, 153437.24it/s]

+

4%|▎ | 185960/4997817 [00:01<00:31, 154931.05it/s]

-
4%|▍ | 200027/4997817 [00:01&lt;00:31, 153789.46it/s]
+
4%|▍ | 201595/4997817 [00:01&lt;00:30, 155359.04it/s]

</pre>

-
4%|▍ | 200027/4997817 [00:01<00:31, 153789.46it/s]
+
4%|▍ | 201595/4997817 [00:01<00:30, 155359.04it/s]

end{sphinxVerbatim}

-

4%|▍ | 200027/4997817 [00:01<00:31, 153789.46it/s]

+

4%|▍ | 201595/4997817 [00:01<00:30, 155359.04it/s]

-
4%|▍ | 215446/4997817 [00:01&lt;00:31, 153907.31it/s]
+
4%|▍ | 217166/4997817 [00:01&lt;00:30, 155463.26it/s]

</pre>

-
4%|▍ | 215446/4997817 [00:01<00:31, 153907.31it/s]
+
4%|▍ | 217166/4997817 [00:01<00:30, 155463.26it/s]

end{sphinxVerbatim}

-

4%|▍ | 215446/4997817 [00:01<00:31, 153907.31it/s]

+

4%|▍ | 217166/4997817 [00:01<00:30, 155463.26it/s]

-
5%|▍ | 230924/4997817 [00:01&lt;00:30, 154166.08it/s]
+
5%|▍ | 232796/4997817 [00:01&lt;00:30, 155713.22it/s]

</pre>

-
5%|▍ | 230924/4997817 [00:01<00:30, 154166.08it/s]
+
5%|▍ | 232796/4997817 [00:01<00:30, 155713.22it/s]

end{sphinxVerbatim}

-

5%|▍ | 230924/4997817 [00:01<00:30, 154166.08it/s]

+

5%|▍ | 232796/4997817 [00:01<00:30, 155713.22it/s]

-
5%|▍ | 246392/4997817 [00:01&lt;00:30, 154317.10it/s]
+
5%|▍ | 248368/4997817 [00:01&lt;00:30, 155024.90it/s]

</pre>

-
5%|▍ | 246392/4997817 [00:01<00:30, 154317.10it/s]
+
5%|▍ | 248368/4997817 [00:01<00:30, 155024.90it/s]

end{sphinxVerbatim}

-

5%|▍ | 246392/4997817 [00:01<00:30, 154317.10it/s]

+

5%|▍ | 248368/4997817 [00:01<00:30, 155024.90it/s]

-
5%|▌ | 261824/4997817 [00:01&lt;00:30, 153630.47it/s]
+
5%|▌ | 263872/4997817 [00:01&lt;00:30, 154707.21it/s]

</pre>

-
5%|▌ | 261824/4997817 [00:01<00:30, 153630.47it/s]
+
5%|▌ | 263872/4997817 [00:01<00:30, 154707.21it/s]

end{sphinxVerbatim}

-

5%|▌ | 261824/4997817 [00:01<00:30, 153630.47it/s]

+

5%|▌ | 263872/4997817 [00:01<00:30, 154707.21it/s]

-
6%|▌ | 277224/4997817 [00:01&lt;00:30, 153736.80it/s]
+
6%|▌ | 279344/4997817 [00:01&lt;00:30, 154411.85it/s]

</pre>

-
6%|▌ | 277224/4997817 [00:01<00:30, 153736.80it/s]
+
6%|▌ | 279344/4997817 [00:01<00:30, 154411.85it/s]

end{sphinxVerbatim}

-

6%|▌ | 277224/4997817 [00:01<00:30, 153736.80it/s]

+

6%|▌ | 279344/4997817 [00:01<00:30, 154411.85it/s]

-
6%|▌ | 292639/4997817 [00:01&lt;00:30, 153857.25it/s]
+
6%|▌ | 294786/4997817 [00:01&lt;00:30, 153675.58it/s]

</pre>

-
6%|▌ | 292639/4997817 [00:01<00:30, 153857.25it/s]
+
6%|▌ | 294786/4997817 [00:01<00:30, 153675.58it/s]

end{sphinxVerbatim}

-

6%|▌ | 292639/4997817 [00:01<00:30, 153857.25it/s]

+

6%|▌ | 294786/4997817 [00:01<00:30, 153675.58it/s]

-
6%|▌ | 308121/4997817 [00:02&lt;00:30, 154142.35it/s]
+
6%|▌ | 310155/4997817 [00:02&lt;00:30, 153084.29it/s]

</pre>

-
6%|▌ | 308121/4997817 [00:02<00:30, 154142.35it/s]
+
6%|▌ | 310155/4997817 [00:02<00:30, 153084.29it/s]

end{sphinxVerbatim}

-

6%|▌ | 308121/4997817 [00:02<00:30, 154142.35it/s]

+

6%|▌ | 310155/4997817 [00:02<00:30, 153084.29it/s]

-
6%|▋ | 323536/4997817 [00:02&lt;00:30, 154021.27it/s]
+
7%|▋ | 325465/4997817 [00:02&lt;00:30, 152924.81it/s]

</pre>

-
6%|▋ | 323536/4997817 [00:02<00:30, 154021.27it/s]
+
7%|▋ | 325465/4997817 [00:02<00:30, 152924.81it/s]

end{sphinxVerbatim}

-

6%|▋ | 323536/4997817 [00:02<00:30, 154021.27it/s]

+

7%|▋ | 325465/4997817 [00:02<00:30, 152924.81it/s]

-
7%|▋ | 338991/4997817 [00:02&lt;00:30, 154177.79it/s]
+
7%|▋ | 340815/4997817 [00:02&lt;00:30, 153092.91it/s]

</pre>

-
7%|▋ | 338991/4997817 [00:02<00:30, 154177.79it/s]
+
7%|▋ | 340815/4997817 [00:02<00:30, 153092.91it/s]

end{sphinxVerbatim}

-

7%|▋ | 338991/4997817 [00:02<00:30, 154177.79it/s]

+

7%|▋ | 340815/4997817 [00:02<00:30, 153092.91it/s]

-
7%|▋ | 354437/4997817 [00:02&lt;00:30, 154259.57it/s]
+
7%|▋ | 356125/4997817 [00:02&lt;00:30, 152796.73it/s]

</pre>

-
7%|▋ | 354437/4997817 [00:02<00:30, 154259.57it/s]
+
7%|▋ | 356125/4997817 [00:02<00:30, 152796.73it/s]

end{sphinxVerbatim}

-

7%|▋ | 354437/4997817 [00:02<00:30, 154259.57it/s]

+

7%|▋ | 356125/4997817 [00:02<00:30, 152796.73it/s]

-
7%|▋ | 369864/4997817 [00:02&lt;00:30, 154160.91it/s]
+
7%|▋ | 371405/4997817 [00:02&lt;00:30, 152624.10it/s]

</pre>

-
7%|▋ | 369864/4997817 [00:02<00:30, 154160.91it/s]
+
7%|▋ | 371405/4997817 [00:02<00:30, 152624.10it/s]

end{sphinxVerbatim}

-

7%|▋ | 369864/4997817 [00:02<00:30, 154160.91it/s]

+

7%|▋ | 371405/4997817 [00:02<00:30, 152624.10it/s]

-
8%|▊ | 385349/4997817 [00:02&lt;00:29, 154364.42it/s]
+
8%|▊ | 386668/4997817 [00:02&lt;00:30, 152387.84it/s]

</pre>

-
8%|▊ | 385349/4997817 [00:02<00:29, 154364.42it/s]
+
8%|▊ | 386668/4997817 [00:02<00:30, 152387.84it/s]

end{sphinxVerbatim}

-

8%|▊ | 385349/4997817 [00:02<00:29, 154364.42it/s]

+

8%|▊ | 386668/4997817 [00:02<00:30, 152387.84it/s]

-
8%|▊ | 400786/4997817 [00:02&lt;00:29, 154238.35it/s]
+
8%|▊ | 401907/4997817 [00:02&lt;00:30, 151622.18it/s]

</pre>

-
8%|▊ | 400786/4997817 [00:02<00:29, 154238.35it/s]
+
8%|▊ | 401907/4997817 [00:02<00:30, 151622.18it/s]

end{sphinxVerbatim}

-

8%|▊ | 400786/4997817 [00:02<00:29, 154238.35it/s]

+

8%|▊ | 401907/4997817 [00:02<00:30, 151622.18it/s]

-
8%|▊ | 416218/4997817 [00:02&lt;00:29, 154259.56it/s]
+
8%|▊ | 417070/4997817 [00:02&lt;00:30, 151606.88it/s]

</pre>

-
8%|▊ | 416218/4997817 [00:02<00:29, 154259.56it/s]
+
8%|▊ | 417070/4997817 [00:02<00:30, 151606.88it/s]

end{sphinxVerbatim}

-

8%|▊ | 416218/4997817 [00:02<00:29, 154259.56it/s]

+

8%|▊ | 417070/4997817 [00:02<00:30, 151606.88it/s]

-
9%|▊ | 431732/4997817 [00:02&lt;00:29, 154520.13it/s]
+
9%|▊ | 432286/4997817 [00:02&lt;00:30, 151770.09it/s]

</pre>

-
9%|▊ | 431732/4997817 [00:02<00:29, 154520.13it/s]
+
9%|▊ | 432286/4997817 [00:02<00:30, 151770.09it/s]

end{sphinxVerbatim}

-

9%|▊ | 431732/4997817 [00:02<00:29, 154520.13it/s]

+

9%|▊ | 432286/4997817 [00:02<00:30, 151770.09it/s]

-
9%|▉ | 447185/4997817 [00:02&lt;00:29, 153245.62it/s]
+
9%|▉ | 447464/4997817 [00:02&lt;00:29, 151738.90it/s]

</pre>

-
9%|▉ | 447185/4997817 [00:02<00:29, 153245.62it/s]
+
9%|▉ | 447464/4997817 [00:02<00:29, 151738.90it/s]

end{sphinxVerbatim}

-

9%|▉ | 447185/4997817 [00:02<00:29, 153245.62it/s]

+

9%|▉ | 447464/4997817 [00:02<00:29, 151738.90it/s]

-
9%|▉ | 462512/4997817 [00:03&lt;00:30, 146732.31it/s]
+
9%|▉ | 462721/4997817 [00:03&lt;00:29, 151984.24it/s]

</pre>

-
9%|▉ | 462512/4997817 [00:03<00:30, 146732.31it/s]
+
9%|▉ | 462721/4997817 [00:03<00:29, 151984.24it/s]

end{sphinxVerbatim}

-

9%|▉ | 462512/4997817 [00:03<00:30, 146732.31it/s]

+

9%|▉ | 462721/4997817 [00:03<00:29, 151984.24it/s]

-
10%|▉ | 477889/4997817 [00:03&lt;00:30, 148766.90it/s]
+
10%|▉ | 477975/4997817 [00:03&lt;00:29, 152147.15it/s]

</pre>

-
10%|▉ | 477889/4997817 [00:03<00:30, 148766.90it/s]
+
10%|▉ | 477975/4997817 [00:03<00:29, 152147.15it/s]

end{sphinxVerbatim}

-

10%|▉ | 477889/4997817 [00:03<00:30, 148766.90it/s]

+

10%|▉ | 477975/4997817 [00:03<00:29, 152147.15it/s]

-
10%|▉ | 493335/4997817 [00:03&lt;00:29, 150430.33it/s]
+
10%|▉ | 493202/4997817 [00:03&lt;00:29, 152182.16it/s]

</pre>

-
10%|▉ | 493335/4997817 [00:03<00:29, 150430.33it/s]
+
10%|▉ | 493202/4997817 [00:03<00:29, 152182.16it/s]

end{sphinxVerbatim}

-

10%|▉ | 493335/4997817 [00:03<00:29, 150430.33it/s]

+

10%|▉ | 493202/4997817 [00:03<00:29, 152182.16it/s]

-
10%|█ | 508611/4997817 [00:03&lt;00:29, 151113.76it/s]
+
10%|█ | 508476/4997817 [00:03&lt;00:29, 152345.94it/s]

</pre>

-
10%|█ | 508611/4997817 [00:03<00:29, 151113.76it/s]
+
10%|█ | 508476/4997817 [00:03<00:29, 152345.94it/s]

end{sphinxVerbatim}

-

10%|█ | 508611/4997817 [00:03<00:29, 151113.76it/s]

+

10%|█ | 508476/4997817 [00:03<00:29, 152345.94it/s]

-
10%|█ | 523989/4997817 [00:03&lt;00:29, 151901.84it/s]
+
10%|█ | 523738/4997817 [00:03&lt;00:29, 152425.10it/s]

</pre>

-
10%|█ | 523989/4997817 [00:03<00:29, 151901.84it/s]
+
10%|█ | 523738/4997817 [00:03<00:29, 152425.10it/s]

end{sphinxVerbatim}

-

10%|█ | 523989/4997817 [00:03<00:29, 151901.84it/s]

+

10%|█ | 523738/4997817 [00:03<00:29, 152425.10it/s]

-
11%|█ | 539401/4997817 [00:03&lt;00:29, 152559.93it/s]
+
11%|█ | 539030/4997817 [00:03&lt;00:29, 152572.90it/s]

</pre>

-
11%|█ | 539401/4997817 [00:03<00:29, 152559.93it/s]
+
11%|█ | 539030/4997817 [00:03<00:29, 152572.90it/s]

end{sphinxVerbatim}

-

11%|█ | 539401/4997817 [00:03<00:29, 152559.93it/s]

+

11%|█ | 539030/4997817 [00:03<00:29, 152572.90it/s]

-
11%|█ | 554825/4997817 [00:03&lt;00:29, 153058.80it/s]
+
11%|█ | 554288/4997817 [00:03&lt;00:29, 152516.18it/s]

</pre>

-
11%|█ | 554825/4997817 [00:03<00:29, 153058.80it/s]
+
11%|█ | 554288/4997817 [00:03<00:29, 152516.18it/s]

end{sphinxVerbatim}

-

11%|█ | 554825/4997817 [00:03<00:29, 153058.80it/s]

+

11%|█ | 554288/4997817 [00:03<00:29, 152516.18it/s]

-
11%|█▏ | 570237/4997817 [00:03&lt;00:28, 153371.61it/s]
+
11%|█▏ | 569540/4997817 [00:03&lt;00:29, 152488.37it/s]

</pre>

-
11%|█▏ | 570237/4997817 [00:03<00:28, 153371.61it/s]
+
11%|█▏ | 569540/4997817 [00:03<00:29, 152488.37it/s]

end{sphinxVerbatim}

-

11%|█▏ | 570237/4997817 [00:03<00:28, 153371.61it/s]

+

11%|█▏ | 569540/4997817 [00:03<00:29, 152488.37it/s]

-
12%|█▏ | 585614/4997817 [00:03&lt;00:28, 153487.20it/s]
+
12%|█▏ | 584949/4997817 [00:03&lt;00:28, 152966.60it/s]

</pre>

-
12%|█▏ | 585614/4997817 [00:03<00:28, 153487.20it/s]
+
12%|█▏ | 584949/4997817 [00:03<00:28, 152966.60it/s]

end{sphinxVerbatim}

-

12%|█▏ | 585614/4997817 [00:03<00:28, 153487.20it/s]

+

12%|█▏ | 584949/4997817 [00:03<00:28, 152966.60it/s]

-
12%|█▏ | 601012/4997817 [00:03&lt;00:28, 153632.69it/s]
+
12%|█▏ | 600453/4997817 [00:03&lt;00:28, 153586.15it/s]

</pre>

-
12%|█▏ | 601012/4997817 [00:03<00:28, 153632.69it/s]
+
12%|█▏ | 600453/4997817 [00:03<00:28, 153586.15it/s]

end{sphinxVerbatim}

-

12%|█▏ | 601012/4997817 [00:03<00:28, 153632.69it/s]

+

12%|█▏ | 600453/4997817 [00:03<00:28, 153586.15it/s]

-
12%|█▏ | 616379/4997817 [00:04&lt;00:28, 153190.63it/s]
+
12%|█▏ | 615876/4997817 [00:04&lt;00:28, 153775.67it/s]

</pre>

-
12%|█▏ | 616379/4997817 [00:04<00:28, 153190.63it/s]
+
12%|█▏ | 615876/4997817 [00:04<00:28, 153775.67it/s]

end{sphinxVerbatim}

-

12%|█▏ | 616379/4997817 [00:04<00:28, 153190.63it/s]

+

12%|█▏ | 615876/4997817 [00:04<00:28, 153775.67it/s]

-
13%|█▎ | 631701/4997817 [00:04&lt;00:28, 153034.14it/s]
+
13%|█▎ | 631317/4997817 [00:04&lt;00:28, 153964.11it/s]

</pre>

-
13%|█▎ | 631701/4997817 [00:04<00:28, 153034.14it/s]
+
13%|█▎ | 631317/4997817 [00:04<00:28, 153964.11it/s]

end{sphinxVerbatim}

-

13%|█▎ | 631701/4997817 [00:04<00:28, 153034.14it/s]

+

13%|█▎ | 631317/4997817 [00:04<00:28, 153964.11it/s]

-
13%|█▎ | 647041/4997817 [00:04&lt;00:28, 153139.80it/s]
+
13%|█▎ | 646849/4997817 [00:04&lt;00:28, 154369.76it/s]

</pre>

-
13%|█▎ | 647041/4997817 [00:04<00:28, 153139.80it/s]
+
13%|█▎ | 646849/4997817 [00:04<00:28, 154369.76it/s]

end{sphinxVerbatim}

-

13%|█▎ | 647041/4997817 [00:04<00:28, 153139.80it/s]

+

13%|█▎ | 646849/4997817 [00:04<00:28, 154369.76it/s]

-
13%|█▎ | 662439/4997817 [00:04&lt;00:28, 153387.00it/s]
+
13%|█▎ | 662330/4997817 [00:04&lt;00:28, 154500.98it/s]

</pre>

-
13%|█▎ | 662439/4997817 [00:04<00:28, 153387.00it/s]
+
13%|█▎ | 662330/4997817 [00:04<00:28, 154500.98it/s]

end{sphinxVerbatim}

-

13%|█▎ | 662439/4997817 [00:04<00:28, 153387.00it/s]

+

13%|█▎ | 662330/4997817 [00:04<00:28, 154500.98it/s]

-
14%|█▎ | 677783/4997817 [00:04&lt;00:28, 153400.95it/s]
+
14%|█▎ | 677819/4997817 [00:04&lt;00:27, 154616.28it/s]

</pre>

-
14%|█▎ | 677783/4997817 [00:04<00:28, 153400.95it/s]
+
14%|█▎ | 677819/4997817 [00:04<00:27, 154616.28it/s]

end{sphinxVerbatim}

-

14%|█▎ | 677783/4997817 [00:04<00:28, 153400.95it/s]

+

14%|█▎ | 677819/4997817 [00:04<00:27, 154616.28it/s]

-
14%|█▍ | 693146/4997817 [00:04&lt;00:28, 153465.36it/s]
+
14%|█▍ | 693283/4997817 [00:04&lt;00:27, 154620.90it/s]

</pre>

-
14%|█▍ | 693146/4997817 [00:04<00:28, 153465.36it/s]
+
14%|█▍ | 693283/4997817 [00:04<00:27, 154620.90it/s]

end{sphinxVerbatim}

-

14%|█▍ | 693146/4997817 [00:04<00:28, 153465.36it/s]

+

14%|█▍ | 693283/4997817 [00:04<00:27, 154620.90it/s]

-
14%|█▍ | 708494/4997817 [00:04&lt;00:27, 153436.13it/s]
+
14%|█▍ | 708746/4997817 [00:04&lt;00:27, 154483.57it/s]

</pre>

-
14%|█▍ | 708494/4997817 [00:04<00:27, 153436.13it/s]
+
14%|█▍ | 708746/4997817 [00:04<00:27, 154483.57it/s]

end{sphinxVerbatim}

-

14%|█▍ | 708494/4997817 [00:04<00:27, 153436.13it/s]

+

14%|█▍ | 708746/4997817 [00:04<00:27, 154483.57it/s]

-
14%|█▍ | 723849/4997817 [00:04&lt;00:27, 153466.14it/s]
+
14%|█▍ | 724195/4997817 [00:04&lt;00:28, 149330.22it/s]

</pre>

-
14%|█▍ | 723849/4997817 [00:04<00:27, 153466.14it/s]
+
14%|█▍ | 724195/4997817 [00:04<00:28, 149330.22it/s]

end{sphinxVerbatim}

-

14%|█▍ | 723849/4997817 [00:04<00:27, 153466.14it/s]

+

14%|█▍ | 724195/4997817 [00:04<00:28, 149330.22it/s]

-
15%|█▍ | 739196/4997817 [00:04&lt;00:27, 153373.26it/s]
+
15%|█▍ | 739415/4997817 [00:04&lt;00:28, 150169.33it/s]

</pre>

-
15%|█▍ | 739196/4997817 [00:04<00:27, 153373.26it/s]
+
15%|█▍ | 739415/4997817 [00:04<00:28, 150169.33it/s]

end{sphinxVerbatim}

-

15%|█▍ | 739196/4997817 [00:04<00:27, 153373.26it/s]

+

15%|█▍ | 739415/4997817 [00:04<00:28, 150169.33it/s]

-
15%|█▌ | 754593/4997817 [00:04&lt;00:27, 153549.34it/s]
+
15%|█▌ | 754739/4997817 [00:04&lt;00:28, 151072.92it/s]

</pre>

-
15%|█▌ | 754593/4997817 [00:04<00:27, 153549.34it/s]
+
15%|█▌ | 754739/4997817 [00:04<00:28, 151072.92it/s]

end{sphinxVerbatim}

-

15%|█▌ | 754593/4997817 [00:04<00:27, 153549.34it/s]

+

15%|█▌ | 754739/4997817 [00:04<00:28, 151072.92it/s]

-
15%|█▌ | 769949/4997817 [00:05&lt;00:28, 150908.16it/s]
+
15%|█▌ | 770174/4997817 [00:05&lt;00:27, 152041.12it/s]

</pre>

-
15%|█▌ | 769949/4997817 [00:05<00:28, 150908.16it/s]
+
15%|█▌ | 770174/4997817 [00:05<00:27, 152041.12it/s]

end{sphinxVerbatim}

-

15%|█▌ | 769949/4997817 [00:05<00:28, 150908.16it/s]

+

15%|█▌ | 770174/4997817 [00:05<00:27, 152041.12it/s]

-
16%|█▌ | 785470/4997817 [00:05&lt;00:27, 152179.07it/s]
+
16%|█▌ | 785615/4997817 [00:05&lt;00:27, 152744.99it/s]

</pre>

-
16%|█▌ | 785470/4997817 [00:05<00:27, 152179.07it/s]
+
16%|█▌ | 785615/4997817 [00:05<00:27, 152744.99it/s]

end{sphinxVerbatim}

-

16%|█▌ | 785470/4997817 [00:05<00:27, 152179.07it/s]

+

16%|█▌ | 785615/4997817 [00:05<00:27, 152744.99it/s]

-
16%|█▌ | 801022/4997817 [00:05&lt;00:27, 153170.62it/s]
+
16%|█▌ | 801159/4997817 [00:05&lt;00:27, 153547.67it/s]

</pre>

-
16%|█▌ | 801022/4997817 [00:05<00:27, 153170.62it/s]
+
16%|█▌ | 801159/4997817 [00:05<00:27, 153547.67it/s]

end{sphinxVerbatim}

-

16%|█▌ | 801022/4997817 [00:05<00:27, 153170.62it/s]

+

16%|█▌ | 801159/4997817 [00:05<00:27, 153547.67it/s]

-
16%|█▋ | 816526/4997817 [00:05&lt;00:27, 153726.26it/s]
+
16%|█▋ | 816774/4997817 [00:05&lt;00:27, 154323.42it/s]

</pre>

-
16%|█▋ | 816526/4997817 [00:05<00:27, 153726.26it/s]
+
16%|█▋ | 816774/4997817 [00:05<00:27, 154323.42it/s]

end{sphinxVerbatim}

-

16%|█▋ | 816526/4997817 [00:05<00:27, 153726.26it/s]

+

16%|█▋ | 816774/4997817 [00:05<00:27, 154323.42it/s]

-
17%|█▋ | 832085/4997817 [00:05&lt;00:27, 154281.24it/s]
+
17%|█▋ | 832233/4997817 [00:05&lt;00:26, 154401.44it/s]

</pre>

-
17%|█▋ | 832085/4997817 [00:05<00:27, 154281.24it/s]
+
17%|█▋ | 832233/4997817 [00:05<00:26, 154401.44it/s]

end{sphinxVerbatim}

-

17%|█▋ | 832085/4997817 [00:05<00:27, 154281.24it/s]

+

17%|█▋ | 832233/4997817 [00:05<00:26, 154401.44it/s]

-
17%|█▋ | 847655/4997817 [00:05&lt;00:26, 154701.31it/s]
+
17%|█▋ | 847796/4997817 [00:05&lt;00:26, 154767.42it/s]

</pre>

-
17%|█▋ | 847655/4997817 [00:05<00:26, 154701.31it/s]
+
17%|█▋ | 847796/4997817 [00:05<00:26, 154767.42it/s]

end{sphinxVerbatim}

-

17%|█▋ | 847655/4997817 [00:05<00:26, 154701.31it/s]

+

17%|█▋ | 847796/4997817 [00:05<00:26, 154767.42it/s]

-
17%|█▋ | 863128/4997817 [00:05&lt;00:26, 154543.39it/s]
+
17%|█▋ | 863276/4997817 [00:05&lt;00:26, 154708.16it/s]

</pre>

-
17%|█▋ | 863128/4997817 [00:05<00:26, 154543.39it/s]
+
17%|█▋ | 863276/4997817 [00:05<00:26, 154708.16it/s]

end{sphinxVerbatim}

-

17%|█▋ | 863128/4997817 [00:05<00:26, 154543.39it/s]

+

17%|█▋ | 863276/4997817 [00:05<00:26, 154708.16it/s]

-
18%|█▊ | 878688/4997817 [00:05&lt;00:26, 154857.05it/s]
+
18%|█▊ | 878750/4997817 [00:05&lt;00:26, 154184.03it/s]

</pre>

-
18%|█▊ | 878688/4997817 [00:05<00:26, 154857.05it/s]
+
18%|█▊ | 878750/4997817 [00:05<00:26, 154184.03it/s]

end{sphinxVerbatim}

-

18%|█▊ | 878688/4997817 [00:05<00:26, 154857.05it/s]

+

18%|█▊ | 878750/4997817 [00:05<00:26, 154184.03it/s]

-
18%|█▊ | 894280/4997817 [00:05&lt;00:26, 155173.03it/s]
+
18%|█▊ | 894171/4997817 [00:05&lt;00:26, 153911.40it/s]

</pre>

-
18%|█▊ | 894280/4997817 [00:05<00:26, 155173.03it/s]
+
18%|█▊ | 894171/4997817 [00:05<00:26, 153911.40it/s]

end{sphinxVerbatim}

-

18%|█▊ | 894280/4997817 [00:05<00:26, 155173.03it/s]

+

18%|█▊ | 894171/4997817 [00:05<00:26, 153911.40it/s]

-
18%|█▊ | 909799/4997817 [00:05&lt;00:26, 153932.45it/s]
+
18%|█▊ | 909620/4997817 [00:05&lt;00:26, 154081.10it/s]

</pre>

-
18%|█▊ | 909799/4997817 [00:05<00:26, 153932.45it/s]
+
18%|█▊ | 909620/4997817 [00:05<00:26, 154081.10it/s]

end{sphinxVerbatim}

-

18%|█▊ | 909799/4997817 [00:05<00:26, 153932.45it/s]

+

18%|█▊ | 909620/4997817 [00:05<00:26, 154081.10it/s]

-
19%|█▊ | 925196/4997817 [00:06&lt;00:26, 153134.34it/s]
+
19%|█▊ | 925183/4997817 [00:06&lt;00:26, 154541.55it/s]

</pre>

-
19%|█▊ | 925196/4997817 [00:06<00:26, 153134.34it/s]
+
19%|█▊ | 925183/4997817 [00:06<00:26, 154541.55it/s]

end{sphinxVerbatim}

-

19%|█▊ | 925196/4997817 [00:06<00:26, 153134.34it/s]

+

19%|█▊ | 925183/4997817 [00:06<00:26, 154541.55it/s]

-
19%|█▉ | 940720/4997817 [00:06&lt;00:26, 153757.32it/s]
+
19%|█▉ | 940724/4997817 [00:06&lt;00:26, 154798.01it/s]

</pre>

-
19%|█▉ | 940720/4997817 [00:06<00:26, 153757.32it/s]
+
19%|█▉ | 940724/4997817 [00:06<00:26, 154798.01it/s]

end{sphinxVerbatim}

-

19%|█▉ | 940720/4997817 [00:06<00:26, 153757.32it/s]

+

19%|█▉ | 940724/4997817 [00:06<00:26, 154798.01it/s]

-
19%|█▉ | 956290/4997817 [00:06&lt;00:26, 154335.16it/s]
+
19%|█▉ | 956285/4997817 [00:06&lt;00:26, 155038.35it/s]

</pre>

-
19%|█▉ | 956290/4997817 [00:06<00:26, 154335.16it/s]
+
19%|█▉ | 956285/4997817 [00:06<00:26, 155038.35it/s]

end{sphinxVerbatim}

-

19%|█▉ | 956290/4997817 [00:06<00:26, 154335.16it/s]

+

19%|█▉ | 956285/4997817 [00:06<00:26, 155038.35it/s]

-
19%|█▉ | 971837/4997817 [00:06&lt;00:26, 154670.43it/s]
+
19%|█▉ | 971790/4997817 [00:06&lt;00:25, 154956.07it/s]

</pre>

-
19%|█▉ | 971837/4997817 [00:06<00:26, 154670.43it/s]
+
19%|█▉ | 971790/4997817 [00:06<00:25, 154956.07it/s]

end{sphinxVerbatim}

-

19%|█▉ | 971837/4997817 [00:06<00:26, 154670.43it/s]

+

19%|█▉ | 971790/4997817 [00:06<00:25, 154956.07it/s]

-
20%|█▉ | 987409/4997817 [00:06&lt;00:25, 154980.24it/s]
+
20%|█▉ | 987286/4997817 [00:06&lt;00:25, 154826.09it/s]

</pre>

-
20%|█▉ | 987409/4997817 [00:06<00:25, 154980.24it/s]
+
20%|█▉ | 987286/4997817 [00:06<00:25, 154826.09it/s]

end{sphinxVerbatim}

-

20%|█▉ | 987409/4997817 [00:06<00:25, 154980.24it/s]

+

20%|█▉ | 987286/4997817 [00:06<00:25, 154826.09it/s]

-
20%|██ | 1003021/4997817 [00:06&lt;00:25, 155319.53it/s]
+
20%|██ | 1002769/4997817 [00:06&lt;00:25, 154658.28it/s]

</pre>

-
20%|██ | 1003021/4997817 [00:06<00:25, 155319.53it/s]
+
20%|██ | 1002769/4997817 [00:06<00:25, 154658.28it/s]

end{sphinxVerbatim}

-

20%|██ | 1003021/4997817 [00:06<00:25, 155319.53it/s]

+

20%|██ | 1002769/4997817 [00:06<00:25, 154658.28it/s]

-
20%|██ | 1018554/4997817 [00:06&lt;00:25, 155043.65it/s]
+
20%|██ | 1018250/4997817 [00:06&lt;00:25, 154701.77it/s]

</pre>

-
20%|██ | 1018554/4997817 [00:06<00:25, 155043.65it/s]
+
20%|██ | 1018250/4997817 [00:06<00:25, 154701.77it/s]

end{sphinxVerbatim}

-

20%|██ | 1018554/4997817 [00:06<00:25, 155043.65it/s]

+

20%|██ | 1018250/4997817 [00:06<00:25, 154701.77it/s]

-
21%|██ | 1034111/4997817 [00:06&lt;00:25, 155190.83it/s]
+
21%|██ | 1033721/4997817 [00:06&lt;00:25, 154399.73it/s]

</pre>

-
21%|██ | 1034111/4997817 [00:06<00:25, 155190.83it/s]
+
21%|██ | 1033721/4997817 [00:06<00:25, 154399.73it/s]

end{sphinxVerbatim}

-

21%|██ | 1034111/4997817 [00:06<00:25, 155190.83it/s]

+

21%|██ | 1033721/4997817 [00:06<00:25, 154399.73it/s]

-
21%|██ | 1049635/4997817 [00:06&lt;00:25, 155203.50it/s]
+
21%|██ | 1049162/4997817 [00:06&lt;00:25, 154388.08it/s]

</pre>

-
21%|██ | 1049635/4997817 [00:06<00:25, 155203.50it/s]
+
21%|██ | 1049162/4997817 [00:06<00:25, 154388.08it/s]

end{sphinxVerbatim}

-

21%|██ | 1049635/4997817 [00:06<00:25, 155203.50it/s]

+

21%|██ | 1049162/4997817 [00:06<00:25, 154388.08it/s]

-
21%|██▏ | 1065196/4997817 [00:06&lt;00:25, 155323.02it/s]
+
21%|██▏ | 1064700/4997817 [00:06&lt;00:25, 154682.90it/s]

</pre>

-
21%|██▏ | 1065196/4997817 [00:06<00:25, 155323.02it/s]
+
21%|██▏ | 1064700/4997817 [00:06<00:25, 154682.90it/s]

end{sphinxVerbatim}

-

21%|██▏ | 1065196/4997817 [00:06<00:25, 155323.02it/s]

+

21%|██▏ | 1064700/4997817 [00:06<00:25, 154682.90it/s]

-
22%|██▏ | 1080813/4997817 [00:07&lt;00:25, 155572.06it/s]
+
22%|██▏ | 1080169/4997817 [00:07&lt;00:25, 154502.61it/s]

</pre>

-
22%|██▏ | 1080813/4997817 [00:07<00:25, 155572.06it/s]
+
22%|██▏ | 1080169/4997817 [00:07<00:25, 154502.61it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1080813/4997817 [00:07<00:25, 155572.06it/s]

+

22%|██▏ | 1080169/4997817 [00:07<00:25, 154502.61it/s]

-
22%|██▏ | 1096371/4997817 [00:07&lt;00:25, 155143.85it/s]
+
22%|██▏ | 1095620/4997817 [00:07&lt;00:25, 153934.36it/s]

</pre>

-
22%|██▏ | 1096371/4997817 [00:07<00:25, 155143.85it/s]
+
22%|██▏ | 1095620/4997817 [00:07<00:25, 153934.36it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1096371/4997817 [00:07<00:25, 155143.85it/s]

+

22%|██▏ | 1095620/4997817 [00:07<00:25, 153934.36it/s]

-
22%|██▏ | 1111933/4997817 [00:07&lt;00:25, 155283.41it/s]
+
22%|██▏ | 1111014/4997817 [00:07&lt;00:25, 153453.97it/s]

</pre>

-
22%|██▏ | 1111933/4997817 [00:07<00:25, 155283.41it/s]
+
22%|██▏ | 1111014/4997817 [00:07<00:25, 153453.97it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1111933/4997817 [00:07<00:25, 155283.41it/s]

+

22%|██▏ | 1111014/4997817 [00:07<00:25, 153453.97it/s]

-
23%|██▎ | 1127467/4997817 [00:07&lt;00:24, 155297.30it/s]
+
23%|██▎ | 1126460/4997817 [00:07&lt;00:25, 153751.09it/s]

</pre>

-
23%|██▎ | 1127467/4997817 [00:07<00:24, 155297.30it/s]
+
23%|██▎ | 1126460/4997817 [00:07<00:25, 153751.09it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1127467/4997817 [00:07<00:24, 155297.30it/s]

+

23%|██▎ | 1126460/4997817 [00:07<00:25, 153751.09it/s]

-
23%|██▎ | 1143078/4997817 [00:07&lt;00:24, 155537.53it/s]
+
23%|██▎ | 1141915/4997817 [00:07&lt;00:25, 153987.80it/s]

</pre>

-
23%|██▎ | 1143078/4997817 [00:07<00:24, 155537.53it/s]
+
23%|██▎ | 1141915/4997817 [00:07<00:25, 153987.80it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1143078/4997817 [00:07<00:24, 155537.53it/s]

+

23%|██▎ | 1141915/4997817 [00:07<00:25, 153987.80it/s]

-
23%|██▎ | 1158632/4997817 [00:07&lt;00:24, 155524.20it/s]
+
23%|██▎ | 1157315/4997817 [00:07&lt;00:24, 153646.26it/s]

</pre>

-
23%|██▎ | 1158632/4997817 [00:07<00:24, 155524.20it/s]
+
23%|██▎ | 1157315/4997817 [00:07<00:24, 153646.26it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1158632/4997817 [00:07<00:24, 155524.20it/s]

+

23%|██▎ | 1157315/4997817 [00:07<00:24, 153646.26it/s]

-
23%|██▎ | 1174185/4997817 [00:07&lt;00:24, 155271.94it/s]
+
23%|██▎ | 1172782/4997817 [00:07&lt;00:24, 153950.34it/s]

</pre>

-
23%|██▎ | 1174185/4997817 [00:07<00:24, 155271.94it/s]
+
23%|██▎ | 1172782/4997817 [00:07<00:24, 153950.34it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1174185/4997817 [00:07<00:24, 155271.94it/s]

+

23%|██▎ | 1172782/4997817 [00:07<00:24, 153950.34it/s]

-
24%|██▍ | 1189714/4997817 [00:07&lt;00:24, 155275.28it/s]
+
24%|██▍ | 1188178/4997817 [00:07&lt;00:24, 153569.49it/s]

</pre>

-
24%|██▍ | 1189714/4997817 [00:07<00:24, 155275.28it/s]
+
24%|██▍ | 1188178/4997817 [00:07<00:24, 153569.49it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1189714/4997817 [00:07<00:24, 155275.28it/s]

+

24%|██▍ | 1188178/4997817 [00:07<00:24, 153569.49it/s]

-
24%|██▍ | 1205250/4997817 [00:07&lt;00:24, 155297.83it/s]
+
24%|██▍ | 1203670/4997817 [00:07&lt;00:24, 153971.80it/s]

</pre>

-
24%|██▍ | 1205250/4997817 [00:07<00:24, 155297.83it/s]
+
24%|██▍ | 1203670/4997817 [00:07<00:24, 153971.80it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1205250/4997817 [00:07<00:24, 155297.83it/s]

+

24%|██▍ | 1203670/4997817 [00:07<00:24, 153971.80it/s]

-
24%|██▍ | 1220788/4997817 [00:07&lt;00:24, 155319.29it/s]
+
24%|██▍ | 1219312/4997817 [00:07&lt;00:24, 154701.16it/s]

</pre>

-
24%|██▍ | 1220788/4997817 [00:07<00:24, 155319.29it/s]
+
24%|██▍ | 1219312/4997817 [00:07<00:24, 154701.16it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1220788/4997817 [00:07<00:24, 155319.29it/s]

+

24%|██▍ | 1219312/4997817 [00:07<00:24, 154701.16it/s]

-
25%|██▍ | 1236320/4997817 [00:08&lt;00:24, 155297.01it/s]
+
25%|██▍ | 1234865/4997817 [00:08&lt;00:24, 154946.23it/s]

</pre>

-
25%|██▍ | 1236320/4997817 [00:08<00:24, 155297.01it/s]
+
25%|██▍ | 1234865/4997817 [00:08<00:24, 154946.23it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1236320/4997817 [00:08<00:24, 155297.01it/s]

+

25%|██▍ | 1234865/4997817 [00:08<00:24, 154946.23it/s]

-
25%|██▌ | 1251850/4997817 [00:08&lt;00:24, 154837.80it/s]
+
25%|██▌ | 1250438/4997817 [00:08&lt;00:24, 155179.69it/s]

</pre>

-
25%|██▌ | 1251850/4997817 [00:08<00:24, 154837.80it/s]
+
25%|██▌ | 1250438/4997817 [00:08<00:24, 155179.69it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1251850/4997817 [00:08<00:24, 154837.80it/s]

+

25%|██▌ | 1250438/4997817 [00:08<00:24, 155179.69it/s]

-
25%|██▌ | 1267335/4997817 [00:08&lt;00:24, 154514.28it/s]
+
25%|██▌ | 1266015/4997817 [00:08&lt;00:24, 155354.02it/s]

</pre>

-
25%|██▌ | 1267335/4997817 [00:08<00:24, 154514.28it/s]
+
25%|██▌ | 1266015/4997817 [00:08<00:24, 155354.02it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1267335/4997817 [00:08<00:24, 154514.28it/s]

+

25%|██▌ | 1266015/4997817 [00:08<00:24, 155354.02it/s]

-
26%|██▌ | 1282844/4997817 [00:08&lt;00:24, 154680.42it/s]
+
26%|██▌ | 1281583/4997817 [00:08&lt;00:23, 155450.35it/s]

</pre>

-
26%|██▌ | 1282844/4997817 [00:08<00:24, 154680.42it/s]
+
26%|██▌ | 1281583/4997817 [00:08<00:23, 155450.35it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1282844/4997817 [00:08<00:24, 154680.42it/s]

+

26%|██▌ | 1281583/4997817 [00:08<00:23, 155450.35it/s]

-
26%|██▌ | 1298407/4997817 [00:08&lt;00:23, 154960.16it/s]
+
26%|██▌ | 1297301/4997817 [00:08&lt;00:23, 155966.62it/s]

</pre>

-
26%|██▌ | 1298407/4997817 [00:08<00:23, 154960.16it/s]
+
26%|██▌ | 1297301/4997817 [00:08<00:23, 155966.62it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1298407/4997817 [00:08<00:23, 154960.16it/s]

+

26%|██▌ | 1297301/4997817 [00:08<00:23, 155966.62it/s]

-
26%|██▋ | 1313976/4997817 [00:08&lt;00:23, 155176.70it/s]
+
26%|██▋ | 1312991/4997817 [00:08&lt;00:23, 156242.91it/s]

</pre>

-
26%|██▋ | 1313976/4997817 [00:08<00:23, 155176.70it/s]
+
26%|██▋ | 1312991/4997817 [00:08<00:23, 156242.91it/s]

end{sphinxVerbatim}

-

26%|██▋ | 1313976/4997817 [00:08<00:23, 155176.70it/s]

+

26%|██▋ | 1312991/4997817 [00:08<00:23, 156242.91it/s]

-
27%|██▋ | 1329577/4997817 [00:08&lt;00:23, 155424.12it/s]
+
27%|██▋ | 1328616/4997817 [00:08&lt;00:23, 155989.64it/s]

</pre>

-
27%|██▋ | 1329577/4997817 [00:08<00:23, 155424.12it/s]
+
27%|██▋ | 1328616/4997817 [00:08<00:23, 155989.64it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1329577/4997817 [00:08<00:23, 155424.12it/s]

+

27%|██▋ | 1328616/4997817 [00:08<00:23, 155989.64it/s]

-
27%|██▋ | 1345162/4997817 [00:08&lt;00:23, 155550.05it/s]
+
27%|██▋ | 1344327/4997817 [00:08&lt;00:23, 156323.68it/s]

</pre>

-
27%|██▋ | 1345162/4997817 [00:08<00:23, 155550.05it/s]
+
27%|██▋ | 1344327/4997817 [00:08<00:23, 156323.68it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1345162/4997817 [00:08<00:23, 155550.05it/s]

+

27%|██▋ | 1344327/4997817 [00:08<00:23, 156323.68it/s]

-
27%|██▋ | 1360737/4997817 [00:08&lt;00:23, 155607.38it/s]
+
27%|██▋ | 1359960/4997817 [00:08&lt;00:24, 148351.64it/s]

</pre>

-
27%|██▋ | 1360737/4997817 [00:08<00:23, 155607.38it/s]
+
27%|██▋ | 1359960/4997817 [00:08<00:24, 148351.64it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1360737/4997817 [00:08<00:23, 155607.38it/s]

+

27%|██▋ | 1359960/4997817 [00:08<00:24, 148351.64it/s]

-
28%|██▊ | 1376313/4997817 [00:08&lt;00:23, 155649.40it/s]
+
28%|██▊ | 1375464/4997817 [00:08&lt;00:24, 150281.68it/s]

</pre>

-
28%|██▊ | 1376313/4997817 [00:08<00:23, 155649.40it/s]
+
28%|██▊ | 1375464/4997817 [00:08<00:24, 150281.68it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1376313/4997817 [00:08<00:23, 155649.40it/s]

+

28%|██▊ | 1375464/4997817 [00:08<00:24, 150281.68it/s]

-
28%|██▊ | 1391965/4997817 [00:09&lt;00:23, 155908.88it/s]
+
28%|██▊ | 1391084/4997817 [00:09&lt;00:23, 152008.93it/s]

</pre>

-
28%|██▊ | 1391965/4997817 [00:09<00:23, 155908.88it/s]
+
28%|██▊ | 1391084/4997817 [00:09<00:23, 152008.93it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1391965/4997817 [00:09<00:23, 155908.88it/s]

+

28%|██▊ | 1391084/4997817 [00:09<00:23, 152008.93it/s]

-
28%|██▊ | 1407556/4997817 [00:09&lt;00:23, 155321.25it/s]
+
28%|██▊ | 1406706/4997817 [00:09&lt;00:23, 153246.84it/s]

</pre>

-
28%|██▊ | 1407556/4997817 [00:09<00:23, 155321.25it/s]
+
28%|██▊ | 1406706/4997817 [00:09<00:23, 153246.84it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1407556/4997817 [00:09<00:23, 155321.25it/s]

+

28%|██▊ | 1406706/4997817 [00:09<00:23, 153246.84it/s]

-
28%|██▊ | 1423155/4997817 [00:09&lt;00:22, 155479.77it/s]
+
28%|██▊ | 1422423/4997817 [00:09&lt;00:23, 154405.82it/s]

</pre>

-
28%|██▊ | 1423155/4997817 [00:09<00:22, 155479.77it/s]
+
28%|██▊ | 1422423/4997817 [00:09<00:23, 154405.82it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1423155/4997817 [00:09<00:22, 155479.77it/s]

+

28%|██▊ | 1422423/4997817 [00:09<00:23, 154405.82it/s]

-
29%|██▉ | 1438785/4997817 [00:09&lt;00:22, 155724.14it/s]
+
29%|██▉ | 1438109/4997817 [00:09&lt;00:22, 155134.29it/s]

</pre>

-
29%|██▉ | 1438785/4997817 [00:09<00:22, 155724.14it/s]
+
29%|██▉ | 1438109/4997817 [00:09<00:22, 155134.29it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1438785/4997817 [00:09<00:22, 155724.14it/s]

+

29%|██▉ | 1438109/4997817 [00:09<00:22, 155134.29it/s]

-
29%|██▉ | 1454384/4997817 [00:09&lt;00:22, 155801.48it/s]
+
29%|██▉ | 1453665/4997817 [00:09&lt;00:22, 155257.81it/s]

</pre>

-
29%|██▉ | 1454384/4997817 [00:09<00:22, 155801.48it/s]
+
29%|██▉ | 1453665/4997817 [00:09<00:22, 155257.81it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1454384/4997817 [00:09<00:22, 155801.48it/s]

+

29%|██▉ | 1453665/4997817 [00:09<00:22, 155257.81it/s]

-
29%|██▉ | 1470014/4997817 [00:09&lt;00:22, 155947.13it/s]
+
29%|██▉ | 1469349/4997817 [00:09&lt;00:22, 155727.92it/s]

</pre>

-
29%|██▉ | 1470014/4997817 [00:09<00:22, 155947.13it/s]
+
29%|██▉ | 1469349/4997817 [00:09<00:22, 155727.92it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1470014/4997817 [00:09<00:22, 155947.13it/s]

+

29%|██▉ | 1469349/4997817 [00:09<00:22, 155727.92it/s]

-
30%|██▉ | 1485609/4997817 [00:09&lt;00:22, 155913.61it/s]
+
30%|██▉ | 1485018/4997817 [00:09&lt;00:22, 156012.89it/s]

</pre>

-
30%|██▉ | 1485609/4997817 [00:09<00:22, 155913.61it/s]
+
30%|██▉ | 1485018/4997817 [00:09<00:22, 156012.89it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1485609/4997817 [00:09<00:22, 155913.61it/s]

+

30%|██▉ | 1485018/4997817 [00:09<00:22, 156012.89it/s]

-
30%|███ | 1501201/4997817 [00:09&lt;00:22, 155784.73it/s]
+
30%|███ | 1500627/4997817 [00:09&lt;00:22, 155976.47it/s]

</pre>

-
30%|███ | 1501201/4997817 [00:09<00:22, 155784.73it/s]
+
30%|███ | 1500627/4997817 [00:09<00:22, 155976.47it/s]

end{sphinxVerbatim}

-

30%|███ | 1501201/4997817 [00:09<00:22, 155784.73it/s]

+

30%|███ | 1500627/4997817 [00:09<00:22, 155976.47it/s]

-
30%|███ | 1516780/4997817 [00:09&lt;00:22, 155559.73it/s]
+
30%|███ | 1516230/4997817 [00:09&lt;00:22, 153762.84it/s]

</pre>

-
30%|███ | 1516780/4997817 [00:09<00:22, 155559.73it/s]
+
30%|███ | 1516230/4997817 [00:09<00:22, 153762.84it/s]

end{sphinxVerbatim}

-

30%|███ | 1516780/4997817 [00:09<00:22, 155559.73it/s]

+

30%|███ | 1516230/4997817 [00:09<00:22, 153762.84it/s]

-
31%|███ | 1532380/4997817 [00:09&lt;00:22, 155687.40it/s]
+
31%|███ | 1531868/4997817 [00:09&lt;00:22, 154536.52it/s]

</pre>

-
31%|███ | 1532380/4997817 [00:09<00:22, 155687.40it/s]
+
31%|███ | 1531868/4997817 [00:09<00:22, 154536.52it/s]

end{sphinxVerbatim}

-

31%|███ | 1532380/4997817 [00:09<00:22, 155687.40it/s]

+

31%|███ | 1531868/4997817 [00:09<00:22, 154536.52it/s]

-
31%|███ | 1547949/4997817 [00:10&lt;00:22, 155528.12it/s]
+
31%|███ | 1547362/4997817 [00:10&lt;00:22, 154655.76it/s]

</pre>

-
31%|███ | 1547949/4997817 [00:10<00:22, 155528.12it/s]
+
31%|███ | 1547362/4997817 [00:10<00:22, 154655.76it/s]

end{sphinxVerbatim}

-

31%|███ | 1547949/4997817 [00:10<00:22, 155528.12it/s]

+

31%|███ | 1547362/4997817 [00:10<00:22, 154655.76it/s]

-
31%|███▏ | 1563502/4997817 [00:10&lt;00:23, 147324.84it/s]
+
31%|███▏ | 1562834/4997817 [00:10&lt;00:22, 154496.08it/s]

</pre>

-
31%|███▏ | 1563502/4997817 [00:10<00:23, 147324.84it/s]
+
31%|███▏ | 1562834/4997817 [00:10<00:22, 154496.08it/s]

end{sphinxVerbatim}

-

31%|███▏ | 1563502/4997817 [00:10<00:23, 147324.84it/s]

+

31%|███▏ | 1562834/4997817 [00:10<00:22, 154496.08it/s]

-
32%|███▏ | 1579008/4997817 [00:10&lt;00:22, 149552.84it/s]
+
32%|███▏ | 1578361/4997817 [00:10&lt;00:22, 154724.34it/s]

</pre>

-
32%|███▏ | 1579008/4997817 [00:10<00:22, 149552.84it/s]
+
32%|███▏ | 1578361/4997817 [00:10<00:22, 154724.34it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1579008/4997817 [00:10<00:22, 149552.84it/s]

+

32%|███▏ | 1578361/4997817 [00:10<00:22, 154724.34it/s]

-
32%|███▏ | 1594563/4997817 [00:10&lt;00:22, 151300.39it/s]
+
32%|███▏ | 1593837/4997817 [00:10&lt;00:22, 154526.62it/s]

</pre>

-
32%|███▏ | 1594563/4997817 [00:10<00:22, 151300.39it/s]
+
32%|███▏ | 1593837/4997817 [00:10<00:22, 154526.62it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1594563/4997817 [00:10<00:22, 151300.39it/s]

+

32%|███▏ | 1593837/4997817 [00:10<00:22, 154526.62it/s]

-
32%|███▏ | 1610073/4997817 [00:10&lt;00:22, 152415.30it/s]
+
32%|███▏ | 1609292/4997817 [00:10&lt;00:21, 154082.95it/s]

</pre>

-
32%|███▏ | 1610073/4997817 [00:10<00:22, 152415.30it/s]
+
32%|███▏ | 1609292/4997817 [00:10<00:21, 154082.95it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1610073/4997817 [00:10<00:22, 152415.30it/s]

+

32%|███▏ | 1609292/4997817 [00:10<00:21, 154082.95it/s]

-
33%|███▎ | 1625549/4997817 [00:10&lt;00:22, 153107.12it/s]
+
33%|███▎ | 1624709/4997817 [00:10&lt;00:21, 154108.12it/s]

</pre>

-
33%|███▎ | 1625549/4997817 [00:10<00:22, 153107.12it/s]
+
33%|███▎ | 1624709/4997817 [00:10<00:21, 154108.12it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1625549/4997817 [00:10<00:22, 153107.12it/s]

+

33%|███▎ | 1624709/4997817 [00:10<00:21, 154108.12it/s]

-
33%|███▎ | 1640959/4997817 [00:10&lt;00:21, 153398.91it/s]
+
33%|███▎ | 1640152/4997817 [00:10&lt;00:21, 154202.78it/s]

</pre>

-
33%|███▎ | 1640959/4997817 [00:10<00:21, 153398.91it/s]
+
33%|███▎ | 1640152/4997817 [00:10<00:21, 154202.78it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1640959/4997817 [00:10<00:21, 153398.91it/s]

+

33%|███▎ | 1640152/4997817 [00:10<00:21, 154202.78it/s]

-
33%|███▎ | 1656429/4997817 [00:10&lt;00:21, 153784.58it/s]
+
33%|███▎ | 1655574/4997817 [00:10&lt;00:21, 153955.25it/s]

</pre>

-
33%|███▎ | 1656429/4997817 [00:10<00:21, 153784.58it/s]
+
33%|███▎ | 1655574/4997817 [00:10<00:21, 153955.25it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1656429/4997817 [00:10<00:21, 153784.58it/s]

+

33%|███▎ | 1655574/4997817 [00:10<00:21, 153955.25it/s]

-
33%|███▎ | 1671823/4997817 [00:10&lt;00:22, 147620.43it/s]
+
33%|███▎ | 1670971/4997817 [00:10&lt;00:21, 153956.41it/s]

</pre>

-
33%|███▎ | 1671823/4997817 [00:10<00:22, 147620.43it/s]
+
33%|███▎ | 1670971/4997817 [00:10<00:21, 153956.41it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1671823/4997817 [00:10<00:22, 147620.43it/s]

+

33%|███▎ | 1670971/4997817 [00:10<00:21, 153956.41it/s]

-
34%|███▍ | 1687245/4997817 [00:10&lt;00:22, 149534.13it/s]
+
34%|███▎ | 1686509/4997817 [00:10&lt;00:21, 154381.52it/s]

</pre>

-
34%|███▍ | 1687245/4997817 [00:10<00:22, 149534.13it/s]
+
34%|███▎ | 1686509/4997817 [00:10<00:21, 154381.52it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1687245/4997817 [00:10<00:22, 149534.13it/s]

+

34%|███▎ | 1686509/4997817 [00:10<00:21, 154381.52it/s]

-
34%|███▍ | 1702248/4997817 [00:11&lt;00:22, 145716.03it/s]
+
34%|███▍ | 1701951/4997817 [00:11&lt;00:21, 154392.21it/s]

</pre>

-
34%|███▍ | 1702248/4997817 [00:11<00:22, 145716.03it/s]
+
34%|███▍ | 1701951/4997817 [00:11<00:21, 154392.21it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1702248/4997817 [00:11<00:22, 145716.03it/s]

+

34%|███▍ | 1701951/4997817 [00:11<00:21, 154392.21it/s]

-
34%|███▍ | 1717722/4997817 [00:11&lt;00:22, 148327.18it/s]
+
34%|███▍ | 1717391/4997817 [00:11&lt;00:21, 154191.74it/s]

</pre>

-
34%|███▍ | 1717722/4997817 [00:11<00:22, 148327.18it/s]
+
34%|███▍ | 1717391/4997817 [00:11<00:21, 154191.74it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1717722/4997817 [00:11<00:22, 148327.18it/s]

+

34%|███▍ | 1717391/4997817 [00:11<00:21, 154191.74it/s]

-
35%|███▍ | 1733212/4997817 [00:11&lt;00:21, 150249.60it/s]
+
35%|███▍ | 1732903/4997817 [00:11&lt;00:21, 154468.06it/s]

</pre>

-
35%|███▍ | 1733212/4997817 [00:11<00:21, 150249.60it/s]
+
35%|███▍ | 1732903/4997817 [00:11<00:21, 154468.06it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1733212/4997817 [00:11<00:21, 150249.60it/s]

+

35%|███▍ | 1732903/4997817 [00:11<00:21, 154468.06it/s]

-
35%|███▍ | 1748683/4997817 [00:11&lt;00:21, 151562.76it/s]
+
35%|███▍ | 1748426/4997817 [00:11&lt;00:21, 154695.22it/s]

</pre>

-
35%|███▍ | 1748683/4997817 [00:11<00:21, 151562.76it/s]
+
35%|███▍ | 1748426/4997817 [00:11<00:21, 154695.22it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1748683/4997817 [00:11<00:21, 151562.76it/s]

+

35%|███▍ | 1748426/4997817 [00:11<00:21, 154695.22it/s]

-
35%|███▌ | 1764179/4997817 [00:11&lt;00:21, 152568.57it/s]
+
35%|███▌ | 1763908/4997817 [00:11&lt;00:20, 154731.01it/s]

</pre>

-
35%|███▌ | 1764179/4997817 [00:11<00:21, 152568.57it/s]
+
35%|███▌ | 1763908/4997817 [00:11<00:20, 154731.01it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1764179/4997817 [00:11<00:21, 152568.57it/s]

+

35%|███▌ | 1763908/4997817 [00:11<00:20, 154731.01it/s]

-
36%|███▌ | 1779561/4997817 [00:11&lt;00:21, 152939.77it/s]
+
36%|███▌ | 1779465/4997817 [00:11&lt;00:20, 154980.84it/s]

</pre>

-
36%|███▌ | 1779561/4997817 [00:11<00:21, 152939.77it/s]
+
36%|███▌ | 1779465/4997817 [00:11<00:20, 154980.84it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1779561/4997817 [00:11<00:21, 152939.77it/s]

+

36%|███▌ | 1779465/4997817 [00:11<00:20, 154980.84it/s]

-
36%|███▌ | 1794870/4997817 [00:11&lt;00:20, 152948.40it/s]
+
36%|███▌ | 1794973/4997817 [00:11&lt;00:20, 155008.18it/s]

</pre>

-
36%|███▌ | 1794870/4997817 [00:11<00:20, 152948.40it/s]
+
36%|███▌ | 1794973/4997817 [00:11<00:20, 155008.18it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1794870/4997817 [00:11<00:20, 152948.40it/s]

+

36%|███▌ | 1794973/4997817 [00:11<00:20, 155008.18it/s]

-
36%|███▌ | 1810300/4997817 [00:11&lt;00:20, 153350.41it/s]
+
36%|███▌ | 1810474/4997817 [00:11&lt;00:20, 154706.88it/s]

</pre>

-
36%|███▌ | 1810300/4997817 [00:11<00:20, 153350.41it/s]
+
36%|███▌ | 1810474/4997817 [00:11<00:20, 154706.88it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1810300/4997817 [00:11<00:20, 153350.41it/s]

+

36%|███▌ | 1810474/4997817 [00:11<00:20, 154706.88it/s]

-
37%|███▋ | 1825723/4997817 [00:11&lt;00:20, 153610.68it/s]
+
37%|███▋ | 1825945/4997817 [00:11&lt;00:21, 150553.76it/s]

</pre>

-
37%|███▋ | 1825723/4997817 [00:11<00:20, 153610.68it/s]
+
37%|███▋ | 1825945/4997817 [00:11<00:21, 150553.76it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1825723/4997817 [00:11<00:20, 153610.68it/s]

+

37%|███▋ | 1825945/4997817 [00:11<00:21, 150553.76it/s]

-
37%|███▋ | 1841251/4997817 [00:11&lt;00:20, 154108.13it/s]
+
37%|███▋ | 1841366/4997817 [00:11&lt;00:20, 151623.92it/s]

</pre>

-
37%|███▋ | 1841251/4997817 [00:11<00:20, 154108.13it/s]
+
37%|███▋ | 1841366/4997817 [00:11<00:20, 151623.92it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1841251/4997817 [00:11<00:20, 154108.13it/s]

+

37%|███▋ | 1841366/4997817 [00:11<00:20, 151623.92it/s]

-
37%|███▋ | 1856784/4997817 [00:12&lt;00:20, 154470.98it/s]
+
37%|███▋ | 1856852/4997817 [00:12&lt;00:20, 152579.57it/s]

</pre>

-
37%|███▋ | 1856784/4997817 [00:12<00:20, 154470.98it/s]
+
37%|███▋ | 1856852/4997817 [00:12<00:20, 152579.57it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1856784/4997817 [00:12<00:20, 154470.98it/s]

+

37%|███▋ | 1856852/4997817 [00:12<00:20, 152579.57it/s]

-
37%|███▋ | 1872234/4997817 [00:12&lt;00:20, 154379.68it/s]
+
37%|███▋ | 1872563/4997817 [00:12&lt;00:20, 153923.92it/s]

</pre>

-
37%|███▋ | 1872234/4997817 [00:12<00:20, 154379.68it/s]
+
37%|███▋ | 1872563/4997817 [00:12<00:20, 153923.92it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1872234/4997817 [00:12<00:20, 154379.68it/s]

+

37%|███▋ | 1872563/4997817 [00:12<00:20, 153923.92it/s]

-
38%|███▊ | 1887674/4997817 [00:12&lt;00:20, 154351.08it/s]
+
38%|███▊ | 1888219/4997817 [00:12&lt;00:20, 154708.39it/s]

</pre>

-
38%|███▊ | 1887674/4997817 [00:12<00:20, 154351.08it/s]
+
38%|███▊ | 1888219/4997817 [00:12<00:20, 154708.39it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1887674/4997817 [00:12<00:20, 154351.08it/s]

+

38%|███▊ | 1888219/4997817 [00:12<00:20, 154708.39it/s]

-
38%|███▊ | 1903137/4997817 [00:12&lt;00:20, 154430.74it/s]
+
38%|███▊ | 1903953/4997817 [00:12&lt;00:19, 155491.61it/s]

</pre>

-
38%|███▊ | 1903137/4997817 [00:12<00:20, 154430.74it/s]
+
38%|███▊ | 1903953/4997817 [00:12<00:19, 155491.61it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1903137/4997817 [00:12<00:20, 154430.74it/s]

+

38%|███▊ | 1903953/4997817 [00:12<00:19, 155491.61it/s]

-
38%|███▊ | 1918581/4997817 [00:12&lt;00:19, 154231.39it/s]
+
38%|███▊ | 1919523/4997817 [00:12&lt;00:19, 155552.74it/s]

</pre>

-
38%|███▊ | 1918581/4997817 [00:12<00:19, 154231.39it/s]
+
38%|███▊ | 1919523/4997817 [00:12<00:19, 155552.74it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1918581/4997817 [00:12<00:19, 154231.39it/s]

+

38%|███▊ | 1919523/4997817 [00:12<00:19, 155552.74it/s]

-
39%|███▊ | 1934021/4997817 [00:12&lt;00:19, 154278.42it/s]
+
39%|███▊ | 1935132/4997817 [00:12&lt;00:19, 155711.90it/s]

</pre>

-
39%|███▊ | 1934021/4997817 [00:12<00:19, 154278.42it/s]
+
39%|███▊ | 1935132/4997817 [00:12<00:19, 155711.90it/s]

end{sphinxVerbatim}

-

39%|███▊ | 1934021/4997817 [00:12<00:19, 154278.42it/s]

+

39%|███▊ | 1935132/4997817 [00:12<00:19, 155711.90it/s]

-
39%|███▉ | 1949544/4997817 [00:12&lt;00:19, 154560.34it/s]
+
39%|███▉ | 1950707/4997817 [00:12&lt;00:19, 155602.81it/s]

</pre>

-
39%|███▉ | 1949544/4997817 [00:12<00:19, 154560.34it/s]
+
39%|███▉ | 1950707/4997817 [00:12<00:19, 155602.81it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1949544/4997817 [00:12<00:19, 154560.34it/s]

+

39%|███▉ | 1950707/4997817 [00:12<00:19, 155602.81it/s]

-
39%|███▉ | 1965001/4997817 [00:12&lt;00:19, 154544.17it/s]
+
39%|███▉ | 1966388/4997817 [00:12&lt;00:19, 155963.60it/s]

</pre>

-
39%|███▉ | 1965001/4997817 [00:12<00:19, 154544.17it/s]
+
39%|███▉ | 1966388/4997817 [00:12<00:19, 155963.60it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1965001/4997817 [00:12<00:19, 154544.17it/s]

+

39%|███▉ | 1966388/4997817 [00:12<00:19, 155963.60it/s]

-
40%|███▉ | 1980514/4997817 [00:12&lt;00:19, 154717.76it/s]
+
40%|███▉ | 1982054/4997817 [00:12&lt;00:19, 156169.63it/s]

</pre>

-
40%|███▉ | 1980514/4997817 [00:12<00:19, 154717.76it/s]
+
40%|███▉ | 1982054/4997817 [00:12<00:19, 156169.63it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1980514/4997817 [00:12<00:19, 154717.76it/s]

+

40%|███▉ | 1982054/4997817 [00:12<00:19, 156169.63it/s]

-
40%|███▉ | 1995986/4997817 [00:12&lt;00:19, 154624.51it/s]
+
40%|███▉ | 1997673/4997817 [00:12&lt;00:19, 155736.39it/s]

</pre>

-
40%|███▉ | 1995986/4997817 [00:12<00:19, 154624.51it/s]
+
40%|███▉ | 1997673/4997817 [00:12<00:19, 155736.39it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1995986/4997817 [00:12<00:19, 154624.51it/s]

+

40%|███▉ | 1997673/4997817 [00:12<00:19, 155736.39it/s]

-
40%|████ | 2011449/4997817 [00:13&lt;00:19, 154571.51it/s]
+
40%|████ | 2013248/4997817 [00:13&lt;00:19, 155496.01it/s]

</pre>

-
40%|████ | 2011449/4997817 [00:13<00:19, 154571.51it/s]
+
40%|████ | 2013248/4997817 [00:13<00:19, 155496.01it/s]

end{sphinxVerbatim}

-

40%|████ | 2011449/4997817 [00:13<00:19, 154571.51it/s]

+

40%|████ | 2013248/4997817 [00:13<00:19, 155496.01it/s]

-
41%|████ | 2026907/4997817 [00:13&lt;00:19, 154431.61it/s]
+
41%|████ | 2028804/4997817 [00:13&lt;00:19, 155511.76it/s]

</pre>

-
41%|████ | 2026907/4997817 [00:13<00:19, 154431.61it/s]
+
41%|████ | 2028804/4997817 [00:13<00:19, 155511.76it/s]

end{sphinxVerbatim}

-

41%|████ | 2026907/4997817 [00:13<00:19, 154431.61it/s]

+

41%|████ | 2028804/4997817 [00:13<00:19, 155511.76it/s]

-
41%|████ | 2042351/4997817 [00:13&lt;00:19, 150939.06it/s]
+
41%|████ | 2044356/4997817 [00:13&lt;00:19, 155257.61it/s]

</pre>

-
41%|████ | 2042351/4997817 [00:13<00:19, 150939.06it/s]
+
41%|████ | 2044356/4997817 [00:13<00:19, 155257.61it/s]

end{sphinxVerbatim}

-

41%|████ | 2042351/4997817 [00:13<00:19, 150939.06it/s]

+

41%|████ | 2044356/4997817 [00:13<00:19, 155257.61it/s]

-
41%|████ | 2057814/4997817 [00:13&lt;00:19, 152025.47it/s]
+
41%|████ | 2059960/4997817 [00:13&lt;00:18, 155488.99it/s]

</pre>

-
41%|████ | 2057814/4997817 [00:13<00:19, 152025.47it/s]
+
41%|████ | 2059960/4997817 [00:13<00:18, 155488.99it/s]

end{sphinxVerbatim}

-

41%|████ | 2057814/4997817 [00:13<00:19, 152025.47it/s]

+

41%|████ | 2059960/4997817 [00:13<00:18, 155488.99it/s]

-
41%|████▏ | 2073170/4997817 [00:13&lt;00:19, 152476.99it/s]
+
42%|████▏ | 2075625/4997817 [00:13&lt;00:18, 155833.92it/s]

</pre>

-
41%|████▏ | 2073170/4997817 [00:13<00:19, 152476.99it/s]
+
42%|████▏ | 2075625/4997817 [00:13<00:18, 155833.92it/s]

end{sphinxVerbatim}

-

41%|████▏ | 2073170/4997817 [00:13<00:19, 152476.99it/s]

+

42%|████▏ | 2075625/4997817 [00:13<00:18, 155833.92it/s]

-
42%|████▏ | 2088594/4997817 [00:13&lt;00:19, 152999.26it/s]
+
42%|████▏ | 2091209/4997817 [00:13&lt;00:18, 155266.92it/s]

</pre>

-
42%|████▏ | 2088594/4997817 [00:13<00:19, 152999.26it/s]
+
42%|████▏ | 2091209/4997817 [00:13<00:18, 155266.92it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2088594/4997817 [00:13<00:19, 152999.26it/s]

+

42%|████▏ | 2091209/4997817 [00:13<00:18, 155266.92it/s]

-
42%|████▏ | 2104043/4997817 [00:13&lt;00:18, 153442.72it/s]
+
42%|████▏ | 2106737/4997817 [00:13&lt;00:18, 154717.60it/s]

</pre>

-
42%|████▏ | 2104043/4997817 [00:13<00:18, 153442.72it/s]
+
42%|████▏ | 2106737/4997817 [00:13<00:18, 154717.60it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2104043/4997817 [00:13<00:18, 153442.72it/s]

+

42%|████▏ | 2106737/4997817 [00:13<00:18, 154717.60it/s]

-
42%|████▏ | 2119443/4997817 [00:13&lt;00:18, 153606.85it/s]
+
42%|████▏ | 2122210/4997817 [00:13&lt;00:18, 154334.91it/s]

</pre>

-
42%|████▏ | 2119443/4997817 [00:13<00:18, 153606.85it/s]
+
42%|████▏ | 2122210/4997817 [00:13<00:18, 154334.91it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2119443/4997817 [00:13<00:18, 153606.85it/s]

+

42%|████▏ | 2122210/4997817 [00:13<00:18, 154334.91it/s]

-
43%|████▎ | 2134833/4997817 [00:13&lt;00:18, 153691.74it/s]
+
43%|████▎ | 2137645/4997817 [00:13&lt;00:18, 154040.89it/s]

</pre>

-
43%|████▎ | 2134833/4997817 [00:13<00:18, 153691.74it/s]
+
43%|████▎ | 2137645/4997817 [00:13<00:18, 154040.89it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2134833/4997817 [00:13<00:18, 153691.74it/s]

+

43%|████▎ | 2137645/4997817 [00:13<00:18, 154040.89it/s]

-
43%|████▎ | 2150260/4997817 [00:13&lt;00:18, 153861.39it/s]
+
43%|████▎ | 2153050/4997817 [00:13&lt;00:18, 153792.02it/s]

</pre>

-
43%|████▎ | 2150260/4997817 [00:13<00:18, 153861.39it/s]
+
43%|████▎ | 2153050/4997817 [00:13<00:18, 153792.02it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2150260/4997817 [00:13<00:18, 153861.39it/s]

+

43%|████▎ | 2153050/4997817 [00:13<00:18, 153792.02it/s]

-
43%|████▎ | 2165649/4997817 [00:14&lt;00:18, 153505.35it/s]
+
43%|████▎ | 2168430/4997817 [00:14&lt;00:18, 153254.04it/s]

</pre>

-
43%|████▎ | 2165649/4997817 [00:14<00:18, 153505.35it/s]
+
43%|████▎ | 2168430/4997817 [00:14<00:18, 153254.04it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2165649/4997817 [00:14<00:18, 153505.35it/s]

+

43%|████▎ | 2168430/4997817 [00:14<00:18, 153254.04it/s]

-
44%|████▎ | 2181031/4997817 [00:14&lt;00:18, 153598.33it/s]
+
44%|████▎ | 2183756/4997817 [00:14&lt;00:18, 153011.24it/s]

</pre>

-
44%|████▎ | 2181031/4997817 [00:14<00:18, 153598.33it/s]
+
44%|████▎ | 2183756/4997817 [00:14<00:18, 153011.24it/s]

end{sphinxVerbatim}

-

44%|████▎ | 2181031/4997817 [00:14<00:18, 153598.33it/s]

+

44%|████▎ | 2183756/4997817 [00:14<00:18, 153011.24it/s]

-
44%|████▍ | 2196392/4997817 [00:14&lt;00:18, 153515.18it/s]
+
44%|████▍ | 2199058/4997817 [00:14&lt;00:18, 152771.69it/s]

</pre>

-
44%|████▍ | 2196392/4997817 [00:14<00:18, 153515.18it/s]
+
44%|████▍ | 2199058/4997817 [00:14<00:18, 152771.69it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2196392/4997817 [00:14<00:18, 153515.18it/s]

+

44%|████▍ | 2199058/4997817 [00:14<00:18, 152771.69it/s]

-
44%|████▍ | 2211745/4997817 [00:14&lt;00:18, 153359.24it/s]
+
44%|████▍ | 2214336/4997817 [00:14&lt;00:18, 152533.15it/s]

</pre>

-
44%|████▍ | 2211745/4997817 [00:14<00:18, 153359.24it/s]
+
44%|████▍ | 2214336/4997817 [00:14<00:18, 152533.15it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2211745/4997817 [00:14<00:18, 153359.24it/s]

+

44%|████▍ | 2214336/4997817 [00:14<00:18, 152533.15it/s]

-
45%|████▍ | 2227087/4997817 [00:14&lt;00:18, 153376.49it/s]
+
45%|████▍ | 2229590/4997817 [00:14&lt;00:18, 152216.34it/s]

</pre>

-
45%|████▍ | 2227087/4997817 [00:14<00:18, 153376.49it/s]
+
45%|████▍ | 2229590/4997817 [00:14<00:18, 152216.34it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2227087/4997817 [00:14<00:18, 153376.49it/s]

+

45%|████▍ | 2229590/4997817 [00:14<00:18, 152216.34it/s]

-
45%|████▍ | 2242478/4997817 [00:14&lt;00:17, 153534.73it/s]
+
45%|████▍ | 2244822/4997817 [00:14&lt;00:18, 152246.04it/s]

</pre>

-
45%|████▍ | 2242478/4997817 [00:14<00:17, 153534.73it/s]
+
45%|████▍ | 2244822/4997817 [00:14<00:18, 152246.04it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2242478/4997817 [00:14<00:17, 153534.73it/s]

+

45%|████▍ | 2244822/4997817 [00:14<00:18, 152246.04it/s]

-
45%|████▌ | 2257832/4997817 [00:14&lt;00:17, 153331.02it/s]
+
45%|████▌ | 2260129/4997817 [00:14&lt;00:17, 152489.87it/s]

</pre>

-
45%|████▌ | 2257832/4997817 [00:14<00:17, 153331.02it/s]
+
45%|████▌ | 2260129/4997817 [00:14<00:17, 152489.87it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2257832/4997817 [00:14<00:17, 153331.02it/s]

+

45%|████▌ | 2260129/4997817 [00:14<00:17, 152489.87it/s]

-
45%|████▌ | 2273166/4997817 [00:14&lt;00:17, 153125.99it/s]
+
46%|████▌ | 2275379/4997817 [00:14&lt;00:17, 152457.91it/s]

</pre>

-
45%|████▌ | 2273166/4997817 [00:14<00:17, 153125.99it/s]
+
46%|████▌ | 2275379/4997817 [00:14<00:17, 152457.91it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2273166/4997817 [00:14<00:17, 153125.99it/s]

+

46%|████▌ | 2275379/4997817 [00:14<00:17, 152457.91it/s]

-
46%|████▌ | 2288479/4997817 [00:14&lt;00:17, 153046.84it/s]
+
46%|████▌ | 2290625/4997817 [00:14&lt;00:17, 152236.51it/s]

</pre>

-
46%|████▌ | 2288479/4997817 [00:14<00:17, 153046.84it/s]
+
46%|████▌ | 2290625/4997817 [00:14<00:17, 152236.51it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2288479/4997817 [00:14<00:17, 153046.84it/s]

+

46%|████▌ | 2290625/4997817 [00:14<00:17, 152236.51it/s]

-
46%|████▌ | 2303800/4997817 [00:14&lt;00:17, 153094.76it/s]
+
46%|████▌ | 2305849/4997817 [00:14&lt;00:17, 151840.02it/s]

</pre>

-
46%|████▌ | 2303800/4997817 [00:14<00:17, 153094.76it/s]
+
46%|████▌ | 2305849/4997817 [00:14<00:17, 151840.02it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2303800/4997817 [00:14<00:17, 153094.76it/s]

+

46%|████▌ | 2305849/4997817 [00:14<00:17, 151840.02it/s]

-
46%|████▋ | 2319193/4997817 [00:15&lt;00:17, 153342.97it/s]
+
46%|████▋ | 2321245/4997817 [00:15&lt;00:17, 152471.18it/s]

</pre>

-
46%|████▋ | 2319193/4997817 [00:15<00:17, 153342.97it/s]
+
46%|████▋ | 2321245/4997817 [00:15<00:17, 152471.18it/s]

end{sphinxVerbatim}

-

46%|████▋ | 2319193/4997817 [00:15<00:17, 153342.97it/s]

+

46%|████▋ | 2321245/4997817 [00:15<00:17, 152471.18it/s]

-
47%|████▋ | 2334528/4997817 [00:15&lt;00:17, 152346.58it/s]
+
47%|████▋ | 2336585/4997817 [00:15&lt;00:17, 152746.15it/s]

</pre>

-
47%|████▋ | 2334528/4997817 [00:15<00:17, 152346.58it/s]
+
47%|████▋ | 2336585/4997817 [00:15<00:17, 152746.15it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2334528/4997817 [00:15<00:17, 152346.58it/s]

+

47%|████▋ | 2336585/4997817 [00:15<00:17, 152746.15it/s]

-
47%|████▋ | 2349765/4997817 [00:15&lt;00:17, 151169.35it/s]
+
47%|████▋ | 2351960/4997817 [00:15&lt;00:17, 153045.31it/s]

</pre>

-
47%|████▋ | 2349765/4997817 [00:15<00:17, 151169.35it/s]
+
47%|████▋ | 2351960/4997817 [00:15<00:17, 153045.31it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2349765/4997817 [00:15<00:17, 151169.35it/s]

+

47%|████▋ | 2351960/4997817 [00:15<00:17, 153045.31it/s]

-
47%|████▋ | 2364972/4997817 [00:15&lt;00:17, 151434.66it/s]
+
47%|████▋ | 2367326/4997817 [00:15&lt;00:17, 153228.56it/s]

</pre>

-
47%|████▋ | 2364972/4997817 [00:15<00:17, 151434.66it/s]
+
47%|████▋ | 2367326/4997817 [00:15<00:17, 153228.56it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2364972/4997817 [00:15<00:17, 151434.66it/s]

+

47%|████▋ | 2367326/4997817 [00:15<00:17, 153228.56it/s]

-
48%|████▊ | 2380298/4997817 [00:15&lt;00:17, 151975.78it/s]
+
48%|████▊ | 2382719/4997817 [00:15&lt;00:17, 153435.46it/s]

</pre>

-
48%|████▊ | 2380298/4997817 [00:15<00:17, 151975.78it/s]
+
48%|████▊ | 2382719/4997817 [00:15<00:17, 153435.46it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2380298/4997817 [00:15<00:17, 151975.78it/s]

+

48%|████▊ | 2382719/4997817 [00:15<00:17, 153435.46it/s]

-
48%|████▊ | 2395754/4997817 [00:15&lt;00:17, 152744.78it/s]
+
48%|████▊ | 2398063/4997817 [00:15&lt;00:16, 153381.39it/s]

</pre>

-
48%|████▊ | 2395754/4997817 [00:15<00:17, 152744.78it/s]
+
48%|████▊ | 2398063/4997817 [00:15<00:16, 153381.39it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2395754/4997817 [00:15<00:17, 152744.78it/s]

+

48%|████▊ | 2398063/4997817 [00:15<00:16, 153381.39it/s]

-
48%|████▊ | 2411076/4997817 [00:15&lt;00:16, 152884.98it/s]
+
48%|████▊ | 2413402/4997817 [00:15&lt;00:16, 153357.05it/s]

</pre>

-
48%|████▊ | 2411076/4997817 [00:15<00:16, 152884.98it/s]
+
48%|████▊ | 2413402/4997817 [00:15<00:16, 153357.05it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2411076/4997817 [00:15<00:16, 152884.98it/s]

+

48%|████▊ | 2413402/4997817 [00:15<00:16, 153357.05it/s]

-
49%|████▊ | 2426567/4997817 [00:15&lt;00:16, 153489.20it/s]
+
49%|████▊ | 2428752/4997817 [00:15&lt;00:16, 153397.32it/s]

</pre>

-
49%|████▊ | 2426567/4997817 [00:15<00:16, 153489.20it/s]
+
49%|████▊ | 2428752/4997817 [00:15<00:16, 153397.32it/s]

end{sphinxVerbatim}

-

49%|████▊ | 2426567/4997817 [00:15<00:16, 153489.20it/s]

+

49%|████▊ | 2428752/4997817 [00:15<00:16, 153397.32it/s]

-
49%|████▉ | 2441950/4997817 [00:15&lt;00:16, 153587.93it/s]
+
49%|████▉ | 2444150/4997817 [00:15&lt;00:16, 153571.32it/s]

</pre>

-
49%|████▉ | 2441950/4997817 [00:15<00:16, 153587.93it/s]
+
49%|████▉ | 2444150/4997817 [00:15<00:16, 153571.32it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2441950/4997817 [00:15<00:16, 153587.93it/s]

+

49%|████▉ | 2444150/4997817 [00:15<00:16, 153571.32it/s]

-
49%|████▉ | 2457394/4997817 [00:16&lt;00:16, 153839.68it/s]
+
49%|████▉ | 2459562/4997817 [00:15&lt;00:16, 153732.62it/s]

</pre>

-
49%|████▉ | 2457394/4997817 [00:16<00:16, 153839.68it/s]
+
49%|████▉ | 2459562/4997817 [00:15<00:16, 153732.62it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2457394/4997817 [00:16<00:16, 153839.68it/s]

+

49%|████▉ | 2459562/4997817 [00:15<00:16, 153732.62it/s]

-
49%|████▉ | 2472901/4997817 [00:16&lt;00:16, 154205.77it/s]
+
50%|████▉ | 2475015/4997817 [00:16&lt;00:16, 153968.52it/s]

</pre>

-
49%|████▉ | 2472901/4997817 [00:16<00:16, 154205.77it/s]
+
50%|████▉ | 2475015/4997817 [00:16<00:16, 153968.52it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2472901/4997817 [00:16<00:16, 154205.77it/s]

+

50%|████▉ | 2475015/4997817 [00:16<00:16, 153968.52it/s]

-
50%|████▉ | 2488322/4997817 [00:16&lt;00:16, 154163.11it/s]
+
50%|████▉ | 2490438/4997817 [00:16&lt;00:16, 154046.12it/s]

</pre>

-
50%|████▉ | 2488322/4997817 [00:16<00:16, 154163.11it/s]
+
50%|████▉ | 2490438/4997817 [00:16<00:16, 154046.12it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2488322/4997817 [00:16<00:16, 154163.11it/s]

+

50%|████▉ | 2490438/4997817 [00:16<00:16, 154046.12it/s]

-
50%|█████ | 2503739/4997817 [00:16&lt;00:16, 153004.46it/s]
+
50%|█████ | 2505843/4997817 [00:16&lt;00:16, 154040.82it/s]

</pre>

-
50%|█████ | 2503739/4997817 [00:16<00:16, 153004.46it/s]
+
50%|█████ | 2505843/4997817 [00:16<00:16, 154040.82it/s]

end{sphinxVerbatim}

-

50%|█████ | 2503739/4997817 [00:16<00:16, 153004.46it/s]

+

50%|█████ | 2505843/4997817 [00:16<00:16, 154040.82it/s]

-
50%|█████ | 2519042/4997817 [00:16&lt;00:16, 147381.07it/s]
+
50%|█████ | 2521248/4997817 [00:16&lt;00:16, 153702.86it/s]

</pre>

-
50%|█████ | 2519042/4997817 [00:16<00:16, 147381.07it/s]
+
50%|█████ | 2521248/4997817 [00:16<00:16, 153702.86it/s]

end{sphinxVerbatim}

-

50%|█████ | 2519042/4997817 [00:16<00:16, 147381.07it/s]

+

50%|█████ | 2521248/4997817 [00:16<00:16, 153702.86it/s]

-
51%|█████ | 2534620/4997817 [00:16&lt;00:16, 149823.79it/s]
+
51%|█████ | 2536619/4997817 [00:16&lt;00:16, 153488.02it/s]

</pre>

-
51%|█████ | 2534620/4997817 [00:16<00:16, 149823.79it/s]
+
51%|█████ | 2536619/4997817 [00:16<00:16, 153488.02it/s]

end{sphinxVerbatim}

-

51%|█████ | 2534620/4997817 [00:16<00:16, 149823.79it/s]

+

51%|█████ | 2536619/4997817 [00:16<00:16, 153488.02it/s]

-
51%|█████ | 2550145/4997817 [00:16&lt;00:16, 151413.71it/s]
+
51%|█████ | 2551968/4997817 [00:16&lt;00:15, 153045.28it/s]

</pre>

-
51%|█████ | 2550145/4997817 [00:16<00:16, 151413.71it/s]
+
51%|█████ | 2551968/4997817 [00:16<00:15, 153045.28it/s]

end{sphinxVerbatim}

-

51%|█████ | 2550145/4997817 [00:16<00:16, 151413.71it/s]

+

51%|█████ | 2551968/4997817 [00:16<00:15, 153045.28it/s]

-
51%|█████▏ | 2565630/4997817 [00:16&lt;00:15, 152427.20it/s]
+
51%|█████▏ | 2567273/4997817 [00:16&lt;00:15, 152959.52it/s]

</pre>

-
51%|█████▏ | 2565630/4997817 [00:16<00:15, 152427.20it/s]
+
51%|█████▏ | 2567273/4997817 [00:16<00:15, 152959.52it/s]

end{sphinxVerbatim}

-

51%|█████▏ | 2565630/4997817 [00:16<00:15, 152427.20it/s]

+

51%|█████▏ | 2567273/4997817 [00:16<00:15, 152959.52it/s]

-
52%|█████▏ | 2581060/4997817 [00:16&lt;00:15, 152981.66it/s]
+
52%|█████▏ | 2582570/4997817 [00:16&lt;00:15, 152668.38it/s]

</pre>

-
52%|█████▏ | 2581060/4997817 [00:16<00:15, 152981.66it/s]
+
52%|█████▏ | 2582570/4997817 [00:16<00:15, 152668.38it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2581060/4997817 [00:16<00:15, 152981.66it/s]

+

52%|█████▏ | 2582570/4997817 [00:16<00:15, 152668.38it/s]

-
52%|█████▏ | 2596553/4997817 [00:16&lt;00:15, 153559.70it/s]
+
52%|█████▏ | 2597897/4997817 [00:16&lt;00:15, 152844.82it/s]

</pre>

-
52%|█████▏ | 2596553/4997817 [00:16<00:15, 153559.70it/s]
+
52%|█████▏ | 2597897/4997817 [00:16<00:15, 152844.82it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2596553/4997817 [00:16<00:15, 153559.70it/s]

+

52%|█████▏ | 2597897/4997817 [00:16<00:15, 152844.82it/s]

-
52%|█████▏ | 2612027/4997817 [00:17&lt;00:15, 153910.24it/s]
+
52%|█████▏ | 2613182/4997817 [00:16&lt;00:15, 150670.35it/s]

</pre>

-
52%|█████▏ | 2612027/4997817 [00:17<00:15, 153910.24it/s]
+
52%|█████▏ | 2613182/4997817 [00:16<00:15, 150670.35it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2612027/4997817 [00:17<00:15, 153910.24it/s]

+

52%|█████▏ | 2613182/4997817 [00:16<00:15, 150670.35it/s]

-
53%|█████▎ | 2627562/4997817 [00:17&lt;00:15, 154337.56it/s]
+
53%|█████▎ | 2628256/4997817 [00:17&lt;00:15, 149400.44it/s]

</pre>

-
53%|█████▎ | 2627562/4997817 [00:17<00:15, 154337.56it/s]
+
53%|█████▎ | 2628256/4997817 [00:17<00:15, 149400.44it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2627562/4997817 [00:17<00:15, 154337.56it/s]

+

53%|█████▎ | 2628256/4997817 [00:17<00:15, 149400.44it/s]

-
53%|█████▎ | 2643066/4997817 [00:17&lt;00:15, 154544.82it/s]
+
53%|█████▎ | 2643612/4997817 [00:17&lt;00:15, 150628.22it/s]

</pre>

-
53%|█████▎ | 2643066/4997817 [00:17<00:15, 154544.82it/s]
+
53%|█████▎ | 2643612/4997817 [00:17<00:15, 150628.22it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2643066/4997817 [00:17<00:15, 154544.82it/s]

+

53%|█████▎ | 2643612/4997817 [00:17<00:15, 150628.22it/s]

-
53%|█████▎ | 2658563/4997817 [00:17&lt;00:15, 154668.65it/s]
+
53%|█████▎ | 2659103/4997817 [00:17&lt;00:15, 151899.02it/s]

</pre>

-
53%|█████▎ | 2658563/4997817 [00:17<00:15, 154668.65it/s]
+
53%|█████▎ | 2659103/4997817 [00:17<00:15, 151899.02it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2658563/4997817 [00:17<00:15, 154668.65it/s]

+

53%|█████▎ | 2659103/4997817 [00:17<00:15, 151899.02it/s]

-
54%|█████▎ | 2674058/4997817 [00:17&lt;00:15, 154750.12it/s]
+
54%|█████▎ | 2674484/4997817 [00:17&lt;00:15, 152464.99it/s]

</pre>

-
54%|█████▎ | 2674058/4997817 [00:17<00:15, 154750.12it/s]
+
54%|█████▎ | 2674484/4997817 [00:17<00:15, 152464.99it/s]

end{sphinxVerbatim}

-

54%|█████▎ | 2674058/4997817 [00:17<00:15, 154750.12it/s]

+

54%|█████▎ | 2674484/4997817 [00:17<00:15, 152464.99it/s]

-
54%|█████▍ | 2689580/4997817 [00:17&lt;00:14, 154890.00it/s]
+
54%|█████▍ | 2689840/4997817 [00:17&lt;00:15, 152791.05it/s]

</pre>

-
54%|█████▍ | 2689580/4997817 [00:17<00:14, 154890.00it/s]
+
54%|█████▍ | 2689840/4997817 [00:17<00:15, 152791.05it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2689580/4997817 [00:17<00:14, 154890.00it/s]

+

54%|█████▍ | 2689840/4997817 [00:17<00:15, 152791.05it/s]

-
54%|█████▍ | 2705071/4997817 [00:17&lt;00:14, 154543.10it/s]
+
54%|█████▍ | 2705248/4997817 [00:17&lt;00:14, 153173.60it/s]

</pre>

-
54%|█████▍ | 2705071/4997817 [00:17<00:14, 154543.10it/s]
+
54%|█████▍ | 2705248/4997817 [00:17<00:14, 153173.60it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2705071/4997817 [00:17<00:14, 154543.10it/s]

+

54%|█████▍ | 2705248/4997817 [00:17<00:14, 153173.60it/s]

-
54%|█████▍ | 2720555/4997817 [00:17&lt;00:14, 154630.16it/s]
+
54%|█████▍ | 2720642/4997817 [00:17&lt;00:14, 153400.27it/s]

</pre>

-
54%|█████▍ | 2720555/4997817 [00:17<00:14, 154630.16it/s]
+
54%|█████▍ | 2720642/4997817 [00:17<00:14, 153400.27it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2720555/4997817 [00:17<00:14, 154630.16it/s]

+

54%|█████▍ | 2720642/4997817 [00:17<00:14, 153400.27it/s]

-
55%|█████▍ | 2736166/4997817 [00:17&lt;00:14, 155070.41it/s]
+
55%|█████▍ | 2736057/4997817 [00:17&lt;00:14, 153621.44it/s]

</pre>

-
55%|█████▍ | 2736166/4997817 [00:17<00:14, 155070.41it/s]
+
55%|█████▍ | 2736057/4997817 [00:17<00:14, 153621.44it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2736166/4997817 [00:17<00:14, 155070.41it/s]

+

55%|█████▍ | 2736057/4997817 [00:17<00:14, 153621.44it/s]

-
55%|█████▌ | 2751724/4997817 [00:17&lt;00:14, 155222.18it/s]
+
55%|█████▌ | 2751444/4997817 [00:17&lt;00:14, 153694.21it/s]

</pre>

-
55%|█████▌ | 2751724/4997817 [00:17<00:14, 155222.18it/s]
+
55%|█████▌ | 2751444/4997817 [00:17<00:14, 153694.21it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2751724/4997817 [00:17<00:14, 155222.18it/s]

+

55%|█████▌ | 2751444/4997817 [00:17<00:14, 153694.21it/s]

-
55%|█████▌ | 2767247/4997817 [00:18&lt;00:14, 155078.59it/s]
+
55%|█████▌ | 2766815/4997817 [00:17&lt;00:14, 153676.47it/s]

</pre>

-
55%|█████▌ | 2767247/4997817 [00:18<00:14, 155078.59it/s]
+
55%|█████▌ | 2766815/4997817 [00:17<00:14, 153676.47it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2767247/4997817 [00:18<00:14, 155078.59it/s]

+

55%|█████▌ | 2766815/4997817 [00:17<00:14, 153676.47it/s]

-
56%|█████▌ | 2782756/4997817 [00:18&lt;00:14, 154978.09it/s]
+
56%|█████▌ | 2782184/4997817 [00:18&lt;00:15, 146027.40it/s]

</pre>

-
56%|█████▌ | 2782756/4997817 [00:18<00:14, 154978.09it/s]
+
56%|█████▌ | 2782184/4997817 [00:18<00:15, 146027.40it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2782756/4997817 [00:18<00:14, 154978.09it/s]

+

56%|█████▌ | 2782184/4997817 [00:18<00:15, 146027.40it/s]

-
56%|█████▌ | 2798255/4997817 [00:18&lt;00:14, 154977.38it/s]
+
56%|█████▌ | 2797535/4997817 [00:18&lt;00:14, 148188.94it/s]

</pre>

-
56%|█████▌ | 2798255/4997817 [00:18<00:14, 154977.38it/s]
+
56%|█████▌ | 2797535/4997817 [00:18<00:14, 148188.94it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2798255/4997817 [00:18<00:14, 154977.38it/s]

+

56%|█████▌ | 2797535/4997817 [00:18<00:14, 148188.94it/s]

-
56%|█████▋ | 2813789/4997817 [00:18&lt;00:14, 155083.56it/s]
+
56%|█████▋ | 2812891/4997817 [00:18&lt;00:14, 149756.66it/s]

</pre>

-
56%|█████▋ | 2813789/4997817 [00:18<00:14, 155083.56it/s]
+
56%|█████▋ | 2812891/4997817 [00:18<00:14, 149756.66it/s]

end{sphinxVerbatim}

-

56%|█████▋ | 2813789/4997817 [00:18<00:14, 155083.56it/s]

+

56%|█████▋ | 2812891/4997817 [00:18<00:14, 149756.66it/s]

-
57%|█████▋ | 2829298/4997817 [00:18&lt;00:14, 152520.30it/s]
+
57%|█████▋ | 2828262/4997817 [00:18&lt;00:14, 150920.17it/s]

</pre>

-
57%|█████▋ | 2829298/4997817 [00:18<00:14, 152520.30it/s]
+
57%|█████▋ | 2828262/4997817 [00:18<00:14, 150920.17it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2829298/4997817 [00:18<00:14, 152520.30it/s]

+

57%|█████▋ | 2828262/4997817 [00:18<00:14, 150920.17it/s]

-
57%|█████▋ | 2844801/4997817 [00:18&lt;00:14, 153263.29it/s]
+
57%|█████▋ | 2843674/4997817 [00:18&lt;00:14, 151866.33it/s]

</pre>

-
57%|█████▋ | 2844801/4997817 [00:18<00:14, 153263.29it/s]
+
57%|█████▋ | 2843674/4997817 [00:18<00:14, 151866.33it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2844801/4997817 [00:18<00:14, 153263.29it/s]

+

57%|█████▋ | 2843674/4997817 [00:18<00:14, 151866.33it/s]

-
57%|█████▋ | 2860237/4997817 [00:18&lt;00:13, 153586.93it/s]
+
57%|█████▋ | 2858942/4997817 [00:18&lt;00:14, 152106.04it/s]

</pre>

-
57%|█████▋ | 2860237/4997817 [00:18<00:13, 153586.93it/s]
+
57%|█████▋ | 2858942/4997817 [00:18<00:14, 152106.04it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2860237/4997817 [00:18<00:13, 153586.93it/s]

+

57%|█████▋ | 2858942/4997817 [00:18<00:14, 152106.04it/s]

-
58%|█████▊ | 2875673/4997817 [00:18&lt;00:13, 153813.68it/s]
+
58%|█████▊ | 2874363/4997817 [00:18&lt;00:13, 152731.27it/s]

</pre>

-
58%|█████▊ | 2875673/4997817 [00:18<00:13, 153813.68it/s]
+
58%|█████▊ | 2874363/4997817 [00:18<00:13, 152731.27it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2875673/4997817 [00:18<00:13, 153813.68it/s]

+

58%|█████▊ | 2874363/4997817 [00:18<00:13, 152731.27it/s]

-
58%|█████▊ | 2891059/4997817 [00:18&lt;00:13, 153744.34it/s]
+
58%|█████▊ | 2889650/4997817 [00:18&lt;00:13, 152715.44it/s]

</pre>

-
58%|█████▊ | 2891059/4997817 [00:18<00:13, 153744.34it/s]
+
58%|█████▊ | 2889650/4997817 [00:18<00:13, 152715.44it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2891059/4997817 [00:18<00:13, 153744.34it/s]

+

58%|█████▊ | 2889650/4997817 [00:18<00:13, 152715.44it/s]

-
58%|█████▊ | 2906451/4997817 [00:18&lt;00:13, 153793.40it/s]
+
58%|█████▊ | 2905031/4997817 [00:18&lt;00:13, 153042.21it/s]

</pre>

-
58%|█████▊ | 2906451/4997817 [00:18<00:13, 153793.40it/s]
+
58%|█████▊ | 2905031/4997817 [00:18<00:13, 153042.21it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2906451/4997817 [00:18<00:13, 153793.40it/s]

+

58%|█████▊ | 2905031/4997817 [00:18<00:13, 153042.21it/s]

-
58%|█████▊ | 2921833/4997817 [00:19&lt;00:13, 153778.25it/s]
+
58%|█████▊ | 2920342/4997817 [00:19&lt;00:13, 153004.24it/s]

</pre>

-
58%|█████▊ | 2921833/4997817 [00:19<00:13, 153778.25it/s]
+
58%|█████▊ | 2920342/4997817 [00:19<00:13, 153004.24it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2921833/4997817 [00:19<00:13, 153778.25it/s]

+

58%|█████▊ | 2920342/4997817 [00:19<00:13, 153004.24it/s]

-
59%|█████▉ | 2937213/4997817 [00:19&lt;00:13, 153645.48it/s]
+
59%|█████▊ | 2935648/4997817 [00:19&lt;00:13, 152907.67it/s]

</pre>

-
59%|█████▉ | 2937213/4997817 [00:19<00:13, 153645.48it/s]
+
59%|█████▊ | 2935648/4997817 [00:19<00:13, 152907.67it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2937213/4997817 [00:19<00:13, 153645.48it/s]

+

59%|█████▊ | 2935648/4997817 [00:19<00:13, 152907.67it/s]

-
59%|█████▉ | 2952579/4997817 [00:19&lt;00:13, 153613.36it/s]
+
59%|█████▉ | 2950943/4997817 [00:19&lt;00:13, 152850.99it/s]

</pre>

-
59%|█████▉ | 2952579/4997817 [00:19<00:13, 153613.36it/s]
+
59%|█████▉ | 2950943/4997817 [00:19<00:13, 152850.99it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2952579/4997817 [00:19<00:13, 153613.36it/s]

+

59%|█████▉ | 2950943/4997817 [00:19<00:13, 152850.99it/s]

-
59%|█████▉ | 2967942/4997817 [00:19&lt;00:13, 153281.42it/s]
+
59%|█████▉ | 2966231/4997817 [00:19&lt;00:13, 152725.36it/s]

</pre>

-
59%|█████▉ | 2967942/4997817 [00:19<00:13, 153281.42it/s]
+
59%|█████▉ | 2966231/4997817 [00:19<00:13, 152725.36it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2967942/4997817 [00:19<00:13, 153281.42it/s]

+

59%|█████▉ | 2966231/4997817 [00:19<00:13, 152725.36it/s]

-
60%|█████▉ | 2983271/4997817 [00:19&lt;00:13, 150146.86it/s]
+
60%|█████▉ | 2981549/4997817 [00:19&lt;00:13, 152858.39it/s]

</pre>

-
60%|█████▉ | 2983271/4997817 [00:19<00:13, 150146.86it/s]
+
60%|█████▉ | 2981549/4997817 [00:19<00:13, 152858.39it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2983271/4997817 [00:19<00:13, 150146.86it/s]

+

60%|█████▉ | 2981549/4997817 [00:19<00:13, 152858.39it/s]

-
60%|█████▉ | 2998477/4997817 [00:19&lt;00:13, 150708.16it/s]
+
60%|█████▉ | 2996997/4997817 [00:19&lt;00:13, 153340.92it/s]

</pre>

-
60%|█████▉ | 2998477/4997817 [00:19<00:13, 150708.16it/s]
+
60%|█████▉ | 2996997/4997817 [00:19<00:13, 153340.92it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2998477/4997817 [00:19<00:13, 150708.16it/s]

+

60%|█████▉ | 2996997/4997817 [00:19<00:13, 153340.92it/s]

-
60%|██████ | 3014011/4997817 [00:19&lt;00:13, 152080.61it/s]
+
60%|██████ | 3012371/4997817 [00:19&lt;00:12, 153458.61it/s]

</pre>

-
60%|██████ | 3014011/4997817 [00:19<00:13, 152080.61it/s]
+
60%|██████ | 3012371/4997817 [00:19<00:12, 153458.61it/s]

end{sphinxVerbatim}

-

60%|██████ | 3014011/4997817 [00:19<00:13, 152080.61it/s]

+

60%|██████ | 3012371/4997817 [00:19<00:12, 153458.61it/s]

-
61%|██████ | 3029518/4997817 [00:19&lt;00:12, 152969.20it/s]
+
61%|██████ | 3027820/4997817 [00:19&lt;00:12, 153766.56it/s]

</pre>

-
61%|██████ | 3029518/4997817 [00:19<00:12, 152969.20it/s]
+
61%|██████ | 3027820/4997817 [00:19<00:12, 153766.56it/s]

end{sphinxVerbatim}

-

61%|██████ | 3029518/4997817 [00:19<00:12, 152969.20it/s]

+

61%|██████ | 3027820/4997817 [00:19<00:12, 153766.56it/s]

-
61%|██████ | 3045037/4997817 [00:19&lt;00:12, 153629.76it/s]
+
61%|██████ | 3043238/4997817 [00:19&lt;00:12, 153889.92it/s]

</pre>

-
61%|██████ | 3045037/4997817 [00:19<00:12, 153629.76it/s]
+
61%|██████ | 3043238/4997817 [00:19<00:12, 153889.92it/s]

end{sphinxVerbatim}

-

61%|██████ | 3045037/4997817 [00:19<00:12, 153629.76it/s]

+

61%|██████ | 3043238/4997817 [00:19<00:12, 153889.92it/s]

-
61%|██████ | 3060406/4997817 [00:19&lt;00:12, 153331.78it/s]
+
61%|██████ | 3058663/4997817 [00:19&lt;00:12, 153995.86it/s]

</pre>

-
61%|██████ | 3060406/4997817 [00:19<00:12, 153331.78it/s]
+
61%|██████ | 3058663/4997817 [00:19<00:12, 153995.86it/s]

end{sphinxVerbatim}

-

61%|██████ | 3060406/4997817 [00:19<00:12, 153331.78it/s]

+

61%|██████ | 3058663/4997817 [00:19<00:12, 153995.86it/s]

-
62%|██████▏ | 3075743/4997817 [00:20&lt;00:12, 152764.94it/s]
+
62%|██████▏ | 3074096/4997817 [00:20&lt;00:12, 154092.71it/s]

</pre>

-
62%|██████▏ | 3075743/4997817 [00:20<00:12, 152764.94it/s]
+
62%|██████▏ | 3074096/4997817 [00:20<00:12, 154092.71it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3075743/4997817 [00:20<00:12, 152764.94it/s]

+

62%|██████▏ | 3074096/4997817 [00:20<00:12, 154092.71it/s]

-
62%|██████▏ | 3091023/4997817 [00:20&lt;00:12, 152634.64it/s]
+
62%|██████▏ | 3089506/4997817 [00:20&lt;00:12, 153922.23it/s]

</pre>

-
62%|██████▏ | 3091023/4997817 [00:20<00:12, 152634.64it/s]
+
62%|██████▏ | 3089506/4997817 [00:20<00:12, 153922.23it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3091023/4997817 [00:20<00:12, 152634.64it/s]

+

62%|██████▏ | 3089506/4997817 [00:20<00:12, 153922.23it/s]

-
62%|██████▏ | 3106414/4997817 [00:20&lt;00:12, 153013.91it/s]
+
62%|██████▏ | 3104899/4997817 [00:20&lt;00:12, 153769.23it/s]

</pre>

-
62%|██████▏ | 3106414/4997817 [00:20<00:12, 153013.91it/s]
+
62%|██████▏ | 3104899/4997817 [00:20<00:12, 153769.23it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3106414/4997817 [00:20<00:12, 153013.91it/s]

+

62%|██████▏ | 3104899/4997817 [00:20<00:12, 153769.23it/s]

-
62%|██████▏ | 3121808/4997817 [00:20&lt;00:12, 153288.59it/s]
+
62%|██████▏ | 3120344/4997817 [00:20&lt;00:12, 153969.82it/s]

</pre>

-
62%|██████▏ | 3121808/4997817 [00:20<00:12, 153288.59it/s]
+
62%|██████▏ | 3120344/4997817 [00:20<00:12, 153969.82it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3121808/4997817 [00:20<00:12, 153288.59it/s]

+

62%|██████▏ | 3120344/4997817 [00:20<00:12, 153969.82it/s]

-
63%|██████▎ | 3137276/4997817 [00:20&lt;00:12, 153703.80it/s]
+
63%|██████▎ | 3135742/4997817 [00:20&lt;00:12, 153534.18it/s]

</pre>

-
63%|██████▎ | 3137276/4997817 [00:20<00:12, 153703.80it/s]
+
63%|██████▎ | 3135742/4997817 [00:20<00:12, 153534.18it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3137276/4997817 [00:20<00:12, 153703.80it/s]

+

63%|██████▎ | 3135742/4997817 [00:20<00:12, 153534.18it/s]

-
63%|██████▎ | 3152648/4997817 [00:20&lt;00:12, 153568.00it/s]
+
63%|██████▎ | 3151096/4997817 [00:20&lt;00:12, 153404.32it/s]

</pre>

-
63%|██████▎ | 3152648/4997817 [00:20<00:12, 153568.00it/s]
+
63%|██████▎ | 3151096/4997817 [00:20<00:12, 153404.32it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3152648/4997817 [00:20<00:12, 153568.00it/s]

+

63%|██████▎ | 3151096/4997817 [00:20<00:12, 153404.32it/s]

-
63%|██████▎ | 3168071/4997817 [00:20&lt;00:11, 153762.45it/s]
+
63%|██████▎ | 3166437/4997817 [00:20&lt;00:11, 153363.50it/s]

</pre>

-
63%|██████▎ | 3168071/4997817 [00:20<00:11, 153762.45it/s]
+
63%|██████▎ | 3166437/4997817 [00:20<00:11, 153363.50it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3168071/4997817 [00:20<00:11, 153762.45it/s]

+

63%|██████▎ | 3166437/4997817 [00:20<00:11, 153363.50it/s]

-
64%|██████▎ | 3183450/4997817 [00:20&lt;00:11, 153768.33it/s]
+
64%|██████▎ | 3181930/4997817 [00:20&lt;00:11, 153829.95it/s]

</pre>

-
64%|██████▎ | 3183450/4997817 [00:20<00:11, 153768.33it/s]
+
64%|██████▎ | 3181930/4997817 [00:20<00:11, 153829.95it/s]

end{sphinxVerbatim}

-

64%|██████▎ | 3183450/4997817 [00:20<00:11, 153768.33it/s]

+

64%|██████▎ | 3181930/4997817 [00:20<00:11, 153829.95it/s]

-
64%|██████▍ | 3198898/4997817 [00:20&lt;00:11, 153979.27it/s]
+
64%|██████▍ | 3197314/4997817 [00:20&lt;00:11, 153423.59it/s]

</pre>

-
64%|██████▍ | 3198898/4997817 [00:20<00:11, 153979.27it/s]
+
64%|██████▍ | 3197314/4997817 [00:20<00:11, 153423.59it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3198898/4997817 [00:20<00:11, 153979.27it/s]

+

64%|██████▍ | 3197314/4997817 [00:20<00:11, 153423.59it/s]

-
64%|██████▍ | 3214297/4997817 [00:20&lt;00:11, 153771.27it/s]
+
64%|██████▍ | 3212657/4997817 [00:20&lt;00:11, 153324.94it/s]

</pre>

-
64%|██████▍ | 3214297/4997817 [00:20<00:11, 153771.27it/s]
+
64%|██████▍ | 3212657/4997817 [00:20<00:11, 153324.94it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3214297/4997817 [00:20<00:11, 153771.27it/s]

+

64%|██████▍ | 3212657/4997817 [00:20<00:11, 153324.94it/s]

-
65%|██████▍ | 3229715/4997817 [00:21&lt;00:11, 153892.00it/s]
+
65%|██████▍ | 3228003/4997817 [00:21&lt;00:11, 153363.54it/s]

</pre>

-
65%|██████▍ | 3229715/4997817 [00:21<00:11, 153892.00it/s]
+
65%|██████▍ | 3228003/4997817 [00:21<00:11, 153363.54it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3229715/4997817 [00:21<00:11, 153892.00it/s]

+

65%|██████▍ | 3228003/4997817 [00:21<00:11, 153363.54it/s]

-
65%|██████▍ | 3245105/4997817 [00:21&lt;00:11, 153859.37it/s]
+
65%|██████▍ | 3243340/4997817 [00:21&lt;00:11, 151587.92it/s]

</pre>

-
65%|██████▍ | 3245105/4997817 [00:21<00:11, 153859.37it/s]
+
65%|██████▍ | 3243340/4997817 [00:21<00:11, 151587.92it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3245105/4997817 [00:21<00:11, 153859.37it/s]

+

65%|██████▍ | 3243340/4997817 [00:21<00:11, 151587.92it/s]

-
65%|██████▌ | 3260519/4997817 [00:21&lt;00:11, 153941.22it/s]
+
65%|██████▌ | 3258504/4997817 [00:21&lt;00:11, 148147.58it/s]

</pre>

-
65%|██████▌ | 3260519/4997817 [00:21<00:11, 153941.22it/s]
+
65%|██████▌ | 3258504/4997817 [00:21<00:11, 148147.58it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3260519/4997817 [00:21<00:11, 153941.22it/s]

+

65%|██████▌ | 3258504/4997817 [00:21<00:11, 148147.58it/s]

-
66%|██████▌ | 3275914/4997817 [00:21&lt;00:11, 153716.78it/s]
+
66%|██████▌ | 3273956/4997817 [00:21&lt;00:11, 150013.39it/s]

</pre>

-
66%|██████▌ | 3275914/4997817 [00:21<00:11, 153716.78it/s]
+
66%|██████▌ | 3273956/4997817 [00:21<00:11, 150013.39it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3275914/4997817 [00:21<00:11, 153716.78it/s]

+

66%|██████▌ | 3273956/4997817 [00:21<00:11, 150013.39it/s]

-
66%|██████▌ | 3291386/4997817 [00:21&lt;00:11, 154014.60it/s]
+
66%|██████▌ | 3289544/4997817 [00:21&lt;00:11, 151741.78it/s]

</pre>

-
66%|██████▌ | 3291386/4997817 [00:21<00:11, 154014.60it/s]
+
66%|██████▌ | 3289544/4997817 [00:21<00:11, 151741.78it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3291386/4997817 [00:21<00:11, 154014.60it/s]

+

66%|██████▌ | 3289544/4997817 [00:21<00:11, 151741.78it/s]

-
66%|██████▌ | 3306788/4997817 [00:21&lt;00:11, 153609.50it/s]
+
66%|██████▌ | 3305094/4997817 [00:21&lt;00:11, 152854.93it/s]

</pre>

-
66%|██████▌ | 3306788/4997817 [00:21<00:11, 153609.50it/s]
+
66%|██████▌ | 3305094/4997817 [00:21<00:11, 152854.93it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3306788/4997817 [00:21<00:11, 153609.50it/s]

+

66%|██████▌ | 3305094/4997817 [00:21<00:11, 152854.93it/s]

-
66%|██████▋ | 3322285/4997817 [00:21&lt;00:10, 153972.38it/s]
+
66%|██████▋ | 3320616/4997817 [00:21&lt;00:10, 153555.41it/s]

</pre>

-
66%|██████▋ | 3322285/4997817 [00:21<00:10, 153972.38it/s]
+
66%|██████▋ | 3320616/4997817 [00:21<00:10, 153555.41it/s]

end{sphinxVerbatim}

-

66%|██████▋ | 3322285/4997817 [00:21<00:10, 153972.38it/s]

+

66%|██████▋ | 3320616/4997817 [00:21<00:10, 153555.41it/s]

-
67%|██████▋ | 3337683/4997817 [00:21&lt;00:10, 153858.51it/s]
+
67%|██████▋ | 3336160/4997817 [00:21&lt;00:10, 154115.62it/s]

</pre>

-
67%|██████▋ | 3337683/4997817 [00:21<00:10, 153858.51it/s]
+
67%|██████▋ | 3336160/4997817 [00:21<00:10, 154115.62it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3337683/4997817 [00:21<00:10, 153858.51it/s]

+

67%|██████▋ | 3336160/4997817 [00:21<00:10, 154115.62it/s]

-
67%|██████▋ | 3353124/4997817 [00:21&lt;00:10, 154022.14it/s]
+
67%|██████▋ | 3351730/4997817 [00:21&lt;00:10, 154587.03it/s]

</pre>

-
67%|██████▋ | 3353124/4997817 [00:21<00:10, 154022.14it/s]
+
67%|██████▋ | 3351730/4997817 [00:21<00:10, 154587.03it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3353124/4997817 [00:21<00:10, 154022.14it/s]

+

67%|██████▋ | 3351730/4997817 [00:21<00:10, 154587.03it/s]

-
67%|██████▋ | 3368625/4997817 [00:21&lt;00:10, 154316.93it/s]
+
67%|██████▋ | 3367278/4997817 [00:21&lt;00:10, 154851.47it/s]

</pre>

-
67%|██████▋ | 3368625/4997817 [00:21<00:10, 154316.93it/s]
+
67%|██████▋ | 3367278/4997817 [00:21<00:10, 154851.47it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3368625/4997817 [00:21<00:10, 154316.93it/s]

+

67%|██████▋ | 3367278/4997817 [00:21<00:10, 154851.47it/s]

-
68%|██████▊ | 3384057/4997817 [00:22&lt;00:10, 154300.14it/s]
+
68%|██████▊ | 3382904/4997817 [00:22&lt;00:10, 155270.93it/s]

</pre>

-
68%|██████▊ | 3384057/4997817 [00:22<00:10, 154300.14it/s]
+
68%|██████▊ | 3382904/4997817 [00:22<00:10, 155270.93it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3384057/4997817 [00:22<00:10, 154300.14it/s]

+

68%|██████▊ | 3382904/4997817 [00:22<00:10, 155270.93it/s]

-
68%|██████▊ | 3399488/4997817 [00:22&lt;00:10, 154131.51it/s]
+
68%|██████▊ | 3398434/4997817 [00:22&lt;00:10, 155112.16it/s]

</pre>

-
68%|██████▊ | 3399488/4997817 [00:22<00:10, 154131.51it/s]
+
68%|██████▊ | 3398434/4997817 [00:22<00:10, 155112.16it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3399488/4997817 [00:22<00:10, 154131.51it/s]

+

68%|██████▊ | 3398434/4997817 [00:22<00:10, 155112.16it/s]

-
68%|██████▊ | 3414954/4997817 [00:22&lt;00:10, 154286.04it/s]
+
68%|██████▊ | 3413947/4997817 [00:22&lt;00:10, 151516.41it/s]

</pre>

-
68%|██████▊ | 3414954/4997817 [00:22<00:10, 154286.04it/s]
+
68%|██████▊ | 3413947/4997817 [00:22<00:10, 151516.41it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3414954/4997817 [00:22<00:10, 154286.04it/s]

+

68%|██████▊ | 3413947/4997817 [00:22<00:10, 151516.41it/s]

-
69%|██████▊ | 3430466/4997817 [00:22&lt;00:10, 154534.16it/s]
+
69%|██████▊ | 3429264/4997817 [00:22&lt;00:10, 152002.54it/s]

</pre>

-
69%|██████▊ | 3430466/4997817 [00:22<00:10, 154534.16it/s]
+
69%|██████▊ | 3429264/4997817 [00:22<00:10, 152002.54it/s]

end{sphinxVerbatim}

-

69%|██████▊ | 3430466/4997817 [00:22<00:10, 154534.16it/s]

+

69%|██████▊ | 3429264/4997817 [00:22<00:10, 152002.54it/s]

-
69%|██████▉ | 3445934/4997817 [00:22&lt;00:10, 154576.71it/s]
+
69%|██████▉ | 3444687/4997817 [00:22&lt;00:10, 152661.60it/s]

</pre>

-
69%|██████▉ | 3445934/4997817 [00:22<00:10, 154576.71it/s]
+
69%|██████▉ | 3444687/4997817 [00:22<00:10, 152661.60it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3445934/4997817 [00:22<00:10, 154576.71it/s]

+

69%|██████▉ | 3444687/4997817 [00:22<00:10, 152661.60it/s]

-
69%|██████▉ | 3461392/4997817 [00:22&lt;00:09, 154214.46it/s]
+
69%|██████▉ | 3459988/4997817 [00:22&lt;00:10, 152762.54it/s]

</pre>

-
69%|██████▉ | 3461392/4997817 [00:22<00:09, 154214.46it/s]
+
69%|██████▉ | 3459988/4997817 [00:22<00:10, 152762.54it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3461392/4997817 [00:22<00:09, 154214.46it/s]

+

69%|██████▉ | 3459988/4997817 [00:22<00:10, 152762.54it/s]

-
70%|██████▉ | 3476836/4997817 [00:22&lt;00:09, 154280.38it/s]
+
70%|██████▉ | 3475342/4997817 [00:22&lt;00:09, 152992.88it/s]

</pre>

-
70%|██████▉ | 3476836/4997817 [00:22<00:09, 154280.38it/s]
+
70%|██████▉ | 3475342/4997817 [00:22<00:09, 152992.88it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3476836/4997817 [00:22<00:09, 154280.38it/s]

+

70%|██████▉ | 3475342/4997817 [00:22<00:09, 152992.88it/s]

-
70%|██████▉ | 3492331/4997817 [00:22&lt;00:09, 154479.71it/s]
+
70%|██████▉ | 3490806/4997817 [00:22&lt;00:09, 153484.06it/s]

</pre>

-
70%|██████▉ | 3492331/4997817 [00:22<00:09, 154479.71it/s]
+
70%|██████▉ | 3490806/4997817 [00:22<00:09, 153484.06it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3492331/4997817 [00:22<00:09, 154479.71it/s]

+

70%|██████▉ | 3490806/4997817 [00:22<00:09, 153484.06it/s]

-
70%|███████ | 3507875/4997817 [00:22&lt;00:09, 154766.34it/s]
+
70%|███████ | 3506159/4997817 [00:22&lt;00:09, 153394.70it/s]

</pre>

-
70%|███████ | 3507875/4997817 [00:22<00:09, 154766.34it/s]
+
70%|███████ | 3506159/4997817 [00:22<00:09, 153394.70it/s]

end{sphinxVerbatim}

-

70%|███████ | 3507875/4997817 [00:22<00:09, 154766.34it/s]

+

70%|███████ | 3506159/4997817 [00:22<00:09, 153394.70it/s]

-
70%|███████ | 3523352/4997817 [00:22&lt;00:09, 154673.95it/s]
+
70%|███████ | 3521538/4997817 [00:22&lt;00:09, 153511.49it/s]

</pre>

-
70%|███████ | 3523352/4997817 [00:22<00:09, 154673.95it/s]
+
70%|███████ | 3521538/4997817 [00:22<00:09, 153511.49it/s]

end{sphinxVerbatim}

-

70%|███████ | 3523352/4997817 [00:22<00:09, 154673.95it/s]

+

70%|███████ | 3521538/4997817 [00:22<00:09, 153511.49it/s]

-
71%|███████ | 3538822/4997817 [00:23&lt;00:09, 154679.04it/s]
+
71%|███████ | 3537056/4997817 [00:23&lt;00:09, 154008.32it/s]

</pre>

-
71%|███████ | 3538822/4997817 [00:23<00:09, 154679.04it/s]
+
71%|███████ | 3537056/4997817 [00:23<00:09, 154008.32it/s]

end{sphinxVerbatim}

-

71%|███████ | 3538822/4997817 [00:23<00:09, 154679.04it/s]

+

71%|███████ | 3537056/4997817 [00:23<00:09, 154008.32it/s]

-
71%|███████ | 3554370/4997817 [00:23&lt;00:09, 154917.78it/s]
+
71%|███████ | 3552632/4997817 [00:23&lt;00:09, 154530.44it/s]

</pre>

-
71%|███████ | 3554370/4997817 [00:23<00:09, 154917.78it/s]
+
71%|███████ | 3552632/4997817 [00:23<00:09, 154530.44it/s]

end{sphinxVerbatim}

-

71%|███████ | 3554370/4997817 [00:23<00:09, 154917.78it/s]

+

71%|███████ | 3552632/4997817 [00:23<00:09, 154530.44it/s]

-
71%|███████▏ | 3569906/4997817 [00:23&lt;00:09, 155047.44it/s]
+
71%|███████▏ | 3568087/4997817 [00:23&lt;00:09, 146968.50it/s]

</pre>

-
71%|███████▏ | 3569906/4997817 [00:23<00:09, 155047.44it/s]
+
71%|███████▏ | 3568087/4997817 [00:23<00:09, 146968.50it/s]

end{sphinxVerbatim}

-

71%|███████▏ | 3569906/4997817 [00:23<00:09, 155047.44it/s]

+

71%|███████▏ | 3568087/4997817 [00:23<00:09, 146968.50it/s]

-
72%|███████▏ | 3585430/4997817 [00:23&lt;00:09, 155102.12it/s]
+
72%|███████▏ | 3583451/4997817 [00:23&lt;00:09, 148896.74it/s]

</pre>

-
72%|███████▏ | 3585430/4997817 [00:23<00:09, 155102.12it/s]
+
72%|███████▏ | 3583451/4997817 [00:23<00:09, 148896.74it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3585430/4997817 [00:23<00:09, 155102.12it/s]

+

72%|███████▏ | 3583451/4997817 [00:23<00:09, 148896.74it/s]

-
72%|███████▏ | 3600951/4997817 [00:23&lt;00:09, 155132.30it/s]
+
72%|███████▏ | 3598891/4997817 [00:23&lt;00:09, 150504.59it/s]

</pre>

-
72%|███████▏ | 3600951/4997817 [00:23<00:09, 155132.30it/s]
+
72%|███████▏ | 3598891/4997817 [00:23<00:09, 150504.59it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3600951/4997817 [00:23<00:09, 155132.30it/s]

+

72%|███████▏ | 3598891/4997817 [00:23<00:09, 150504.59it/s]

-
72%|███████▏ | 3616465/4997817 [00:23&lt;00:09, 150887.26it/s]
+
72%|███████▏ | 3614435/4997817 [00:23&lt;00:09, 151958.53it/s]

</pre>

-
72%|███████▏ | 3616465/4997817 [00:23<00:09, 150887.26it/s]
+
72%|███████▏ | 3614435/4997817 [00:23<00:09, 151958.53it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3616465/4997817 [00:23<00:09, 150887.26it/s]

+

72%|███████▏ | 3614435/4997817 [00:23<00:09, 151958.53it/s]

-
73%|███████▎ | 3632029/4997817 [00:23&lt;00:08, 152284.22it/s]
+
73%|███████▎ | 3629881/4997817 [00:23&lt;00:08, 152697.73it/s]

</pre>

-
73%|███████▎ | 3632029/4997817 [00:23<00:08, 152284.22it/s]
+
73%|███████▎ | 3629881/4997817 [00:23<00:08, 152697.73it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3632029/4997817 [00:23<00:08, 152284.22it/s]

+

73%|███████▎ | 3629881/4997817 [00:23<00:08, 152697.73it/s]

-
73%|███████▎ | 3647567/4997817 [00:23&lt;00:08, 153198.65it/s]
+
73%|███████▎ | 3645255/4997817 [00:23&lt;00:08, 153005.77it/s]

</pre>

-
73%|███████▎ | 3647567/4997817 [00:23<00:08, 153198.65it/s]
+
73%|███████▎ | 3645255/4997817 [00:23<00:08, 153005.77it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3647567/4997817 [00:23<00:08, 153198.65it/s]

+

73%|███████▎ | 3645255/4997817 [00:23<00:08, 153005.77it/s]

-
73%|███████▎ | 3663094/4997817 [00:23&lt;00:08, 153810.84it/s]
+
73%|███████▎ | 3660584/4997817 [00:23&lt;00:08, 153088.81it/s]

</pre>

-
73%|███████▎ | 3663094/4997817 [00:23<00:08, 153810.84it/s]
+
73%|███████▎ | 3660584/4997817 [00:23<00:08, 153088.81it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3663094/4997817 [00:23<00:08, 153810.84it/s]

+

73%|███████▎ | 3660584/4997817 [00:23<00:08, 153088.81it/s]

-
74%|███████▎ | 3678598/4997817 [00:23&lt;00:08, 154174.29it/s]
+
74%|███████▎ | 3675916/4997817 [00:23&lt;00:08, 153156.17it/s]

</pre>

-
74%|███████▎ | 3678598/4997817 [00:23<00:08, 154174.29it/s]
+
74%|███████▎ | 3675916/4997817 [00:23<00:08, 153156.17it/s]

end{sphinxVerbatim}

-

74%|███████▎ | 3678598/4997817 [00:23<00:08, 154174.29it/s]

+

74%|███████▎ | 3675916/4997817 [00:23<00:08, 153156.17it/s]

-
74%|███████▍ | 3694138/4997817 [00:24&lt;00:08, 154536.99it/s]
+
74%|███████▍ | 3691295/4997817 [00:24&lt;00:08, 153344.25it/s]

</pre>

-
74%|███████▍ | 3694138/4997817 [00:24<00:08, 154536.99it/s]
+
74%|███████▍ | 3691295/4997817 [00:24<00:08, 153344.25it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3694138/4997817 [00:24<00:08, 154536.99it/s]

+

74%|███████▍ | 3691295/4997817 [00:24<00:08, 153344.25it/s]

-
74%|███████▍ | 3709658/4997817 [00:24&lt;00:08, 154732.73it/s]
+
74%|███████▍ | 3706697/4997817 [00:24&lt;00:08, 153545.60it/s]

</pre>

-
74%|███████▍ | 3709658/4997817 [00:24<00:08, 154732.73it/s]
+
74%|███████▍ | 3706697/4997817 [00:24<00:08, 153545.60it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3709658/4997817 [00:24<00:08, 154732.73it/s]

+

74%|███████▍ | 3706697/4997817 [00:24<00:08, 153545.60it/s]

-
75%|███████▍ | 3725206/4997817 [00:24&lt;00:08, 154954.44it/s]
+
74%|███████▍ | 3722057/4997817 [00:24&lt;00:08, 147836.83it/s]

</pre>

-
75%|███████▍ | 3725206/4997817 [00:24<00:08, 154954.44it/s]
+
74%|███████▍ | 3722057/4997817 [00:24<00:08, 147836.83it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3725206/4997817 [00:24<00:08, 154954.44it/s]

+

74%|███████▍ | 3722057/4997817 [00:24<00:08, 147836.83it/s]

-
75%|███████▍ | 3740779/4997817 [00:24&lt;00:08, 155183.88it/s]
+
75%|███████▍ | 3736974/4997817 [00:24&lt;00:08, 148222.56it/s]

</pre>

-
75%|███████▍ | 3740779/4997817 [00:24<00:08, 155183.88it/s]
+
75%|███████▍ | 3736974/4997817 [00:24<00:08, 148222.56it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3740779/4997817 [00:24<00:08, 155183.88it/s]

+

75%|███████▍ | 3736974/4997817 [00:24<00:08, 148222.56it/s]

-
75%|███████▌ | 3756300/4997817 [00:24&lt;00:08, 155152.62it/s]
+
75%|███████▌ | 3752284/4997817 [00:24&lt;00:08, 149654.65it/s]

</pre>

-
75%|███████▌ | 3756300/4997817 [00:24<00:08, 155152.62it/s]
+
75%|███████▌ | 3752284/4997817 [00:24<00:08, 149654.65it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3756300/4997817 [00:24<00:08, 155152.62it/s]

+

75%|███████▌ | 3752284/4997817 [00:24<00:08, 149654.65it/s]

-
75%|███████▌ | 3771876/4997817 [00:24&lt;00:07, 155332.15it/s]
+
75%|███████▌ | 3767574/4997817 [00:24&lt;00:08, 150612.24it/s]

</pre>

-
75%|███████▌ | 3771876/4997817 [00:24<00:07, 155332.15it/s]
+
75%|███████▌ | 3767574/4997817 [00:24<00:08, 150612.24it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3771876/4997817 [00:24<00:07, 155332.15it/s]

+

75%|███████▌ | 3767574/4997817 [00:24<00:08, 150612.24it/s]

-
76%|███████▌ | 3787433/4997817 [00:24&lt;00:07, 155401.94it/s]
+
76%|███████▌ | 3782880/4997817 [00:24&lt;00:08, 151337.73it/s]

</pre>

-
76%|███████▌ | 3787433/4997817 [00:24<00:07, 155401.94it/s]
+
76%|███████▌ | 3782880/4997817 [00:24<00:08, 151337.73it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3787433/4997817 [00:24<00:07, 155401.94it/s]

+

76%|███████▌ | 3782880/4997817 [00:24<00:08, 151337.73it/s]

-
76%|███████▌ | 3802974/4997817 [00:24&lt;00:07, 154579.57it/s]
+
76%|███████▌ | 3798151/4997817 [00:24&lt;00:07, 151743.76it/s]

</pre>

-
76%|███████▌ | 3802974/4997817 [00:24<00:07, 154579.57it/s]
+
76%|███████▌ | 3798151/4997817 [00:24<00:07, 151743.76it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3802974/4997817 [00:24<00:07, 154579.57it/s]

+

76%|███████▌ | 3798151/4997817 [00:24<00:07, 151743.76it/s]

-
76%|███████▋ | 3818510/4997817 [00:24&lt;00:07, 154809.04it/s]
+
76%|███████▋ | 3813408/4997817 [00:24&lt;00:07, 151987.69it/s]

</pre>

-
76%|███████▋ | 3818510/4997817 [00:24<00:07, 154809.04it/s]
+
76%|███████▋ | 3813408/4997817 [00:24<00:07, 151987.69it/s]

end{sphinxVerbatim}

-

76%|███████▋ | 3818510/4997817 [00:24<00:07, 154809.04it/s]

+

76%|███████▋ | 3813408/4997817 [00:24<00:07, 151987.69it/s]

-
77%|███████▋ | 3834118/4997817 [00:24&lt;00:07, 155187.73it/s]
+
77%|███████▋ | 3828722/4997817 [00:24&lt;00:07, 152329.77it/s]

</pre>

-
77%|███████▋ | 3834118/4997817 [00:24<00:07, 155187.73it/s]
+
77%|███████▋ | 3828722/4997817 [00:24<00:07, 152329.77it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3834118/4997817 [00:24<00:07, 155187.73it/s]

+

77%|███████▋ | 3828722/4997817 [00:24<00:07, 152329.77it/s]

-
77%|███████▋ | 3849726/4997817 [00:25&lt;00:07, 155451.03it/s]
+
77%|███████▋ | 3844014/4997817 [00:25&lt;00:07, 152505.38it/s]

</pre>

-
77%|███████▋ | 3849726/4997817 [00:25<00:07, 155451.03it/s]
+
77%|███████▋ | 3844014/4997817 [00:25<00:07, 152505.38it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3849726/4997817 [00:25<00:07, 155451.03it/s]

+

77%|███████▋ | 3844014/4997817 [00:25<00:07, 152505.38it/s]

-
77%|███████▋ | 3865281/4997817 [00:25&lt;00:07, 155478.17it/s]
+
77%|███████▋ | 3859286/4997817 [00:25&lt;00:07, 152568.18it/s]

</pre>

-
77%|███████▋ | 3865281/4997817 [00:25<00:07, 155478.17it/s]
+
77%|███████▋ | 3859286/4997817 [00:25<00:07, 152568.18it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3865281/4997817 [00:25<00:07, 155478.17it/s]

+

77%|███████▋ | 3859286/4997817 [00:25<00:07, 152568.18it/s]

-
78%|███████▊ | 3880873/4997817 [00:25&lt;00:07, 155607.51it/s]
+
78%|███████▊ | 3874625/4997817 [00:25&lt;00:07, 152812.08it/s]

</pre>

-
78%|███████▊ | 3880873/4997817 [00:25<00:07, 155607.51it/s]
+
78%|███████▊ | 3874625/4997817 [00:25<00:07, 152812.08it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3880873/4997817 [00:25<00:07, 155607.51it/s]

+

78%|███████▊ | 3874625/4997817 [00:25<00:07, 152812.08it/s]

-
78%|███████▊ | 3896482/4997817 [00:25&lt;00:07, 155748.19it/s]
+
78%|███████▊ | 3890029/4997817 [00:25&lt;00:07, 153178.11it/s]

</pre>

-
78%|███████▊ | 3896482/4997817 [00:25<00:07, 155748.19it/s]
+
78%|███████▊ | 3890029/4997817 [00:25<00:07, 153178.11it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3896482/4997817 [00:25<00:07, 155748.19it/s]

+

78%|███████▊ | 3890029/4997817 [00:25<00:07, 153178.11it/s]

-
78%|███████▊ | 3912058/4997817 [00:25&lt;00:06, 155484.01it/s]
+
78%|███████▊ | 3905349/4997817 [00:25&lt;00:07, 152911.02it/s]

</pre>

-
78%|███████▊ | 3912058/4997817 [00:25<00:06, 155484.01it/s]
+
78%|███████▊ | 3905349/4997817 [00:25<00:07, 152911.02it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3912058/4997817 [00:25<00:06, 155484.01it/s]

+

78%|███████▊ | 3905349/4997817 [00:25<00:07, 152911.02it/s]

-
79%|███████▊ | 3927607/4997817 [00:25&lt;00:06, 155333.66it/s]
+
78%|███████▊ | 3920784/4997817 [00:25&lt;00:07, 153341.49it/s]

</pre>

-
79%|███████▊ | 3927607/4997817 [00:25<00:06, 155333.66it/s]
+
78%|███████▊ | 3920784/4997817 [00:25<00:07, 153341.49it/s]

end{sphinxVerbatim}

-

79%|███████▊ | 3927607/4997817 [00:25<00:06, 155333.66it/s]

+

78%|███████▊ | 3920784/4997817 [00:25<00:07, 153341.49it/s]

-
79%|███████▉ | 3943141/4997817 [00:25&lt;00:06, 154982.06it/s]
+
79%|███████▉ | 3936119/4997817 [00:25&lt;00:06, 152961.72it/s]

</pre>

-
79%|███████▉ | 3943141/4997817 [00:25<00:06, 154982.06it/s]
+
79%|███████▉ | 3936119/4997817 [00:25<00:06, 152961.72it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3943141/4997817 [00:25<00:06, 154982.06it/s]

+

79%|███████▉ | 3936119/4997817 [00:25<00:06, 152961.72it/s]

-
79%|███████▉ | 3958655/4997817 [00:25&lt;00:06, 155026.48it/s]
+
79%|███████▉ | 3951508/4997817 [00:25&lt;00:06, 153228.71it/s]

</pre>

-
79%|███████▉ | 3958655/4997817 [00:25<00:06, 155026.48it/s]
+
79%|███████▉ | 3951508/4997817 [00:25<00:06, 153228.71it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3958655/4997817 [00:25<00:06, 155026.48it/s]

+

79%|███████▉ | 3951508/4997817 [00:25<00:06, 153228.71it/s]

-
80%|███████▉ | 3974166/4997817 [00:25&lt;00:06, 155048.76it/s]
+
79%|███████▉ | 3966960/4997817 [00:25&lt;00:06, 153613.34it/s]

</pre>

-
80%|███████▉ | 3974166/4997817 [00:25<00:06, 155048.76it/s]
+
79%|███████▉ | 3966960/4997817 [00:25<00:06, 153613.34it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3974166/4997817 [00:25<00:06, 155048.76it/s]

+

79%|███████▉ | 3966960/4997817 [00:25<00:06, 153613.34it/s]

-
80%|███████▉ | 3989742/4997817 [00:25&lt;00:06, 155258.99it/s]
+
80%|███████▉ | 3982322/4997817 [00:25&lt;00:06, 153448.22it/s]

</pre>

-
80%|███████▉ | 3989742/4997817 [00:25<00:06, 155258.99it/s]
+
80%|███████▉ | 3982322/4997817 [00:25<00:06, 153448.22it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3989742/4997817 [00:25<00:06, 155258.99it/s]

+

80%|███████▉ | 3982322/4997817 [00:25<00:06, 153448.22it/s]

-
80%|████████ | 4005269/4997817 [00:26&lt;00:06, 155095.77it/s]
+
80%|███████▉ | 3997668/4997817 [00:26&lt;00:06, 153357.40it/s]

</pre>

-
80%|████████ | 4005269/4997817 [00:26<00:06, 155095.77it/s]
+
80%|███████▉ | 3997668/4997817 [00:26<00:06, 153357.40it/s]

end{sphinxVerbatim}

-

80%|████████ | 4005269/4997817 [00:26<00:06, 155095.77it/s]

+

80%|███████▉ | 3997668/4997817 [00:26<00:06, 153357.40it/s]

-
80%|████████ | 4020928/4997817 [00:26&lt;00:06, 155541.32it/s]
+
80%|████████ | 4013004/4997817 [00:26&lt;00:06, 153315.74it/s]

</pre>

-
80%|████████ | 4020928/4997817 [00:26<00:06, 155541.32it/s]
+
80%|████████ | 4013004/4997817 [00:26<00:06, 153315.74it/s]

end{sphinxVerbatim}

-

80%|████████ | 4020928/4997817 [00:26<00:06, 155541.32it/s]

+

80%|████████ | 4013004/4997817 [00:26<00:06, 153315.74it/s]

-
81%|████████ | 4036483/4997817 [00:26&lt;00:06, 155356.37it/s]
+
81%|████████ | 4028336/4997817 [00:26&lt;00:06, 153114.29it/s]

</pre>

-
81%|████████ | 4036483/4997817 [00:26<00:06, 155356.37it/s]
+
81%|████████ | 4028336/4997817 [00:26<00:06, 153114.29it/s]

end{sphinxVerbatim}

-

81%|████████ | 4036483/4997817 [00:26<00:06, 155356.37it/s]

+

81%|████████ | 4028336/4997817 [00:26<00:06, 153114.29it/s]

-
81%|████████ | 4052019/4997817 [00:26&lt;00:06, 155307.81it/s]
+
81%|████████ | 4043648/4997817 [00:26&lt;00:06, 150591.11it/s]

</pre>

-
81%|████████ | 4052019/4997817 [00:26<00:06, 155307.81it/s]
+
81%|████████ | 4043648/4997817 [00:26<00:06, 150591.11it/s]

end{sphinxVerbatim}

-

81%|████████ | 4052019/4997817 [00:26<00:06, 155307.81it/s]

+

81%|████████ | 4043648/4997817 [00:26<00:06, 150591.11it/s]

-
81%|████████▏ | 4067550/4997817 [00:26&lt;00:05, 155236.21it/s]
+
81%|████████ | 4059148/4997817 [00:26&lt;00:06, 151895.49it/s]

</pre>

-
81%|████████▏ | 4067550/4997817 [00:26<00:05, 155236.21it/s]
+
81%|████████ | 4059148/4997817 [00:26<00:06, 151895.49it/s]

end{sphinxVerbatim}

-

81%|████████▏ | 4067550/4997817 [00:26<00:05, 155236.21it/s]

+

81%|████████ | 4059148/4997817 [00:26<00:06, 151895.49it/s]

-
82%|████████▏ | 4083074/4997817 [00:26&lt;00:05, 154917.67it/s]
+
82%|████████▏ | 4074741/4997817 [00:26&lt;00:06, 153091.67it/s]

</pre>

-
82%|████████▏ | 4083074/4997817 [00:26<00:05, 154917.67it/s]
+
82%|████████▏ | 4074741/4997817 [00:26<00:06, 153091.67it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4083074/4997817 [00:26<00:05, 154917.67it/s]

+

82%|████████▏ | 4074741/4997817 [00:26<00:06, 153091.67it/s]

-
82%|████████▏ | 4098566/4997817 [00:26&lt;00:06, 146375.09it/s]
+
82%|████████▏ | 4090233/4997817 [00:26&lt;00:05, 153635.51it/s]

</pre>

-
82%|████████▏ | 4098566/4997817 [00:26<00:06, 146375.09it/s]
+
82%|████████▏ | 4090233/4997817 [00:26<00:05, 153635.51it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4098566/4997817 [00:26<00:06, 146375.09it/s]

+

82%|████████▏ | 4090233/4997817 [00:26<00:05, 153635.51it/s]

-
82%|████████▏ | 4113914/4997817 [00:26&lt;00:05, 148417.52it/s]
+
82%|████████▏ | 4105801/4997817 [00:26&lt;00:05, 154243.63it/s]

</pre>

-
82%|████████▏ | 4113914/4997817 [00:26<00:05, 148417.52it/s]
+
82%|████████▏ | 4105801/4997817 [00:26<00:05, 154243.63it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4113914/4997817 [00:26<00:05, 148417.52it/s]

+

82%|████████▏ | 4105801/4997817 [00:26<00:05, 154243.63it/s]

-
83%|████████▎ | 4129242/4997817 [00:26&lt;00:05, 149832.62it/s]
+
82%|████████▏ | 4121409/4997817 [00:26&lt;00:05, 154791.86it/s]

</pre>

-
83%|████████▎ | 4129242/4997817 [00:26<00:05, 149832.62it/s]
+
82%|████████▏ | 4121409/4997817 [00:26<00:05, 154791.86it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4129242/4997817 [00:26<00:05, 149832.62it/s]

+

82%|████████▏ | 4121409/4997817 [00:26<00:05, 154791.86it/s]

-
83%|████████▎ | 4144613/4997817 [00:26&lt;00:05, 150968.60it/s]
+
83%|████████▎ | 4136946/4997817 [00:26&lt;00:05, 154962.42it/s]

</pre>

-
83%|████████▎ | 4144613/4997817 [00:26<00:05, 150968.60it/s]
+
83%|████████▎ | 4136946/4997817 [00:26<00:05, 154962.42it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4144613/4997817 [00:26<00:05, 150968.60it/s]

+

83%|████████▎ | 4136946/4997817 [00:26<00:05, 154962.42it/s]

-
83%|████████▎ | 4160035/4997817 [00:27&lt;00:05, 151927.64it/s]
+
83%|████████▎ | 4152492/4997817 [00:27&lt;00:05, 155109.62it/s]

</pre>

-
83%|████████▎ | 4160035/4997817 [00:27<00:05, 151927.64it/s]
+
83%|████████▎ | 4152492/4997817 [00:27<00:05, 155109.62it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4160035/4997817 [00:27<00:05, 151927.64it/s]

+

83%|████████▎ | 4152492/4997817 [00:27<00:05, 155109.62it/s]

-
84%|████████▎ | 4175344/4997817 [00:27&lt;00:05, 152271.67it/s]
+
83%|████████▎ | 4168015/4997817 [00:27&lt;00:05, 155143.19it/s]

</pre>

-
84%|████████▎ | 4175344/4997817 [00:27<00:05, 152271.67it/s]
+
83%|████████▎ | 4168015/4997817 [00:27<00:05, 155143.19it/s]

end{sphinxVerbatim}

-

84%|████████▎ | 4175344/4997817 [00:27<00:05, 152271.67it/s]

+

83%|████████▎ | 4168015/4997817 [00:27<00:05, 155143.19it/s]

-
84%|████████▍ | 4190658/4997817 [00:27&lt;00:05, 152526.24it/s]
+
84%|████████▎ | 4183654/4997817 [00:27&lt;00:05, 155513.87it/s]

</pre>

-
84%|████████▍ | 4190658/4997817 [00:27<00:05, 152526.24it/s]
+
84%|████████▎ | 4183654/4997817 [00:27<00:05, 155513.87it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4190658/4997817 [00:27<00:05, 152526.24it/s]

+

84%|████████▎ | 4183654/4997817 [00:27<00:05, 155513.87it/s]

-
84%|████████▍ | 4205984/4997817 [00:27&lt;00:05, 152743.35it/s]
+
84%|████████▍ | 4199207/4997817 [00:27&lt;00:05, 152050.97it/s]

</pre>

-
84%|████████▍ | 4205984/4997817 [00:27<00:05, 152743.35it/s]
+
84%|████████▍ | 4199207/4997817 [00:27<00:05, 152050.97it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4205984/4997817 [00:27<00:05, 152743.35it/s]

+

84%|████████▍ | 4199207/4997817 [00:27<00:05, 152050.97it/s]

-
84%|████████▍ | 4221286/4997817 [00:27&lt;00:05, 152822.28it/s]
+
84%|████████▍ | 4214599/4997817 [00:27&lt;00:05, 152599.26it/s]

</pre>

-
84%|████████▍ | 4221286/4997817 [00:27<00:05, 152822.28it/s]
+
84%|████████▍ | 4214599/4997817 [00:27<00:05, 152599.26it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4221286/4997817 [00:27<00:05, 152822.28it/s]

+

84%|████████▍ | 4214599/4997817 [00:27<00:05, 152599.26it/s]

-
85%|████████▍ | 4236607/4997817 [00:27&lt;00:04, 152936.93it/s]
+
85%|████████▍ | 4230003/4997817 [00:27&lt;00:05, 153024.35it/s]

</pre>

-
85%|████████▍ | 4236607/4997817 [00:27<00:04, 152936.93it/s]
+
85%|████████▍ | 4230003/4997817 [00:27<00:05, 153024.35it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4236607/4997817 [00:27<00:04, 152936.93it/s]

+

85%|████████▍ | 4230003/4997817 [00:27<00:05, 153024.35it/s]

-
85%|████████▌ | 4251907/4997817 [00:27&lt;00:05, 145817.28it/s]
+
85%|████████▍ | 4245402/4997817 [00:27&lt;00:04, 153309.38it/s]

</pre>

-
85%|████████▌ | 4251907/4997817 [00:27<00:05, 145817.28it/s]
+
85%|████████▍ | 4245402/4997817 [00:27<00:04, 153309.38it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4251907/4997817 [00:27<00:05, 145817.28it/s]

+

85%|████████▍ | 4245402/4997817 [00:27<00:04, 153309.38it/s]

-
85%|████████▌ | 4267342/4997817 [00:27&lt;00:04, 148286.68it/s]
+
85%|████████▌ | 4260774/4997817 [00:27&lt;00:04, 153430.83it/s]

</pre>

-
85%|████████▌ | 4267342/4997817 [00:27<00:04, 148286.68it/s]
+
85%|████████▌ | 4260774/4997817 [00:27<00:04, 153430.83it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4267342/4997817 [00:27<00:04, 148286.68it/s]

+

85%|████████▌ | 4260774/4997817 [00:27<00:04, 153430.83it/s]

-
86%|████████▌ | 4282888/4997817 [00:27&lt;00:04, 150383.39it/s]
+
86%|████████▌ | 4276259/4997817 [00:27&lt;00:04, 153852.65it/s]

</pre>

-
86%|████████▌ | 4282888/4997817 [00:27<00:04, 150383.39it/s]
+
86%|████████▌ | 4276259/4997817 [00:27<00:04, 153852.65it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4282888/4997817 [00:27<00:04, 150383.39it/s]

+

86%|████████▌ | 4276259/4997817 [00:27<00:04, 153852.65it/s]

-
86%|████████▌ | 4298490/4997817 [00:27&lt;00:04, 152044.25it/s]
+
86%|████████▌ | 4291697/4997817 [00:27&lt;00:04, 154008.59it/s]

</pre>

-
86%|████████▌ | 4298490/4997817 [00:27<00:04, 152044.25it/s]
+
86%|████████▌ | 4291697/4997817 [00:27<00:04, 154008.59it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4298490/4997817 [00:27<00:04, 152044.25it/s]

+

86%|████████▌ | 4291697/4997817 [00:27<00:04, 154008.59it/s]

-
86%|████████▋ | 4314035/4997817 [00:28&lt;00:04, 153050.11it/s]
+
86%|████████▌ | 4307133/4997817 [00:28&lt;00:04, 154111.76it/s]

</pre>

-
86%|████████▋ | 4314035/4997817 [00:28<00:04, 153050.11it/s]
+
86%|████████▌ | 4307133/4997817 [00:28<00:04, 154111.76it/s]

end{sphinxVerbatim}

-

86%|████████▋ | 4314035/4997817 [00:28<00:04, 153050.11it/s]

+

86%|████████▌ | 4307133/4997817 [00:28<00:04, 154111.76it/s]

-
87%|████████▋ | 4329574/4997817 [00:28&lt;00:04, 153744.85it/s]
+
86%|████████▋ | 4322547/4997817 [00:28&lt;00:04, 154109.59it/s]

</pre>

-
87%|████████▋ | 4329574/4997817 [00:28<00:04, 153744.85it/s]
+
86%|████████▋ | 4322547/4997817 [00:28<00:04, 154109.59it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4329574/4997817 [00:28<00:04, 153744.85it/s]

+

86%|████████▋ | 4322547/4997817 [00:28<00:04, 154109.59it/s]

-
87%|████████▋ | 4345105/4997817 [00:28&lt;00:04, 154209.34it/s]
+
87%|████████▋ | 4337986/4997817 [00:28&lt;00:04, 154192.24it/s]

</pre>

-
87%|████████▋ | 4345105/4997817 [00:28<00:04, 154209.34it/s]
+
87%|████████▋ | 4337986/4997817 [00:28<00:04, 154192.24it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4345105/4997817 [00:28<00:04, 154209.34it/s]

+

87%|████████▋ | 4337986/4997817 [00:28<00:04, 154192.24it/s]

-
87%|████████▋ | 4360685/4997817 [00:28&lt;00:04, 154683.14it/s]
+
87%|████████▋ | 4353407/4997817 [00:28&lt;00:04, 153783.33it/s]

</pre>

-
87%|████████▋ | 4360685/4997817 [00:28<00:04, 154683.14it/s]
+
87%|████████▋ | 4353407/4997817 [00:28<00:04, 153783.33it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4360685/4997817 [00:28<00:04, 154683.14it/s]

+

87%|████████▋ | 4353407/4997817 [00:28<00:04, 153783.33it/s]

-
88%|████████▊ | 4376194/4997817 [00:28&lt;00:04, 154801.46it/s]
+
87%|████████▋ | 4368869/4997817 [00:28&lt;00:04, 154032.24it/s]

</pre>

-
88%|████████▊ | 4376194/4997817 [00:28<00:04, 154801.46it/s]
+
87%|████████▋ | 4368869/4997817 [00:28<00:04, 154032.24it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4376194/4997817 [00:28<00:04, 154801.46it/s]

+

87%|████████▋ | 4368869/4997817 [00:28<00:04, 154032.24it/s]

-
88%|████████▊ | 4391740/4997817 [00:28&lt;00:03, 154996.89it/s]
+
88%|████████▊ | 4384273/4997817 [00:28&lt;00:03, 153880.56it/s]

</pre>

-
88%|████████▊ | 4391740/4997817 [00:28<00:03, 154996.89it/s]
+
88%|████████▊ | 4384273/4997817 [00:28<00:03, 153880.56it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4391740/4997817 [00:28<00:03, 154996.89it/s]

+

88%|████████▊ | 4384273/4997817 [00:28<00:03, 153880.56it/s]

-
88%|████████▊ | 4407302/4997817 [00:28&lt;00:03, 155180.16it/s]
+
88%|████████▊ | 4399689/4997817 [00:28&lt;00:03, 153960.54it/s]

</pre>

-
88%|████████▊ | 4407302/4997817 [00:28<00:03, 155180.16it/s]
+
88%|████████▊ | 4399689/4997817 [00:28<00:03, 153960.54it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4407302/4997817 [00:28<00:03, 155180.16it/s]

+

88%|████████▊ | 4399689/4997817 [00:28<00:03, 153960.54it/s]

-
88%|████████▊ | 4422871/4997817 [00:28&lt;00:03, 155331.88it/s]
+
88%|████████▊ | 4415086/4997817 [00:28&lt;00:03, 153819.81it/s]

</pre>

-
88%|████████▊ | 4422871/4997817 [00:28<00:03, 155331.88it/s]
+
88%|████████▊ | 4415086/4997817 [00:28<00:03, 153819.81it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4422871/4997817 [00:28<00:03, 155331.88it/s]

+

88%|████████▊ | 4415086/4997817 [00:28<00:03, 153819.81it/s]

-
89%|████████▉ | 4438421/4997817 [00:28&lt;00:03, 155381.33it/s]
+
89%|████████▊ | 4430560/4997817 [00:28&lt;00:03, 154092.28it/s]

</pre>

-
89%|████████▉ | 4438421/4997817 [00:28<00:03, 155381.33it/s]
+
89%|████████▊ | 4430560/4997817 [00:28<00:03, 154092.28it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4438421/4997817 [00:28<00:03, 155381.33it/s]

+

89%|████████▊ | 4430560/4997817 [00:28<00:03, 154092.28it/s]

-
89%|████████▉ | 4453995/4997817 [00:28&lt;00:03, 155487.70it/s]
+
89%|████████▉ | 4445994/4997817 [00:28&lt;00:03, 154164.58it/s]

</pre>

-
89%|████████▉ | 4453995/4997817 [00:28<00:03, 155487.70it/s]
+
89%|████████▉ | 4445994/4997817 [00:28<00:03, 154164.58it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4453995/4997817 [00:28<00:03, 155487.70it/s]

+

89%|████████▉ | 4445994/4997817 [00:28<00:03, 154164.58it/s]

-
89%|████████▉ | 4469545/4997817 [00:29&lt;00:03, 155411.76it/s]
+
89%|████████▉ | 4461435/4997817 [00:29&lt;00:03, 154235.10it/s]

</pre>

-
89%|████████▉ | 4469545/4997817 [00:29<00:03, 155411.76it/s]
+
89%|████████▉ | 4461435/4997817 [00:29<00:03, 154235.10it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4469545/4997817 [00:29<00:03, 155411.76it/s]

+

89%|████████▉ | 4461435/4997817 [00:29<00:03, 154235.10it/s]

-
90%|████████▉ | 4485088/4997817 [00:29&lt;00:03, 155401.16it/s]
+
90%|████████▉ | 4476872/4997817 [00:29&lt;00:03, 154271.84it/s]

</pre>

-
90%|████████▉ | 4485088/4997817 [00:29<00:03, 155401.16it/s]
+
90%|████████▉ | 4476872/4997817 [00:29<00:03, 154271.84it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4485088/4997817 [00:29<00:03, 155401.16it/s]

+

90%|████████▉ | 4476872/4997817 [00:29<00:03, 154271.84it/s]

-
90%|█████████ | 4500632/4997817 [00:29&lt;00:03, 155411.74it/s]
+
90%|████████▉ | 4492300/4997817 [00:29&lt;00:03, 154190.22it/s]

</pre>

-
90%|█████████ | 4500632/4997817 [00:29<00:03, 155411.74it/s]
+
90%|████████▉ | 4492300/4997817 [00:29<00:03, 154190.22it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4500632/4997817 [00:29<00:03, 155411.74it/s]

+

90%|████████▉ | 4492300/4997817 [00:29<00:03, 154190.22it/s]

-
90%|█████████ | 4516174/4997817 [00:29&lt;00:03, 155209.29it/s]
+
90%|█████████ | 4507750/4997817 [00:29&lt;00:03, 154279.94it/s]

</pre>

-
90%|█████████ | 4516174/4997817 [00:29<00:03, 155209.29it/s]
+
90%|█████████ | 4507750/4997817 [00:29<00:03, 154279.94it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4516174/4997817 [00:29<00:03, 155209.29it/s]

+

90%|█████████ | 4507750/4997817 [00:29<00:03, 154279.94it/s]

-
91%|█████████ | 4531702/4997817 [00:29&lt;00:03, 155229.08it/s]
+
91%|█████████ | 4523179/4997817 [00:29&lt;00:03, 153985.77it/s]

</pre>

-
91%|█████████ | 4531702/4997817 [00:29<00:03, 155229.08it/s]
+
91%|█████████ | 4523179/4997817 [00:29<00:03, 153985.77it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4531702/4997817 [00:29<00:03, 155229.08it/s]

+

91%|█████████ | 4523179/4997817 [00:29<00:03, 153985.77it/s]

-
91%|█████████ | 4547306/4997817 [00:29&lt;00:02, 155470.53it/s]
+
91%|█████████ | 4538578/4997817 [00:29&lt;00:02, 153723.53it/s]

</pre>

-
91%|█████████ | 4547306/4997817 [00:29<00:02, 155470.53it/s]
+
91%|█████████ | 4538578/4997817 [00:29<00:02, 153723.53it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4547306/4997817 [00:29<00:02, 155470.53it/s]

+

91%|█████████ | 4538578/4997817 [00:29<00:02, 153723.53it/s]

-
91%|█████████▏| 4562854/4997817 [00:29&lt;00:02, 155331.40it/s]
+
91%|█████████ | 4554001/4997817 [00:29&lt;00:02, 153873.29it/s]

</pre>

-
91%|█████████▏| 4562854/4997817 [00:29<00:02, 155331.40it/s]
+
91%|█████████ | 4554001/4997817 [00:29<00:02, 153873.29it/s]

end{sphinxVerbatim}

-

91%|█████████▏| 4562854/4997817 [00:29<00:02, 155331.40it/s]

+

91%|█████████ | 4554001/4997817 [00:29<00:02, 153873.29it/s]

-
92%|█████████▏| 4578388/4997817 [00:29&lt;00:02, 147448.98it/s]
+
91%|█████████▏| 4569399/4997817 [00:29&lt;00:02, 153901.77it/s]

</pre>

-
92%|█████████▏| 4578388/4997817 [00:29<00:02, 147448.98it/s]
+
91%|█████████▏| 4569399/4997817 [00:29<00:02, 153901.77it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4578388/4997817 [00:29<00:02, 147448.98it/s]

+

91%|█████████▏| 4569399/4997817 [00:29<00:02, 153901.77it/s]

-
92%|█████████▏| 4593898/4997817 [00:29&lt;00:02, 149657.49it/s]
+
92%|█████████▏| 4584887/4997817 [00:29&lt;00:02, 154192.18it/s]

</pre>

-
92%|█████████▏| 4593898/4997817 [00:29<00:02, 149657.49it/s]
+
92%|█████████▏| 4584887/4997817 [00:29<00:02, 154192.18it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4593898/4997817 [00:29<00:02, 149657.49it/s]

+

92%|█████████▏| 4584887/4997817 [00:29<00:02, 154192.18it/s]

-
92%|█████████▏| 4609368/4997817 [00:30&lt;00:02, 151129.17it/s]
+
92%|█████████▏| 4600307/4997817 [00:29&lt;00:02, 154017.58it/s]

</pre>

-
92%|█████████▏| 4609368/4997817 [00:30<00:02, 151129.17it/s]
+
92%|█████████▏| 4600307/4997817 [00:29<00:02, 154017.58it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4609368/4997817 [00:30<00:02, 151129.17it/s]

+

92%|█████████▏| 4600307/4997817 [00:29<00:02, 154017.58it/s]

-
93%|█████████▎| 4624875/4997817 [00:30&lt;00:02, 152288.33it/s]
+
92%|█████████▏| 4615743/4997817 [00:30&lt;00:02, 154119.11it/s]

</pre>

-
93%|█████████▎| 4624875/4997817 [00:30<00:02, 152288.33it/s]
+
92%|█████████▏| 4615743/4997817 [00:30<00:02, 154119.11it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4624875/4997817 [00:30<00:02, 152288.33it/s]

+

92%|█████████▏| 4615743/4997817 [00:30<00:02, 154119.11it/s]

-
93%|█████████▎| 4640314/4997817 [00:30&lt;00:02, 152906.93it/s]
+
93%|█████████▎| 4631156/4997817 [00:30&lt;00:02, 153933.78it/s]

</pre>

-
93%|█████████▎| 4640314/4997817 [00:30<00:02, 152906.93it/s]
+
93%|█████████▎| 4631156/4997817 [00:30<00:02, 153933.78it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4640314/4997817 [00:30<00:02, 152906.93it/s]

+

93%|█████████▎| 4631156/4997817 [00:30<00:02, 153933.78it/s]

-
93%|█████████▎| 4655803/4997817 [00:30&lt;00:02, 153494.62it/s]
+
93%|█████████▎| 4646550/4997817 [00:30&lt;00:02, 153794.33it/s]

</pre>

-
93%|█████████▎| 4655803/4997817 [00:30<00:02, 153494.62it/s]
+
93%|█████████▎| 4646550/4997817 [00:30<00:02, 153794.33it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4655803/4997817 [00:30<00:02, 153494.62it/s]

+

93%|█████████▎| 4646550/4997817 [00:30<00:02, 153794.33it/s]

-
93%|█████████▎| 4671257/4997817 [00:30&lt;00:02, 153802.55it/s]
+
93%|█████████▎| 4661930/4997817 [00:30&lt;00:02, 153604.14it/s]

</pre>

-
93%|█████████▎| 4671257/4997817 [00:30<00:02, 153802.55it/s]
+
93%|█████████▎| 4661930/4997817 [00:30<00:02, 153604.14it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4671257/4997817 [00:30<00:02, 153802.55it/s]

+

93%|█████████▎| 4661930/4997817 [00:30<00:02, 153604.14it/s]

-
94%|█████████▍| 4686669/4997817 [00:30&lt;00:02, 153895.43it/s]
+
94%|█████████▎| 4677291/4997817 [00:30&lt;00:02, 153189.45it/s]

</pre>

-
94%|█████████▍| 4686669/4997817 [00:30<00:02, 153895.43it/s]
+
94%|█████████▎| 4677291/4997817 [00:30<00:02, 153189.45it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4686669/4997817 [00:30<00:02, 153895.43it/s]

+

94%|█████████▎| 4677291/4997817 [00:30<00:02, 153189.45it/s]

-
94%|█████████▍| 4702162/4997817 [00:30&lt;00:01, 154201.34it/s]
+
94%|█████████▍| 4692776/4997817 [00:30&lt;00:01, 153678.87it/s]

</pre>

-
94%|█████████▍| 4702162/4997817 [00:30<00:01, 154201.34it/s]
+
94%|█████████▍| 4692776/4997817 [00:30<00:01, 153678.87it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4702162/4997817 [00:30<00:01, 154201.34it/s]

+

94%|█████████▍| 4692776/4997817 [00:30<00:01, 153678.87it/s]

-
94%|█████████▍| 4717639/4997817 [00:30&lt;00:01, 154368.96it/s]
+
94%|█████████▍| 4708145/4997817 [00:30&lt;00:01, 153652.86it/s]

</pre>

-
94%|█████████▍| 4717639/4997817 [00:30<00:01, 154368.96it/s]
+
94%|█████████▍| 4708145/4997817 [00:30<00:01, 153652.86it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4717639/4997817 [00:30<00:01, 154368.96it/s]

+

94%|█████████▍| 4708145/4997817 [00:30<00:01, 153652.86it/s]

-
95%|█████████▍| 4733081/4997817 [00:30&lt;00:01, 154162.68it/s]
+
95%|█████████▍| 4723512/4997817 [00:30&lt;00:01, 153657.16it/s]

</pre>

-
95%|█████████▍| 4733081/4997817 [00:30<00:01, 154162.68it/s]
+
95%|█████████▍| 4723512/4997817 [00:30<00:01, 153657.16it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4733081/4997817 [00:30<00:01, 154162.68it/s]

+

95%|█████████▍| 4723512/4997817 [00:30<00:01, 153657.16it/s]

-
95%|█████████▌| 4748501/4997817 [00:30&lt;00:01, 154009.56it/s]
+
95%|█████████▍| 4738893/4997817 [00:30&lt;00:01, 153701.57it/s]

</pre>

-
95%|█████████▌| 4748501/4997817 [00:30<00:01, 154009.56it/s]
+
95%|█████████▍| 4738893/4997817 [00:30<00:01, 153701.57it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4748501/4997817 [00:30<00:01, 154009.56it/s]

+

95%|█████████▍| 4738893/4997817 [00:30<00:01, 153701.57it/s]

-
95%|█████████▌| 4763970/4997817 [00:31&lt;00:01, 154210.31it/s]
+
95%|█████████▌| 4754264/4997817 [00:30&lt;00:01, 153504.60it/s]

</pre>

-
95%|█████████▌| 4763970/4997817 [00:31<00:01, 154210.31it/s]
+
95%|█████████▌| 4754264/4997817 [00:30<00:01, 153504.60it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4763970/4997817 [00:31<00:01, 154210.31it/s]

+

95%|█████████▌| 4754264/4997817 [00:30<00:01, 153504.60it/s]

-
96%|█████████▌| 4779393/4997817 [00:31&lt;00:01, 154123.36it/s]
+
95%|█████████▌| 4769615/4997817 [00:31&lt;00:01, 153247.32it/s]

</pre>

-
96%|█████████▌| 4779393/4997817 [00:31<00:01, 154123.36it/s]
+
95%|█████████▌| 4769615/4997817 [00:31<00:01, 153247.32it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4779393/4997817 [00:31<00:01, 154123.36it/s]

+

95%|█████████▌| 4769615/4997817 [00:31<00:01, 153247.32it/s]

-
96%|█████████▌| 4794807/4997817 [00:31&lt;00:01, 154105.05it/s]
+
96%|█████████▌| 4784940/4997817 [00:31&lt;00:01, 153081.02it/s]

</pre>

-
96%|█████████▌| 4794807/4997817 [00:31<00:01, 154105.05it/s]
+
96%|█████████▌| 4784940/4997817 [00:31<00:01, 153081.02it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4794807/4997817 [00:31<00:01, 154105.05it/s]

+

96%|█████████▌| 4784940/4997817 [00:31<00:01, 153081.02it/s]

-
96%|█████████▌| 4810237/4997817 [00:31&lt;00:01, 154162.41it/s]
+
96%|█████████▌| 4800270/4997817 [00:31&lt;00:01, 153145.18it/s]

</pre>

-
96%|█████████▌| 4810237/4997817 [00:31<00:01, 154162.41it/s]
+
96%|█████████▌| 4800270/4997817 [00:31<00:01, 153145.18it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4810237/4997817 [00:31<00:01, 154162.41it/s]

+

96%|█████████▌| 4800270/4997817 [00:31<00:01, 153145.18it/s]

-
97%|█████████▋| 4825680/4997817 [00:31&lt;00:01, 154241.45it/s]
+
96%|█████████▋| 4815618/4997817 [00:31&lt;00:01, 153244.30it/s]

</pre>

-
97%|█████████▋| 4825680/4997817 [00:31<00:01, 154241.45it/s]
+
96%|█████████▋| 4815618/4997817 [00:31<00:01, 153244.30it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4825680/4997817 [00:31<00:01, 154241.45it/s]

+

96%|█████████▋| 4815618/4997817 [00:31<00:01, 153244.30it/s]

-
97%|█████████▋| 4841107/4997817 [00:31&lt;00:01, 154246.31it/s]
+
97%|█████████▋| 4830943/4997817 [00:31&lt;00:01, 152781.07it/s]

</pre>

-
97%|█████████▋| 4841107/4997817 [00:31<00:01, 154246.31it/s]
+
97%|█████████▋| 4830943/4997817 [00:31<00:01, 152781.07it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4841107/4997817 [00:31<00:01, 154246.31it/s]

+

97%|█████████▋| 4830943/4997817 [00:31<00:01, 152781.07it/s]

-
97%|█████████▋| 4856552/4997817 [00:31&lt;00:00, 154305.23it/s]
+
97%|█████████▋| 4846264/4997817 [00:31&lt;00:00, 152895.24it/s]

</pre>

-
97%|█████████▋| 4856552/4997817 [00:31<00:00, 154305.23it/s]
+
97%|█████████▋| 4846264/4997817 [00:31<00:00, 152895.24it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4856552/4997817 [00:31<00:00, 154305.23it/s]

+

97%|█████████▋| 4846264/4997817 [00:31<00:00, 152895.24it/s]

-
97%|█████████▋| 4871983/4997817 [00:31&lt;00:00, 153994.32it/s]
+
97%|█████████▋| 4861611/4997817 [00:31&lt;00:00, 153064.51it/s]

</pre>

-
97%|█████████▋| 4871983/4997817 [00:31<00:00, 153994.32it/s]
+
97%|█████████▋| 4861611/4997817 [00:31<00:00, 153064.51it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4871983/4997817 [00:31<00:00, 153994.32it/s]

+

97%|█████████▋| 4861611/4997817 [00:31<00:00, 153064.51it/s]

-
98%|█████████▊| 4887443/4997817 [00:31&lt;00:00, 154172.58it/s]
+
98%|█████████▊| 4877009/4997817 [00:31&lt;00:00, 153337.36it/s]

</pre>

-
98%|█████████▊| 4887443/4997817 [00:31<00:00, 154172.58it/s]
+
98%|█████████▊| 4877009/4997817 [00:31<00:00, 153337.36it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4887443/4997817 [00:31<00:00, 154172.58it/s]

+

98%|█████████▊| 4877009/4997817 [00:31<00:00, 153337.36it/s]

-
98%|█████████▊| 4902918/4997817 [00:31&lt;00:00, 154342.78it/s]
+
98%|█████████▊| 4892368/4997817 [00:31&lt;00:00, 153409.94it/s]

</pre>

-
98%|█████████▊| 4902918/4997817 [00:31<00:00, 154342.78it/s]
+
98%|█████████▊| 4892368/4997817 [00:31<00:00, 153409.94it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4902918/4997817 [00:31<00:00, 154342.78it/s]

+

98%|█████████▊| 4892368/4997817 [00:31<00:00, 153409.94it/s]

-
98%|█████████▊| 4918444/4997817 [00:32&lt;00:00, 154616.11it/s]
+
98%|█████████▊| 4907726/4997817 [00:31&lt;00:00, 153457.78it/s]

</pre>

-
98%|█████████▊| 4918444/4997817 [00:32<00:00, 154616.11it/s]
+
98%|█████████▊| 4907726/4997817 [00:31<00:00, 153457.78it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4918444/4997817 [00:32<00:00, 154616.11it/s]

+

98%|█████████▊| 4907726/4997817 [00:31<00:00, 153457.78it/s]

-
99%|█████████▊| 4933928/4997817 [00:32&lt;00:00, 154681.62it/s]
+
99%|█████████▊| 4923182/4997817 [00:32&lt;00:00, 153785.56it/s]

</pre>

-
99%|█████████▊| 4933928/4997817 [00:32<00:00, 154681.62it/s]
+
99%|█████████▊| 4923182/4997817 [00:32<00:00, 153785.56it/s]

end{sphinxVerbatim}

-

99%|█████████▊| 4933928/4997817 [00:32<00:00, 154681.62it/s]

+

99%|█████████▊| 4923182/4997817 [00:32<00:00, 153785.56it/s]

-
99%|█████████▉| 4949465/4997817 [00:32&lt;00:00, 154885.99it/s]
+
99%|█████████▉| 4938561/4997817 [00:32&lt;00:00, 153783.97it/s]

</pre>

-
99%|█████████▉| 4949465/4997817 [00:32<00:00, 154885.99it/s]
+
99%|█████████▉| 4938561/4997817 [00:32<00:00, 153783.97it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4949465/4997817 [00:32<00:00, 154885.99it/s]

+

99%|█████████▉| 4938561/4997817 [00:32<00:00, 153783.97it/s]

-
99%|█████████▉| 4964994/4997817 [00:32&lt;00:00, 155003.99it/s]
+
99%|█████████▉| 4953978/4997817 [00:32&lt;00:00, 153897.59it/s]

</pre>

-
99%|█████████▉| 4964994/4997817 [00:32<00:00, 155003.99it/s]
+
99%|█████████▉| 4953978/4997817 [00:32<00:00, 153897.59it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4964994/4997817 [00:32<00:00, 155003.99it/s]

+

99%|█████████▉| 4953978/4997817 [00:32<00:00, 153897.59it/s]

-
+
-
-
-
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
-
100%|█████████▉| 4980530/4997817 [00:32&lt;00:00, 155107.15it/s]
+
99%|█████████▉| 4969368/4997817 [00:32&lt;00:00, 153894.61it/s]

</pre>

-
100%|█████████▉| 4980530/4997817 [00:32<00:00, 155107.15it/s]
+
99%|█████████▉| 4969368/4997817 [00:32<00:00, 153894.61it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4980530/4997817 [00:32<00:00, 155107.15it/s]

+

99%|█████████▉| 4969368/4997817 [00:32<00:00, 153894.61it/s]

+
+
-
100%|█████████▉| 4996041/4997817 [00:32&lt;00:00, 154803.83it/s]
+
100%|█████████▉| 4984758/4997817 [00:32&lt;00:00, 153605.50it/s]

</pre>

-
100%|█████████▉| 4996041/4997817 [00:32<00:00, 154803.83it/s]
+
100%|█████████▉| 4984758/4997817 [00:32<00:00, 153605.50it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4996041/4997817 [00:32<00:00, 154803.83it/s]

+

100%|█████████▉| 4984758/4997817 [00:32<00:00, 153605.50it/s]

-
100%|██████████| 4997817/4997817 [00:32&lt;00:00, 153673.72it/s]
+
100%|██████████| 4997817/4997817 [00:32&lt;00:00, 153435.77it/s]

</pre>

-
100%|██████████| 4997817/4997817 [00:32<00:00, 153673.72it/s]
+
100%|██████████| 4997817/4997817 [00:32<00:00, 153435.77it/s]

end{sphinxVerbatim}

-

100%|██████████| 4997817/4997817 [00:32<00:00, 153673.72it/s]

+

100%|██████████| 4997817/4997817 [00:32<00:00, 153435.77it/s]

-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -9536,7 +9545,7 @@

Get label quality scores -{"state": {"f41092a7d59842b9ad606a8f302d363f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d07ca6a86c524696bf2f66ee1603b173": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d33a86d6efe94493b4b31f045603d488": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f41092a7d59842b9ad606a8f302d363f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d07ca6a86c524696bf2f66ee1603b173", "tabbable": null, "tooltip": null, "value": 30.0}}, "22d942bf7a87444da02c7c20bd4910c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2fc35848fc74364ac28195032d870ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d79c9ddd7877446ab1df1603b14668ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_22d942bf7a87444da02c7c20bd4910c8", "placeholder": "\u200b", "style": "IPY_MODEL_b2fc35848fc74364ac28195032d870ea", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%"}}, "f1af3509b6d1462eb403501270f043e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7df2290308494535889d78cc19f6f628": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "651dd97d88794c158ac403cb3c7735e9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1af3509b6d1462eb403501270f043e1", "placeholder": "\u200b", "style": "IPY_MODEL_7df2290308494535889d78cc19f6f628", "tabbable": null, "tooltip": null, "value": " 30/30 [00:00<00:00, 443.65it/s]"}}, "ab870be927044154a9d2c007c5f1ac74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8e42fb70e364942b5126777ae7364b8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d79c9ddd7877446ab1df1603b14668ea", "IPY_MODEL_d33a86d6efe94493b4b31f045603d488", "IPY_MODEL_651dd97d88794c158ac403cb3c7735e9"], "layout": "IPY_MODEL_ab870be927044154a9d2c007c5f1ac74", "tabbable": null, "tooltip": null}}, "f94881c5ed114484a8718388dbf7f8d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d1795d50fcc748b790e1deefd918106a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7366aa89459c4323941d0f375f98ee15": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f94881c5ed114484a8718388dbf7f8d4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d1795d50fcc748b790e1deefd918106a", "tabbable": null, "tooltip": null, "value": 30.0}}, "9db709e8796d4663b3ab4076e3a7abe9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c17ddc75e18d4da39b0de12e5b18a200": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e76f660cdb0f4fb18531762f6b7a3a29": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9db709e8796d4663b3ab4076e3a7abe9", "placeholder": "\u200b", "style": "IPY_MODEL_c17ddc75e18d4da39b0de12e5b18a200", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%"}}, "2b22ce7632384103bfb532a95a042ce4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c5fc60a011f478ebb70ebe314c2c57e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aef4eb7fc2264bf7ba91be0aa175ec26": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b22ce7632384103bfb532a95a042ce4", "placeholder": "\u200b", "style": "IPY_MODEL_0c5fc60a011f478ebb70ebe314c2c57e", "tabbable": null, "tooltip": null, "value": " 30/30 [00:20<00:00, 1.44it/s]"}}, "e95f4c3e917b4f5fbba46be5f7f6f31d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "be506591e8ac431dabddd430053816e2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e76f660cdb0f4fb18531762f6b7a3a29", "IPY_MODEL_7366aa89459c4323941d0f375f98ee15", "IPY_MODEL_aef4eb7fc2264bf7ba91be0aa175ec26"], "layout": "IPY_MODEL_e95f4c3e917b4f5fbba46be5f7f6f31d", "tabbable": null, "tooltip": null}}, "8271ac55c2564cf7b8afdee5bf7bd183": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "924f64d2fdbf458ea8d923ef45ab99c7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a0a6acb581394b1ea4c7f7aac9f16e56": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8271ac55c2564cf7b8afdee5bf7bd183", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_924f64d2fdbf458ea8d923ef45ab99c7", "tabbable": null, "tooltip": null, "value": 30.0}}, "95c37d202f1b4e74b31a3b6ea23b57ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9553a7077d62470e942998ee95b9c71b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "359a0c7c06574cd79a1df91fca1753fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_95c37d202f1b4e74b31a3b6ea23b57ee", "placeholder": "\u200b", "style": "IPY_MODEL_9553a7077d62470e942998ee95b9c71b", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%"}}, "5310f63af03c448bafde34420ad575dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8129239368ed4dc9b5b1f61d4c690601": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37e3e49c8c874ce5875e52a48a409eab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5310f63af03c448bafde34420ad575dc", "placeholder": "\u200b", "style": "IPY_MODEL_8129239368ed4dc9b5b1f61d4c690601", "tabbable": null, "tooltip": null, "value": " 30/30 [00:02<00:00, 22.06it/s]"}}, "5fd6745edeb14f4ab19844d3fe8866d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abf433ee486a49889c3915e424953a34": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_359a0c7c06574cd79a1df91fca1753fe", "IPY_MODEL_a0a6acb581394b1ea4c7f7aac9f16e56", "IPY_MODEL_37e3e49c8c874ce5875e52a48a409eab"], "layout": "IPY_MODEL_5fd6745edeb14f4ab19844d3fe8866d3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e7755b2634e14aafbccebb4f6e64de73": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5345a96c9cae4e928a6e1a1c125e7ce8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6c8638463fca49d5ac7672e74d4ac28f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7755b2634e14aafbccebb4f6e64de73", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5345a96c9cae4e928a6e1a1c125e7ce8", "tabbable": null, "tooltip": null, "value": 30.0}}, "42320f8ec99345a8a1d7b3743692570c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b918e3f2902845c992e2ad99e1bd5c7a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "346d07b85b38438389fe133e9a418479": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_42320f8ec99345a8a1d7b3743692570c", "placeholder": "\u200b", "style": "IPY_MODEL_b918e3f2902845c992e2ad99e1bd5c7a", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%"}}, "3a07ea846e4e4da4b9e3d078bf06d668": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5059974e71574e4498b7c49142eac459": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0353adc3e9e4c0c90c48a657b747da6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a07ea846e4e4da4b9e3d078bf06d668", "placeholder": "\u200b", "style": "IPY_MODEL_5059974e71574e4498b7c49142eac459", "tabbable": null, "tooltip": null, "value": " 30/30 [00:00<00:00, 442.51it/s]"}}, "ac8230aa76d6480e86bf2f6603b01482": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "516f602a1da94152b495bff09963ecc2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_346d07b85b38438389fe133e9a418479", "IPY_MODEL_6c8638463fca49d5ac7672e74d4ac28f", "IPY_MODEL_c0353adc3e9e4c0c90c48a657b747da6"], "layout": "IPY_MODEL_ac8230aa76d6480e86bf2f6603b01482", "tabbable": null, "tooltip": null}}, "e615a970c954413db367b2d9fef60135": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "103bbc3ca3ac4dcfba34d609ab3401f1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f74b883c262a452dbe93b2d5f75d2310": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e615a970c954413db367b2d9fef60135", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_103bbc3ca3ac4dcfba34d609ab3401f1", "tabbable": null, "tooltip": null, "value": 30.0}}, "ed35e6eff2d34dc99d89e28b6b2db842": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c395077a208e4a06a79fbb862d6ddcc9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e88b7cbd81ec4799be04b90b0f573df2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ed35e6eff2d34dc99d89e28b6b2db842", "placeholder": "\u200b", "style": "IPY_MODEL_c395077a208e4a06a79fbb862d6ddcc9", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%"}}, "2043eeeca4644a31b8f49647f6a2c502": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c23cdff36d443ceb4a978630497cab2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "604b254022624d5fa1f0d5ce00717a7a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2043eeeca4644a31b8f49647f6a2c502", "placeholder": "\u200b", "style": "IPY_MODEL_2c23cdff36d443ceb4a978630497cab2", "tabbable": null, "tooltip": null, "value": " 30/30 [00:21<00:00, 1.46it/s]"}}, "3fd0a98738d9423197f5aa0943aefb02": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04cf97e28dc54e9e8ad9b5cad5a1f640": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e88b7cbd81ec4799be04b90b0f573df2", "IPY_MODEL_f74b883c262a452dbe93b2d5f75d2310", "IPY_MODEL_604b254022624d5fa1f0d5ce00717a7a"], "layout": "IPY_MODEL_3fd0a98738d9423197f5aa0943aefb02", "tabbable": null, "tooltip": null}}, "8e3bb7c90f954f5989152c60322ea693": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67bcc31fd41b4667ad691485ff610fad": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "86232ca075be441790e1f542ddfb5a71": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e3bb7c90f954f5989152c60322ea693", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_67bcc31fd41b4667ad691485ff610fad", "tabbable": null, "tooltip": null, "value": 30.0}}, "3e80361896654b9fbb2d3cdda124e6bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e4eeba27ffb44cf9cc05b55fddd701f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "568eaefdf60e4e258e477a3b0cf2674c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3e80361896654b9fbb2d3cdda124e6bf", "placeholder": "\u200b", "style": "IPY_MODEL_6e4eeba27ffb44cf9cc05b55fddd701f", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%"}}, "57e56153287f4b06ad3a7b451296be74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e007fc188f6545bc8c178075c8e5371f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a9599f5237b44a3db3f3e53cdf188800": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57e56153287f4b06ad3a7b451296be74", "placeholder": "\u200b", "style": "IPY_MODEL_e007fc188f6545bc8c178075c8e5371f", "tabbable": null, "tooltip": null, "value": " 30/30 [00:01<00:00, 22.74it/s]"}}, "b1e04cba90404290baabf2dcb33d0f58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70498ba46dda4093ba603778995e76b6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_568eaefdf60e4e258e477a3b0cf2674c", "IPY_MODEL_86232ca075be441790e1f542ddfb5a71", "IPY_MODEL_a9599f5237b44a3db3f3e53cdf188800"], "layout": "IPY_MODEL_b1e04cba90404290baabf2dcb33d0f58", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 2278816b2..979c7e3be 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:54.759216Z", - "iopub.status.busy": "2024-02-07T22:16:54.759059Z", - "iopub.status.idle": "2024-02-07T22:16:56.709104Z", - "shell.execute_reply": "2024-02-07T22:16:56.708365Z" + "iopub.execute_input": "2024-02-07T23:57:22.267015Z", + "iopub.status.busy": "2024-02-07T23:57:22.266847Z", + "iopub.status.idle": "2024-02-07T23:57:23.557742Z", + "shell.execute_reply": "2024-02-07T23:57:23.557100Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:16:56.711689Z", - "iopub.status.busy": "2024-02-07T22:16:56.711492Z", - "iopub.status.idle": "2024-02-07T22:17:51.576173Z", - "shell.execute_reply": "2024-02-07T22:17:51.575514Z" + "iopub.execute_input": "2024-02-07T23:57:23.560412Z", + "iopub.status.busy": "2024-02-07T23:57:23.560029Z", + "iopub.status.idle": "2024-02-07T23:58:14.095094Z", + "shell.execute_reply": "2024-02-07T23:58:14.094451Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:51.578880Z", - "iopub.status.busy": "2024-02-07T22:17:51.578435Z", - "iopub.status.idle": "2024-02-07T22:17:52.624888Z", - "shell.execute_reply": "2024-02-07T22:17:52.624282Z" + "iopub.execute_input": "2024-02-07T23:58:14.097742Z", + "iopub.status.busy": "2024-02-07T23:58:14.097332Z", + "iopub.status.idle": "2024-02-07T23:58:15.117655Z", + "shell.execute_reply": "2024-02-07T23:58:15.117170Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.627442Z", - "iopub.status.busy": "2024-02-07T22:17:52.627135Z", - "iopub.status.idle": "2024-02-07T22:17:52.630302Z", - "shell.execute_reply": "2024-02-07T22:17:52.629875Z" + "iopub.execute_input": "2024-02-07T23:58:15.120117Z", + "iopub.status.busy": "2024-02-07T23:58:15.119697Z", + "iopub.status.idle": "2024-02-07T23:58:15.122830Z", + "shell.execute_reply": "2024-02-07T23:58:15.122391Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.632362Z", - "iopub.status.busy": "2024-02-07T22:17:52.632061Z", - "iopub.status.idle": "2024-02-07T22:17:52.635961Z", - "shell.execute_reply": "2024-02-07T22:17:52.635445Z" + "iopub.execute_input": "2024-02-07T23:58:15.125002Z", + "iopub.status.busy": "2024-02-07T23:58:15.124688Z", + "iopub.status.idle": "2024-02-07T23:58:15.128438Z", + "shell.execute_reply": "2024-02-07T23:58:15.127995Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.637990Z", - "iopub.status.busy": "2024-02-07T22:17:52.637625Z", - "iopub.status.idle": "2024-02-07T22:17:52.641010Z", - "shell.execute_reply": "2024-02-07T22:17:52.640595Z" + "iopub.execute_input": "2024-02-07T23:58:15.130385Z", + "iopub.status.busy": "2024-02-07T23:58:15.130025Z", + "iopub.status.idle": "2024-02-07T23:58:15.133555Z", + "shell.execute_reply": "2024-02-07T23:58:15.133040Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.642975Z", - "iopub.status.busy": "2024-02-07T22:17:52.642693Z", - "iopub.status.idle": "2024-02-07T22:17:52.645515Z", - "shell.execute_reply": "2024-02-07T22:17:52.645069Z" + "iopub.execute_input": "2024-02-07T23:58:15.135489Z", + "iopub.status.busy": "2024-02-07T23:58:15.135128Z", + "iopub.status.idle": "2024-02-07T23:58:15.137853Z", + "shell.execute_reply": "2024-02-07T23:58:15.137431Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:17:52.647312Z", - "iopub.status.busy": "2024-02-07T22:17:52.647133Z", - "iopub.status.idle": "2024-02-07T22:19:07.736286Z", - "shell.execute_reply": "2024-02-07T22:19:07.735682Z" + "iopub.execute_input": "2024-02-07T23:58:15.139805Z", + "iopub.status.busy": "2024-02-07T23:58:15.139476Z", + "iopub.status.idle": "2024-02-07T23:59:30.237567Z", + "shell.execute_reply": "2024-02-07T23:59:30.236895Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f8e42fb70e364942b5126777ae7364b8", + "model_id": "516f602a1da94152b495bff09963ecc2", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be506591e8ac431dabddd430053816e2", + "model_id": "04cf97e28dc54e9e8ad9b5cad5a1f640", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:07.738877Z", - "iopub.status.busy": "2024-02-07T22:19:07.738502Z", - "iopub.status.idle": "2024-02-07T22:19:08.410129Z", - "shell.execute_reply": "2024-02-07T22:19:08.409587Z" + "iopub.execute_input": "2024-02-07T23:59:30.240593Z", + "iopub.status.busy": "2024-02-07T23:59:30.240063Z", + "iopub.status.idle": "2024-02-07T23:59:30.904928Z", + "shell.execute_reply": "2024-02-07T23:59:30.904345Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:08.412426Z", - "iopub.status.busy": "2024-02-07T22:19:08.411976Z", - "iopub.status.idle": "2024-02-07T22:19:11.136068Z", - "shell.execute_reply": "2024-02-07T22:19:11.135474Z" + "iopub.execute_input": "2024-02-07T23:59:30.907247Z", + "iopub.status.busy": "2024-02-07T23:59:30.906730Z", + "iopub.status.idle": "2024-02-07T23:59:33.588948Z", + "shell.execute_reply": "2024-02-07T23:59:33.588459Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:11.138343Z", - "iopub.status.busy": "2024-02-07T22:19:11.138010Z", - "iopub.status.idle": "2024-02-07T22:19:43.883956Z", - "shell.execute_reply": "2024-02-07T22:19:43.883330Z" + "iopub.execute_input": "2024-02-07T23:59:33.591098Z", + "iopub.status.busy": "2024-02-07T23:59:33.590759Z", + "iopub.status.idle": "2024-02-08T00:00:06.382957Z", + "shell.execute_reply": "2024-02-08T00:00:06.382396Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15347/4997817 [00:00<00:32, 153458.07it/s]" + " 0%| | 15387/4997817 [00:00<00:32, 153859.88it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30769/4997817 [00:00<00:32, 153898.57it/s]" + " 1%| | 30953/4997817 [00:00<00:32, 154916.01it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46197/4997817 [00:00<00:32, 154067.93it/s]" + " 1%| | 46445/4997817 [00:00<00:31, 154862.43it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 61604/4997817 [00:00<00:32, 153518.87it/s]" + " 1%| | 61949/4997817 [00:00<00:31, 154930.24it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 76957/4997817 [00:00<00:32, 153377.81it/s]" + " 2%|▏ | 77467/4997817 [00:00<00:31, 155019.01it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 92295/4997817 [00:00<00:32, 153281.65it/s]" + " 2%|▏ | 92969/4997817 [00:00<00:31, 154441.07it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 107770/4997817 [00:00<00:31, 153758.56it/s]" + " 2%|▏ | 108414/4997817 [00:00<00:31, 154378.14it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 123147/4997817 [00:00<00:31, 153622.15it/s]" + " 2%|▏ | 123962/4997817 [00:00<00:31, 154726.37it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 138510/4997817 [00:00<00:31, 153513.94it/s]" + " 3%|▎ | 139435/4997817 [00:00<00:31, 154613.74it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 153862/4997817 [00:01<00:31, 153440.87it/s]" + " 3%|▎ | 154933/4997817 [00:01<00:31, 154724.64it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 169207/4997817 [00:01<00:31, 153375.31it/s]" + " 3%|▎ | 170450/4997817 [00:01<00:31, 154858.82it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 184566/4997817 [00:01<00:31, 153437.24it/s]" + " 4%|▎ | 185960/4997817 [00:01<00:31, 154931.05it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 200027/4997817 [00:01<00:31, 153789.46it/s]" + " 4%|▍ | 201595/4997817 [00:01<00:30, 155359.04it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 215446/4997817 [00:01<00:31, 153907.31it/s]" + " 4%|▍ | 217166/4997817 [00:01<00:30, 155463.26it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 230924/4997817 [00:01<00:30, 154166.08it/s]" + " 5%|▍ | 232796/4997817 [00:01<00:30, 155713.22it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 246392/4997817 [00:01<00:30, 154317.10it/s]" + " 5%|▍ | 248368/4997817 [00:01<00:30, 155024.90it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 261824/4997817 [00:01<00:30, 153630.47it/s]" + " 5%|▌ | 263872/4997817 [00:01<00:30, 154707.21it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 277224/4997817 [00:01<00:30, 153736.80it/s]" + " 6%|▌ | 279344/4997817 [00:01<00:30, 154411.85it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 292639/4997817 [00:01<00:30, 153857.25it/s]" + " 6%|▌ | 294786/4997817 [00:01<00:30, 153675.58it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 308121/4997817 [00:02<00:30, 154142.35it/s]" + " 6%|▌ | 310155/4997817 [00:02<00:30, 153084.29it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 323536/4997817 [00:02<00:30, 154021.27it/s]" + " 7%|▋ | 325465/4997817 [00:02<00:30, 152924.81it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 338991/4997817 [00:02<00:30, 154177.79it/s]" + " 7%|▋ | 340815/4997817 [00:02<00:30, 153092.91it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 354437/4997817 [00:02<00:30, 154259.57it/s]" + " 7%|▋ | 356125/4997817 [00:02<00:30, 152796.73it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369864/4997817 [00:02<00:30, 154160.91it/s]" + " 7%|▋ | 371405/4997817 [00:02<00:30, 152624.10it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 385349/4997817 [00:02<00:29, 154364.42it/s]" + " 8%|▊ | 386668/4997817 [00:02<00:30, 152387.84it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 400786/4997817 [00:02<00:29, 154238.35it/s]" + " 8%|▊ | 401907/4997817 [00:02<00:30, 151622.18it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 416218/4997817 [00:02<00:29, 154259.56it/s]" + " 8%|▊ | 417070/4997817 [00:02<00:30, 151606.88it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 431732/4997817 [00:02<00:29, 154520.13it/s]" + " 9%|▊ | 432286/4997817 [00:02<00:30, 151770.09it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 447185/4997817 [00:02<00:29, 153245.62it/s]" + " 9%|▉ | 447464/4997817 [00:02<00:29, 151738.90it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 462512/4997817 [00:03<00:30, 146732.31it/s]" + " 9%|▉ | 462721/4997817 [00:03<00:29, 151984.24it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 477889/4997817 [00:03<00:30, 148766.90it/s]" + " 10%|▉ | 477975/4997817 [00:03<00:29, 152147.15it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 493335/4997817 [00:03<00:29, 150430.33it/s]" + " 10%|▉ | 493202/4997817 [00:03<00:29, 152182.16it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 508611/4997817 [00:03<00:29, 151113.76it/s]" + " 10%|█ | 508476/4997817 [00:03<00:29, 152345.94it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 523989/4997817 [00:03<00:29, 151901.84it/s]" + " 10%|█ | 523738/4997817 [00:03<00:29, 152425.10it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 539401/4997817 [00:03<00:29, 152559.93it/s]" + " 11%|█ | 539030/4997817 [00:03<00:29, 152572.90it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 554825/4997817 [00:03<00:29, 153058.80it/s]" + " 11%|█ | 554288/4997817 [00:03<00:29, 152516.18it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 570237/4997817 [00:03<00:28, 153371.61it/s]" + " 11%|█▏ | 569540/4997817 [00:03<00:29, 152488.37it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 585614/4997817 [00:03<00:28, 153487.20it/s]" + " 12%|█▏ | 584949/4997817 [00:03<00:28, 152966.60it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 601012/4997817 [00:03<00:28, 153632.69it/s]" + " 12%|█▏ | 600453/4997817 [00:03<00:28, 153586.15it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 616379/4997817 [00:04<00:28, 153190.63it/s]" + " 12%|█▏ | 615876/4997817 [00:04<00:28, 153775.67it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 631701/4997817 [00:04<00:28, 153034.14it/s]" + " 13%|█▎ | 631317/4997817 [00:04<00:28, 153964.11it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 647041/4997817 [00:04<00:28, 153139.80it/s]" + " 13%|█▎ | 646849/4997817 [00:04<00:28, 154369.76it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 662439/4997817 [00:04<00:28, 153387.00it/s]" + " 13%|█▎ | 662330/4997817 [00:04<00:28, 154500.98it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 677783/4997817 [00:04<00:28, 153400.95it/s]" + " 14%|█▎ | 677819/4997817 [00:04<00:27, 154616.28it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 693146/4997817 [00:04<00:28, 153465.36it/s]" + " 14%|█▍ | 693283/4997817 [00:04<00:27, 154620.90it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 708494/4997817 [00:04<00:27, 153436.13it/s]" + " 14%|█▍ | 708746/4997817 [00:04<00:27, 154483.57it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 723849/4997817 [00:04<00:27, 153466.14it/s]" + " 14%|█▍ | 724195/4997817 [00:04<00:28, 149330.22it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739196/4997817 [00:04<00:27, 153373.26it/s]" + " 15%|█▍ | 739415/4997817 [00:04<00:28, 150169.33it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754593/4997817 [00:04<00:27, 153549.34it/s]" + " 15%|█▌ | 754739/4997817 [00:04<00:28, 151072.92it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 769949/4997817 [00:05<00:28, 150908.16it/s]" + " 15%|█▌ | 770174/4997817 [00:05<00:27, 152041.12it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 785470/4997817 [00:05<00:27, 152179.07it/s]" + " 16%|█▌ | 785615/4997817 [00:05<00:27, 152744.99it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 801022/4997817 [00:05<00:27, 153170.62it/s]" + " 16%|█▌ | 801159/4997817 [00:05<00:27, 153547.67it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 816526/4997817 [00:05<00:27, 153726.26it/s]" + " 16%|█▋ | 816774/4997817 [00:05<00:27, 154323.42it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 832085/4997817 [00:05<00:27, 154281.24it/s]" + " 17%|█▋ | 832233/4997817 [00:05<00:26, 154401.44it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 847655/4997817 [00:05<00:26, 154701.31it/s]" + " 17%|█▋ | 847796/4997817 [00:05<00:26, 154767.42it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 863128/4997817 [00:05<00:26, 154543.39it/s]" + " 17%|█▋ | 863276/4997817 [00:05<00:26, 154708.16it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 878688/4997817 [00:05<00:26, 154857.05it/s]" + " 18%|█▊ | 878750/4997817 [00:05<00:26, 154184.03it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 894280/4997817 [00:05<00:26, 155173.03it/s]" + " 18%|█▊ | 894171/4997817 [00:05<00:26, 153911.40it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 909799/4997817 [00:05<00:26, 153932.45it/s]" + " 18%|█▊ | 909620/4997817 [00:05<00:26, 154081.10it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 925196/4997817 [00:06<00:26, 153134.34it/s]" + " 19%|█▊ | 925183/4997817 [00:06<00:26, 154541.55it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 940720/4997817 [00:06<00:26, 153757.32it/s]" + " 19%|█▉ | 940724/4997817 [00:06<00:26, 154798.01it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 956290/4997817 [00:06<00:26, 154335.16it/s]" + " 19%|█▉ | 956285/4997817 [00:06<00:26, 155038.35it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 971837/4997817 [00:06<00:26, 154670.43it/s]" + " 19%|█▉ | 971790/4997817 [00:06<00:25, 154956.07it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 987409/4997817 [00:06<00:25, 154980.24it/s]" + " 20%|█▉ | 987286/4997817 [00:06<00:25, 154826.09it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1003021/4997817 [00:06<00:25, 155319.53it/s]" + " 20%|██ | 1002769/4997817 [00:06<00:25, 154658.28it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1018554/4997817 [00:06<00:25, 155043.65it/s]" + " 20%|██ | 1018250/4997817 [00:06<00:25, 154701.77it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1034111/4997817 [00:06<00:25, 155190.83it/s]" + " 21%|██ | 1033721/4997817 [00:06<00:25, 154399.73it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1049635/4997817 [00:06<00:25, 155203.50it/s]" + " 21%|██ | 1049162/4997817 [00:06<00:25, 154388.08it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1065196/4997817 [00:06<00:25, 155323.02it/s]" + " 21%|██▏ | 1064700/4997817 [00:06<00:25, 154682.90it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1080813/4997817 [00:07<00:25, 155572.06it/s]" + " 22%|██▏ | 1080169/4997817 [00:07<00:25, 154502.61it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1096371/4997817 [00:07<00:25, 155143.85it/s]" + " 22%|██▏ | 1095620/4997817 [00:07<00:25, 153934.36it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1111933/4997817 [00:07<00:25, 155283.41it/s]" + " 22%|██▏ | 1111014/4997817 [00:07<00:25, 153453.97it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1127467/4997817 [00:07<00:24, 155297.30it/s]" + " 23%|██▎ | 1126460/4997817 [00:07<00:25, 153751.09it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1143078/4997817 [00:07<00:24, 155537.53it/s]" + " 23%|██▎ | 1141915/4997817 [00:07<00:25, 153987.80it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1158632/4997817 [00:07<00:24, 155524.20it/s]" + " 23%|██▎ | 1157315/4997817 [00:07<00:24, 153646.26it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1174185/4997817 [00:07<00:24, 155271.94it/s]" + " 23%|██▎ | 1172782/4997817 [00:07<00:24, 153950.34it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1189714/4997817 [00:07<00:24, 155275.28it/s]" + " 24%|██▍ | 1188178/4997817 [00:07<00:24, 153569.49it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1205250/4997817 [00:07<00:24, 155297.83it/s]" + " 24%|██▍ | 1203670/4997817 [00:07<00:24, 153971.80it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1220788/4997817 [00:07<00:24, 155319.29it/s]" + " 24%|██▍ | 1219312/4997817 [00:07<00:24, 154701.16it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1236320/4997817 [00:08<00:24, 155297.01it/s]" + " 25%|██▍ | 1234865/4997817 [00:08<00:24, 154946.23it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1251850/4997817 [00:08<00:24, 154837.80it/s]" + " 25%|██▌ | 1250438/4997817 [00:08<00:24, 155179.69it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1267335/4997817 [00:08<00:24, 154514.28it/s]" + " 25%|██▌ | 1266015/4997817 [00:08<00:24, 155354.02it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1282844/4997817 [00:08<00:24, 154680.42it/s]" + " 26%|██▌ | 1281583/4997817 [00:08<00:23, 155450.35it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1298407/4997817 [00:08<00:23, 154960.16it/s]" + " 26%|██▌ | 1297301/4997817 [00:08<00:23, 155966.62it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1313976/4997817 [00:08<00:23, 155176.70it/s]" + " 26%|██▋ | 1312991/4997817 [00:08<00:23, 156242.91it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1329577/4997817 [00:08<00:23, 155424.12it/s]" + " 27%|██▋ | 1328616/4997817 [00:08<00:23, 155989.64it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1345162/4997817 [00:08<00:23, 155550.05it/s]" + " 27%|██▋ | 1344327/4997817 [00:08<00:23, 156323.68it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1360737/4997817 [00:08<00:23, 155607.38it/s]" + " 27%|██▋ | 1359960/4997817 [00:08<00:24, 148351.64it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1376313/4997817 [00:08<00:23, 155649.40it/s]" + " 28%|██▊ | 1375464/4997817 [00:08<00:24, 150281.68it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1391965/4997817 [00:09<00:23, 155908.88it/s]" + " 28%|██▊ | 1391084/4997817 [00:09<00:23, 152008.93it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1407556/4997817 [00:09<00:23, 155321.25it/s]" + " 28%|██▊ | 1406706/4997817 [00:09<00:23, 153246.84it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1423155/4997817 [00:09<00:22, 155479.77it/s]" + " 28%|██▊ | 1422423/4997817 [00:09<00:23, 154405.82it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1438785/4997817 [00:09<00:22, 155724.14it/s]" + " 29%|██▉ | 1438109/4997817 [00:09<00:22, 155134.29it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1454384/4997817 [00:09<00:22, 155801.48it/s]" + " 29%|██▉ | 1453665/4997817 [00:09<00:22, 155257.81it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1470014/4997817 [00:09<00:22, 155947.13it/s]" + " 29%|██▉ | 1469349/4997817 [00:09<00:22, 155727.92it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1485609/4997817 [00:09<00:22, 155913.61it/s]" + " 30%|██▉ | 1485018/4997817 [00:09<00:22, 156012.89it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1501201/4997817 [00:09<00:22, 155784.73it/s]" + " 30%|███ | 1500627/4997817 [00:09<00:22, 155976.47it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1516780/4997817 [00:09<00:22, 155559.73it/s]" + " 30%|███ | 1516230/4997817 [00:09<00:22, 153762.84it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1532380/4997817 [00:09<00:22, 155687.40it/s]" + " 31%|███ | 1531868/4997817 [00:09<00:22, 154536.52it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1547949/4997817 [00:10<00:22, 155528.12it/s]" + " 31%|███ | 1547362/4997817 [00:10<00:22, 154655.76it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1563502/4997817 [00:10<00:23, 147324.84it/s]" + " 31%|███▏ | 1562834/4997817 [00:10<00:22, 154496.08it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1579008/4997817 [00:10<00:22, 149552.84it/s]" + " 32%|███▏ | 1578361/4997817 [00:10<00:22, 154724.34it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1594563/4997817 [00:10<00:22, 151300.39it/s]" + " 32%|███▏ | 1593837/4997817 [00:10<00:22, 154526.62it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1610073/4997817 [00:10<00:22, 152415.30it/s]" + " 32%|███▏ | 1609292/4997817 [00:10<00:21, 154082.95it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1625549/4997817 [00:10<00:22, 153107.12it/s]" + " 33%|███▎ | 1624709/4997817 [00:10<00:21, 154108.12it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1640959/4997817 [00:10<00:21, 153398.91it/s]" + " 33%|███▎ | 1640152/4997817 [00:10<00:21, 154202.78it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1656429/4997817 [00:10<00:21, 153784.58it/s]" + " 33%|███▎ | 1655574/4997817 [00:10<00:21, 153955.25it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1671823/4997817 [00:10<00:22, 147620.43it/s]" + " 33%|███▎ | 1670971/4997817 [00:10<00:21, 153956.41it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1687245/4997817 [00:10<00:22, 149534.13it/s]" + " 34%|███▎ | 1686509/4997817 [00:10<00:21, 154381.52it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1702248/4997817 [00:11<00:22, 145716.03it/s]" + " 34%|███▍ | 1701951/4997817 [00:11<00:21, 154392.21it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1717722/4997817 [00:11<00:22, 148327.18it/s]" + " 34%|███▍ | 1717391/4997817 [00:11<00:21, 154191.74it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1733212/4997817 [00:11<00:21, 150249.60it/s]" + " 35%|███▍ | 1732903/4997817 [00:11<00:21, 154468.06it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1748683/4997817 [00:11<00:21, 151562.76it/s]" + " 35%|███▍ | 1748426/4997817 [00:11<00:21, 154695.22it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1764179/4997817 [00:11<00:21, 152568.57it/s]" + " 35%|███▌ | 1763908/4997817 [00:11<00:20, 154731.01it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1779561/4997817 [00:11<00:21, 152939.77it/s]" + " 36%|███▌ | 1779465/4997817 [00:11<00:20, 154980.84it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1794870/4997817 [00:11<00:20, 152948.40it/s]" + " 36%|███▌ | 1794973/4997817 [00:11<00:20, 155008.18it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1810300/4997817 [00:11<00:20, 153350.41it/s]" + " 36%|███▌ | 1810474/4997817 [00:11<00:20, 154706.88it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1825723/4997817 [00:11<00:20, 153610.68it/s]" + " 37%|███▋ | 1825945/4997817 [00:11<00:21, 150553.76it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1841251/4997817 [00:11<00:20, 154108.13it/s]" + " 37%|███▋ | 1841366/4997817 [00:11<00:20, 151623.92it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1856784/4997817 [00:12<00:20, 154470.98it/s]" + " 37%|███▋ | 1856852/4997817 [00:12<00:20, 152579.57it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1872234/4997817 [00:12<00:20, 154379.68it/s]" + " 37%|███▋ | 1872563/4997817 [00:12<00:20, 153923.92it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1887674/4997817 [00:12<00:20, 154351.08it/s]" + " 38%|███▊ | 1888219/4997817 [00:12<00:20, 154708.39it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1903137/4997817 [00:12<00:20, 154430.74it/s]" + " 38%|███▊ | 1903953/4997817 [00:12<00:19, 155491.61it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1918581/4997817 [00:12<00:19, 154231.39it/s]" + " 38%|███▊ | 1919523/4997817 [00:12<00:19, 155552.74it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1934021/4997817 [00:12<00:19, 154278.42it/s]" + " 39%|███▊ | 1935132/4997817 [00:12<00:19, 155711.90it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949544/4997817 [00:12<00:19, 154560.34it/s]" + " 39%|███▉ | 1950707/4997817 [00:12<00:19, 155602.81it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1965001/4997817 [00:12<00:19, 154544.17it/s]" + " 39%|███▉ | 1966388/4997817 [00:12<00:19, 155963.60it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1980514/4997817 [00:12<00:19, 154717.76it/s]" + " 40%|███▉ | 1982054/4997817 [00:12<00:19, 156169.63it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1995986/4997817 [00:12<00:19, 154624.51it/s]" + " 40%|███▉ | 1997673/4997817 [00:12<00:19, 155736.39it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2011449/4997817 [00:13<00:19, 154571.51it/s]" + " 40%|████ | 2013248/4997817 [00:13<00:19, 155496.01it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2026907/4997817 [00:13<00:19, 154431.61it/s]" + " 41%|████ | 2028804/4997817 [00:13<00:19, 155511.76it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2042351/4997817 [00:13<00:19, 150939.06it/s]" + " 41%|████ | 2044356/4997817 [00:13<00:19, 155257.61it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2057814/4997817 [00:13<00:19, 152025.47it/s]" + " 41%|████ | 2059960/4997817 [00:13<00:18, 155488.99it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2073170/4997817 [00:13<00:19, 152476.99it/s]" + " 42%|████▏ | 2075625/4997817 [00:13<00:18, 155833.92it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2088594/4997817 [00:13<00:19, 152999.26it/s]" + " 42%|████▏ | 2091209/4997817 [00:13<00:18, 155266.92it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2104043/4997817 [00:13<00:18, 153442.72it/s]" + " 42%|████▏ | 2106737/4997817 [00:13<00:18, 154717.60it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2119443/4997817 [00:13<00:18, 153606.85it/s]" + " 42%|████▏ | 2122210/4997817 [00:13<00:18, 154334.91it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2134833/4997817 [00:13<00:18, 153691.74it/s]" + " 43%|████▎ | 2137645/4997817 [00:13<00:18, 154040.89it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2150260/4997817 [00:13<00:18, 153861.39it/s]" + " 43%|████▎ | 2153050/4997817 [00:13<00:18, 153792.02it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2165649/4997817 [00:14<00:18, 153505.35it/s]" + " 43%|████▎ | 2168430/4997817 [00:14<00:18, 153254.04it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2181031/4997817 [00:14<00:18, 153598.33it/s]" + " 44%|████▎ | 2183756/4997817 [00:14<00:18, 153011.24it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2196392/4997817 [00:14<00:18, 153515.18it/s]" + " 44%|████▍ | 2199058/4997817 [00:14<00:18, 152771.69it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211745/4997817 [00:14<00:18, 153359.24it/s]" + " 44%|████▍ | 2214336/4997817 [00:14<00:18, 152533.15it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2227087/4997817 [00:14<00:18, 153376.49it/s]" + " 45%|████▍ | 2229590/4997817 [00:14<00:18, 152216.34it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2242478/4997817 [00:14<00:17, 153534.73it/s]" + " 45%|████▍ | 2244822/4997817 [00:14<00:18, 152246.04it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2257832/4997817 [00:14<00:17, 153331.02it/s]" + " 45%|████▌ | 2260129/4997817 [00:14<00:17, 152489.87it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2273166/4997817 [00:14<00:17, 153125.99it/s]" + " 46%|████▌ | 2275379/4997817 [00:14<00:17, 152457.91it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2288479/4997817 [00:14<00:17, 153046.84it/s]" + " 46%|████▌ | 2290625/4997817 [00:14<00:17, 152236.51it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2303800/4997817 [00:14<00:17, 153094.76it/s]" + " 46%|████▌ | 2305849/4997817 [00:14<00:17, 151840.02it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2319193/4997817 [00:15<00:17, 153342.97it/s]" + " 46%|████▋ | 2321245/4997817 [00:15<00:17, 152471.18it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2334528/4997817 [00:15<00:17, 152346.58it/s]" + " 47%|████▋ | 2336585/4997817 [00:15<00:17, 152746.15it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2349765/4997817 [00:15<00:17, 151169.35it/s]" + " 47%|████▋ | 2351960/4997817 [00:15<00:17, 153045.31it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2364972/4997817 [00:15<00:17, 151434.66it/s]" + " 47%|████▋ | 2367326/4997817 [00:15<00:17, 153228.56it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2380298/4997817 [00:15<00:17, 151975.78it/s]" + " 48%|████▊ | 2382719/4997817 [00:15<00:17, 153435.46it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2395754/4997817 [00:15<00:17, 152744.78it/s]" + " 48%|████▊ | 2398063/4997817 [00:15<00:16, 153381.39it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2411076/4997817 [00:15<00:16, 152884.98it/s]" + " 48%|████▊ | 2413402/4997817 [00:15<00:16, 153357.05it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2426567/4997817 [00:15<00:16, 153489.20it/s]" + " 49%|████▊ | 2428752/4997817 [00:15<00:16, 153397.32it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2441950/4997817 [00:15<00:16, 153587.93it/s]" + " 49%|████▉ | 2444150/4997817 [00:15<00:16, 153571.32it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2457394/4997817 [00:16<00:16, 153839.68it/s]" + " 49%|████▉ | 2459562/4997817 [00:15<00:16, 153732.62it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472901/4997817 [00:16<00:16, 154205.77it/s]" + " 50%|████▉ | 2475015/4997817 [00:16<00:16, 153968.52it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488322/4997817 [00:16<00:16, 154163.11it/s]" + " 50%|████▉ | 2490438/4997817 [00:16<00:16, 154046.12it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2503739/4997817 [00:16<00:16, 153004.46it/s]" + " 50%|█████ | 2505843/4997817 [00:16<00:16, 154040.82it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2519042/4997817 [00:16<00:16, 147381.07it/s]" + " 50%|█████ | 2521248/4997817 [00:16<00:16, 153702.86it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2534620/4997817 [00:16<00:16, 149823.79it/s]" + " 51%|█████ | 2536619/4997817 [00:16<00:16, 153488.02it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2550145/4997817 [00:16<00:16, 151413.71it/s]" + " 51%|█████ | 2551968/4997817 [00:16<00:15, 153045.28it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2565630/4997817 [00:16<00:15, 152427.20it/s]" + " 51%|█████▏ | 2567273/4997817 [00:16<00:15, 152959.52it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2581060/4997817 [00:16<00:15, 152981.66it/s]" + " 52%|█████▏ | 2582570/4997817 [00:16<00:15, 152668.38it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2596553/4997817 [00:16<00:15, 153559.70it/s]" + " 52%|█████▏ | 2597897/4997817 [00:16<00:15, 152844.82it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2612027/4997817 [00:17<00:15, 153910.24it/s]" + " 52%|█████▏ | 2613182/4997817 [00:16<00:15, 150670.35it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2627562/4997817 [00:17<00:15, 154337.56it/s]" + " 53%|█████▎ | 2628256/4997817 [00:17<00:15, 149400.44it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2643066/4997817 [00:17<00:15, 154544.82it/s]" + " 53%|█████▎ | 2643612/4997817 [00:17<00:15, 150628.22it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658563/4997817 [00:17<00:15, 154668.65it/s]" + " 53%|█████▎ | 2659103/4997817 [00:17<00:15, 151899.02it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674058/4997817 [00:17<00:15, 154750.12it/s]" + " 54%|█████▎ | 2674484/4997817 [00:17<00:15, 152464.99it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2689580/4997817 [00:17<00:14, 154890.00it/s]" + " 54%|█████▍ | 2689840/4997817 [00:17<00:15, 152791.05it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2705071/4997817 [00:17<00:14, 154543.10it/s]" + " 54%|█████▍ | 2705248/4997817 [00:17<00:14, 153173.60it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2720555/4997817 [00:17<00:14, 154630.16it/s]" + " 54%|█████▍ | 2720642/4997817 [00:17<00:14, 153400.27it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2736166/4997817 [00:17<00:14, 155070.41it/s]" + " 55%|█████▍ | 2736057/4997817 [00:17<00:14, 153621.44it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2751724/4997817 [00:17<00:14, 155222.18it/s]" + " 55%|█████▌ | 2751444/4997817 [00:17<00:14, 153694.21it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2767247/4997817 [00:18<00:14, 155078.59it/s]" + " 55%|█████▌ | 2766815/4997817 [00:17<00:14, 153676.47it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2782756/4997817 [00:18<00:14, 154978.09it/s]" + " 56%|█████▌ | 2782184/4997817 [00:18<00:15, 146027.40it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2798255/4997817 [00:18<00:14, 154977.38it/s]" + " 56%|█████▌ | 2797535/4997817 [00:18<00:14, 148188.94it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2813789/4997817 [00:18<00:14, 155083.56it/s]" + " 56%|█████▋ | 2812891/4997817 [00:18<00:14, 149756.66it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2829298/4997817 [00:18<00:14, 152520.30it/s]" + " 57%|█████▋ | 2828262/4997817 [00:18<00:14, 150920.17it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2844801/4997817 [00:18<00:14, 153263.29it/s]" + " 57%|█████▋ | 2843674/4997817 [00:18<00:14, 151866.33it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2860237/4997817 [00:18<00:13, 153586.93it/s]" + " 57%|█████▋ | 2858942/4997817 [00:18<00:14, 152106.04it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2875673/4997817 [00:18<00:13, 153813.68it/s]" + " 58%|█████▊ | 2874363/4997817 [00:18<00:13, 152731.27it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2891059/4997817 [00:18<00:13, 153744.34it/s]" + " 58%|█████▊ | 2889650/4997817 [00:18<00:13, 152715.44it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2906451/4997817 [00:18<00:13, 153793.40it/s]" + " 58%|█████▊ | 2905031/4997817 [00:18<00:13, 153042.21it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2921833/4997817 [00:19<00:13, 153778.25it/s]" + " 58%|█████▊ | 2920342/4997817 [00:19<00:13, 153004.24it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2937213/4997817 [00:19<00:13, 153645.48it/s]" + " 59%|█████▊ | 2935648/4997817 [00:19<00:13, 152907.67it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2952579/4997817 [00:19<00:13, 153613.36it/s]" + " 59%|█████▉ | 2950943/4997817 [00:19<00:13, 152850.99it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2967942/4997817 [00:19<00:13, 153281.42it/s]" + " 59%|█████▉ | 2966231/4997817 [00:19<00:13, 152725.36it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2983271/4997817 [00:19<00:13, 150146.86it/s]" + " 60%|█████▉ | 2981549/4997817 [00:19<00:13, 152858.39it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2998477/4997817 [00:19<00:13, 150708.16it/s]" + " 60%|█████▉ | 2996997/4997817 [00:19<00:13, 153340.92it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3014011/4997817 [00:19<00:13, 152080.61it/s]" + " 60%|██████ | 3012371/4997817 [00:19<00:12, 153458.61it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3029518/4997817 [00:19<00:12, 152969.20it/s]" + " 61%|██████ | 3027820/4997817 [00:19<00:12, 153766.56it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3045037/4997817 [00:19<00:12, 153629.76it/s]" + " 61%|██████ | 3043238/4997817 [00:19<00:12, 153889.92it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3060406/4997817 [00:19<00:12, 153331.78it/s]" + " 61%|██████ | 3058663/4997817 [00:19<00:12, 153995.86it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3075743/4997817 [00:20<00:12, 152764.94it/s]" + " 62%|██████▏ | 3074096/4997817 [00:20<00:12, 154092.71it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3091023/4997817 [00:20<00:12, 152634.64it/s]" + " 62%|██████▏ | 3089506/4997817 [00:20<00:12, 153922.23it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3106414/4997817 [00:20<00:12, 153013.91it/s]" + " 62%|██████▏ | 3104899/4997817 [00:20<00:12, 153769.23it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3121808/4997817 [00:20<00:12, 153288.59it/s]" + " 62%|██████▏ | 3120344/4997817 [00:20<00:12, 153969.82it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3137276/4997817 [00:20<00:12, 153703.80it/s]" + " 63%|██████▎ | 3135742/4997817 [00:20<00:12, 153534.18it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3152648/4997817 [00:20<00:12, 153568.00it/s]" + " 63%|██████▎ | 3151096/4997817 [00:20<00:12, 153404.32it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3168071/4997817 [00:20<00:11, 153762.45it/s]" + " 63%|██████▎ | 3166437/4997817 [00:20<00:11, 153363.50it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3183450/4997817 [00:20<00:11, 153768.33it/s]" + " 64%|██████▎ | 3181930/4997817 [00:20<00:11, 153829.95it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3198898/4997817 [00:20<00:11, 153979.27it/s]" + " 64%|██████▍ | 3197314/4997817 [00:20<00:11, 153423.59it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3214297/4997817 [00:20<00:11, 153771.27it/s]" + " 64%|██████▍ | 3212657/4997817 [00:20<00:11, 153324.94it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3229715/4997817 [00:21<00:11, 153892.00it/s]" + " 65%|██████▍ | 3228003/4997817 [00:21<00:11, 153363.54it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3245105/4997817 [00:21<00:11, 153859.37it/s]" + " 65%|██████▍ | 3243340/4997817 [00:21<00:11, 151587.92it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3260519/4997817 [00:21<00:11, 153941.22it/s]" + " 65%|██████▌ | 3258504/4997817 [00:21<00:11, 148147.58it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3275914/4997817 [00:21<00:11, 153716.78it/s]" + " 66%|██████▌ | 3273956/4997817 [00:21<00:11, 150013.39it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3291386/4997817 [00:21<00:11, 154014.60it/s]" + " 66%|██████▌ | 3289544/4997817 [00:21<00:11, 151741.78it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3306788/4997817 [00:21<00:11, 153609.50it/s]" + " 66%|██████▌ | 3305094/4997817 [00:21<00:11, 152854.93it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3322285/4997817 [00:21<00:10, 153972.38it/s]" + " 66%|██████▋ | 3320616/4997817 [00:21<00:10, 153555.41it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3337683/4997817 [00:21<00:10, 153858.51it/s]" + " 67%|██████▋ | 3336160/4997817 [00:21<00:10, 154115.62it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3353124/4997817 [00:21<00:10, 154022.14it/s]" + " 67%|██████▋ | 3351730/4997817 [00:21<00:10, 154587.03it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3368625/4997817 [00:21<00:10, 154316.93it/s]" + " 67%|██████▋ | 3367278/4997817 [00:21<00:10, 154851.47it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384057/4997817 [00:22<00:10, 154300.14it/s]" + " 68%|██████▊ | 3382904/4997817 [00:22<00:10, 155270.93it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3399488/4997817 [00:22<00:10, 154131.51it/s]" + " 68%|██████▊ | 3398434/4997817 [00:22<00:10, 155112.16it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3414954/4997817 [00:22<00:10, 154286.04it/s]" + " 68%|██████▊ | 3413947/4997817 [00:22<00:10, 151516.41it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3430466/4997817 [00:22<00:10, 154534.16it/s]" + " 69%|██████▊ | 3429264/4997817 [00:22<00:10, 152002.54it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3445934/4997817 [00:22<00:10, 154576.71it/s]" + " 69%|██████▉ | 3444687/4997817 [00:22<00:10, 152661.60it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3461392/4997817 [00:22<00:09, 154214.46it/s]" + " 69%|██████▉ | 3459988/4997817 [00:22<00:10, 152762.54it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3476836/4997817 [00:22<00:09, 154280.38it/s]" + " 70%|██████▉ | 3475342/4997817 [00:22<00:09, 152992.88it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492331/4997817 [00:22<00:09, 154479.71it/s]" + " 70%|██████▉ | 3490806/4997817 [00:22<00:09, 153484.06it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3507875/4997817 [00:22<00:09, 154766.34it/s]" + " 70%|███████ | 3506159/4997817 [00:22<00:09, 153394.70it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3523352/4997817 [00:22<00:09, 154673.95it/s]" + " 70%|███████ | 3521538/4997817 [00:22<00:09, 153511.49it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3538822/4997817 [00:23<00:09, 154679.04it/s]" + " 71%|███████ | 3537056/4997817 [00:23<00:09, 154008.32it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3554370/4997817 [00:23<00:09, 154917.78it/s]" + " 71%|███████ | 3552632/4997817 [00:23<00:09, 154530.44it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3569906/4997817 [00:23<00:09, 155047.44it/s]" + " 71%|███████▏ | 3568087/4997817 [00:23<00:09, 146968.50it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3585430/4997817 [00:23<00:09, 155102.12it/s]" + " 72%|███████▏ | 3583451/4997817 [00:23<00:09, 148896.74it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3600951/4997817 [00:23<00:09, 155132.30it/s]" + " 72%|███████▏ | 3598891/4997817 [00:23<00:09, 150504.59it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3616465/4997817 [00:23<00:09, 150887.26it/s]" + " 72%|███████▏ | 3614435/4997817 [00:23<00:09, 151958.53it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3632029/4997817 [00:23<00:08, 152284.22it/s]" + " 73%|███████▎ | 3629881/4997817 [00:23<00:08, 152697.73it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3647567/4997817 [00:23<00:08, 153198.65it/s]" + " 73%|███████▎ | 3645255/4997817 [00:23<00:08, 153005.77it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3663094/4997817 [00:23<00:08, 153810.84it/s]" + " 73%|███████▎ | 3660584/4997817 [00:23<00:08, 153088.81it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3678598/4997817 [00:23<00:08, 154174.29it/s]" + " 74%|███████▎ | 3675916/4997817 [00:23<00:08, 153156.17it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3694138/4997817 [00:24<00:08, 154536.99it/s]" + " 74%|███████▍ | 3691295/4997817 [00:24<00:08, 153344.25it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3709658/4997817 [00:24<00:08, 154732.73it/s]" + " 74%|███████▍ | 3706697/4997817 [00:24<00:08, 153545.60it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3725206/4997817 [00:24<00:08, 154954.44it/s]" + " 74%|███████▍ | 3722057/4997817 [00:24<00:08, 147836.83it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3740779/4997817 [00:24<00:08, 155183.88it/s]" + " 75%|███████▍ | 3736974/4997817 [00:24<00:08, 148222.56it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3756300/4997817 [00:24<00:08, 155152.62it/s]" + " 75%|███████▌ | 3752284/4997817 [00:24<00:08, 149654.65it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3771876/4997817 [00:24<00:07, 155332.15it/s]" + " 75%|███████▌ | 3767574/4997817 [00:24<00:08, 150612.24it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3787433/4997817 [00:24<00:07, 155401.94it/s]" + " 76%|███████▌ | 3782880/4997817 [00:24<00:08, 151337.73it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3802974/4997817 [00:24<00:07, 154579.57it/s]" + " 76%|███████▌ | 3798151/4997817 [00:24<00:07, 151743.76it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3818510/4997817 [00:24<00:07, 154809.04it/s]" + " 76%|███████▋ | 3813408/4997817 [00:24<00:07, 151987.69it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3834118/4997817 [00:24<00:07, 155187.73it/s]" + " 77%|███████▋ | 3828722/4997817 [00:24<00:07, 152329.77it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3849726/4997817 [00:25<00:07, 155451.03it/s]" + " 77%|███████▋ | 3844014/4997817 [00:25<00:07, 152505.38it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865281/4997817 [00:25<00:07, 155478.17it/s]" + " 77%|███████▋ | 3859286/4997817 [00:25<00:07, 152568.18it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3880873/4997817 [00:25<00:07, 155607.51it/s]" + " 78%|███████▊ | 3874625/4997817 [00:25<00:07, 152812.08it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3896482/4997817 [00:25<00:07, 155748.19it/s]" + " 78%|███████▊ | 3890029/4997817 [00:25<00:07, 153178.11it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3912058/4997817 [00:25<00:06, 155484.01it/s]" + " 78%|███████▊ | 3905349/4997817 [00:25<00:07, 152911.02it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3927607/4997817 [00:25<00:06, 155333.66it/s]" + " 78%|███████▊ | 3920784/4997817 [00:25<00:07, 153341.49it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3943141/4997817 [00:25<00:06, 154982.06it/s]" + " 79%|███████▉ | 3936119/4997817 [00:25<00:06, 152961.72it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3958655/4997817 [00:25<00:06, 155026.48it/s]" + " 79%|███████▉ | 3951508/4997817 [00:25<00:06, 153228.71it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3974166/4997817 [00:25<00:06, 155048.76it/s]" + " 79%|███████▉ | 3966960/4997817 [00:25<00:06, 153613.34it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989742/4997817 [00:25<00:06, 155258.99it/s]" + " 80%|███████▉ | 3982322/4997817 [00:25<00:06, 153448.22it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4005269/4997817 [00:26<00:06, 155095.77it/s]" + " 80%|███████▉ | 3997668/4997817 [00:26<00:06, 153357.40it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4020928/4997817 [00:26<00:06, 155541.32it/s]" + " 80%|████████ | 4013004/4997817 [00:26<00:06, 153315.74it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4036483/4997817 [00:26<00:06, 155356.37it/s]" + " 81%|████████ | 4028336/4997817 [00:26<00:06, 153114.29it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4052019/4997817 [00:26<00:06, 155307.81it/s]" + " 81%|████████ | 4043648/4997817 [00:26<00:06, 150591.11it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4067550/4997817 [00:26<00:05, 155236.21it/s]" + " 81%|████████ | 4059148/4997817 [00:26<00:06, 151895.49it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4083074/4997817 [00:26<00:05, 154917.67it/s]" + " 82%|████████▏ | 4074741/4997817 [00:26<00:06, 153091.67it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4098566/4997817 [00:26<00:06, 146375.09it/s]" + " 82%|████████▏ | 4090233/4997817 [00:26<00:05, 153635.51it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4113914/4997817 [00:26<00:05, 148417.52it/s]" + " 82%|████████▏ | 4105801/4997817 [00:26<00:05, 154243.63it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4129242/4997817 [00:26<00:05, 149832.62it/s]" + " 82%|████████▏ | 4121409/4997817 [00:26<00:05, 154791.86it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4144613/4997817 [00:26<00:05, 150968.60it/s]" + " 83%|████████▎ | 4136946/4997817 [00:26<00:05, 154962.42it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4160035/4997817 [00:27<00:05, 151927.64it/s]" + " 83%|████████▎ | 4152492/4997817 [00:27<00:05, 155109.62it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4175344/4997817 [00:27<00:05, 152271.67it/s]" + " 83%|████████▎ | 4168015/4997817 [00:27<00:05, 155143.19it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4190658/4997817 [00:27<00:05, 152526.24it/s]" + " 84%|████████▎ | 4183654/4997817 [00:27<00:05, 155513.87it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4205984/4997817 [00:27<00:05, 152743.35it/s]" + " 84%|████████▍ | 4199207/4997817 [00:27<00:05, 152050.97it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4221286/4997817 [00:27<00:05, 152822.28it/s]" + " 84%|████████▍ | 4214599/4997817 [00:27<00:05, 152599.26it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4236607/4997817 [00:27<00:04, 152936.93it/s]" + " 85%|████████▍ | 4230003/4997817 [00:27<00:05, 153024.35it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4251907/4997817 [00:27<00:05, 145817.28it/s]" + " 85%|████████▍ | 4245402/4997817 [00:27<00:04, 153309.38it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4267342/4997817 [00:27<00:04, 148286.68it/s]" + " 85%|████████▌ | 4260774/4997817 [00:27<00:04, 153430.83it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4282888/4997817 [00:27<00:04, 150383.39it/s]" + " 86%|████████▌ | 4276259/4997817 [00:27<00:04, 153852.65it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4298490/4997817 [00:27<00:04, 152044.25it/s]" + " 86%|████████▌ | 4291697/4997817 [00:27<00:04, 154008.59it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4314035/4997817 [00:28<00:04, 153050.11it/s]" + " 86%|████████▌ | 4307133/4997817 [00:28<00:04, 154111.76it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4329574/4997817 [00:28<00:04, 153744.85it/s]" + " 86%|████████▋ | 4322547/4997817 [00:28<00:04, 154109.59it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4345105/4997817 [00:28<00:04, 154209.34it/s]" + " 87%|████████▋ | 4337986/4997817 [00:28<00:04, 154192.24it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4360685/4997817 [00:28<00:04, 154683.14it/s]" + " 87%|████████▋ | 4353407/4997817 [00:28<00:04, 153783.33it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4376194/4997817 [00:28<00:04, 154801.46it/s]" + " 87%|████████▋ | 4368869/4997817 [00:28<00:04, 154032.24it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4391740/4997817 [00:28<00:03, 154996.89it/s]" + " 88%|████████▊ | 4384273/4997817 [00:28<00:03, 153880.56it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4407302/4997817 [00:28<00:03, 155180.16it/s]" + " 88%|████████▊ | 4399689/4997817 [00:28<00:03, 153960.54it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4422871/4997817 [00:28<00:03, 155331.88it/s]" + " 88%|████████▊ | 4415086/4997817 [00:28<00:03, 153819.81it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4438421/4997817 [00:28<00:03, 155381.33it/s]" + " 89%|████████▊ | 4430560/4997817 [00:28<00:03, 154092.28it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4453995/4997817 [00:28<00:03, 155487.70it/s]" + " 89%|████████▉ | 4445994/4997817 [00:28<00:03, 154164.58it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4469545/4997817 [00:29<00:03, 155411.76it/s]" + " 89%|████████▉ | 4461435/4997817 [00:29<00:03, 154235.10it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4485088/4997817 [00:29<00:03, 155401.16it/s]" + " 90%|████████▉ | 4476872/4997817 [00:29<00:03, 154271.84it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4500632/4997817 [00:29<00:03, 155411.74it/s]" + " 90%|████████▉ | 4492300/4997817 [00:29<00:03, 154190.22it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4516174/4997817 [00:29<00:03, 155209.29it/s]" + " 90%|█████████ | 4507750/4997817 [00:29<00:03, 154279.94it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4531702/4997817 [00:29<00:03, 155229.08it/s]" + " 91%|█████████ | 4523179/4997817 [00:29<00:03, 153985.77it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4547306/4997817 [00:29<00:02, 155470.53it/s]" + " 91%|█████████ | 4538578/4997817 [00:29<00:02, 153723.53it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4562854/4997817 [00:29<00:02, 155331.40it/s]" + " 91%|█████████ | 4554001/4997817 [00:29<00:02, 153873.29it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4578388/4997817 [00:29<00:02, 147448.98it/s]" + " 91%|█████████▏| 4569399/4997817 [00:29<00:02, 153901.77it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4593898/4997817 [00:29<00:02, 149657.49it/s]" + " 92%|█████████▏| 4584887/4997817 [00:29<00:02, 154192.18it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4609368/4997817 [00:30<00:02, 151129.17it/s]" + " 92%|█████████▏| 4600307/4997817 [00:29<00:02, 154017.58it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4624875/4997817 [00:30<00:02, 152288.33it/s]" + " 92%|█████████▏| 4615743/4997817 [00:30<00:02, 154119.11it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4640314/4997817 [00:30<00:02, 152906.93it/s]" + " 93%|█████████▎| 4631156/4997817 [00:30<00:02, 153933.78it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4655803/4997817 [00:30<00:02, 153494.62it/s]" + " 93%|█████████▎| 4646550/4997817 [00:30<00:02, 153794.33it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4671257/4997817 [00:30<00:02, 153802.55it/s]" + " 93%|█████████▎| 4661930/4997817 [00:30<00:02, 153604.14it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4686669/4997817 [00:30<00:02, 153895.43it/s]" + " 94%|█████████▎| 4677291/4997817 [00:30<00:02, 153189.45it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4702162/4997817 [00:30<00:01, 154201.34it/s]" + " 94%|█████████▍| 4692776/4997817 [00:30<00:01, 153678.87it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4717639/4997817 [00:30<00:01, 154368.96it/s]" + " 94%|█████████▍| 4708145/4997817 [00:30<00:01, 153652.86it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4733081/4997817 [00:30<00:01, 154162.68it/s]" + " 95%|█████████▍| 4723512/4997817 [00:30<00:01, 153657.16it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4748501/4997817 [00:30<00:01, 154009.56it/s]" + " 95%|█████████▍| 4738893/4997817 [00:30<00:01, 153701.57it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4763970/4997817 [00:31<00:01, 154210.31it/s]" + " 95%|█████████▌| 4754264/4997817 [00:30<00:01, 153504.60it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4779393/4997817 [00:31<00:01, 154123.36it/s]" + " 95%|█████████▌| 4769615/4997817 [00:31<00:01, 153247.32it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4794807/4997817 [00:31<00:01, 154105.05it/s]" + " 96%|█████████▌| 4784940/4997817 [00:31<00:01, 153081.02it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4810237/4997817 [00:31<00:01, 154162.41it/s]" + " 96%|█████████▌| 4800270/4997817 [00:31<00:01, 153145.18it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4825680/4997817 [00:31<00:01, 154241.45it/s]" + " 96%|█████████▋| 4815618/4997817 [00:31<00:01, 153244.30it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4841107/4997817 [00:31<00:01, 154246.31it/s]" + " 97%|█████████▋| 4830943/4997817 [00:31<00:01, 152781.07it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4856552/4997817 [00:31<00:00, 154305.23it/s]" + " 97%|█████████▋| 4846264/4997817 [00:31<00:00, 152895.24it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4871983/4997817 [00:31<00:00, 153994.32it/s]" + " 97%|█████████▋| 4861611/4997817 [00:31<00:00, 153064.51it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4887443/4997817 [00:31<00:00, 154172.58it/s]" + " 98%|█████████▊| 4877009/4997817 [00:31<00:00, 153337.36it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4902918/4997817 [00:31<00:00, 154342.78it/s]" + " 98%|█████████▊| 4892368/4997817 [00:31<00:00, 153409.94it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4918444/4997817 [00:32<00:00, 154616.11it/s]" + " 98%|█████████▊| 4907726/4997817 [00:31<00:00, 153457.78it/s]" ] }, { @@ -3083,7 +3083,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4933928/4997817 [00:32<00:00, 154681.62it/s]" + " 99%|█████████▊| 4923182/4997817 [00:32<00:00, 153785.56it/s]" ] }, { @@ -3091,7 +3091,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4949465/4997817 [00:32<00:00, 154885.99it/s]" + " 99%|█████████▉| 4938561/4997817 [00:32<00:00, 153783.97it/s]" ] }, { @@ -3099,7 +3099,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4964994/4997817 [00:32<00:00, 155003.99it/s]" + " 99%|█████████▉| 4953978/4997817 [00:32<00:00, 153897.59it/s]" ] }, { @@ -3107,7 +3107,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4980530/4997817 [00:32<00:00, 155107.15it/s]" + " 99%|█████████▉| 4969368/4997817 [00:32<00:00, 153894.61it/s]" ] }, { @@ -3115,7 +3115,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4996041/4997817 [00:32<00:00, 154803.83it/s]" + "100%|█████████▉| 4984758/4997817 [00:32<00:00, 153605.50it/s]" ] }, { @@ -3123,7 +3123,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 153673.72it/s]" + "100%|██████████| 4997817/4997817 [00:32<00:00, 153435.77it/s]" ] }, { @@ -3362,10 +3362,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:43.886161Z", - "iopub.status.busy": "2024-02-07T22:19:43.885903Z", - "iopub.status.idle": "2024-02-07T22:19:58.548875Z", - "shell.execute_reply": "2024-02-07T22:19:58.548259Z" + "iopub.execute_input": "2024-02-08T00:00:06.385092Z", + "iopub.status.busy": "2024-02-08T00:00:06.384772Z", + "iopub.status.idle": "2024-02-08T00:00:20.964006Z", + "shell.execute_reply": "2024-02-08T00:00:20.963327Z" } }, "outputs": [], @@ -3379,10 +3379,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:19:58.551285Z", - "iopub.status.busy": "2024-02-07T22:19:58.551078Z", - "iopub.status.idle": "2024-02-07T22:20:02.354281Z", - "shell.execute_reply": "2024-02-07T22:20:02.353681Z" + "iopub.execute_input": "2024-02-08T00:00:20.966344Z", + "iopub.status.busy": "2024-02-08T00:00:20.966137Z", + "iopub.status.idle": "2024-02-08T00:00:24.772469Z", + "shell.execute_reply": "2024-02-08T00:00:24.772011Z" } }, "outputs": [ @@ -3451,17 +3451,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:02.356481Z", - "iopub.status.busy": "2024-02-07T22:20:02.356293Z", - "iopub.status.idle": "2024-02-07T22:20:03.761295Z", - "shell.execute_reply": "2024-02-07T22:20:03.760735Z" + "iopub.execute_input": "2024-02-08T00:00:24.774618Z", + "iopub.status.busy": "2024-02-08T00:00:24.774283Z", + "iopub.status.idle": "2024-02-08T00:00:26.116018Z", + "shell.execute_reply": "2024-02-08T00:00:26.115366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abf433ee486a49889c3915e424953a34", + "model_id": "70498ba46dda4093ba603778995e76b6", "version_major": 2, "version_minor": 0 }, @@ -3491,10 +3491,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:03.763597Z", - "iopub.status.busy": "2024-02-07T22:20:03.763413Z", - "iopub.status.idle": "2024-02-07T22:20:04.335755Z", - "shell.execute_reply": "2024-02-07T22:20:04.335196Z" + "iopub.execute_input": "2024-02-08T00:00:26.118532Z", + "iopub.status.busy": "2024-02-08T00:00:26.118335Z", + "iopub.status.idle": "2024-02-08T00:00:26.677134Z", + "shell.execute_reply": "2024-02-08T00:00:26.676500Z" } }, "outputs": [], @@ -3508,10 +3508,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:04.338171Z", - "iopub.status.busy": "2024-02-07T22:20:04.337853Z", - "iopub.status.idle": "2024-02-07T22:20:10.510631Z", - "shell.execute_reply": "2024-02-07T22:20:10.510083Z" + "iopub.execute_input": "2024-02-08T00:00:26.679373Z", + "iopub.status.busy": "2024-02-08T00:00:26.679192Z", + "iopub.status.idle": "2024-02-08T00:00:32.802449Z", + "shell.execute_reply": "2024-02-08T00:00:32.801973Z" } }, "outputs": [ @@ -3584,10 +3584,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:10.513006Z", - "iopub.status.busy": "2024-02-07T22:20:10.512502Z", - "iopub.status.idle": "2024-02-07T22:20:10.569613Z", - "shell.execute_reply": "2024-02-07T22:20:10.568972Z" + "iopub.execute_input": "2024-02-08T00:00:32.804452Z", + "iopub.status.busy": "2024-02-08T00:00:32.804276Z", + "iopub.status.idle": "2024-02-08T00:00:32.860364Z", + "shell.execute_reply": "2024-02-08T00:00:32.859839Z" }, "nbsphinx": "hidden" }, @@ -3631,25 +3631,47 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c5fc60a011f478ebb70ebe314c2c57e": { + "04cf97e28dc54e9e8ad9b5cad5a1f640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e88b7cbd81ec4799be04b90b0f573df2", + "IPY_MODEL_f74b883c262a452dbe93b2d5f75d2310", + "IPY_MODEL_604b254022624d5fa1f0d5ce00717a7a" + ], + "layout": "IPY_MODEL_3fd0a98738d9423197f5aa0943aefb02", + "tabbable": null, + "tooltip": null + } + }, + "103bbc3ca3ac4dcfba34d609ab3401f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "22d942bf7a87444da02c7c20bd4910c8": { + "2043eeeca4644a31b8f49647f6a2c502": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3702,7 +3724,48 @@ "width": null } }, - "2b22ce7632384103bfb532a95a042ce4": { + "2c23cdff36d443ceb4a978630497cab2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "346d07b85b38438389fe133e9a418479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42320f8ec99345a8a1d7b3743692570c", + "placeholder": "​", + "style": "IPY_MODEL_b918e3f2902845c992e2ad99e1bd5c7a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "3a07ea846e4e4da4b9e3d078bf06d668": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3755,53 +3818,60 @@ "width": null } }, - "359a0c7c06574cd79a1df91fca1753fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_95c37d202f1b4e74b31a3b6ea23b57ee", - "placeholder": "​", - "style": "IPY_MODEL_9553a7077d62470e942998ee95b9c71b", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "37e3e49c8c874ce5875e52a48a409eab": { - "model_module": "@jupyter-widgets/controls", + "3e80361896654b9fbb2d3cdda124e6bf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5310f63af03c448bafde34420ad575dc", - "placeholder": "​", - "style": "IPY_MODEL_8129239368ed4dc9b5b1f61d4c690601", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:02<00:00, 22.06it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5310f63af03c448bafde34420ad575dc": { + "3fd0a98738d9423197f5aa0943aefb02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3854,7 +3924,7 @@ "width": null } }, - "5fd6745edeb14f4ab19844d3fe8866d3": { + "42320f8ec99345a8a1d7b3743692570c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3907,92 +3977,88 @@ "width": null } }, - "651dd97d88794c158ac403cb3c7735e9": { + "5059974e71574e4498b7c49142eac459": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1af3509b6d1462eb403501270f043e1", - "placeholder": "​", - "style": "IPY_MODEL_7df2290308494535889d78cc19f6f628", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 443.65it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7366aa89459c4323941d0f375f98ee15": { + "516f602a1da94152b495bff09963ecc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f94881c5ed114484a8718388dbf7f8d4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d1795d50fcc748b790e1deefd918106a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_346d07b85b38438389fe133e9a418479", + "IPY_MODEL_6c8638463fca49d5ac7672e74d4ac28f", + "IPY_MODEL_c0353adc3e9e4c0c90c48a657b747da6" + ], + "layout": "IPY_MODEL_ac8230aa76d6480e86bf2f6603b01482", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "7df2290308494535889d78cc19f6f628": { + "5345a96c9cae4e928a6e1a1c125e7ce8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "8129239368ed4dc9b5b1f61d4c690601": { + "568eaefdf60e4e258e477a3b0cf2674c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e80361896654b9fbb2d3cdda124e6bf", + "placeholder": "​", + "style": "IPY_MODEL_6e4eeba27ffb44cf9cc05b55fddd701f", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "8271ac55c2564cf7b8afdee5bf7bd183": { + "57e56153287f4b06ad3a7b451296be74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4045,7 +4111,30 @@ "width": null } }, - "924f64d2fdbf458ea8d923ef45ab99c7": { + "604b254022624d5fa1f0d5ce00717a7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2043eeeca4644a31b8f49647f6a2c502", + "placeholder": "​", + "style": "IPY_MODEL_2c23cdff36d443ceb4a978630497cab2", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00, 1.46it/s]" + } + }, + "67bcc31fd41b4667ad691485ff610fad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4061,7 +4150,33 @@ "description_width": "" } }, - "9553a7077d62470e942998ee95b9c71b": { + "6c8638463fca49d5ac7672e74d4ac28f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7755b2634e14aafbccebb4f6e64de73", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5345a96c9cae4e928a6e1a1c125e7ce8", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6e4eeba27ffb44cf9cc05b55fddd701f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4079,13 +4194,63 @@ "text_color": null } }, - "95c37d202f1b4e74b31a3b6ea23b57ee": { - "model_module": "@jupyter-widgets/base", + "70498ba46dda4093ba603778995e76b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_568eaefdf60e4e258e477a3b0cf2674c", + "IPY_MODEL_86232ca075be441790e1f542ddfb5a71", + "IPY_MODEL_a9599f5237b44a3db3f3e53cdf188800" + ], + "layout": "IPY_MODEL_b1e04cba90404290baabf2dcb33d0f58", + "tabbable": null, + "tooltip": null + } + }, + "86232ca075be441790e1f542ddfb5a71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e3bb7c90f954f5989152c60322ea693", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67bcc31fd41b4667ad691485ff610fad", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "8e3bb7c90f954f5989152c60322ea693": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", @@ -4132,7 +4297,30 @@ "width": null } }, - "9db709e8796d4663b3ab4076e3a7abe9": { + "a9599f5237b44a3db3f3e53cdf188800": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57e56153287f4b06ad3a7b451296be74", + "placeholder": "​", + "style": "IPY_MODEL_e007fc188f6545bc8c178075c8e5371f", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 22.74it/s]" + } + }, + "ac8230aa76d6480e86bf2f6603b01482": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4185,33 +4373,7 @@ "width": null } }, - "a0a6acb581394b1ea4c7f7aac9f16e56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8271ac55c2564cf7b8afdee5bf7bd183", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_924f64d2fdbf458ea8d923ef45ab99c7", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ab870be927044154a9d2c007c5f1ac74": { + "b1e04cba90404290baabf2dcb33d0f58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4264,31 +4426,25 @@ "width": null } }, - "abf433ee486a49889c3915e424953a34": { + "b918e3f2902845c992e2ad99e1bd5c7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_359a0c7c06574cd79a1df91fca1753fe", - "IPY_MODEL_a0a6acb581394b1ea4c7f7aac9f16e56", - "IPY_MODEL_37e3e49c8c874ce5875e52a48a409eab" - ], - "layout": "IPY_MODEL_5fd6745edeb14f4ab19844d3fe8866d3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aef4eb7fc2264bf7ba91be0aa175ec26": { + "c0353adc3e9e4c0c90c48a657b747da6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4303,15 +4459,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2b22ce7632384103bfb532a95a042ce4", + "layout": "IPY_MODEL_3a07ea846e4e4da4b9e3d078bf06d668", "placeholder": "​", - "style": "IPY_MODEL_0c5fc60a011f478ebb70ebe314c2c57e", + "style": "IPY_MODEL_5059974e71574e4498b7c49142eac459", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:20<00:00, 1.44it/s]" + "value": " 30/30 [00:00<00:00, 442.51it/s]" } }, - "b2fc35848fc74364ac28195032d870ea": { + "c395077a208e4a06a79fbb862d6ddcc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4329,31 +4485,7 @@ "text_color": null } }, - "be506591e8ac431dabddd430053816e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e76f660cdb0f4fb18531762f6b7a3a29", - "IPY_MODEL_7366aa89459c4323941d0f375f98ee15", - "IPY_MODEL_aef4eb7fc2264bf7ba91be0aa175ec26" - ], - "layout": "IPY_MODEL_e95f4c3e917b4f5fbba46be5f7f6f31d", - "tabbable": null, - "tooltip": null - } - }, - "c17ddc75e18d4da39b0de12e5b18a200": { + "e007fc188f6545bc8c178075c8e5371f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4371,111 +4503,7 @@ "text_color": null } }, - "d07ca6a86c524696bf2f66ee1603b173": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1795d50fcc748b790e1deefd918106a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d33a86d6efe94493b4b31f045603d488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f41092a7d59842b9ad606a8f302d363f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d07ca6a86c524696bf2f66ee1603b173", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "d79c9ddd7877446ab1df1603b14668ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22d942bf7a87444da02c7c20bd4910c8", - "placeholder": "​", - "style": "IPY_MODEL_b2fc35848fc74364ac28195032d870ea", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "e76f660cdb0f4fb18531762f6b7a3a29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9db709e8796d4663b3ab4076e3a7abe9", - "placeholder": "​", - "style": "IPY_MODEL_c17ddc75e18d4da39b0de12e5b18a200", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "e95f4c3e917b4f5fbba46be5f7f6f31d": { + "e615a970c954413db367b2d9fef60135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4528,7 +4556,7 @@ "width": null } }, - "f1af3509b6d1462eb403501270f043e1": { + "e7755b2634e14aafbccebb4f6e64de73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4581,84 +4609,30 @@ "width": null } }, - "f41092a7d59842b9ad606a8f302d363f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f8e42fb70e364942b5126777ae7364b8": { + "e88b7cbd81ec4799be04b90b0f573df2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d79c9ddd7877446ab1df1603b14668ea", - "IPY_MODEL_d33a86d6efe94493b4b31f045603d488", - "IPY_MODEL_651dd97d88794c158ac403cb3c7735e9" - ], - "layout": "IPY_MODEL_ab870be927044154a9d2c007c5f1ac74", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed35e6eff2d34dc99d89e28b6b2db842", + "placeholder": "​", + "style": "IPY_MODEL_c395077a208e4a06a79fbb862d6ddcc9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "f94881c5ed114484a8718388dbf7f8d4": { + "ed35e6eff2d34dc99d89e28b6b2db842": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4710,6 +4684,32 @@ "visibility": null, "width": null } + }, + "f74b883c262a452dbe93b2d5f75d2310": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e615a970c954413db367b2d9fef60135", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_103bbc3ca3ac4dcfba34d609ab3401f1", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } } }, "version_major": 2, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 12339b227..76a108569 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:14.552650Z", - "iopub.status.busy": "2024-02-07T22:20:14.552302Z", - "iopub.status.idle": "2024-02-07T22:20:15.660995Z", - "shell.execute_reply": "2024-02-07T22:20:15.660436Z" + "iopub.execute_input": "2024-02-08T00:00:36.774281Z", + "iopub.status.busy": "2024-02-08T00:00:36.773817Z", + "iopub.status.idle": "2024-02-08T00:00:37.788765Z", + "shell.execute_reply": "2024-02-08T00:00:37.788231Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.663590Z", - "iopub.status.busy": "2024-02-07T22:20:15.663114Z", - "iopub.status.idle": "2024-02-07T22:20:15.681900Z", - "shell.execute_reply": "2024-02-07T22:20:15.681417Z" + "iopub.execute_input": "2024-02-08T00:00:37.791351Z", + "iopub.status.busy": "2024-02-08T00:00:37.790846Z", + "iopub.status.idle": "2024-02-08T00:00:37.808738Z", + "shell.execute_reply": "2024-02-08T00:00:37.808220Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.684620Z", - "iopub.status.busy": "2024-02-07T22:20:15.684012Z", - "iopub.status.idle": "2024-02-07T22:20:15.726274Z", - "shell.execute_reply": "2024-02-07T22:20:15.725730Z" + "iopub.execute_input": "2024-02-08T00:00:37.811101Z", + "iopub.status.busy": "2024-02-08T00:00:37.810591Z", + "iopub.status.idle": "2024-02-08T00:00:37.832882Z", + "shell.execute_reply": "2024-02-08T00:00:37.832424Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.728677Z", - "iopub.status.busy": "2024-02-07T22:20:15.728247Z", - "iopub.status.idle": "2024-02-07T22:20:15.731824Z", - "shell.execute_reply": "2024-02-07T22:20:15.731348Z" + "iopub.execute_input": "2024-02-08T00:00:37.834758Z", + "iopub.status.busy": "2024-02-08T00:00:37.834499Z", + "iopub.status.idle": "2024-02-08T00:00:37.838471Z", + "shell.execute_reply": "2024-02-08T00:00:37.838045Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.733742Z", - "iopub.status.busy": "2024-02-07T22:20:15.733561Z", - "iopub.status.idle": "2024-02-07T22:20:15.742811Z", - "shell.execute_reply": "2024-02-07T22:20:15.742380Z" + "iopub.execute_input": "2024-02-08T00:00:37.840544Z", + "iopub.status.busy": "2024-02-08T00:00:37.840142Z", + "iopub.status.idle": "2024-02-08T00:00:37.848401Z", + "shell.execute_reply": "2024-02-08T00:00:37.847982Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.744804Z", - "iopub.status.busy": "2024-02-07T22:20:15.744628Z", - "iopub.status.idle": "2024-02-07T22:20:15.747139Z", - "shell.execute_reply": "2024-02-07T22:20:15.746697Z" + "iopub.execute_input": "2024-02-08T00:00:37.850450Z", + "iopub.status.busy": "2024-02-08T00:00:37.850150Z", + "iopub.status.idle": "2024-02-08T00:00:37.852760Z", + "shell.execute_reply": "2024-02-08T00:00:37.852223Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:15.748959Z", - "iopub.status.busy": "2024-02-07T22:20:15.748786Z", - "iopub.status.idle": "2024-02-07T22:20:16.268470Z", - "shell.execute_reply": "2024-02-07T22:20:16.267865Z" + "iopub.execute_input": "2024-02-08T00:00:37.854671Z", + "iopub.status.busy": "2024-02-08T00:00:37.854370Z", + "iopub.status.idle": "2024-02-08T00:00:38.366943Z", + "shell.execute_reply": "2024-02-08T00:00:38.366411Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:16.270985Z", - "iopub.status.busy": "2024-02-07T22:20:16.270796Z", - "iopub.status.idle": "2024-02-07T22:20:17.950965Z", - "shell.execute_reply": "2024-02-07T22:20:17.950223Z" + "iopub.execute_input": "2024-02-08T00:00:38.369355Z", + "iopub.status.busy": "2024-02-08T00:00:38.369010Z", + "iopub.status.idle": "2024-02-08T00:00:39.953418Z", + "shell.execute_reply": "2024-02-08T00:00:39.952805Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.953912Z", - "iopub.status.busy": "2024-02-07T22:20:17.953172Z", - "iopub.status.idle": "2024-02-07T22:20:17.963171Z", - "shell.execute_reply": "2024-02-07T22:20:17.962746Z" + "iopub.execute_input": "2024-02-08T00:00:39.956230Z", + "iopub.status.busy": "2024-02-08T00:00:39.955488Z", + "iopub.status.idle": "2024-02-08T00:00:39.965485Z", + "shell.execute_reply": "2024-02-08T00:00:39.965052Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.965362Z", - "iopub.status.busy": "2024-02-07T22:20:17.965053Z", - "iopub.status.idle": "2024-02-07T22:20:17.968689Z", - "shell.execute_reply": "2024-02-07T22:20:17.968259Z" + "iopub.execute_input": "2024-02-08T00:00:39.967556Z", + "iopub.status.busy": "2024-02-08T00:00:39.967205Z", + "iopub.status.idle": "2024-02-08T00:00:39.970941Z", + "shell.execute_reply": "2024-02-08T00:00:39.970507Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.970666Z", - "iopub.status.busy": "2024-02-07T22:20:17.970397Z", - "iopub.status.idle": "2024-02-07T22:20:17.977942Z", - "shell.execute_reply": "2024-02-07T22:20:17.977363Z" + "iopub.execute_input": "2024-02-08T00:00:39.972919Z", + "iopub.status.busy": "2024-02-08T00:00:39.972669Z", + "iopub.status.idle": "2024-02-08T00:00:39.979374Z", + "shell.execute_reply": "2024-02-08T00:00:39.978962Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:17.979985Z", - "iopub.status.busy": "2024-02-07T22:20:17.979656Z", - "iopub.status.idle": "2024-02-07T22:20:18.091893Z", - "shell.execute_reply": "2024-02-07T22:20:18.091396Z" + "iopub.execute_input": "2024-02-08T00:00:39.981265Z", + "iopub.status.busy": "2024-02-08T00:00:39.980978Z", + "iopub.status.idle": "2024-02-08T00:00:40.092266Z", + "shell.execute_reply": "2024-02-08T00:00:40.091698Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:18.094062Z", - "iopub.status.busy": "2024-02-07T22:20:18.093720Z", - "iopub.status.idle": "2024-02-07T22:20:18.096596Z", - "shell.execute_reply": "2024-02-07T22:20:18.096144Z" + "iopub.execute_input": "2024-02-08T00:00:40.094466Z", + "iopub.status.busy": "2024-02-08T00:00:40.094078Z", + "iopub.status.idle": "2024-02-08T00:00:40.096691Z", + "shell.execute_reply": "2024-02-08T00:00:40.096261Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:18.098529Z", - "iopub.status.busy": "2024-02-07T22:20:18.098202Z", - "iopub.status.idle": "2024-02-07T22:20:20.077737Z", - "shell.execute_reply": "2024-02-07T22:20:20.077090Z" + "iopub.execute_input": "2024-02-08T00:00:40.098593Z", + "iopub.status.busy": "2024-02-08T00:00:40.098420Z", + "iopub.status.idle": "2024-02-08T00:00:42.020458Z", + "shell.execute_reply": "2024-02-08T00:00:42.019691Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:20.080833Z", - "iopub.status.busy": "2024-02-07T22:20:20.080047Z", - "iopub.status.idle": "2024-02-07T22:20:20.091704Z", - "shell.execute_reply": "2024-02-07T22:20:20.091118Z" + "iopub.execute_input": "2024-02-08T00:00:42.023533Z", + "iopub.status.busy": "2024-02-08T00:00:42.022782Z", + "iopub.status.idle": "2024-02-08T00:00:42.033585Z", + "shell.execute_reply": "2024-02-08T00:00:42.033121Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:20.093925Z", - "iopub.status.busy": "2024-02-07T22:20:20.093490Z", - "iopub.status.idle": "2024-02-07T22:20:20.122307Z", - "shell.execute_reply": "2024-02-07T22:20:20.121770Z" + "iopub.execute_input": "2024-02-08T00:00:42.035536Z", + "iopub.status.busy": "2024-02-08T00:00:42.035222Z", + "iopub.status.idle": "2024-02-08T00:00:42.066169Z", + "shell.execute_reply": "2024-02-08T00:00:42.065646Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 470a89510..fcedc0e44 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -732,7 +732,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed', 'getting_spare_card'}
+Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard'}
 

Let’s print the first example in the train set.

diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 14b0188fb..a33793a5f 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:23.034108Z", - "iopub.status.busy": "2024-02-07T22:20:23.033949Z", - "iopub.status.idle": "2024-02-07T22:20:25.644096Z", - "shell.execute_reply": "2024-02-07T22:20:25.643492Z" + "iopub.execute_input": "2024-02-08T00:00:44.559964Z", + "iopub.status.busy": "2024-02-08T00:00:44.559768Z", + "iopub.status.idle": "2024-02-08T00:00:47.083313Z", + "shell.execute_reply": "2024-02-08T00:00:47.082784Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.646761Z", - "iopub.status.busy": "2024-02-07T22:20:25.646232Z", - "iopub.status.idle": "2024-02-07T22:20:25.649662Z", - "shell.execute_reply": "2024-02-07T22:20:25.649125Z" + "iopub.execute_input": "2024-02-08T00:00:47.085963Z", + "iopub.status.busy": "2024-02-08T00:00:47.085456Z", + "iopub.status.idle": "2024-02-08T00:00:47.088646Z", + "shell.execute_reply": "2024-02-08T00:00:47.088220Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.651772Z", - "iopub.status.busy": "2024-02-07T22:20:25.651399Z", - "iopub.status.idle": "2024-02-07T22:20:25.654323Z", - "shell.execute_reply": "2024-02-07T22:20:25.653903Z" + "iopub.execute_input": "2024-02-08T00:00:47.090601Z", + "iopub.status.busy": "2024-02-08T00:00:47.090279Z", + "iopub.status.idle": "2024-02-08T00:00:47.093338Z", + "shell.execute_reply": "2024-02-08T00:00:47.092797Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.656427Z", - "iopub.status.busy": "2024-02-07T22:20:25.656112Z", - "iopub.status.idle": "2024-02-07T22:20:25.696715Z", - "shell.execute_reply": "2024-02-07T22:20:25.696251Z" + "iopub.execute_input": "2024-02-08T00:00:47.095320Z", + "iopub.status.busy": "2024-02-08T00:00:47.095018Z", + "iopub.status.idle": "2024-02-08T00:00:47.117162Z", + "shell.execute_reply": "2024-02-08T00:00:47.116660Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.698892Z", - "iopub.status.busy": "2024-02-07T22:20:25.698436Z", - "iopub.status.idle": "2024-02-07T22:20:25.701940Z", - "shell.execute_reply": "2024-02-07T22:20:25.701520Z" + "iopub.execute_input": "2024-02-08T00:00:47.119103Z", + "iopub.status.busy": "2024-02-08T00:00:47.118781Z", + "iopub.status.idle": "2024-02-08T00:00:47.122228Z", + "shell.execute_reply": "2024-02-08T00:00:47.121782Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.703894Z", - "iopub.status.busy": "2024-02-07T22:20:25.703566Z", - "iopub.status.idle": "2024-02-07T22:20:25.706909Z", - "shell.execute_reply": "2024-02-07T22:20:25.706467Z" + "iopub.execute_input": "2024-02-08T00:00:47.124229Z", + "iopub.status.busy": "2024-02-08T00:00:47.123895Z", + "iopub.status.idle": "2024-02-08T00:00:47.127280Z", + "shell.execute_reply": "2024-02-08T00:00:47.126831Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed', 'getting_spare_card'}\n" + "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'visa_or_mastercard'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.708983Z", - "iopub.status.busy": "2024-02-07T22:20:25.708666Z", - "iopub.status.idle": "2024-02-07T22:20:25.711641Z", - "shell.execute_reply": "2024-02-07T22:20:25.711082Z" + "iopub.execute_input": "2024-02-08T00:00:47.129237Z", + "iopub.status.busy": "2024-02-08T00:00:47.128922Z", + "iopub.status.idle": "2024-02-08T00:00:47.132004Z", + "shell.execute_reply": "2024-02-08T00:00:47.131534Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.713626Z", - "iopub.status.busy": "2024-02-07T22:20:25.713301Z", - "iopub.status.idle": "2024-02-07T22:20:25.716436Z", - "shell.execute_reply": "2024-02-07T22:20:25.716011Z" + "iopub.execute_input": "2024-02-08T00:00:47.133964Z", + "iopub.status.busy": "2024-02-08T00:00:47.133652Z", + "iopub.status.idle": "2024-02-08T00:00:47.136698Z", + "shell.execute_reply": "2024-02-08T00:00:47.136289Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:25.718429Z", - "iopub.status.busy": "2024-02-07T22:20:25.718116Z", - "iopub.status.idle": "2024-02-07T22:20:29.429090Z", - "shell.execute_reply": "2024-02-07T22:20:29.428554Z" + "iopub.execute_input": "2024-02-08T00:00:47.138634Z", + "iopub.status.busy": "2024-02-08T00:00:47.138333Z", + "iopub.status.idle": "2024-02-08T00:00:50.729967Z", + "shell.execute_reply": "2024-02-08T00:00:50.729315Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.431649Z", - "iopub.status.busy": "2024-02-07T22:20:29.431416Z", - "iopub.status.idle": "2024-02-07T22:20:29.434206Z", - "shell.execute_reply": "2024-02-07T22:20:29.433681Z" + "iopub.execute_input": "2024-02-08T00:00:50.732784Z", + "iopub.status.busy": "2024-02-08T00:00:50.732432Z", + "iopub.status.idle": "2024-02-08T00:00:50.735259Z", + "shell.execute_reply": "2024-02-08T00:00:50.734700Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.436191Z", - "iopub.status.busy": "2024-02-07T22:20:29.435874Z", - "iopub.status.idle": "2024-02-07T22:20:29.438880Z", - "shell.execute_reply": "2024-02-07T22:20:29.438478Z" + "iopub.execute_input": "2024-02-08T00:00:50.737214Z", + "iopub.status.busy": "2024-02-08T00:00:50.736909Z", + "iopub.status.idle": "2024-02-08T00:00:50.739581Z", + "shell.execute_reply": "2024-02-08T00:00:50.739056Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:29.440688Z", - "iopub.status.busy": "2024-02-07T22:20:29.440515Z", - "iopub.status.idle": "2024-02-07T22:20:31.731024Z", - "shell.execute_reply": "2024-02-07T22:20:31.730409Z" + "iopub.execute_input": "2024-02-08T00:00:50.741554Z", + "iopub.status.busy": "2024-02-08T00:00:50.741265Z", + "iopub.status.idle": "2024-02-08T00:00:52.955848Z", + "shell.execute_reply": "2024-02-08T00:00:52.955096Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.733921Z", - "iopub.status.busy": "2024-02-07T22:20:31.733231Z", - "iopub.status.idle": "2024-02-07T22:20:31.740520Z", - "shell.execute_reply": "2024-02-07T22:20:31.740077Z" + "iopub.execute_input": "2024-02-08T00:00:52.958573Z", + "iopub.status.busy": "2024-02-08T00:00:52.958020Z", + "iopub.status.idle": "2024-02-08T00:00:52.965371Z", + "shell.execute_reply": "2024-02-08T00:00:52.964862Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.742564Z", - "iopub.status.busy": "2024-02-07T22:20:31.742256Z", - "iopub.status.idle": "2024-02-07T22:20:31.745803Z", - "shell.execute_reply": "2024-02-07T22:20:31.745375Z" + "iopub.execute_input": "2024-02-08T00:00:52.967398Z", + "iopub.status.busy": "2024-02-08T00:00:52.967027Z", + "iopub.status.idle": "2024-02-08T00:00:52.970968Z", + "shell.execute_reply": "2024-02-08T00:00:52.970539Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.747786Z", - "iopub.status.busy": "2024-02-07T22:20:31.747469Z", - "iopub.status.idle": "2024-02-07T22:20:31.750335Z", - "shell.execute_reply": "2024-02-07T22:20:31.749834Z" + "iopub.execute_input": "2024-02-08T00:00:52.972799Z", + "iopub.status.busy": "2024-02-08T00:00:52.972623Z", + "iopub.status.idle": "2024-02-08T00:00:52.975944Z", + "shell.execute_reply": "2024-02-08T00:00:52.975459Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.752406Z", - "iopub.status.busy": "2024-02-07T22:20:31.752088Z", - "iopub.status.idle": "2024-02-07T22:20:31.754796Z", - "shell.execute_reply": "2024-02-07T22:20:31.754356Z" + "iopub.execute_input": "2024-02-08T00:00:52.978048Z", + "iopub.status.busy": "2024-02-08T00:00:52.977628Z", + "iopub.status.idle": "2024-02-08T00:00:52.980927Z", + "shell.execute_reply": "2024-02-08T00:00:52.980389Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.756820Z", - "iopub.status.busy": "2024-02-07T22:20:31.756510Z", - "iopub.status.idle": "2024-02-07T22:20:31.763078Z", - "shell.execute_reply": "2024-02-07T22:20:31.762532Z" + "iopub.execute_input": "2024-02-08T00:00:52.983081Z", + "iopub.status.busy": "2024-02-08T00:00:52.982752Z", + "iopub.status.idle": "2024-02-08T00:00:52.989594Z", + "shell.execute_reply": "2024-02-08T00:00:52.989175Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.765349Z", - "iopub.status.busy": "2024-02-07T22:20:31.764941Z", - "iopub.status.idle": "2024-02-07T22:20:31.990470Z", - "shell.execute_reply": "2024-02-07T22:20:31.989930Z" + "iopub.execute_input": "2024-02-08T00:00:52.991604Z", + "iopub.status.busy": "2024-02-08T00:00:52.991288Z", + "iopub.status.idle": "2024-02-08T00:00:53.215514Z", + "shell.execute_reply": "2024-02-08T00:00:53.214999Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:31.993806Z", - "iopub.status.busy": "2024-02-07T22:20:31.992872Z", - "iopub.status.idle": "2024-02-07T22:20:32.169989Z", - "shell.execute_reply": "2024-02-07T22:20:32.169440Z" + "iopub.execute_input": "2024-02-08T00:00:53.217866Z", + "iopub.status.busy": "2024-02-08T00:00:53.217475Z", + "iopub.status.idle": "2024-02-08T00:00:53.396736Z", + "shell.execute_reply": "2024-02-08T00:00:53.396217Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-07T22:20:32.173948Z", - "iopub.status.busy": "2024-02-07T22:20:32.172981Z", - "iopub.status.idle": "2024-02-07T22:20:32.177939Z", - "shell.execute_reply": "2024-02-07T22:20:32.177455Z" + "iopub.execute_input": "2024-02-08T00:00:53.399160Z", + "iopub.status.busy": "2024-02-08T00:00:53.398767Z", + "iopub.status.idle": "2024-02-08T00:00:53.402668Z", + "shell.execute_reply": "2024-02-08T00:00:53.402187Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 3bda41f5c..6cb14cff1 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -625,7 +625,7 @@

1. Install required dependencies and download data
---2024-02-07 22:20:35--  https://data.deepai.org/conll2003.zip
+--2024-02-08 00:00:56--  https://data.deepai.org/conll2003.zip
 Resolving data.deepai.org (data.deepai.org)...
 
@@ -634,8 +634,8 @@

1. Install required dependencies and download data
-185.93.1.249, 2400:52e0:1a00::845:1
-Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... connected.
+169.150.236.100, 2400:52e0:1a00::1069:1
+Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.
 
-

conll2003.zip 100%[===================&gt;] 959.94K 5.80MB/s in 0.2s

+

conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.1s

-

2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists </pre>

-

conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s

+

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

-

2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

-

conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s

+

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

-

2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists

- -
-
-
-
-
-
   inflating: data/valid.txt
 
@@ -718,9 +710,9 @@

1. Install required dependencies and download data
---2024-02-07 22:20:36--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz
-Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.33, 52.216.44.121, 3.5.9.100, ...
-Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.33|:443... connected.
+--2024-02-08 00:00:56--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz
+Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.65, 52.216.34.89, 52.217.194.57, ...
+Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.65|:443... connected.
 HTTP request sent, awaiting response...
 
@@ -744,49 +736,32 @@

1. Install required dependencies and download data

pred_probs.npz 0%[ ] 0 –.-KB/s

-
-
-
-
-
-
-
-
pred_probs.npz 32%[=====&gt; ] 5.32M 26.6MB/s
-

</pre>

-
-
-
pred_probs.npz 32%[=====> ] 5.32M 26.6MB/s
-

end{sphinxVerbatim}

-
-
-
-

pred_probs.npz 32%[=====> ] 5.32M 26.6MB/s

-

pred_probs.npz 96%[==================&gt; ] 15.71M 39.0MB/s -pred_probs.npz 100%[===================&gt;] 16.26M 40.1MB/s in 0.4s

+

pred_probs.npz 96%[==================&gt; ] 15.71M 73.8MB/s +pred_probs.npz 100%[===================&gt;] 16.26M 75.2MB/s in 0.2s

-

2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

</pre>

-

pred_probs.npz 96%[==================> ] 15.71M 39.0MB/s -pred_probs.npz 100%[===================>] 16.26M 40.1MB/s in 0.4s

+

pred_probs.npz 96%[==================> ] 15.71M 73.8MB/s +pred_probs.npz 100%[===================>] 16.26M 75.2MB/s in 0.2s

-

2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

end{sphinxVerbatim}

-

pred_probs.npz 96%[==================> ] 15.71M 39.0MB/s -pred_probs.npz 100%[===================>] 16.26M 40.1MB/s in 0.4s

+

pred_probs.npz 96%[==================> ] 15.71M 73.8MB/s +pred_probs.npz 100%[===================>] 16.26M 75.2MB/s in 0.2s

-

2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

[3]:
diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
index 408427f4d..552855170 100644
--- a/master/tutorials/token_classification.ipynb
+++ b/master/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
    "id": "ae8a08e0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:35.313990Z",
-     "iopub.status.busy": "2024-02-07T22:20:35.313816Z",
-     "iopub.status.idle": "2024-02-07T22:20:36.922275Z",
-     "shell.execute_reply": "2024-02-07T22:20:36.921658Z"
+     "iopub.execute_input": "2024-02-08T00:00:56.196767Z",
+     "iopub.status.busy": "2024-02-08T00:00:56.196596Z",
+     "iopub.status.idle": "2024-02-08T00:00:57.333399Z",
+     "shell.execute_reply": "2024-02-08T00:00:57.332829Z"
     }
    },
    "outputs": [
@@ -86,7 +86,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-02-07 22:20:35--  https://data.deepai.org/conll2003.zip\r\n",
+      "--2024-02-08 00:00:56--  https://data.deepai.org/conll2003.zip\r\n",
       "Resolving data.deepai.org (data.deepai.org)... "
      ]
     },
@@ -94,8 +94,8 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "185.93.1.249, 2400:52e0:1a00::845:1\r\n",
-      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... connected.\r\n"
+      "169.150.236.100, 2400:52e0:1a00::1069:1\r\n",
+      "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n"
      ]
     },
     {
@@ -122,9 +122,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "conll2003.zip       100%[===================>] 959.94K  5.80MB/s    in 0.2s    \r\n",
+      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.1s    \r\n",
       "\r\n",
-      "2024-02-07 22:20:35 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+      "2024-02-08 00:00:56 (6.83 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
       "\r\n",
       "mkdir: cannot create directory ‘data’: File exists\r\n"
      ]
@@ -136,14 +136,7 @@
       "Archive:  conll2003.zip\r\n",
       "  inflating: data/metadata           \r\n",
       "  inflating: data/test.txt           \r\n",
-      "  inflating: data/train.txt          "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r\n",
+      "  inflating: data/train.txt          \r\n",
       "  inflating: data/valid.txt          \r\n"
      ]
     },
@@ -151,9 +144,9 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-02-07 22:20:36--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
-      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.33, 52.216.44.121, 3.5.9.100, ...\r\n",
-      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.33|:443... connected.\r\n",
+      "--2024-02-08 00:00:56--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.65, 52.216.34.89, 52.217.194.57, ...\r\n",
+      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.65|:443... connected.\r\n",
       "HTTP request sent, awaiting response... "
      ]
     },
@@ -174,18 +167,10 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz       32%[=====>              ]   5.32M  26.6MB/s               "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "pred_probs.npz       96%[==================> ]  15.71M  39.0MB/s               \r",
-      "pred_probs.npz      100%[===================>]  16.26M  40.1MB/s    in 0.4s    \r\n",
+      "pred_probs.npz       96%[==================> ]  15.71M  73.8MB/s               \r",
+      "pred_probs.npz      100%[===================>]  16.26M  75.2MB/s    in 0.2s    \r\n",
       "\r\n",
-      "2024-02-07 22:20:36 (40.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+      "2024-02-08 00:00:57 (75.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
       "\r\n"
      ]
     }
@@ -202,10 +187,10 @@
    "id": "439b0305",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:36.924800Z",
-     "iopub.status.busy": "2024-02-07T22:20:36.924609Z",
-     "iopub.status.idle": "2024-02-07T22:20:37.975651Z",
-     "shell.execute_reply": "2024-02-07T22:20:37.975124Z"
+     "iopub.execute_input": "2024-02-08T00:00:57.335654Z",
+     "iopub.status.busy": "2024-02-08T00:00:57.335468Z",
+     "iopub.status.idle": "2024-02-08T00:00:58.349948Z",
+     "shell.execute_reply": "2024-02-08T00:00:58.349412Z"
     },
     "nbsphinx": "hidden"
    },
@@ -216,7 +201,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@077f5a936954c203fc8740fefd9eeda606f26f5d\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -242,10 +227,10 @@
    "id": "a1349304",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:37.978094Z",
-     "iopub.status.busy": "2024-02-07T22:20:37.977720Z",
-     "iopub.status.idle": "2024-02-07T22:20:37.981475Z",
-     "shell.execute_reply": "2024-02-07T22:20:37.981015Z"
+     "iopub.execute_input": "2024-02-08T00:00:58.352415Z",
+     "iopub.status.busy": "2024-02-08T00:00:58.352000Z",
+     "iopub.status.idle": "2024-02-08T00:00:58.355349Z",
+     "shell.execute_reply": "2024-02-08T00:00:58.354896Z"
     }
    },
    "outputs": [],
@@ -295,10 +280,10 @@
    "id": "ab9d59a0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:37.983434Z",
-     "iopub.status.busy": "2024-02-07T22:20:37.983151Z",
-     "iopub.status.idle": "2024-02-07T22:20:37.986159Z",
-     "shell.execute_reply": "2024-02-07T22:20:37.985712Z"
+     "iopub.execute_input": "2024-02-08T00:00:58.357557Z",
+     "iopub.status.busy": "2024-02-08T00:00:58.357166Z",
+     "iopub.status.idle": "2024-02-08T00:00:58.360004Z",
+     "shell.execute_reply": "2024-02-08T00:00:58.359557Z"
     },
     "nbsphinx": "hidden"
    },
@@ -316,10 +301,10 @@
    "id": "519cb80c",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:37.988170Z",
-     "iopub.status.busy": "2024-02-07T22:20:37.987840Z",
-     "iopub.status.idle": "2024-02-07T22:20:47.095100Z",
-     "shell.execute_reply": "2024-02-07T22:20:47.094496Z"
+     "iopub.execute_input": "2024-02-08T00:00:58.362059Z",
+     "iopub.status.busy": "2024-02-08T00:00:58.361747Z",
+     "iopub.status.idle": "2024-02-08T00:01:07.375886Z",
+     "shell.execute_reply": "2024-02-08T00:01:07.375279Z"
     }
    },
    "outputs": [],
@@ -393,10 +378,10 @@
    "id": "202f1526",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:47.097690Z",
-     "iopub.status.busy": "2024-02-07T22:20:47.097345Z",
-     "iopub.status.idle": "2024-02-07T22:20:47.103018Z",
-     "shell.execute_reply": "2024-02-07T22:20:47.102553Z"
+     "iopub.execute_input": "2024-02-08T00:01:07.378420Z",
+     "iopub.status.busy": "2024-02-08T00:01:07.378100Z",
+     "iopub.status.idle": "2024-02-08T00:01:07.384174Z",
+     "shell.execute_reply": "2024-02-08T00:01:07.383731Z"
     },
     "nbsphinx": "hidden"
    },
@@ -436,10 +421,10 @@
    "id": "a4381f03",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:47.104811Z",
-     "iopub.status.busy": "2024-02-07T22:20:47.104636Z",
-     "iopub.status.idle": "2024-02-07T22:20:47.452942Z",
-     "shell.execute_reply": "2024-02-07T22:20:47.452409Z"
+     "iopub.execute_input": "2024-02-08T00:01:07.386092Z",
+     "iopub.status.busy": "2024-02-08T00:01:07.385770Z",
+     "iopub.status.idle": "2024-02-08T00:01:07.712835Z",
+     "shell.execute_reply": "2024-02-08T00:01:07.712280Z"
     }
    },
    "outputs": [],
@@ -476,10 +461,10 @@
    "id": "7842e4a3",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:47.455228Z",
-     "iopub.status.busy": "2024-02-07T22:20:47.455038Z",
-     "iopub.status.idle": "2024-02-07T22:20:47.459456Z",
-     "shell.execute_reply": "2024-02-07T22:20:47.458974Z"
+     "iopub.execute_input": "2024-02-08T00:01:07.715171Z",
+     "iopub.status.busy": "2024-02-08T00:01:07.714983Z",
+     "iopub.status.idle": "2024-02-08T00:01:07.719127Z",
+     "shell.execute_reply": "2024-02-08T00:01:07.718612Z"
     }
    },
    "outputs": [
@@ -551,10 +536,10 @@
    "id": "2c2ad9ad",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:47.461295Z",
-     "iopub.status.busy": "2024-02-07T22:20:47.461140Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.817383Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.816736Z"
+     "iopub.execute_input": "2024-02-08T00:01:07.721205Z",
+     "iopub.status.busy": "2024-02-08T00:01:07.720894Z",
+     "iopub.status.idle": "2024-02-08T00:01:09.991203Z",
+     "shell.execute_reply": "2024-02-08T00:01:09.990397Z"
     }
    },
    "outputs": [],
@@ -576,10 +561,10 @@
    "id": "95dc7268",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.820516Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.819779Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.823692Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.823151Z"
+     "iopub.execute_input": "2024-02-08T00:01:09.994297Z",
+     "iopub.status.busy": "2024-02-08T00:01:09.993597Z",
+     "iopub.status.idle": "2024-02-08T00:01:09.997604Z",
+     "shell.execute_reply": "2024-02-08T00:01:09.997062Z"
     }
    },
    "outputs": [
@@ -615,10 +600,10 @@
    "id": "e13de188",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.825615Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.825439Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.830967Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.830515Z"
+     "iopub.execute_input": "2024-02-08T00:01:09.999626Z",
+     "iopub.status.busy": "2024-02-08T00:01:09.999251Z",
+     "iopub.status.idle": "2024-02-08T00:01:10.004932Z",
+     "shell.execute_reply": "2024-02-08T00:01:10.004388Z"
     }
    },
    "outputs": [
@@ -796,10 +781,10 @@
    "id": "e4a006bd",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.833007Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.832708Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.858073Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.857632Z"
+     "iopub.execute_input": "2024-02-08T00:01:10.007156Z",
+     "iopub.status.busy": "2024-02-08T00:01:10.006650Z",
+     "iopub.status.idle": "2024-02-08T00:01:10.031991Z",
+     "shell.execute_reply": "2024-02-08T00:01:10.031546Z"
     }
    },
    "outputs": [
@@ -901,10 +886,10 @@
    "id": "c8f4e163",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.859992Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.859817Z",
-     "iopub.status.idle": "2024-02-07T22:20:49.863878Z",
-     "shell.execute_reply": "2024-02-07T22:20:49.863329Z"
+     "iopub.execute_input": "2024-02-08T00:01:10.034012Z",
+     "iopub.status.busy": "2024-02-08T00:01:10.033696Z",
+     "iopub.status.idle": "2024-02-08T00:01:10.037460Z",
+     "shell.execute_reply": "2024-02-08T00:01:10.036924Z"
     }
    },
    "outputs": [
@@ -978,10 +963,10 @@
    "id": "db0b5179",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:49.865694Z",
-     "iopub.status.busy": "2024-02-07T22:20:49.865524Z",
-     "iopub.status.idle": "2024-02-07T22:20:51.295184Z",
-     "shell.execute_reply": "2024-02-07T22:20:51.294642Z"
+     "iopub.execute_input": "2024-02-08T00:01:10.039392Z",
+     "iopub.status.busy": "2024-02-08T00:01:10.039074Z",
+     "iopub.status.idle": "2024-02-08T00:01:11.408481Z",
+     "shell.execute_reply": "2024-02-08T00:01:11.407944Z"
     }
    },
    "outputs": [
@@ -1153,10 +1138,10 @@
    "id": "a18795eb",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-07T22:20:51.297251Z",
-     "iopub.status.busy": "2024-02-07T22:20:51.297061Z",
-     "iopub.status.idle": "2024-02-07T22:20:51.301790Z",
-     "shell.execute_reply": "2024-02-07T22:20:51.301246Z"
+     "iopub.execute_input": "2024-02-08T00:01:11.410630Z",
+     "iopub.status.busy": "2024-02-08T00:01:11.410275Z",
+     "iopub.status.idle": "2024-02-08T00:01:11.414236Z",
+     "shell.execute_reply": "2024-02-08T00:01:11.413795Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/versioning.js b/versioning.js
index 6c13a6f65..3869290cf 100644
--- a/versioning.js
+++ b/versioning.js
@@ -1,4 +1,4 @@
 var Version = {
   version_number: "v2.5.0",
-  commit_hash: "387ffa3504f24ddd5ac58ebdfa7d39c6ccb44623",
+  commit_hash: "077f5a936954c203fc8740fefd9eeda606f26f5d",
 };
\ No newline at end of file