diff --git a/master/.buildinfo b/master/.buildinfo index 5ec09cd36..c555d533c 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 155c090c873a4390ca78ea0777ee4cea +config: eb4b4773a1c09a86aed90087a37766a3 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 0f0cffbcf..e641fad1b 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index cd015b060..081830e2c 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 39d2198c4..fd922f9ac 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index e0626da95..4ec510320 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 3dfc90019..14c7e4923 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 0dc9fb284..3e8b3319f 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 3b9eb2fa5..285f8f565 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index e51be126b..db3c68f50 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index cdde6ec0e..f6f73dec9 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 7d5fe1ef7..82a503aec 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 80f63edfe..29230234a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index faec568d6..ef0c80ab3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index bbdbefd02..7bdbef1f7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 88558a3af..656422561 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index ee2538ce3..8fe694556 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 40beae753..11f8f9c29 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index b32287fe6..f66ff2024 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 4990cc00a..6d6e990cf 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index e2dffc221..536e5e1e6 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 3c094d141..0502ce4f5 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index a4262ba14..4a4218af3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index b7a9f0778..8698aaa38 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index a7a0063a0..fae7ae921 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 49f005d8b..ddca322cd 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 1d0bbd829..d8898d320 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 3f3264ae4..b1977b153 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index fe8a40a67..8a4d66f89 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 6863a8513..d6727a867 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 667c01c7c..da5186c41 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 55e46f8df..071305b5a 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 85cd9e7e4..7934d352b 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index abf606aae..4da0b75b6 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index c30778a16..2fb88089c 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index ef2a0439a..4985ef6fb 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 2df8e34bb..7192c4e36 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index d3b3a2a3b..2abd0ae19 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 3c6b6ffa0..f97d268b1 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 99eed2889..e079fb3e9 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 578fe4aa2..96075d7a4 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index d4d35ad3e..930a65b99 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 2bbb31077..fd64eab68 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 9114d3565..dcc5f9ab2 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index db9cf57ee..daa9f2295 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index d641d220d..0a58c1a49 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index ff0b296a3..31d33c7e0 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 8cf4ec2d5..8dee59cb1 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index b390c7de7..8ab8dc8cc 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index e433de072..c6a2955dc 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 577ecaba3..c0e4d82f5 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 453f36bff..c3755fbdb 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 6a7f3476c..0ca53b0e8 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 8cb336e5e..a97735b53 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 7ac3fcfeb..13d0d3bc7 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 345812221..a10c3f517 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 59d2d58d1..27271f222 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index d2d901d51..9fbc8b887 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index c8e330dce..f999a70da 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index b0ca05625..cf93e2469 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 5b18b5d88..e59d55298 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index ce46644d7..28a594c80 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 5f45ec175..11332e222 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 68760be23..8de48772c 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index e362bd29b..a41454c10 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index f4a3e975e..2a59c7dea 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 071fdf716..64511d4e2 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index aebe891a3..8ce5560fd 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 2d156eaa0..942f84836 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index a9828ac38..24fb1645a 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 564567cec..35fdfcb14 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 992cca601..5a4f7f55a 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 70c07b824..e69243c93 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 1f74acefe..f959b31ad 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 3e7340f86..93ca84607 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index cb75b65ee..974b4e7da 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index b698f8262..56e82afff 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:23:45.233513Z", - "iopub.status.busy": "2023-12-15T12:23:45.233301Z", - "iopub.status.idle": "2023-12-15T12:23:48.684177Z", - "shell.execute_reply": "2023-12-15T12:23:48.683460Z" + "iopub.execute_input": "2023-12-16T02:20:39.688939Z", + "iopub.status.busy": "2023-12-16T02:20:39.688428Z", + "iopub.status.idle": "2023-12-16T02:20:42.823179Z", + "shell.execute_reply": "2023-12-16T02:20:42.822566Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:23:48.687215Z", - "iopub.status.busy": "2023-12-15T12:23:48.686791Z", - "iopub.status.idle": "2023-12-15T12:23:48.690680Z", - "shell.execute_reply": "2023-12-15T12:23:48.690109Z" + "iopub.execute_input": "2023-12-16T02:20:42.826180Z", + "iopub.status.busy": "2023-12-16T02:20:42.825812Z", + "iopub.status.idle": "2023-12-16T02:20:42.829198Z", + "shell.execute_reply": "2023-12-16T02:20:42.828614Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:23:48.693277Z", - "iopub.status.busy": "2023-12-15T12:23:48.692792Z", - "iopub.status.idle": "2023-12-15T12:23:48.698009Z", - "shell.execute_reply": "2023-12-15T12:23:48.697384Z" + "iopub.execute_input": "2023-12-16T02:20:42.831744Z", + "iopub.status.busy": "2023-12-16T02:20:42.831288Z", + "iopub.status.idle": "2023-12-16T02:20:42.836187Z", + "shell.execute_reply": "2023-12-16T02:20:42.835597Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-15T12:23:48.700749Z", - "iopub.status.busy": "2023-12-15T12:23:48.700208Z", - "iopub.status.idle": "2023-12-15T12:23:50.478503Z", - "shell.execute_reply": "2023-12-15T12:23:50.477619Z" + "iopub.execute_input": "2023-12-16T02:20:42.838516Z", + "iopub.status.busy": "2023-12-16T02:20:42.838186Z", + "iopub.status.idle": "2023-12-16T02:20:44.554754Z", + "shell.execute_reply": "2023-12-16T02:20:44.554060Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-15T12:23:50.481850Z", - "iopub.status.busy": "2023-12-15T12:23:50.481445Z", - "iopub.status.idle": "2023-12-15T12:23:50.493592Z", - "shell.execute_reply": "2023-12-15T12:23:50.492938Z" + "iopub.execute_input": "2023-12-16T02:20:44.557806Z", + "iopub.status.busy": "2023-12-16T02:20:44.557386Z", + "iopub.status.idle": "2023-12-16T02:20:44.569196Z", + "shell.execute_reply": "2023-12-16T02:20:44.568574Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:23:50.527697Z", - "iopub.status.busy": "2023-12-15T12:23:50.527090Z", - "iopub.status.idle": "2023-12-15T12:23:50.533166Z", - "shell.execute_reply": "2023-12-15T12:23:50.532474Z" + "iopub.execute_input": "2023-12-16T02:20:44.601756Z", + "iopub.status.busy": "2023-12-16T02:20:44.601280Z", + "iopub.status.idle": "2023-12-16T02:20:44.606772Z", + "shell.execute_reply": "2023-12-16T02:20:44.606155Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-15T12:23:50.535931Z", - "iopub.status.busy": "2023-12-15T12:23:50.535506Z", - "iopub.status.idle": "2023-12-15T12:23:51.323749Z", - "shell.execute_reply": "2023-12-15T12:23:51.323052Z" + "iopub.execute_input": "2023-12-16T02:20:44.609105Z", + "iopub.status.busy": "2023-12-16T02:20:44.608737Z", + "iopub.status.idle": "2023-12-16T02:20:45.310313Z", + "shell.execute_reply": "2023-12-16T02:20:45.309669Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:23:51.326495Z", - "iopub.status.busy": "2023-12-15T12:23:51.326221Z", - "iopub.status.idle": "2023-12-15T12:23:52.272955Z", - "shell.execute_reply": "2023-12-15T12:23:52.272242Z" + "iopub.execute_input": "2023-12-16T02:20:45.313019Z", + "iopub.status.busy": "2023-12-16T02:20:45.312694Z", + "iopub.status.idle": "2023-12-16T02:20:46.093737Z", + "shell.execute_reply": "2023-12-16T02:20:46.093039Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-12-15T12:23:52.276279Z", - "iopub.status.busy": "2023-12-15T12:23:52.275873Z", - "iopub.status.idle": "2023-12-15T12:23:52.299524Z", - "shell.execute_reply": "2023-12-15T12:23:52.298857Z" + "iopub.execute_input": "2023-12-16T02:20:46.096919Z", + "iopub.status.busy": "2023-12-16T02:20:46.096584Z", + "iopub.status.idle": "2023-12-16T02:20:46.118849Z", + "shell.execute_reply": "2023-12-16T02:20:46.118256Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:23:52.301891Z", - "iopub.status.busy": "2023-12-15T12:23:52.301646Z", - "iopub.status.idle": "2023-12-15T12:23:52.305105Z", - "shell.execute_reply": "2023-12-15T12:23:52.304497Z" + "iopub.execute_input": "2023-12-16T02:20:46.121329Z", + "iopub.status.busy": "2023-12-16T02:20:46.121027Z", + "iopub.status.idle": "2023-12-16T02:20:46.124460Z", + "shell.execute_reply": "2023-12-16T02:20:46.123937Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:23:52.307503Z", - "iopub.status.busy": "2023-12-15T12:23:52.307150Z", - "iopub.status.idle": "2023-12-15T12:24:12.022753Z", - "shell.execute_reply": "2023-12-15T12:24:12.022101Z" + "iopub.execute_input": "2023-12-16T02:20:46.126575Z", + "iopub.status.busy": "2023-12-16T02:20:46.126378Z", + "iopub.status.idle": "2023-12-16T02:21:04.165413Z", + "shell.execute_reply": "2023-12-16T02:21:04.164714Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-15T12:24:12.026087Z", - "iopub.status.busy": "2023-12-15T12:24:12.025852Z", - "iopub.status.idle": "2023-12-15T12:24:12.030728Z", - "shell.execute_reply": "2023-12-15T12:24:12.030170Z" + "iopub.execute_input": "2023-12-16T02:21:04.168562Z", + "iopub.status.busy": "2023-12-16T02:21:04.168334Z", + "iopub.status.idle": "2023-12-16T02:21:04.172785Z", + "shell.execute_reply": "2023-12-16T02:21:04.172153Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:12.033274Z", - "iopub.status.busy": "2023-12-15T12:24:12.033057Z", - "iopub.status.idle": "2023-12-15T12:24:17.716310Z", - "shell.execute_reply": "2023-12-15T12:24:17.715581Z" + "iopub.execute_input": "2023-12-16T02:21:04.175443Z", + "iopub.status.busy": "2023-12-16T02:21:04.175062Z", + "iopub.status.idle": "2023-12-16T02:21:09.647587Z", + "shell.execute_reply": "2023-12-16T02:21:09.646910Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-15T12:24:17.721158Z", - "iopub.status.busy": "2023-12-15T12:24:17.719961Z", - "iopub.status.idle": "2023-12-15T12:24:17.728236Z", - "shell.execute_reply": "2023-12-15T12:24:17.727580Z" + "iopub.execute_input": "2023-12-16T02:21:09.650915Z", + "iopub.status.busy": "2023-12-16T02:21:09.650503Z", + "iopub.status.idle": "2023-12-16T02:21:09.655651Z", + "shell.execute_reply": "2023-12-16T02:21:09.655053Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:17.733031Z", - "iopub.status.busy": "2023-12-15T12:24:17.731845Z", - "iopub.status.idle": "2023-12-15T12:24:17.844478Z", - "shell.execute_reply": "2023-12-15T12:24:17.843746Z" + "iopub.execute_input": "2023-12-16T02:21:09.658601Z", + "iopub.status.busy": "2023-12-16T02:21:09.658194Z", + "iopub.status.idle": "2023-12-16T02:21:09.775619Z", + "shell.execute_reply": "2023-12-16T02:21:09.774883Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:17.847524Z", - "iopub.status.busy": "2023-12-15T12:24:17.847035Z", - "iopub.status.idle": "2023-12-15T12:24:17.857962Z", - "shell.execute_reply": "2023-12-15T12:24:17.857327Z" + "iopub.execute_input": "2023-12-16T02:21:09.778455Z", + "iopub.status.busy": "2023-12-16T02:21:09.778030Z", + "iopub.status.idle": "2023-12-16T02:21:09.787914Z", + "shell.execute_reply": "2023-12-16T02:21:09.787378Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:17.860771Z", - "iopub.status.busy": "2023-12-15T12:24:17.860339Z", - "iopub.status.idle": "2023-12-15T12:24:17.869754Z", - "shell.execute_reply": "2023-12-15T12:24:17.869048Z" + "iopub.execute_input": "2023-12-16T02:21:09.790276Z", + "iopub.status.busy": "2023-12-16T02:21:09.789911Z", + "iopub.status.idle": "2023-12-16T02:21:09.797907Z", + "shell.execute_reply": "2023-12-16T02:21:09.797362Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:17.872560Z", - "iopub.status.busy": "2023-12-15T12:24:17.872128Z", - "iopub.status.idle": "2023-12-15T12:24:17.877474Z", - "shell.execute_reply": "2023-12-15T12:24:17.876805Z" + "iopub.execute_input": "2023-12-16T02:21:09.800197Z", + "iopub.status.busy": "2023-12-16T02:21:09.799952Z", + "iopub.status.idle": "2023-12-16T02:21:09.805141Z", + "shell.execute_reply": "2023-12-16T02:21:09.804599Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-12-15T12:24:17.880287Z", - "iopub.status.busy": "2023-12-15T12:24:17.879826Z", - "iopub.status.idle": "2023-12-15T12:24:17.886929Z", - "shell.execute_reply": "2023-12-15T12:24:17.886193Z" + "iopub.execute_input": "2023-12-16T02:21:09.807436Z", + "iopub.status.busy": "2023-12-16T02:21:09.807221Z", + "iopub.status.idle": "2023-12-16T02:21:09.813318Z", + "shell.execute_reply": "2023-12-16T02:21:09.812689Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-15T12:24:17.889753Z", - "iopub.status.busy": "2023-12-15T12:24:17.889444Z", - "iopub.status.idle": "2023-12-15T12:24:18.016308Z", - "shell.execute_reply": "2023-12-15T12:24:18.015613Z" + "iopub.execute_input": "2023-12-16T02:21:09.815770Z", + "iopub.status.busy": "2023-12-16T02:21:09.815396Z", + "iopub.status.idle": "2023-12-16T02:21:09.928569Z", + "shell.execute_reply": "2023-12-16T02:21:09.928029Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-15T12:24:18.019418Z", - "iopub.status.busy": "2023-12-15T12:24:18.018767Z", - "iopub.status.idle": "2023-12-15T12:24:18.136422Z", - "shell.execute_reply": "2023-12-15T12:24:18.135729Z" + "iopub.execute_input": "2023-12-16T02:21:09.930970Z", + "iopub.status.busy": "2023-12-16T02:21:09.930677Z", + "iopub.status.idle": "2023-12-16T02:21:10.035750Z", + "shell.execute_reply": "2023-12-16T02:21:10.035191Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-15T12:24:18.138887Z", - "iopub.status.busy": "2023-12-15T12:24:18.138626Z", - "iopub.status.idle": "2023-12-15T12:24:18.255855Z", - "shell.execute_reply": "2023-12-15T12:24:18.255151Z" + "iopub.execute_input": "2023-12-16T02:21:10.038054Z", + "iopub.status.busy": "2023-12-16T02:21:10.037764Z", + "iopub.status.idle": "2023-12-16T02:21:10.141703Z", + "shell.execute_reply": "2023-12-16T02:21:10.141096Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:18.258469Z", - "iopub.status.busy": "2023-12-15T12:24:18.258066Z", - "iopub.status.idle": "2023-12-15T12:24:18.372231Z", - "shell.execute_reply": "2023-12-15T12:24:18.371498Z" + "iopub.execute_input": "2023-12-16T02:21:10.144071Z", + "iopub.status.busy": "2023-12-16T02:21:10.143734Z", + "iopub.status.idle": "2023-12-16T02:21:10.247404Z", + "shell.execute_reply": "2023-12-16T02:21:10.246753Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:18.375201Z", - "iopub.status.busy": "2023-12-15T12:24:18.374704Z", - "iopub.status.idle": "2023-12-15T12:24:18.378479Z", - "shell.execute_reply": "2023-12-15T12:24:18.377818Z" + "iopub.execute_input": "2023-12-16T02:21:10.249900Z", + "iopub.status.busy": "2023-12-16T02:21:10.249422Z", + "iopub.status.idle": "2023-12-16T02:21:10.252899Z", + "shell.execute_reply": "2023-12-16T02:21:10.252268Z" }, "nbsphinx": "hidden" }, @@ -1377,43 +1377,75 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01f9519ea49c4026a0bbacb8edac41cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "077b3c138ad84250926defb1ff945e0d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8843bf6a90c848f5b719b095d28155fe", - "placeholder": "", - "style": "IPY_MODEL_ac998b3db25b404390068bdfe06f5051", - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "03f7eb0ae7f941129143d41811a36e89": { + "0dff12373af34927b2337d272f0767c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "0e76311f348d4ea1be26898f80202b27": { + "1b3677e20b404eebb507d0eccf909fa2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1429,15 +1461,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_648da5867fe74eff8acc78a5d7f76e7d", - "max": 16887676.0, + "layout": "IPY_MODEL_077b3c138ad84250926defb1ff945e0d", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e0977d98efb946a697743b2b5db512bb", - "value": 16887676.0 + "style": "IPY_MODEL_d8300b0e4f7b4ed69f7ee34091c88f54", + "value": 2041.0 } }, - "100f986f114e4e30be8d2d6b39e29bef": { + "1c6caea0fba64db0839ad4573a39fd43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1452,7 +1484,7 @@ "description_width": "" } }, - "12d9a948b73c45f9be850f587b60e7da": { + "1c7073c72ac841eda6e80b8d3420c6de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1504,7 +1536,28 @@ "width": null } }, - "1424aa5760b444a884a05e8d2ed61770": { + "2d29b35ce4574d0b9845ccd1338a68bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ddd59ccb903742aa8385ee4774810bea", + "placeholder": "", + "style": "IPY_MODEL_b0dddcd4dba84c2487e34f1af1beb4c2", + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "304b0ea0de604110bf14c7763ddf2d84": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1556,28 +1609,29 @@ "width": null } }, - "1aba82e06ede4b4abb9136febdbb8c18": { + "366dec9428414f05a74ed64702a56045": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e5bd087335d45b2b8fb2183e7bee96c", - "placeholder": "", - "style": "IPY_MODEL_9d9755a99a4f47d7897cc93638d05f61", - "value": " 16.9M/16.9M [00:00<00:00, 220MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6bd138f7bb31450ca189318eca79f9f4", + "IPY_MODEL_1b3677e20b404eebb507d0eccf909fa2", + "IPY_MODEL_c9493e2cc6bb4d74a0f1fdb1386431c5" + ], + "layout": "IPY_MODEL_73cdfc39cadb46dc90ad9f028e601702" } }, - "2173b9bc631d45618eed6ef8a4cef088": { + "3f0320456503445cb0371c40fdd850b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1629,28 +1683,7 @@ "width": null } }, - "268bbd4689ae48748b4644469023d7e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7be1c71e1b294f5c829f2a7452abcbd7", - "placeholder": "", - "style": "IPY_MODEL_2da6aa28018c4d39be6bdc8e179a52c8", - "value": " 15.9M/15.9M [00:00<00:00, 281MB/s]" - } - }, - "27bb5868d9ee456895c6bdfddd7e922b": { + "41b58b1117d044078bbe430fd2d1f1f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1665,7 +1698,7 @@ "description_width": "" } }, - "2858edb05ab0446c9f91b2e306ca9e41": { + "43d9d9f6f2cc4002bc761681f01c8196": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1680,13 +1713,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1424aa5760b444a884a05e8d2ed61770", + "layout": "IPY_MODEL_a3d00a89b90b4ecc8fd88e6839cbe2af", "placeholder": "", - "style": "IPY_MODEL_2ac27ccda86942358b7092795ed99a5e", - "value": " 2.04k/2.04k [00:00<00:00, 310kB/s]" + "style": "IPY_MODEL_661048303a77450398ef9d7bfe017558", + "value": "embedding_model.ckpt: 100%" } }, - "28979711050b40fe97aaa5c03fa875d5": { + "44914d1f88b6475496ccde2ee81c90ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1738,7 +1771,51 @@ "width": null } }, - "2998522374354ffb92d8d20ebce2384a": { + "4f834823824c46f48f10dd1e9a0c3e48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7042968592bd4676b8558ed555f2a12f", + "IPY_MODEL_dd7274c649334928b6382ed9dac117c3", + "IPY_MODEL_e641314b3c604f9a8435ef6d9f089f30" + ], + "layout": "IPY_MODEL_f39b734be1164027aaea86ed334c21f9" + } + }, + "546a51934820440c80aad681f7684fb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_43d9d9f6f2cc4002bc761681f01c8196", + "IPY_MODEL_f23ba97f207b40f8b230db748b0e081a", + "IPY_MODEL_a75d989bcb8c4fbd9d2c5c0b3d8e2e9f" + ], + "layout": "IPY_MODEL_7034220bb00846f690c1df204cc8be96" + } + }, + "584a287c430a4219a65c6adfe7c0cd24": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1790,7 +1867,7 @@ "width": null } }, - "2ac27ccda86942358b7092795ed99a5e": { + "5ca6162e117342ef8f79002fe8206965": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1805,7 +1882,28 @@ "description_width": "" } }, - "2da6aa28018c4d39be6bdc8e179a52c8": { + "5f115607c0f9453a95980803842fabc1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44914d1f88b6475496ccde2ee81c90ac", + "placeholder": "", + "style": "IPY_MODEL_41b58b1117d044078bbe430fd2d1f1f6", + "value": " 15.9M/15.9M [00:00<00:00, 310MB/s]" + } + }, + "5f45ab5e98184c1184ab0575e2478ce2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1820,23 +1918,65 @@ "description_width": "" } }, - "2de752a70ac24c0a9162ddfed20e2e83": { + "6274b2d1550e4d78b7e147a17e03540f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d29b35ce4574d0b9845ccd1338a68bf", + "IPY_MODEL_fe8fb26ad1d24fb4afda8ca5686f1873", + "IPY_MODEL_de84bdf7b73d40d6ab757bea8ad97a6b" + ], + "layout": "IPY_MODEL_b6f1e2ab010e49c896cc1d0349aa1f9a" + } + }, + "661048303a77450398ef9d7bfe017558": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "2fdfb2f78ec548b083914d2b185573b6": { + "6bd138f7bb31450ca189318eca79f9f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f070537a64e748e995076e4feb372023", + "placeholder": "", + "style": "IPY_MODEL_1c6caea0fba64db0839ad4573a39fd43", + "value": "hyperparams.yaml: 100%" + } + }, + "6eb96f2b10784e1cb5adf2924ba32304": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1888,7 +2028,7 @@ "width": null } }, - "3eba98f6e79f407db70b23c3487f0e1f": { + "6f11219caf604b119c1c67a5fb5ced15": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1940,7 +2080,7 @@ "width": null } }, - "418ed2bb4a6f48a394bf1a8e95b2d261": { + "7034220bb00846f690c1df204cc8be96": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1992,72 +2132,44 @@ "width": null } }, - "5053aea8057c4dfa943104b8b69b601c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_01f9519ea49c4026a0bbacb8edac41cf", - "IPY_MODEL_c12fc2f987d143a48b379456d953ae87", - "IPY_MODEL_d74d4d360eaf4fa5ab6b58f421a803c4" - ], - "layout": "IPY_MODEL_c378b6e61e2248d0896d6bdfab36b825" - } - }, - "551554f80df64a02b1f20f890bf37211": { + "7042968592bd4676b8558ed555f2a12f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8b00fb759717438dadfcdc551ea175a7", - "IPY_MODEL_abd1fbb75a8340f2b3e5082846ecf8d4", - "IPY_MODEL_268bbd4689ae48748b4644469023d7e2" - ], - "layout": "IPY_MODEL_12d9a948b73c45f9be850f587b60e7da" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d436e9cd28984efbabe3da72e4a901d8", + "placeholder": "", + "style": "IPY_MODEL_d75c942e28aa4f1dbf9114c2337dda32", + "value": "label_encoder.txt: 100%" } }, - "5e23ee0dc70e4f61af8a14a08b891663": { + "7139fa619ee54f85803aedd6d318f4b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6821f557b0314fb8a522def981c47b84", - "placeholder": "", - "style": "IPY_MODEL_03f7eb0ae7f941129143d41811a36e89", - "value": "embedding_model.ckpt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "648da5867fe74eff8acc78a5d7f76e7d": { + "73cdfc39cadb46dc90ad9f028e601702": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2109,7 +2221,62 @@ "width": null } }, - "6821f557b0314fb8a522def981c47b84": { + "79a79332f9274481ada5404b9d469293": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "82dde398e4274586820009098110806f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8d33418452bb4da496330ae688477378": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9382f7e998b455ba2538c8737aa183c", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0dff12373af34927b2337d272f0767c2", + "value": 15856877.0 + } + }, + "a3d00a89b90b4ecc8fd88e6839cbe2af": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2161,7 +2328,7 @@ "width": null } }, - "7be1c71e1b294f5c829f2a7452abcbd7": { + "a6562619ce874d73832d38051d944d32": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2213,81 +2380,28 @@ "width": null } }, - "7d5484a8983a48cfb7c2d613cbe5902a": { + "a75d989bcb8c4fbd9d2c5c0b3d8e2e9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eaf3ad3bc8414e0994abefb750188bf3", - "IPY_MODEL_a16a3e39cf044226b1d851e8080664dd", - "IPY_MODEL_b0f304ad78734cb29219de4b2ff47e05" - ], - "layout": "IPY_MODEL_28979711050b40fe97aaa5c03fa875d5" - } - }, - "7fa0e3a890744146bc6a25e76e00b70e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f0320456503445cb0371c40fdd850b6", + "placeholder": "", + "style": "IPY_MODEL_5f45ab5e98184c1184ab0575e2478ce2", + "value": " 16.9M/16.9M [00:00<00:00, 269MB/s]" } }, - "8843bf6a90c848f5b719b095d28155fe": { + "a9382f7e998b455ba2538c8737aa183c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2339,7 +2453,7 @@ "width": null } }, - "8b00fb759717438dadfcdc551ea175a7": { + "ac001e7950a745d1b45a9d9bb711e479": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2354,13 +2468,44 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_418ed2bb4a6f48a394bf1a8e95b2d261", + "layout": "IPY_MODEL_6f11219caf604b119c1c67a5fb5ced15", "placeholder": "", - "style": "IPY_MODEL_27bb5868d9ee456895c6bdfddd7e922b", + "style": "IPY_MODEL_dc4964f44f244ebeb2d2280657838850", "value": "classifier.ckpt: 100%" } }, - "8c51c01ced1549b48d491b0a8185ab0b": { + "af2f5c218690450384b57850e8678fc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b0dddcd4dba84c2487e34f1af1beb4c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b6f1e2ab010e49c896cc1d0349aa1f9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2412,53 +2557,7 @@ "width": null } }, - "928b7478dd2a4bc08e66abb822e11e8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ee937366074044dfa748cbe681420a49", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0c21122029a46beb52d3dd0a5400420", - "value": 2041.0 - } - }, - "93d51075fbb94bbead7a173fc54c8649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e23ee0dc70e4f61af8a14a08b891663", - "IPY_MODEL_0e76311f348d4ea1be26898f80202b27", - "IPY_MODEL_1aba82e06ede4b4abb9136febdbb8c18" - ], - "layout": "IPY_MODEL_2998522374354ffb92d8d20ebce2384a" - } - }, - "975856a663b14d4c9b57c9feb2d90b47": { + "c92361c4f53540018d10e9987afc88a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2510,22 +2609,28 @@ "width": null } }, - "9d9755a99a4f47d7897cc93638d05f61": { + "c9493e2cc6bb4d74a0f1fdb1386431c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a6562619ce874d73832d38051d944d32", + "placeholder": "", + "style": "IPY_MODEL_82dde398e4274586820009098110806f", + "value": " 2.04k/2.04k [00:00<00:00, 358kB/s]" } }, - "9e5bd087335d45b2b8fb2183e7bee96c": { + "d436e9cd28984efbabe3da72e4a901d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2577,47 +2682,7 @@ "width": null } }, - "a16a3e39cf044226b1d851e8080664dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2173b9bc631d45618eed6ef8a4cef088", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a92645b435534179a1d5738b9b2910f4", - "value": 128619.0 - } - }, - "a92645b435534179a1d5738b9b2910f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "aa845911ffc1417089c0b1374bc9151a": { + "d75c942e28aa4f1dbf9114c2337dda32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2632,68 +2697,7 @@ "description_width": "" } }, - "abd1fbb75a8340f2b3e5082846ecf8d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7fa0e3a890744146bc6a25e76e00b70e", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f1c33e877e8e44b192cb7d4d30e52dd9", - "value": 15856877.0 - } - }, - "ac998b3db25b404390068bdfe06f5051": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "aca38f35251a493f8f8d228b3177a9e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d5c168852b434259a09513bd876a5c65", - "IPY_MODEL_928b7478dd2a4bc08e66abb822e11e8b", - "IPY_MODEL_2858edb05ab0446c9f91b2e306ca9e41" - ], - "layout": "IPY_MODEL_975856a663b14d4c9b57c9feb2d90b47" - } - }, - "b0c21122029a46beb52d3dd0a5400420": { + "d8300b0e4f7b4ed69f7ee34091c88f54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -2709,28 +2713,7 @@ "description_width": "" } }, - "b0f304ad78734cb29219de4b2ff47e05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3eba98f6e79f407db70b23c3487f0e1f", - "placeholder": "", - "style": "IPY_MODEL_b1ca29577ef54c6084417c4889dc089f", - "value": " 129k/129k [00:00<00:00, 12.8MB/s]" - } - }, - "b1ca29577ef54c6084417c4889dc089f": { + "dc4964f44f244ebeb2d2280657838850": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2745,7 +2728,7 @@ "description_width": "" } }, - "c12fc2f987d143a48b379456d953ae87": { + "dd7274c649334928b6382ed9dac117c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2761,15 +2744,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cb0d2bc5bb1340a794ac411913c84889", - "max": 3201.0, + "layout": "IPY_MODEL_304b0ea0de604110bf14c7763ddf2d84", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2de752a70ac24c0a9162ddfed20e2e83", - "value": 3201.0 + "style": "IPY_MODEL_af2f5c218690450384b57850e8678fc8", + "value": 128619.0 } }, - "c378b6e61e2248d0896d6bdfab36b825": { + "ddd59ccb903742aa8385ee4774810bea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2821,7 +2804,28 @@ "width": null } }, - "cb0d2bc5bb1340a794ac411913c84889": { + "de84bdf7b73d40d6ab757bea8ad97a6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c92361c4f53540018d10e9987afc88a2", + "placeholder": "", + "style": "IPY_MODEL_5ca6162e117342ef8f79002fe8206965", + "value": " 3.20k/3.20k [00:00<00:00, 570kB/s]" + } + }, + "df95558956384a248e23bb4a2155d8e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2873,7 +2877,7 @@ "width": null } }, - "cd030300cacc4df296a269633d15e7c0": { + "e08ea92b9a244acea209505bf4b8cbf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2888,7 +2892,50 @@ "description_width": "" } }, - "d01e5d4f062e46618060e5d088b2c422": { + "e2e2cff612e442aa82c7b2d5ac8866f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac001e7950a745d1b45a9d9bb711e479", + "IPY_MODEL_8d33418452bb4da496330ae688477378", + "IPY_MODEL_5f115607c0f9453a95980803842fabc1" + ], + "layout": "IPY_MODEL_df95558956384a248e23bb4a2155d8e5" + } + }, + "e641314b3c604f9a8435ef6d9f089f30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c7073c72ac841eda6e80b8d3420c6de", + "placeholder": "", + "style": "IPY_MODEL_e08ea92b9a244acea209505bf4b8cbf5", + "value": " 129k/129k [00:00<00:00, 2.98MB/s]" + } + }, + "f070537a64e748e995076e4feb372023": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2940,86 +2987,31 @@ "width": null } }, - "d5c168852b434259a09513bd876a5c65": { + "f23ba97f207b40f8b230db748b0e081a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d01e5d4f062e46618060e5d088b2c422", - "placeholder": "", - "style": "IPY_MODEL_cd030300cacc4df296a269633d15e7c0", - "value": "hyperparams.yaml: 100%" - } - }, - "d74d4d360eaf4fa5ab6b58f421a803c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8c51c01ced1549b48d491b0a8185ab0b", - "placeholder": "", - "style": "IPY_MODEL_100f986f114e4e30be8d2d6b39e29bef", - "value": " 3.20k/3.20k [00:00<00:00, 505kB/s]" - } - }, - "e0977d98efb946a697743b2b5db512bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "eaf3ad3bc8414e0994abefb750188bf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2fdfb2f78ec548b083914d2b185573b6", - "placeholder": "", - "style": "IPY_MODEL_aa845911ffc1417089c0b1374bc9151a", - "value": "label_encoder.txt: 100%" + "layout": "IPY_MODEL_584a287c430a4219a65c6adfe7c0cd24", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7139fa619ee54f85803aedd6d318f4b1", + "value": 16887676.0 } }, - "ee937366074044dfa748cbe681420a49": { + "f39b734be1164027aaea86ed334c21f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3071,20 +3063,28 @@ "width": null } }, - "f1c33e877e8e44b192cb7d4d30e52dd9": { + "fe8fb26ad1d24fb4afda8ca5686f1873": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6eb96f2b10784e1cb5adf2924ba32304", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_79a79332f9274481ada5404b9d469293", + "value": 3201.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index beca3deb3..0cbb894ad 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:23.413160Z", - "iopub.status.busy": "2023-12-15T12:24:23.412550Z", - "iopub.status.idle": "2023-12-15T12:24:24.581279Z", - "shell.execute_reply": "2023-12-15T12:24:24.580626Z" + "iopub.execute_input": "2023-12-16T02:21:15.893490Z", + "iopub.status.busy": "2023-12-16T02:21:15.893313Z", + "iopub.status.idle": "2023-12-16T02:21:16.961658Z", + "shell.execute_reply": "2023-12-16T02:21:16.961102Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:24.584372Z", - "iopub.status.busy": "2023-12-15T12:24:24.583825Z", - "iopub.status.idle": "2023-12-15T12:24:24.587251Z", - "shell.execute_reply": "2023-12-15T12:24:24.586599Z" + "iopub.execute_input": "2023-12-16T02:21:16.964727Z", + "iopub.status.busy": "2023-12-16T02:21:16.964318Z", + "iopub.status.idle": "2023-12-16T02:21:16.967582Z", + "shell.execute_reply": "2023-12-16T02:21:16.966991Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:24.590034Z", - "iopub.status.busy": "2023-12-15T12:24:24.589640Z", - "iopub.status.idle": "2023-12-15T12:24:24.599491Z", - "shell.execute_reply": "2023-12-15T12:24:24.598756Z" + "iopub.execute_input": "2023-12-16T02:21:16.970141Z", + "iopub.status.busy": "2023-12-16T02:21:16.969842Z", + "iopub.status.idle": "2023-12-16T02:21:16.979528Z", + "shell.execute_reply": "2023-12-16T02:21:16.978998Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:24.602028Z", - "iopub.status.busy": "2023-12-15T12:24:24.601634Z", - "iopub.status.idle": "2023-12-15T12:24:24.607297Z", - "shell.execute_reply": "2023-12-15T12:24:24.606715Z" + "iopub.execute_input": "2023-12-16T02:21:16.981950Z", + "iopub.status.busy": "2023-12-16T02:21:16.981608Z", + "iopub.status.idle": "2023-12-16T02:21:16.986717Z", + "shell.execute_reply": "2023-12-16T02:21:16.986080Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:24.610086Z", - "iopub.status.busy": "2023-12-15T12:24:24.609570Z", - "iopub.status.idle": "2023-12-15T12:24:24.909102Z", - "shell.execute_reply": "2023-12-15T12:24:24.908435Z" + "iopub.execute_input": "2023-12-16T02:21:16.989425Z", + "iopub.status.busy": "2023-12-16T02:21:16.989055Z", + "iopub.status.idle": "2023-12-16T02:21:17.255331Z", + "shell.execute_reply": "2023-12-16T02:21:17.254748Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:24.912103Z", - "iopub.status.busy": "2023-12-15T12:24:24.911657Z", - "iopub.status.idle": "2023-12-15T12:24:25.234281Z", - "shell.execute_reply": "2023-12-15T12:24:25.233603Z" + "iopub.execute_input": "2023-12-16T02:21:17.258045Z", + "iopub.status.busy": "2023-12-16T02:21:17.257724Z", + "iopub.status.idle": "2023-12-16T02:21:17.623653Z", + "shell.execute_reply": "2023-12-16T02:21:17.622967Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:25.237248Z", - "iopub.status.busy": "2023-12-15T12:24:25.236822Z", - "iopub.status.idle": "2023-12-15T12:24:25.262657Z", - "shell.execute_reply": "2023-12-15T12:24:25.262070Z" + "iopub.execute_input": "2023-12-16T02:21:17.626409Z", + "iopub.status.busy": "2023-12-16T02:21:17.626047Z", + "iopub.status.idle": "2023-12-16T02:21:17.650175Z", + "shell.execute_reply": "2023-12-16T02:21:17.649685Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:25.265501Z", - "iopub.status.busy": "2023-12-15T12:24:25.265267Z", - "iopub.status.idle": "2023-12-15T12:24:25.275674Z", - "shell.execute_reply": "2023-12-15T12:24:25.274966Z" + "iopub.execute_input": "2023-12-16T02:21:17.652680Z", + "iopub.status.busy": "2023-12-16T02:21:17.652237Z", + "iopub.status.idle": "2023-12-16T02:21:17.661435Z", + "shell.execute_reply": "2023-12-16T02:21:17.660822Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:25.279172Z", - "iopub.status.busy": "2023-12-15T12:24:25.278427Z", - "iopub.status.idle": "2023-12-15T12:24:26.696090Z", - "shell.execute_reply": "2023-12-15T12:24:26.695296Z" + "iopub.execute_input": "2023-12-16T02:21:17.664073Z", + "iopub.status.busy": "2023-12-16T02:21:17.663618Z", + "iopub.status.idle": "2023-12-16T02:21:18.900403Z", + "shell.execute_reply": "2023-12-16T02:21:18.899673Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:26.699301Z", - "iopub.status.busy": "2023-12-15T12:24:26.698696Z", - "iopub.status.idle": "2023-12-15T12:24:26.724848Z", - "shell.execute_reply": "2023-12-15T12:24:26.724128Z" + "iopub.execute_input": "2023-12-16T02:21:18.903640Z", + "iopub.status.busy": "2023-12-16T02:21:18.902857Z", + "iopub.status.idle": "2023-12-16T02:21:18.925298Z", + "shell.execute_reply": "2023-12-16T02:21:18.924750Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:26.727918Z", - "iopub.status.busy": "2023-12-15T12:24:26.727328Z", - "iopub.status.idle": "2023-12-15T12:24:26.750380Z", - "shell.execute_reply": "2023-12-15T12:24:26.749668Z" + "iopub.execute_input": "2023-12-16T02:21:18.927872Z", + "iopub.status.busy": "2023-12-16T02:21:18.927416Z", + "iopub.status.idle": "2023-12-16T02:21:18.947584Z", + "shell.execute_reply": "2023-12-16T02:21:18.946823Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:26.752972Z", - "iopub.status.busy": "2023-12-15T12:24:26.752701Z", - "iopub.status.idle": "2023-12-15T12:24:26.769595Z", - "shell.execute_reply": "2023-12-15T12:24:26.768862Z" + "iopub.execute_input": "2023-12-16T02:21:18.949796Z", + "iopub.status.busy": "2023-12-16T02:21:18.949593Z", + "iopub.status.idle": "2023-12-16T02:21:18.964620Z", + "shell.execute_reply": "2023-12-16T02:21:18.963993Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:26.772544Z", - "iopub.status.busy": "2023-12-15T12:24:26.772122Z", - "iopub.status.idle": "2023-12-15T12:24:26.796836Z", - "shell.execute_reply": "2023-12-15T12:24:26.796121Z" + "iopub.execute_input": "2023-12-16T02:21:18.967133Z", + "iopub.status.busy": "2023-12-16T02:21:18.966772Z", + "iopub.status.idle": "2023-12-16T02:21:18.990188Z", + "shell.execute_reply": "2023-12-16T02:21:18.989590Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "239ac9fc751a4a05879b068a91144434", + "model_id": "9cc1eff73c8b45bb98f0f659057fea6e", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:26.800558Z", - "iopub.status.busy": "2023-12-15T12:24:26.800122Z", - "iopub.status.idle": "2023-12-15T12:24:26.816929Z", - "shell.execute_reply": "2023-12-15T12:24:26.816241Z" + "iopub.execute_input": "2023-12-16T02:21:18.992769Z", + "iopub.status.busy": "2023-12-16T02:21:18.992395Z", + "iopub.status.idle": "2023-12-16T02:21:19.006679Z", + "shell.execute_reply": "2023-12-16T02:21:19.006164Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:26.819874Z", - "iopub.status.busy": "2023-12-15T12:24:26.819418Z", - "iopub.status.idle": "2023-12-15T12:24:26.827401Z", - "shell.execute_reply": "2023-12-15T12:24:26.826675Z" + "iopub.execute_input": "2023-12-16T02:21:19.009235Z", + "iopub.status.busy": "2023-12-16T02:21:19.008864Z", + "iopub.status.idle": "2023-12-16T02:21:19.015708Z", + "shell.execute_reply": "2023-12-16T02:21:19.015158Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:26.830123Z", - "iopub.status.busy": "2023-12-15T12:24:26.829712Z", - "iopub.status.idle": "2023-12-15T12:24:26.849826Z", - "shell.execute_reply": "2023-12-15T12:24:26.849222Z" + "iopub.execute_input": "2023-12-16T02:21:19.017943Z", + "iopub.status.busy": "2023-12-16T02:21:19.017744Z", + "iopub.status.idle": "2023-12-16T02:21:19.036614Z", + "shell.execute_reply": "2023-12-16T02:21:19.036066Z" } }, "outputs": [ @@ -1430,7 +1430,65 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c50687d53c24ae584c2d690522cf638": { + "09b84ecad1bb4878a6e9415bd9409569": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f90674f36b194ae2987fbeede04bec1e", + "placeholder": "", + "style": "IPY_MODEL_a8fa42ee649d471ba506e3d069f1cf6f", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "2c033539b360450a99c43f842106894f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2f98874b0e1b4c76b5115963f38c690b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37b75109cca3458f875f2a266ccda173", + "placeholder": "", + "style": "IPY_MODEL_f7d1a40d1544439ca5400e924809bbb7", + "value": " 132/132 [00:00<00:00, 9750.59 examples/s]" + } + }, + "37b75109cca3458f875f2a266ccda173": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1482,7 +1540,7 @@ "width": null } }, - "239ac9fc751a4a05879b068a91144434": { + "9cc1eff73c8b45bb98f0f659057fea6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1497,50 +1555,53 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_646b74793fab4c3cb5a9d9d2f8596b25", - "IPY_MODEL_e467cdc2f1694f2d836f2086d195f9f1", - "IPY_MODEL_f4912ebb5c8c4133a30b2abaaccda5bd" + "IPY_MODEL_09b84ecad1bb4878a6e9415bd9409569", + "IPY_MODEL_a4348dcc61d04118a1524f571a274ba3", + "IPY_MODEL_2f98874b0e1b4c76b5115963f38c690b" ], - "layout": "IPY_MODEL_a5f929103e4e4007a291c530ca5c9e1c" + "layout": "IPY_MODEL_c2ec326e5f5b4be3bbeeb09020c44068" } }, - "57f60f1887c3484287cd05a78bad37ab": { + "a4348dcc61d04118a1524f571a274ba3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f1721e04203749949e888af5da413869", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2c033539b360450a99c43f842106894f", + "value": 132.0 } }, - "646b74793fab4c3cb5a9d9d2f8596b25": { + "a8fa42ee649d471ba506e3d069f1cf6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1c50687d53c24ae584c2d690522cf638", - "placeholder": "", - "style": "IPY_MODEL_57f60f1887c3484287cd05a78bad37ab", - "value": "Saving the dataset (1/1 shards): 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7fbf3e51986f49d8a0502ba0ff6666fc": { + "c2ec326e5f5b4be3bbeeb09020c44068": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1592,7 +1653,7 @@ "width": null } }, - "8008ea260c734c1998a7160a893596aa": { + "f1721e04203749949e888af5da413869": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1644,23 +1705,22 @@ "width": null } }, - "91f0980e5ed2411f81722234bfc54164": { + "f7d1a40d1544439ca5400e924809bbb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "a5f929103e4e4007a291c530ca5c9e1c": { + "f90674f36b194ae2987fbeede04bec1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1711,66 +1771,6 @@ "visibility": null, "width": null } - }, - "e467cdc2f1694f2d836f2086d195f9f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7fbf3e51986f49d8a0502ba0ff6666fc", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_91f0980e5ed2411f81722234bfc54164", - "value": 132.0 - } - }, - "f4912ebb5c8c4133a30b2abaaccda5bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8008ea260c734c1998a7160a893596aa", - "placeholder": "", - "style": "IPY_MODEL_fea784b4c0044212b62708878b7d36c6", - "value": " 132/132 [00:00<00:00, 9672.91 examples/s]" - } - }, - "fea784b4c0044212b62708878b7d36c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 3c3d0e18e..1edd1ff3e 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:31.662524Z", - "iopub.status.busy": "2023-12-15T12:24:31.661919Z", - "iopub.status.idle": "2023-12-15T12:24:32.821938Z", - "shell.execute_reply": "2023-12-15T12:24:32.821292Z" + "iopub.execute_input": "2023-12-16T02:21:23.771042Z", + "iopub.status.busy": "2023-12-16T02:21:23.770591Z", + "iopub.status.idle": "2023-12-16T02:21:24.803295Z", + "shell.execute_reply": "2023-12-16T02:21:24.802616Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:32.825092Z", - "iopub.status.busy": "2023-12-15T12:24:32.824645Z", - "iopub.status.idle": "2023-12-15T12:24:32.827985Z", - "shell.execute_reply": "2023-12-15T12:24:32.827399Z" + "iopub.execute_input": "2023-12-16T02:21:24.806521Z", + "iopub.status.busy": "2023-12-16T02:21:24.805978Z", + "iopub.status.idle": "2023-12-16T02:21:24.809577Z", + "shell.execute_reply": "2023-12-16T02:21:24.809059Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:32.830633Z", - "iopub.status.busy": "2023-12-15T12:24:32.830252Z", - "iopub.status.idle": "2023-12-15T12:24:32.840530Z", - "shell.execute_reply": "2023-12-15T12:24:32.839941Z" + "iopub.execute_input": "2023-12-16T02:21:24.812181Z", + "iopub.status.busy": "2023-12-16T02:21:24.811827Z", + "iopub.status.idle": "2023-12-16T02:21:24.821817Z", + "shell.execute_reply": "2023-12-16T02:21:24.821314Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:32.843296Z", - "iopub.status.busy": "2023-12-15T12:24:32.842764Z", - "iopub.status.idle": "2023-12-15T12:24:32.848350Z", - "shell.execute_reply": "2023-12-15T12:24:32.847704Z" + "iopub.execute_input": "2023-12-16T02:21:24.824160Z", + "iopub.status.busy": "2023-12-16T02:21:24.823798Z", + "iopub.status.idle": "2023-12-16T02:21:24.828609Z", + "shell.execute_reply": "2023-12-16T02:21:24.828115Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:32.850927Z", - "iopub.status.busy": "2023-12-15T12:24:32.850706Z", - "iopub.status.idle": "2023-12-15T12:24:33.146686Z", - "shell.execute_reply": "2023-12-15T12:24:33.146017Z" + "iopub.execute_input": "2023-12-16T02:21:24.831018Z", + "iopub.status.busy": "2023-12-16T02:21:24.830652Z", + "iopub.status.idle": "2023-12-16T02:21:25.093025Z", + "shell.execute_reply": "2023-12-16T02:21:25.092357Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:33.149795Z", - "iopub.status.busy": "2023-12-15T12:24:33.149548Z", - "iopub.status.idle": "2023-12-15T12:24:33.535821Z", - "shell.execute_reply": "2023-12-15T12:24:33.535120Z" + "iopub.execute_input": "2023-12-16T02:21:25.096009Z", + "iopub.status.busy": "2023-12-16T02:21:25.095696Z", + "iopub.status.idle": "2023-12-16T02:21:25.460305Z", + "shell.execute_reply": "2023-12-16T02:21:25.459662Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:33.538631Z", - "iopub.status.busy": "2023-12-15T12:24:33.538207Z", - "iopub.status.idle": "2023-12-15T12:24:33.541250Z", - "shell.execute_reply": "2023-12-15T12:24:33.540690Z" + "iopub.execute_input": "2023-12-16T02:21:25.463062Z", + "iopub.status.busy": "2023-12-16T02:21:25.462683Z", + "iopub.status.idle": "2023-12-16T02:21:25.465551Z", + "shell.execute_reply": "2023-12-16T02:21:25.465004Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:33.543874Z", - "iopub.status.busy": "2023-12-15T12:24:33.543487Z", - "iopub.status.idle": "2023-12-15T12:24:33.583760Z", - "shell.execute_reply": "2023-12-15T12:24:33.582975Z" + "iopub.execute_input": "2023-12-16T02:21:25.468120Z", + "iopub.status.busy": "2023-12-16T02:21:25.467753Z", + "iopub.status.idle": "2023-12-16T02:21:25.505037Z", + "shell.execute_reply": "2023-12-16T02:21:25.504407Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:33.586655Z", - "iopub.status.busy": "2023-12-15T12:24:33.586208Z", - "iopub.status.idle": "2023-12-15T12:24:34.981521Z", - "shell.execute_reply": "2023-12-15T12:24:34.980762Z" + "iopub.execute_input": "2023-12-16T02:21:25.507542Z", + "iopub.status.busy": "2023-12-16T02:21:25.507088Z", + "iopub.status.idle": "2023-12-16T02:21:26.751904Z", + "shell.execute_reply": "2023-12-16T02:21:26.751170Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:34.984721Z", - "iopub.status.busy": "2023-12-15T12:24:34.984165Z", - "iopub.status.idle": "2023-12-15T12:24:35.003788Z", - "shell.execute_reply": "2023-12-15T12:24:35.003032Z" + "iopub.execute_input": "2023-12-16T02:21:26.754622Z", + "iopub.status.busy": "2023-12-16T02:21:26.754176Z", + "iopub.status.idle": "2023-12-16T02:21:26.772810Z", + "shell.execute_reply": "2023-12-16T02:21:26.772192Z" } }, "outputs": [ @@ -855,10 +855,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:35.006802Z", - "iopub.status.busy": "2023-12-15T12:24:35.006363Z", - "iopub.status.idle": "2023-12-15T12:24:35.013942Z", - "shell.execute_reply": "2023-12-15T12:24:35.013369Z" + "iopub.execute_input": "2023-12-16T02:21:26.775229Z", + "iopub.status.busy": "2023-12-16T02:21:26.774938Z", + "iopub.status.idle": "2023-12-16T02:21:26.782012Z", + "shell.execute_reply": "2023-12-16T02:21:26.781483Z" } }, "outputs": [ @@ -955,10 +955,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:35.016661Z", - "iopub.status.busy": "2023-12-15T12:24:35.016107Z", - "iopub.status.idle": "2023-12-15T12:24:35.023307Z", - "shell.execute_reply": "2023-12-15T12:24:35.022686Z" + "iopub.execute_input": "2023-12-16T02:21:26.784366Z", + "iopub.status.busy": "2023-12-16T02:21:26.784007Z", + "iopub.status.idle": "2023-12-16T02:21:26.790448Z", + "shell.execute_reply": "2023-12-16T02:21:26.789872Z" } }, "outputs": [ @@ -1025,10 +1025,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:35.026080Z", - "iopub.status.busy": "2023-12-15T12:24:35.025588Z", - "iopub.status.idle": "2023-12-15T12:24:35.035767Z", - "shell.execute_reply": "2023-12-15T12:24:35.035180Z" + "iopub.execute_input": "2023-12-16T02:21:26.792729Z", + "iopub.status.busy": "2023-12-16T02:21:26.792435Z", + "iopub.status.idle": "2023-12-16T02:21:26.801989Z", + "shell.execute_reply": "2023-12-16T02:21:26.801458Z" } }, "outputs": [ @@ -1182,10 +1182,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:35.038201Z", - "iopub.status.busy": "2023-12-15T12:24:35.037991Z", - "iopub.status.idle": "2023-12-15T12:24:35.048427Z", - "shell.execute_reply": "2023-12-15T12:24:35.047776Z" + "iopub.execute_input": "2023-12-16T02:21:26.804358Z", + "iopub.status.busy": "2023-12-16T02:21:26.803987Z", + "iopub.status.idle": "2023-12-16T02:21:26.813389Z", + "shell.execute_reply": "2023-12-16T02:21:26.812808Z" } }, "outputs": [ @@ -1301,10 +1301,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:35.051187Z", - "iopub.status.busy": "2023-12-15T12:24:35.050751Z", - "iopub.status.idle": "2023-12-15T12:24:35.058862Z", - "shell.execute_reply": "2023-12-15T12:24:35.058199Z" + "iopub.execute_input": "2023-12-16T02:21:26.815863Z", + "iopub.status.busy": "2023-12-16T02:21:26.815527Z", + "iopub.status.idle": "2023-12-16T02:21:26.823111Z", + "shell.execute_reply": "2023-12-16T02:21:26.822477Z" }, "scrolled": true }, @@ -1429,10 +1429,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:35.061606Z", - "iopub.status.busy": "2023-12-15T12:24:35.061211Z", - "iopub.status.idle": "2023-12-15T12:24:35.071889Z", - "shell.execute_reply": "2023-12-15T12:24:35.071249Z" + "iopub.execute_input": "2023-12-16T02:21:26.825877Z", + "iopub.status.busy": "2023-12-16T02:21:26.825376Z", + "iopub.status.idle": "2023-12-16T02:21:26.835446Z", + "shell.execute_reply": "2023-12-16T02:21:26.834807Z" } }, "outputs": [ @@ -1534,10 +1534,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:35.074626Z", - "iopub.status.busy": "2023-12-15T12:24:35.074223Z", - "iopub.status.idle": "2023-12-15T12:24:35.082090Z", - "shell.execute_reply": "2023-12-15T12:24:35.081451Z" + "iopub.execute_input": "2023-12-16T02:21:26.837648Z", + "iopub.status.busy": "2023-12-16T02:21:26.837453Z", + "iopub.status.idle": "2023-12-16T02:21:26.844937Z", + "shell.execute_reply": "2023-12-16T02:21:26.844408Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 206022588..4be0ceb50 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:39.903311Z", - "iopub.status.busy": "2023-12-15T12:24:39.903067Z", - "iopub.status.idle": "2023-12-15T12:24:41.032544Z", - "shell.execute_reply": "2023-12-15T12:24:41.031860Z" + "iopub.execute_input": "2023-12-16T02:21:31.927546Z", + "iopub.status.busy": "2023-12-16T02:21:31.927342Z", + "iopub.status.idle": "2023-12-16T02:21:32.919682Z", + "shell.execute_reply": "2023-12-16T02:21:32.919064Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:41.035973Z", - "iopub.status.busy": "2023-12-15T12:24:41.035246Z", - "iopub.status.idle": "2023-12-15T12:24:41.055317Z", - "shell.execute_reply": "2023-12-15T12:24:41.054565Z" + "iopub.execute_input": "2023-12-16T02:21:32.922668Z", + "iopub.status.busy": "2023-12-16T02:21:32.922203Z", + "iopub.status.idle": "2023-12-16T02:21:32.939322Z", + "shell.execute_reply": "2023-12-16T02:21:32.938826Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:41.058664Z", - "iopub.status.busy": "2023-12-15T12:24:41.058077Z", - "iopub.status.idle": "2023-12-15T12:24:41.264225Z", - "shell.execute_reply": "2023-12-15T12:24:41.263500Z" + "iopub.execute_input": "2023-12-16T02:21:32.941958Z", + "iopub.status.busy": "2023-12-16T02:21:32.941469Z", + "iopub.status.idle": "2023-12-16T02:21:33.093766Z", + "shell.execute_reply": "2023-12-16T02:21:33.093217Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:41.267120Z", - "iopub.status.busy": "2023-12-15T12:24:41.266561Z", - "iopub.status.idle": "2023-12-15T12:24:41.270620Z", - "shell.execute_reply": "2023-12-15T12:24:41.270091Z" + "iopub.execute_input": "2023-12-16T02:21:33.096123Z", + "iopub.status.busy": "2023-12-16T02:21:33.095668Z", + "iopub.status.idle": "2023-12-16T02:21:33.099302Z", + "shell.execute_reply": "2023-12-16T02:21:33.098712Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:41.273399Z", - "iopub.status.busy": "2023-12-15T12:24:41.272926Z", - "iopub.status.idle": "2023-12-15T12:24:41.281487Z", - "shell.execute_reply": "2023-12-15T12:24:41.280925Z" + "iopub.execute_input": "2023-12-16T02:21:33.101661Z", + "iopub.status.busy": "2023-12-16T02:21:33.101226Z", + "iopub.status.idle": "2023-12-16T02:21:33.109458Z", + "shell.execute_reply": "2023-12-16T02:21:33.108998Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:41.284537Z", - "iopub.status.busy": "2023-12-15T12:24:41.284112Z", - "iopub.status.idle": "2023-12-15T12:24:41.287299Z", - "shell.execute_reply": "2023-12-15T12:24:41.286625Z" + "iopub.execute_input": "2023-12-16T02:21:33.111973Z", + "iopub.status.busy": "2023-12-16T02:21:33.111566Z", + "iopub.status.idle": "2023-12-16T02:21:33.114359Z", + "shell.execute_reply": "2023-12-16T02:21:33.113817Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:41.290066Z", - "iopub.status.busy": "2023-12-15T12:24:41.289583Z", - "iopub.status.idle": "2023-12-15T12:24:44.959198Z", - "shell.execute_reply": "2023-12-15T12:24:44.958449Z" + "iopub.execute_input": "2023-12-16T02:21:33.116576Z", + "iopub.status.busy": "2023-12-16T02:21:33.116378Z", + "iopub.status.idle": "2023-12-16T02:21:36.709593Z", + "shell.execute_reply": "2023-12-16T02:21:36.708982Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:44.962514Z", - "iopub.status.busy": "2023-12-15T12:24:44.962032Z", - "iopub.status.idle": "2023-12-15T12:24:44.972011Z", - "shell.execute_reply": "2023-12-15T12:24:44.971474Z" + "iopub.execute_input": "2023-12-16T02:21:36.712530Z", + "iopub.status.busy": "2023-12-16T02:21:36.712318Z", + "iopub.status.idle": "2023-12-16T02:21:36.721565Z", + "shell.execute_reply": "2023-12-16T02:21:36.721073Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:44.974763Z", - "iopub.status.busy": "2023-12-15T12:24:44.974336Z", - "iopub.status.idle": "2023-12-15T12:24:46.439290Z", - "shell.execute_reply": "2023-12-15T12:24:46.438531Z" + "iopub.execute_input": "2023-12-16T02:21:36.723980Z", + "iopub.status.busy": "2023-12-16T02:21:36.723780Z", + "iopub.status.idle": "2023-12-16T02:21:38.030397Z", + "shell.execute_reply": "2023-12-16T02:21:38.029685Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:46.442841Z", - "iopub.status.busy": "2023-12-15T12:24:46.442174Z", - "iopub.status.idle": "2023-12-15T12:24:46.467703Z", - "shell.execute_reply": "2023-12-15T12:24:46.467044Z" + "iopub.execute_input": "2023-12-16T02:21:38.034931Z", + "iopub.status.busy": "2023-12-16T02:21:38.033588Z", + "iopub.status.idle": "2023-12-16T02:21:38.060287Z", + "shell.execute_reply": "2023-12-16T02:21:38.059692Z" }, "scrolled": true }, @@ -621,10 +621,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:46.470943Z", - "iopub.status.busy": "2023-12-15T12:24:46.470482Z", - "iopub.status.idle": "2023-12-15T12:24:46.481150Z", - "shell.execute_reply": "2023-12-15T12:24:46.480537Z" + "iopub.execute_input": "2023-12-16T02:21:38.064725Z", + "iopub.status.busy": "2023-12-16T02:21:38.063496Z", + "iopub.status.idle": "2023-12-16T02:21:38.076342Z", + "shell.execute_reply": "2023-12-16T02:21:38.075749Z" } }, "outputs": [ @@ -728,10 +728,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:46.484387Z", - "iopub.status.busy": "2023-12-15T12:24:46.483892Z", - "iopub.status.idle": "2023-12-15T12:24:46.497409Z", - "shell.execute_reply": "2023-12-15T12:24:46.496617Z" + "iopub.execute_input": "2023-12-16T02:21:38.080611Z", + "iopub.status.busy": "2023-12-16T02:21:38.079479Z", + "iopub.status.idle": "2023-12-16T02:21:38.093787Z", + "shell.execute_reply": "2023-12-16T02:21:38.093201Z" } }, "outputs": [ @@ -860,10 +860,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:46.501007Z", - "iopub.status.busy": "2023-12-15T12:24:46.500596Z", - "iopub.status.idle": "2023-12-15T12:24:46.512045Z", - "shell.execute_reply": "2023-12-15T12:24:46.511387Z" + "iopub.execute_input": "2023-12-16T02:21:38.098115Z", + "iopub.status.busy": "2023-12-16T02:21:38.096993Z", + "iopub.status.idle": "2023-12-16T02:21:38.109592Z", + "shell.execute_reply": "2023-12-16T02:21:38.109006Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:46.516536Z", - "iopub.status.busy": "2023-12-15T12:24:46.515312Z", - "iopub.status.idle": "2023-12-15T12:24:46.531224Z", - "shell.execute_reply": "2023-12-15T12:24:46.530496Z" + "iopub.execute_input": "2023-12-16T02:21:38.113927Z", + "iopub.status.busy": "2023-12-16T02:21:38.112808Z", + "iopub.status.idle": "2023-12-16T02:21:38.124959Z", + "shell.execute_reply": "2023-12-16T02:21:38.124468Z" } }, "outputs": [ @@ -1091,10 +1091,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:46.534126Z", - "iopub.status.busy": "2023-12-15T12:24:46.533899Z", - "iopub.status.idle": "2023-12-15T12:24:46.541937Z", - "shell.execute_reply": "2023-12-15T12:24:46.541266Z" + "iopub.execute_input": "2023-12-16T02:21:38.127499Z", + "iopub.status.busy": "2023-12-16T02:21:38.127077Z", + "iopub.status.idle": "2023-12-16T02:21:38.134578Z", + "shell.execute_reply": "2023-12-16T02:21:38.133990Z" } }, "outputs": [ @@ -1178,10 +1178,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:46.544518Z", - "iopub.status.busy": "2023-12-15T12:24:46.544257Z", - "iopub.status.idle": "2023-12-15T12:24:46.551985Z", - "shell.execute_reply": "2023-12-15T12:24:46.551305Z" + "iopub.execute_input": "2023-12-16T02:21:38.136861Z", + "iopub.status.busy": "2023-12-16T02:21:38.136677Z", + "iopub.status.idle": "2023-12-16T02:21:38.144015Z", + "shell.execute_reply": "2023-12-16T02:21:38.143463Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:46.554745Z", - "iopub.status.busy": "2023-12-15T12:24:46.554205Z", - "iopub.status.idle": "2023-12-15T12:24:46.561968Z", - "shell.execute_reply": "2023-12-15T12:24:46.561289Z" + "iopub.execute_input": "2023-12-16T02:21:38.146389Z", + "iopub.status.busy": "2023-12-16T02:21:38.146168Z", + "iopub.status.idle": "2023-12-16T02:21:38.153162Z", + "shell.execute_reply": "2023-12-16T02:21:38.152534Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 8db7f4d27..7d003ff58 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:51.748173Z", - "iopub.status.busy": "2023-12-15T12:24:51.747611Z", - "iopub.status.idle": "2023-12-15T12:24:54.294107Z", - "shell.execute_reply": "2023-12-15T12:24:54.293450Z" + "iopub.execute_input": "2023-12-16T02:21:43.011860Z", + "iopub.status.busy": "2023-12-16T02:21:43.011673Z", + "iopub.status.idle": "2023-12-16T02:21:45.477505Z", + "shell.execute_reply": "2023-12-16T02:21:45.476950Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "106d6970da1e45d2832fbdd027822071", + "model_id": "8636ebfe3d21426ea7d4ea984d64be17", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:54.297425Z", - "iopub.status.busy": "2023-12-15T12:24:54.296838Z", - "iopub.status.idle": "2023-12-15T12:24:54.300577Z", - "shell.execute_reply": "2023-12-15T12:24:54.300013Z" + "iopub.execute_input": "2023-12-16T02:21:45.480635Z", + "iopub.status.busy": "2023-12-16T02:21:45.480041Z", + "iopub.status.idle": "2023-12-16T02:21:45.483724Z", + "shell.execute_reply": "2023-12-16T02:21:45.483131Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:54.303372Z", - "iopub.status.busy": "2023-12-15T12:24:54.302795Z", - "iopub.status.idle": "2023-12-15T12:24:54.306506Z", - "shell.execute_reply": "2023-12-15T12:24:54.305836Z" + "iopub.execute_input": "2023-12-16T02:21:45.486127Z", + "iopub.status.busy": "2023-12-16T02:21:45.485698Z", + "iopub.status.idle": "2023-12-16T02:21:45.488857Z", + "shell.execute_reply": "2023-12-16T02:21:45.488365Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:54.309283Z", - "iopub.status.busy": "2023-12-15T12:24:54.308892Z", - "iopub.status.idle": "2023-12-15T12:24:54.372586Z", - "shell.execute_reply": "2023-12-15T12:24:54.371923Z" + "iopub.execute_input": "2023-12-16T02:21:45.491192Z", + "iopub.status.busy": "2023-12-16T02:21:45.490861Z", + "iopub.status.idle": "2023-12-16T02:21:45.572424Z", + "shell.execute_reply": "2023-12-16T02:21:45.571841Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:54.375315Z", - "iopub.status.busy": "2023-12-15T12:24:54.374832Z", - "iopub.status.idle": "2023-12-15T12:24:54.379605Z", - "shell.execute_reply": "2023-12-15T12:24:54.378975Z" + "iopub.execute_input": "2023-12-16T02:21:45.574822Z", + "iopub.status.busy": "2023-12-16T02:21:45.574469Z", + "iopub.status.idle": "2023-12-16T02:21:45.578349Z", + "shell.execute_reply": "2023-12-16T02:21:45.577741Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed'}\n" + "Classes: {'visa_or_mastercard', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire', 'getting_spare_card', 'card_payment_fee_charged'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:54.382293Z", - "iopub.status.busy": "2023-12-15T12:24:54.381844Z", - "iopub.status.idle": "2023-12-15T12:24:54.386074Z", - "shell.execute_reply": "2023-12-15T12:24:54.385507Z" + "iopub.execute_input": "2023-12-16T02:21:45.580682Z", + "iopub.status.busy": "2023-12-16T02:21:45.580385Z", + "iopub.status.idle": "2023-12-16T02:21:45.583846Z", + "shell.execute_reply": "2023-12-16T02:21:45.583211Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:24:54.388778Z", - "iopub.status.busy": "2023-12-15T12:24:54.388384Z", - "iopub.status.idle": "2023-12-15T12:25:06.523787Z", - "shell.execute_reply": "2023-12-15T12:25:06.522941Z" + "iopub.execute_input": "2023-12-16T02:21:45.586300Z", + "iopub.status.busy": "2023-12-16T02:21:45.585934Z", + "iopub.status.idle": "2023-12-16T02:21:55.075815Z", + "shell.execute_reply": "2023-12-16T02:21:55.075137Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3ecda7cebd9746efb3e7784cd2cd226b", + "model_id": "ff3a7eab25174a9d8c4b5f6771982929", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e0051d74a2e2401fad32d53e4be98deb", + "model_id": "f631079702834e1c9d22c74b505127a8", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e01a6bc0084423c97c72ce9de98564f", + "model_id": "225299d86a8c417a9a2a201f96113335", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a1a5105efb741638d176604cbfa8d55", + "model_id": "b69081db3079457180a278eefda1334f", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bc93f8729ded449bb833ef0b0a8ef85f", + "model_id": "1af71b58be854a84be16826ec2e881c9", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d0bc48bc99674defb54a4a548020d4da", + "model_id": "37baf666405743b1a097a0eefe21b887", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9d92c322851b4a71aa0bda962b656df5", + "model_id": "1efbb5c5bc8a4fb8a2266d3e04207377", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:06.527262Z", - "iopub.status.busy": "2023-12-15T12:25:06.526928Z", - "iopub.status.idle": "2023-12-15T12:25:07.709348Z", - "shell.execute_reply": "2023-12-15T12:25:07.708635Z" + "iopub.execute_input": "2023-12-16T02:21:55.079158Z", + "iopub.status.busy": "2023-12-16T02:21:55.078714Z", + "iopub.status.idle": "2023-12-16T02:21:56.269587Z", + "shell.execute_reply": "2023-12-16T02:21:56.268908Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:07.713801Z", - "iopub.status.busy": "2023-12-15T12:25:07.712608Z", - "iopub.status.idle": "2023-12-15T12:25:07.717332Z", - "shell.execute_reply": "2023-12-15T12:25:07.716741Z" + "iopub.execute_input": "2023-12-16T02:21:56.273940Z", + "iopub.status.busy": "2023-12-16T02:21:56.272660Z", + "iopub.status.idle": "2023-12-16T02:21:56.277328Z", + "shell.execute_reply": "2023-12-16T02:21:56.276766Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:07.721845Z", - "iopub.status.busy": "2023-12-15T12:25:07.720712Z", - "iopub.status.idle": "2023-12-15T12:25:09.192026Z", - "shell.execute_reply": "2023-12-15T12:25:09.191166Z" + "iopub.execute_input": "2023-12-16T02:21:56.281583Z", + "iopub.status.busy": "2023-12-16T02:21:56.280469Z", + "iopub.status.idle": "2023-12-16T02:21:57.564342Z", + "shell.execute_reply": "2023-12-16T02:21:57.563609Z" }, "scrolled": true }, @@ -639,10 +639,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.196740Z", - "iopub.status.busy": "2023-12-15T12:25:09.195795Z", - "iopub.status.idle": "2023-12-15T12:25:09.227393Z", - "shell.execute_reply": "2023-12-15T12:25:09.226663Z" + "iopub.execute_input": "2023-12-16T02:21:57.568048Z", + "iopub.status.busy": "2023-12-16T02:21:57.567047Z", + "iopub.status.idle": "2023-12-16T02:21:57.592504Z", + "shell.execute_reply": "2023-12-16T02:21:57.591912Z" }, "scrolled": true }, @@ -785,10 +785,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.232349Z", - "iopub.status.busy": "2023-12-15T12:25:09.231094Z", - "iopub.status.idle": "2023-12-15T12:25:09.245836Z", - "shell.execute_reply": "2023-12-15T12:25:09.245268Z" + "iopub.execute_input": "2023-12-16T02:21:57.595495Z", + "iopub.status.busy": "2023-12-16T02:21:57.594870Z", + "iopub.status.idle": "2023-12-16T02:21:57.605418Z", + "shell.execute_reply": "2023-12-16T02:21:57.604841Z" }, "scrolled": true }, @@ -898,10 +898,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.248812Z", - "iopub.status.busy": "2023-12-15T12:25:09.248579Z", - "iopub.status.idle": "2023-12-15T12:25:09.254311Z", - "shell.execute_reply": "2023-12-15T12:25:09.253632Z" + "iopub.execute_input": "2023-12-16T02:21:57.608353Z", + "iopub.status.busy": "2023-12-16T02:21:57.607938Z", + "iopub.status.idle": "2023-12-16T02:21:57.613095Z", + "shell.execute_reply": "2023-12-16T02:21:57.612522Z" } }, "outputs": [ @@ -939,10 +939,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.256946Z", - "iopub.status.busy": "2023-12-15T12:25:09.256469Z", - "iopub.status.idle": "2023-12-15T12:25:09.264448Z", - "shell.execute_reply": "2023-12-15T12:25:09.263765Z" + "iopub.execute_input": "2023-12-16T02:21:57.615963Z", + "iopub.status.busy": "2023-12-16T02:21:57.615547Z", + "iopub.status.idle": "2023-12-16T02:21:57.623736Z", + "shell.execute_reply": "2023-12-16T02:21:57.623110Z" } }, "outputs": [ @@ -1059,10 +1059,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.267140Z", - "iopub.status.busy": "2023-12-15T12:25:09.266853Z", - "iopub.status.idle": "2023-12-15T12:25:09.274993Z", - "shell.execute_reply": "2023-12-15T12:25:09.274246Z" + "iopub.execute_input": "2023-12-16T02:21:57.625986Z", + "iopub.status.busy": "2023-12-16T02:21:57.625790Z", + "iopub.status.idle": "2023-12-16T02:21:57.632476Z", + "shell.execute_reply": "2023-12-16T02:21:57.631867Z" } }, "outputs": [ @@ -1145,10 +1145,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.277519Z", - "iopub.status.busy": "2023-12-15T12:25:09.277280Z", - "iopub.status.idle": "2023-12-15T12:25:09.285068Z", - "shell.execute_reply": "2023-12-15T12:25:09.284363Z" + "iopub.execute_input": "2023-12-16T02:21:57.634636Z", + "iopub.status.busy": "2023-12-16T02:21:57.634441Z", + "iopub.status.idle": "2023-12-16T02:21:57.640625Z", + "shell.execute_reply": "2023-12-16T02:21:57.640030Z" } }, "outputs": [ @@ -1256,10 +1256,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.287967Z", - "iopub.status.busy": "2023-12-15T12:25:09.287537Z", - "iopub.status.idle": "2023-12-15T12:25:09.299554Z", - "shell.execute_reply": "2023-12-15T12:25:09.297255Z" + "iopub.execute_input": "2023-12-16T02:21:57.643070Z", + "iopub.status.busy": "2023-12-16T02:21:57.642597Z", + "iopub.status.idle": "2023-12-16T02:21:57.651848Z", + "shell.execute_reply": "2023-12-16T02:21:57.651222Z" } }, "outputs": [ @@ -1370,10 +1370,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.302451Z", - "iopub.status.busy": "2023-12-15T12:25:09.302009Z", - "iopub.status.idle": "2023-12-15T12:25:09.309045Z", - "shell.execute_reply": "2023-12-15T12:25:09.308303Z" + "iopub.execute_input": "2023-12-16T02:21:57.654367Z", + "iopub.status.busy": "2023-12-16T02:21:57.654023Z", + "iopub.status.idle": "2023-12-16T02:21:57.659790Z", + "shell.execute_reply": "2023-12-16T02:21:57.659152Z" } }, "outputs": [ @@ -1441,10 +1441,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.311827Z", - "iopub.status.busy": "2023-12-15T12:25:09.311405Z", - "iopub.status.idle": "2023-12-15T12:25:09.318126Z", - "shell.execute_reply": "2023-12-15T12:25:09.317429Z" + "iopub.execute_input": "2023-12-16T02:21:57.662145Z", + "iopub.status.busy": "2023-12-16T02:21:57.661782Z", + "iopub.status.idle": "2023-12-16T02:21:57.667582Z", + "shell.execute_reply": "2023-12-16T02:21:57.666962Z" } }, "outputs": [ @@ -1522,10 +1522,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:09.321118Z", - "iopub.status.busy": "2023-12-15T12:25:09.320610Z", - "iopub.status.idle": "2023-12-15T12:25:09.327108Z", - "shell.execute_reply": "2023-12-15T12:25:09.326358Z" + "iopub.execute_input": "2023-12-16T02:21:57.670080Z", + "iopub.status.busy": "2023-12-16T02:21:57.669690Z", + "iopub.status.idle": "2023-12-16T02:21:57.674996Z", + "shell.execute_reply": "2023-12-16T02:21:57.674447Z" }, "nbsphinx": "hidden" }, @@ -1547,6 +1547,49 @@ "if not all(x in identified_duplicate_issues.index for x in duplicate_issue_indices):\n", " raise Exception(\"Some highlighted examples are missing from identified_duplicate_issues.\")" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Non-IID issues (data drift)\n", + "According to the report, our dataset does not appear to be Independent and Identically Distributed (IID). The overall non-iid score for the dataset (displayed below) corresponds to the `p-value` of a statistical test for whether the ordering of samples in the dataset appears related to the similarity between their feature values. A low `p-value` strongly suggests that the dataset violates the IID assumption, which is a key assumption required for conclusions (models) produced from the dataset to generalize to a larger population." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "execution": { + "iopub.execute_input": "2023-12-16T02:21:57.677380Z", + "iopub.status.busy": "2023-12-16T02:21:57.677025Z", + "iopub.status.idle": "2023-12-16T02:21:57.680905Z", + "shell.execute_reply": "2023-12-16T02:21:57.680303Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_value = lab.get_info('non_iid')['p-value']\n", + "p_value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, our dataset was flagged as non-IID because the rows happened to be sorted by class label in the original data. This may be benign if we remember to shuffle rows before model training and data splitting. But if you don't know why your data was flagged as non-IID, then you should be worried about potential data drift or unexpected interactions between data points (their values may not be statistically independent). Think carefully about what future test data may look like (and whether your data is representative of the population you care about). You should not shuffle your data before the non-IID test runs (will invalidate its conclusions)." + ] } ], "metadata": { @@ -1575,7 +1618,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06527d86a4a146ff8877a46a007a4372": { + "0079ea0141c0429db7e6363e639d81ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1591,7 +1634,31 @@ "description_width": "" } }, - "09756422089e425b8f1e19ea8b9b1ce5": { + "01aaa7ac323c4154b05a5a77c9671dc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ded22b8f872745378f8f5be043b932b0", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b53550102074446a9e38fe87d7b1f00d", + "value": 466062.0 + } + }, + "0385c0e1ca8f4ee6ac168ff45e5f388d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1643,7 +1710,7 @@ "width": null } }, - "0b1e11951cf3454bb54a5161f1db1fe6": { + "063ce11c1f084c2f90e8b067b8a86ead": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1659,28 +1726,22 @@ "description_width": "" } }, - "0c287eda4489428b89b7054bd00f3253": { + "07479f754d214c8c819f83e6dbc3fed0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9da04d5aaecc4dacbb611f1b7033ba51", - "placeholder": "", - "style": "IPY_MODEL_a9b5d935692845b8b9f7caab3b069938", - "value": "tokenizer_config.json: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "0d84dfe726aa469cb73cddd929961933": { + "0e349718cdb44e98a5942640c2132390": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1732,29 +1793,55 @@ "width": null } }, - "0e01a6bc0084423c97c72ce9de98564f": { + "12275972c54d48fea6e0e9da2e9c64bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_10a4818c785e4401aca7815e1dfe6840", - "IPY_MODEL_70b60bd13eb1447d8fa3a44b842ac9a7", - "IPY_MODEL_3b709b7554364d8f9677e4cfe53c7111" - ], - "layout": "IPY_MODEL_6f94a30d77d3411abafd9ffe5e36a35c" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_85f1eca5382c4915afaafda607ee785b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_75758a6d98cb4fab8d73c14eec24a429", + "value": 231508.0 + } + }, + "18dcf78040054dd58558b6e9c6e19002": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd080c8da63d48bf943c773b66aab2c5", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4227aacf86be45059d1a5024eba09a67", + "value": 665.0 } }, - "0f725a52a5814f648771efda9158a811": { + "198ece66ba5e4b39a7dec267514d4d97": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1806,50 +1893,44 @@ "width": null } }, - "106d6970da1e45d2832fbdd027822071": { + "199d587deb184e929185eb4b9240f9f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2d064a6a4feb4b99b5c521a40d01f04c", - "IPY_MODEL_7c84e86b2a054471ad687ffecaa3c1d6", - "IPY_MODEL_9d904bef2cb54a6694b672658d8e256d" - ], - "layout": "IPY_MODEL_e697f200698b4e6aa85b152c68cd84f3" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "10a4818c785e4401aca7815e1dfe6840": { + "1af71b58be854a84be16826ec2e881c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_24bc38fcbc984f648785b40873d60794", - "placeholder": "", - "style": "IPY_MODEL_e341571e219d4f4cbff9764dc2889b14", - "value": "config.json: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1dfb03c1e1e04500b2990c4f5c12a5d9", + "IPY_MODEL_01aaa7ac323c4154b05a5a77c9671dc6", + "IPY_MODEL_54977011aad64c419299139e8911bb54" + ], + "layout": "IPY_MODEL_33362dfeaae9481fab6c8e0770b14add" } }, - "14fd57bfc067494b8ebef89411261f9f": { + "1cb15334e7f64f06828efa0fa732dc77": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1901,39 +1982,135 @@ "width": null } }, - "1625e21047cb4162a00a9b1f371c15e7": { + "1dfb03c1e1e04500b2990c4f5c12a5d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6938f37b7eb042d59bf7e79df0d4e163", + "placeholder": "", + "style": "IPY_MODEL_fc5332c7972642e7beac19c5017b8246", + "value": "tokenizer.json: 100%" } }, - "1be78abf9e8849829bf3efff90e3a528": { + "1efbb5c5bc8a4fb8a2266d3e04207377": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8cc8c0d9e0040728c9737c91a42c1bc", + "IPY_MODEL_12275972c54d48fea6e0e9da2e9c64bf", + "IPY_MODEL_c427c453ecd64fe18186921c4689e631" + ], + "layout": "IPY_MODEL_198ece66ba5e4b39a7dec267514d4d97" + } + }, + "225299d86a8c417a9a2a201f96113335": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a7dc2448e404db1ab626b2d471dbbe9", + "IPY_MODEL_18dcf78040054dd58558b6e9c6e19002", + "IPY_MODEL_22fa1cf5d3f44cd7aa8dd6f0d808866b" + ], + "layout": "IPY_MODEL_6f0c5f7dc2f240008e5c78f6a1d14e37" + } + }, + "22fa1cf5d3f44cd7aa8dd6f0d808866b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f085ff73cf4e483f910066afb7ee52e0", + "placeholder": "", + "style": "IPY_MODEL_dc937c4641e441ad9f6f2aa643f4613f", + "value": " 665/665 [00:00<00:00, 90.4kB/s]" + } + }, + "2628ed59db5d448c9e0ce8468c74415d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e349718cdb44e98a5942640c2132390", + "placeholder": "", + "style": "IPY_MODEL_96d24342179f44ed86e20a9ced0f136a", + "value": "pytorch_model.bin: 100%" + } + }, + "26456ffc3cc84b1ca1cc4781f01ade97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_86ae2a44fcda4b4eaa45e68d4370ca67", + "placeholder": "", + "style": "IPY_MODEL_cae0adaf68824cd3b8488a0ecaaece85", + "value": "README.md: 100%" } }, - "24bc38fcbc984f648785b40873d60794": { + "2703189f150e4dc98312c3ebf43f8375": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1985,7 +2162,7 @@ "width": null } }, - "2573cf7b0e2742ed8e30a549629d8900": { + "33362dfeaae9481fab6c8e0770b14add": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2037,49 +2214,44 @@ "width": null } }, - "2bd3f751022b49b9a7a1acb5f54af58a": { + "37baf666405743b1a097a0eefe21b887": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bfa09fa563964bdbac915f92045821e0", - "placeholder": "", - "style": "IPY_MODEL_8461b708eeef4695869bae803818727f", - "value": ".gitattributes: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e34beec7c7cd408eb38b8a14a302413f", + "IPY_MODEL_eb8f2951a5de4d4ca03d1df8a0616513", + "IPY_MODEL_e8cc4642316743f6936bf08ac19fe3ad" + ], + "layout": "IPY_MODEL_c3e0eac37b424c2c9412c71a47b820e1" } }, - "2d064a6a4feb4b99b5c521a40d01f04c": { + "40cbe1b309954a3c97d5a3b74528463d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d4cbc5f5f4d44bf88f301eb2ce72fbe8", - "placeholder": "", - "style": "IPY_MODEL_7f96f31154574a919ac5af1744051a8b", - "value": "" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "31a71b0a94a9481b9710f564e20071f4": { + "411f29aa5df948f6bd145417d9d16062": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2131,7 +2303,23 @@ "width": null } }, - "32b8a4404b084738a24f060cf5cdf5b3": { + "4227aacf86be45059d1a5024eba09a67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "43cc1536411440c9b0420a6bdc3ae0d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2183,23 +2371,73 @@ "width": null } }, - "363bd91cc1544ee78053ccc75ae1f7d2": { + "44775d6eba304ebab2185717b7bdd056": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cb16420ff25f4e0593137b4dbc5f50c4", + "placeholder": "", + "style": "IPY_MODEL_5cb35a450d53482a8a8159003893ba6a", + "value": ".gitattributes: 100%" + } + }, + "4e8e45c36f0a4bc5ab40aeb577c37966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f93e369c981241c69eeabce1ba2365c1", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f896ded623614ac8be08126cd8a76604", + "value": 391.0 + } + }, + "50a22c4dd1b84dc0b1fb3294acb18b9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bcfcc087eaa546aab80609d5b6906e5b", + "placeholder": "", + "style": "IPY_MODEL_199d587deb184e929185eb4b9240f9f6", + "value": " 54.2M/54.2M [00:00<00:00, 133MB/s]" } }, - "3704e224f9cf4682b8665bc0a8654ea2": { + "50f6ecc4bdad40d4968c0e91820c0baf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2214,13 +2452,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8dcb5295f9ce4710bcec21e865ccfaa8", + "layout": "IPY_MODEL_77239bf48324484280e686ab77cc6666", "placeholder": "", - "style": "IPY_MODEL_669787d5fe6044b3ad68724921f6e1f8", - "value": " 29.0/29.0 [00:00<00:00, 3.63kB/s]" + "style": "IPY_MODEL_df6528c4af7746a39f6975ead947e859", + "value": "" } }, - "3a037a33929f4d41ba22a6f9e32d0ce5": { + "5310f3e1529b4ddcb2aeac747062f8f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2272,7 +2510,7 @@ "width": null } }, - "3b709b7554364d8f9677e4cfe53c7111": { + "54977011aad64c419299139e8911bb54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2287,13 +2525,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5338a34c498b4529b5d822ba1f7107cd", + "layout": "IPY_MODEL_65b5936011aa4bccac652329311dfea1", "placeholder": "", - "style": "IPY_MODEL_94fe00e65d114a7c92212165b66f40a1", - "value": " 665/665 [00:00<00:00, 80.3kB/s]" + "style": "IPY_MODEL_98521146fc654991b184009e9e7ebcee", + "value": " 466k/466k [00:00<00:00, 6.41MB/s]" } }, - "3ca2bfdee71c4f88bd2a1754a88c24d3": { + "55bdb98e50f1420baec0d1a0940c7293": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2308,7 +2546,7 @@ "description_width": "" } }, - "3da74d12d1ec4d1fb6c4f30b42d3f03e": { + "590a3cf899f24e029c9d68e7f024d17a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2360,44 +2598,28 @@ "width": "20px" } }, - "3ecda7cebd9746efb3e7784cd2cd226b": { + "5a7dc2448e404db1ab626b2d471dbbe9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2bd3f751022b49b9a7a1acb5f54af58a", - "IPY_MODEL_940b5f676bf7408cade300d2c73fb919", - "IPY_MODEL_c240e9acd49e4c9fbc30e6df7d9a9988" - ], - "layout": "IPY_MODEL_d01d65882c6e456a9570a1e0fb6a056f" - } - }, - "3f813672fe584fb2a7df5d6ebe27882a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df597e36336b45cc9c957abcb8d8d52c", + "placeholder": "", + "style": "IPY_MODEL_55bdb98e50f1420baec0d1a0940c7293", + "value": "config.json: 100%" } }, - "44f85fcf5a8b42aabc60321882262555": { + "5cb35a450d53482a8a8159003893ba6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2412,7 +2634,7 @@ "description_width": "" } }, - "4974bc0d9e4f4fa9bf1007c3d57f994c": { + "65b5936011aa4bccac652329311dfea1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2464,7 +2686,7 @@ "width": null } }, - "5338a34c498b4529b5d822ba1f7107cd": { + "6938f37b7eb042d59bf7e79df0d4e163": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2516,61 +2738,7 @@ "width": null } }, - "53ebb5da917540afa8ad7bbe17e92d77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "54229ef5f94340d289bb0ae61fe1b9d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "59a4c630145841a592a4c7a9998f6ac7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8fa03542e8f844bb8e073213a043c019", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_feb6f491744f4056b01005c8a6f67470", - "value": 54245363.0 - } - }, - "63154188a1bb41ef9e272414b79fdb21": { + "6bd20bb310a64d8c89e57eb60f4fd371": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2622,73 +2790,91 @@ "width": null } }, - "65994115ed12410baf18cce9b5390b5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f2345da616c7411a87fc7d79e67f5e82", - "placeholder": "", - "style": "IPY_MODEL_54229ef5f94340d289bb0ae61fe1b9d8", - "value": " 54.2M/54.2M [00:02<00:00, 23.8MB/s]" - } - }, - "669787d5fe6044b3ad68724921f6e1f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "6f0c5f7dc2f240008e5c78f6a1d14e37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "66dd3a43a2114a48939dd9e9e8014e61": { + "75758a6d98cb4fab8d73c14eec24a429": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "6b766a093e94417eade523674898ff69": { + "763e1d85aeba41fca85eee3a9719e380": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "6c3f4a534ba34cc8bbb8b9333513bc4b": { + "77239bf48324484280e686ab77cc6666": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2740,7 +2926,22 @@ "width": null } }, - "6f94a30d77d3411abafd9ffe5e36a35c": { + "77bf95626048430d895a53fd4d3d1c5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "81ac90daaa47400e98cad8524ba790b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2792,240 +2993,10 @@ "width": null } }, - "70b60bd13eb1447d8fa3a44b842ac9a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9c771c5292f0418fac5b94b31cb641b2", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9eef04ad832e4f909674bebb54bbe4de", - "value": 665.0 - } - }, - "734c6e33350d4dbc8ffef4dc54038c18": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_14fd57bfc067494b8ebef89411261f9f", - "placeholder": "", - "style": "IPY_MODEL_44f85fcf5a8b42aabc60321882262555", - "value": "README.md: 100%" - } - }, - "7c06adac115a41259a23768b38b1059b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7c84e86b2a054471ad687ffecaa3c1d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3da74d12d1ec4d1fb6c4f30b42d3f03e", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b1e11951cf3454bb54a5161f1db1fe6", - "value": 0.0 - } - }, - "7f96f31154574a919ac5af1744051a8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8461b708eeef4695869bae803818727f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "85c3eaad0062461093bff250cf240008": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6c3f4a534ba34cc8bbb8b9333513bc4b", - "placeholder": "", - "style": "IPY_MODEL_3ca2bfdee71c4f88bd2a1754a88c24d3", - "value": "pytorch_model.bin: 100%" - } - }, - "88b62671cbfe4aec820a53db424db205": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a6c52b3373cd4035bc9c715a398fca6c", - "placeholder": "", - "style": "IPY_MODEL_66dd3a43a2114a48939dd9e9e8014e61", - "value": " 232k/232k [00:00<00:00, 25.9MB/s]" - } - }, - "8a1a5105efb741638d176604cbfa8d55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_85c3eaad0062461093bff250cf240008", - "IPY_MODEL_59a4c630145841a592a4c7a9998f6ac7", - "IPY_MODEL_65994115ed12410baf18cce9b5390b5d" - ], - "layout": "IPY_MODEL_95b907846c6744b3bdc5ed3a286b1d7e" - } - }, - "8d9e51f0f5ad417bb21db0392896eea9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8dcb5295f9ce4710bcec21e865ccfaa8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "85f1eca5382c4915afaafda607ee785b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3074,28 +3045,29 @@ "width": null } }, - "8de66df94f374574bc555c48bdb39522": { + "8636ebfe3d21426ea7d4ea984d64be17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8d9e51f0f5ad417bb21db0392896eea9", - "placeholder": "", - "style": "IPY_MODEL_6b766a093e94417eade523674898ff69", - "value": "tokenizer.json: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_50f6ecc4bdad40d4968c0e91820c0baf", + "IPY_MODEL_e73d42274bc54f9da90573b30d450de4", + "IPY_MODEL_e2afae251915408dadeda36ae6548adc" + ], + "layout": "IPY_MODEL_d8dc17d417e6495286ae29d068728730" } }, - "8fa03542e8f844bb8e073213a043c019": { + "86ae2a44fcda4b4eaa45e68d4370ca67": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3147,7 +3119,7 @@ "width": null } }, - "9329ab6676b145a5a7a81a137303b646": { + "96d24342179f44ed86e20a9ced0f136a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3162,62 +3134,83 @@ "description_width": "" } }, - "940b5f676bf7408cade300d2c73fb919": { + "973acc91f9d94950939d4e7d8546f6e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3a037a33929f4d41ba22a6f9e32d0ce5", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1be78abf9e8849829bf3efff90e3a528", - "value": 391.0 + "layout": "IPY_MODEL_43cc1536411440c9b0420a6bdc3ae0d2", + "placeholder": "", + "style": "IPY_MODEL_77bf95626048430d895a53fd4d3d1c5c", + "value": " 2.21k/2.21k [00:00<00:00, 308kB/s]" } }, - "9477897bc7ab4884a79f934977cdb600": { + "98521146fc654991b184009e9e7ebcee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "94fe00e65d114a7c92212165b66f40a1": { + "a492c135ef6e434091f7561abbf95c5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "95b907846c6744b3bdc5ed3a286b1d7e": { + "ac66478a5c4240e78852694c13dcbe84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_411f29aa5df948f6bd145417d9d16062", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a492c135ef6e434091f7561abbf95c5e", + "value": 54245363.0 + } + }, + "adbfb98ee72a4a2986ca3c4140a81959": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3269,7 +3262,22 @@ "width": null } }, - "9c771c5292f0418fac5b94b31cb641b2": { + "b21da8d450644b0db35cd516b90d2e17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b5345e886d4a47ccba2692eb19b177f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3321,28 +3329,23 @@ "width": null } }, - "9d904bef2cb54a6694b672658d8e256d": { + "b53550102074446a9e38fe87d7b1f00d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4974bc0d9e4f4fa9bf1007c3d57f994c", - "placeholder": "", - "style": "IPY_MODEL_7c06adac115a41259a23768b38b1059b", - "value": " 0/0 [00:00<?, ?it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9d92c322851b4a71aa0bda962b656df5": { + "b69081db3079457180a278eefda1334f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3357,14 +3360,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a3fd965e6182411ca813b99dbe037975", - "IPY_MODEL_b7fa677961aa4b20a2c7b22edad71a81", - "IPY_MODEL_88b62671cbfe4aec820a53db424db205" + "IPY_MODEL_2628ed59db5d448c9e0ce8468c74415d", + "IPY_MODEL_ac66478a5c4240e78852694c13dcbe84", + "IPY_MODEL_50a22c4dd1b84dc0b1fb3294acb18b9a" ], - "layout": "IPY_MODEL_31a71b0a94a9481b9710f564e20071f4" + "layout": "IPY_MODEL_e356ed59f08643e592a4c6c60f3949ed" + } + }, + "b8cc8c0d9e0040728c9737c91a42c1bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca53e1a35317401fbaaa824caad3f514", + "placeholder": "", + "style": "IPY_MODEL_f4844dd202234575b406c4380cf4a338", + "value": "vocab.txt: 100%" } }, - "9da04d5aaecc4dacbb611f1b7033ba51": { + "bcfcc087eaa546aab80609d5b6906e5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3416,23 +3440,59 @@ "width": null } }, - "9eef04ad832e4f909674bebb54bbe4de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "c3e0eac37b424c2c9412c71a47b820e1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a3fd965e6182411ca813b99dbe037975": { + "c427c453ecd64fe18186921c4689e631": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3447,13 +3507,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fae17c52964341b6b04f30fa88460061", + "layout": "IPY_MODEL_6bd20bb310a64d8c89e57eb60f4fd371", "placeholder": "", - "style": "IPY_MODEL_f67612c28a624ea2b307ed18bc577df7", - "value": "vocab.txt: 100%" + "style": "IPY_MODEL_07479f754d214c8c819f83e6dbc3fed0", + "value": " 232k/232k [00:00<00:00, 27.5MB/s]" } }, - "a6c52b3373cd4035bc9c715a398fca6c": { + "ca53e1a35317401fbaaa824caad3f514": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3505,7 +3565,7 @@ "width": null } }, - "a9b5d935692845b8b9f7caab3b069938": { + "cae0adaf68824cd3b8488a0ecaaece85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3520,7 +3580,7 @@ "description_width": "" } }, - "b0500174c81a4c8d9046f4091cc043a6": { + "cb16420ff25f4e0593137b4dbc5f50c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3572,7 +3632,7 @@ "width": null } }, - "b7fa677961aa4b20a2c7b22edad71a81": { + "d394f38f67394b8c8ee731d43a3f683f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3588,37 +3648,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0d84dfe726aa469cb73cddd929961933", - "max": 231508.0, + "layout": "IPY_MODEL_81ac90daaa47400e98cad8524ba790b5", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_06527d86a4a146ff8877a46a007a4372", - "value": 231508.0 - } - }, - "bc93f8729ded449bb833ef0b0a8ef85f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8de66df94f374574bc555c48bdb39522", - "IPY_MODEL_e998fb1e05d443dcaa831f57b3901e99", - "IPY_MODEL_d26c4c8e5217465fb79d0d440896e913" - ], - "layout": "IPY_MODEL_63154188a1bb41ef9e272414b79fdb21" + "style": "IPY_MODEL_0079ea0141c0429db7e6363e639d81ee", + "value": 2211.0 } }, - "be8106c680424ec6a910fec23bfe96e4": { + "d8dc17d417e6495286ae29d068728730": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3670,28 +3708,22 @@ "width": null } }, - "beec76ec81f84053a19b94b78e76f0ac": { + "dc937c4641e441ad9f6f2aa643f4613f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_32b8a4404b084738a24f060cf5cdf5b3", - "placeholder": "", - "style": "IPY_MODEL_53ebb5da917540afa8ad7bbe17e92d77", - "value": " 2.21k/2.21k [00:00<00:00, 271kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "bfa09fa563964bdbac915f92045821e0": { + "dd080c8da63d48bf943c773b66aab2c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3728,43 +3760,22 @@ "margin": null, "max_height": null, "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c240e9acd49e4c9fbc30e6df7d9a9988": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c45319231a08402f80fd5b022f3c384b", - "placeholder": "", - "style": "IPY_MODEL_9329ab6676b145a5a7a81a137303b646", - "value": " 391/391 [00:00<00:00, 46.4kB/s]" + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c45319231a08402f80fd5b022f3c384b": { + "ded22b8f872745378f8f5be043b932b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3816,31 +3827,7 @@ "width": null } }, - "cb51d2b077584273b0e0da3bd39a1530": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b0500174c81a4c8d9046f4091cc043a6", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_363bd91cc1544ee78053ccc75ae1f7d2", - "value": 29.0 - } - }, - "d01d65882c6e456a9570a1e0fb6a056f": { + "df597e36336b45cc9c957abcb8d8d52c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3892,29 +3879,22 @@ "width": null } }, - "d0bc48bc99674defb54a4a548020d4da": { + "df6528c4af7746a39f6975ead947e859": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0c287eda4489428b89b7054bd00f3253", - "IPY_MODEL_cb51d2b077584273b0e0da3bd39a1530", - "IPY_MODEL_3704e224f9cf4682b8665bc0a8654ea2" - ], - "layout": "IPY_MODEL_e9e335b3066e419f8d20ef950dc649cf" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "d26c4c8e5217465fb79d0d440896e913": { + "e2afae251915408dadeda36ae6548adc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3929,37 +3909,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0f725a52a5814f648771efda9158a811", + "layout": "IPY_MODEL_1cb15334e7f64f06828efa0fa732dc77", "placeholder": "", - "style": "IPY_MODEL_3f813672fe584fb2a7df5d6ebe27882a", - "value": " 466k/466k [00:00<00:00, 29.3MB/s]" + "style": "IPY_MODEL_fc77533299d84c888b3cbddbd9342b46", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "d31bb79ef1ca466086fddf84d51b98ec": { + "e34beec7c7cd408eb38b8a14a302413f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2573cf7b0e2742ed8e30a549629d8900", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9477897bc7ab4884a79f934977cdb600", - "value": 2211.0 + "layout": "IPY_MODEL_5310f3e1529b4ddcb2aeac747062f8f4", + "placeholder": "", + "style": "IPY_MODEL_e905b71486ea4ea197b1329641f522c1", + "value": "tokenizer_config.json: 100%" } }, - "d4cbc5f5f4d44bf88f301eb2ce72fbe8": { + "e356ed59f08643e592a4c6c60f3949ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4011,44 +3988,31 @@ "width": null } }, - "e0051d74a2e2401fad32d53e4be98deb": { + "e73d42274bc54f9da90573b30d450de4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_734c6e33350d4dbc8ffef4dc54038c18", - "IPY_MODEL_d31bb79ef1ca466086fddf84d51b98ec", - "IPY_MODEL_beec76ec81f84053a19b94b78e76f0ac" - ], - "layout": "IPY_MODEL_09756422089e425b8f1e19ea8b9b1ce5" - } - }, - "e341571e219d4f4cbff9764dc2889b14": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_590a3cf899f24e029c9d68e7f024d17a", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_763e1d85aeba41fca85eee3a9719e380", + "value": 0.0 } }, - "e697f200698b4e6aa85b152c68cd84f3": { + "e89cb8c57d6f4d478f37f5ba7971afa3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4100,7 +4064,43 @@ "width": null } }, - "e998fb1e05d443dcaa831f57b3901e99": { + "e8cc4642316743f6936bf08ac19fe3ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0385c0e1ca8f4ee6ac168ff45e5f388d", + "placeholder": "", + "style": "IPY_MODEL_b21da8d450644b0db35cd516b90d2e17", + "value": " 29.0/29.0 [00:00<00:00, 4.00kB/s]" + } + }, + "e905b71486ea4ea197b1329641f522c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eb8f2951a5de4d4ca03d1df8a0616513": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4116,15 +4116,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_be8106c680424ec6a910fec23bfe96e4", - "max": 466062.0, + "layout": "IPY_MODEL_2703189f150e4dc98312c3ebf43f8375", + "max": 29.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1625e21047cb4162a00a9b1f371c15e7", - "value": 466062.0 + "style": "IPY_MODEL_063ce11c1f084c2f90e8b067b8a86ead", + "value": 29.0 } }, - "e9e335b3066e419f8d20ef950dc649cf": { + "f085ff73cf4e483f910066afb7ee52e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4176,74 +4176,81 @@ "width": null } }, - "f2345da616c7411a87fc7d79e67f5e82": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "f4844dd202234575b406c4380cf4a338": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "f67612c28a624ea2b307ed18bc577df7": { + "f49bef91d9544086ab9de83551cbf923": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b5345e886d4a47ccba2692eb19b177f3", + "placeholder": "", + "style": "IPY_MODEL_40cbe1b309954a3c97d5a3b74528463d", + "value": " 391/391 [00:00<00:00, 49.9kB/s]" + } + }, + "f631079702834e1c9d22c74b505127a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_26456ffc3cc84b1ca1cc4781f01ade97", + "IPY_MODEL_d394f38f67394b8c8ee731d43a3f683f", + "IPY_MODEL_973acc91f9d94950939d4e7d8546f6e9" + ], + "layout": "IPY_MODEL_adbfb98ee72a4a2986ca3c4140a81959" + } + }, + "f896ded623614ac8be08126cd8a76604": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "fae17c52964341b6b04f30fa88460061": { + "f93e369c981241c69eeabce1ba2365c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4295,21 +4302,57 @@ "width": null } }, - "feb6f491744f4056b01005c8a6f67470": { + "fc5332c7972642e7beac19c5017b8246": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fc77533299d84c888b3cbddbd9342b46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } + }, + "ff3a7eab25174a9d8c4b5f6771982929": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44775d6eba304ebab2185717b7bdd056", + "IPY_MODEL_4e8e45c36f0a4bc5ab40aeb577c37966", + "IPY_MODEL_f49bef91d9544086ab9de83551cbf923" + ], + "layout": "IPY_MODEL_e89cb8c57d6f4d478f37f5ba7971afa3" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 2369b4dfa..dd26186a5 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:13.923657Z", - "iopub.status.busy": "2023-12-15T12:25:13.923199Z", - "iopub.status.idle": "2023-12-15T12:25:15.022070Z", - "shell.execute_reply": "2023-12-15T12:25:15.021438Z" + "iopub.execute_input": "2023-12-16T02:22:03.319591Z", + "iopub.status.busy": "2023-12-16T02:22:03.319057Z", + "iopub.status.idle": "2023-12-16T02:22:04.317497Z", + "shell.execute_reply": "2023-12-16T02:22:04.316830Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:15.025103Z", - "iopub.status.busy": "2023-12-15T12:25:15.024599Z", - "iopub.status.idle": "2023-12-15T12:25:15.027708Z", - "shell.execute_reply": "2023-12-15T12:25:15.027190Z" + "iopub.execute_input": "2023-12-16T02:22:04.320491Z", + "iopub.status.busy": "2023-12-16T02:22:04.320185Z", + "iopub.status.idle": "2023-12-16T02:22:04.323214Z", + "shell.execute_reply": "2023-12-16T02:22:04.322615Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:15.030218Z", - "iopub.status.busy": "2023-12-15T12:25:15.029898Z", - "iopub.status.idle": "2023-12-15T12:25:15.043720Z", - "shell.execute_reply": "2023-12-15T12:25:15.043130Z" + "iopub.execute_input": "2023-12-16T02:22:04.325772Z", + "iopub.status.busy": "2023-12-16T02:22:04.325585Z", + "iopub.status.idle": "2023-12-16T02:22:04.338686Z", + "shell.execute_reply": "2023-12-16T02:22:04.338186Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:15.046382Z", - "iopub.status.busy": "2023-12-15T12:25:15.045971Z", - "iopub.status.idle": "2023-12-15T12:25:19.199252Z", - "shell.execute_reply": "2023-12-15T12:25:19.198530Z" + "iopub.execute_input": "2023-12-16T02:22:04.341021Z", + "iopub.status.busy": "2023-12-16T02:22:04.340682Z", + "iopub.status.idle": "2023-12-16T02:22:07.886116Z", + "shell.execute_reply": "2023-12-16T02:22:07.885478Z" }, "id": "dhTHOg8Pyv5G" }, @@ -692,9 +692,6 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n", - "\n", - "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n" ] }, @@ -702,6 +699,9 @@ "name": "stdout", "output_type": "stream", "text": [ + "\n", + "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", + "\n", "------------------------------------------------------------\n", "| Generating a Cleanlab Dataset Health Summary |\n", "| for your dataset with 10,000 examples and 10 classes. |\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index bd11d9552..2fcb4f2ad 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:23.777598Z", - "iopub.status.busy": "2023-12-15T12:25:23.776943Z", - "iopub.status.idle": "2023-12-15T12:25:24.893805Z", - "shell.execute_reply": "2023-12-15T12:25:24.893169Z" + "iopub.execute_input": "2023-12-16T02:22:12.966247Z", + "iopub.status.busy": "2023-12-16T02:22:12.965847Z", + "iopub.status.idle": "2023-12-16T02:22:13.965486Z", + "shell.execute_reply": "2023-12-16T02:22:13.964886Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:24.897331Z", - "iopub.status.busy": "2023-12-15T12:25:24.896831Z", - "iopub.status.idle": "2023-12-15T12:25:24.900404Z", - "shell.execute_reply": "2023-12-15T12:25:24.899873Z" + "iopub.execute_input": "2023-12-16T02:22:13.968627Z", + "iopub.status.busy": "2023-12-16T02:22:13.968211Z", + "iopub.status.idle": "2023-12-16T02:22:13.971841Z", + "shell.execute_reply": "2023-12-16T02:22:13.971318Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:24.902975Z", - "iopub.status.busy": "2023-12-15T12:25:24.902521Z", - "iopub.status.idle": "2023-12-15T12:25:27.048696Z", - "shell.execute_reply": "2023-12-15T12:25:27.047839Z" + "iopub.execute_input": "2023-12-16T02:22:13.974303Z", + "iopub.status.busy": "2023-12-16T02:22:13.973863Z", + "iopub.status.idle": "2023-12-16T02:22:15.901681Z", + "shell.execute_reply": "2023-12-16T02:22:15.901004Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.052422Z", - "iopub.status.busy": "2023-12-15T12:25:27.051726Z", - "iopub.status.idle": "2023-12-15T12:25:27.101634Z", - "shell.execute_reply": "2023-12-15T12:25:27.100958Z" + "iopub.execute_input": "2023-12-16T02:22:15.905055Z", + "iopub.status.busy": "2023-12-16T02:22:15.904361Z", + "iopub.status.idle": "2023-12-16T02:22:15.939363Z", + "shell.execute_reply": "2023-12-16T02:22:15.938556Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.105022Z", - "iopub.status.busy": "2023-12-15T12:25:27.104583Z", - "iopub.status.idle": "2023-12-15T12:25:27.146574Z", - "shell.execute_reply": "2023-12-15T12:25:27.145886Z" + "iopub.execute_input": "2023-12-16T02:22:15.942567Z", + "iopub.status.busy": "2023-12-16T02:22:15.942047Z", + "iopub.status.idle": "2023-12-16T02:22:15.976788Z", + "shell.execute_reply": "2023-12-16T02:22:15.976020Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.149919Z", - "iopub.status.busy": "2023-12-15T12:25:27.149349Z", - "iopub.status.idle": "2023-12-15T12:25:27.152735Z", - "shell.execute_reply": "2023-12-15T12:25:27.152206Z" + "iopub.execute_input": "2023-12-16T02:22:15.980029Z", + "iopub.status.busy": "2023-12-16T02:22:15.979618Z", + "iopub.status.idle": "2023-12-16T02:22:15.982832Z", + "shell.execute_reply": "2023-12-16T02:22:15.982308Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.155553Z", - "iopub.status.busy": "2023-12-15T12:25:27.155020Z", - "iopub.status.idle": "2023-12-15T12:25:27.158294Z", - "shell.execute_reply": "2023-12-15T12:25:27.157685Z" + "iopub.execute_input": "2023-12-16T02:22:15.985302Z", + "iopub.status.busy": "2023-12-16T02:22:15.984858Z", + "iopub.status.idle": "2023-12-16T02:22:15.987722Z", + "shell.execute_reply": "2023-12-16T02:22:15.987104Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.161052Z", - "iopub.status.busy": "2023-12-15T12:25:27.160697Z", - "iopub.status.idle": "2023-12-15T12:25:27.189732Z", - "shell.execute_reply": "2023-12-15T12:25:27.189001Z" + "iopub.execute_input": "2023-12-16T02:22:15.990318Z", + "iopub.status.busy": "2023-12-16T02:22:15.989833Z", + "iopub.status.idle": "2023-12-16T02:22:16.016110Z", + "shell.execute_reply": "2023-12-16T02:22:16.015459Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5792362f4eda4dbe9cd19293564000f9", + "model_id": "c871cb3093414b00950bb9bd042905ab", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9dd8089efb74f89974067a70a36f8e0", + "model_id": "614327c9d6fc4aaeb3387c26700312ec", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.198308Z", - "iopub.status.busy": "2023-12-15T12:25:27.198041Z", - "iopub.status.idle": "2023-12-15T12:25:27.206258Z", - "shell.execute_reply": "2023-12-15T12:25:27.205579Z" + "iopub.execute_input": "2023-12-16T02:22:16.024258Z", + "iopub.status.busy": "2023-12-16T02:22:16.023956Z", + "iopub.status.idle": "2023-12-16T02:22:16.030452Z", + "shell.execute_reply": "2023-12-16T02:22:16.029960Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.209231Z", - "iopub.status.busy": "2023-12-15T12:25:27.208758Z", - "iopub.status.idle": "2023-12-15T12:25:27.212778Z", - "shell.execute_reply": "2023-12-15T12:25:27.212166Z" + "iopub.execute_input": "2023-12-16T02:22:16.032807Z", + "iopub.status.busy": "2023-12-16T02:22:16.032442Z", + "iopub.status.idle": "2023-12-16T02:22:16.036040Z", + "shell.execute_reply": "2023-12-16T02:22:16.035457Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.215250Z", - "iopub.status.busy": "2023-12-15T12:25:27.214859Z", - "iopub.status.idle": "2023-12-15T12:25:27.222178Z", - "shell.execute_reply": "2023-12-15T12:25:27.221521Z" + "iopub.execute_input": "2023-12-16T02:22:16.038267Z", + "iopub.status.busy": "2023-12-16T02:22:16.037977Z", + "iopub.status.idle": "2023-12-16T02:22:16.044782Z", + "shell.execute_reply": "2023-12-16T02:22:16.044244Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.224708Z", - "iopub.status.busy": "2023-12-15T12:25:27.224336Z", - "iopub.status.idle": "2023-12-15T12:25:27.270212Z", - "shell.execute_reply": "2023-12-15T12:25:27.269510Z" + "iopub.execute_input": "2023-12-16T02:22:16.047266Z", + "iopub.status.busy": "2023-12-16T02:22:16.046781Z", + "iopub.status.idle": "2023-12-16T02:22:16.080041Z", + "shell.execute_reply": "2023-12-16T02:22:16.079372Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.273257Z", - "iopub.status.busy": "2023-12-15T12:25:27.272969Z", - "iopub.status.idle": "2023-12-15T12:25:27.322811Z", - "shell.execute_reply": "2023-12-15T12:25:27.321956Z" + "iopub.execute_input": "2023-12-16T02:22:16.083063Z", + "iopub.status.busy": "2023-12-16T02:22:16.082626Z", + "iopub.status.idle": "2023-12-16T02:22:16.118099Z", + "shell.execute_reply": "2023-12-16T02:22:16.117440Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.326394Z", - "iopub.status.busy": "2023-12-15T12:25:27.325971Z", - "iopub.status.idle": "2023-12-15T12:25:27.455201Z", - "shell.execute_reply": "2023-12-15T12:25:27.454521Z" + "iopub.execute_input": "2023-12-16T02:22:16.121215Z", + "iopub.status.busy": "2023-12-16T02:22:16.120889Z", + "iopub.status.idle": "2023-12-16T02:22:16.234595Z", + "shell.execute_reply": "2023-12-16T02:22:16.233868Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.458559Z", - "iopub.status.busy": "2023-12-15T12:25:27.458091Z", - "iopub.status.idle": "2023-12-15T12:25:30.016125Z", - "shell.execute_reply": "2023-12-15T12:25:30.015397Z" + "iopub.execute_input": "2023-12-16T02:22:16.237228Z", + "iopub.status.busy": "2023-12-16T02:22:16.237016Z", + "iopub.status.idle": "2023-12-16T02:22:18.708902Z", + "shell.execute_reply": "2023-12-16T02:22:18.708249Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:30.018795Z", - "iopub.status.busy": "2023-12-15T12:25:30.018527Z", - "iopub.status.idle": "2023-12-15T12:25:30.082726Z", - "shell.execute_reply": "2023-12-15T12:25:30.082031Z" + "iopub.execute_input": "2023-12-16T02:22:18.711538Z", + "iopub.status.busy": "2023-12-16T02:22:18.711318Z", + "iopub.status.idle": "2023-12-16T02:22:18.771519Z", + "shell.execute_reply": "2023-12-16T02:22:18.770892Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "9f938fd2", + "id": "c1ba8c12", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "927b7f11", + "id": "bbda91e3", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "ce401576", + "id": "88bbc618", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:30.085775Z", - "iopub.status.busy": "2023-12-15T12:25:30.085309Z", - "iopub.status.idle": "2023-12-15T12:25:30.190821Z", - "shell.execute_reply": "2023-12-15T12:25:30.190013Z" + "iopub.execute_input": "2023-12-16T02:22:18.774046Z", + "iopub.status.busy": "2023-12-16T02:22:18.773579Z", + "iopub.status.idle": "2023-12-16T02:22:18.866160Z", + "shell.execute_reply": "2023-12-16T02:22:18.865531Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "de0bddf5", + "id": "0d20fd93", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9100e898", + "id": "d1e92a1d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:30.195018Z", - "iopub.status.busy": "2023-12-15T12:25:30.194165Z", - "iopub.status.idle": "2023-12-15T12:25:30.280476Z", - "shell.execute_reply": "2023-12-15T12:25:30.279678Z" + "iopub.execute_input": "2023-12-16T02:22:18.869510Z", + "iopub.status.busy": "2023-12-16T02:22:18.868747Z", + "iopub.status.idle": "2023-12-16T02:22:18.958088Z", + "shell.execute_reply": "2023-12-16T02:22:18.957446Z" } }, "outputs": [ @@ -993,23 +993,37 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1a32a2c4a0da449380e45184ceb39232": { + "1d446569e1d447e8be772cca377023e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "30b7817e3b3549059669585b913e7f24": { + "341f53e6b06749609c0c36eb52537b50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3d920585fbbf4b31b37ee52347dfbe55": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1061,44 +1075,7 @@ "width": null } }, - "3f48fe937b084a598f988814816f25be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5792362f4eda4dbe9cd19293564000f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ad544065bb824496a22bc717b50193ac", - "IPY_MODEL_e95adadc5f8446d983675b86f93e44f6", - "IPY_MODEL_d2df0c2e1bfa4beab859c8cbf5255139" - ], - "layout": "IPY_MODEL_f48c8e7bbd7a4799bdedded29191f71a" - } - }, - "7dffced2e9634444850154eedd869e09": { + "44c98b9925c6459d8b4139f818f9e849": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1150,7 +1127,7 @@ "width": null } }, - "89b90db0f95347b7bc0bc1f228953519": { + "47b455e7b62b48ce96baf573cb61aa93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1166,15 +1143,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9dcebb450ce74074a2ed56864127bf79", + "layout": "IPY_MODEL_83112e9bf59d493aafdd47c89df5e0cc", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1a32a2c4a0da449380e45184ceb39232", + "style": "IPY_MODEL_f4ef23cc708346b7a2901e8e9107f08d", "value": 50.0 } }, - "9dcebb450ce74074a2ed56864127bf79": { + "4db378faaf7d4a1ba378619571f559a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4fa11fc0c76347848d8b094d18fa91b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1226,44 +1218,53 @@ "width": null } }, - "9fc7105473db415eb1f08039ffdd10bd": { + "5ce3fe1c978e41dbb552bfeae6b50c34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6b0233ddc1fe4e51af2e2c2af19896f3", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e3d3372aa8e04f8c83b1483bb416886d", + "value": 50.0 } }, - "ad544065bb824496a22bc717b50193ac": { + "614327c9d6fc4aaeb3387c26700312ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d23f84ac9fb640f9bced3e24ea5b96c8", - "placeholder": "", - "style": "IPY_MODEL_c7d8e0ee952343f38fd4461b8920d9a4", - "value": "number of examples processed for estimating thresholds: " + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4a1c736d07d498f87596bee2541c047", + "IPY_MODEL_47b455e7b62b48ce96baf573cb61aa93", + "IPY_MODEL_62eab93e550d43e7902858e5d731ed57" + ], + "layout": "IPY_MODEL_89fcb4bd6cb2427db44389f40dc612d8" } }, - "b45fce83b35a4ab6aaecf68a0f3de6b2": { + "62eab93e550d43e7902858e5d731ed57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1278,35 +1279,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_30b7817e3b3549059669585b913e7f24", + "layout": "IPY_MODEL_4fa11fc0c76347848d8b094d18fa91b0", "placeholder": "", - "style": "IPY_MODEL_3f48fe937b084a598f988814816f25be", - "value": "number of examples processed for checking labels: " + "style": "IPY_MODEL_1d446569e1d447e8be772cca377023e9", + "value": " 10000/? [00:00<00:00, 1201840.74it/s]" } }, - "b9dd8089efb74f89974067a70a36f8e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b45fce83b35a4ab6aaecf68a0f3de6b2", - "IPY_MODEL_89b90db0f95347b7bc0bc1f228953519", - "IPY_MODEL_ee1d27bcabf1415885301da30224b1f8" - ], - "layout": "IPY_MODEL_d9150eb1834f4a54a896b7f77c84bddd" - } - }, - "c47db6d599f14c4aa506f61d964010d2": { + "6b0233ddc1fe4e51af2e2c2af19896f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,22 +1337,7 @@ "width": null } }, - "c7d8e0ee952343f38fd4461b8920d9a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d23f84ac9fb640f9bced3e24ea5b96c8": { + "83112e9bf59d493aafdd47c89df5e0cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1425,43 +1389,7 @@ "width": null } }, - "d2df0c2e1bfa4beab859c8cbf5255139": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c47db6d599f14c4aa506f61d964010d2", - "placeholder": "", - "style": "IPY_MODEL_d54f84784d364a2e8bb8b77a72396c21", - "value": " 10000/? [00:00<00:00, 963875.45it/s]" - } - }, - "d54f84784d364a2e8bb8b77a72396c21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d9150eb1834f4a54a896b7f77c84bddd": { + "89fcb4bd6cb2427db44389f40dc612d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1513,46 +1441,43 @@ "width": null } }, - "dc9d4b5357904701b43f812c2f94278a": { + "8b36f0431e8a44aabaeb07ecab6afd3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b904165408644ed596d98b3dae0b1630", + "placeholder": "", + "style": "IPY_MODEL_4db378faaf7d4a1ba378619571f559a0", + "value": "number of examples processed for estimating thresholds: " } }, - "e95adadc5f8446d983675b86f93e44f6": { + "a2dbb2fe52e74c36a91d4ff5ef85a955": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f20d6feb33974952ba55b6503c1f5705", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9fc7105473db415eb1f08039ffdd10bd", - "value": 50.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ee1d27bcabf1415885301da30224b1f8": { + "a4a1c736d07d498f87596bee2541c047": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1567,13 +1492,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7dffced2e9634444850154eedd869e09", + "layout": "IPY_MODEL_ec2fdda5943a4cc68c6a8245303d2c19", "placeholder": "", - "style": "IPY_MODEL_dc9d4b5357904701b43f812c2f94278a", - "value": " 10000/? [00:00<00:00, 1071752.65it/s]" + "style": "IPY_MODEL_a2dbb2fe52e74c36a91d4ff5ef85a955", + "value": "number of examples processed for checking labels: " } }, - "f20d6feb33974952ba55b6503c1f5705": { + "b904165408644ed596d98b3dae0b1630": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1625,7 +1550,66 @@ "width": null } }, - "f48c8e7bbd7a4799bdedded29191f71a": { + "b999c10888934cacad3d43be7af8828d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44c98b9925c6459d8b4139f818f9e849", + "placeholder": "", + "style": "IPY_MODEL_341f53e6b06749609c0c36eb52537b50", + "value": " 10000/? [00:00<00:00, 1051731.19it/s]" + } + }, + "c871cb3093414b00950bb9bd042905ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b36f0431e8a44aabaeb07ecab6afd3b", + "IPY_MODEL_5ce3fe1c978e41dbb552bfeae6b50c34", + "IPY_MODEL_b999c10888934cacad3d43be7af8828d" + ], + "layout": "IPY_MODEL_3d920585fbbf4b31b37ee52347dfbe55" + } + }, + "e3d3372aa8e04f8c83b1483bb416886d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ec2fdda5943a4cc68c6a8245303d2c19": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1676,6 +1660,22 @@ "visibility": null, "width": null } + }, + "f4ef23cc708346b7a2901e8e9107f08d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index 7edda0ebd..a74355252 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:36.066982Z", - "iopub.status.busy": "2023-12-15T12:25:36.066739Z", - "iopub.status.idle": "2023-12-15T12:25:38.375786Z", - "shell.execute_reply": "2023-12-15T12:25:38.375147Z" + "iopub.execute_input": "2023-12-16T02:22:24.212552Z", + "iopub.status.busy": "2023-12-16T02:22:24.212361Z", + "iopub.status.idle": "2023-12-16T02:22:26.285793Z", + "shell.execute_reply": "2023-12-16T02:22:26.285200Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:38.378883Z", - "iopub.status.busy": "2023-12-15T12:25:38.378505Z", - "iopub.status.idle": "2023-12-15T12:25:38.382436Z", - "shell.execute_reply": "2023-12-15T12:25:38.381906Z" + "iopub.execute_input": "2023-12-16T02:22:26.288743Z", + "iopub.status.busy": "2023-12-16T02:22:26.288263Z", + "iopub.status.idle": "2023-12-16T02:22:26.291984Z", + "shell.execute_reply": "2023-12-16T02:22:26.291445Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:38.384719Z", - "iopub.status.busy": "2023-12-15T12:25:38.384511Z", - "iopub.status.idle": "2023-12-15T12:25:51.678053Z", - "shell.execute_reply": "2023-12-15T12:25:51.677333Z" + "iopub.execute_input": "2023-12-16T02:22:26.294317Z", + "iopub.status.busy": "2023-12-16T02:22:26.293967Z", + "iopub.status.idle": "2023-12-16T02:22:38.796037Z", + "shell.execute_reply": "2023-12-16T02:22:38.795336Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c8656f9d4814399b62fa7d4080ffc37", + "model_id": "5d974ba2124d4d59b2842fef58fe41db", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e255c3b875d4209af8fa32b89623366", + "model_id": "e6a98c6e8c574fa5a1727415c5b1f0ba", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce156ad521324d34b90aab32d9e95500", + "model_id": "2ae6dc4c539549d3be95b5ec04c04081", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66d6700270d24dcc823814d9409d0f81", + "model_id": "da03bc4f8c8b460c8ac8cb168f36ad5a", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2774ceed0c3b462f901e299ffd8ac6f2", + "model_id": "937922e926af4ad7aeed93f1d5e8cff5", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c8bfd3b024644fa9a0ed0bab1385734", + "model_id": "d98617fc42f1489ab7ff06215522b3a5", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8948bbcddfb41799a7d17999ddb3736", + "model_id": "72ecc5c7e9384c77a72c72ca2841a228", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de3aeec56b064f03b87e9b7accdac452", + "model_id": "9261dab3cd20476a824eac8ec600445b", "version_major": 2, "version_minor": 0 }, @@ -274,7 +274,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "69a7b0d7fa2a484b981d90f4babfded5", + "model_id": "ab0d5bd357284691bdaa5b467c6d73e9", "version_major": 2, "version_minor": 0 }, @@ -288,7 +288,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "df5ae742be134703877ffbd70d8abd81", + "model_id": "e0a594ef9b4a4ef6905b05777d47a100", "version_major": 2, "version_minor": 0 }, @@ -302,7 +302,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e83419d64ee64254acc38cdf3d20d41b", + "model_id": "984dbe060ae8480783767df972846114", "version_major": 2, "version_minor": 0 }, @@ -344,10 +344,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:51.681086Z", - "iopub.status.busy": "2023-12-15T12:25:51.680826Z", - "iopub.status.idle": "2023-12-15T12:25:51.685446Z", - "shell.execute_reply": "2023-12-15T12:25:51.684859Z" + "iopub.execute_input": "2023-12-16T02:22:38.798692Z", + "iopub.status.busy": "2023-12-16T02:22:38.798196Z", + "iopub.status.idle": "2023-12-16T02:22:38.802468Z", + "shell.execute_reply": "2023-12-16T02:22:38.801949Z" } }, "outputs": [ @@ -372,17 +372,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:51.687943Z", - "iopub.status.busy": "2023-12-15T12:25:51.687580Z", - "iopub.status.idle": "2023-12-15T12:26:02.778959Z", - "shell.execute_reply": "2023-12-15T12:26:02.778336Z" + "iopub.execute_input": "2023-12-16T02:22:38.804769Z", + "iopub.status.busy": "2023-12-16T02:22:38.804460Z", + "iopub.status.idle": "2023-12-16T02:22:49.360111Z", + "shell.execute_reply": "2023-12-16T02:22:49.359513Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03fab0ed8b22405eba4ecdb07bf2440e", + "model_id": "17ab9f84ce44446db0d25fe813c6fee7", "version_major": 2, "version_minor": 0 }, @@ -420,10 +420,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:02.782323Z", - "iopub.status.busy": "2023-12-15T12:26:02.781763Z", - "iopub.status.idle": "2023-12-15T12:26:24.794797Z", - "shell.execute_reply": "2023-12-15T12:26:24.794188Z" + "iopub.execute_input": "2023-12-16T02:22:49.362919Z", + "iopub.status.busy": "2023-12-16T02:22:49.362605Z", + "iopub.status.idle": "2023-12-16T02:23:10.617172Z", + "shell.execute_reply": "2023-12-16T02:23:10.616463Z" } }, "outputs": [], @@ -456,10 +456,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.797894Z", - "iopub.status.busy": "2023-12-15T12:26:24.797461Z", - "iopub.status.idle": "2023-12-15T12:26:24.803492Z", - "shell.execute_reply": "2023-12-15T12:26:24.802949Z" + "iopub.execute_input": "2023-12-16T02:23:10.620368Z", + "iopub.status.busy": "2023-12-16T02:23:10.619958Z", + "iopub.status.idle": "2023-12-16T02:23:10.625915Z", + "shell.execute_reply": "2023-12-16T02:23:10.625401Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.805570Z", - "iopub.status.busy": "2023-12-15T12:26:24.805371Z", - "iopub.status.idle": "2023-12-15T12:26:24.809723Z", - "shell.execute_reply": "2023-12-15T12:26:24.809201Z" + "iopub.execute_input": "2023-12-16T02:23:10.628430Z", + "iopub.status.busy": "2023-12-16T02:23:10.627946Z", + "iopub.status.idle": "2023-12-16T02:23:10.632538Z", + "shell.execute_reply": "2023-12-16T02:23:10.631939Z" }, "nbsphinx": "hidden" }, @@ -637,10 +637,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.811951Z", - "iopub.status.busy": "2023-12-15T12:26:24.811754Z", - "iopub.status.idle": "2023-12-15T12:26:24.821189Z", - "shell.execute_reply": "2023-12-15T12:26:24.820642Z" + "iopub.execute_input": "2023-12-16T02:23:10.635058Z", + "iopub.status.busy": "2023-12-16T02:23:10.634704Z", + "iopub.status.idle": "2023-12-16T02:23:10.644724Z", + "shell.execute_reply": "2023-12-16T02:23:10.644122Z" }, "nbsphinx": "hidden" }, @@ -765,10 +765,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.823361Z", - "iopub.status.busy": "2023-12-15T12:26:24.823164Z", - "iopub.status.idle": "2023-12-15T12:26:24.852829Z", - "shell.execute_reply": "2023-12-15T12:26:24.852311Z" + "iopub.execute_input": "2023-12-16T02:23:10.647202Z", + "iopub.status.busy": "2023-12-16T02:23:10.646861Z", + "iopub.status.idle": "2023-12-16T02:23:10.675166Z", + "shell.execute_reply": "2023-12-16T02:23:10.674682Z" } }, "outputs": [], @@ -805,10 +805,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.855338Z", - "iopub.status.busy": "2023-12-15T12:26:24.855134Z", - "iopub.status.idle": "2023-12-15T12:26:55.409271Z", - "shell.execute_reply": "2023-12-15T12:26:55.408432Z" + "iopub.execute_input": "2023-12-16T02:23:10.677618Z", + "iopub.status.busy": "2023-12-16T02:23:10.677275Z", + "iopub.status.idle": "2023-12-16T02:23:40.804691Z", + "shell.execute_reply": "2023-12-16T02:23:40.803831Z" } }, "outputs": [ @@ -824,14 +824,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.627\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.463\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.359\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.326\n", "Computing feature embeddings ...\n" ] }, @@ -848,7 +848,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.87it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.69it/s]" ] }, { @@ -856,7 +856,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 49.36it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 50.76it/s]" ] }, { @@ -864,7 +864,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 61.15it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.12it/s]" ] }, { @@ -872,7 +872,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 66.93it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 67.95it/s]" ] }, { @@ -880,7 +880,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 72.56it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.32it/s]" ] }, { @@ -888,7 +888,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.54it/s]" + "100%|██████████| 40/40 [00:00<00:00, 66.91it/s]" ] }, { @@ -918,7 +918,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 28.33it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.85it/s]" ] }, { @@ -926,7 +926,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 54.05it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 51.12it/s]" ] }, { @@ -934,7 +934,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 63.74it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.66it/s]" ] }, { @@ -942,7 +942,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 68.76it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.42it/s]" ] }, { @@ -950,7 +950,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 73.99it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 70.00it/s]" ] }, { @@ -958,7 +958,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 67.57it/s]" + "100%|██████████| 40/40 [00:00<00:00, 65.59it/s]" ] }, { @@ -980,14 +980,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.579\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.521\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.445\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.331\n", "Computing feature embeddings ...\n" ] }, @@ -1004,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.67it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.94it/s]" ] }, { @@ -1012,7 +1012,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.41it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 52.28it/s]" ] }, { @@ -1020,7 +1020,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 57.66it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 56.87it/s]" ] }, { @@ -1028,7 +1028,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.55it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 60.08it/s]" ] }, { @@ -1036,7 +1036,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 67.92it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 61.58it/s]" ] }, { @@ -1044,7 +1044,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.55it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 63.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 40/40 [00:00<00:00, 59.13it/s]" ] }, { @@ -1074,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.69it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.97it/s]" ] }, { @@ -1082,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 51.82it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 50.64it/s]" ] }, { @@ -1090,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 61.12it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.25it/s]" ] }, { @@ -1098,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 66.86it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 67.84it/s]" ] }, { @@ -1106,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 71.10it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.10it/s]" ] }, { @@ -1114,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.93it/s]" + "100%|██████████| 40/40 [00:00<00:00, 65.71it/s]" ] }, { @@ -1136,14 +1144,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.543\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.517\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.299\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.209\n", "Computing feature embeddings ...\n" ] }, @@ -1160,7 +1168,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:03, 9.82it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.12it/s]" ] }, { @@ -1168,7 +1176,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.76it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 52.80it/s]" ] }, { @@ -1176,7 +1184,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.50it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 64.03it/s]" ] }, { @@ -1184,7 +1192,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.24it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.55it/s]" ] }, { @@ -1192,7 +1200,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.67it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.75it/s]" ] }, { @@ -1200,7 +1208,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.59it/s]" + "100%|██████████| 40/40 [00:00<00:00, 66.90it/s]" ] }, { @@ -1230,7 +1238,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.43it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.33it/s]" ] }, { @@ -1238,7 +1246,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 53.46it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 49.74it/s]" ] }, { @@ -1246,7 +1254,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 64.13it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 56.97it/s]" ] }, { @@ -1254,7 +1262,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 68.01it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 61.23it/s]" ] }, { @@ -1262,7 +1270,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 73.39it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 66.86it/s]" ] }, { @@ -1270,7 +1278,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 67.49it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.77it/s]" ] }, { @@ -1347,10 +1355,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:55.412234Z", - "iopub.status.busy": "2023-12-15T12:26:55.411964Z", - "iopub.status.idle": "2023-12-15T12:26:55.426672Z", - "shell.execute_reply": "2023-12-15T12:26:55.426056Z" + "iopub.execute_input": "2023-12-16T02:23:40.807763Z", + "iopub.status.busy": "2023-12-16T02:23:40.807394Z", + "iopub.status.idle": "2023-12-16T02:23:40.821515Z", + "shell.execute_reply": "2023-12-16T02:23:40.821026Z" } }, "outputs": [], @@ -1375,10 +1383,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:55.429122Z", - "iopub.status.busy": "2023-12-15T12:26:55.428760Z", - "iopub.status.idle": "2023-12-15T12:26:55.868788Z", - "shell.execute_reply": "2023-12-15T12:26:55.868170Z" + "iopub.execute_input": "2023-12-16T02:23:40.823904Z", + "iopub.status.busy": "2023-12-16T02:23:40.823537Z", + "iopub.status.idle": "2023-12-16T02:23:41.253799Z", + "shell.execute_reply": "2023-12-16T02:23:41.253180Z" } }, "outputs": [], @@ -1398,10 +1406,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:55.871701Z", - "iopub.status.busy": "2023-12-15T12:26:55.871314Z", - "iopub.status.idle": "2023-12-15T12:30:17.710310Z", - "shell.execute_reply": "2023-12-15T12:30:17.709667Z" + "iopub.execute_input": "2023-12-16T02:23:41.256783Z", + "iopub.status.busy": "2023-12-16T02:23:41.256350Z", + "iopub.status.idle": "2023-12-16T02:27:01.139141Z", + "shell.execute_reply": "2023-12-16T02:27:01.138500Z" } }, "outputs": [ @@ -1439,7 +1447,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8220f874e834f548cf1006a40c5fd63", + "model_id": "360b2afa9b4349cd9c9399acc88b020e", "version_major": 2, "version_minor": 0 }, @@ -1478,10 +1486,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:17.713303Z", - "iopub.status.busy": "2023-12-15T12:30:17.712764Z", - "iopub.status.idle": "2023-12-15T12:30:18.204479Z", - "shell.execute_reply": "2023-12-15T12:30:18.203776Z" + "iopub.execute_input": "2023-12-16T02:27:01.142220Z", + "iopub.status.busy": "2023-12-16T02:27:01.141509Z", + "iopub.status.idle": "2023-12-16T02:27:01.619270Z", + "shell.execute_reply": "2023-12-16T02:27:01.618633Z" } }, "outputs": [ @@ -1671,10 +1679,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:18.208081Z", - "iopub.status.busy": "2023-12-15T12:30:18.207563Z", - "iopub.status.idle": "2023-12-15T12:30:18.270960Z", - "shell.execute_reply": "2023-12-15T12:30:18.270327Z" + "iopub.execute_input": "2023-12-16T02:27:01.622713Z", + "iopub.status.busy": "2023-12-16T02:27:01.622139Z", + "iopub.status.idle": "2023-12-16T02:27:01.685892Z", + "shell.execute_reply": "2023-12-16T02:27:01.685358Z" } }, "outputs": [ @@ -1778,10 +1786,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:18.273554Z", - "iopub.status.busy": "2023-12-15T12:30:18.273348Z", - "iopub.status.idle": "2023-12-15T12:30:18.283730Z", - "shell.execute_reply": "2023-12-15T12:30:18.283034Z" + "iopub.execute_input": "2023-12-16T02:27:01.688344Z", + "iopub.status.busy": "2023-12-16T02:27:01.688035Z", + "iopub.status.idle": "2023-12-16T02:27:01.697068Z", + "shell.execute_reply": "2023-12-16T02:27:01.696571Z" } }, "outputs": [ @@ -1911,10 +1919,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:18.286335Z", - "iopub.status.busy": "2023-12-15T12:30:18.286100Z", - "iopub.status.idle": "2023-12-15T12:30:18.291214Z", - "shell.execute_reply": "2023-12-15T12:30:18.290589Z" + "iopub.execute_input": "2023-12-16T02:27:01.699301Z", + "iopub.status.busy": "2023-12-16T02:27:01.699096Z", + "iopub.status.idle": "2023-12-16T02:27:01.704045Z", + "shell.execute_reply": "2023-12-16T02:27:01.703505Z" }, "nbsphinx": "hidden" }, @@ -1960,10 +1968,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:18.293822Z", - "iopub.status.busy": "2023-12-15T12:30:18.293309Z", - "iopub.status.idle": "2023-12-15T12:30:19.009317Z", - "shell.execute_reply": "2023-12-15T12:30:19.008645Z" + "iopub.execute_input": "2023-12-16T02:27:01.706201Z", + "iopub.status.busy": "2023-12-16T02:27:01.706000Z", + "iopub.status.idle": "2023-12-16T02:27:02.339991Z", + "shell.execute_reply": "2023-12-16T02:27:02.339308Z" } }, "outputs": [ @@ -1998,10 +2006,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.012094Z", - "iopub.status.busy": "2023-12-15T12:30:19.011586Z", - "iopub.status.idle": "2023-12-15T12:30:19.020515Z", - "shell.execute_reply": "2023-12-15T12:30:19.020024Z" + "iopub.execute_input": "2023-12-16T02:27:02.342567Z", + "iopub.status.busy": "2023-12-16T02:27:02.342197Z", + "iopub.status.idle": "2023-12-16T02:27:02.350506Z", + "shell.execute_reply": "2023-12-16T02:27:02.350015Z" } }, "outputs": [ @@ -2168,10 +2176,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.023146Z", - "iopub.status.busy": "2023-12-15T12:30:19.022675Z", - "iopub.status.idle": "2023-12-15T12:30:19.030592Z", - "shell.execute_reply": "2023-12-15T12:30:19.030098Z" + "iopub.execute_input": "2023-12-16T02:27:02.353074Z", + "iopub.status.busy": "2023-12-16T02:27:02.352777Z", + "iopub.status.idle": "2023-12-16T02:27:02.360461Z", + "shell.execute_reply": "2023-12-16T02:27:02.359918Z" }, "nbsphinx": "hidden" }, @@ -2247,10 +2255,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.032754Z", - "iopub.status.busy": "2023-12-15T12:30:19.032552Z", - "iopub.status.idle": "2023-12-15T12:30:19.504367Z", - "shell.execute_reply": "2023-12-15T12:30:19.503696Z" + "iopub.execute_input": "2023-12-16T02:27:02.362682Z", + "iopub.status.busy": "2023-12-16T02:27:02.362350Z", + "iopub.status.idle": "2023-12-16T02:27:02.808096Z", + "shell.execute_reply": "2023-12-16T02:27:02.807481Z" } }, "outputs": [ @@ -2287,10 +2295,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.506951Z", - "iopub.status.busy": "2023-12-15T12:30:19.506743Z", - "iopub.status.idle": "2023-12-15T12:30:19.522922Z", - "shell.execute_reply": "2023-12-15T12:30:19.522344Z" + "iopub.execute_input": "2023-12-16T02:27:02.810740Z", + "iopub.status.busy": "2023-12-16T02:27:02.810332Z", + "iopub.status.idle": "2023-12-16T02:27:02.826078Z", + "shell.execute_reply": "2023-12-16T02:27:02.825587Z" } }, "outputs": [ @@ -2447,10 +2455,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.525454Z", - "iopub.status.busy": "2023-12-15T12:30:19.525246Z", - "iopub.status.idle": "2023-12-15T12:30:19.531153Z", - "shell.execute_reply": "2023-12-15T12:30:19.530606Z" + "iopub.execute_input": "2023-12-16T02:27:02.828611Z", + "iopub.status.busy": "2023-12-16T02:27:02.828293Z", + "iopub.status.idle": "2023-12-16T02:27:02.834190Z", + "shell.execute_reply": "2023-12-16T02:27:02.833674Z" }, "nbsphinx": "hidden" }, @@ -2495,10 +2503,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.533333Z", - "iopub.status.busy": "2023-12-15T12:30:19.533136Z", - "iopub.status.idle": "2023-12-15T12:30:19.990875Z", - "shell.execute_reply": "2023-12-15T12:30:19.990204Z" + "iopub.execute_input": "2023-12-16T02:27:02.836550Z", + "iopub.status.busy": "2023-12-16T02:27:02.836186Z", + "iopub.status.idle": "2023-12-16T02:27:03.282681Z", + "shell.execute_reply": "2023-12-16T02:27:03.282014Z" } }, "outputs": [ @@ -2573,10 +2581,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.994149Z", - "iopub.status.busy": "2023-12-15T12:30:19.993903Z", - "iopub.status.idle": "2023-12-15T12:30:20.005445Z", - "shell.execute_reply": "2023-12-15T12:30:20.004854Z" + "iopub.execute_input": "2023-12-16T02:27:03.285607Z", + "iopub.status.busy": "2023-12-16T02:27:03.285367Z", + "iopub.status.idle": "2023-12-16T02:27:03.295173Z", + "shell.execute_reply": "2023-12-16T02:27:03.294518Z" } }, "outputs": [ @@ -2704,10 +2712,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.008671Z", - "iopub.status.busy": "2023-12-15T12:30:20.008245Z", - "iopub.status.idle": "2023-12-15T12:30:20.016306Z", - "shell.execute_reply": "2023-12-15T12:30:20.015692Z" + "iopub.execute_input": "2023-12-16T02:27:03.297966Z", + "iopub.status.busy": "2023-12-16T02:27:03.297732Z", + "iopub.status.idle": "2023-12-16T02:27:03.304225Z", + "shell.execute_reply": "2023-12-16T02:27:03.303570Z" }, "nbsphinx": "hidden" }, @@ -2744,10 +2752,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.019132Z", - "iopub.status.busy": "2023-12-15T12:30:20.018886Z", - "iopub.status.idle": "2023-12-15T12:30:20.216953Z", - "shell.execute_reply": "2023-12-15T12:30:20.216366Z" + "iopub.execute_input": "2023-12-16T02:27:03.307200Z", + "iopub.status.busy": "2023-12-16T02:27:03.306802Z", + "iopub.status.idle": "2023-12-16T02:27:03.509848Z", + "shell.execute_reply": "2023-12-16T02:27:03.509330Z" } }, "outputs": [ @@ -2789,10 +2797,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.219560Z", - "iopub.status.busy": "2023-12-15T12:30:20.219329Z", - "iopub.status.idle": "2023-12-15T12:30:20.227620Z", - "shell.execute_reply": "2023-12-15T12:30:20.227103Z" + "iopub.execute_input": "2023-12-16T02:27:03.512419Z", + "iopub.status.busy": "2023-12-16T02:27:03.512042Z", + "iopub.status.idle": "2023-12-16T02:27:03.520083Z", + "shell.execute_reply": "2023-12-16T02:27:03.519566Z" } }, "outputs": [ @@ -2878,10 +2886,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.229818Z", - "iopub.status.busy": "2023-12-15T12:30:20.229638Z", - "iopub.status.idle": "2023-12-15T12:30:20.421365Z", - "shell.execute_reply": "2023-12-15T12:30:20.420791Z" + "iopub.execute_input": "2023-12-16T02:27:03.522312Z", + "iopub.status.busy": "2023-12-16T02:27:03.521950Z", + "iopub.status.idle": "2023-12-16T02:27:03.690649Z", + "shell.execute_reply": "2023-12-16T02:27:03.690020Z" } }, "outputs": [ @@ -2912,10 +2920,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.423971Z", - "iopub.status.busy": "2023-12-15T12:30:20.423781Z", - "iopub.status.idle": "2023-12-15T12:30:20.428370Z", - "shell.execute_reply": "2023-12-15T12:30:20.427859Z" + "iopub.execute_input": "2023-12-16T02:27:03.693474Z", + "iopub.status.busy": "2023-12-16T02:27:03.692977Z", + "iopub.status.idle": "2023-12-16T02:27:03.698011Z", + "shell.execute_reply": "2023-12-16T02:27:03.697390Z" }, "nbsphinx": "hidden" }, @@ -2952,7 +2960,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0265fcb97d0a4a46872d5f114c876ef5": { + "0144165cf63c4bb7bdf8ee6a12361e43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "046c64dc06734a9395da2146b5e2f322": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc29fbd11ce040d6a1564772d18c0338", + "placeholder": "", + "style": "IPY_MODEL_54f566808f0640a099957676c9a409d8", + "value": "Downloading data: 100%" + } + }, + "0520c188ead94fbaaf2b08a6aa12572f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3004,7 +3048,83 @@ "width": null } }, - "0267e800f3a54dc99e64dc4c2a8b0b4c": { + "075bb83759d44cdd96eb356cd803b4b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "08a60c880f264d5ab36dc6967c1fe06e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_267206bd7f7140fc83d80b266fb56092", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_09bd5956b1b645279a645f9c3c5b739b", + "value": 4422102.0 + } + }, + "09bd5956b1b645279a645f9c3c5b739b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0b44bd305f594fbabd8757b2398163dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1fc5fe4b5a3044feafc6fe95326897db", + "placeholder": "", + "style": "IPY_MODEL_3ff090c071a947698fe6929cb3ed8a3f", + "value": "Downloading data: 100%" + } + }, + "0c9e91f643284b5ea52578b4d2418756": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3020,7 +3140,29 @@ "description_width": "" } }, - "026956164d5d4873b9bf9743a8107a16": { + "1097ded6c9ee430d96887ec356cfc49f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cef2cf64a53d4284bfe2b6ff287bbe9c", + "IPY_MODEL_68154dae7c684dffb9aca8c318f42eeb", + "IPY_MODEL_d23e00c51e7242339d48f1ad195db29b" + ], + "layout": "IPY_MODEL_cb70c30cc9ee4b018fc62d324c8c6ac4" + } + }, + "12076497a0a9430bb0b9cbdf55ab257e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3072,7 +3214,123 @@ "width": null } }, - "027d99a4144f4933a43fdd079a5d65fe": { + "12fd8a74f1874700b888772fc5e1fb77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "144618e2eea9486d915db20e46f89c7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39ab76992d6e444fa1fd97a577c82f46", + "placeholder": "", + "style": "IPY_MODEL_4dabea8a73ab447a82bc545da28c5ad4", + "value": "Downloading data: 100%" + } + }, + "146139fd8a614a59a41db4fd89aeb9b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f813ae2306fa45608678267cf8e18133", + "placeholder": "", + "style": "IPY_MODEL_e72d0b38f8314487a6dffedcdaa975c4", + "value": "Map (num_proc=4): 100%" + } + }, + "17048b2da5434dff861a853a104b9fcf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f443a765957d41e08f2c7f87b72ca818", + "placeholder": "", + "style": "IPY_MODEL_d750b33dbdb34bd0b045189dacd95b5e", + "value": " 8.85k/8.85k [00:00<00:00, 1.15MB/s]" + } + }, + "17ab9f84ce44446db0d25fe813c6fee7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_146139fd8a614a59a41db4fd89aeb9b4", + "IPY_MODEL_e8ab02071ba54cf4ae4f017f8fe2ecd1", + "IPY_MODEL_b0fd99da9f184ad9811bba3b067fb64f" + ], + "layout": "IPY_MODEL_e0b8bcdc66c5495a90ae03e9971d4135" + } + }, + "19c57893122b4e0cb11d488866448cf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1bee9cad96d8472d975511ed80680cf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3124,7 +3382,7 @@ "width": null } }, - "03c611690b8847138dea9dbe328786c9": { + "1f76466f059f465b8b0c3c780f0d3b20": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3176,44 +3434,7 @@ "width": null } }, - "03fab0ed8b22405eba4ecdb07bf2440e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5a31b02de02540408c3a384711b170e7", - "IPY_MODEL_57744a6374114af09fdbf844cde43c48", - "IPY_MODEL_3e4dc71f84214e8fa826f77842418cf8" - ], - "layout": "IPY_MODEL_db9ba7b88773400d9a06154910c5e750" - } - }, - "0afadab36dce40f48bd97262e545ceb1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0be2ee68977f41d88a7f6509e5e9f0ac": { + "1fc5fe4b5a3044feafc6fe95326897db": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3265,153 +3486,7 @@ "width": null } }, - "0bf18ea01fab4b73a295553bae2d3f27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0c8656f9d4814399b62fa7d4080ffc37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1d53020b1d0c4ce89846e6148dba48e3", - "IPY_MODEL_b9369a58ae444a738111de4a80f7030b", - "IPY_MODEL_bf9e54bf436d401695b9939b3516e29f" - ], - "layout": "IPY_MODEL_a33373c34df34223a78c6890cb34b55a" - } - }, - "0e67cfda686b4965b2aa2bef1d11cb99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1146a0cf4b734353b53657dac5a56b98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f058c21ace754cffa21a21f17cf4c752", - "placeholder": "", - "style": "IPY_MODEL_2d5ff213c1db40d285fc499d3b12b183", - "value": "Downloading data: 100%" - } - }, - "11ea86ab596947b69d2f994064ac1736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_63491890556e42e88f2d4e0f3bc754be", - "placeholder": "", - "style": "IPY_MODEL_df2bc52b852c4be1b4bff921a9010718", - "value": "Generating train split: 100%" - } - }, - "12fa881660494223873c0c672051b1b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "130a0dfc8e8b4da4844d23b4ac307d0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "15b911213d8a4fd1a505bc9a36f0fcab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7264985b11834b768d4c466b2ecb2fe2", - "placeholder": "", - "style": "IPY_MODEL_f7c8f23b6df44d79b9e93414f6c81bf8", - "value": "Downloading metadata: 100%" - } - }, - "195cd29844f446bda516673f34f56ec7": { + "1ffc2b96777d43878378f92c1fcd7352": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3463,28 +3538,7 @@ "width": null } }, - "1b7202a474e54066b1d64880daa71771": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7a5f77680fed4542926ab60893b2f664", - "placeholder": "", - "style": "IPY_MODEL_842da81243ba4d8f800054e52802512f", - "value": "Downloading readme: 100%" - } - }, - "1bf9177bbcf04497b1a054958e1f8201": { + "21e3c79b1cdb4c07b214fe65334d5ad1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3536,28 +3590,37 @@ "width": null } }, - "1d53020b1d0c4ce89846e6148dba48e3": { + "2319ad33137c4acc9fc6445a0d285ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c8206aa5131043e3aa65a5a958943772", - "placeholder": "", - "style": "IPY_MODEL_4807bd5e3c9744cd9c2d5e5db1a82f2d", - "value": "Downloading builder script: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1dd916376cee4c3a9328f3154791764c": { + "25845c487b2e4df5913a3bdb4abc77d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "267206bd7f7140fc83d80b266fb56092": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3609,22 +3672,7 @@ "width": null } }, - "1e5cfa09d1c9416598d4f10f6143515f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "200f62931016444e92cd3ae2fa485d10": { + "27f47e4a2ae4432aa4502a73ca44db87": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3676,29 +3724,44 @@ "width": null } }, - "20bcccf8b4d14cb1b2737164f8ffce3e": { + "2821c8b60bde4029be4c3f238271494c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2855d7e1658d484ba4e02af7b2a8f7f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72851bab8ccb4de7a4b31026359ff829", - "IPY_MODEL_d7a7fedc64254974b2b9a8f514abf73d", - "IPY_MODEL_96d0269d3a54473ba36c8abeab431541" - ], - "layout": "IPY_MODEL_fd96553d34164d1aacebf60fc6320012" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43f6db5ce8d540b6aecd9a5416473f48", + "placeholder": "", + "style": "IPY_MODEL_55f1dda94737477cb805237cc4ed2016", + "value": " 4/4 [00:00<00:00, 3.87it/s]" } }, - "2136572f392f483b879bba9ecbd9a632": { + "299198b97d6543d398a9a0f260611ba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3750,7 +3813,7 @@ "width": null } }, - "2235ae8942a244f287ea0665b0eb5e5c": { + "2a247ba3093d4a48b08781b89bd9eea6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3802,38 +3865,50 @@ "width": null } }, - "225d4c137aee43c993778eed79537ad3": { + "2ae6dc4c539549d3be95b5ec04c04081": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c8a84572b45b4bf18b280071fb1b5164", + "IPY_MODEL_40f8654a0db84b19bffcc80943ce80e0", + "IPY_MODEL_17048b2da5434dff861a853a104b9fcf" + ], + "layout": "IPY_MODEL_c26773ff68d04889a3556252a6e26428" } }, - "261096147e4c44bd8c8c1051825092b6": { + "2cc633a7261a4f9e954ab7c6635c3e7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_299198b97d6543d398a9a0f260611ba7", + "placeholder": "", + "style": "IPY_MODEL_e90b68df016343c1a3867b5df1e97eb2", + "value": "Generating train split: 100%" } }, - "265c94e7a45d48caa6281bb270373df0": { + "2f55577e804b4396ab1d827c3a041a0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3849,14 +3924,66 @@ "description_width": "" } }, - "2774ceed0c3b462f901e299ffd8ac6f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "324fec9152db42b8b2fc8fb63b4e4cbe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "360b2afa9b4349cd9c9399acc88b020e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", @@ -3864,14 +3991,143 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_39e74c291d354d67a377182d75f05ac9", - "IPY_MODEL_30f47648551e4630817c89f705600559", - "IPY_MODEL_535ff4b614834109928b14b2795c012b" + "IPY_MODEL_3713b524243b4499bf36e623ff106943", + "IPY_MODEL_3a0e06af2e9e410c9972993ca2d7dec6", + "IPY_MODEL_d80a8c99472440cbbe64cc7ddc73bdcc" ], - "layout": "IPY_MODEL_03c611690b8847138dea9dbe328786c9" + "layout": "IPY_MODEL_1ffc2b96777d43878378f92c1fcd7352" + } + }, + "36dfdcdec11b4330942806794277609b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d721c546977048d9b9ab9cc6ba5dbf32", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f6bbb9c5efca474f87286b38d83b5b1f", + "value": 5148.0 + } + }, + "3713b524243b4499bf36e623ff106943": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_324fec9152db42b8b2fc8fb63b4e4cbe", + "placeholder": "", + "style": "IPY_MODEL_fa6110f3bd7e4f75b5c739b4c81cc619", + "value": "100%" + } + }, + "37795adc87514ac28f665a009bd76777": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c277b797ef864e23b2c6f2f55eeef1d1", + "placeholder": "", + "style": "IPY_MODEL_075bb83759d44cdd96eb356cd803b4b8", + "value": "Downloading data: 100%" + } + }, + "38dc4866faf74be18ce360d5e1d8254e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_21e3c79b1cdb4c07b214fe65334d5ad1", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c73b51f627964d20951793c56ea650b0", + "value": 60000.0 + } + }, + "3934f9714a184e41a8f0e910bb049def": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_485cdf7d85c24e18a326d9d2696df6fb", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a6c4d759ca4469b92010890dff572ba", + "value": 10000.0 + } + }, + "39585d310ed9485ebc6e117f2da3ff3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "27f5b244f1034abfab9159523188f36e": { + "39ab76992d6e444fa1fd97a577c82f46": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3923,22 +4179,31 @@ "width": null } }, - "2d5ff213c1db40d285fc499d3b12b183": { + "3a0e06af2e9e410c9972993ca2d7dec6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7fe39f15b5a49fc8c2b741b879d3560", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d74278c1180426fbc76956a6e1e4da0", + "value": 60000.0 } }, - "2f2b12ce0da24cb8a6c23411ceb2f4df": { + "3db7d07c007249a78c49c0241587f62c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3990,28 +4255,31 @@ "width": null } }, - "2f7c8f05a84a43f18afd720e13bf2cf1": { + "3fda8c37f7b54cfcb220e1171b3942ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6596b561a51347f68510a398a83e4e30", - "placeholder": "", - "style": "IPY_MODEL_8a64abb1b69646898cea3d268ace6c8e", - "value": "Extracting data files: 100%" + "layout": "IPY_MODEL_12076497a0a9430bb0b9cbdf55ab257e", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c9e91f643284b5ea52578b4d2418756", + "value": 4.0 } }, - "2fa926177c8e484d8acd75712cbc174b": { + "3ff090c071a947698fe6929cb3ed8a3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4026,7 +4294,7 @@ "description_width": "" } }, - "30f47648551e4630817c89f705600559": { + "40f8654a0db84b19bffcc80943ce80e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4042,15 +4310,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0be2ee68977f41d88a7f6509e5e9f0ac", - "max": 26421880.0, + "layout": "IPY_MODEL_2a247ba3093d4a48b08781b89bd9eea6", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_bd35a3bcd6704468b10ddfb3e6669f43", - "value": 26421880.0 + "style": "IPY_MODEL_ae0ed21aee564660a97073ed8c67cd79", + "value": 8845.0 + } + }, + "41f4dfafd77243f69ba948da6544d1af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "314335c3e5aa4f69bb66757fde2ad70d": { + "434eccf8a49249829adff31f4db6925d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4102,38 +4385,7 @@ "width": null } }, - "31b0670b12ff4112a7d818f96ee8d973": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "322a6ae990c24e08b29eaa52921c7c58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3434c60964b94cebb21021c1b6adf430": { + "43f6db5ce8d540b6aecd9a5416473f48": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4185,37 +4437,59 @@ "width": null } }, - "348b0e75cc62469db559f1c8d05fc5a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "4716c9f6610f4d9cbc802a6e23852629": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3616ba00dcc1468298c6dc9804c94d0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3886ae7a89fb428fa1f0a2e1edd51cdc": { + "4789f4131de241549a86ba4b24a0d37f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4231,103 +4505,59 @@ "description_width": "" } }, - "39e74c291d354d67a377182d75f05ac9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c9a6b0e18f134b369babf5cdc639b6f0", - "placeholder": "", - "style": "IPY_MODEL_3c50e33a6daa41b085c2cca2ef3acd33", - "value": "Downloading data: 100%" - } - }, - "3c50e33a6daa41b085c2cca2ef3acd33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3e4dc71f84214e8fa826f77842418cf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_200f62931016444e92cd3ae2fa485d10", - "placeholder": "", - "style": "IPY_MODEL_60171fdb76664b9f948ba55ffb72e1ee", - "value": " 60000/60000 [00:11<00:00, 6957.80 examples/s]" - } - }, - "3f892dabebbd4cea9655d8d67a6ddcf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "485cdf7d85c24e18a326d9d2696df6fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4422b0d89b684c97b7a39585240b1565": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b415c90d3e714869aab57bcc846ffcbd", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6f9fcefc9874cc396217532193be5a0", - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4482b685ec2046ff99e821d5812fa87f": { + "4b91090317f045f881f5bc8e8259664f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4342,13 +4572,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c74ca08d7b814b20a73ab0f1e0e42c7a", + "layout": "IPY_MODEL_b219644003684dcebada8d9341eea420", "placeholder": "", - "style": "IPY_MODEL_322a6ae990c24e08b29eaa52921c7c58", - "value": " 5.15k/5.15k [00:00<00:00, 624kB/s]" + "style": "IPY_MODEL_50d5f1c9b647435ea6b40a1f66e76940", + "value": " 4.42M/4.42M [00:00<00:00, 90.5MB/s]" } }, - "4684a1b6755249708c18b9962f46003c": { + "4dabea8a73ab447a82bc545da28c5ad4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4363,22 +4593,59 @@ "description_width": "" } }, - "4807bd5e3c9744cd9c2d5e5db1a82f2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "4e828c58547c433594369d11b2e5559c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "49a782338f4740f8a369f79815b627fe": { + "50d5f1c9b647435ea6b40a1f66e76940": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4393,158 +4660,7 @@ "description_width": "" } }, - "4af36f269ccc4342ba05acfe0cd3c8b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_026956164d5d4873b9bf9743a8107a16", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_71f48a7436b24b2bb19377e74f8496b6", - "value": 4422102.0 - } - }, - "4ce4465ccf80406bbddc6f9b0a69af8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c80eaef0142740b085c54c5a6a738e0a", - "placeholder": "", - "style": "IPY_MODEL_81ee2832e3894c0dbd1116390074e079", - "value": " 4.42M/4.42M [00:00<00:00, 84.7MB/s]" - } - }, - "511295e3d3e640509ae95b01d9d5407c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1bf9177bbcf04497b1a054958e1f8201", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3886ae7a89fb428fa1f0a2e1edd51cdc", - "value": 5148.0 - } - }, - "5323fe1f677e4e61b22bc16a59b8eeb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e1b26fd71e924da696b7e30d06da20da", - "placeholder": "", - "style": "IPY_MODEL_73d26894ea8e4fa88cdce523c9f65f9b", - "value": " 3.13k/3.13k [00:00<00:00, 378kB/s]" - } - }, - "535ff4b614834109928b14b2795c012b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dfbfe3839fed4b16bea6aab7bb54a2da", - "placeholder": "", - "style": "IPY_MODEL_12fa881660494223873c0c672051b1b1", - "value": " 26.4M/26.4M [00:00<00:00, 109MB/s]" - } - }, - "55c7cd3f65e24090b84f2f223ddb915a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "57744a6374114af09fdbf844cde43c48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b31bd79e30da4958ae8a989dc378be01", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d92e3a39239c45c097462355b1fbe6bc", - "value": 60000.0 - } - }, - "5a2d80ad86fb4b31b063911e4b32cb34": { + "52cf32e2a5164b15b2dd9092007cb99b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4596,88 +4712,7 @@ "width": null } }, - "5a31b02de02540408c3a384711b170e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8cfc1b821673483eb3399e362e9cc7a4", - "placeholder": "", - "style": "IPY_MODEL_4684a1b6755249708c18b9962f46003c", - "value": "Map (num_proc=4): 100%" - } - }, - "5d1c98afd9ad4921a01ee4eb620aa87c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_86e2b056c1d5429183f5c3012cad8b1e", - "placeholder": "", - "style": "IPY_MODEL_261096147e4c44bd8c8c1051825092b6", - "value": " 10000/10000 [00:01<00:00, 7248.05 examples/s]" - } - }, - "60171fdb76664b9f948ba55ffb72e1ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "61b569e6e21341fd9cbfec22fba6eec1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_727f6084167946c5910c146bc6394335", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_70fe10a0a2584ddd8500bde5522e8736", - "value": 8845.0 - } - }, - "63491890556e42e88f2d4e0f3bc754be": { + "5395550674eb456eae9539d709abca05": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4729,7 +4764,7 @@ "width": null } }, - "6509a8a9778446ce8e92caf9f4c6ccbc": { + "54c3e30261cb4dbd99942b22f2d86573": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4781,7 +4816,97 @@ "width": null } }, - "6596b561a51347f68510a398a83e4e30": { + "54f566808f0640a099957676c9a409d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "55de14bca718448faf2cc672d611ffd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a5f6cb8a1f884740b6b790dd3ed523c9", + "placeholder": "", + "style": "IPY_MODEL_8dbdd50f718a418d8d002585a945e516", + "value": "Downloading builder script: 100%" + } + }, + "55f1dda94737477cb805237cc4ed2016": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "59ca56eec2a74c028f84c7f5638f7110": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99298e4abf3141ee94be575fa911db83", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_19c57893122b4e0cb11d488866448cf1", + "value": 29515.0 + } + }, + "5a4f602d25e04050ae0efbd40f42b3b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5b25c23ef47d45379c8dc956c8f245cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4833,28 +4958,7 @@ "width": null } }, - "662131ab3fa644fb9e2326247206c9b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8695472b19c149d29bacddf7685059cc", - "placeholder": "", - "style": "IPY_MODEL_f6d5ae042455476084eba55c8ca69818", - "value": "Downloading data: 100%" - } - }, - "66d6700270d24dcc823814d9409d0f81": { + "5d974ba2124d4d59b2842fef58fe41db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4869,14 +4973,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b148798a3de440f48272f1954dd30357", - "IPY_MODEL_b6994fb218fa4b288bc86ae4d004eb52", - "IPY_MODEL_eae520e7e7cd4127b85a82b7a0bb1979" + "IPY_MODEL_55de14bca718448faf2cc672d611ffd0", + "IPY_MODEL_f5289fe993fc456c898ff381cac9fd0e", + "IPY_MODEL_7d77fe88cfa443e0a9524b4a82b10301" ], - "layout": "IPY_MODEL_ab12bb02375f49e69ff71452fcba2a27" + "layout": "IPY_MODEL_9c1c1cfa9ed64d59b41ca027edb91c0e" } }, - "6882cfb9e10b42b890a95809b0f9090d": { + "5e28139575614aef8f3e6fb0091a2976": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4891,135 +4995,79 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1dd916376cee4c3a9328f3154791764c", + "layout": "IPY_MODEL_95fe1518db984332b9a89a262ec1bfb8", "placeholder": "", - "style": "IPY_MODEL_3f892dabebbd4cea9655d8d67a6ddcf1", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_b5d5b860f5064c7f8d4a33dcf297efb3", + "value": " 3.13k/3.13k [00:00<00:00, 429kB/s]" } }, - "69a7b0d7fa2a484b981d90f4babfded5": { + "616d9c202e704a2891c4383040ea6590": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2f7c8f05a84a43f18afd720e13bf2cf1", - "IPY_MODEL_adbdd34b99b84625875b3df3cf4cd57b", - "IPY_MODEL_e9ed7d2116be42c1b824785bbbe217c0" - ], - "layout": "IPY_MODEL_314335c3e5aa4f69bb66757fde2ad70d" - } - }, - "6b1cbb7a1d6e46ea8684e2b2761470ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e828c58547c433594369d11b2e5559c", + "placeholder": "", + "style": "IPY_MODEL_c841686c63d54fd5abc93bdd8a589cdb", + "value": " 29.5k/29.5k [00:00<00:00, 3.52MB/s]" } }, - "70fe10a0a2584ddd8500bde5522e8736": { + "62297532c4204fa0b4c622a34711269c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27f47e4a2ae4432aa4502a73ca44db87", + "placeholder": "", + "style": "IPY_MODEL_f1fb24373a5845f5aad547183691fc25", + "value": "Generating test split: 100%" } }, - "71f48a7436b24b2bb19377e74f8496b6": { + "62913c861b31450caeceff2aa694f584": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7264985b11834b768d4c466b2ecb2fe2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b25c23ef47d45379c8dc956c8f245cf", + "max": 3126.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f55577e804b4396ab1d827c3a041a0a", + "value": 3126.0 } }, - "727f6084167946c5910c146bc6394335": { + "674dcfc6abf94a7ebb1f35cafe672d6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5071,80 +5119,83 @@ "width": null } }, - "72851bab8ccb4de7a4b31026359ff829": { + "68154dae7c684dffb9aca8c318f42eeb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f2785c87549a4888adda223f7226e688", - "placeholder": "", - "style": "IPY_MODEL_0bf18ea01fab4b73a295553bae2d3f27", - "value": "Computing checksums: 100%" + "layout": "IPY_MODEL_835b554ca35a4d15b98ca03242f406d9", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4789f4131de241549a86ba4b24a0d37f", + "value": 4.0 } }, - "72fb4ffcda5d43a9aea200cdb82eb704": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "6c0b269e7f9a44a1bb6fe561eebb75ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "6d74278c1180426fbc76956a6e1e4da0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6fc90077e91d464a8d8dd4311baa4414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b672d8bb0c72458fbf0c2f80d55ad662", + "placeholder": "", + "style": "IPY_MODEL_2319ad33137c4acc9fc6445a0d285ff8", + "value": " 5.15k/5.15k [00:00<00:00, 606kB/s]" } }, - "73d26894ea8e4fa88cdce523c9f65f9b": { + "711a33d5e12442ce90c6a714ae9b4d6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5159,80 +5210,31 @@ "description_width": "" } }, - "7771df67f6d74f4da0154f8f658510c6": { + "71aa5242cebe4f6b81eb957a30ad6e91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_efcf21c1d26847c4bd65148dff8c2812", - "placeholder": "", - "style": "IPY_MODEL_130a0dfc8e8b4da4844d23b4ac307d0f", - "value": " 29.5k/29.5k [00:00<00:00, 3.19MB/s]" - } - }, - "7a5f77680fed4542926ab60893b2f664": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_3db7d07c007249a78c49c0241587f62c", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b977fa51b5904c6ab221b81ddbdd8e16", + "value": 4.0 } }, - "7c3d2dbefa494bf7b88922af24c1fcd3": { + "7243cda0d8a041ad88628570b940470e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5284,37 +5286,29 @@ "width": null } }, - "81ee2832e3894c0dbd1116390074e079": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "842da81243ba4d8f800054e52802512f": { + "72ecc5c7e9384c77a72c72ca2841a228": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b44bd305f594fbabd8757b2398163dd", + "IPY_MODEL_08a60c880f264d5ab36dc6967c1fe06e", + "IPY_MODEL_4b91090317f045f881f5bc8e8259664f" + ], + "layout": "IPY_MODEL_eefdff1cfcda48faafbfaf03be5bd75e" } }, - "84aa166fc89f43d3a9fc8b64674b2bef": { + "7823b15de4e14c48ac2c0c2602bfdb69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5366,7 +5360,7 @@ "width": null } }, - "8695472b19c149d29bacddf7685059cc": { + "78d4c8327a7f4672a14a55df00511bae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5418,7 +5412,28 @@ "width": null } }, - "86e2b056c1d5429183f5c3012cad8b1e": { + "7d77fe88cfa443e0a9524b4a82b10301": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7243cda0d8a041ad88628570b940470e", + "placeholder": "", + "style": "IPY_MODEL_25845c487b2e4df5913a3bdb4abc77d1", + "value": " 4.83k/4.83k [00:00<00:00, 599kB/s]" + } + }, + "833893bb623049d6847d3fbf14fd727a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5470,7 +5485,7 @@ "width": null } }, - "87b90b296e9a4ae196109e73414c3425": { + "835b554ca35a4d15b98ca03242f406d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5522,44 +5537,7 @@ "width": null } }, - "8a64abb1b69646898cea3d268ace6c8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8c8bfd3b024644fa9a0ed0bab1385734": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_662131ab3fa644fb9e2326247206c9b1", - "IPY_MODEL_9ce0f18e501f47a687882e418764d326", - "IPY_MODEL_7771df67f6d74f4da0154f8f658510c6" - ], - "layout": "IPY_MODEL_d8be76cbdaa149b2883e67b5ba1cc539" - } - }, - "8cfc1b821673483eb3399e362e9cc7a4": { + "83f1234cf7ac48cb842da2c7864d9102": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5598,135 +5576,20 @@ "max_width": null, "min_height": null, "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8e255c3b875d4209af8fa32b89623366": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_15b911213d8a4fd1a505bc9a36f0fcab", - "IPY_MODEL_e2234e34f4c0427db9f7a53fc29eaf8a", - "IPY_MODEL_5323fe1f677e4e61b22bc16a59b8eeb2" - ], - "layout": "IPY_MODEL_2f2b12ce0da24cb8a6c23411ceb2f4df" - } - }, - "8e2a56afb6ab46bfba1861c6363ab332": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8e920f2ab9df4659aaa2f4ad988947ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3434c60964b94cebb21021c1b6adf430", - "placeholder": "", - "style": "IPY_MODEL_348b0e75cc62469db559f1c8d05fc5a2", - "value": " 8.85k/8.85k [00:00<00:00, 1.08MB/s]" - } - }, - "8fa0b95ac89741919c88432dd6ef6097": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed001ee38c31476e922dd4aa8845dad8", - "placeholder": "", - "style": "IPY_MODEL_1e5cfa09d1c9416598d4f10f6143515f", - "value": "100%" - } - }, - "92d3df33944e4468a2edfdd6b1c79f03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "96d0269d3a54473ba36c8abeab431541": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c82df3e6f7534985b9ed7bc420af40c0", - "placeholder": "", - "style": "IPY_MODEL_49a782338f4740f8a369f79815b627fe", - "value": " 4/4 [00:00<00:00, 756.99it/s]" + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "999e380cfc554a25819aded60c6f3c0c": { + "8b58526922324719868fc159fc9ca06b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5778,52 +5641,81 @@ "width": null } }, - "9ce0f18e501f47a687882e418764d326": { + "8dbdd50f718a418d8d002585a945e516": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9003cbe226b2487d84c0290bb8b9c557": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9261dab3cd20476a824eac8ec600445b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b1cae6ffbab342eebd57dad6848fa23f", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0267e800f3a54dc99e64dc4c2a8b0b4c", - "value": 29515.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37795adc87514ac28f665a009bd76777", + "IPY_MODEL_36dfdcdec11b4330942806794277609b", + "IPY_MODEL_6fc90077e91d464a8d8dd4311baa4414" + ], + "layout": "IPY_MODEL_833893bb623049d6847d3fbf14fd727a" } }, - "9fa11ea2b5374d1b89620052642e3f0a": { + "937922e926af4ad7aeed93f1d5e8cff5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_87b90b296e9a4ae196109e73414c3425", - "placeholder": "", - "style": "IPY_MODEL_f4f9be5825164b4287d59c1ab94df8a1", - "value": " 60000/60000 [00:08<00:00, 7282.83 examples/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_046c64dc06734a9395da2146b5e2f322", + "IPY_MODEL_a81ad70b1d7e423aa68ed8e84f00aeea", + "IPY_MODEL_d93c9dc3d9f44717b34e80d74c6eafc6" + ], + "layout": "IPY_MODEL_674dcfc6abf94a7ebb1f35cafe672d6d" } }, - "a33373c34df34223a78c6890cb34b55a": { + "95fe1518db984332b9a89a262ec1bfb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5875,7 +5767,7 @@ "width": null } }, - "a6f9fcefc9874cc396217532193be5a0": { + "9797c628fdc34d5e9199175be4b45124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -5891,7 +5783,29 @@ "description_width": "" } }, - "a720d9e36aee4ed3999cb08662633f8a": { + "984dbe060ae8480783767df972846114": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_62297532c4204fa0b4c622a34711269c", + "IPY_MODEL_3934f9714a184e41a8f0e910bb049def", + "IPY_MODEL_e706a7291d454adebfbd1886dd36c129" + ], + "layout": "IPY_MODEL_ab509774166a45c8b7f41e5f2b6d9e22" + } + }, + "99298e4abf3141ee94be575fa911db83": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5943,29 +5857,23 @@ "width": null } }, - "a8948bbcddfb41799a7d17999ddb3736": { + "9a6c4d759ca4469b92010890dff572ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6882cfb9e10b42b890a95809b0f9090d", - "IPY_MODEL_4af36f269ccc4342ba05acfe0cd3c8b3", - "IPY_MODEL_4ce4465ccf80406bbddc6f9b0a69af8a" - ], - "layout": "IPY_MODEL_6509a8a9778446ce8e92caf9f4c6ccbc" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ab12bb02375f49e69ff71452fcba2a27": { + "9c1c1cfa9ed64d59b41ca027edb91c0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6017,31 +5925,22 @@ "width": null } }, - "adbdd34b99b84625875b3df3cf4cd57b": { + "a205867470a746e8beef7987e024f2ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2235ae8942a244f287ea0665b0eb5e5c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_31b0670b12ff4112a7d818f96ee8d973", - "value": 4.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ae9684c140074bdda24fa627dbed3a1f": { + "a5f6cb8a1f884740b6b790dd3ed523c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6093,7 +5992,7 @@ "width": null } }, - "b148798a3de440f48272f1954dd30357": { + "a615c05483674cad94430ed87905fc65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6108,13 +6007,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_027d99a4144f4933a43fdd079a5d65fe", + "layout": "IPY_MODEL_ce7a35a982f24c0a8417a59e6868ce15", "placeholder": "", - "style": "IPY_MODEL_2fa926177c8e484d8acd75712cbc174b", - "value": "Downloading data files: 100%" + "style": "IPY_MODEL_711a33d5e12442ce90c6a714ae9b4d6b", + "value": " 4/4 [00:02<00:00, 1.83it/s]" } }, - "b1cae6ffbab342eebd57dad6848fa23f": { + "a696ca59311e4186b9fdc4aede6fca8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6166,7 +6065,7 @@ "width": null } }, - "b31bd79e30da4958ae8a989dc378be01": { + "a7fe39f15b5a49fc8c2b741b879d3560": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6218,7 +6117,53 @@ "width": null } }, - "b415c90d3e714869aab57bcc846ffcbd": { + "a81ad70b1d7e423aa68ed8e84f00aeea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e7af5be193a64d6b905ba17b7da2db13", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9797c628fdc34d5e9199175be4b45124", + "value": 26421880.0 + } + }, + "ab0d5bd357284691bdaa5b467c6d73e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f887d1c18d574f5b98206213f6f8367b", + "IPY_MODEL_71aa5242cebe4f6b81eb957a30ad6e91", + "IPY_MODEL_2855d7e1658d484ba4e02af7b2a8f7f1" + ], + "layout": "IPY_MODEL_1bee9cad96d8472d975511ed80680cf2" + } + }, + "ab509774166a45c8b7f41e5f2b6d9e22": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6270,7 +6215,59 @@ "width": null } }, - "b44866e6da5544ae8c35a50d927bc08e": { + "ad3e8f4378aa4f3cbe5c4f737e938442": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ae0ed21aee564660a97073ed8c67cd79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b0fd99da9f184ad9811bba3b067fb64f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52cf32e2a5164b15b2dd9092007cb99b", + "placeholder": "", + "style": "IPY_MODEL_6c0b269e7f9a44a1bb6fe561eebb75ca", + "value": " 60000/60000 [00:10<00:00, 5511.93 examples/s]" + } + }, + "b219644003684dcebada8d9341eea420": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6310,67 +6307,19 @@ "min_height": null, "min_width": null, "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b6994fb218fa4b288bc86ae4d004eb52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7c3d2dbefa494bf7b88922af24c1fcd3", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0e67cfda686b4965b2aa2bef1d11cb99", - "value": 4.0 - } - }, - "b9369a58ae444a738111de4a80f7030b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cbe0dafd67b84c859c3388aa6b684800", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_225d4c137aee43c993778eed79537ad3", - "value": 4833.0 + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bd35a3bcd6704468b10ddfb3e6669f43": { + "b288c8cc232f4ddb9222c145cb93a3fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -6386,28 +6335,7 @@ "description_width": "" } }, - "bf9e54bf436d401695b9939b3516e29f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_999e380cfc554a25819aded60c6f3c0c", - "placeholder": "", - "style": "IPY_MODEL_c0748af33fd0443e8eaa7d2b324afe85", - "value": " 4.83k/4.83k [00:00<00:00, 575kB/s]" - } - }, - "c0748af33fd0443e8eaa7d2b324afe85": { + "b5d5b860f5064c7f8d4a33dcf297efb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6422,7 +6350,7 @@ "description_width": "" } }, - "c74ca08d7b814b20a73ab0f1e0e42c7a": { + "b672d8bb0c72458fbf0c2f80d55ad662": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6474,7 +6402,23 @@ "width": null } }, - "c80eaef0142740b085c54c5a6a738e0a": { + "b977fa51b5904c6ab221b81ddbdd8e16": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c17ce308bd5a4c8ebb2dfdc2c4c897bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6526,7 +6470,7 @@ "width": null } }, - "c8206aa5131043e3aa65a5a958943772": { + "c26773ff68d04889a3556252a6e26428": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6578,29 +6522,7 @@ "width": null } }, - "c8220f874e834f548cf1006a40c5fd63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8fa0b95ac89741919c88432dd6ef6097", - "IPY_MODEL_e703f8e1b1174f49b5ca5cb35d7872da", - "IPY_MODEL_ed3bc03f1f0d462a99bbedc8e16f4739" - ], - "layout": "IPY_MODEL_72fb4ffcda5d43a9aea200cdb82eb704" - } - }, - "c82df3e6f7534985b9ed7bc420af40c0": { + "c277b797ef864e23b2c6f2f55eeef1d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6652,7 +6574,59 @@ "width": null } }, - "c92aaf4fef68498d8fdf08ef0c8ad874": { + "c73b51f627964d20951793c56ea650b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c841686c63d54fd5abc93bdd8a589cdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c8a84572b45b4bf18b280071fb1b5164": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f66bb89ffb724a2bb2ff77d8145ae070", + "placeholder": "", + "style": "IPY_MODEL_f865015b07a84eac99be00092140e401", + "value": "Downloading readme: 100%" + } + }, + "cb70c30cc9ee4b018fc62d324c8c6ac4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6704,7 +6678,7 @@ "width": null } }, - "c9a6b0e18f134b369babf5cdc639b6f0": { + "cc29fbd11ce040d6a1564772d18c0338": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6756,7 +6730,7 @@ "width": null } }, - "cbe0dafd67b84c859c3388aa6b684800": { + "ce7a35a982f24c0a8417a59e6868ce15": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6808,53 +6782,70 @@ "width": null } }, - "ce156ad521324d34b90aab32d9e95500": { + "cef2cf64a53d4284bfe2b6ff287bbe9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1b7202a474e54066b1d64880daa71771", - "IPY_MODEL_61b569e6e21341fd9cbfec22fba6eec1", - "IPY_MODEL_8e920f2ab9df4659aaa2f4ad988947ec" - ], - "layout": "IPY_MODEL_b44866e6da5544ae8c35a50d927bc08e" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54c3e30261cb4dbd99942b22f2d86573", + "placeholder": "", + "style": "IPY_MODEL_a205867470a746e8beef7987e024f2ee", + "value": "Computing checksums: 100%" } }, - "d7a7fedc64254974b2b9a8f514abf73d": { + "d23e00c51e7242339d48f1ad195db29b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ae9684c140074bdda24fa627dbed3a1f", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_265c94e7a45d48caa6281bb270373df0", - "value": 4.0 + "layout": "IPY_MODEL_78d4c8327a7f4672a14a55df00511bae", + "placeholder": "", + "style": "IPY_MODEL_5a4f602d25e04050ae0efbd40f42b3b1", + "value": " 4/4 [00:00<00:00, 515.51it/s]" + } + }, + "d668fb8634904ef3934786687386da5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b58526922324719868fc159fc9ca06b", + "placeholder": "", + "style": "IPY_MODEL_12fd8a74f1874700b888772fc5e1fb77", + "value": "Downloading data files: 100%" } }, - "d8be76cbdaa149b2883e67b5ba1cc539": { + "d721c546977048d9b9ab9cc6ba5dbf32": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6906,23 +6897,108 @@ "width": null } }, - "d92e3a39239c45c097462355b1fbe6bc": { + "d750b33dbdb34bd0b045189dacd95b5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "db9ba7b88773400d9a06154910c5e750": { + "d80a8c99472440cbbe64cc7ddc73bdcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc5acefb1ecd43dd862efff61ae39c68", + "placeholder": "", + "style": "IPY_MODEL_0144165cf63c4bb7bdf8ee6a12361e43", + "value": " 60000/60000 [00:28<00:00, 2137.66it/s]" + } + }, + "d93c9dc3d9f44717b34e80d74c6eafc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4716c9f6610f4d9cbc802a6e23852629", + "placeholder": "", + "style": "IPY_MODEL_9003cbe226b2487d84c0290bb8b9c557", + "value": " 26.4M/26.4M [00:00<00:00, 118MB/s]" + } + }, + "d98617fc42f1489ab7ff06215522b3a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_144618e2eea9486d915db20e46f89c7a", + "IPY_MODEL_59ca56eec2a74c028f84c7f5638f7110", + "IPY_MODEL_616d9c202e704a2891c4383040ea6590" + ], + "layout": "IPY_MODEL_c17ce308bd5a4c8ebb2dfdc2c4c897bf" + } + }, + "da03bc4f8c8b460c8ac8cb168f36ad5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d668fb8634904ef3934786687386da5b", + "IPY_MODEL_3fda8c37f7b54cfcb220e1171b3942ef", + "IPY_MODEL_a615c05483674cad94430ed87905fc65" + ], + "layout": "IPY_MODEL_7823b15de4e14c48ac2c0c2602bfdb69" + } + }, + "dc5acefb1ecd43dd862efff61ae39c68": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6974,44 +7050,7 @@ "width": null } }, - "de3aeec56b064f03b87e9b7accdac452": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1146a0cf4b734353b53657dac5a56b98", - "IPY_MODEL_511295e3d3e640509ae95b01d9d5407c", - "IPY_MODEL_4482b685ec2046ff99e821d5812fa87f" - ], - "layout": "IPY_MODEL_84aa166fc89f43d3a9fc8b64674b2bef" - } - }, - "df2bc52b852c4be1b4bff921a9010718": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "df5ae742be134703877ffbd70d8abd81": { + "e0a594ef9b4a4ef6905b05777d47a100": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -7026,14 +7065,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_11ea86ab596947b69d2f994064ac1736", - "IPY_MODEL_4422b0d89b684c97b7a39585240b1565", - "IPY_MODEL_9fa11ea2b5374d1b89620052642e3f0a" + "IPY_MODEL_2cc633a7261a4f9e954ab7c6635c3e7e", + "IPY_MODEL_38dc4866faf74be18ce360d5e1d8254e", + "IPY_MODEL_f9ae0f065be94878835f3b8d1ed89bee" ], - "layout": "IPY_MODEL_0265fcb97d0a4a46872d5f114c876ef5" + "layout": "IPY_MODEL_f09f3c49f9ea442bb41b7db3c1e655bd" } }, - "dfbfe3839fed4b16bea6aab7bb54a2da": { + "e0b8bcdc66c5495a90ae03e9971d4135": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7085,31 +7124,65 @@ "width": null } }, - "e146f6bc0f564ec5972f31583930e448": { + "e6a98c6e8c574fa5a1727415c5b1f0ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fff13ae0ee854b2db74d68b5ef768572", + "IPY_MODEL_62913c861b31450caeceff2aa694f584", + "IPY_MODEL_5e28139575614aef8f3e6fb0091a2976" + ], + "layout": "IPY_MODEL_434eccf8a49249829adff31f4db6925d" + } + }, + "e706a7291d454adebfbd1886dd36c129": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ec3a01b6e72f4cf3a6166776f1f27783", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_55c7cd3f65e24090b84f2f223ddb915a", - "value": 10000.0 + "layout": "IPY_MODEL_a696ca59311e4186b9fdc4aede6fca8a", + "placeholder": "", + "style": "IPY_MODEL_41f4dfafd77243f69ba948da6544d1af", + "value": " 10000/10000 [00:01<00:00, 7622.52 examples/s]" + } + }, + "e72d0b38f8314487a6dffedcdaa975c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e1b26fd71e924da696b7e30d06da20da": { + "e7af5be193a64d6b905ba17b7da2db13": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7161,52 +7234,7 @@ "width": null } }, - "e2234e34f4c0427db9f7a53fc29eaf8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a2d80ad86fb4b31b063911e4b32cb34", - "max": 3126.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f3302580f9d14b70bafabf8c9b91d771", - "value": 3126.0 - } - }, - "e6a091d0735e4f50bac91aad411f0b43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_195cd29844f446bda516673f34f56ec7", - "placeholder": "", - "style": "IPY_MODEL_3616ba00dcc1468298c6dc9804c94d0e", - "value": "Generating test split: 100%" - } - }, - "e703f8e1b1174f49b5ca5cb35d7872da": { + "e8ab02071ba54cf4ae4f017f8fe2ecd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -7222,79 +7250,45 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_27f5b244f1034abfab9159523188f36e", + "layout": "IPY_MODEL_1f76466f059f465b8b0c3c780f0d3b20", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6b1cbb7a1d6e46ea8684e2b2761470ec", + "style": "IPY_MODEL_2821c8b60bde4029be4c3f238271494c", "value": 60000.0 } }, - "e83419d64ee64254acc38cdf3d20d41b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6a091d0735e4f50bac91aad411f0b43", - "IPY_MODEL_e146f6bc0f564ec5972f31583930e448", - "IPY_MODEL_5d1c98afd9ad4921a01ee4eb620aa87c" - ], - "layout": "IPY_MODEL_c92aaf4fef68498d8fdf08ef0c8ad874" - } - }, - "e9ed7d2116be42c1b824785bbbe217c0": { + "e90b68df016343c1a3867b5df1e97eb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2136572f392f483b879bba9ecbd9a632", - "placeholder": "", - "style": "IPY_MODEL_8e2a56afb6ab46bfba1861c6363ab332", - "value": " 4/4 [00:00<00:00, 3.84it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "eae520e7e7cd4127b85a82b7a0bb1979": { + "ea537851680d4316853705e4476422a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f3415558e8264a65a64f634bde5add94", - "placeholder": "", - "style": "IPY_MODEL_92d3df33944e4468a2edfdd6b1c79f03", - "value": " 4/4 [00:02<00:00, 1.66it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ec3a01b6e72f4cf3a6166776f1f27783": { + "eefdff1cfcda48faafbfaf03be5bd75e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7346,7 +7340,7 @@ "width": null } }, - "ed001ee38c31476e922dd4aa8845dad8": { + "f09f3c49f9ea442bb41b7db3c1e655bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7398,28 +7392,22 @@ "width": null } }, - "ed3bc03f1f0d462a99bbedc8e16f4739": { + "f1fb24373a5845f5aad547183691fc25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a720d9e36aee4ed3999cb08662633f8a", - "placeholder": "", - "style": "IPY_MODEL_0afadab36dce40f48bd97262e545ceb1", - "value": " 60000/60000 [00:28<00:00, 2037.85it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "efcf21c1d26847c4bd65148dff8c2812": { + "f3a43cab26aa4d3ea2abdff5b09f0d8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7471,7 +7459,7 @@ "width": null } }, - "f058c21ace754cffa21a21f17cf4c752": { + "f443a765957d41e08f2c7f87b72ca818": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7523,7 +7511,31 @@ "width": null } }, - "f2785c87549a4888adda223f7226e688": { + "f5289fe993fc456c898ff381cac9fd0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83f1234cf7ac48cb842da2c7864d9102", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b288c8cc232f4ddb9222c145cb93a3fc", + "value": 4833.0 + } + }, + "f66bb89ffb724a2bb2ff77d8145ae070": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7575,7 +7587,7 @@ "width": null } }, - "f3302580f9d14b70bafabf8c9b91d771": { + "f6bbb9c5efca474f87286b38d83b5b1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7591,7 +7603,7 @@ "description_width": "" } }, - "f3415558e8264a65a64f634bde5add94": { + "f813ae2306fa45608678267cf8e18133": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7643,7 +7655,7 @@ "width": null } }, - "f4f9be5825164b4287d59c1ab94df8a1": { + "f865015b07a84eac99be00092140e401": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7658,22 +7670,49 @@ "description_width": "" } }, - "f6d5ae042455476084eba55c8ca69818": { + "f887d1c18d574f5b98206213f6f8367b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5395550674eb456eae9539d709abca05", + "placeholder": "", + "style": "IPY_MODEL_ad3e8f4378aa4f3cbe5c4f737e938442", + "value": "Extracting data files: 100%" + } + }, + "f9ae0f065be94878835f3b8d1ed89bee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3a43cab26aa4d3ea2abdff5b09f0d8f", + "placeholder": "", + "style": "IPY_MODEL_39585d310ed9485ebc6e117f2da3ff3e", + "value": " 60000/60000 [00:07<00:00, 7640.65 examples/s]" } }, - "f7c8f23b6df44d79b9e93414f6c81bf8": { + "fa6110f3bd7e4f75b5c739b4c81cc619": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7688,56 +7727,25 @@ "description_width": "" } }, - "fd96553d34164d1aacebf60fc6320012": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "fff13ae0ee854b2db74d68b5ef768572": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0520c188ead94fbaaf2b08a6aa12572f", + "placeholder": "", + "style": "IPY_MODEL_ea537851680d4316853705e4476422a9", + "value": "Downloading metadata: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index e2da9dfbf..75dd4bc2e 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:25.411643Z", - "iopub.status.busy": "2023-12-15T12:30:25.411454Z", - "iopub.status.idle": "2023-12-15T12:30:26.501782Z", - "shell.execute_reply": "2023-12-15T12:30:26.501173Z" + "iopub.execute_input": "2023-12-16T02:27:08.613967Z", + "iopub.status.busy": "2023-12-16T02:27:08.613777Z", + "iopub.status.idle": "2023-12-16T02:27:09.670740Z", + "shell.execute_reply": "2023-12-16T02:27:09.670073Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:26.504439Z", - "iopub.status.busy": "2023-12-15T12:30:26.504170Z", - "iopub.status.idle": "2023-12-15T12:30:26.770536Z", - "shell.execute_reply": "2023-12-15T12:30:26.769906Z" + "iopub.execute_input": "2023-12-16T02:27:09.673705Z", + "iopub.status.busy": "2023-12-16T02:27:09.673216Z", + "iopub.status.idle": "2023-12-16T02:27:09.933721Z", + "shell.execute_reply": "2023-12-16T02:27:09.933053Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:26.773338Z", - "iopub.status.busy": "2023-12-15T12:30:26.773127Z", - "iopub.status.idle": "2023-12-15T12:30:26.785158Z", - "shell.execute_reply": "2023-12-15T12:30:26.784668Z" + "iopub.execute_input": "2023-12-16T02:27:09.936583Z", + "iopub.status.busy": "2023-12-16T02:27:09.936355Z", + "iopub.status.idle": "2023-12-16T02:27:09.949733Z", + "shell.execute_reply": "2023-12-16T02:27:09.949095Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:26.787475Z", - "iopub.status.busy": "2023-12-15T12:30:26.787068Z", - "iopub.status.idle": "2023-12-15T12:30:27.018625Z", - "shell.execute_reply": "2023-12-15T12:30:27.017928Z" + "iopub.execute_input": "2023-12-16T02:27:09.952465Z", + "iopub.status.busy": "2023-12-16T02:27:09.951896Z", + "iopub.status.idle": "2023-12-16T02:27:10.181916Z", + "shell.execute_reply": "2023-12-16T02:27:10.181253Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:27.021367Z", - "iopub.status.busy": "2023-12-15T12:30:27.021115Z", - "iopub.status.idle": "2023-12-15T12:30:27.048451Z", - "shell.execute_reply": "2023-12-15T12:30:27.047809Z" + "iopub.execute_input": "2023-12-16T02:27:10.184901Z", + "iopub.status.busy": "2023-12-16T02:27:10.184456Z", + "iopub.status.idle": "2023-12-16T02:27:10.211369Z", + "shell.execute_reply": "2023-12-16T02:27:10.210892Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:27.051071Z", - "iopub.status.busy": "2023-12-15T12:30:27.050707Z", - "iopub.status.idle": "2023-12-15T12:30:28.344000Z", - "shell.execute_reply": "2023-12-15T12:30:28.343279Z" + "iopub.execute_input": "2023-12-16T02:27:10.213775Z", + "iopub.status.busy": "2023-12-16T02:27:10.213398Z", + "iopub.status.idle": "2023-12-16T02:27:11.484192Z", + "shell.execute_reply": "2023-12-16T02:27:11.483472Z" } }, "outputs": [ @@ -472,10 +472,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:28.346841Z", - "iopub.status.busy": "2023-12-15T12:30:28.346239Z", - "iopub.status.idle": "2023-12-15T12:30:28.364731Z", - "shell.execute_reply": "2023-12-15T12:30:28.364197Z" + "iopub.execute_input": "2023-12-16T02:27:11.487317Z", + "iopub.status.busy": "2023-12-16T02:27:11.486572Z", + "iopub.status.idle": "2023-12-16T02:27:11.505392Z", + "shell.execute_reply": "2023-12-16T02:27:11.504816Z" }, "scrolled": true }, @@ -618,10 +618,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:28.367127Z", - "iopub.status.busy": "2023-12-15T12:30:28.366905Z", - "iopub.status.idle": "2023-12-15T12:30:29.240179Z", - "shell.execute_reply": "2023-12-15T12:30:29.239457Z" + "iopub.execute_input": "2023-12-16T02:27:11.508023Z", + "iopub.status.busy": "2023-12-16T02:27:11.507642Z", + "iopub.status.idle": "2023-12-16T02:27:12.359126Z", + "shell.execute_reply": "2023-12-16T02:27:12.358418Z" }, "id": "AaHC5MRKjruT" }, @@ -740,10 +740,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.242960Z", - "iopub.status.busy": "2023-12-15T12:30:29.242744Z", - "iopub.status.idle": "2023-12-15T12:30:29.257473Z", - "shell.execute_reply": "2023-12-15T12:30:29.256934Z" + "iopub.execute_input": "2023-12-16T02:27:12.361966Z", + "iopub.status.busy": "2023-12-16T02:27:12.361476Z", + "iopub.status.idle": "2023-12-16T02:27:12.375817Z", + "shell.execute_reply": "2023-12-16T02:27:12.375277Z" }, "id": "Wy27rvyhjruU" }, @@ -792,10 +792,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.259865Z", - "iopub.status.busy": "2023-12-15T12:30:29.259662Z", - "iopub.status.idle": "2023-12-15T12:30:29.343252Z", - "shell.execute_reply": "2023-12-15T12:30:29.342596Z" + "iopub.execute_input": "2023-12-16T02:27:12.378352Z", + "iopub.status.busy": "2023-12-16T02:27:12.377870Z", + "iopub.status.idle": "2023-12-16T02:27:12.456361Z", + "shell.execute_reply": "2023-12-16T02:27:12.455739Z" }, "id": "Db8YHnyVjruU" }, @@ -902,10 +902,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.346201Z", - "iopub.status.busy": "2023-12-15T12:30:29.345923Z", - "iopub.status.idle": "2023-12-15T12:30:29.561955Z", - "shell.execute_reply": "2023-12-15T12:30:29.561269Z" + "iopub.execute_input": "2023-12-16T02:27:12.459124Z", + "iopub.status.busy": "2023-12-16T02:27:12.458716Z", + "iopub.status.idle": "2023-12-16T02:27:12.660733Z", + "shell.execute_reply": "2023-12-16T02:27:12.660088Z" }, "id": "iJqAHuS2jruV" }, @@ -942,10 +942,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.564703Z", - "iopub.status.busy": "2023-12-15T12:30:29.564508Z", - "iopub.status.idle": "2023-12-15T12:30:29.581443Z", - "shell.execute_reply": "2023-12-15T12:30:29.580945Z" + "iopub.execute_input": "2023-12-16T02:27:12.663221Z", + "iopub.status.busy": "2023-12-16T02:27:12.663015Z", + "iopub.status.idle": "2023-12-16T02:27:12.680103Z", + "shell.execute_reply": "2023-12-16T02:27:12.679592Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1007,10 +1007,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.583895Z", - "iopub.status.busy": "2023-12-15T12:30:29.583517Z", - "iopub.status.idle": "2023-12-15T12:30:29.593511Z", - "shell.execute_reply": "2023-12-15T12:30:29.592993Z" + "iopub.execute_input": "2023-12-16T02:27:12.682600Z", + "iopub.status.busy": "2023-12-16T02:27:12.682237Z", + "iopub.status.idle": "2023-12-16T02:27:12.691905Z", + "shell.execute_reply": "2023-12-16T02:27:12.691383Z" }, "id": "0lonvOYvjruV" }, @@ -1157,10 +1157,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.595684Z", - "iopub.status.busy": "2023-12-15T12:30:29.595478Z", - "iopub.status.idle": "2023-12-15T12:30:29.689401Z", - "shell.execute_reply": "2023-12-15T12:30:29.688688Z" + "iopub.execute_input": "2023-12-16T02:27:12.694100Z", + "iopub.status.busy": "2023-12-16T02:27:12.693904Z", + "iopub.status.idle": "2023-12-16T02:27:12.785748Z", + "shell.execute_reply": "2023-12-16T02:27:12.785128Z" }, "id": "MfqTCa3kjruV" }, @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.692281Z", - "iopub.status.busy": "2023-12-15T12:30:29.691788Z", - "iopub.status.idle": "2023-12-15T12:30:29.840669Z", - "shell.execute_reply": "2023-12-15T12:30:29.840045Z" + "iopub.execute_input": "2023-12-16T02:27:12.788472Z", + "iopub.status.busy": "2023-12-16T02:27:12.788218Z", + "iopub.status.idle": "2023-12-16T02:27:12.928264Z", + "shell.execute_reply": "2023-12-16T02:27:12.927554Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1304,10 +1304,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.843470Z", - "iopub.status.busy": "2023-12-15T12:30:29.842967Z", - "iopub.status.idle": "2023-12-15T12:30:29.847338Z", - "shell.execute_reply": "2023-12-15T12:30:29.846713Z" + "iopub.execute_input": "2023-12-16T02:27:12.930871Z", + "iopub.status.busy": "2023-12-16T02:27:12.930616Z", + "iopub.status.idle": "2023-12-16T02:27:12.934854Z", + "shell.execute_reply": "2023-12-16T02:27:12.934216Z" }, "id": "0rXP3ZPWjruW" }, @@ -1345,10 +1345,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.849907Z", - "iopub.status.busy": "2023-12-15T12:30:29.849460Z", - "iopub.status.idle": "2023-12-15T12:30:29.854023Z", - "shell.execute_reply": "2023-12-15T12:30:29.853475Z" + "iopub.execute_input": "2023-12-16T02:27:12.937376Z", + "iopub.status.busy": "2023-12-16T02:27:12.936920Z", + "iopub.status.idle": "2023-12-16T02:27:12.941782Z", + "shell.execute_reply": "2023-12-16T02:27:12.941249Z" }, "id": "-iRPe8KXjruW" }, @@ -1403,10 +1403,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.856491Z", - "iopub.status.busy": "2023-12-15T12:30:29.856130Z", - "iopub.status.idle": "2023-12-15T12:30:29.896562Z", - "shell.execute_reply": "2023-12-15T12:30:29.895907Z" + "iopub.execute_input": "2023-12-16T02:27:12.944151Z", + "iopub.status.busy": "2023-12-16T02:27:12.943769Z", + "iopub.status.idle": "2023-12-16T02:27:12.983319Z", + "shell.execute_reply": "2023-12-16T02:27:12.982774Z" }, "id": "ZpipUliyjruW" }, @@ -1457,10 +1457,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.899213Z", - "iopub.status.busy": "2023-12-15T12:30:29.898721Z", - "iopub.status.idle": "2023-12-15T12:30:29.946790Z", - "shell.execute_reply": "2023-12-15T12:30:29.946127Z" + "iopub.execute_input": "2023-12-16T02:27:12.985761Z", + "iopub.status.busy": "2023-12-16T02:27:12.985392Z", + "iopub.status.idle": "2023-12-16T02:27:13.031003Z", + "shell.execute_reply": "2023-12-16T02:27:13.030462Z" }, "id": "SLq-3q4xjruX" }, @@ -1529,10 +1529,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.949457Z", - "iopub.status.busy": "2023-12-15T12:30:29.948929Z", - "iopub.status.idle": "2023-12-15T12:30:30.050120Z", - "shell.execute_reply": "2023-12-15T12:30:30.049328Z" + "iopub.execute_input": "2023-12-16T02:27:13.033445Z", + "iopub.status.busy": "2023-12-16T02:27:13.033074Z", + "iopub.status.idle": "2023-12-16T02:27:13.129895Z", + "shell.execute_reply": "2023-12-16T02:27:13.129261Z" }, "id": "g5LHhhuqFbXK" }, @@ -1564,10 +1564,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.053586Z", - "iopub.status.busy": "2023-12-15T12:30:30.053176Z", - "iopub.status.idle": "2023-12-15T12:30:30.158106Z", - "shell.execute_reply": "2023-12-15T12:30:30.157384Z" + "iopub.execute_input": "2023-12-16T02:27:13.133236Z", + "iopub.status.busy": "2023-12-16T02:27:13.132819Z", + "iopub.status.idle": "2023-12-16T02:27:13.226793Z", + "shell.execute_reply": "2023-12-16T02:27:13.226065Z" }, "id": "p7w8F8ezBcet" }, @@ -1624,10 +1624,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.160758Z", - "iopub.status.busy": "2023-12-15T12:30:30.160487Z", - "iopub.status.idle": "2023-12-15T12:30:30.366745Z", - "shell.execute_reply": "2023-12-15T12:30:30.366070Z" + "iopub.execute_input": "2023-12-16T02:27:13.229478Z", + "iopub.status.busy": "2023-12-16T02:27:13.229214Z", + "iopub.status.idle": "2023-12-16T02:27:13.429272Z", + "shell.execute_reply": "2023-12-16T02:27:13.428656Z" }, "id": "WETRL74tE_sU" }, @@ -1662,10 +1662,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.369399Z", - "iopub.status.busy": "2023-12-15T12:30:30.369025Z", - "iopub.status.idle": "2023-12-15T12:30:30.601082Z", - "shell.execute_reply": "2023-12-15T12:30:30.600376Z" + "iopub.execute_input": "2023-12-16T02:27:13.431581Z", + "iopub.status.busy": "2023-12-16T02:27:13.431375Z", + "iopub.status.idle": "2023-12-16T02:27:13.637861Z", + "shell.execute_reply": "2023-12-16T02:27:13.637163Z" }, "id": "kCfdx2gOLmXS" }, @@ -1827,10 +1827,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.604122Z", - "iopub.status.busy": "2023-12-15T12:30:30.603701Z", - "iopub.status.idle": "2023-12-15T12:30:30.610293Z", - "shell.execute_reply": "2023-12-15T12:30:30.609659Z" + "iopub.execute_input": "2023-12-16T02:27:13.640679Z", + "iopub.status.busy": "2023-12-16T02:27:13.640270Z", + "iopub.status.idle": "2023-12-16T02:27:13.646807Z", + "shell.execute_reply": "2023-12-16T02:27:13.646307Z" }, "id": "-uogYRWFYnuu" }, @@ -1884,10 +1884,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.612915Z", - "iopub.status.busy": "2023-12-15T12:30:30.612557Z", - "iopub.status.idle": "2023-12-15T12:30:30.823592Z", - "shell.execute_reply": "2023-12-15T12:30:30.822888Z" + "iopub.execute_input": "2023-12-16T02:27:13.649328Z", + "iopub.status.busy": "2023-12-16T02:27:13.648887Z", + "iopub.status.idle": "2023-12-16T02:27:13.855810Z", + "shell.execute_reply": "2023-12-16T02:27:13.855253Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1934,10 +1934,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.826309Z", - "iopub.status.busy": "2023-12-15T12:30:30.825916Z", - "iopub.status.idle": "2023-12-15T12:30:31.902791Z", - "shell.execute_reply": "2023-12-15T12:30:31.902170Z" + "iopub.execute_input": "2023-12-16T02:27:13.858428Z", + "iopub.status.busy": "2023-12-16T02:27:13.858013Z", + "iopub.status.idle": "2023-12-16T02:27:14.929871Z", + "shell.execute_reply": "2023-12-16T02:27:14.929207Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index f9cf78f1f..2edebcea6 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:36.874501Z", - "iopub.status.busy": "2023-12-15T12:30:36.874055Z", - "iopub.status.idle": "2023-12-15T12:30:37.884201Z", - "shell.execute_reply": "2023-12-15T12:30:37.883583Z" + "iopub.execute_input": "2023-12-16T02:27:20.073626Z", + "iopub.status.busy": "2023-12-16T02:27:20.073436Z", + "iopub.status.idle": "2023-12-16T02:27:21.070417Z", + "shell.execute_reply": "2023-12-16T02:27:21.069817Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.887220Z", - "iopub.status.busy": "2023-12-15T12:30:37.886692Z", - "iopub.status.idle": "2023-12-15T12:30:37.890031Z", - "shell.execute_reply": "2023-12-15T12:30:37.889507Z" + "iopub.execute_input": "2023-12-16T02:27:21.073459Z", + "iopub.status.busy": "2023-12-16T02:27:21.073055Z", + "iopub.status.idle": "2023-12-16T02:27:21.076279Z", + "shell.execute_reply": "2023-12-16T02:27:21.075718Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.892561Z", - "iopub.status.busy": "2023-12-15T12:30:37.892138Z", - "iopub.status.idle": "2023-12-15T12:30:37.901113Z", - "shell.execute_reply": "2023-12-15T12:30:37.900497Z" + "iopub.execute_input": "2023-12-16T02:27:21.078865Z", + "iopub.status.busy": "2023-12-16T02:27:21.078501Z", + "iopub.status.idle": "2023-12-16T02:27:21.087252Z", + "shell.execute_reply": "2023-12-16T02:27:21.086710Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.903691Z", - "iopub.status.busy": "2023-12-15T12:30:37.903211Z", - "iopub.status.idle": "2023-12-15T12:30:37.958749Z", - "shell.execute_reply": "2023-12-15T12:30:37.958098Z" + "iopub.execute_input": "2023-12-16T02:27:21.089679Z", + "iopub.status.busy": "2023-12-16T02:27:21.089318Z", + "iopub.status.idle": "2023-12-16T02:27:21.138477Z", + "shell.execute_reply": "2023-12-16T02:27:21.137932Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.961472Z", - "iopub.status.busy": "2023-12-15T12:30:37.961020Z", - "iopub.status.idle": "2023-12-15T12:30:37.980885Z", - "shell.execute_reply": "2023-12-15T12:30:37.980356Z" + "iopub.execute_input": "2023-12-16T02:27:21.140825Z", + "iopub.status.busy": "2023-12-16T02:27:21.140455Z", + "iopub.status.idle": "2023-12-16T02:27:21.158976Z", + "shell.execute_reply": "2023-12-16T02:27:21.158351Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.983405Z", - "iopub.status.busy": "2023-12-15T12:30:37.982924Z", - "iopub.status.idle": "2023-12-15T12:30:37.987052Z", - "shell.execute_reply": "2023-12-15T12:30:37.986553Z" + "iopub.execute_input": "2023-12-16T02:27:21.161446Z", + "iopub.status.busy": "2023-12-16T02:27:21.161107Z", + "iopub.status.idle": "2023-12-16T02:27:21.165165Z", + "shell.execute_reply": "2023-12-16T02:27:21.164553Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.989677Z", - "iopub.status.busy": "2023-12-15T12:30:37.989329Z", - "iopub.status.idle": "2023-12-15T12:30:38.017201Z", - "shell.execute_reply": "2023-12-15T12:30:38.016697Z" + "iopub.execute_input": "2023-12-16T02:27:21.167794Z", + "iopub.status.busy": "2023-12-16T02:27:21.167334Z", + "iopub.status.idle": "2023-12-16T02:27:21.197436Z", + "shell.execute_reply": "2023-12-16T02:27:21.196947Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:38.019678Z", - "iopub.status.busy": "2023-12-15T12:30:38.019297Z", - "iopub.status.idle": "2023-12-15T12:30:38.046962Z", - "shell.execute_reply": "2023-12-15T12:30:38.046349Z" + "iopub.execute_input": "2023-12-16T02:27:21.200030Z", + "iopub.status.busy": "2023-12-16T02:27:21.199655Z", + "iopub.status.idle": "2023-12-16T02:27:21.227173Z", + "shell.execute_reply": "2023-12-16T02:27:21.226699Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:38.049700Z", - "iopub.status.busy": "2023-12-15T12:30:38.049350Z", - "iopub.status.idle": "2023-12-15T12:30:39.349590Z", - "shell.execute_reply": "2023-12-15T12:30:39.348932Z" + "iopub.execute_input": "2023-12-16T02:27:21.229619Z", + "iopub.status.busy": "2023-12-16T02:27:21.229264Z", + "iopub.status.idle": "2023-12-16T02:27:22.517326Z", + "shell.execute_reply": "2023-12-16T02:27:22.516713Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.352825Z", - "iopub.status.busy": "2023-12-15T12:30:39.352227Z", - "iopub.status.idle": "2023-12-15T12:30:39.359737Z", - "shell.execute_reply": "2023-12-15T12:30:39.359118Z" + "iopub.execute_input": "2023-12-16T02:27:22.520551Z", + "iopub.status.busy": "2023-12-16T02:27:22.520012Z", + "iopub.status.idle": "2023-12-16T02:27:22.527203Z", + "shell.execute_reply": "2023-12-16T02:27:22.526609Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.362382Z", - "iopub.status.busy": "2023-12-15T12:30:39.361995Z", - "iopub.status.idle": "2023-12-15T12:30:39.376046Z", - "shell.execute_reply": "2023-12-15T12:30:39.375509Z" + "iopub.execute_input": "2023-12-16T02:27:22.529640Z", + "iopub.status.busy": "2023-12-16T02:27:22.529278Z", + "iopub.status.idle": "2023-12-16T02:27:22.542983Z", + "shell.execute_reply": "2023-12-16T02:27:22.542402Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.378461Z", - "iopub.status.busy": "2023-12-15T12:30:39.378103Z", - "iopub.status.idle": "2023-12-15T12:30:39.384915Z", - "shell.execute_reply": "2023-12-15T12:30:39.384348Z" + "iopub.execute_input": "2023-12-16T02:27:22.545353Z", + "iopub.status.busy": "2023-12-16T02:27:22.544979Z", + "iopub.status.idle": "2023-12-16T02:27:22.551848Z", + "shell.execute_reply": "2023-12-16T02:27:22.551336Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.387508Z", - "iopub.status.busy": "2023-12-15T12:30:39.387049Z", - "iopub.status.idle": "2023-12-15T12:30:39.390058Z", - "shell.execute_reply": "2023-12-15T12:30:39.389533Z" + "iopub.execute_input": "2023-12-16T02:27:22.554365Z", + "iopub.status.busy": "2023-12-16T02:27:22.553918Z", + "iopub.status.idle": "2023-12-16T02:27:22.556928Z", + "shell.execute_reply": "2023-12-16T02:27:22.556312Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.392504Z", - "iopub.status.busy": "2023-12-15T12:30:39.392143Z", - "iopub.status.idle": "2023-12-15T12:30:39.395978Z", - "shell.execute_reply": "2023-12-15T12:30:39.395363Z" + "iopub.execute_input": "2023-12-16T02:27:22.559468Z", + "iopub.status.busy": "2023-12-16T02:27:22.558983Z", + "iopub.status.idle": "2023-12-16T02:27:22.563297Z", + "shell.execute_reply": "2023-12-16T02:27:22.562656Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.398543Z", - "iopub.status.busy": "2023-12-15T12:30:39.398173Z", - "iopub.status.idle": "2023-12-15T12:30:39.401639Z", - "shell.execute_reply": "2023-12-15T12:30:39.401144Z" + "iopub.execute_input": "2023-12-16T02:27:22.565833Z", + "iopub.status.busy": "2023-12-16T02:27:22.565479Z", + "iopub.status.idle": "2023-12-16T02:27:22.568226Z", + "shell.execute_reply": "2023-12-16T02:27:22.567684Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.404042Z", - "iopub.status.busy": "2023-12-15T12:30:39.403670Z", - "iopub.status.idle": "2023-12-15T12:30:39.408567Z", - "shell.execute_reply": "2023-12-15T12:30:39.408025Z" + "iopub.execute_input": "2023-12-16T02:27:22.570558Z", + "iopub.status.busy": "2023-12-16T02:27:22.570221Z", + "iopub.status.idle": "2023-12-16T02:27:22.575096Z", + "shell.execute_reply": "2023-12-16T02:27:22.574474Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.410938Z", - "iopub.status.busy": "2023-12-15T12:30:39.410565Z", - "iopub.status.idle": "2023-12-15T12:30:39.443878Z", - "shell.execute_reply": "2023-12-15T12:30:39.443366Z" + "iopub.execute_input": "2023-12-16T02:27:22.577598Z", + "iopub.status.busy": "2023-12-16T02:27:22.577240Z", + "iopub.status.idle": "2023-12-16T02:27:22.609801Z", + "shell.execute_reply": "2023-12-16T02:27:22.609297Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.446471Z", - "iopub.status.busy": "2023-12-15T12:30:39.446097Z", - "iopub.status.idle": "2023-12-15T12:30:39.451050Z", - "shell.execute_reply": "2023-12-15T12:30:39.450495Z" + "iopub.execute_input": "2023-12-16T02:27:22.612306Z", + "iopub.status.busy": "2023-12-16T02:27:22.611951Z", + "iopub.status.idle": "2023-12-16T02:27:22.616806Z", + "shell.execute_reply": "2023-12-16T02:27:22.616179Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index e547ac4c5..195bcbbf7 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:44.224783Z", - "iopub.status.busy": "2023-12-15T12:30:44.224326Z", - "iopub.status.idle": "2023-12-15T12:30:45.306219Z", - "shell.execute_reply": "2023-12-15T12:30:45.305611Z" + "iopub.execute_input": "2023-12-16T02:27:28.242033Z", + "iopub.status.busy": "2023-12-16T02:27:28.241586Z", + "iopub.status.idle": "2023-12-16T02:27:29.287455Z", + "shell.execute_reply": "2023-12-16T02:27:29.286822Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:45.309207Z", - "iopub.status.busy": "2023-12-15T12:30:45.308709Z", - "iopub.status.idle": "2023-12-15T12:30:45.595481Z", - "shell.execute_reply": "2023-12-15T12:30:45.594843Z" + "iopub.execute_input": "2023-12-16T02:27:29.290072Z", + "iopub.status.busy": "2023-12-16T02:27:29.289800Z", + "iopub.status.idle": "2023-12-16T02:27:29.566680Z", + "shell.execute_reply": "2023-12-16T02:27:29.566085Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:45.598567Z", - "iopub.status.busy": "2023-12-15T12:30:45.598174Z", - "iopub.status.idle": "2023-12-15T12:30:45.612530Z", - "shell.execute_reply": "2023-12-15T12:30:45.612028Z" + "iopub.execute_input": "2023-12-16T02:27:29.569589Z", + "iopub.status.busy": "2023-12-16T02:27:29.569203Z", + "iopub.status.idle": "2023-12-16T02:27:29.583415Z", + "shell.execute_reply": "2023-12-16T02:27:29.582889Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:45.614765Z", - "iopub.status.busy": "2023-12-15T12:30:45.614566Z", - "iopub.status.idle": "2023-12-15T12:30:48.247804Z", - "shell.execute_reply": "2023-12-15T12:30:48.247136Z" + "iopub.execute_input": "2023-12-16T02:27:29.585824Z", + "iopub.status.busy": "2023-12-16T02:27:29.585412Z", + "iopub.status.idle": "2023-12-16T02:27:32.237917Z", + "shell.execute_reply": "2023-12-16T02:27:32.237263Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:48.250570Z", - "iopub.status.busy": "2023-12-15T12:30:48.250164Z", - "iopub.status.idle": "2023-12-15T12:30:49.800885Z", - "shell.execute_reply": "2023-12-15T12:30:49.800265Z" + "iopub.execute_input": "2023-12-16T02:27:32.240624Z", + "iopub.status.busy": "2023-12-16T02:27:32.240261Z", + "iopub.status.idle": "2023-12-16T02:27:33.791581Z", + "shell.execute_reply": "2023-12-16T02:27:33.790967Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:49.803637Z", - "iopub.status.busy": "2023-12-15T12:30:49.803432Z", - "iopub.status.idle": "2023-12-15T12:30:49.821998Z", - "shell.execute_reply": "2023-12-15T12:30:49.821481Z" + "iopub.execute_input": "2023-12-16T02:27:33.794368Z", + "iopub.status.busy": "2023-12-16T02:27:33.793995Z", + "iopub.status.idle": "2023-12-16T02:27:33.814140Z", + "shell.execute_reply": "2023-12-16T02:27:33.813641Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:49.824397Z", - "iopub.status.busy": "2023-12-15T12:30:49.824014Z", - "iopub.status.idle": "2023-12-15T12:30:51.131442Z", - "shell.execute_reply": "2023-12-15T12:30:51.130747Z" + "iopub.execute_input": "2023-12-16T02:27:33.816471Z", + "iopub.status.busy": "2023-12-16T02:27:33.816102Z", + "iopub.status.idle": "2023-12-16T02:27:35.075461Z", + "shell.execute_reply": "2023-12-16T02:27:35.074776Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:51.134501Z", - "iopub.status.busy": "2023-12-15T12:30:51.133806Z", - "iopub.status.idle": "2023-12-15T12:30:53.938117Z", - "shell.execute_reply": "2023-12-15T12:30:53.937463Z" + "iopub.execute_input": "2023-12-16T02:27:35.078661Z", + "iopub.status.busy": "2023-12-16T02:27:35.077992Z", + "iopub.status.idle": "2023-12-16T02:27:37.843686Z", + "shell.execute_reply": "2023-12-16T02:27:37.843050Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:53.940649Z", - "iopub.status.busy": "2023-12-15T12:30:53.940395Z", - "iopub.status.idle": "2023-12-15T12:30:53.945571Z", - "shell.execute_reply": "2023-12-15T12:30:53.945065Z" + "iopub.execute_input": "2023-12-16T02:27:37.846402Z", + "iopub.status.busy": "2023-12-16T02:27:37.846012Z", + "iopub.status.idle": "2023-12-16T02:27:37.850660Z", + "shell.execute_reply": "2023-12-16T02:27:37.850137Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:53.947809Z", - "iopub.status.busy": "2023-12-15T12:30:53.947610Z", - "iopub.status.idle": "2023-12-15T12:30:53.951801Z", - "shell.execute_reply": "2023-12-15T12:30:53.951257Z" + "iopub.execute_input": "2023-12-16T02:27:37.853171Z", + "iopub.status.busy": "2023-12-16T02:27:37.852802Z", + "iopub.status.idle": "2023-12-16T02:27:37.856826Z", + "shell.execute_reply": "2023-12-16T02:27:37.856280Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:53.954037Z", - "iopub.status.busy": "2023-12-15T12:30:53.953836Z", - "iopub.status.idle": "2023-12-15T12:30:53.957754Z", - "shell.execute_reply": "2023-12-15T12:30:53.957265Z" + "iopub.execute_input": "2023-12-16T02:27:37.859187Z", + "iopub.status.busy": "2023-12-16T02:27:37.858816Z", + "iopub.status.idle": "2023-12-16T02:27:37.862206Z", + "shell.execute_reply": "2023-12-16T02:27:37.861670Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 05d26ad8f..ad473f874 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:58.794142Z", - "iopub.status.busy": "2023-12-15T12:30:58.793768Z", - "iopub.status.idle": "2023-12-15T12:30:59.882180Z", - "shell.execute_reply": "2023-12-15T12:30:59.881553Z" + "iopub.execute_input": "2023-12-16T02:27:43.034500Z", + "iopub.status.busy": "2023-12-16T02:27:43.034318Z", + "iopub.status.idle": "2023-12-16T02:27:44.089260Z", + "shell.execute_reply": "2023-12-16T02:27:44.088666Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:59.885117Z", - "iopub.status.busy": "2023-12-15T12:30:59.884666Z", - "iopub.status.idle": "2023-12-15T12:31:01.348989Z", - "shell.execute_reply": "2023-12-15T12:31:01.348125Z" + "iopub.execute_input": "2023-12-16T02:27:44.092268Z", + "iopub.status.busy": "2023-12-16T02:27:44.091644Z", + "iopub.status.idle": "2023-12-16T02:27:45.652305Z", + "shell.execute_reply": "2023-12-16T02:27:45.651582Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.352344Z", - "iopub.status.busy": "2023-12-15T12:31:01.351800Z", - "iopub.status.idle": "2023-12-15T12:31:01.355301Z", - "shell.execute_reply": "2023-12-15T12:31:01.354658Z" + "iopub.execute_input": "2023-12-16T02:27:45.655465Z", + "iopub.status.busy": "2023-12-16T02:27:45.654980Z", + "iopub.status.idle": "2023-12-16T02:27:45.658343Z", + "shell.execute_reply": "2023-12-16T02:27:45.657741Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.357952Z", - "iopub.status.busy": "2023-12-15T12:31:01.357758Z", - "iopub.status.idle": "2023-12-15T12:31:01.363963Z", - "shell.execute_reply": "2023-12-15T12:31:01.363356Z" + "iopub.execute_input": "2023-12-16T02:27:45.660845Z", + "iopub.status.busy": "2023-12-16T02:27:45.660474Z", + "iopub.status.idle": "2023-12-16T02:27:45.666069Z", + "shell.execute_reply": "2023-12-16T02:27:45.665479Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.366568Z", - "iopub.status.busy": "2023-12-15T12:31:01.366191Z", - "iopub.status.idle": "2023-12-15T12:31:01.973263Z", - "shell.execute_reply": "2023-12-15T12:31:01.972578Z" + "iopub.execute_input": "2023-12-16T02:27:45.668688Z", + "iopub.status.busy": "2023-12-16T02:27:45.668211Z", + "iopub.status.idle": "2023-12-16T02:27:46.265508Z", + "shell.execute_reply": "2023-12-16T02:27:46.264835Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.976313Z", - "iopub.status.busy": "2023-12-15T12:31:01.976089Z", - "iopub.status.idle": "2023-12-15T12:31:01.982522Z", - "shell.execute_reply": "2023-12-15T12:31:01.982044Z" + "iopub.execute_input": "2023-12-16T02:27:46.268035Z", + "iopub.status.busy": "2023-12-16T02:27:46.267683Z", + "iopub.status.idle": "2023-12-16T02:27:46.273619Z", + "shell.execute_reply": "2023-12-16T02:27:46.273104Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.984802Z", - "iopub.status.busy": "2023-12-15T12:31:01.984606Z", - "iopub.status.idle": "2023-12-15T12:31:01.988971Z", - "shell.execute_reply": "2023-12-15T12:31:01.988332Z" + "iopub.execute_input": "2023-12-16T02:27:46.275940Z", + "iopub.status.busy": "2023-12-16T02:27:46.275576Z", + "iopub.status.idle": "2023-12-16T02:27:46.279675Z", + "shell.execute_reply": "2023-12-16T02:27:46.279050Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.991281Z", - "iopub.status.busy": "2023-12-15T12:31:01.991067Z", - "iopub.status.idle": "2023-12-15T12:31:02.590531Z", - "shell.execute_reply": "2023-12-15T12:31:02.589786Z" + "iopub.execute_input": "2023-12-16T02:27:46.282157Z", + "iopub.status.busy": "2023-12-16T02:27:46.281868Z", + "iopub.status.idle": "2023-12-16T02:27:46.857244Z", + "shell.execute_reply": "2023-12-16T02:27:46.856573Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:02.593361Z", - "iopub.status.busy": "2023-12-15T12:31:02.592883Z", - "iopub.status.idle": "2023-12-15T12:31:02.740845Z", - "shell.execute_reply": "2023-12-15T12:31:02.740167Z" + "iopub.execute_input": "2023-12-16T02:27:46.860236Z", + "iopub.status.busy": "2023-12-16T02:27:46.859772Z", + "iopub.status.idle": "2023-12-16T02:27:46.959883Z", + "shell.execute_reply": "2023-12-16T02:27:46.959356Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:02.743380Z", - "iopub.status.busy": "2023-12-15T12:31:02.743171Z", - "iopub.status.idle": "2023-12-15T12:31:02.747994Z", - "shell.execute_reply": "2023-12-15T12:31:02.747459Z" + "iopub.execute_input": "2023-12-16T02:27:46.962079Z", + "iopub.status.busy": "2023-12-16T02:27:46.961879Z", + "iopub.status.idle": "2023-12-16T02:27:46.966350Z", + "shell.execute_reply": "2023-12-16T02:27:46.965751Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:02.750198Z", - "iopub.status.busy": "2023-12-15T12:31:02.750000Z", - "iopub.status.idle": "2023-12-15T12:31:03.127395Z", - "shell.execute_reply": "2023-12-15T12:31:03.126699Z" + "iopub.execute_input": "2023-12-16T02:27:46.968687Z", + "iopub.status.busy": "2023-12-16T02:27:46.968485Z", + "iopub.status.idle": "2023-12-16T02:27:47.344024Z", + "shell.execute_reply": "2023-12-16T02:27:47.343470Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:03.130716Z", - "iopub.status.busy": "2023-12-15T12:31:03.130247Z", - "iopub.status.idle": "2023-12-15T12:31:03.468711Z", - "shell.execute_reply": "2023-12-15T12:31:03.468045Z" + "iopub.execute_input": "2023-12-16T02:27:47.346463Z", + "iopub.status.busy": "2023-12-16T02:27:47.346258Z", + "iopub.status.idle": "2023-12-16T02:27:47.680628Z", + "shell.execute_reply": "2023-12-16T02:27:47.680056Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:03.472156Z", - "iopub.status.busy": "2023-12-15T12:31:03.471673Z", - "iopub.status.idle": "2023-12-15T12:31:03.858267Z", - "shell.execute_reply": "2023-12-15T12:31:03.857607Z" + "iopub.execute_input": "2023-12-16T02:27:47.683100Z", + "iopub.status.busy": "2023-12-16T02:27:47.682897Z", + "iopub.status.idle": "2023-12-16T02:27:48.064712Z", + "shell.execute_reply": "2023-12-16T02:27:48.064073Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:03.861932Z", - "iopub.status.busy": "2023-12-15T12:31:03.861538Z", - "iopub.status.idle": "2023-12-15T12:31:04.325679Z", - "shell.execute_reply": "2023-12-15T12:31:04.324992Z" + "iopub.execute_input": "2023-12-16T02:27:48.067236Z", + "iopub.status.busy": "2023-12-16T02:27:48.067029Z", + "iopub.status.idle": "2023-12-16T02:27:48.526916Z", + "shell.execute_reply": "2023-12-16T02:27:48.526306Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:04.330485Z", - "iopub.status.busy": "2023-12-15T12:31:04.330054Z", - "iopub.status.idle": "2023-12-15T12:31:04.786614Z", - "shell.execute_reply": "2023-12-15T12:31:04.785930Z" + "iopub.execute_input": "2023-12-16T02:27:48.531279Z", + "iopub.status.busy": "2023-12-16T02:27:48.530828Z", + "iopub.status.idle": "2023-12-16T02:27:48.981188Z", + "shell.execute_reply": "2023-12-16T02:27:48.980534Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:04.790138Z", - "iopub.status.busy": "2023-12-15T12:31:04.789706Z", - "iopub.status.idle": "2023-12-15T12:31:05.120382Z", - "shell.execute_reply": "2023-12-15T12:31:05.119761Z" + "iopub.execute_input": "2023-12-16T02:27:48.984880Z", + "iopub.status.busy": "2023-12-16T02:27:48.984478Z", + "iopub.status.idle": "2023-12-16T02:27:49.303387Z", + "shell.execute_reply": "2023-12-16T02:27:49.302816Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:05.123163Z", - "iopub.status.busy": "2023-12-15T12:31:05.122756Z", - "iopub.status.idle": "2023-12-15T12:31:05.322994Z", - "shell.execute_reply": "2023-12-15T12:31:05.322309Z" + "iopub.execute_input": "2023-12-16T02:27:49.306135Z", + "iopub.status.busy": "2023-12-16T02:27:49.305645Z", + "iopub.status.idle": "2023-12-16T02:27:49.504030Z", + "shell.execute_reply": "2023-12-16T02:27:49.503452Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:05.325648Z", - "iopub.status.busy": "2023-12-15T12:31:05.325164Z", - "iopub.status.idle": "2023-12-15T12:31:05.329129Z", - "shell.execute_reply": "2023-12-15T12:31:05.328608Z" + "iopub.execute_input": "2023-12-16T02:27:49.506825Z", + "iopub.status.busy": "2023-12-16T02:27:49.506451Z", + "iopub.status.idle": "2023-12-16T02:27:49.510182Z", + "shell.execute_reply": "2023-12-16T02:27:49.509668Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index cc71ff9ef..393c12710 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:07.729687Z", - "iopub.status.busy": "2023-12-15T12:31:07.729142Z", - "iopub.status.idle": "2023-12-15T12:31:09.654003Z", - "shell.execute_reply": "2023-12-15T12:31:09.653384Z" + "iopub.execute_input": "2023-12-16T02:27:51.904132Z", + "iopub.status.busy": "2023-12-16T02:27:51.903684Z", + "iopub.status.idle": "2023-12-16T02:27:53.810305Z", + "shell.execute_reply": "2023-12-16T02:27:53.809715Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:09.657061Z", - "iopub.status.busy": "2023-12-15T12:31:09.656544Z", - "iopub.status.idle": "2023-12-15T12:31:09.973898Z", - "shell.execute_reply": "2023-12-15T12:31:09.973284Z" + "iopub.execute_input": "2023-12-16T02:27:53.813328Z", + "iopub.status.busy": "2023-12-16T02:27:53.812842Z", + "iopub.status.idle": "2023-12-16T02:27:54.122070Z", + "shell.execute_reply": "2023-12-16T02:27:54.121482Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:09.976732Z", - "iopub.status.busy": "2023-12-15T12:31:09.976354Z", - "iopub.status.idle": "2023-12-15T12:31:09.980546Z", - "shell.execute_reply": "2023-12-15T12:31:09.979923Z" + "iopub.execute_input": "2023-12-16T02:27:54.124990Z", + "iopub.status.busy": "2023-12-16T02:27:54.124514Z", + "iopub.status.idle": "2023-12-16T02:27:54.128601Z", + "shell.execute_reply": "2023-12-16T02:27:54.128106Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:09.982919Z", - "iopub.status.busy": "2023-12-15T12:31:09.982550Z", - "iopub.status.idle": "2023-12-15T12:31:15.691345Z", - "shell.execute_reply": "2023-12-15T12:31:15.690631Z" + "iopub.execute_input": "2023-12-16T02:27:54.131007Z", + "iopub.status.busy": "2023-12-16T02:27:54.130528Z", + "iopub.status.idle": "2023-12-16T02:27:58.698466Z", + "shell.execute_reply": "2023-12-16T02:27:58.697833Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "311d8cacc0ba4626b2871bdf5f4e6e06", + "model_id": "8b8274dec0f64a9da052b922b724857b", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:15.693993Z", - "iopub.status.busy": "2023-12-15T12:31:15.693681Z", - "iopub.status.idle": "2023-12-15T12:31:15.698954Z", - "shell.execute_reply": "2023-12-15T12:31:15.698422Z" + "iopub.execute_input": "2023-12-16T02:27:58.701338Z", + "iopub.status.busy": "2023-12-16T02:27:58.700953Z", + "iopub.status.idle": "2023-12-16T02:27:58.705946Z", + "shell.execute_reply": "2023-12-16T02:27:58.705379Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:15.701461Z", - "iopub.status.busy": "2023-12-15T12:31:15.701050Z", - "iopub.status.idle": "2023-12-15T12:31:16.257105Z", - "shell.execute_reply": "2023-12-15T12:31:16.256434Z" + "iopub.execute_input": "2023-12-16T02:27:58.708519Z", + "iopub.status.busy": "2023-12-16T02:27:58.708159Z", + "iopub.status.idle": "2023-12-16T02:27:59.257313Z", + "shell.execute_reply": "2023-12-16T02:27:59.256668Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:16.259678Z", - "iopub.status.busy": "2023-12-15T12:31:16.259369Z", - "iopub.status.idle": "2023-12-15T12:31:16.889976Z", - "shell.execute_reply": "2023-12-15T12:31:16.889333Z" + "iopub.execute_input": "2023-12-16T02:27:59.259977Z", + "iopub.status.busy": "2023-12-16T02:27:59.259601Z", + "iopub.status.idle": "2023-12-16T02:27:59.880791Z", + "shell.execute_reply": "2023-12-16T02:27:59.880142Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:16.892573Z", - "iopub.status.busy": "2023-12-15T12:31:16.892236Z", - "iopub.status.idle": "2023-12-15T12:31:16.895917Z", - "shell.execute_reply": "2023-12-15T12:31:16.895307Z" + "iopub.execute_input": "2023-12-16T02:27:59.883154Z", + "iopub.status.busy": "2023-12-16T02:27:59.882954Z", + "iopub.status.idle": "2023-12-16T02:27:59.887110Z", + "shell.execute_reply": "2023-12-16T02:27:59.886627Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:16.898369Z", - "iopub.status.busy": "2023-12-15T12:31:16.897906Z", - "iopub.status.idle": "2023-12-15T12:31:29.042421Z", - "shell.execute_reply": "2023-12-15T12:31:29.041753Z" + "iopub.execute_input": "2023-12-16T02:27:59.889360Z", + "iopub.status.busy": "2023-12-16T02:27:59.889024Z", + "iopub.status.idle": "2023-12-16T02:28:11.896555Z", + "shell.execute_reply": "2023-12-16T02:28:11.895820Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:29.045343Z", - "iopub.status.busy": "2023-12-15T12:31:29.045112Z", - "iopub.status.idle": "2023-12-15T12:31:30.670470Z", - "shell.execute_reply": "2023-12-15T12:31:30.669828Z" + "iopub.execute_input": "2023-12-16T02:28:11.899469Z", + "iopub.status.busy": "2023-12-16T02:28:11.899078Z", + "iopub.status.idle": "2023-12-16T02:28:13.468306Z", + "shell.execute_reply": "2023-12-16T02:28:13.467615Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:30.673686Z", - "iopub.status.busy": "2023-12-15T12:31:30.673305Z", - "iopub.status.idle": "2023-12-15T12:31:30.934797Z", - "shell.execute_reply": "2023-12-15T12:31:30.934183Z" + "iopub.execute_input": "2023-12-16T02:28:13.471639Z", + "iopub.status.busy": "2023-12-16T02:28:13.471056Z", + "iopub.status.idle": "2023-12-16T02:28:13.731868Z", + "shell.execute_reply": "2023-12-16T02:28:13.731196Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:30.937898Z", - "iopub.status.busy": "2023-12-15T12:31:30.937523Z", - "iopub.status.idle": "2023-12-15T12:31:31.629977Z", - "shell.execute_reply": "2023-12-15T12:31:31.629288Z" + "iopub.execute_input": "2023-12-16T02:28:13.735113Z", + "iopub.status.busy": "2023-12-16T02:28:13.734876Z", + "iopub.status.idle": "2023-12-16T02:28:14.411237Z", + "shell.execute_reply": "2023-12-16T02:28:14.410573Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:31.633326Z", - "iopub.status.busy": "2023-12-15T12:31:31.632946Z", - "iopub.status.idle": "2023-12-15T12:31:32.131778Z", - "shell.execute_reply": "2023-12-15T12:31:32.131129Z" + "iopub.execute_input": "2023-12-16T02:28:14.414456Z", + "iopub.status.busy": "2023-12-16T02:28:14.414207Z", + "iopub.status.idle": "2023-12-16T02:28:14.893573Z", + "shell.execute_reply": "2023-12-16T02:28:14.892932Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:32.134298Z", - "iopub.status.busy": "2023-12-15T12:31:32.134051Z", - "iopub.status.idle": "2023-12-15T12:31:32.387421Z", - "shell.execute_reply": "2023-12-15T12:31:32.386681Z" + "iopub.execute_input": "2023-12-16T02:28:14.896329Z", + "iopub.status.busy": "2023-12-16T02:28:14.895947Z", + "iopub.status.idle": "2023-12-16T02:28:15.141311Z", + "shell.execute_reply": "2023-12-16T02:28:15.140668Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:32.390723Z", - "iopub.status.busy": "2023-12-15T12:31:32.390192Z", - "iopub.status.idle": "2023-12-15T12:31:32.479483Z", - "shell.execute_reply": "2023-12-15T12:31:32.478899Z" + "iopub.execute_input": "2023-12-16T02:28:15.144539Z", + "iopub.status.busy": "2023-12-16T02:28:15.144185Z", + "iopub.status.idle": "2023-12-16T02:28:15.229303Z", + "shell.execute_reply": "2023-12-16T02:28:15.228731Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:32.482347Z", - "iopub.status.busy": "2023-12-15T12:31:32.481935Z", - "iopub.status.idle": "2023-12-15T12:32:10.223505Z", - "shell.execute_reply": "2023-12-15T12:32:10.222722Z" + "iopub.execute_input": "2023-12-16T02:28:15.232246Z", + "iopub.status.busy": "2023-12-16T02:28:15.231860Z", + "iopub.status.idle": "2023-12-16T02:28:52.313638Z", + "shell.execute_reply": "2023-12-16T02:28:52.312901Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:10.226553Z", - "iopub.status.busy": "2023-12-15T12:32:10.226054Z", - "iopub.status.idle": "2023-12-15T12:32:11.420564Z", - "shell.execute_reply": "2023-12-15T12:32:11.419934Z" + "iopub.execute_input": "2023-12-16T02:28:52.316510Z", + "iopub.status.busy": "2023-12-16T02:28:52.315984Z", + "iopub.status.idle": "2023-12-16T02:28:53.459280Z", + "shell.execute_reply": "2023-12-16T02:28:53.458601Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:11.423864Z", - "iopub.status.busy": "2023-12-15T12:32:11.423085Z", - "iopub.status.idle": "2023-12-15T12:32:11.612264Z", - "shell.execute_reply": "2023-12-15T12:32:11.611653Z" + "iopub.execute_input": "2023-12-16T02:28:53.462513Z", + "iopub.status.busy": "2023-12-16T02:28:53.461966Z", + "iopub.status.idle": "2023-12-16T02:28:53.642470Z", + "shell.execute_reply": "2023-12-16T02:28:53.641870Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:11.615051Z", - "iopub.status.busy": "2023-12-15T12:32:11.614842Z", - "iopub.status.idle": "2023-12-15T12:32:11.618226Z", - "shell.execute_reply": "2023-12-15T12:32:11.617736Z" + "iopub.execute_input": "2023-12-16T02:28:53.645196Z", + "iopub.status.busy": "2023-12-16T02:28:53.644983Z", + "iopub.status.idle": "2023-12-16T02:28:53.648405Z", + "shell.execute_reply": "2023-12-16T02:28:53.647870Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:11.620705Z", - "iopub.status.busy": "2023-12-15T12:32:11.620328Z", - "iopub.status.idle": "2023-12-15T12:32:11.628824Z", - "shell.execute_reply": "2023-12-15T12:32:11.628339Z" + "iopub.execute_input": "2023-12-16T02:28:53.650883Z", + "iopub.status.busy": "2023-12-16T02:28:53.650428Z", + "iopub.status.idle": "2023-12-16T02:28:53.658858Z", + "shell.execute_reply": "2023-12-16T02:28:53.658369Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,61 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00f016b9ca8d417fbdb35a9405aaa6d3": { + "0532edd9468d45398f0287d1e3113c2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0cac03d7535f43eb8f7dfde360744b72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_772372bbed1747698c9b368e6a9f0e35", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ba18ed28082f4245b3c4025f93fe0fc5", + "value": 170498071.0 + } + }, + "3b7cbe2649cb46b5836460015d9dae5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4198f703ebc249b589ce49a232133947": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1069,7 +1123,28 @@ "width": null } }, - "0980cd651ce543f080dc8dbbb1aaeb2f": { + "4cd69bf6e6d549eb956457e89c91fb75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8afaffd4e914a6dbc24ef1797aa04ca", + "placeholder": "", + "style": "IPY_MODEL_0532edd9468d45398f0287d1e3113c2b", + "value": "100%" + } + }, + "772372bbed1747698c9b368e6a9f0e35": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1121,46 +1196,7 @@ "width": null } }, - "18bbadfdc9664261947201c385fda612": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1b9a09d06dd044ebbf5bf9104a00e635": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_00f016b9ca8d417fbdb35a9405aaa6d3", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d125ddefff844108a3db7daed998f484", - "value": 170498071.0 - } - }, - "311d8cacc0ba4626b2871bdf5f4e6e06": { + "8b8274dec0f64a9da052b922b724857b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1175,29 +1211,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_91d3d2c249494da9925f923c07376d49", - "IPY_MODEL_1b9a09d06dd044ebbf5bf9104a00e635", - "IPY_MODEL_ccfad632f43f4178be43667ef776aa6e" + "IPY_MODEL_4cd69bf6e6d549eb956457e89c91fb75", + "IPY_MODEL_0cac03d7535f43eb8f7dfde360744b72", + "IPY_MODEL_aceef60310e947ddab697b17d267bff3" ], - "layout": "IPY_MODEL_9d75b8581c084db9bb8fb3d2e3d077dd" + "layout": "IPY_MODEL_4198f703ebc249b589ce49a232133947" } }, - "53e32c5a4a284a22b13e2ddcbe7bb70e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "91d3d2c249494da9925f923c07376d49": { + "aceef60310e947ddab697b17d267bff3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1212,13 +1233,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dc774bc3db894045bf716c44a46cbb92", + "layout": "IPY_MODEL_da9548dde7104f4cafeb64fa1aed2e23", "placeholder": "", - "style": "IPY_MODEL_53e32c5a4a284a22b13e2ddcbe7bb70e", - "value": "100%" + "style": "IPY_MODEL_3b7cbe2649cb46b5836460015d9dae5a", + "value": " 170498071/170498071 [00:01<00:00, 103279990.73it/s]" } }, - "9d75b8581c084db9bb8fb3d2e3d077dd": { + "b8afaffd4e914a6dbc24ef1797aa04ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1270,28 +1291,7 @@ "width": null } }, - "ccfad632f43f4178be43667ef776aa6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0980cd651ce543f080dc8dbbb1aaeb2f", - "placeholder": "", - "style": "IPY_MODEL_18bbadfdc9664261947201c385fda612", - "value": " 170498071/170498071 [00:02<00:00, 72247649.70it/s]" - } - }, - "d125ddefff844108a3db7daed998f484": { + "ba18ed28082f4245b3c4025f93fe0fc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1307,7 +1307,7 @@ "description_width": "" } }, - "dc774bc3db894045bf716c44a46cbb92": { + "da9548dde7104f4cafeb64fa1aed2e23": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index d124b020e..38355deb0 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:16.789068Z", - "iopub.status.busy": "2023-12-15T12:32:16.788489Z", - "iopub.status.idle": "2023-12-15T12:32:17.876598Z", - "shell.execute_reply": "2023-12-15T12:32:17.875952Z" + "iopub.execute_input": "2023-12-16T02:28:59.034103Z", + "iopub.status.busy": "2023-12-16T02:28:59.033598Z", + "iopub.status.idle": "2023-12-16T02:29:00.076940Z", + "shell.execute_reply": "2023-12-16T02:29:00.076332Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:17.879921Z", - "iopub.status.busy": "2023-12-15T12:32:17.879393Z", - "iopub.status.idle": "2023-12-15T12:32:17.896245Z", - "shell.execute_reply": "2023-12-15T12:32:17.895729Z" + "iopub.execute_input": "2023-12-16T02:29:00.079950Z", + "iopub.status.busy": "2023-12-16T02:29:00.079452Z", + "iopub.status.idle": "2023-12-16T02:29:00.095203Z", + "shell.execute_reply": "2023-12-16T02:29:00.094585Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:17.898867Z", - "iopub.status.busy": "2023-12-15T12:32:17.898512Z", - "iopub.status.idle": "2023-12-15T12:32:17.901666Z", - "shell.execute_reply": "2023-12-15T12:32:17.901116Z" + "iopub.execute_input": "2023-12-16T02:29:00.097951Z", + "iopub.status.busy": "2023-12-16T02:29:00.097452Z", + "iopub.status.idle": "2023-12-16T02:29:00.100627Z", + "shell.execute_reply": "2023-12-16T02:29:00.100127Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:17.904159Z", - "iopub.status.busy": "2023-12-15T12:32:17.903800Z", - "iopub.status.idle": "2023-12-15T12:32:18.020406Z", - "shell.execute_reply": "2023-12-15T12:32:18.019827Z" + "iopub.execute_input": "2023-12-16T02:29:00.102813Z", + "iopub.status.busy": "2023-12-16T02:29:00.102619Z", + "iopub.status.idle": "2023-12-16T02:29:00.243801Z", + "shell.execute_reply": "2023-12-16T02:29:00.243281Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:18.023047Z", - "iopub.status.busy": "2023-12-15T12:32:18.022658Z", - "iopub.status.idle": "2023-12-15T12:32:18.297864Z", - "shell.execute_reply": "2023-12-15T12:32:18.297237Z" + "iopub.execute_input": "2023-12-16T02:29:00.246062Z", + "iopub.status.busy": "2023-12-16T02:29:00.245867Z", + "iopub.status.idle": "2023-12-16T02:29:00.505346Z", + "shell.execute_reply": "2023-12-16T02:29:00.504752Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:18.300976Z", - "iopub.status.busy": "2023-12-15T12:32:18.300580Z", - "iopub.status.idle": "2023-12-15T12:32:18.558795Z", - "shell.execute_reply": "2023-12-15T12:32:18.558114Z" + "iopub.execute_input": "2023-12-16T02:29:00.507998Z", + "iopub.status.busy": "2023-12-16T02:29:00.507779Z", + "iopub.status.idle": "2023-12-16T02:29:00.758456Z", + "shell.execute_reply": "2023-12-16T02:29:00.757821Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:18.561392Z", - "iopub.status.busy": "2023-12-15T12:32:18.561016Z", - "iopub.status.idle": "2023-12-15T12:32:18.565679Z", - "shell.execute_reply": "2023-12-15T12:32:18.565143Z" + "iopub.execute_input": "2023-12-16T02:29:00.761170Z", + "iopub.status.busy": "2023-12-16T02:29:00.760711Z", + "iopub.status.idle": "2023-12-16T02:29:00.765255Z", + "shell.execute_reply": "2023-12-16T02:29:00.764642Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:18.568062Z", - "iopub.status.busy": "2023-12-15T12:32:18.567577Z", - "iopub.status.idle": "2023-12-15T12:32:18.574242Z", - "shell.execute_reply": "2023-12-15T12:32:18.573599Z" + "iopub.execute_input": "2023-12-16T02:29:00.767626Z", + "iopub.status.busy": "2023-12-16T02:29:00.767152Z", + "iopub.status.idle": "2023-12-16T02:29:00.773382Z", + "shell.execute_reply": "2023-12-16T02:29:00.772789Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:18.576954Z", - "iopub.status.busy": "2023-12-15T12:32:18.576525Z", - "iopub.status.idle": "2023-12-15T12:32:18.579463Z", - "shell.execute_reply": "2023-12-15T12:32:18.578831Z" + "iopub.execute_input": "2023-12-16T02:29:00.776127Z", + "iopub.status.busy": "2023-12-16T02:29:00.775574Z", + "iopub.status.idle": "2023-12-16T02:29:00.778652Z", + "shell.execute_reply": "2023-12-16T02:29:00.778067Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:18.581619Z", - "iopub.status.busy": "2023-12-15T12:32:18.581421Z", - "iopub.status.idle": "2023-12-15T12:32:28.855635Z", - "shell.execute_reply": "2023-12-15T12:32:28.854954Z" + "iopub.execute_input": "2023-12-16T02:29:00.780932Z", + "iopub.status.busy": "2023-12-16T02:29:00.780516Z", + "iopub.status.idle": "2023-12-16T02:29:10.731534Z", + "shell.execute_reply": "2023-12-16T02:29:10.730801Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:28.859207Z", - "iopub.status.busy": "2023-12-15T12:32:28.858559Z", - "iopub.status.idle": "2023-12-15T12:32:28.866345Z", - "shell.execute_reply": "2023-12-15T12:32:28.865733Z" + "iopub.execute_input": "2023-12-16T02:29:10.734699Z", + "iopub.status.busy": "2023-12-16T02:29:10.734300Z", + "iopub.status.idle": "2023-12-16T02:29:10.741892Z", + "shell.execute_reply": "2023-12-16T02:29:10.741297Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:28.868648Z", - "iopub.status.busy": "2023-12-15T12:32:28.868448Z", - "iopub.status.idle": "2023-12-15T12:32:28.872411Z", - "shell.execute_reply": "2023-12-15T12:32:28.871892Z" + "iopub.execute_input": "2023-12-16T02:29:10.744483Z", + "iopub.status.busy": "2023-12-16T02:29:10.744020Z", + "iopub.status.idle": "2023-12-16T02:29:10.747938Z", + "shell.execute_reply": "2023-12-16T02:29:10.747430Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:28.874761Z", - "iopub.status.busy": "2023-12-15T12:32:28.874413Z", - "iopub.status.idle": "2023-12-15T12:32:28.878244Z", - "shell.execute_reply": "2023-12-15T12:32:28.877713Z" + "iopub.execute_input": "2023-12-16T02:29:10.750245Z", + "iopub.status.busy": "2023-12-16T02:29:10.750042Z", + "iopub.status.idle": "2023-12-16T02:29:10.753553Z", + "shell.execute_reply": "2023-12-16T02:29:10.752932Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:28.880658Z", - "iopub.status.busy": "2023-12-15T12:32:28.880303Z", - "iopub.status.idle": "2023-12-15T12:32:28.883666Z", - "shell.execute_reply": "2023-12-15T12:32:28.883013Z" + "iopub.execute_input": "2023-12-16T02:29:10.755780Z", + "iopub.status.busy": "2023-12-16T02:29:10.755578Z", + "iopub.status.idle": "2023-12-16T02:29:10.758819Z", + "shell.execute_reply": "2023-12-16T02:29:10.758272Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:28.886232Z", - "iopub.status.busy": "2023-12-15T12:32:28.885792Z", - "iopub.status.idle": "2023-12-15T12:32:28.894661Z", - "shell.execute_reply": "2023-12-15T12:32:28.894062Z" + "iopub.execute_input": "2023-12-16T02:29:10.760959Z", + "iopub.status.busy": "2023-12-16T02:29:10.760760Z", + "iopub.status.idle": "2023-12-16T02:29:10.769429Z", + "shell.execute_reply": "2023-12-16T02:29:10.768922Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:28.897060Z", - "iopub.status.busy": "2023-12-15T12:32:28.896686Z", - "iopub.status.idle": "2023-12-15T12:32:29.045949Z", - "shell.execute_reply": "2023-12-15T12:32:29.045271Z" + "iopub.execute_input": "2023-12-16T02:29:10.771868Z", + "iopub.status.busy": "2023-12-16T02:29:10.771500Z", + "iopub.status.idle": "2023-12-16T02:29:10.914917Z", + "shell.execute_reply": "2023-12-16T02:29:10.914356Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:29.048602Z", - "iopub.status.busy": "2023-12-15T12:32:29.048394Z", - "iopub.status.idle": "2023-12-15T12:32:29.179472Z", - "shell.execute_reply": "2023-12-15T12:32:29.178753Z" + "iopub.execute_input": "2023-12-16T02:29:10.917625Z", + "iopub.status.busy": "2023-12-16T02:29:10.917169Z", + "iopub.status.idle": "2023-12-16T02:29:11.047920Z", + "shell.execute_reply": "2023-12-16T02:29:11.047274Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:29.182348Z", - "iopub.status.busy": "2023-12-15T12:32:29.181917Z", - "iopub.status.idle": "2023-12-15T12:32:29.791995Z", - "shell.execute_reply": "2023-12-15T12:32:29.791285Z" + "iopub.execute_input": "2023-12-16T02:29:11.051124Z", + "iopub.status.busy": "2023-12-16T02:29:11.050719Z", + "iopub.status.idle": "2023-12-16T02:29:11.632646Z", + "shell.execute_reply": "2023-12-16T02:29:11.632004Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:29.795219Z", - "iopub.status.busy": "2023-12-15T12:32:29.794807Z", - "iopub.status.idle": "2023-12-15T12:32:29.876761Z", - "shell.execute_reply": "2023-12-15T12:32:29.876062Z" + "iopub.execute_input": "2023-12-16T02:29:11.635186Z", + "iopub.status.busy": "2023-12-16T02:29:11.634937Z", + "iopub.status.idle": "2023-12-16T02:29:11.714798Z", + "shell.execute_reply": "2023-12-16T02:29:11.714222Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:29.879698Z", - "iopub.status.busy": "2023-12-15T12:32:29.879284Z", - "iopub.status.idle": "2023-12-15T12:32:29.889602Z", - "shell.execute_reply": "2023-12-15T12:32:29.888962Z" + "iopub.execute_input": "2023-12-16T02:29:11.717415Z", + "iopub.status.busy": "2023-12-16T02:29:11.716998Z", + "iopub.status.idle": "2023-12-16T02:29:11.726969Z", + "shell.execute_reply": "2023-12-16T02:29:11.726482Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 2635ee95d..20a0b5639 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:34.768250Z", - "iopub.status.busy": "2023-12-15T12:32:34.767712Z", - "iopub.status.idle": "2023-12-15T12:32:36.870364Z", - "shell.execute_reply": "2023-12-15T12:32:36.869550Z" + "iopub.execute_input": "2023-12-16T02:29:16.928048Z", + "iopub.status.busy": "2023-12-16T02:29:16.927862Z", + "iopub.status.idle": "2023-12-16T02:29:18.598903Z", + "shell.execute_reply": "2023-12-16T02:29:18.598102Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:32:36.873356Z", - "iopub.status.busy": "2023-12-15T12:32:36.873135Z", - "iopub.status.idle": "2023-12-15T12:33:34.997634Z", - "shell.execute_reply": "2023-12-15T12:33:34.996892Z" + "iopub.execute_input": "2023-12-16T02:29:18.602067Z", + "iopub.status.busy": "2023-12-16T02:29:18.601674Z", + "iopub.status.idle": "2023-12-16T02:30:10.943637Z", + "shell.execute_reply": "2023-12-16T02:30:10.942832Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:33:35.000815Z", - "iopub.status.busy": "2023-12-15T12:33:35.000300Z", - "iopub.status.idle": "2023-12-15T12:33:36.046532Z", - "shell.execute_reply": "2023-12-15T12:33:36.045834Z" + "iopub.execute_input": "2023-12-16T02:30:10.946751Z", + "iopub.status.busy": "2023-12-16T02:30:10.946322Z", + "iopub.status.idle": "2023-12-16T02:30:11.953925Z", + "shell.execute_reply": "2023-12-16T02:30:11.953321Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:33:36.049614Z", - "iopub.status.busy": "2023-12-15T12:33:36.049287Z", - "iopub.status.idle": "2023-12-15T12:33:36.052909Z", - "shell.execute_reply": "2023-12-15T12:33:36.052377Z" + "iopub.execute_input": "2023-12-16T02:30:11.956825Z", + "iopub.status.busy": "2023-12-16T02:30:11.956360Z", + "iopub.status.idle": "2023-12-16T02:30:11.959808Z", + "shell.execute_reply": "2023-12-16T02:30:11.959284Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:33:36.055489Z", - "iopub.status.busy": "2023-12-15T12:33:36.055039Z", - "iopub.status.idle": "2023-12-15T12:33:36.059298Z", - "shell.execute_reply": "2023-12-15T12:33:36.058670Z" + "iopub.execute_input": "2023-12-16T02:30:11.962129Z", + "iopub.status.busy": "2023-12-16T02:30:11.961766Z", + "iopub.status.idle": "2023-12-16T02:30:11.965733Z", + "shell.execute_reply": "2023-12-16T02:30:11.965127Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:33:36.061788Z", - "iopub.status.busy": "2023-12-15T12:33:36.061487Z", - "iopub.status.idle": "2023-12-15T12:33:36.065398Z", - "shell.execute_reply": "2023-12-15T12:33:36.064783Z" + "iopub.execute_input": "2023-12-16T02:30:11.968176Z", + "iopub.status.busy": "2023-12-16T02:30:11.967741Z", + "iopub.status.idle": "2023-12-16T02:30:11.971667Z", + "shell.execute_reply": "2023-12-16T02:30:11.971122Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:33:36.067740Z", - "iopub.status.busy": "2023-12-15T12:33:36.067540Z", - "iopub.status.idle": "2023-12-15T12:33:36.070848Z", - "shell.execute_reply": "2023-12-15T12:33:36.070301Z" + "iopub.execute_input": "2023-12-16T02:30:11.973894Z", + "iopub.status.busy": "2023-12-16T02:30:11.973704Z", + "iopub.status.idle": "2023-12-16T02:30:11.976648Z", + "shell.execute_reply": "2023-12-16T02:30:11.976125Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:33:36.073292Z", - "iopub.status.busy": "2023-12-15T12:33:36.072804Z", - "iopub.status.idle": "2023-12-15T12:35:05.427023Z", - "shell.execute_reply": "2023-12-15T12:35:05.426296Z" + "iopub.execute_input": "2023-12-16T02:30:11.978847Z", + "iopub.status.busy": "2023-12-16T02:30:11.978657Z", + "iopub.status.idle": "2023-12-16T02:31:39.166210Z", + "shell.execute_reply": "2023-12-16T02:31:39.165513Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "18c28a130fa84cdab44899568e1e74b5", + "model_id": "9211f9819c2547928891cb54e1496f0e", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9a0a5abe37064530ba374d52b8428787", + "model_id": "79cb50ca4e3c4b488166e0cda7567880", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:05.430199Z", - "iopub.status.busy": "2023-12-15T12:35:05.429825Z", - "iopub.status.idle": "2023-12-15T12:35:06.191095Z", - "shell.execute_reply": "2023-12-15T12:35:06.190442Z" + "iopub.execute_input": "2023-12-16T02:31:39.169216Z", + "iopub.status.busy": "2023-12-16T02:31:39.168740Z", + "iopub.status.idle": "2023-12-16T02:31:39.926467Z", + "shell.execute_reply": "2023-12-16T02:31:39.925784Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:06.193968Z", - "iopub.status.busy": "2023-12-15T12:35:06.193447Z", - "iopub.status.idle": "2023-12-15T12:35:08.327841Z", - "shell.execute_reply": "2023-12-15T12:35:08.327128Z" + "iopub.execute_input": "2023-12-16T02:31:39.929293Z", + "iopub.status.busy": "2023-12-16T02:31:39.928653Z", + "iopub.status.idle": "2023-12-16T02:31:42.036769Z", + "shell.execute_reply": "2023-12-16T02:31:42.036101Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:08.330627Z", - "iopub.status.busy": "2023-12-15T12:35:08.330194Z", - "iopub.status.idle": "2023-12-15T12:35:38.311870Z", - "shell.execute_reply": "2023-12-15T12:35:38.311202Z" + "iopub.execute_input": "2023-12-16T02:31:42.039482Z", + "iopub.status.busy": "2023-12-16T02:31:42.039047Z", + "iopub.status.idle": "2023-12-16T02:32:10.675571Z", + "shell.execute_reply": "2023-12-16T02:32:10.674850Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 16566/4997817 [00:00<00:30, 165642.39it/s]" + " 0%| | 17387/4997817 [00:00<00:28, 173858.97it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 33282/4997817 [00:00<00:29, 166527.91it/s]" + " 1%| | 34902/4997817 [00:00<00:28, 174612.60it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 50093/4997817 [00:00<00:29, 167245.27it/s]" + " 1%| | 52398/4997817 [00:00<00:28, 174768.45it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 66818/4997817 [00:00<00:29, 167174.35it/s]" + " 1%|▏ | 69945/4997817 [00:00<00:28, 175042.67it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 83546/4997817 [00:00<00:29, 167207.46it/s]" + " 2%|▏ | 87450/4997817 [00:00<00:28, 174979.78it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 100267/4997817 [00:00<00:30, 159482.12it/s]" + " 2%|▏ | 104948/4997817 [00:00<00:28, 174612.84it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 116946/4997817 [00:00<00:30, 161793.41it/s]" + " 2%|▏ | 122410/4997817 [00:00<00:28, 174090.93it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 133745/4997817 [00:00<00:29, 163718.19it/s]" + " 3%|▎ | 139890/4997817 [00:00<00:27, 174313.11it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 150441/4997817 [00:00<00:29, 164712.58it/s]" + " 3%|▎ | 157322/4997817 [00:00<00:27, 173745.20it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 167171/4997817 [00:01<00:29, 165500.35it/s]" + " 3%|▎ | 174698/4997817 [00:01<00:27, 173670.21it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 183949/4997817 [00:01<00:28, 166189.47it/s]" + " 4%|▍ | 192099/4997817 [00:01<00:27, 173772.56it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 200793/4997817 [00:01<00:28, 166865.58it/s]" + " 4%|▍ | 209483/4997817 [00:01<00:27, 173789.69it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 217616/4997817 [00:01<00:28, 167273.86it/s]" + " 5%|▍ | 226915/4997817 [00:01<00:27, 173946.14it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 234565/4997817 [00:01<00:28, 167938.09it/s]" + " 5%|▍ | 244319/4997817 [00:01<00:27, 173973.64it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 251559/4997817 [00:01<00:28, 168537.60it/s]" + " 5%|▌ | 261717/4997817 [00:01<00:27, 173887.44it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 268417/4997817 [00:01<00:28, 166580.86it/s]" + " 6%|▌ | 279106/4997817 [00:01<00:27, 173794.42it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 285311/4997817 [00:01<00:28, 167281.60it/s]" + " 6%|▌ | 296486/4997817 [00:01<00:27, 173725.10it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 302169/4997817 [00:01<00:28, 167665.02it/s]" + " 6%|▋ | 313859/4997817 [00:01<00:27, 173041.23it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 319014/4997817 [00:01<00:27, 167894.99it/s]" + " 7%|▋ | 331196/4997817 [00:01<00:26, 173135.61it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 335807/4997817 [00:02<00:27, 167582.88it/s]" + " 7%|▋ | 348523/4997817 [00:02<00:26, 173173.19it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 352568/4997817 [00:02<00:27, 167249.58it/s]" + " 7%|▋ | 365841/4997817 [00:02<00:26, 173071.17it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369295/4997817 [00:02<00:27, 166901.60it/s]" + " 8%|▊ | 383149/4997817 [00:02<00:26, 172929.08it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 386051/4997817 [00:02<00:27, 167094.22it/s]" + " 8%|▊ | 400443/4997817 [00:02<00:26, 172792.20it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 402763/4997817 [00:02<00:27, 167097.33it/s]" + " 8%|▊ | 417723/4997817 [00:02<00:26, 172778.18it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 419474/4997817 [00:02<00:27, 166962.20it/s]" + " 9%|▊ | 435009/4997817 [00:02<00:26, 172799.78it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 436171/4997817 [00:02<00:27, 166732.37it/s]" + " 9%|▉ | 452347/4997817 [00:02<00:26, 172971.65it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 452919/4997817 [00:02<00:27, 166952.37it/s]" + " 9%|▉ | 469661/4997817 [00:02<00:26, 173019.08it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 469708/4997817 [00:02<00:27, 167229.42it/s]" + " 10%|▉ | 486963/4997817 [00:02<00:26, 172416.99it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 486492/4997817 [00:02<00:26, 167409.55it/s]" + " 10%|█ | 504206/4997817 [00:02<00:26, 171370.90it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 503234/4997817 [00:03<00:26, 167263.91it/s]" + " 10%|█ | 521535/4997817 [00:03<00:26, 171940.68it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 519961/4997817 [00:03<00:26, 167152.82it/s]" + " 11%|█ | 538873/4997817 [00:03<00:25, 172367.33it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 536677/4997817 [00:03<00:26, 167143.56it/s]" + " 11%|█ | 556217/4997817 [00:03<00:25, 172685.49it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 553444/4997817 [00:03<00:26, 167296.96it/s]" + " 11%|█▏ | 573531/4997817 [00:03<00:25, 172819.13it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 570174/4997817 [00:03<00:26, 167179.50it/s]" + " 12%|█▏ | 590821/4997817 [00:03<00:25, 172841.80it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 586893/4997817 [00:03<00:26, 167023.01it/s]" + " 12%|█▏ | 608168/4997817 [00:03<00:25, 173027.63it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 603596/4997817 [00:03<00:26, 166927.02it/s]" + " 13%|█▎ | 625477/4997817 [00:03<00:25, 173044.28it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 620289/4997817 [00:03<00:26, 162638.40it/s]" + " 13%|█▎ | 642868/4997817 [00:03<00:25, 173300.06it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 637266/4997817 [00:03<00:26, 164732.85it/s]" + " 13%|█▎ | 660199/4997817 [00:03<00:25, 173014.37it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 654279/4997817 [00:03<00:26, 166326.98it/s]" + " 14%|█▎ | 677521/4997817 [00:03<00:24, 173074.66it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 671275/4997817 [00:04<00:25, 167401.76it/s]" + " 14%|█▍ | 694829/4997817 [00:04<00:24, 173072.60it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 688213/4997817 [00:04<00:25, 167987.51it/s]" + " 14%|█▍ | 712171/4997817 [00:04<00:24, 173175.19it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 705136/4997817 [00:04<00:25, 168354.12it/s]" + " 15%|█▍ | 729489/4997817 [00:04<00:24, 173089.69it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 722126/4997817 [00:04<00:25, 168811.95it/s]" + " 15%|█▍ | 746832/4997817 [00:04<00:24, 173187.92it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739166/4997817 [00:04<00:25, 169284.88it/s]" + " 15%|█▌ | 764151/4997817 [00:04<00:24, 173062.77it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 756271/4997817 [00:04<00:24, 169810.69it/s]" + " 16%|█▌ | 781582/4997817 [00:04<00:24, 173435.67it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 773348/4997817 [00:04<00:24, 170095.76it/s]" + " 16%|█▌ | 799019/4997817 [00:04<00:24, 173712.00it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 790437/4997817 [00:04<00:24, 170330.48it/s]" + " 16%|█▋ | 816500/4997817 [00:04<00:24, 174037.70it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 807483/4997817 [00:04<00:24, 170364.61it/s]" + " 17%|█▋ | 833904/4997817 [00:04<00:23, 173958.58it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 824557/4997817 [00:04<00:24, 170471.86it/s]" + " 17%|█▋ | 851473/4997817 [00:04<00:23, 174474.40it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 841628/4997817 [00:05<00:24, 170538.82it/s]" + " 17%|█▋ | 869248/4997817 [00:05<00:23, 175452.48it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 858725/4997817 [00:05<00:24, 170663.92it/s]" + " 18%|█▊ | 887144/4997817 [00:05<00:23, 176501.82it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 875798/4997817 [00:05<00:24, 170680.13it/s]" + " 18%|█▊ | 905005/4997817 [00:05<00:23, 177132.16it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 892867/4997817 [00:05<00:24, 170536.91it/s]" + " 18%|█▊ | 922934/4997817 [00:05<00:22, 177776.92it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 909921/4997817 [00:05<00:23, 170427.76it/s]" + " 19%|█▉ | 940873/4997817 [00:05<00:22, 178259.31it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 927090/4997817 [00:05<00:23, 170803.81it/s]" + " 19%|█▉ | 958835/4997817 [00:05<00:22, 178664.33it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 944225/4997817 [00:05<00:23, 170963.33it/s]" + " 20%|█▉ | 976745/4997817 [00:05<00:22, 178792.01it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 961322/4997817 [00:05<00:23, 170752.60it/s]" + " 20%|█▉ | 994633/4997817 [00:05<00:22, 178814.74it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 978457/4997817 [00:05<00:23, 170928.11it/s]" + " 20%|██ | 1012515/4997817 [00:05<00:22, 178221.74it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 995550/4997817 [00:05<00:23, 170768.98it/s]" + " 21%|██ | 1030338/4997817 [00:05<00:22, 178074.20it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1012652/4997817 [00:06<00:23, 170839.24it/s]" + " 21%|██ | 1048196/4997817 [00:06<00:22, 178223.10it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1029775/4997817 [00:06<00:23, 170952.38it/s]" + " 21%|██▏ | 1066091/4997817 [00:06<00:22, 178436.80it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1046871/4997817 [00:06<00:23, 170802.83it/s]" + " 22%|██▏ | 1083965/4997817 [00:06<00:21, 178523.88it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1063952/4997817 [00:06<00:23, 170648.11it/s]" + " 22%|██▏ | 1101864/4997817 [00:06<00:21, 178661.10it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1081017/4997817 [00:06<00:23, 170151.17it/s]" + " 22%|██▏ | 1119731/4997817 [00:06<00:21, 178428.62it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1098065/4997817 [00:06<00:22, 170244.60it/s]" + " 23%|██▎ | 1137575/4997817 [00:06<00:21, 178266.67it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1115090/4997817 [00:06<00:22, 170070.62it/s]" + " 23%|██▎ | 1155402/4997817 [00:06<00:21, 178058.54it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1132098/4997817 [00:06<00:22, 169734.06it/s]" + " 23%|██▎ | 1173215/4997817 [00:06<00:21, 178076.69it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1149115/4997817 [00:06<00:22, 169859.66it/s]" + " 24%|██▍ | 1191023/4997817 [00:06<00:21, 177985.30it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1166178/4997817 [00:06<00:22, 170085.11it/s]" + " 24%|██▍ | 1208822/4997817 [00:06<00:21, 177343.61it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1183187/4997817 [00:07<00:22, 170034.40it/s]" + " 25%|██▍ | 1226557/4997817 [00:07<00:21, 177010.97it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1200191/4997817 [00:07<00:22, 169789.79it/s]" + " 25%|██▍ | 1244259/4997817 [00:07<00:21, 176274.38it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1217171/4997817 [00:07<00:22, 169556.85it/s]" + " 25%|██▌ | 1261888/4997817 [00:07<00:21, 176128.50it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1234152/4997817 [00:07<00:22, 169629.04it/s]" + " 26%|██▌ | 1279502/4997817 [00:07<00:21, 175762.04it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1251178/4997817 [00:07<00:22, 169814.67it/s]" + " 26%|██▌ | 1297129/4997817 [00:07<00:21, 175908.26it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1268160/4997817 [00:07<00:21, 169571.84it/s]" + " 26%|██▋ | 1314782/4997817 [00:07<00:20, 176091.34it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1285118/4997817 [00:07<00:21, 169460.60it/s]" + " 27%|██▋ | 1332490/4997817 [00:07<00:20, 176386.30it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1302066/4997817 [00:07<00:21, 169461.50it/s]" + " 27%|██▋ | 1350154/4997817 [00:07<00:20, 176460.83it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1319107/4997817 [00:07<00:21, 169743.56it/s]" + " 27%|██▋ | 1367836/4997817 [00:07<00:20, 176565.10it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1336190/4997817 [00:07<00:21, 170064.40it/s]" + " 28%|██▊ | 1385493/4997817 [00:07<00:21, 170407.03it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1353283/4997817 [00:08<00:21, 170320.43it/s]" + " 28%|██▊ | 1403215/4997817 [00:08<00:20, 172396.15it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1370362/4997817 [00:08<00:21, 170457.51it/s]" + " 28%|██▊ | 1421100/4997817 [00:08<00:20, 174295.30it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1387432/4997817 [00:08<00:21, 170525.52it/s]" + " 29%|██▉ | 1438990/4997817 [00:08<00:20, 175657.81it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1404490/4997817 [00:08<00:21, 170536.79it/s]" + " 29%|██▉ | 1456888/4997817 [00:08<00:20, 176642.85it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1421544/4997817 [00:08<00:21, 170155.60it/s]" + " 30%|██▉ | 1474817/4997817 [00:08<00:19, 177429.97it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1438587/4997817 [00:08<00:20, 170233.45it/s]" + " 30%|██▉ | 1492673/4997817 [00:08<00:19, 177764.64it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1455666/4997817 [00:08<00:20, 170396.98it/s]" + " 30%|███ | 1510551/4997817 [00:08<00:19, 178064.81it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1472777/4997817 [00:08<00:20, 170607.09it/s]" + " 31%|███ | 1528435/4997817 [00:08<00:19, 178294.88it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1489838/4997817 [00:08<00:20, 170146.09it/s]" + " 31%|███ | 1546269/4997817 [00:08<00:19, 178261.09it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1506865/4997817 [00:08<00:20, 170178.49it/s]" + " 31%|███▏ | 1564099/4997817 [00:08<00:19, 178262.99it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1523969/4997817 [00:09<00:20, 170434.37it/s]" + " 32%|███▏ | 1581928/4997817 [00:09<00:19, 177853.00it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1541013/4997817 [00:09<00:20, 170219.89it/s]" + " 32%|███▏ | 1599771/4997817 [00:09<00:19, 178024.23it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1558036/4997817 [00:09<00:20, 170082.82it/s]" + " 32%|███▏ | 1617577/4997817 [00:09<00:18, 178033.34it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1575046/4997817 [00:09<00:20, 170083.76it/s]" + " 33%|███▎ | 1635382/4997817 [00:09<00:18, 178025.54it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1592062/4997817 [00:09<00:20, 170103.37it/s]" + " 33%|███▎ | 1653186/4997817 [00:09<00:18, 178000.92it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1609073/4997817 [00:09<00:19, 170078.55it/s]" + " 33%|███▎ | 1670987/4997817 [00:09<00:18, 177538.75it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1626081/4997817 [00:09<00:19, 169846.08it/s]" + " 34%|███▍ | 1688865/4997817 [00:09<00:18, 177908.91it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1643066/4997817 [00:09<00:19, 169722.08it/s]" + " 34%|███▍ | 1706663/4997817 [00:09<00:18, 177927.46it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1660039/4997817 [00:09<00:19, 168966.11it/s]" + " 35%|███▍ | 1724610/4997817 [00:09<00:18, 178388.08it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1676997/4997817 [00:09<00:19, 169147.38it/s]" + " 35%|███▍ | 1742450/4997817 [00:09<00:18, 178370.03it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1693913/4997817 [00:10<00:19, 169015.37it/s]" + " 35%|███▌ | 1760288/4997817 [00:10<00:18, 177859.08it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1710863/4997817 [00:10<00:19, 169155.71it/s]" + " 36%|███▌ | 1778171/4997817 [00:10<00:18, 178146.51it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1727893/4997817 [00:10<00:19, 169495.14it/s]" + " 36%|███▌ | 1796050/4997817 [00:10<00:17, 178335.32it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1744943/4997817 [00:10<00:19, 169792.25it/s]" + " 36%|███▋ | 1813991/4997817 [00:10<00:17, 178655.21it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1761998/4997817 [00:10<00:19, 170016.37it/s]" + " 37%|███▋ | 1831904/4997817 [00:10<00:17, 178793.74it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1779052/4997817 [00:10<00:18, 170169.75it/s]" + " 37%|███▋ | 1849849/4997817 [00:10<00:17, 178987.22it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1796096/4997817 [00:10<00:18, 170245.85it/s]" + " 37%|███▋ | 1867749/4997817 [00:10<00:17, 178989.05it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1813121/4997817 [00:10<00:18, 169988.38it/s]" + " 38%|███▊ | 1885649/4997817 [00:10<00:17, 178891.47it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1830120/4997817 [00:10<00:18, 169343.81it/s]" + " 38%|███▊ | 1903539/4997817 [00:10<00:17, 178716.89it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1847104/4997817 [00:10<00:18, 169488.19it/s]" + " 38%|███▊ | 1921411/4997817 [00:10<00:17, 174340.19it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1864113/4997817 [00:11<00:18, 169663.73it/s]" + " 39%|███▉ | 1939117/4997817 [00:11<00:17, 175140.09it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1881202/4997817 [00:11<00:18, 170027.24it/s]" + " 39%|███▉ | 1957106/4997817 [00:11<00:17, 176544.76it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1898230/4997817 [00:11<00:18, 170098.40it/s]" + " 40%|███▉ | 1975008/4997817 [00:11<00:17, 177279.61it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1915339/4997817 [00:11<00:18, 170391.40it/s]" + " 40%|███▉ | 1992878/4997817 [00:11<00:16, 177701.46it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1932379/4997817 [00:11<00:18, 170127.22it/s]" + " 40%|████ | 2010766/4997817 [00:11<00:16, 178049.46it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949422/4997817 [00:11<00:17, 170212.86it/s]" + " 41%|████ | 2028577/4997817 [00:11<00:16, 178047.81it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1966533/4997817 [00:11<00:17, 170476.27it/s]" + " 41%|████ | 2046425/4997817 [00:11<00:16, 178173.79it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1983581/4997817 [00:11<00:17, 170376.25it/s]" + " 41%|████▏ | 2064246/4997817 [00:11<00:16, 178167.77it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2000619/4997817 [00:11<00:17, 169667.58it/s]" + " 42%|████▏ | 2082143/4997817 [00:11<00:16, 178406.29it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2017587/4997817 [00:11<00:17, 169324.04it/s]" + " 42%|████▏ | 2099986/4997817 [00:11<00:16, 178297.49it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2034545/4997817 [00:12<00:17, 169396.35it/s]" + " 42%|████▏ | 2117817/4997817 [00:12<00:16, 177940.21it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2051486/4997817 [00:12<00:17, 168889.48it/s]" + " 43%|████▎ | 2135612/4997817 [00:12<00:16, 177924.78it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068451/4997817 [00:12<00:17, 169114.35it/s]" + " 43%|████▎ | 2153406/4997817 [00:12<00:16, 177446.71it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2085456/4997817 [00:12<00:17, 169391.51it/s]" + " 43%|████▎ | 2171152/4997817 [00:12<00:15, 176898.34it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2102430/4997817 [00:12<00:17, 169492.39it/s]" + " 44%|████▍ | 2188843/4997817 [00:12<00:15, 176642.84it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2119380/4997817 [00:12<00:17, 169262.36it/s]" + " 44%|████▍ | 2206508/4997817 [00:12<00:15, 176247.40it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2136326/4997817 [00:12<00:16, 169317.84it/s]" + " 45%|████▍ | 2224134/4997817 [00:12<00:15, 175949.13it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2153258/4997817 [00:12<00:16, 168736.17it/s]" + " 45%|████▍ | 2241730/4997817 [00:12<00:15, 175600.62it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2170133/4997817 [00:12<00:16, 168130.44it/s]" + " 45%|████▌ | 2259291/4997817 [00:12<00:15, 175280.07it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2186965/4997817 [00:12<00:16, 168182.53it/s]" + " 46%|████▌ | 2276820/4997817 [00:12<00:15, 173563.68it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2203784/4997817 [00:13<00:16, 167762.81it/s]" + " 46%|████▌ | 2294180/4997817 [00:13<00:16, 168411.04it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2220561/4997817 [00:13<00:16, 167288.98it/s]" + " 46%|████▋ | 2311547/4997817 [00:13<00:15, 169941.44it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2237391/4997817 [00:13<00:16, 167588.58it/s]" + " 47%|████▋ | 2328984/4997817 [00:13<00:15, 171241.71it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2254256/4997817 [00:13<00:16, 167902.25it/s]" + " 47%|████▋ | 2346561/4997817 [00:13<00:15, 172578.34it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2271047/4997817 [00:13<00:16, 167640.98it/s]" + " 47%|████▋ | 2364155/4997817 [00:13<00:15, 173574.08it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2287812/4997817 [00:13<00:16, 167387.52it/s]" + " 48%|████▊ | 2381681/4997817 [00:13<00:15, 174075.32it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2304690/4997817 [00:13<00:16, 167799.98it/s]" + " 48%|████▊ | 2399174/4997817 [00:13<00:14, 174327.06it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2321560/4997817 [00:13<00:15, 168065.37it/s]" + " 48%|████▊ | 2416701/4997817 [00:13<00:14, 174607.16it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2338401/4997817 [00:13<00:15, 168165.29it/s]" + " 49%|████▊ | 2434276/4997817 [00:13<00:14, 174946.00it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2355218/4997817 [00:13<00:15, 165485.49it/s]" + " 49%|████▉ | 2451794/4997817 [00:13<00:14, 175012.63it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2372037/4997817 [00:14<00:15, 166283.07it/s]" + " 49%|████▉ | 2469298/4997817 [00:14<00:14, 171645.42it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2388837/4997817 [00:14<00:15, 166789.48it/s]" + " 50%|████▉ | 2487046/4997817 [00:14<00:14, 173367.81it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2405677/4997817 [00:14<00:15, 167267.68it/s]" + " 50%|█████ | 2504839/4997817 [00:14<00:14, 174720.66it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2422441/4997817 [00:14<00:15, 167374.67it/s]" + " 50%|█████ | 2522756/4997817 [00:14<00:14, 176043.87it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2439182/4997817 [00:14<00:15, 167333.37it/s]" + " 51%|█████ | 2540619/4997817 [00:14<00:13, 176814.36it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2456056/4997817 [00:14<00:15, 167750.86it/s]" + " 51%|█████ | 2558497/4997817 [00:14<00:13, 177400.39it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2472833/4997817 [00:14<00:15, 167631.19it/s]" + " 52%|█████▏ | 2576285/4997817 [00:14<00:13, 177542.32it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2489598/4997817 [00:14<00:14, 167602.52it/s]" + " 52%|█████▏ | 2594100/4997817 [00:14<00:13, 177722.58it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2506360/4997817 [00:14<00:14, 167546.29it/s]" + " 52%|█████▏ | 2611972/4997817 [00:14<00:13, 178018.44it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2523116/4997817 [00:14<00:14, 165804.08it/s]" + " 53%|█████▎ | 2629776/4997817 [00:14<00:13, 178014.90it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2540114/4997817 [00:15<00:14, 167043.51it/s]" + " 53%|█████▎ | 2647579/4997817 [00:15<00:13, 174653.39it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2556919/4997817 [00:15<00:14, 167339.50it/s]" + " 53%|█████▎ | 2665233/4997817 [00:15<00:13, 175209.29it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2573656/4997817 [00:15<00:14, 167302.77it/s]" + " 54%|█████▎ | 2682893/4997817 [00:15<00:13, 175620.40it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2590752/4997817 [00:15<00:14, 168393.80it/s]" + " 54%|█████▍ | 2700628/4997817 [00:15<00:13, 176132.29it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2607594/4997817 [00:15<00:14, 168127.73it/s]" + " 54%|█████▍ | 2718304/4997817 [00:15<00:12, 176316.99it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2624409/4997817 [00:15<00:14, 168110.70it/s]" + " 55%|█████▍ | 2736070/4997817 [00:15<00:12, 176715.69it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2641221/4997817 [00:15<00:14, 167634.97it/s]" + " 55%|█████▌ | 2753745/4997817 [00:15<00:12, 176538.44it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2658036/4997817 [00:15<00:13, 167784.59it/s]" + " 55%|█████▌ | 2771402/4997817 [00:15<00:12, 176403.18it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2674831/4997817 [00:15<00:13, 167830.55it/s]" + " 56%|█████▌ | 2789061/4997817 [00:15<00:12, 176456.13it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691615/4997817 [00:15<00:13, 167268.95it/s]" + " 56%|█████▌ | 2806829/4997817 [00:15<00:12, 176819.98it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2708343/4997817 [00:16<00:13, 167176.62it/s]" + " 57%|█████▋ | 2824512/4997817 [00:16<00:12, 176781.35it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2725062/4997817 [00:16<00:13, 166938.74it/s]" + " 57%|█████▋ | 2842261/4997817 [00:16<00:12, 176992.28it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2741851/4997817 [00:16<00:13, 167218.18it/s]" + " 57%|█████▋ | 2860082/4997817 [00:16<00:12, 177354.86it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2758609/4997817 [00:16<00:13, 167324.51it/s]" + " 58%|█████▊ | 2877851/4997817 [00:16<00:11, 177452.11it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2775342/4997817 [00:16<00:13, 167097.55it/s]" + " 58%|█████▊ | 2895681/4997817 [00:16<00:11, 177702.50it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2792052/4997817 [00:16<00:13, 166870.46it/s]" + " 58%|█████▊ | 2913457/4997817 [00:16<00:11, 177715.47it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2808756/4997817 [00:16<00:13, 166918.51it/s]" + " 59%|█████▊ | 2931229/4997817 [00:16<00:11, 177711.55it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2825448/4997817 [00:16<00:13, 166748.62it/s]" + " 59%|█████▉ | 2949001/4997817 [00:16<00:11, 177421.80it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2842173/4997817 [00:16<00:12, 166895.10it/s]" + " 59%|█████▉ | 2966744/4997817 [00:16<00:11, 177164.23it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2858863/4997817 [00:16<00:13, 163983.96it/s]" + " 60%|█████▉ | 2984536/4997817 [00:16<00:11, 177386.53it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2875765/4997817 [00:17<00:12, 165470.89it/s]" + " 60%|██████ | 3002275/4997817 [00:17<00:11, 169907.54it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2892522/4997817 [00:17<00:12, 166090.58it/s]" + " 60%|██████ | 3019760/4997817 [00:17<00:11, 171341.89it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2909280/4997817 [00:17<00:12, 166530.74it/s]" + " 61%|██████ | 3037332/4997817 [00:17<00:11, 172622.88it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2925939/4997817 [00:17<00:12, 166510.08it/s]" + " 61%|██████ | 3055074/4997817 [00:17<00:11, 174036.39it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2942594/4997817 [00:17<00:12, 166229.38it/s]" + " 61%|██████▏ | 3072897/4997817 [00:17<00:10, 175278.68it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2959220/4997817 [00:17<00:12, 166220.69it/s]" + " 62%|██████▏ | 3090700/4997817 [00:17<00:10, 176096.59it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2975844/4997817 [00:17<00:12, 166007.31it/s]" + " 62%|██████▏ | 3108534/4997817 [00:17<00:10, 176763.18it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2992497/4997817 [00:17<00:12, 166160.06it/s]" + " 63%|██████▎ | 3126278/4997817 [00:17<00:10, 176961.98it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3009123/4997817 [00:17<00:11, 166186.94it/s]" + " 63%|██████▎ | 3144098/4997817 [00:17<00:10, 177328.66it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3025743/4997817 [00:17<00:12, 163065.45it/s]" + " 63%|██████▎ | 3161885/4997817 [00:17<00:10, 177488.65it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3042407/4997817 [00:18<00:11, 164119.29it/s]" + " 64%|██████▎ | 3179753/4997817 [00:18<00:10, 177844.49it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3059107/4997817 [00:18<00:11, 164970.59it/s]" + " 64%|██████▍ | 3197541/4997817 [00:18<00:10, 177495.98it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3075691/4997817 [00:18<00:11, 165225.75it/s]" + " 64%|██████▍ | 3215293/4997817 [00:18<00:10, 177053.20it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3092368/4997817 [00:18<00:11, 165684.19it/s]" + " 65%|██████▍ | 3233000/4997817 [00:18<00:09, 176606.37it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3108941/4997817 [00:18<00:11, 165634.65it/s]" + " 65%|██████▌ | 3250662/4997817 [00:18<00:09, 176326.49it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3125508/4997817 [00:18<00:11, 165640.08it/s]" + " 65%|██████▌ | 3268296/4997817 [00:18<00:09, 176066.67it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3142144/4997817 [00:18<00:11, 165851.19it/s]" + " 66%|██████▌ | 3285904/4997817 [00:18<00:09, 176063.93it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3158777/4997817 [00:18<00:11, 165990.30it/s]" + " 66%|██████▌ | 3303511/4997817 [00:18<00:09, 175942.93it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3175475/4997817 [00:18<00:10, 166284.00it/s]" + " 66%|██████▋ | 3321111/4997817 [00:18<00:09, 175957.17it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3192105/4997817 [00:18<00:10, 164970.32it/s]" + " 67%|██████▋ | 3338739/4997817 [00:18<00:09, 176051.89it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3208605/4997817 [00:19<00:11, 160276.90it/s]" + " 67%|██████▋ | 3356350/4997817 [00:19<00:09, 176066.34it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3225397/4997817 [00:19<00:10, 162510.16it/s]" + " 68%|██████▊ | 3373957/4997817 [00:19<00:09, 172069.84it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3242080/4997817 [00:19<00:10, 163778.96it/s]" + " 68%|██████▊ | 3391519/4997817 [00:19<00:09, 173115.32it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3258769/4997817 [00:19<00:10, 164696.14it/s]" + " 68%|██████▊ | 3409394/4997817 [00:19<00:09, 174784.43it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3275443/4997817 [00:19<00:10, 165299.08it/s]" + " 69%|██████▊ | 3427212/4997817 [00:19<00:08, 175791.55it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3292249/4997817 [00:19<00:10, 166119.48it/s]" + " 69%|██████▉ | 3445065/4997817 [00:19<00:08, 176606.76it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3308951/4997817 [00:19<00:10, 166385.94it/s]" + " 69%|██████▉ | 3462873/4997817 [00:19<00:08, 177044.34it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3325709/4997817 [00:19<00:10, 166738.15it/s]" + " 70%|██████▉ | 3480612/4997817 [00:19<00:08, 177144.38it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3342448/4997817 [00:19<00:09, 166928.22it/s]" + " 70%|██████▉ | 3498331/4997817 [00:19<00:08, 177070.12it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3359228/4997817 [00:19<00:09, 167186.54it/s]" + " 70%|███████ | 3516041/4997817 [00:20<00:08, 176458.61it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3375949/4997817 [00:20<00:09, 166957.66it/s]" + " 71%|███████ | 3533708/4997817 [00:20<00:08, 176518.07it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3392665/4997817 [00:20<00:09, 167014.97it/s]" + " 71%|███████ | 3551362/4997817 [00:20<00:08, 176380.98it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3409368/4997817 [00:20<00:09, 166914.11it/s]" + " 71%|███████▏ | 3569002/4997817 [00:20<00:08, 176169.00it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3426133/4997817 [00:20<00:09, 167131.53it/s]" + " 72%|███████▏ | 3586666/4997817 [00:20<00:08, 176308.86it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3442847/4997817 [00:20<00:09, 166939.67it/s]" + " 72%|███████▏ | 3604310/4997817 [00:20<00:07, 176345.41it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3459542/4997817 [00:20<00:09, 166844.03it/s]" + " 72%|███████▏ | 3621945/4997817 [00:20<00:07, 176257.69it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3476237/4997817 [00:20<00:09, 166872.84it/s]" + " 73%|███████▎ | 3639615/4997817 [00:20<00:07, 176387.25it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492933/4997817 [00:20<00:09, 166896.86it/s]" + " 73%|███████▎ | 3657254/4997817 [00:20<00:07, 176178.50it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3509632/4997817 [00:20<00:08, 166920.42it/s]" + " 74%|███████▎ | 3674873/4997817 [00:20<00:07, 176018.06it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3526346/4997817 [00:20<00:08, 166982.13it/s]" + " 74%|███████▍ | 3692475/4997817 [00:21<00:07, 174972.68it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3543045/4997817 [00:21<00:08, 163780.45it/s]" + " 74%|███████▍ | 3710053/4997817 [00:21<00:07, 175212.01it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3559921/4997817 [00:21<00:08, 165252.03it/s]" + " 75%|███████▍ | 3727576/4997817 [00:21<00:07, 168386.02it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3576667/4997817 [00:21<00:08, 165905.70it/s]" + " 75%|███████▍ | 3745049/4997817 [00:21<00:07, 170228.49it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3593478/4997817 [00:21<00:08, 166559.57it/s]" + " 75%|███████▌ | 3762608/4997817 [00:21<00:07, 171800.50it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3610253/4997817 [00:21<00:08, 166911.00it/s]" + " 76%|███████▌ | 3780159/4997817 [00:21<00:07, 172894.83it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3627091/4997817 [00:21<00:08, 167345.85it/s]" + " 76%|███████▌ | 3797752/4997817 [00:21<00:06, 173794.07it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3643970/4997817 [00:21<00:08, 167773.44it/s]" + " 76%|███████▋ | 3815309/4997817 [00:21<00:06, 174321.45it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3660771/4997817 [00:21<00:07, 167840.14it/s]" + " 77%|███████▋ | 3832855/4997817 [00:21<00:06, 174658.42it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3677596/4997817 [00:21<00:07, 167959.64it/s]" + " 77%|███████▋ | 3850443/4997817 [00:21<00:06, 175022.10it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3694394/4997817 [00:22<00:07, 167926.79it/s]" + " 77%|███████▋ | 3868005/4997817 [00:22<00:06, 175196.81it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3711188/4997817 [00:22<00:07, 167322.69it/s]" + " 78%|███████▊ | 3885628/4997817 [00:22<00:06, 175503.12it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3727933/4997817 [00:22<00:07, 167356.16it/s]" + " 78%|███████▊ | 3903182/4997817 [00:22<00:06, 175274.20it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3744745/4997817 [00:22<00:07, 167581.52it/s]" + " 78%|███████▊ | 3920734/4997817 [00:22<00:06, 175345.23it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3761518/4997817 [00:22<00:07, 167622.93it/s]" + " 79%|███████▉ | 3938272/4997817 [00:22<00:06, 175354.44it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3778281/4997817 [00:22<00:07, 167455.68it/s]" + " 79%|███████▉ | 3955809/4997817 [00:22<00:05, 175349.38it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3795027/4997817 [00:22<00:07, 167344.08it/s]" + " 80%|███████▉ | 3973384/4997817 [00:22<00:05, 175466.90it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3811870/4997817 [00:22<00:07, 167667.26it/s]" + " 80%|███████▉ | 3990932/4997817 [00:22<00:05, 175390.13it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3828666/4997817 [00:22<00:06, 167752.64it/s]" + " 80%|████████ | 4008472/4997817 [00:22<00:05, 175377.09it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3845447/4997817 [00:22<00:06, 167767.60it/s]" + " 81%|████████ | 4026011/4997817 [00:22<00:05, 175247.34it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3862224/4997817 [00:23<00:06, 167753.62it/s]" + " 81%|████████ | 4043565/4997817 [00:23<00:05, 175332.85it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3879000/4997817 [00:23<00:06, 167745.03it/s]" + " 81%|████████▏ | 4061101/4997817 [00:23<00:05, 175338.91it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3895929/4997817 [00:23<00:06, 168205.16it/s]" + " 82%|████████▏ | 4078636/4997817 [00:23<00:05, 175296.79it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3912886/4997817 [00:23<00:06, 168611.42it/s]" + " 82%|████████▏ | 4096166/4997817 [00:23<00:05, 175003.67it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3929748/4997817 [00:23<00:06, 167917.69it/s]" + " 82%|████████▏ | 4113988/4997817 [00:23<00:05, 175965.51it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3946541/4997817 [00:23<00:06, 167610.19it/s]" + " 83%|████████▎ | 4131690/4997817 [00:23<00:04, 176278.17it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3963303/4997817 [00:23<00:06, 167257.05it/s]" + " 83%|████████▎ | 4149455/4997817 [00:23<00:04, 176687.31it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3980030/4997817 [00:23<00:06, 166905.64it/s]" + " 83%|████████▎ | 4167171/4997817 [00:23<00:04, 176827.57it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3996721/4997817 [00:23<00:06, 165613.82it/s]" + " 84%|████████▎ | 4184881/4997817 [00:23<00:04, 176905.15it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4013338/4997817 [00:23<00:05, 165775.44it/s]" + " 84%|████████▍ | 4202667/4997817 [00:23<00:04, 177189.92it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4030056/4997817 [00:24<00:05, 166192.01it/s]" + " 84%|████████▍ | 4220437/4997817 [00:24<00:04, 177339.54it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4046677/4997817 [00:24<00:05, 166030.45it/s]" + " 85%|████████▍ | 4238291/4997817 [00:24<00:04, 177696.62it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4063281/4997817 [00:24<00:05, 166027.20it/s]" + " 85%|████████▌ | 4256217/4997817 [00:24<00:04, 178164.35it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4079917/4997817 [00:24<00:05, 166123.75it/s]" + " 86%|████████▌ | 4274034/4997817 [00:24<00:04, 171491.41it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4096734/4997817 [00:24<00:05, 166733.35it/s]" + " 86%|████████▌ | 4291931/4997817 [00:24<00:04, 173673.46it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4113680/4997817 [00:24<00:05, 167546.88it/s]" + " 86%|████████▌ | 4309765/4997817 [00:24<00:03, 175043.63it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4130624/4997817 [00:24<00:05, 168111.83it/s]" + " 87%|████████▋ | 4327602/4997817 [00:24<00:03, 176025.29it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4147436/4997817 [00:24<00:05, 168084.65it/s]" + " 87%|████████▋ | 4345532/4997817 [00:24<00:03, 176995.85it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4164392/4997817 [00:24<00:04, 168523.80it/s]" + " 87%|████████▋ | 4363416/4997817 [00:24<00:03, 177541.62it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4181328/4997817 [00:24<00:04, 168770.74it/s]" + " 88%|████████▊ | 4381349/4997817 [00:24<00:03, 178074.19it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4198218/4997817 [00:25<00:04, 168807.14it/s]" + " 88%|████████▊ | 4399264/4997817 [00:25<00:03, 178394.54it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4215099/4997817 [00:25<00:04, 168795.01it/s]" + " 88%|████████▊ | 4417168/4997817 [00:25<00:03, 178586.52it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4232023/4997817 [00:25<00:04, 168924.06it/s]" + " 89%|████████▊ | 4435096/4997817 [00:25<00:03, 178791.22it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4249013/4997817 [00:25<00:04, 169213.45it/s]" + " 89%|████████▉ | 4452979/4997817 [00:25<00:03, 178681.36it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4266035/4997817 [00:25<00:04, 169510.09it/s]" + " 89%|████████▉ | 4470850/4997817 [00:25<00:02, 178680.16it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4283093/4997817 [00:25<00:04, 169827.19it/s]" + " 90%|████████▉ | 4488720/4997817 [00:25<00:02, 178504.13it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4300096/4997817 [00:25<00:04, 169885.52it/s]" + " 90%|█████████ | 4506635/4997817 [00:25<00:02, 178695.51it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4317091/4997817 [00:25<00:04, 169901.88it/s]" + " 91%|█████████ | 4524541/4997817 [00:25<00:02, 178803.14it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4334082/4997817 [00:25<00:03, 169801.98it/s]" + " 91%|█████████ | 4542468/4997817 [00:25<00:02, 178941.24it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4351063/4997817 [00:25<00:03, 169638.16it/s]" + " 91%|█████████ | 4560377/4997817 [00:25<00:02, 178982.19it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4368097/4997817 [00:26<00:03, 169843.70it/s]" + " 92%|█████████▏| 4578276/4997817 [00:26<00:02, 178968.71it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4385082/4997817 [00:26<00:03, 169744.94it/s]" + " 92%|█████████▏| 4596174/4997817 [00:26<00:02, 178773.37it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4402057/4997817 [00:26<00:03, 162733.27it/s]" + " 92%|█████████▏| 4614052/4997817 [00:26<00:02, 178436.39it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4419106/4997817 [00:26<00:03, 164988.54it/s]" + " 93%|█████████▎| 4631896/4997817 [00:26<00:02, 174651.73it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4436087/4997817 [00:26<00:03, 166400.13it/s]" + " 93%|█████████▎| 4649528/4997817 [00:26<00:01, 175142.35it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4453055/4997817 [00:26<00:03, 167366.05it/s]" + " 93%|█████████▎| 4667191/4997817 [00:26<00:01, 175582.32it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4470012/4997817 [00:26<00:03, 168015.70it/s]" + " 94%|█████████▎| 4684827/4997817 [00:26<00:01, 175810.29it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4487028/4997817 [00:26<00:03, 168650.45it/s]" + " 94%|█████████▍| 4702641/4997817 [00:26<00:01, 176503.77it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4504061/4997817 [00:26<00:02, 169147.89it/s]" + " 94%|█████████▍| 4720429/4997817 [00:26<00:01, 176911.64it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4521100/4997817 [00:26<00:02, 169516.67it/s]" + " 95%|█████████▍| 4738211/4997817 [00:26<00:01, 177181.03it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4538085/4997817 [00:27<00:02, 169613.56it/s]" + " 95%|█████████▌| 4755932/4997817 [00:27<00:01, 176990.51it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4555109/4997817 [00:27<00:02, 169795.74it/s]" + " 96%|█████████▌| 4773682/4997817 [00:27<00:01, 177141.56it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4572093/4997817 [00:27<00:02, 169792.07it/s]" + " 96%|█████████▌| 4791398/4997817 [00:27<00:01, 176883.24it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589075/4997817 [00:27<00:02, 169668.70it/s]" + " 96%|█████████▌| 4809088/4997817 [00:27<00:01, 173157.37it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4606044/4997817 [00:27<00:02, 169602.32it/s]" + " 97%|█████████▋| 4826704/4997817 [00:27<00:00, 174041.91it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4623006/4997817 [00:27<00:02, 169413.65it/s]" + " 97%|█████████▋| 4844471/4997817 [00:27<00:00, 175116.27it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4639949/4997817 [00:27<00:02, 168763.60it/s]" + " 97%|█████████▋| 4862268/4997817 [00:27<00:00, 175962.90it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4656827/4997817 [00:27<00:02, 168549.74it/s]" + " 98%|█████████▊| 4880019/4997817 [00:27<00:00, 176421.06it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4673683/4997817 [00:27<00:01, 168400.67it/s]" + " 98%|█████████▊| 4897813/4997817 [00:27<00:00, 176873.46it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4690524/4997817 [00:27<00:01, 168358.25it/s]" + " 98%|█████████▊| 4915656/4997817 [00:27<00:00, 177336.51it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4707364/4997817 [00:28<00:01, 168367.43it/s]" + " 99%|█████████▊| 4933465/4997817 [00:28<00:00, 177558.61it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4724220/4997817 [00:28<00:01, 168421.91it/s]" + " 99%|█████████▉| 4951224/4997817 [00:28<00:00, 177539.53it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4741063/4997817 [00:28<00:01, 166307.78it/s]" + " 99%|█████████▉| 4969053/4997817 [00:28<00:00, 177762.83it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4757988/4997817 [00:28<00:01, 167178.76it/s]" + "100%|█████████▉| 4986831/4997817 [00:28<00:00, 174747.86it/s]" ] }, { @@ -2802,119 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4774742/4997817 [00:28<00:01, 167282.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4791587/4997817 [00:28<00:01, 167625.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4808389/4997817 [00:28<00:01, 167740.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4825320/4997817 [00:28<00:01, 168206.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4842255/4997817 [00:28<00:00, 168544.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4859130/4997817 [00:28<00:00, 168602.88it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4876099/4997817 [00:29<00:00, 168925.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4893088/4997817 [00:29<00:00, 169210.83it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4910010/4997817 [00:29<00:00, 169142.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▊| 4927022/4997817 [00:29<00:00, 169432.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4943966/4997817 [00:29<00:00, 168960.21it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4960864/4997817 [00:29<00:00, 168962.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4977819/4997817 [00:29<00:00, 169135.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4994733/4997817 [00:29<00:00, 168959.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997817/4997817 [00:29<00:00, 167966.98it/s]" + "100%|██████████| 4997817/4997817 [00:28<00:00, 175849.25it/s]" ] }, { @@ -3153,10 +3041,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:38.314282Z", - "iopub.status.busy": "2023-12-15T12:35:38.314068Z", - "iopub.status.idle": "2023-12-15T12:35:45.897055Z", - "shell.execute_reply": "2023-12-15T12:35:45.896297Z" + "iopub.execute_input": "2023-12-16T02:32:10.678343Z", + "iopub.status.busy": "2023-12-16T02:32:10.677834Z", + "iopub.status.idle": "2023-12-16T02:32:18.067476Z", + "shell.execute_reply": "2023-12-16T02:32:18.066823Z" } }, "outputs": [], @@ -3170,10 +3058,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:45.900230Z", - "iopub.status.busy": "2023-12-15T12:35:45.899794Z", - "iopub.status.idle": "2023-12-15T12:35:48.997705Z", - "shell.execute_reply": "2023-12-15T12:35:48.997007Z" + "iopub.execute_input": "2023-12-16T02:32:18.070659Z", + "iopub.status.busy": "2023-12-16T02:32:18.070096Z", + "iopub.status.idle": "2023-12-16T02:32:21.216299Z", + "shell.execute_reply": "2023-12-16T02:32:21.215625Z" } }, "outputs": [ @@ -3242,17 +3130,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:49.000467Z", - "iopub.status.busy": "2023-12-15T12:35:49.000240Z", - "iopub.status.idle": "2023-12-15T12:35:50.370307Z", - "shell.execute_reply": "2023-12-15T12:35:50.369590Z" + "iopub.execute_input": "2023-12-16T02:32:21.218989Z", + "iopub.status.busy": "2023-12-16T02:32:21.218611Z", + "iopub.status.idle": "2023-12-16T02:32:22.519757Z", + "shell.execute_reply": "2023-12-16T02:32:22.519111Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7cd76928900a4b3bac46d43f8f8af484", + "model_id": "fe1034bf703146eaa2ca9b2bdaf3771a", "version_major": 2, "version_minor": 0 }, @@ -3282,10 +3170,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:50.373547Z", - "iopub.status.busy": "2023-12-15T12:35:50.372959Z", - "iopub.status.idle": "2023-12-15T12:35:50.570424Z", - "shell.execute_reply": "2023-12-15T12:35:50.569718Z" + "iopub.execute_input": "2023-12-16T02:32:22.522547Z", + "iopub.status.busy": "2023-12-16T02:32:22.522339Z", + "iopub.status.idle": "2023-12-16T02:32:22.719154Z", + "shell.execute_reply": "2023-12-16T02:32:22.718571Z" } }, "outputs": [], @@ -3299,10 +3187,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:50.573374Z", - "iopub.status.busy": "2023-12-15T12:35:50.573118Z", - "iopub.status.idle": "2023-12-15T12:35:55.335342Z", - "shell.execute_reply": "2023-12-15T12:35:55.334656Z" + "iopub.execute_input": "2023-12-16T02:32:22.721929Z", + "iopub.status.busy": "2023-12-16T02:32:22.721726Z", + "iopub.status.idle": "2023-12-16T02:32:27.465736Z", + "shell.execute_reply": "2023-12-16T02:32:27.465118Z" } }, "outputs": [ @@ -3375,10 +3263,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:55.337770Z", - "iopub.status.busy": "2023-12-15T12:35:55.337557Z", - "iopub.status.idle": "2023-12-15T12:35:55.393391Z", - "shell.execute_reply": "2023-12-15T12:35:55.392787Z" + "iopub.execute_input": "2023-12-16T02:32:27.468114Z", + "iopub.status.busy": "2023-12-16T02:32:27.467908Z", + "iopub.status.idle": "2023-12-16T02:32:27.523723Z", + "shell.execute_reply": "2023-12-16T02:32:27.523040Z" }, "nbsphinx": "hidden" }, @@ -3422,156 +3310,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c1f4e987ff141a7943b8d88b60f79db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3c1a35496e4b4ba3af2d387cfa66a152", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e655cf67f8b341d08c68694209665751", - "value": 30.0 - } - }, - "18c28a130fa84cdab44899568e1e74b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ce174b155aee43bc86be8828589454c6", - "IPY_MODEL_d57b8bdaeaea43d08bdc5af16d4053ff", - "IPY_MODEL_2ab1344c20764f80bf0103d29450ec5d" - ], - "layout": "IPY_MODEL_9ac428d2deb14f6b850babf5a07cffd6" - } - }, - "19ec3f7e5cbc4b8e9881c79ae5a9f920": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1ac09c8994ad4db08f61b95cb5743d99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2ab1344c20764f80bf0103d29450ec5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_73ec842b494346ba9e177dc13932ddb0", - "placeholder": "", - "style": "IPY_MODEL_f27c7a978c1a42ba95c3149ebed40ce3", - "value": " 30/30 [00:00<00:00, 406.00it/s]" - } - }, - "2cb65910ddd9434c852ef783d8e545b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3c1a35496e4b4ba3af2d387cfa66a152": { + "130191a0b3594b6784bee433bb7331c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3623,7 +3362,7 @@ "width": null } }, - "3c2b211c2d57479e9904d7169aa62407": { + "2a3cb560cd264dd4af80e69881f00e56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3638,13 +3377,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2cb65910ddd9434c852ef783d8e545b6", + "layout": "IPY_MODEL_815aa93d86804d0fbb1e092a2cca686f", "placeholder": "", - "style": "IPY_MODEL_1ac09c8994ad4db08f61b95cb5743d99", - "value": " 30/30 [00:01<00:00, 22.52it/s]" + "style": "IPY_MODEL_9e376bad44594b6fb9921c162ab188a6", + "value": " 30/30 [00:01<00:00, 23.61it/s]" } }, - "5dde0d8827da4597b830076e19c6d05b": { + "30bddd28c4f34e298933c57268b5df7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3696,7 +3435,7 @@ "width": null } }, - "6864eea986914bf9adf64c8712c6e2fa": { + "35e3e98f9c964145bac77879e775937a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3748,7 +3487,7 @@ "width": null } }, - "687b4bf0e7454534b98442319fe90974": { + "42ce68ee7184413fb62a1335deba5c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3800,7 +3539,7 @@ "width": null } }, - "6b56222273d84ee4b49e51993425b764": { + "52e81b7d925048c199c29d5426eab811": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3852,29 +3591,134 @@ "width": null } }, - "73ec842b494346ba9e177dc13932ddb0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "6aa2c282311e48d592bf03c656478b14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, + "_view_name": "StyleView", + "description_width": "" + } + }, + "79cb50ca4e3c4b488166e0cda7567880": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a1135838cb84473aa0d2a90fa466b7c8", + "IPY_MODEL_f7297af22a5349c29e7edacbd7e5564b", + "IPY_MODEL_876e4de397ac4264bab7d6acfa499a8c" + ], + "layout": "IPY_MODEL_d21e7713337344b79f810729e0159454" + } + }, + "7d09995a3f4d4a6d8bc00a8556a2ad06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8099f7e95abb461da6bc82e3beb2abc0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "815aa93d86804d0fbb1e092a2cca686f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, @@ -3904,7 +3748,73 @@ "width": null } }, - "7cd76928900a4b3bac46d43f8f8af484": { + "8435583dc56c4bf1b5060370afdbc328": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_42ce68ee7184413fb62a1335deba5c65", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d09995a3f4d4a6d8bc00a8556a2ad06", + "value": 30.0 + } + }, + "84a769cec97d422182b5236633d97e8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3d039da3c4f41c7a8703223716df525", + "placeholder": "", + "style": "IPY_MODEL_92a1281d5a624bea9c4404846d40dacc", + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "876e4de397ac4264bab7d6acfa499a8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_35e3e98f9c964145bac77879e775937a", + "placeholder": "", + "style": "IPY_MODEL_f45e5f70aebe49adaa6652fd116ec5c3", + "value": " 30/30 [00:38<00:00, 1.29s/it]" + } + }, + "9211f9819c2547928891cb54e1496f0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3919,14 +3829,65 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_cba9fe0309ed45b5b503dafe2cd28339", - "IPY_MODEL_de969f491f684ce1a4a5f7019a5f1503", - "IPY_MODEL_3c2b211c2d57479e9904d7169aa62407" + "IPY_MODEL_84a769cec97d422182b5236633d97e8b", + "IPY_MODEL_f15776e47e0d4b8d87026bfff39a1f4a", + "IPY_MODEL_c963ed4ef5b94703b220348f81cfc7b0" ], - "layout": "IPY_MODEL_a2e6f06ff6e8468d8f88910e0ca34b7e" + "layout": "IPY_MODEL_ced3f5a29a1f47658f6c9ca6492873d9" } }, - "908ac0f13d1c496294a1ceca40aa0660": { + "92a1281d5a624bea9c4404846d40dacc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9e376bad44594b6fb9921c162ab188a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a1135838cb84473aa0d2a90fa466b7c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52e81b7d925048c199c29d5426eab811", + "placeholder": "", + "style": "IPY_MODEL_b756dc69463d479fafd05aa24701faef", + "value": "number of examples processed for checking labels: 100%" + } + }, + "a1d8e2844a0945c0ab3e9ddd435a38e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3942,29 +3903,58 @@ "description_width": "" } }, - "9a0a5abe37064530ba374d52b8428787": { + "a4328e8184d5434cafaf8a3e6f8aebc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b756dc69463d479fafd05aa24701faef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c963ed4ef5b94703b220348f81cfc7b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba5b956d28fd434292cc982ef42db2b4", - "IPY_MODEL_0c1f4e987ff141a7943b8d88b60f79db", - "IPY_MODEL_bfe080a8110f410d958f566782de75c6" - ], - "layout": "IPY_MODEL_687b4bf0e7454534b98442319fe90974" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8099f7e95abb461da6bc82e3beb2abc0", + "placeholder": "", + "style": "IPY_MODEL_6aa2c282311e48d592bf03c656478b14", + "value": " 30/30 [00:00<00:00, 412.38it/s]" } }, - "9ac428d2deb14f6b850babf5a07cffd6": { + "ced3f5a29a1f47658f6c9ca6492873d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4016,23 +4006,7 @@ "width": null } }, - "9f771a8bbb204df7a233eb34eae10be4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a2e6f06ff6e8468d8f88910e0ca34b7e": { + "d21e7713337344b79f810729e0159454": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4084,7 +4058,7 @@ "width": null } }, - "a816022ec84a4782b0e85ce026ec5a58": { + "d3d039da3c4f41c7a8703223716df525": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4136,64 +4110,7 @@ "width": null } }, - "ae2cd931f08e4a76b0841205907e7be5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ba5b956d28fd434292cc982ef42db2b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a816022ec84a4782b0e85ce026ec5a58", - "placeholder": "", - "style": "IPY_MODEL_f0af789f9906476a9e786acfc6f4bb85", - "value": "number of examples processed for checking labels: 100%" - } - }, - "bfe080a8110f410d958f566782de75c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c423b27abbf5405ba98e4d54d1656d20", - "placeholder": "", - "style": "IPY_MODEL_ca4405c089214ab6a33b4f81e2312fc6", - "value": " 30/30 [00:39<00:00, 1.29s/it]" - } - }, - "c423b27abbf5405ba98e4d54d1656d20": { + "da52693317694d45b0f7c3b47de97e21": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4245,64 +4162,62 @@ "width": null } }, - "ca4405c089214ab6a33b4f81e2312fc6": { + "f15776e47e0d4b8d87026bfff39a1f4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_130191a0b3594b6784bee433bb7331c8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f55bd9c0502d4b1db2228b87e079745f", + "value": 30.0 } }, - "cba9fe0309ed45b5b503dafe2cd28339": { + "f45e5f70aebe49adaa6652fd116ec5c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6b56222273d84ee4b49e51993425b764", - "placeholder": "", - "style": "IPY_MODEL_19ec3f7e5cbc4b8e9881c79ae5a9f920", - "value": "images processed using softmin: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ce174b155aee43bc86be8828589454c6": { + "f55bd9c0502d4b1db2228b87e079745f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6864eea986914bf9adf64c8712c6e2fa", - "placeholder": "", - "style": "IPY_MODEL_ae2cd931f08e4a76b0841205907e7be5", - "value": "number of examples processed for estimating thresholds: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d57b8bdaeaea43d08bdc5af16d4053ff": { + "f7297af22a5349c29e7edacbd7e5564b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4318,15 +4233,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5dde0d8827da4597b830076e19c6d05b", + "layout": "IPY_MODEL_da52693317694d45b0f7c3b47de97e21", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9f771a8bbb204df7a233eb34eae10be4", + "style": "IPY_MODEL_a1d8e2844a0945c0ab3e9ddd435a38e4", "value": 30.0 } }, - "db73c01f2a154a2e88018c62c192aaf2": { + "fa65f7488ba545159cbb317e485a11e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4378,74 +4293,47 @@ "width": null } }, - "de969f491f684ce1a4a5f7019a5f1503": { + "fe1034bf703146eaa2ca9b2bdaf3771a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_db73c01f2a154a2e88018c62c192aaf2", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_908ac0f13d1c496294a1ceca40aa0660", - "value": 30.0 - } - }, - "e655cf67f8b341d08c68694209665751": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f0af789f9906476a9e786acfc6f4bb85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff36eb1c1e61463f8587329922da0de6", + "IPY_MODEL_8435583dc56c4bf1b5060370afdbc328", + "IPY_MODEL_2a3cb560cd264dd4af80e69881f00e56" + ], + "layout": "IPY_MODEL_fa65f7488ba545159cbb317e485a11e0" } }, - "f27c7a978c1a42ba95c3149ebed40ce3": { + "ff36eb1c1e61463f8587329922da0de6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_30bddd28c4f34e298933c57268b5df7f", + "placeholder": "", + "style": "IPY_MODEL_a4328e8184d5434cafaf8a3e6f8aebc5", + "value": "images processed using softmin: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index ca959cfc3..e1091de44 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:58.211969Z", - "iopub.status.busy": "2023-12-15T12:35:58.211762Z", - "iopub.status.idle": "2023-12-15T12:35:59.264610Z", - "shell.execute_reply": "2023-12-15T12:35:59.263906Z" + "iopub.execute_input": "2023-12-16T02:32:30.258688Z", + "iopub.status.busy": "2023-12-16T02:32:30.258317Z", + "iopub.status.idle": "2023-12-16T02:32:31.283154Z", + "shell.execute_reply": "2023-12-16T02:32:31.282553Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:59.267661Z", - "iopub.status.busy": "2023-12-15T12:35:59.267324Z", - "iopub.status.idle": "2023-12-15T12:35:59.284992Z", - "shell.execute_reply": "2023-12-15T12:35:59.284360Z" + "iopub.execute_input": "2023-12-16T02:32:31.286318Z", + "iopub.status.busy": "2023-12-16T02:32:31.285697Z", + "iopub.status.idle": "2023-12-16T02:32:31.302448Z", + "shell.execute_reply": "2023-12-16T02:32:31.301938Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:59.287967Z", - "iopub.status.busy": "2023-12-15T12:35:59.287416Z", - "iopub.status.idle": "2023-12-15T12:35:59.341927Z", - "shell.execute_reply": "2023-12-15T12:35:59.341255Z" + "iopub.execute_input": "2023-12-16T02:32:31.304971Z", + "iopub.status.busy": "2023-12-16T02:32:31.304611Z", + "iopub.status.idle": "2023-12-16T02:32:31.354872Z", + "shell.execute_reply": "2023-12-16T02:32:31.354359Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:59.344472Z", - "iopub.status.busy": "2023-12-15T12:35:59.344119Z", - "iopub.status.idle": "2023-12-15T12:35:59.347865Z", - "shell.execute_reply": "2023-12-15T12:35:59.347273Z" + "iopub.execute_input": "2023-12-16T02:32:31.357316Z", + "iopub.status.busy": "2023-12-16T02:32:31.356948Z", + "iopub.status.idle": "2023-12-16T02:32:31.360508Z", + "shell.execute_reply": "2023-12-16T02:32:31.359983Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:59.350409Z", - "iopub.status.busy": "2023-12-15T12:35:59.350036Z", - "iopub.status.idle": "2023-12-15T12:35:59.358665Z", - "shell.execute_reply": "2023-12-15T12:35:59.358195Z" + "iopub.execute_input": "2023-12-16T02:32:31.362894Z", + "iopub.status.busy": "2023-12-16T02:32:31.362537Z", + "iopub.status.idle": "2023-12-16T02:32:31.371186Z", + "shell.execute_reply": "2023-12-16T02:32:31.370723Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:59.361125Z", - "iopub.status.busy": "2023-12-15T12:35:59.360758Z", - "iopub.status.idle": "2023-12-15T12:35:59.363566Z", - "shell.execute_reply": "2023-12-15T12:35:59.363043Z" + "iopub.execute_input": "2023-12-16T02:32:31.373719Z", + "iopub.status.busy": "2023-12-16T02:32:31.373364Z", + "iopub.status.idle": "2023-12-16T02:32:31.376008Z", + "shell.execute_reply": "2023-12-16T02:32:31.375474Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:59.365874Z", - "iopub.status.busy": "2023-12-15T12:35:59.365510Z", - "iopub.status.idle": "2023-12-15T12:35:59.950993Z", - "shell.execute_reply": "2023-12-15T12:35:59.950331Z" + "iopub.execute_input": "2023-12-16T02:32:31.378349Z", + "iopub.status.busy": "2023-12-16T02:32:31.378060Z", + "iopub.status.idle": "2023-12-16T02:32:31.951957Z", + "shell.execute_reply": "2023-12-16T02:32:31.951386Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:35:59.954184Z", - "iopub.status.busy": "2023-12-15T12:35:59.953758Z", - "iopub.status.idle": "2023-12-15T12:36:01.281700Z", - "shell.execute_reply": "2023-12-15T12:36:01.280896Z" + "iopub.execute_input": "2023-12-16T02:32:31.954697Z", + "iopub.status.busy": "2023-12-16T02:32:31.954319Z", + "iopub.status.idle": "2023-12-16T02:32:33.150175Z", + "shell.execute_reply": "2023-12-16T02:32:33.149521Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:01.285137Z", - "iopub.status.busy": "2023-12-15T12:36:01.284332Z", - "iopub.status.idle": "2023-12-15T12:36:01.295619Z", - "shell.execute_reply": "2023-12-15T12:36:01.294878Z" + "iopub.execute_input": "2023-12-16T02:32:33.153305Z", + "iopub.status.busy": "2023-12-16T02:32:33.152615Z", + "iopub.status.idle": "2023-12-16T02:32:33.162829Z", + "shell.execute_reply": "2023-12-16T02:32:33.162318Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:01.298448Z", - "iopub.status.busy": "2023-12-15T12:36:01.298031Z", - "iopub.status.idle": "2023-12-15T12:36:01.302728Z", - "shell.execute_reply": "2023-12-15T12:36:01.302162Z" + "iopub.execute_input": "2023-12-16T02:32:33.165365Z", + "iopub.status.busy": "2023-12-16T02:32:33.165043Z", + "iopub.status.idle": "2023-12-16T02:32:33.169184Z", + "shell.execute_reply": "2023-12-16T02:32:33.168639Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:01.305727Z", - "iopub.status.busy": "2023-12-15T12:36:01.305452Z", - "iopub.status.idle": "2023-12-15T12:36:01.314391Z", - "shell.execute_reply": "2023-12-15T12:36:01.313678Z" + "iopub.execute_input": "2023-12-16T02:32:33.171687Z", + "iopub.status.busy": "2023-12-16T02:32:33.171297Z", + "iopub.status.idle": "2023-12-16T02:32:33.178832Z", + "shell.execute_reply": "2023-12-16T02:32:33.178323Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:01.317194Z", - "iopub.status.busy": "2023-12-15T12:36:01.316915Z", - "iopub.status.idle": "2023-12-15T12:36:01.443850Z", - "shell.execute_reply": "2023-12-15T12:36:01.443070Z" + "iopub.execute_input": "2023-12-16T02:32:33.181325Z", + "iopub.status.busy": "2023-12-16T02:32:33.180950Z", + "iopub.status.idle": "2023-12-16T02:32:33.303633Z", + "shell.execute_reply": "2023-12-16T02:32:33.303089Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:01.446685Z", - "iopub.status.busy": "2023-12-15T12:36:01.446286Z", - "iopub.status.idle": "2023-12-15T12:36:01.449623Z", - "shell.execute_reply": "2023-12-15T12:36:01.448960Z" + "iopub.execute_input": "2023-12-16T02:32:33.306040Z", + "iopub.status.busy": "2023-12-16T02:32:33.305693Z", + "iopub.status.idle": "2023-12-16T02:32:33.308720Z", + "shell.execute_reply": "2023-12-16T02:32:33.308173Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:01.452282Z", - "iopub.status.busy": "2023-12-15T12:36:01.451914Z", - "iopub.status.idle": "2023-12-15T12:36:02.948517Z", - "shell.execute_reply": "2023-12-15T12:36:02.947661Z" + "iopub.execute_input": "2023-12-16T02:32:33.311072Z", + "iopub.status.busy": "2023-12-16T02:32:33.310730Z", + "iopub.status.idle": "2023-12-16T02:32:34.726582Z", + "shell.execute_reply": "2023-12-16T02:32:34.725852Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:02.952047Z", - "iopub.status.busy": "2023-12-15T12:36:02.951653Z", - "iopub.status.idle": "2023-12-15T12:36:02.965769Z", - "shell.execute_reply": "2023-12-15T12:36:02.965221Z" + "iopub.execute_input": "2023-12-16T02:32:34.729883Z", + "iopub.status.busy": "2023-12-16T02:32:34.729415Z", + "iopub.status.idle": "2023-12-16T02:32:34.742890Z", + "shell.execute_reply": "2023-12-16T02:32:34.742365Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:02.968323Z", - "iopub.status.busy": "2023-12-15T12:36:02.968012Z", - "iopub.status.idle": "2023-12-15T12:36:03.048623Z", - "shell.execute_reply": "2023-12-15T12:36:03.048034Z" + "iopub.execute_input": "2023-12-16T02:32:34.745242Z", + "iopub.status.busy": "2023-12-16T02:32:34.745038Z", + "iopub.status.idle": "2023-12-16T02:32:34.799968Z", + "shell.execute_reply": "2023-12-16T02:32:34.799454Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index ad45256d6..bfe6f4e82 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:08.122264Z", - "iopub.status.busy": "2023-12-15T12:36:08.122067Z", - "iopub.status.idle": "2023-12-15T12:36:10.217463Z", - "shell.execute_reply": "2023-12-15T12:36:10.216832Z" + "iopub.execute_input": "2023-12-16T02:32:40.251986Z", + "iopub.status.busy": "2023-12-16T02:32:40.251503Z", + "iopub.status.idle": "2023-12-16T02:32:42.270235Z", + "shell.execute_reply": "2023-12-16T02:32:42.269638Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.220398Z", - "iopub.status.busy": "2023-12-15T12:36:10.220054Z", - "iopub.status.idle": "2023-12-15T12:36:10.223722Z", - "shell.execute_reply": "2023-12-15T12:36:10.223164Z" + "iopub.execute_input": "2023-12-16T02:32:42.273226Z", + "iopub.status.busy": "2023-12-16T02:32:42.272744Z", + "iopub.status.idle": "2023-12-16T02:32:42.276218Z", + "shell.execute_reply": "2023-12-16T02:32:42.275628Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.226125Z", - "iopub.status.busy": "2023-12-15T12:36:10.225756Z", - "iopub.status.idle": "2023-12-15T12:36:10.229013Z", - "shell.execute_reply": "2023-12-15T12:36:10.228472Z" + "iopub.execute_input": "2023-12-16T02:32:42.278591Z", + "iopub.status.busy": "2023-12-16T02:32:42.278242Z", + "iopub.status.idle": "2023-12-16T02:32:42.281416Z", + "shell.execute_reply": "2023-12-16T02:32:42.280863Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.231579Z", - "iopub.status.busy": "2023-12-15T12:36:10.231191Z", - "iopub.status.idle": "2023-12-15T12:36:10.278823Z", - "shell.execute_reply": "2023-12-15T12:36:10.278190Z" + "iopub.execute_input": "2023-12-16T02:32:42.283739Z", + "iopub.status.busy": "2023-12-16T02:32:42.283385Z", + "iopub.status.idle": "2023-12-16T02:32:42.332655Z", + "shell.execute_reply": "2023-12-16T02:32:42.332143Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.281448Z", - "iopub.status.busy": "2023-12-15T12:36:10.281001Z", - "iopub.status.idle": "2023-12-15T12:36:10.284860Z", - "shell.execute_reply": "2023-12-15T12:36:10.284267Z" + "iopub.execute_input": "2023-12-16T02:32:42.334965Z", + "iopub.status.busy": "2023-12-16T02:32:42.334673Z", + "iopub.status.idle": "2023-12-16T02:32:42.338229Z", + "shell.execute_reply": "2023-12-16T02:32:42.337691Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.287308Z", - "iopub.status.busy": "2023-12-15T12:36:10.286919Z", - "iopub.status.idle": "2023-12-15T12:36:10.290659Z", - "shell.execute_reply": "2023-12-15T12:36:10.290080Z" + "iopub.execute_input": "2023-12-16T02:32:42.340690Z", + "iopub.status.busy": "2023-12-16T02:32:42.340323Z", + "iopub.status.idle": "2023-12-16T02:32:42.343985Z", + "shell.execute_reply": "2023-12-16T02:32:42.343379Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'lost_or_stolen_phone'}\n" + "Classes: {'supported_cards_and_currencies', 'card_about_to_expire', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'change_pin', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.293099Z", - "iopub.status.busy": "2023-12-15T12:36:10.292736Z", - "iopub.status.idle": "2023-12-15T12:36:10.296627Z", - "shell.execute_reply": "2023-12-15T12:36:10.296093Z" + "iopub.execute_input": "2023-12-16T02:32:42.346305Z", + "iopub.status.busy": "2023-12-16T02:32:42.345940Z", + "iopub.status.idle": "2023-12-16T02:32:42.349382Z", + "shell.execute_reply": "2023-12-16T02:32:42.348750Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.299152Z", - "iopub.status.busy": "2023-12-15T12:36:10.298759Z", - "iopub.status.idle": "2023-12-15T12:36:10.302181Z", - "shell.execute_reply": "2023-12-15T12:36:10.301642Z" + "iopub.execute_input": "2023-12-16T02:32:42.351823Z", + "iopub.status.busy": "2023-12-16T02:32:42.351450Z", + "iopub.status.idle": "2023-12-16T02:32:42.355509Z", + "shell.execute_reply": "2023-12-16T02:32:42.354986Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.304706Z", - "iopub.status.busy": "2023-12-15T12:36:10.304344Z", - "iopub.status.idle": "2023-12-15T12:36:19.037060Z", - "shell.execute_reply": "2023-12-15T12:36:19.036391Z" + "iopub.execute_input": "2023-12-16T02:32:42.357902Z", + "iopub.status.busy": "2023-12-16T02:32:42.357533Z", + "iopub.status.idle": "2023-12-16T02:32:50.978103Z", + "shell.execute_reply": "2023-12-16T02:32:50.977368Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:19.040434Z", - "iopub.status.busy": "2023-12-15T12:36:19.039969Z", - "iopub.status.idle": "2023-12-15T12:36:19.043259Z", - "shell.execute_reply": "2023-12-15T12:36:19.042717Z" + "iopub.execute_input": "2023-12-16T02:32:50.981367Z", + "iopub.status.busy": "2023-12-16T02:32:50.981135Z", + "iopub.status.idle": "2023-12-16T02:32:50.984231Z", + "shell.execute_reply": "2023-12-16T02:32:50.983597Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:19.045630Z", - "iopub.status.busy": "2023-12-15T12:36:19.045260Z", - "iopub.status.idle": "2023-12-15T12:36:19.048026Z", - "shell.execute_reply": "2023-12-15T12:36:19.047458Z" + "iopub.execute_input": "2023-12-16T02:32:50.986724Z", + "iopub.status.busy": "2023-12-16T02:32:50.986273Z", + "iopub.status.idle": "2023-12-16T02:32:50.989243Z", + "shell.execute_reply": "2023-12-16T02:32:50.988634Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:19.050404Z", - "iopub.status.busy": "2023-12-15T12:36:19.050039Z", - "iopub.status.idle": "2023-12-15T12:36:21.273504Z", - "shell.execute_reply": "2023-12-15T12:36:21.272621Z" + "iopub.execute_input": "2023-12-16T02:32:50.991455Z", + "iopub.status.busy": "2023-12-16T02:32:50.991206Z", + "iopub.status.idle": "2023-12-16T02:32:53.188887Z", + "shell.execute_reply": "2023-12-16T02:32:53.188128Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.277436Z", - "iopub.status.busy": "2023-12-15T12:36:21.276609Z", - "iopub.status.idle": "2023-12-15T12:36:21.285122Z", - "shell.execute_reply": "2023-12-15T12:36:21.284508Z" + "iopub.execute_input": "2023-12-16T02:32:53.192522Z", + "iopub.status.busy": "2023-12-16T02:32:53.191777Z", + "iopub.status.idle": "2023-12-16T02:32:53.199983Z", + "shell.execute_reply": "2023-12-16T02:32:53.199371Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.287768Z", - "iopub.status.busy": "2023-12-15T12:36:21.287449Z", - "iopub.status.idle": "2023-12-15T12:36:21.291612Z", - "shell.execute_reply": "2023-12-15T12:36:21.291029Z" + "iopub.execute_input": "2023-12-16T02:32:53.202426Z", + "iopub.status.busy": "2023-12-16T02:32:53.201971Z", + "iopub.status.idle": "2023-12-16T02:32:53.206457Z", + "shell.execute_reply": "2023-12-16T02:32:53.205805Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.294090Z", - "iopub.status.busy": "2023-12-15T12:36:21.293762Z", - "iopub.status.idle": "2023-12-15T12:36:21.297513Z", - "shell.execute_reply": "2023-12-15T12:36:21.296879Z" + "iopub.execute_input": "2023-12-16T02:32:53.208974Z", + "iopub.status.busy": "2023-12-16T02:32:53.208499Z", + "iopub.status.idle": "2023-12-16T02:32:53.212207Z", + "shell.execute_reply": "2023-12-16T02:32:53.211580Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.300094Z", - "iopub.status.busy": "2023-12-15T12:36:21.299744Z", - "iopub.status.idle": "2023-12-15T12:36:21.303125Z", - "shell.execute_reply": "2023-12-15T12:36:21.302542Z" + "iopub.execute_input": "2023-12-16T02:32:53.214679Z", + "iopub.status.busy": "2023-12-16T02:32:53.214218Z", + "iopub.status.idle": "2023-12-16T02:32:53.217586Z", + "shell.execute_reply": "2023-12-16T02:32:53.216953Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.305804Z", - "iopub.status.busy": "2023-12-15T12:36:21.305435Z", - "iopub.status.idle": "2023-12-15T12:36:21.313553Z", - "shell.execute_reply": "2023-12-15T12:36:21.312878Z" + "iopub.execute_input": "2023-12-16T02:32:53.220101Z", + "iopub.status.busy": "2023-12-16T02:32:53.219738Z", + "iopub.status.idle": "2023-12-16T02:32:53.226975Z", + "shell.execute_reply": "2023-12-16T02:32:53.226359Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.316295Z", - "iopub.status.busy": "2023-12-15T12:36:21.315828Z", - "iopub.status.idle": "2023-12-15T12:36:21.560250Z", - "shell.execute_reply": "2023-12-15T12:36:21.559599Z" + "iopub.execute_input": "2023-12-16T02:32:53.229411Z", + "iopub.status.busy": "2023-12-16T02:32:53.229064Z", + "iopub.status.idle": "2023-12-16T02:32:53.499469Z", + "shell.execute_reply": "2023-12-16T02:32:53.498840Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.563470Z", - "iopub.status.busy": "2023-12-15T12:36:21.563046Z", - "iopub.status.idle": "2023-12-15T12:36:21.865886Z", - "shell.execute_reply": "2023-12-15T12:36:21.865216Z" + "iopub.execute_input": "2023-12-16T02:32:53.502593Z", + "iopub.status.busy": "2023-12-16T02:32:53.502146Z", + "iopub.status.idle": "2023-12-16T02:32:53.780474Z", + "shell.execute_reply": "2023-12-16T02:32:53.779891Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.870271Z", - "iopub.status.busy": "2023-12-15T12:36:21.869079Z", - "iopub.status.idle": "2023-12-15T12:36:21.874870Z", - "shell.execute_reply": "2023-12-15T12:36:21.874265Z" + "iopub.execute_input": "2023-12-16T02:32:53.783461Z", + "iopub.status.busy": "2023-12-16T02:32:53.783006Z", + "iopub.status.idle": "2023-12-16T02:32:53.787040Z", + "shell.execute_reply": "2023-12-16T02:32:53.786460Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index afebd9232..07698d053 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:27.181838Z", - "iopub.status.busy": "2023-12-15T12:36:27.181643Z", - "iopub.status.idle": "2023-12-15T12:36:28.921062Z", - "shell.execute_reply": "2023-12-15T12:36:28.920360Z" + "iopub.execute_input": "2023-12-16T02:32:59.233192Z", + "iopub.status.busy": "2023-12-16T02:32:59.233002Z", + "iopub.status.idle": "2023-12-16T02:33:00.451567Z", + "shell.execute_reply": "2023-12-16T02:33:00.450810Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-15 12:36:27-- https://data.deepai.org/conll2003.zip\r\n", + "--2023-12-16 02:32:59-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,24 +94,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.100, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", - "Length: 982975 (960K) [application/zip]\r\n", - "Saving to: ‘conll2003.zip’\r\n", - "\r\n", - "\r", - "conll2003.zip 0%[ ] 0 --.-KB/s " + "185.93.1.247, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "HTTP request sent, awaiting response... 200 OK\r\n", + "Length: 982975 (960K) [application/zip]\r\n", + "Saving to: ‘conll2003.zip’\r\n", + "\r\n", "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.06s \r\n", + "conll2003.zip 0%[ ] 0 --.-KB/s \r", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", "\r\n", - "2023-12-15 12:36:27 (15.2 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-12-16 02:32:59 (93.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,9 +130,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-15 12:36:27-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.220, 52.217.124.9, 3.5.25.92, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.220|:443... connected.\r\n" + "--2023-12-16 02:32:59-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.220.33, 54.231.204.89, 54.231.224.161, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.220.33|:443... connected.\r\n" ] }, { @@ -160,23 +159,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 11%[=> ] 1.80M 8.97MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 34%[=====> ] 5.53M 13.8MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 71%[=============> ] 11.61M 19.2MB/s " + "pred_probs.npz 42%[=======> ] 6.98M 33.0MB/s " ] }, { @@ -184,9 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 22.9MB/s in 0.7s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 44.7MB/s in 0.4s \r\n", "\r\n", - "2023-12-15 12:36:28 (22.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-12-16 02:33:00 (44.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -203,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:28.923864Z", - "iopub.status.busy": "2023-12-15T12:36:28.923652Z", - "iopub.status.idle": "2023-12-15T12:36:29.969508Z", - "shell.execute_reply": "2023-12-15T12:36:29.968784Z" + "iopub.execute_input": "2023-12-16T02:33:00.454315Z", + "iopub.status.busy": "2023-12-16T02:33:00.454105Z", + "iopub.status.idle": "2023-12-16T02:33:01.461536Z", + "shell.execute_reply": "2023-12-16T02:33:01.460937Z" }, "nbsphinx": "hidden" }, @@ -217,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -243,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:29.972810Z", - "iopub.status.busy": "2023-12-15T12:36:29.972187Z", - "iopub.status.idle": "2023-12-15T12:36:29.975956Z", - "shell.execute_reply": "2023-12-15T12:36:29.975360Z" + "iopub.execute_input": "2023-12-16T02:33:01.464438Z", + "iopub.status.busy": "2023-12-16T02:33:01.464045Z", + "iopub.status.idle": "2023-12-16T02:33:01.467861Z", + "shell.execute_reply": "2023-12-16T02:33:01.467330Z" } }, "outputs": [], @@ -296,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:29.978612Z", - "iopub.status.busy": "2023-12-15T12:36:29.978246Z", - "iopub.status.idle": "2023-12-15T12:36:29.981528Z", - "shell.execute_reply": "2023-12-15T12:36:29.980926Z" + "iopub.execute_input": "2023-12-16T02:33:01.470361Z", + "iopub.status.busy": "2023-12-16T02:33:01.470000Z", + "iopub.status.idle": "2023-12-16T02:33:01.473088Z", + "shell.execute_reply": "2023-12-16T02:33:01.472572Z" }, "nbsphinx": "hidden" }, @@ -317,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:29.983938Z", - "iopub.status.busy": "2023-12-15T12:36:29.983568Z", - "iopub.status.idle": "2023-12-15T12:36:37.791333Z", - "shell.execute_reply": "2023-12-15T12:36:37.790729Z" + "iopub.execute_input": "2023-12-16T02:33:01.475473Z", + "iopub.status.busy": "2023-12-16T02:33:01.475102Z", + "iopub.status.idle": "2023-12-16T02:33:09.240757Z", + "shell.execute_reply": "2023-12-16T02:33:09.240138Z" } }, "outputs": [], @@ -394,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:37.794534Z", - "iopub.status.busy": "2023-12-15T12:36:37.793924Z", - "iopub.status.idle": "2023-12-15T12:36:37.799932Z", - "shell.execute_reply": "2023-12-15T12:36:37.799424Z" + "iopub.execute_input": "2023-12-16T02:33:09.243679Z", + "iopub.status.busy": "2023-12-16T02:33:09.243327Z", + "iopub.status.idle": "2023-12-16T02:33:09.249362Z", + "shell.execute_reply": "2023-12-16T02:33:09.248843Z" }, "nbsphinx": "hidden" }, @@ -437,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:37.802256Z", - "iopub.status.busy": "2023-12-15T12:36:37.801902Z", - "iopub.status.idle": "2023-12-15T12:36:38.216719Z", - "shell.execute_reply": "2023-12-15T12:36:38.216053Z" + "iopub.execute_input": "2023-12-16T02:33:09.251745Z", + "iopub.status.busy": "2023-12-16T02:33:09.251373Z", + "iopub.status.idle": "2023-12-16T02:33:09.655026Z", + "shell.execute_reply": "2023-12-16T02:33:09.654318Z" } }, "outputs": [], @@ -477,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:38.219791Z", - "iopub.status.busy": "2023-12-15T12:36:38.219379Z", - "iopub.status.idle": "2023-12-15T12:36:38.224741Z", - "shell.execute_reply": "2023-12-15T12:36:38.224118Z" + "iopub.execute_input": "2023-12-16T02:33:09.658038Z", + "iopub.status.busy": "2023-12-16T02:33:09.657791Z", + "iopub.status.idle": "2023-12-16T02:33:09.664107Z", + "shell.execute_reply": "2023-12-16T02:33:09.663579Z" } }, "outputs": [ @@ -552,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:38.227284Z", - "iopub.status.busy": "2023-12-15T12:36:38.226832Z", - "iopub.status.idle": "2023-12-15T12:36:40.186759Z", - "shell.execute_reply": "2023-12-15T12:36:40.185860Z" + "iopub.execute_input": "2023-12-16T02:33:09.666477Z", + "iopub.status.busy": "2023-12-16T02:33:09.666179Z", + "iopub.status.idle": "2023-12-16T02:33:11.523854Z", + "shell.execute_reply": "2023-12-16T02:33:11.523070Z" } }, "outputs": [], @@ -577,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:40.190144Z", - "iopub.status.busy": "2023-12-15T12:36:40.189600Z", - "iopub.status.idle": "2023-12-15T12:36:40.196864Z", - "shell.execute_reply": "2023-12-15T12:36:40.196200Z" + "iopub.execute_input": "2023-12-16T02:33:11.527474Z", + "iopub.status.busy": "2023-12-16T02:33:11.526697Z", + "iopub.status.idle": "2023-12-16T02:33:11.533336Z", + "shell.execute_reply": "2023-12-16T02:33:11.532737Z" } }, "outputs": [ @@ -616,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:40.199343Z", - "iopub.status.busy": "2023-12-15T12:36:40.199078Z", - "iopub.status.idle": "2023-12-15T12:36:40.217319Z", - "shell.execute_reply": "2023-12-15T12:36:40.216798Z" + "iopub.execute_input": "2023-12-16T02:33:11.535898Z", + "iopub.status.busy": "2023-12-16T02:33:11.535513Z", + "iopub.status.idle": "2023-12-16T02:33:11.553281Z", + "shell.execute_reply": "2023-12-16T02:33:11.552776Z" } }, "outputs": [ @@ -797,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:40.219860Z", - "iopub.status.busy": "2023-12-15T12:36:40.219474Z", - "iopub.status.idle": "2023-12-15T12:36:40.251940Z", - "shell.execute_reply": "2023-12-15T12:36:40.251360Z" + "iopub.execute_input": "2023-12-16T02:33:11.555793Z", + "iopub.status.busy": "2023-12-16T02:33:11.555430Z", + "iopub.status.idle": "2023-12-16T02:33:11.586111Z", + "shell.execute_reply": "2023-12-16T02:33:11.585569Z" } }, "outputs": [ @@ -902,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:40.254640Z", - "iopub.status.busy": "2023-12-15T12:36:40.254184Z", - "iopub.status.idle": "2023-12-15T12:36:40.262842Z", - "shell.execute_reply": "2023-12-15T12:36:40.262319Z" + "iopub.execute_input": "2023-12-16T02:33:11.588548Z", + "iopub.status.busy": "2023-12-16T02:33:11.588180Z", + "iopub.status.idle": "2023-12-16T02:33:11.596680Z", + "shell.execute_reply": "2023-12-16T02:33:11.596145Z" } }, "outputs": [ @@ -979,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:40.265331Z", - "iopub.status.busy": "2023-12-15T12:36:40.265120Z", - "iopub.status.idle": "2023-12-15T12:36:42.064911Z", - "shell.execute_reply": "2023-12-15T12:36:42.064241Z" + "iopub.execute_input": "2023-12-16T02:33:11.599023Z", + "iopub.status.busy": "2023-12-16T02:33:11.598659Z", + "iopub.status.idle": "2023-12-16T02:33:13.342728Z", + "shell.execute_reply": "2023-12-16T02:33:13.342070Z" } }, "outputs": [ @@ -1154,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:42.067493Z", - "iopub.status.busy": "2023-12-15T12:36:42.067088Z", - "iopub.status.idle": "2023-12-15T12:36:42.071598Z", - "shell.execute_reply": "2023-12-15T12:36:42.071019Z" + "iopub.execute_input": "2023-12-16T02:33:13.345568Z", + "iopub.status.busy": "2023-12-16T02:33:13.345125Z", + "iopub.status.idle": "2023-12-16T02:33:13.349482Z", + "shell.execute_reply": "2023-12-16T02:33:13.348962Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index db843d443..fdf537cc2 100644 Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index a92b2bc68..52ebfb867 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index efd3e0690..8e47082b4 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index a2725cbf8..e0888e4fc 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 011ffdca4..3600fcd88 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 11ff69bed..2ccbdf1c2 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 3b9d6c2c8..10cb2963c 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 191b58110..7c51a8856 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index 30bfa3c07..348820f37 100644 Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 10792cd65..174e89319 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 5c09b398c..f17d39792 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index d2441199c..d2025d94d 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index ed7e34df7..e20e55f30 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index b3df9153f..231fcefa0 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 8512d529f..e40ef8ed8 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 1e5144d19..56f0ac5cc 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 57603df98..0ff7e498a 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 0ae9bdbeb..f136d100d 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index f754abc7b..358f5b02b 100644 Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index ecdf2b57f..988bdd3ae 100644 Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 7d2cfdbcf..ed9a6a263 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index 47c6de509..7f0d08a45 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 524032df5..f61713dbd 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index e26295f13..92b595fa1 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index a4489784c..257c17e5c 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 462156328..af4509ab5 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -539,6 +539,31 @@ "if not all(x in identified_duplicate_issues.index for x in duplicate_issue_indices):\n", " raise Exception(\"Some highlighted examples are missing from identified_duplicate_issues.\")" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Non-IID issues (data drift)\n", + "According to the report, our dataset does not appear to be Independent and Identically Distributed (IID). The overall non-iid score for the dataset (displayed below) corresponds to the `p-value` of a statistical test for whether the ordering of samples in the dataset appears related to the similarity between their feature values. A low `p-value` strongly suggests that the dataset violates the IID assumption, which is a key assumption required for conclusions (models) produced from the dataset to generalize to a larger population." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "p_value = lab.get_info('non_iid')['p-value']\n", + "p_value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, our dataset was flagged as non-IID because the rows happened to be sorted by class label in the original data. This may be benign if we remember to shuffle rows before model training and data splitting. But if you don't know why your data was flagged as non-IID, then you should be worried about potential data drift or unexpected interactions between data points (their values may not be statistically independent). Think carefully about what future test data may look like (and whether your data is representative of the population you care about). You should not shuffle your data before the non-IID test runs (will invalidate its conclusions)." + ] } ], "metadata": { diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index abfddcaff..3bbb52302 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index e6cd260e2..fd7164c5d 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 64f005076..87b7b2e1a 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 2e8d1dfc6..b179e0e3c 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -72,7 +72,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index d6d01a337..bc036417c 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 97c2c090a..07611ac5f 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 8c3f0dff4..5d7ad5654 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index ee6ca40aa..c1a7641d6 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index de7932987..32f365148 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index 58e0cbd5b..cebd5a9dd 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 0d4e001d4..c6aa7b6c1 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/objects.inv b/master/objects.inv index 8577ad74f..2851a3144 100644 Binary files a/master/objects.inv and b/master/objects.inv differ diff --git a/master/searchindex.js b/master/searchindex.js index 3a5eb57a7..cce53a268 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 5, 10, 38, 40, 42, 44, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 21, 43, 61, 67, 69, 79, 80, 82, 86], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 14, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 29, 50], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 14, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 14, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 78, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 14, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 14, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 82], "els": [2, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": 2, "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 14, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 91, 92], "like": [2, 3, 4, 5, 8, 12, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 75, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 14, 30, 34, 48, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 63, 65, 67, 73, 74, 84, 88, 92], "caus": [2, 35, 40, 74, 75], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 27, 29, 33, 35, 51, 54, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69], "row": [2, 3, 4, 11, 14, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 77, 78, 79, 80, 81, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 14, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 75, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 30, 34, 49, 58, 61, 77, 78, 80, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 14, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 80, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 80, 87, 90, 93], "deploi": [2, 61, 80], "care": [2, 8, 30, 34, 61, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 14, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 80, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 12, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 81, 82, 84, 89, 91, 92], "fashion": [3, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 14, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 67, 79], "again": [3, 48, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 75, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 79, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 30, 34, 57], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 80, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 80, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 14, 44, 61, 79, 89], "csr": [4, 14], "evenli": [4, 14], "omit": [4, 14, 56, 57, 81, 86], "itself": [4, 14, 30, 34, 86], "duplic": [4, 7, 14, 18, 19, 30, 34, 71, 74, 82], "explicit": [4, 14], "precend": [4, 14], "construct": [4, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 14, 86], "nor": [4, 8, 12, 14], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "nearestneighbor": [4, 8, 58, 77, 87], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "kneighbors_graph": [4, 77], "mode": [4, 30, 33, 34, 77, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "start": [5, 30, 31, 34, 71, 77, 85, 93], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": 7, "iid": [7, 21, 75, 77, 78, 81, 82], "imbal": [7, 18, 53, 58, 59], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "three": [8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": 8, "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 80, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 78, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 79, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 83], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34], "At": [14, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "10": [16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_scor": [16, 74, 75, 77, 78, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 22, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 22, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 22, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "null": 18, "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "nullissuemanag": 22, "miss": [22, 30, 34, 44, 54, 56, 77, 80, 86, 89], "null_track": 22, "null_scor": 22, "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 92, 93], "50": [26, 34, 80, 82, 84, 86, 87], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "ascend": [29, 42, 50, 81, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "arbitrari": [29, 65, 69, 74, 87, 89], "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "doc": [30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 86], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "posit": [30, 34, 44, 79, 87], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "howev": [30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 85, 89, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "demonstr": [33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 91], "log_interv": 34, "01": [34, 59, 61, 73, 82, 85, 86, 89], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "enabl": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "fewer": [35, 44, 86], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "th": [39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 86, 93], "452": 40, "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "second": [40, 42, 44, 57, 59, 74, 80, 82, 93], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "extend": [41, 81, 87, 93], "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 84], "crowdlab": [49, 84], "unlabel": [49, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": 49, "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "vice": 50, "versa": 50, "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": 56, "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "segment": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "95": [67, 69, 77, 79, 82, 89], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89], "02": [69, 74, 75, 82, 86, 89], "03": [69, 79, 82, 86, 93], "04": [69, 86, 89], "08": [69, 82, 86, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 80, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 80], "platform": [71, 80], "automl": [71, 80], "foundat": 71, "smart": [71, 80], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 82, 84, 86], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 82, 86, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86], "56918": 73, "19": [73, 78, 79, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "address": [74, 75, 78, 80, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 82, 86], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "2465": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "463180e": [74, 75], "07": [74, 75, 82, 86], "51": [74, 75, 77, 79, 82, 86], "857172e": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "297": [74, 86], "userwarn": [74, 75], "327": [74, 86], "306": 74, "34": [74, 79, 82, 84, 86, 87, 93], "54": [74, 79, 82, 86], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79], "169462": 74, "109": [74, 79, 86], "194566": 74, "35": [74, 79, 84, 85, 86], "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 93], "085049e": 74, "087324e": 74, "89": [74, 77, 86, 89], "92": [74, 82, 86, 91, 93], "574261e": 74, "583757e": 74, "91": [74, 86, 92], "314215e": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "32": [74, 79, 84, 86], "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 82, 86, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 91], "87": [75, 81, 86, 89, 92], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "246459": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "235095": 75, "970324": 75, "816965": 75, "548979": 75, "221560": 75, "890575": 75, "530924": 75, "622256": 75, "199185": 75, "752776": 75, "499498": 75, "179601": 75, "948362": 75, "090224": 75, "632385": 75, "292800": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": 75, "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "reflect": [77, 78, 84, 86, 87, 89, 91, 92], "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 82, 86, 91], "94": [77, 79, 82, 86, 89, 91], "78": [77, 79, 82, 86, 89, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 82, 86], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "2169": 77, "690": 77, "246": [77, 86], "185": [77, 79, 86], "582": 77, "691": 77, "168": [77, 82], "915": 77, "187": [77, 79], "27": [77, 79, 82, 86, 93], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "898": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "619": 77, "620": 77, "621": 77, "622": 77, "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89], "96": [77, 79, 82, 85, 86, 89], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 81, 86, 89], "wari": [77, 78, 80], "intent": [78, 92], "servic": [78, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "supported_cards_and_curr": [78, 92], "change_pin": [78, 92], "apple_pay_or_google_pai": [78, 92], "visa_or_mastercard": [78, 92], "lost_or_stolen_phon": [78, 92], "card_about_to_expir": [78, 92], "getting_spare_card": [78, 92], "card_payment_fee_charg": [78, 92], "beneficiary_not_allow": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86], "41": [78, 79, 86, 89], "38": [78, 79, 86], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "0656": 78, "160": [78, 82], "006237": 78, "148": 78, "546": 78, "006485": 78, "514": 78, "481": 78, "008165": 78, "0000": [78, 79, 82], "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 93], "574915": 78, "31": [78, 79, 82, 84, 86], "575507": 78, "575874": 78, "0800": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "ground": [79, 82, 84, 89], "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "light": [79, 81, 86, 90], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": 79, "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "29": [79, 81, 84, 85, 86, 90, 93], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": 79, "002216": 79, "000974": 79, "59": [79, 86], "88": [79, 81, 82, 85, 86, 89], "000873": 79, "000739": 79, "79": [79, 86, 91], "32635": 79, "32636": 79, "47": [79, 86], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "93": [79, 86, 89, 91], "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 93], "44": [79, 85, 86], "71": [79, 82, 86], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89], "452381": 79, "459770": 79, "72": [79, 82, 85, 89], "523364": 79, "460784": 79, "446602": 79, "57": [79, 82], "68": [79, 82, 86, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 82, 86], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "intersect": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "60": [81, 82], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "num_proc": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "super": 81, "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "627": 81, "331": 81, "310": 81, "359": 81, "54it": 81, "57it": 81, "492": 81, "085": 81, "579": 81, "330": [81, 86], "290": [81, 86], "445": 81, "62": [81, 82, 86, 89], "55it": 81, "93it": 81, "476": 81, "305": [81, 89], "543": 81, "328": [81, 86], "335": 81, "299": [81, 86], "59it": 81, "49it": 81, "reorder": 81, "vision": 81, "low_inform": 81, "odd_aspect_ratio": 81, "odd_siz": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "0268": 81, "30659": 81, "000015": 81, "30968": 81, "258": 81, "000017": 81, "9762": 81, "54565": 81, "47139": 81, "000026": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "especi": [81, 89, 91, 92], "near_duplicate_issu": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "3312": 82, "007136": 82, "119": [82, 86], "033725": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "037825": 82, "236": [82, 86, 93], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "1960": 82, "158": 82, "159": [82, 85, 86], "161": 82, "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "truth": [82, 84, 89], "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "69": [82, 89], "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 93], "76": [82, 85, 86, 89, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "196": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "63": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86, 93], "169": [82, 93], "151": [82, 86], "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "156": 82, "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "300": [84, 93], "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "na": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "tolist": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": 86, "323": 86, "226": 86, "228": 86, "232": 86, "219": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": [86, 93], "229": 86, "85": [86, 89], "217": [86, 93], "237": 86, "207": 86, "204": 86, "205": 86, "223": 86, "153": 86, "149": 86, "140": 86, "124": [86, 93], "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "isin": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "semantic_segment": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "system": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "167966": 90, "98it": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "637": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2023": 93, "2400": 93, "52e0": 93, "1a00": 93, "1067": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "959": 93, "94k": 93, "kb": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "9mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 81], "non": 8, "iid": 8, "class": [8, 72, 75, 82, 90], "imbal": [8, 17, 75], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "null": 22, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": 71, "mode": 71, "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "run": 80, "identifi": [80, 86], "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 5, 10, 38, 40, 42, 44, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 21, 43, 61, 67, 69, 79, 80, 82, 86], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 14, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 29, 50], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 14, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 14, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 14, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 14, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 82], "els": [2, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": 2, "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 14, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 91, 92], "like": [2, 3, 4, 5, 8, 12, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 75, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 14, 30, 34, 48, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 63, 65, 67, 73, 74, 84, 88, 92], "caus": [2, 35, 40, 74, 75], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 27, 29, 33, 35, 51, 54, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69], "row": [2, 3, 4, 11, 14, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 77, 78, 79, 80, 81, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 14, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 75, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 30, 34, 49, 58, 61, 77, 78, 80, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 14, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 80, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 80, 87, 90, 93], "deploi": [2, 61, 80], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 78, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 14, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 78, 80, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 12, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 81, 82, 84, 89, 91, 92], "fashion": [3, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 14, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 67, 79], "again": [3, 48, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 75, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 79, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 30, 34, 57], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 78, 80, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 80, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 14, 44, 61, 79, 89], "csr": [4, 14], "evenli": [4, 14], "omit": [4, 14, 56, 57, 81, 86], "itself": [4, 14, 30, 34, 86], "duplic": [4, 7, 14, 18, 19, 30, 34, 71, 74, 82], "explicit": [4, 14], "precend": [4, 14], "construct": [4, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 14, 86], "nor": [4, 8, 12, 14], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "nearestneighbor": [4, 8, 58, 77, 87], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "kneighbors_graph": [4, 77], "mode": [4, 30, 33, 34, 77, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "start": [5, 30, 31, 34, 71, 77, 85, 93], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": 7, "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "three": [8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 80, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 79, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 83], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34], "At": [14, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "10": [16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_scor": [16, 74, 75, 77, 78, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 22, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 22, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 22, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "null": 18, "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "nullissuemanag": 22, "miss": [22, 30, 34, 44, 54, 56, 77, 80, 86, 89], "null_track": 22, "null_scor": 22, "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 92, 93], "50": [26, 34, 80, 82, 84, 86, 87], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "ascend": [29, 42, 50, 81, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "arbitrari": [29, 65, 69, 74, 87, 89], "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "doc": [30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 86, 93], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "posit": [30, 34, 44, 79, 87], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "howev": [30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 85, 89, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "demonstr": [33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 91], "log_interv": 34, "01": [34, 59, 61, 73, 82, 85, 86, 89, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "enabl": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "fewer": [35, 44, 86], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "th": [39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 86, 93], "452": 40, "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "second": [40, 42, 44, 57, 59, 74, 80, 82, 93], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "extend": [41, 81, 87, 93], "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 84], "crowdlab": [49, 84], "unlabel": [49, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": 49, "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "vice": 50, "versa": 50, "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": 56, "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "segment": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "95": [67, 69, 77, 79, 82, 89], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89], "02": [69, 74, 75, 82, 86, 89, 93], "03": [69, 79, 82, 86, 93], "04": [69, 86, 89], "08": [69, 82, 86, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 80, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 80], "platform": [71, 80], "automl": [71, 80], "foundat": 71, "smart": [71, 80], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 82, 84, 86], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 78, 79, 82, 86, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86], "56918": 73, "19": [73, 78, 79, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "address": [74, 75, 78, 80, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 82, 86], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "2465": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91, 93], "463180e": [74, 75], "07": [74, 75, 82, 86], "51": [74, 75, 77, 79, 82, 86], "857172e": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "297": [74, 86], "userwarn": [74, 75], "327": [74, 86], "306": 74, "34": [74, 79, 82, 84, 86, 87, 93], "54": [74, 79, 82, 86, 93], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79], "169462": 74, "109": [74, 79, 86], "194566": 74, "35": [74, 79, 84, 85, 86], "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 93], "085049e": 74, "087324e": 74, "89": [74, 77, 86, 89, 93], "92": [74, 82, 86, 91], "574261e": 74, "583757e": 74, "91": [74, 86, 92], "314215e": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "32": [74, 79, 84, 86, 93], "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 82, 86, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 91], "87": [75, 81, 86, 89, 92], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "246459": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "235095": 75, "970324": 75, "816965": 75, "548979": 75, "221560": 75, "890575": 75, "530924": 75, "622256": 75, "199185": 75, "752776": 75, "499498": 75, "179601": 75, "948362": 75, "090224": 75, "632385": 75, "292800": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "reflect": [77, 78, 84, 86, 87, 89, 91, 92], "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 82, 86, 91], "94": [77, 79, 82, 86, 89, 91], "78": [77, 79, 82, 86, 89, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 82, 86], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "2169": 77, "690": 77, "246": [77, 86], "185": [77, 79, 86, 93], "582": 77, "691": 77, "168": [77, 82], "915": 77, "187": [77, 79], "27": [77, 79, 82, 86, 93], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "898": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "619": 77, "620": 77, "621": 77, "622": 77, "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89], "96": [77, 79, 82, 85, 86, 89], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 86, 89], "wari": [77, 78, 80], "intent": [78, 92], "servic": [78, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "visa_or_mastercard": [78, 92], "change_pin": [78, 92], "beneficiary_not_allow": [78, 92], "apple_pay_or_google_pai": [78, 92], "lost_or_stolen_phon": [78, 92], "supported_cards_and_curr": [78, 92], "card_about_to_expir": [78, 92], "getting_spare_card": [78, 92], "card_payment_fee_charg": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86], "41": [78, 79, 86, 89], "38": [78, 79, 86], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "0656": 78, "160": [78, 82], "006237": 78, "148": 78, "546": 78, "006485": 78, "514": 78, "481": 78, "008165": 78, "0000": [78, 79, 82], "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86], "575507": 78, "575874": 78, "0800": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "shortlist": [78, 89, 92], "curat": [78, 83], "strongli": 78, "p_valu": 78, "benign": 78, "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "ground": [79, 82, 84, 89], "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "light": [79, 81, 86, 90], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": 79, "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "29": [79, 81, 84, 85, 86, 90, 93], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81], "002216": 79, "000974": 79, "59": [79, 81, 86, 93], "88": [79, 81, 82, 85, 86, 89], "000873": 79, "000739": 79, "79": [79, 86, 91], "32635": 79, "32636": 79, "47": [79, 86], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "93": [79, 86, 89, 91, 93], "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 93], "44": [79, 85, 86, 93], "71": [79, 82, 86], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89], "452381": 79, "459770": 79, "72": [79, 82, 85, 89], "523364": 79, "460784": 79, "446602": 79, "57": [79, 82], "68": [79, 82, 86, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 82, 86], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "intersect": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "60": [81, 82], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "num_proc": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "super": 81, "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "463": 81, "331": 81, "310": 81, "326": [81, 86], "91it": 81, "59it": 81, "492": 81, "085": 81, "521": 81, "330": [81, 86], "290": [81, 86], "13it": 81, "71it": 81, "476": 81, "305": [81, 89], "517": 81, "328": [81, 86], "335": 81, "209": [81, 86], "90it": 81, "63": [81, 82, 86], "77it": 81, "reorder": 81, "vision": 81, "low_inform": 81, "odd_aspect_ratio": 81, "odd_siz": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "0268": 81, "30659": 81, "000015": 81, "30968": 81, "258": 81, "000017": 81, "9762": 81, "54565": 81, "47139": 81, "000026": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "especi": [81, 89, 91, 92], "near_duplicate_issu": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "3312": 82, "007136": 82, "119": [82, 86], "033725": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "037825": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "1960": 82, "158": 82, "159": [82, 85, 86], "161": [82, 93], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "truth": [82, 84, 89], "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "69": [82, 89], "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 93], "76": [82, 85, 86, 89, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "196": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "62": [82, 86, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "156": 82, "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "300": [84, 93], "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "na": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "tolist": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86, 93], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": [86, 93], "231": [86, 93], "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": [86, 93], "323": 86, "226": 86, "228": 86, "232": 86, "219": 86, "239": 86, "240": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": [86, 93], "229": 86, "85": [86, 89], "217": 86, "237": 86, "207": 86, "204": [86, 93], "205": 86, "223": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "isin": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "semantic_segment": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "system": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "175849": 90, "25it": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "637": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2023": 93, "2400": 93, "52e0": 93, "1a00": 93, "940": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "959": 93, "94k": 93, "kb": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "7mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 75, 82, 90], "imbal": [8, 17, 75], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "null": 22, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": 71, "mode": 71, "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "run": 80, "identifi": [80, 86], "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 2507c888b..5f4b71fb6 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1488,7 +1488,7 @@
This dataset has 10 classes.
-Classes: {'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed'}
+Classes: {'visa_or_mastercard', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire', 'getting_spare_card', 'card_payment_fee_charged'}
Let’s view the i-th example in the dataset:
@@ -990,43 +990,43 @@We see that these two sets of request are indeed very similar to one another! Including near duplicates in a dataset may have unintended effects on models, and be wary about splitting them across training/test sets.
As demonstrated above, cleanlab can automatically shortlist the most likely issues in your dataset to help you better curate your dataset for subsequent modeling. With this shortlist, you can decide whether to fix these label issues or remove nonsensical or duplicated examples from your dataset to obtain a higher-quality dataset for training your next ML model. cleanlab’s issue detection can be run with outputs from any type of model you initially trained.
+ +According to the report, our dataset does not appear to be Independent and Identically Distributed (IID). The overall non-iid score for the dataset (displayed below) corresponds to the p-value
of a statistical test for whether the ordering of samples in the dataset appears related to the similarity between their feature values. A low p-value
strongly suggests that the dataset violates the IID assumption, which is a key assumption required for conclusions (models) produced from the
+dataset to generalize to a larger population.
[21]:
+
p_value = lab.get_info('non_iid')['p-value']
+p_value
+
[21]:
+
+0.0
+
Here, our dataset was flagged as non-IID because the rows happened to be sorted by class label in the original data. This may be benign if we remember to shuffle rows before model training and data splitting. But if you don’t know why your data was flagged as non-IID, then you should be worried about potential data drift or unexpected interactions between data points (their values may not be statistically independent). Think carefully about what future test data may look like (and whether your +data is representative of the population you care about). You should not shuffle your data before the non-IID test runs (will invalidate its conclusions).
If your question is not addressed anywhere, please open a new Github issue. Our developers may also provide personalized assistance in our Slack Community.
diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index bd11d9552..2fcb4f2ad 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:23.777598Z", - "iopub.status.busy": "2023-12-15T12:25:23.776943Z", - "iopub.status.idle": "2023-12-15T12:25:24.893805Z", - "shell.execute_reply": "2023-12-15T12:25:24.893169Z" + "iopub.execute_input": "2023-12-16T02:22:12.966247Z", + "iopub.status.busy": "2023-12-16T02:22:12.965847Z", + "iopub.status.idle": "2023-12-16T02:22:13.965486Z", + "shell.execute_reply": "2023-12-16T02:22:13.964886Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:24.897331Z", - "iopub.status.busy": "2023-12-15T12:25:24.896831Z", - "iopub.status.idle": "2023-12-15T12:25:24.900404Z", - "shell.execute_reply": "2023-12-15T12:25:24.899873Z" + "iopub.execute_input": "2023-12-16T02:22:13.968627Z", + "iopub.status.busy": "2023-12-16T02:22:13.968211Z", + "iopub.status.idle": "2023-12-16T02:22:13.971841Z", + "shell.execute_reply": "2023-12-16T02:22:13.971318Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:24.902975Z", - "iopub.status.busy": "2023-12-15T12:25:24.902521Z", - "iopub.status.idle": "2023-12-15T12:25:27.048696Z", - "shell.execute_reply": "2023-12-15T12:25:27.047839Z" + "iopub.execute_input": "2023-12-16T02:22:13.974303Z", + "iopub.status.busy": "2023-12-16T02:22:13.973863Z", + "iopub.status.idle": "2023-12-16T02:22:15.901681Z", + "shell.execute_reply": "2023-12-16T02:22:15.901004Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.052422Z", - "iopub.status.busy": "2023-12-15T12:25:27.051726Z", - "iopub.status.idle": "2023-12-15T12:25:27.101634Z", - "shell.execute_reply": "2023-12-15T12:25:27.100958Z" + "iopub.execute_input": "2023-12-16T02:22:15.905055Z", + "iopub.status.busy": "2023-12-16T02:22:15.904361Z", + "iopub.status.idle": "2023-12-16T02:22:15.939363Z", + "shell.execute_reply": "2023-12-16T02:22:15.938556Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.105022Z", - "iopub.status.busy": "2023-12-15T12:25:27.104583Z", - "iopub.status.idle": "2023-12-15T12:25:27.146574Z", - "shell.execute_reply": "2023-12-15T12:25:27.145886Z" + "iopub.execute_input": "2023-12-16T02:22:15.942567Z", + "iopub.status.busy": "2023-12-16T02:22:15.942047Z", + "iopub.status.idle": "2023-12-16T02:22:15.976788Z", + "shell.execute_reply": "2023-12-16T02:22:15.976020Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.149919Z", - "iopub.status.busy": "2023-12-15T12:25:27.149349Z", - "iopub.status.idle": "2023-12-15T12:25:27.152735Z", - "shell.execute_reply": "2023-12-15T12:25:27.152206Z" + "iopub.execute_input": "2023-12-16T02:22:15.980029Z", + "iopub.status.busy": "2023-12-16T02:22:15.979618Z", + "iopub.status.idle": "2023-12-16T02:22:15.982832Z", + "shell.execute_reply": "2023-12-16T02:22:15.982308Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.155553Z", - "iopub.status.busy": "2023-12-15T12:25:27.155020Z", - "iopub.status.idle": "2023-12-15T12:25:27.158294Z", - "shell.execute_reply": "2023-12-15T12:25:27.157685Z" + "iopub.execute_input": "2023-12-16T02:22:15.985302Z", + "iopub.status.busy": "2023-12-16T02:22:15.984858Z", + "iopub.status.idle": "2023-12-16T02:22:15.987722Z", + "shell.execute_reply": "2023-12-16T02:22:15.987104Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.161052Z", - "iopub.status.busy": "2023-12-15T12:25:27.160697Z", - "iopub.status.idle": "2023-12-15T12:25:27.189732Z", - "shell.execute_reply": "2023-12-15T12:25:27.189001Z" + "iopub.execute_input": "2023-12-16T02:22:15.990318Z", + "iopub.status.busy": "2023-12-16T02:22:15.989833Z", + "iopub.status.idle": "2023-12-16T02:22:16.016110Z", + "shell.execute_reply": "2023-12-16T02:22:16.015459Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5792362f4eda4dbe9cd19293564000f9", + "model_id": "c871cb3093414b00950bb9bd042905ab", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9dd8089efb74f89974067a70a36f8e0", + "model_id": "614327c9d6fc4aaeb3387c26700312ec", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.198308Z", - "iopub.status.busy": "2023-12-15T12:25:27.198041Z", - "iopub.status.idle": "2023-12-15T12:25:27.206258Z", - "shell.execute_reply": "2023-12-15T12:25:27.205579Z" + "iopub.execute_input": "2023-12-16T02:22:16.024258Z", + "iopub.status.busy": "2023-12-16T02:22:16.023956Z", + "iopub.status.idle": "2023-12-16T02:22:16.030452Z", + "shell.execute_reply": "2023-12-16T02:22:16.029960Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.209231Z", - "iopub.status.busy": "2023-12-15T12:25:27.208758Z", - "iopub.status.idle": "2023-12-15T12:25:27.212778Z", - "shell.execute_reply": "2023-12-15T12:25:27.212166Z" + "iopub.execute_input": "2023-12-16T02:22:16.032807Z", + "iopub.status.busy": "2023-12-16T02:22:16.032442Z", + "iopub.status.idle": "2023-12-16T02:22:16.036040Z", + "shell.execute_reply": "2023-12-16T02:22:16.035457Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.215250Z", - "iopub.status.busy": "2023-12-15T12:25:27.214859Z", - "iopub.status.idle": "2023-12-15T12:25:27.222178Z", - "shell.execute_reply": "2023-12-15T12:25:27.221521Z" + "iopub.execute_input": "2023-12-16T02:22:16.038267Z", + "iopub.status.busy": "2023-12-16T02:22:16.037977Z", + "iopub.status.idle": "2023-12-16T02:22:16.044782Z", + "shell.execute_reply": "2023-12-16T02:22:16.044244Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.224708Z", - "iopub.status.busy": "2023-12-15T12:25:27.224336Z", - "iopub.status.idle": "2023-12-15T12:25:27.270212Z", - "shell.execute_reply": "2023-12-15T12:25:27.269510Z" + "iopub.execute_input": "2023-12-16T02:22:16.047266Z", + "iopub.status.busy": "2023-12-16T02:22:16.046781Z", + "iopub.status.idle": "2023-12-16T02:22:16.080041Z", + "shell.execute_reply": "2023-12-16T02:22:16.079372Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.273257Z", - "iopub.status.busy": "2023-12-15T12:25:27.272969Z", - "iopub.status.idle": "2023-12-15T12:25:27.322811Z", - "shell.execute_reply": "2023-12-15T12:25:27.321956Z" + "iopub.execute_input": "2023-12-16T02:22:16.083063Z", + "iopub.status.busy": "2023-12-16T02:22:16.082626Z", + "iopub.status.idle": "2023-12-16T02:22:16.118099Z", + "shell.execute_reply": "2023-12-16T02:22:16.117440Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.326394Z", - "iopub.status.busy": "2023-12-15T12:25:27.325971Z", - "iopub.status.idle": "2023-12-15T12:25:27.455201Z", - "shell.execute_reply": "2023-12-15T12:25:27.454521Z" + "iopub.execute_input": "2023-12-16T02:22:16.121215Z", + "iopub.status.busy": "2023-12-16T02:22:16.120889Z", + "iopub.status.idle": "2023-12-16T02:22:16.234595Z", + "shell.execute_reply": "2023-12-16T02:22:16.233868Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:27.458559Z", - "iopub.status.busy": "2023-12-15T12:25:27.458091Z", - "iopub.status.idle": "2023-12-15T12:25:30.016125Z", - "shell.execute_reply": "2023-12-15T12:25:30.015397Z" + "iopub.execute_input": "2023-12-16T02:22:16.237228Z", + "iopub.status.busy": "2023-12-16T02:22:16.237016Z", + "iopub.status.idle": "2023-12-16T02:22:18.708902Z", + "shell.execute_reply": "2023-12-16T02:22:18.708249Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:30.018795Z", - "iopub.status.busy": "2023-12-15T12:25:30.018527Z", - "iopub.status.idle": "2023-12-15T12:25:30.082726Z", - "shell.execute_reply": "2023-12-15T12:25:30.082031Z" + "iopub.execute_input": "2023-12-16T02:22:18.711538Z", + "iopub.status.busy": "2023-12-16T02:22:18.711318Z", + "iopub.status.idle": "2023-12-16T02:22:18.771519Z", + "shell.execute_reply": "2023-12-16T02:22:18.770892Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "9f938fd2", + "id": "c1ba8c12", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "927b7f11", + "id": "bbda91e3", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "ce401576", + "id": "88bbc618", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:30.085775Z", - "iopub.status.busy": "2023-12-15T12:25:30.085309Z", - "iopub.status.idle": "2023-12-15T12:25:30.190821Z", - "shell.execute_reply": "2023-12-15T12:25:30.190013Z" + "iopub.execute_input": "2023-12-16T02:22:18.774046Z", + "iopub.status.busy": "2023-12-16T02:22:18.773579Z", + "iopub.status.idle": "2023-12-16T02:22:18.866160Z", + "shell.execute_reply": "2023-12-16T02:22:18.865531Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "de0bddf5", + "id": "0d20fd93", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9100e898", + "id": "d1e92a1d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:30.195018Z", - "iopub.status.busy": "2023-12-15T12:25:30.194165Z", - "iopub.status.idle": "2023-12-15T12:25:30.280476Z", - "shell.execute_reply": "2023-12-15T12:25:30.279678Z" + "iopub.execute_input": "2023-12-16T02:22:18.869510Z", + "iopub.status.busy": "2023-12-16T02:22:18.868747Z", + "iopub.status.idle": "2023-12-16T02:22:18.958088Z", + "shell.execute_reply": "2023-12-16T02:22:18.957446Z" } }, "outputs": [ @@ -993,23 +993,37 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1a32a2c4a0da449380e45184ceb39232": { + "1d446569e1d447e8be772cca377023e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "30b7817e3b3549059669585b913e7f24": { + "341f53e6b06749609c0c36eb52537b50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3d920585fbbf4b31b37ee52347dfbe55": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1061,44 +1075,7 @@ "width": null } }, - "3f48fe937b084a598f988814816f25be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5792362f4eda4dbe9cd19293564000f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ad544065bb824496a22bc717b50193ac", - "IPY_MODEL_e95adadc5f8446d983675b86f93e44f6", - "IPY_MODEL_d2df0c2e1bfa4beab859c8cbf5255139" - ], - "layout": "IPY_MODEL_f48c8e7bbd7a4799bdedded29191f71a" - } - }, - "7dffced2e9634444850154eedd869e09": { + "44c98b9925c6459d8b4139f818f9e849": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1150,7 +1127,7 @@ "width": null } }, - "89b90db0f95347b7bc0bc1f228953519": { + "47b455e7b62b48ce96baf573cb61aa93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1166,15 +1143,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9dcebb450ce74074a2ed56864127bf79", + "layout": "IPY_MODEL_83112e9bf59d493aafdd47c89df5e0cc", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1a32a2c4a0da449380e45184ceb39232", + "style": "IPY_MODEL_f4ef23cc708346b7a2901e8e9107f08d", "value": 50.0 } }, - "9dcebb450ce74074a2ed56864127bf79": { + "4db378faaf7d4a1ba378619571f559a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4fa11fc0c76347848d8b094d18fa91b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1226,44 +1218,53 @@ "width": null } }, - "9fc7105473db415eb1f08039ffdd10bd": { + "5ce3fe1c978e41dbb552bfeae6b50c34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6b0233ddc1fe4e51af2e2c2af19896f3", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e3d3372aa8e04f8c83b1483bb416886d", + "value": 50.0 } }, - "ad544065bb824496a22bc717b50193ac": { + "614327c9d6fc4aaeb3387c26700312ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d23f84ac9fb640f9bced3e24ea5b96c8", - "placeholder": "", - "style": "IPY_MODEL_c7d8e0ee952343f38fd4461b8920d9a4", - "value": "number of examples processed for estimating thresholds: " + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4a1c736d07d498f87596bee2541c047", + "IPY_MODEL_47b455e7b62b48ce96baf573cb61aa93", + "IPY_MODEL_62eab93e550d43e7902858e5d731ed57" + ], + "layout": "IPY_MODEL_89fcb4bd6cb2427db44389f40dc612d8" } }, - "b45fce83b35a4ab6aaecf68a0f3de6b2": { + "62eab93e550d43e7902858e5d731ed57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1278,35 +1279,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_30b7817e3b3549059669585b913e7f24", + "layout": "IPY_MODEL_4fa11fc0c76347848d8b094d18fa91b0", "placeholder": "", - "style": "IPY_MODEL_3f48fe937b084a598f988814816f25be", - "value": "number of examples processed for checking labels: " + "style": "IPY_MODEL_1d446569e1d447e8be772cca377023e9", + "value": " 10000/? [00:00<00:00, 1201840.74it/s]" } }, - "b9dd8089efb74f89974067a70a36f8e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b45fce83b35a4ab6aaecf68a0f3de6b2", - "IPY_MODEL_89b90db0f95347b7bc0bc1f228953519", - "IPY_MODEL_ee1d27bcabf1415885301da30224b1f8" - ], - "layout": "IPY_MODEL_d9150eb1834f4a54a896b7f77c84bddd" - } - }, - "c47db6d599f14c4aa506f61d964010d2": { + "6b0233ddc1fe4e51af2e2c2af19896f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,22 +1337,7 @@ "width": null } }, - "c7d8e0ee952343f38fd4461b8920d9a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d23f84ac9fb640f9bced3e24ea5b96c8": { + "83112e9bf59d493aafdd47c89df5e0cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1425,43 +1389,7 @@ "width": null } }, - "d2df0c2e1bfa4beab859c8cbf5255139": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c47db6d599f14c4aa506f61d964010d2", - "placeholder": "", - "style": "IPY_MODEL_d54f84784d364a2e8bb8b77a72396c21", - "value": " 10000/? [00:00<00:00, 963875.45it/s]" - } - }, - "d54f84784d364a2e8bb8b77a72396c21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d9150eb1834f4a54a896b7f77c84bddd": { + "89fcb4bd6cb2427db44389f40dc612d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1513,46 +1441,43 @@ "width": null } }, - "dc9d4b5357904701b43f812c2f94278a": { + "8b36f0431e8a44aabaeb07ecab6afd3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b904165408644ed596d98b3dae0b1630", + "placeholder": "", + "style": "IPY_MODEL_4db378faaf7d4a1ba378619571f559a0", + "value": "number of examples processed for estimating thresholds: " } }, - "e95adadc5f8446d983675b86f93e44f6": { + "a2dbb2fe52e74c36a91d4ff5ef85a955": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f20d6feb33974952ba55b6503c1f5705", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9fc7105473db415eb1f08039ffdd10bd", - "value": 50.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ee1d27bcabf1415885301da30224b1f8": { + "a4a1c736d07d498f87596bee2541c047": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1567,13 +1492,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7dffced2e9634444850154eedd869e09", + "layout": "IPY_MODEL_ec2fdda5943a4cc68c6a8245303d2c19", "placeholder": "", - "style": "IPY_MODEL_dc9d4b5357904701b43f812c2f94278a", - "value": " 10000/? [00:00<00:00, 1071752.65it/s]" + "style": "IPY_MODEL_a2dbb2fe52e74c36a91d4ff5ef85a955", + "value": "number of examples processed for checking labels: " } }, - "f20d6feb33974952ba55b6503c1f5705": { + "b904165408644ed596d98b3dae0b1630": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1625,7 +1550,66 @@ "width": null } }, - "f48c8e7bbd7a4799bdedded29191f71a": { + "b999c10888934cacad3d43be7af8828d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44c98b9925c6459d8b4139f818f9e849", + "placeholder": "", + "style": "IPY_MODEL_341f53e6b06749609c0c36eb52537b50", + "value": " 10000/? [00:00<00:00, 1051731.19it/s]" + } + }, + "c871cb3093414b00950bb9bd042905ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b36f0431e8a44aabaeb07ecab6afd3b", + "IPY_MODEL_5ce3fe1c978e41dbb552bfeae6b50c34", + "IPY_MODEL_b999c10888934cacad3d43be7af8828d" + ], + "layout": "IPY_MODEL_3d920585fbbf4b31b37ee52347dfbe55" + } + }, + "e3d3372aa8e04f8c83b1483bb416886d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ec2fdda5943a4cc68c6a8245303d2c19": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1676,6 +1660,22 @@ "visibility": null, "width": null } + }, + "f4ef23cc708346b7a2901e8e9107f08d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index db876f653..64c49b7f2 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -879,67 +879,67 @@Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.
Training on fold: 1 ... -epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.627 -epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.359 +epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.463 +epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.326 Computing feature embeddings ...
-100%|██████████| 40/40 [00:00<00:00, 65.54it/s]
+100%|██████████| 40/40 [00:00<00:00, 66.91it/s]
-100%|██████████| 40/40 [00:00<00:00, 67.57it/s]
+100%|██████████| 40/40 [00:00<00:00, 65.59it/s]
-epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.579
-epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.445
+epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.521
+epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.331
Computing feature embeddings ...
-100%|██████████| 40/40 [00:00<00:00, 62.55it/s]
+100%|██████████| 40/40 [00:00<00:00, 59.13it/s]
-100%|██████████| 40/40 [00:00<00:00, 65.93it/s]
+100%|██████████| 40/40 [00:00<00:00, 65.71it/s]
-epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.543
-epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.299
+epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.517
+epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.209
Computing feature embeddings ...
-100%|██████████| 40/40 [00:00<00:00, 64.59it/s]
+100%|██████████| 40/40 [00:00<00:00, 66.90it/s]
-100%|██████████| 40/40 [00:00<00:00, 67.49it/s]
+100%|██████████| 40/40 [00:00<00:00, 63.77it/s]
Here we can see a lot of low information images belong to the Sandal class.
diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 7edda0ebd..a74355252 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:36.066982Z", - "iopub.status.busy": "2023-12-15T12:25:36.066739Z", - "iopub.status.idle": "2023-12-15T12:25:38.375786Z", - "shell.execute_reply": "2023-12-15T12:25:38.375147Z" + "iopub.execute_input": "2023-12-16T02:22:24.212552Z", + "iopub.status.busy": "2023-12-16T02:22:24.212361Z", + "iopub.status.idle": "2023-12-16T02:22:26.285793Z", + "shell.execute_reply": "2023-12-16T02:22:26.285200Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:38.378883Z", - "iopub.status.busy": "2023-12-15T12:25:38.378505Z", - "iopub.status.idle": "2023-12-15T12:25:38.382436Z", - "shell.execute_reply": "2023-12-15T12:25:38.381906Z" + "iopub.execute_input": "2023-12-16T02:22:26.288743Z", + "iopub.status.busy": "2023-12-16T02:22:26.288263Z", + "iopub.status.idle": "2023-12-16T02:22:26.291984Z", + "shell.execute_reply": "2023-12-16T02:22:26.291445Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:38.384719Z", - "iopub.status.busy": "2023-12-15T12:25:38.384511Z", - "iopub.status.idle": "2023-12-15T12:25:51.678053Z", - "shell.execute_reply": "2023-12-15T12:25:51.677333Z" + "iopub.execute_input": "2023-12-16T02:22:26.294317Z", + "iopub.status.busy": "2023-12-16T02:22:26.293967Z", + "iopub.status.idle": "2023-12-16T02:22:38.796037Z", + "shell.execute_reply": "2023-12-16T02:22:38.795336Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c8656f9d4814399b62fa7d4080ffc37", + "model_id": "5d974ba2124d4d59b2842fef58fe41db", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e255c3b875d4209af8fa32b89623366", + "model_id": "e6a98c6e8c574fa5a1727415c5b1f0ba", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce156ad521324d34b90aab32d9e95500", + "model_id": "2ae6dc4c539549d3be95b5ec04c04081", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66d6700270d24dcc823814d9409d0f81", + "model_id": "da03bc4f8c8b460c8ac8cb168f36ad5a", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2774ceed0c3b462f901e299ffd8ac6f2", + "model_id": "937922e926af4ad7aeed93f1d5e8cff5", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c8bfd3b024644fa9a0ed0bab1385734", + "model_id": "d98617fc42f1489ab7ff06215522b3a5", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8948bbcddfb41799a7d17999ddb3736", + "model_id": "72ecc5c7e9384c77a72c72ca2841a228", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de3aeec56b064f03b87e9b7accdac452", + "model_id": "9261dab3cd20476a824eac8ec600445b", "version_major": 2, "version_minor": 0 }, @@ -274,7 +274,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "69a7b0d7fa2a484b981d90f4babfded5", + "model_id": "ab0d5bd357284691bdaa5b467c6d73e9", "version_major": 2, "version_minor": 0 }, @@ -288,7 +288,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "df5ae742be134703877ffbd70d8abd81", + "model_id": "e0a594ef9b4a4ef6905b05777d47a100", "version_major": 2, "version_minor": 0 }, @@ -302,7 +302,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e83419d64ee64254acc38cdf3d20d41b", + "model_id": "984dbe060ae8480783767df972846114", "version_major": 2, "version_minor": 0 }, @@ -344,10 +344,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:51.681086Z", - "iopub.status.busy": "2023-12-15T12:25:51.680826Z", - "iopub.status.idle": "2023-12-15T12:25:51.685446Z", - "shell.execute_reply": "2023-12-15T12:25:51.684859Z" + "iopub.execute_input": "2023-12-16T02:22:38.798692Z", + "iopub.status.busy": "2023-12-16T02:22:38.798196Z", + "iopub.status.idle": "2023-12-16T02:22:38.802468Z", + "shell.execute_reply": "2023-12-16T02:22:38.801949Z" } }, "outputs": [ @@ -372,17 +372,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:25:51.687943Z", - "iopub.status.busy": "2023-12-15T12:25:51.687580Z", - "iopub.status.idle": "2023-12-15T12:26:02.778959Z", - "shell.execute_reply": "2023-12-15T12:26:02.778336Z" + "iopub.execute_input": "2023-12-16T02:22:38.804769Z", + "iopub.status.busy": "2023-12-16T02:22:38.804460Z", + "iopub.status.idle": "2023-12-16T02:22:49.360111Z", + "shell.execute_reply": "2023-12-16T02:22:49.359513Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03fab0ed8b22405eba4ecdb07bf2440e", + "model_id": "17ab9f84ce44446db0d25fe813c6fee7", "version_major": 2, "version_minor": 0 }, @@ -420,10 +420,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:02.782323Z", - "iopub.status.busy": "2023-12-15T12:26:02.781763Z", - "iopub.status.idle": "2023-12-15T12:26:24.794797Z", - "shell.execute_reply": "2023-12-15T12:26:24.794188Z" + "iopub.execute_input": "2023-12-16T02:22:49.362919Z", + "iopub.status.busy": "2023-12-16T02:22:49.362605Z", + "iopub.status.idle": "2023-12-16T02:23:10.617172Z", + "shell.execute_reply": "2023-12-16T02:23:10.616463Z" } }, "outputs": [], @@ -456,10 +456,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.797894Z", - "iopub.status.busy": "2023-12-15T12:26:24.797461Z", - "iopub.status.idle": "2023-12-15T12:26:24.803492Z", - "shell.execute_reply": "2023-12-15T12:26:24.802949Z" + "iopub.execute_input": "2023-12-16T02:23:10.620368Z", + "iopub.status.busy": "2023-12-16T02:23:10.619958Z", + "iopub.status.idle": "2023-12-16T02:23:10.625915Z", + "shell.execute_reply": "2023-12-16T02:23:10.625401Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.805570Z", - "iopub.status.busy": "2023-12-15T12:26:24.805371Z", - "iopub.status.idle": "2023-12-15T12:26:24.809723Z", - "shell.execute_reply": "2023-12-15T12:26:24.809201Z" + "iopub.execute_input": "2023-12-16T02:23:10.628430Z", + "iopub.status.busy": "2023-12-16T02:23:10.627946Z", + "iopub.status.idle": "2023-12-16T02:23:10.632538Z", + "shell.execute_reply": "2023-12-16T02:23:10.631939Z" }, "nbsphinx": "hidden" }, @@ -637,10 +637,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.811951Z", - "iopub.status.busy": "2023-12-15T12:26:24.811754Z", - "iopub.status.idle": "2023-12-15T12:26:24.821189Z", - "shell.execute_reply": "2023-12-15T12:26:24.820642Z" + "iopub.execute_input": "2023-12-16T02:23:10.635058Z", + "iopub.status.busy": "2023-12-16T02:23:10.634704Z", + "iopub.status.idle": "2023-12-16T02:23:10.644724Z", + "shell.execute_reply": "2023-12-16T02:23:10.644122Z" }, "nbsphinx": "hidden" }, @@ -765,10 +765,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.823361Z", - "iopub.status.busy": "2023-12-15T12:26:24.823164Z", - "iopub.status.idle": "2023-12-15T12:26:24.852829Z", - "shell.execute_reply": "2023-12-15T12:26:24.852311Z" + "iopub.execute_input": "2023-12-16T02:23:10.647202Z", + "iopub.status.busy": "2023-12-16T02:23:10.646861Z", + "iopub.status.idle": "2023-12-16T02:23:10.675166Z", + "shell.execute_reply": "2023-12-16T02:23:10.674682Z" } }, "outputs": [], @@ -805,10 +805,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:24.855338Z", - "iopub.status.busy": "2023-12-15T12:26:24.855134Z", - "iopub.status.idle": "2023-12-15T12:26:55.409271Z", - "shell.execute_reply": "2023-12-15T12:26:55.408432Z" + "iopub.execute_input": "2023-12-16T02:23:10.677618Z", + "iopub.status.busy": "2023-12-16T02:23:10.677275Z", + "iopub.status.idle": "2023-12-16T02:23:40.804691Z", + "shell.execute_reply": "2023-12-16T02:23:40.803831Z" } }, "outputs": [ @@ -824,14 +824,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.627\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.463\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.359\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.326\n", "Computing feature embeddings ...\n" ] }, @@ -848,7 +848,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.87it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.69it/s]" ] }, { @@ -856,7 +856,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 49.36it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 50.76it/s]" ] }, { @@ -864,7 +864,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 61.15it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.12it/s]" ] }, { @@ -872,7 +872,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 66.93it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 67.95it/s]" ] }, { @@ -880,7 +880,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 72.56it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.32it/s]" ] }, { @@ -888,7 +888,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.54it/s]" + "100%|██████████| 40/40 [00:00<00:00, 66.91it/s]" ] }, { @@ -918,7 +918,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 28.33it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.85it/s]" ] }, { @@ -926,7 +926,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 54.05it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 51.12it/s]" ] }, { @@ -934,7 +934,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 63.74it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.66it/s]" ] }, { @@ -942,7 +942,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 68.76it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.42it/s]" ] }, { @@ -950,7 +950,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 73.99it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 70.00it/s]" ] }, { @@ -958,7 +958,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 67.57it/s]" + "100%|██████████| 40/40 [00:00<00:00, 65.59it/s]" ] }, { @@ -980,14 +980,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.579\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.521\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.445\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.331\n", "Computing feature embeddings ...\n" ] }, @@ -1004,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.67it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.94it/s]" ] }, { @@ -1012,7 +1012,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.41it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 52.28it/s]" ] }, { @@ -1020,7 +1020,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 57.66it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 56.87it/s]" ] }, { @@ -1028,7 +1028,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.55it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 60.08it/s]" ] }, { @@ -1036,7 +1036,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 67.92it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 61.58it/s]" ] }, { @@ -1044,7 +1044,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.55it/s]" + " 95%|█████████▌| 38/40 [00:00<00:00, 63.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 40/40 [00:00<00:00, 59.13it/s]" ] }, { @@ -1074,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.69it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.97it/s]" ] }, { @@ -1082,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 51.82it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 50.64it/s]" ] }, { @@ -1090,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 61.12it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.25it/s]" ] }, { @@ -1098,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 66.86it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 67.84it/s]" ] }, { @@ -1106,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 71.10it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.10it/s]" ] }, { @@ -1114,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.93it/s]" + "100%|██████████| 40/40 [00:00<00:00, 65.71it/s]" ] }, { @@ -1136,14 +1144,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.543\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.517\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.299\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.209\n", "Computing feature embeddings ...\n" ] }, @@ -1160,7 +1168,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:03, 9.82it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.12it/s]" ] }, { @@ -1168,7 +1176,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.76it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 52.80it/s]" ] }, { @@ -1176,7 +1184,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.50it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 64.03it/s]" ] }, { @@ -1184,7 +1192,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.24it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.55it/s]" ] }, { @@ -1192,7 +1200,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.67it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.75it/s]" ] }, { @@ -1200,7 +1208,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.59it/s]" + "100%|██████████| 40/40 [00:00<00:00, 66.90it/s]" ] }, { @@ -1230,7 +1238,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.43it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.33it/s]" ] }, { @@ -1238,7 +1246,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 53.46it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 49.74it/s]" ] }, { @@ -1246,7 +1254,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 64.13it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 56.97it/s]" ] }, { @@ -1254,7 +1262,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 68.01it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 61.23it/s]" ] }, { @@ -1262,7 +1270,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 73.39it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 66.86it/s]" ] }, { @@ -1270,7 +1278,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 67.49it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.77it/s]" ] }, { @@ -1347,10 +1355,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:55.412234Z", - "iopub.status.busy": "2023-12-15T12:26:55.411964Z", - "iopub.status.idle": "2023-12-15T12:26:55.426672Z", - "shell.execute_reply": "2023-12-15T12:26:55.426056Z" + "iopub.execute_input": "2023-12-16T02:23:40.807763Z", + "iopub.status.busy": "2023-12-16T02:23:40.807394Z", + "iopub.status.idle": "2023-12-16T02:23:40.821515Z", + "shell.execute_reply": "2023-12-16T02:23:40.821026Z" } }, "outputs": [], @@ -1375,10 +1383,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:55.429122Z", - "iopub.status.busy": "2023-12-15T12:26:55.428760Z", - "iopub.status.idle": "2023-12-15T12:26:55.868788Z", - "shell.execute_reply": "2023-12-15T12:26:55.868170Z" + "iopub.execute_input": "2023-12-16T02:23:40.823904Z", + "iopub.status.busy": "2023-12-16T02:23:40.823537Z", + "iopub.status.idle": "2023-12-16T02:23:41.253799Z", + "shell.execute_reply": "2023-12-16T02:23:41.253180Z" } }, "outputs": [], @@ -1398,10 +1406,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:26:55.871701Z", - "iopub.status.busy": "2023-12-15T12:26:55.871314Z", - "iopub.status.idle": "2023-12-15T12:30:17.710310Z", - "shell.execute_reply": "2023-12-15T12:30:17.709667Z" + "iopub.execute_input": "2023-12-16T02:23:41.256783Z", + "iopub.status.busy": "2023-12-16T02:23:41.256350Z", + "iopub.status.idle": "2023-12-16T02:27:01.139141Z", + "shell.execute_reply": "2023-12-16T02:27:01.138500Z" } }, "outputs": [ @@ -1439,7 +1447,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8220f874e834f548cf1006a40c5fd63", + "model_id": "360b2afa9b4349cd9c9399acc88b020e", "version_major": 2, "version_minor": 0 }, @@ -1478,10 +1486,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:17.713303Z", - "iopub.status.busy": "2023-12-15T12:30:17.712764Z", - "iopub.status.idle": "2023-12-15T12:30:18.204479Z", - "shell.execute_reply": "2023-12-15T12:30:18.203776Z" + "iopub.execute_input": "2023-12-16T02:27:01.142220Z", + "iopub.status.busy": "2023-12-16T02:27:01.141509Z", + "iopub.status.idle": "2023-12-16T02:27:01.619270Z", + "shell.execute_reply": "2023-12-16T02:27:01.618633Z" } }, "outputs": [ @@ -1671,10 +1679,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:18.208081Z", - "iopub.status.busy": "2023-12-15T12:30:18.207563Z", - "iopub.status.idle": "2023-12-15T12:30:18.270960Z", - "shell.execute_reply": "2023-12-15T12:30:18.270327Z" + "iopub.execute_input": "2023-12-16T02:27:01.622713Z", + "iopub.status.busy": "2023-12-16T02:27:01.622139Z", + "iopub.status.idle": "2023-12-16T02:27:01.685892Z", + "shell.execute_reply": "2023-12-16T02:27:01.685358Z" } }, "outputs": [ @@ -1778,10 +1786,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:18.273554Z", - "iopub.status.busy": "2023-12-15T12:30:18.273348Z", - "iopub.status.idle": "2023-12-15T12:30:18.283730Z", - "shell.execute_reply": "2023-12-15T12:30:18.283034Z" + "iopub.execute_input": "2023-12-16T02:27:01.688344Z", + "iopub.status.busy": "2023-12-16T02:27:01.688035Z", + "iopub.status.idle": "2023-12-16T02:27:01.697068Z", + "shell.execute_reply": "2023-12-16T02:27:01.696571Z" } }, "outputs": [ @@ -1911,10 +1919,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:18.286335Z", - "iopub.status.busy": "2023-12-15T12:30:18.286100Z", - "iopub.status.idle": "2023-12-15T12:30:18.291214Z", - "shell.execute_reply": "2023-12-15T12:30:18.290589Z" + "iopub.execute_input": "2023-12-16T02:27:01.699301Z", + "iopub.status.busy": "2023-12-16T02:27:01.699096Z", + "iopub.status.idle": "2023-12-16T02:27:01.704045Z", + "shell.execute_reply": "2023-12-16T02:27:01.703505Z" }, "nbsphinx": "hidden" }, @@ -1960,10 +1968,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:18.293822Z", - "iopub.status.busy": "2023-12-15T12:30:18.293309Z", - "iopub.status.idle": "2023-12-15T12:30:19.009317Z", - "shell.execute_reply": "2023-12-15T12:30:19.008645Z" + "iopub.execute_input": "2023-12-16T02:27:01.706201Z", + "iopub.status.busy": "2023-12-16T02:27:01.706000Z", + "iopub.status.idle": "2023-12-16T02:27:02.339991Z", + "shell.execute_reply": "2023-12-16T02:27:02.339308Z" } }, "outputs": [ @@ -1998,10 +2006,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.012094Z", - "iopub.status.busy": "2023-12-15T12:30:19.011586Z", - "iopub.status.idle": "2023-12-15T12:30:19.020515Z", - "shell.execute_reply": "2023-12-15T12:30:19.020024Z" + "iopub.execute_input": "2023-12-16T02:27:02.342567Z", + "iopub.status.busy": "2023-12-16T02:27:02.342197Z", + "iopub.status.idle": "2023-12-16T02:27:02.350506Z", + "shell.execute_reply": "2023-12-16T02:27:02.350015Z" } }, "outputs": [ @@ -2168,10 +2176,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.023146Z", - "iopub.status.busy": "2023-12-15T12:30:19.022675Z", - "iopub.status.idle": "2023-12-15T12:30:19.030592Z", - "shell.execute_reply": "2023-12-15T12:30:19.030098Z" + "iopub.execute_input": "2023-12-16T02:27:02.353074Z", + "iopub.status.busy": "2023-12-16T02:27:02.352777Z", + "iopub.status.idle": "2023-12-16T02:27:02.360461Z", + "shell.execute_reply": "2023-12-16T02:27:02.359918Z" }, "nbsphinx": "hidden" }, @@ -2247,10 +2255,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.032754Z", - "iopub.status.busy": "2023-12-15T12:30:19.032552Z", - "iopub.status.idle": "2023-12-15T12:30:19.504367Z", - "shell.execute_reply": "2023-12-15T12:30:19.503696Z" + "iopub.execute_input": "2023-12-16T02:27:02.362682Z", + "iopub.status.busy": "2023-12-16T02:27:02.362350Z", + "iopub.status.idle": "2023-12-16T02:27:02.808096Z", + "shell.execute_reply": "2023-12-16T02:27:02.807481Z" } }, "outputs": [ @@ -2287,10 +2295,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.506951Z", - "iopub.status.busy": "2023-12-15T12:30:19.506743Z", - "iopub.status.idle": "2023-12-15T12:30:19.522922Z", - "shell.execute_reply": "2023-12-15T12:30:19.522344Z" + "iopub.execute_input": "2023-12-16T02:27:02.810740Z", + "iopub.status.busy": "2023-12-16T02:27:02.810332Z", + "iopub.status.idle": "2023-12-16T02:27:02.826078Z", + "shell.execute_reply": "2023-12-16T02:27:02.825587Z" } }, "outputs": [ @@ -2447,10 +2455,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.525454Z", - "iopub.status.busy": "2023-12-15T12:30:19.525246Z", - "iopub.status.idle": "2023-12-15T12:30:19.531153Z", - "shell.execute_reply": "2023-12-15T12:30:19.530606Z" + "iopub.execute_input": "2023-12-16T02:27:02.828611Z", + "iopub.status.busy": "2023-12-16T02:27:02.828293Z", + "iopub.status.idle": "2023-12-16T02:27:02.834190Z", + "shell.execute_reply": "2023-12-16T02:27:02.833674Z" }, "nbsphinx": "hidden" }, @@ -2495,10 +2503,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.533333Z", - "iopub.status.busy": "2023-12-15T12:30:19.533136Z", - "iopub.status.idle": "2023-12-15T12:30:19.990875Z", - "shell.execute_reply": "2023-12-15T12:30:19.990204Z" + "iopub.execute_input": "2023-12-16T02:27:02.836550Z", + "iopub.status.busy": "2023-12-16T02:27:02.836186Z", + "iopub.status.idle": "2023-12-16T02:27:03.282681Z", + "shell.execute_reply": "2023-12-16T02:27:03.282014Z" } }, "outputs": [ @@ -2573,10 +2581,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:19.994149Z", - "iopub.status.busy": "2023-12-15T12:30:19.993903Z", - "iopub.status.idle": "2023-12-15T12:30:20.005445Z", - "shell.execute_reply": "2023-12-15T12:30:20.004854Z" + "iopub.execute_input": "2023-12-16T02:27:03.285607Z", + "iopub.status.busy": "2023-12-16T02:27:03.285367Z", + "iopub.status.idle": "2023-12-16T02:27:03.295173Z", + "shell.execute_reply": "2023-12-16T02:27:03.294518Z" } }, "outputs": [ @@ -2704,10 +2712,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.008671Z", - "iopub.status.busy": "2023-12-15T12:30:20.008245Z", - "iopub.status.idle": "2023-12-15T12:30:20.016306Z", - "shell.execute_reply": "2023-12-15T12:30:20.015692Z" + "iopub.execute_input": "2023-12-16T02:27:03.297966Z", + "iopub.status.busy": "2023-12-16T02:27:03.297732Z", + "iopub.status.idle": "2023-12-16T02:27:03.304225Z", + "shell.execute_reply": "2023-12-16T02:27:03.303570Z" }, "nbsphinx": "hidden" }, @@ -2744,10 +2752,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.019132Z", - "iopub.status.busy": "2023-12-15T12:30:20.018886Z", - "iopub.status.idle": "2023-12-15T12:30:20.216953Z", - "shell.execute_reply": "2023-12-15T12:30:20.216366Z" + "iopub.execute_input": "2023-12-16T02:27:03.307200Z", + "iopub.status.busy": "2023-12-16T02:27:03.306802Z", + "iopub.status.idle": "2023-12-16T02:27:03.509848Z", + "shell.execute_reply": "2023-12-16T02:27:03.509330Z" } }, "outputs": [ @@ -2789,10 +2797,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.219560Z", - "iopub.status.busy": "2023-12-15T12:30:20.219329Z", - "iopub.status.idle": "2023-12-15T12:30:20.227620Z", - "shell.execute_reply": "2023-12-15T12:30:20.227103Z" + "iopub.execute_input": "2023-12-16T02:27:03.512419Z", + "iopub.status.busy": "2023-12-16T02:27:03.512042Z", + "iopub.status.idle": "2023-12-16T02:27:03.520083Z", + "shell.execute_reply": "2023-12-16T02:27:03.519566Z" } }, "outputs": [ @@ -2878,10 +2886,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.229818Z", - "iopub.status.busy": "2023-12-15T12:30:20.229638Z", - "iopub.status.idle": "2023-12-15T12:30:20.421365Z", - "shell.execute_reply": "2023-12-15T12:30:20.420791Z" + "iopub.execute_input": "2023-12-16T02:27:03.522312Z", + "iopub.status.busy": "2023-12-16T02:27:03.521950Z", + "iopub.status.idle": "2023-12-16T02:27:03.690649Z", + "shell.execute_reply": "2023-12-16T02:27:03.690020Z" } }, "outputs": [ @@ -2912,10 +2920,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:20.423971Z", - "iopub.status.busy": "2023-12-15T12:30:20.423781Z", - "iopub.status.idle": "2023-12-15T12:30:20.428370Z", - "shell.execute_reply": "2023-12-15T12:30:20.427859Z" + "iopub.execute_input": "2023-12-16T02:27:03.693474Z", + "iopub.status.busy": "2023-12-16T02:27:03.692977Z", + "iopub.status.idle": "2023-12-16T02:27:03.698011Z", + "shell.execute_reply": "2023-12-16T02:27:03.697390Z" }, "nbsphinx": "hidden" }, @@ -2952,7 +2960,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0265fcb97d0a4a46872d5f114c876ef5": { + "0144165cf63c4bb7bdf8ee6a12361e43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "046c64dc06734a9395da2146b5e2f322": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc29fbd11ce040d6a1564772d18c0338", + "placeholder": "", + "style": "IPY_MODEL_54f566808f0640a099957676c9a409d8", + "value": "Downloading data: 100%" + } + }, + "0520c188ead94fbaaf2b08a6aa12572f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3004,7 +3048,83 @@ "width": null } }, - "0267e800f3a54dc99e64dc4c2a8b0b4c": { + "075bb83759d44cdd96eb356cd803b4b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "08a60c880f264d5ab36dc6967c1fe06e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_267206bd7f7140fc83d80b266fb56092", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_09bd5956b1b645279a645f9c3c5b739b", + "value": 4422102.0 + } + }, + "09bd5956b1b645279a645f9c3c5b739b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0b44bd305f594fbabd8757b2398163dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1fc5fe4b5a3044feafc6fe95326897db", + "placeholder": "", + "style": "IPY_MODEL_3ff090c071a947698fe6929cb3ed8a3f", + "value": "Downloading data: 100%" + } + }, + "0c9e91f643284b5ea52578b4d2418756": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3020,7 +3140,29 @@ "description_width": "" } }, - "026956164d5d4873b9bf9743a8107a16": { + "1097ded6c9ee430d96887ec356cfc49f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cef2cf64a53d4284bfe2b6ff287bbe9c", + "IPY_MODEL_68154dae7c684dffb9aca8c318f42eeb", + "IPY_MODEL_d23e00c51e7242339d48f1ad195db29b" + ], + "layout": "IPY_MODEL_cb70c30cc9ee4b018fc62d324c8c6ac4" + } + }, + "12076497a0a9430bb0b9cbdf55ab257e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3072,7 +3214,123 @@ "width": null } }, - "027d99a4144f4933a43fdd079a5d65fe": { + "12fd8a74f1874700b888772fc5e1fb77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "144618e2eea9486d915db20e46f89c7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39ab76992d6e444fa1fd97a577c82f46", + "placeholder": "", + "style": "IPY_MODEL_4dabea8a73ab447a82bc545da28c5ad4", + "value": "Downloading data: 100%" + } + }, + "146139fd8a614a59a41db4fd89aeb9b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f813ae2306fa45608678267cf8e18133", + "placeholder": "", + "style": "IPY_MODEL_e72d0b38f8314487a6dffedcdaa975c4", + "value": "Map (num_proc=4): 100%" + } + }, + "17048b2da5434dff861a853a104b9fcf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f443a765957d41e08f2c7f87b72ca818", + "placeholder": "", + "style": "IPY_MODEL_d750b33dbdb34bd0b045189dacd95b5e", + "value": " 8.85k/8.85k [00:00<00:00, 1.15MB/s]" + } + }, + "17ab9f84ce44446db0d25fe813c6fee7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_146139fd8a614a59a41db4fd89aeb9b4", + "IPY_MODEL_e8ab02071ba54cf4ae4f017f8fe2ecd1", + "IPY_MODEL_b0fd99da9f184ad9811bba3b067fb64f" + ], + "layout": "IPY_MODEL_e0b8bcdc66c5495a90ae03e9971d4135" + } + }, + "19c57893122b4e0cb11d488866448cf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1bee9cad96d8472d975511ed80680cf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3124,7 +3382,7 @@ "width": null } }, - "03c611690b8847138dea9dbe328786c9": { + "1f76466f059f465b8b0c3c780f0d3b20": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3176,44 +3434,7 @@ "width": null } }, - "03fab0ed8b22405eba4ecdb07bf2440e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5a31b02de02540408c3a384711b170e7", - "IPY_MODEL_57744a6374114af09fdbf844cde43c48", - "IPY_MODEL_3e4dc71f84214e8fa826f77842418cf8" - ], - "layout": "IPY_MODEL_db9ba7b88773400d9a06154910c5e750" - } - }, - "0afadab36dce40f48bd97262e545ceb1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0be2ee68977f41d88a7f6509e5e9f0ac": { + "1fc5fe4b5a3044feafc6fe95326897db": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3265,153 +3486,7 @@ "width": null } }, - "0bf18ea01fab4b73a295553bae2d3f27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0c8656f9d4814399b62fa7d4080ffc37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1d53020b1d0c4ce89846e6148dba48e3", - "IPY_MODEL_b9369a58ae444a738111de4a80f7030b", - "IPY_MODEL_bf9e54bf436d401695b9939b3516e29f" - ], - "layout": "IPY_MODEL_a33373c34df34223a78c6890cb34b55a" - } - }, - "0e67cfda686b4965b2aa2bef1d11cb99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1146a0cf4b734353b53657dac5a56b98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f058c21ace754cffa21a21f17cf4c752", - "placeholder": "", - "style": "IPY_MODEL_2d5ff213c1db40d285fc499d3b12b183", - "value": "Downloading data: 100%" - } - }, - "11ea86ab596947b69d2f994064ac1736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_63491890556e42e88f2d4e0f3bc754be", - "placeholder": "", - "style": "IPY_MODEL_df2bc52b852c4be1b4bff921a9010718", - "value": "Generating train split: 100%" - } - }, - "12fa881660494223873c0c672051b1b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "130a0dfc8e8b4da4844d23b4ac307d0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "15b911213d8a4fd1a505bc9a36f0fcab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7264985b11834b768d4c466b2ecb2fe2", - "placeholder": "", - "style": "IPY_MODEL_f7c8f23b6df44d79b9e93414f6c81bf8", - "value": "Downloading metadata: 100%" - } - }, - "195cd29844f446bda516673f34f56ec7": { + "1ffc2b96777d43878378f92c1fcd7352": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3463,28 +3538,7 @@ "width": null } }, - "1b7202a474e54066b1d64880daa71771": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7a5f77680fed4542926ab60893b2f664", - "placeholder": "", - "style": "IPY_MODEL_842da81243ba4d8f800054e52802512f", - "value": "Downloading readme: 100%" - } - }, - "1bf9177bbcf04497b1a054958e1f8201": { + "21e3c79b1cdb4c07b214fe65334d5ad1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3536,28 +3590,37 @@ "width": null } }, - "1d53020b1d0c4ce89846e6148dba48e3": { + "2319ad33137c4acc9fc6445a0d285ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c8206aa5131043e3aa65a5a958943772", - "placeholder": "", - "style": "IPY_MODEL_4807bd5e3c9744cd9c2d5e5db1a82f2d", - "value": "Downloading builder script: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1dd916376cee4c3a9328f3154791764c": { + "25845c487b2e4df5913a3bdb4abc77d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "267206bd7f7140fc83d80b266fb56092": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3609,22 +3672,7 @@ "width": null } }, - "1e5cfa09d1c9416598d4f10f6143515f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "200f62931016444e92cd3ae2fa485d10": { + "27f47e4a2ae4432aa4502a73ca44db87": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3676,29 +3724,44 @@ "width": null } }, - "20bcccf8b4d14cb1b2737164f8ffce3e": { + "2821c8b60bde4029be4c3f238271494c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2855d7e1658d484ba4e02af7b2a8f7f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72851bab8ccb4de7a4b31026359ff829", - "IPY_MODEL_d7a7fedc64254974b2b9a8f514abf73d", - "IPY_MODEL_96d0269d3a54473ba36c8abeab431541" - ], - "layout": "IPY_MODEL_fd96553d34164d1aacebf60fc6320012" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43f6db5ce8d540b6aecd9a5416473f48", + "placeholder": "", + "style": "IPY_MODEL_55f1dda94737477cb805237cc4ed2016", + "value": " 4/4 [00:00<00:00, 3.87it/s]" } }, - "2136572f392f483b879bba9ecbd9a632": { + "299198b97d6543d398a9a0f260611ba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3750,7 +3813,7 @@ "width": null } }, - "2235ae8942a244f287ea0665b0eb5e5c": { + "2a247ba3093d4a48b08781b89bd9eea6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3802,38 +3865,50 @@ "width": null } }, - "225d4c137aee43c993778eed79537ad3": { + "2ae6dc4c539549d3be95b5ec04c04081": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c8a84572b45b4bf18b280071fb1b5164", + "IPY_MODEL_40f8654a0db84b19bffcc80943ce80e0", + "IPY_MODEL_17048b2da5434dff861a853a104b9fcf" + ], + "layout": "IPY_MODEL_c26773ff68d04889a3556252a6e26428" } }, - "261096147e4c44bd8c8c1051825092b6": { + "2cc633a7261a4f9e954ab7c6635c3e7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_299198b97d6543d398a9a0f260611ba7", + "placeholder": "", + "style": "IPY_MODEL_e90b68df016343c1a3867b5df1e97eb2", + "value": "Generating train split: 100%" } }, - "265c94e7a45d48caa6281bb270373df0": { + "2f55577e804b4396ab1d827c3a041a0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3849,14 +3924,66 @@ "description_width": "" } }, - "2774ceed0c3b462f901e299ffd8ac6f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "324fec9152db42b8b2fc8fb63b4e4cbe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "360b2afa9b4349cd9c9399acc88b020e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", @@ -3864,14 +3991,143 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_39e74c291d354d67a377182d75f05ac9", - "IPY_MODEL_30f47648551e4630817c89f705600559", - "IPY_MODEL_535ff4b614834109928b14b2795c012b" + "IPY_MODEL_3713b524243b4499bf36e623ff106943", + "IPY_MODEL_3a0e06af2e9e410c9972993ca2d7dec6", + "IPY_MODEL_d80a8c99472440cbbe64cc7ddc73bdcc" ], - "layout": "IPY_MODEL_03c611690b8847138dea9dbe328786c9" + "layout": "IPY_MODEL_1ffc2b96777d43878378f92c1fcd7352" + } + }, + "36dfdcdec11b4330942806794277609b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d721c546977048d9b9ab9cc6ba5dbf32", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f6bbb9c5efca474f87286b38d83b5b1f", + "value": 5148.0 + } + }, + "3713b524243b4499bf36e623ff106943": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_324fec9152db42b8b2fc8fb63b4e4cbe", + "placeholder": "", + "style": "IPY_MODEL_fa6110f3bd7e4f75b5c739b4c81cc619", + "value": "100%" + } + }, + "37795adc87514ac28f665a009bd76777": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c277b797ef864e23b2c6f2f55eeef1d1", + "placeholder": "", + "style": "IPY_MODEL_075bb83759d44cdd96eb356cd803b4b8", + "value": "Downloading data: 100%" + } + }, + "38dc4866faf74be18ce360d5e1d8254e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_21e3c79b1cdb4c07b214fe65334d5ad1", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c73b51f627964d20951793c56ea650b0", + "value": 60000.0 + } + }, + "3934f9714a184e41a8f0e910bb049def": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_485cdf7d85c24e18a326d9d2696df6fb", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a6c4d759ca4469b92010890dff572ba", + "value": 10000.0 + } + }, + "39585d310ed9485ebc6e117f2da3ff3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "27f5b244f1034abfab9159523188f36e": { + "39ab76992d6e444fa1fd97a577c82f46": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3923,22 +4179,31 @@ "width": null } }, - "2d5ff213c1db40d285fc499d3b12b183": { + "3a0e06af2e9e410c9972993ca2d7dec6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7fe39f15b5a49fc8c2b741b879d3560", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d74278c1180426fbc76956a6e1e4da0", + "value": 60000.0 } }, - "2f2b12ce0da24cb8a6c23411ceb2f4df": { + "3db7d07c007249a78c49c0241587f62c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3990,28 +4255,31 @@ "width": null } }, - "2f7c8f05a84a43f18afd720e13bf2cf1": { + "3fda8c37f7b54cfcb220e1171b3942ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6596b561a51347f68510a398a83e4e30", - "placeholder": "", - "style": "IPY_MODEL_8a64abb1b69646898cea3d268ace6c8e", - "value": "Extracting data files: 100%" + "layout": "IPY_MODEL_12076497a0a9430bb0b9cbdf55ab257e", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c9e91f643284b5ea52578b4d2418756", + "value": 4.0 } }, - "2fa926177c8e484d8acd75712cbc174b": { + "3ff090c071a947698fe6929cb3ed8a3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4026,7 +4294,7 @@ "description_width": "" } }, - "30f47648551e4630817c89f705600559": { + "40f8654a0db84b19bffcc80943ce80e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4042,15 +4310,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0be2ee68977f41d88a7f6509e5e9f0ac", - "max": 26421880.0, + "layout": "IPY_MODEL_2a247ba3093d4a48b08781b89bd9eea6", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_bd35a3bcd6704468b10ddfb3e6669f43", - "value": 26421880.0 + "style": "IPY_MODEL_ae0ed21aee564660a97073ed8c67cd79", + "value": 8845.0 + } + }, + "41f4dfafd77243f69ba948da6544d1af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "314335c3e5aa4f69bb66757fde2ad70d": { + "434eccf8a49249829adff31f4db6925d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4102,38 +4385,7 @@ "width": null } }, - "31b0670b12ff4112a7d818f96ee8d973": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "322a6ae990c24e08b29eaa52921c7c58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3434c60964b94cebb21021c1b6adf430": { + "43f6db5ce8d540b6aecd9a5416473f48": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4185,37 +4437,59 @@ "width": null } }, - "348b0e75cc62469db559f1c8d05fc5a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "4716c9f6610f4d9cbc802a6e23852629": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3616ba00dcc1468298c6dc9804c94d0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3886ae7a89fb428fa1f0a2e1edd51cdc": { + "4789f4131de241549a86ba4b24a0d37f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4231,103 +4505,59 @@ "description_width": "" } }, - "39e74c291d354d67a377182d75f05ac9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c9a6b0e18f134b369babf5cdc639b6f0", - "placeholder": "", - "style": "IPY_MODEL_3c50e33a6daa41b085c2cca2ef3acd33", - "value": "Downloading data: 100%" - } - }, - "3c50e33a6daa41b085c2cca2ef3acd33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3e4dc71f84214e8fa826f77842418cf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_200f62931016444e92cd3ae2fa485d10", - "placeholder": "", - "style": "IPY_MODEL_60171fdb76664b9f948ba55ffb72e1ee", - "value": " 60000/60000 [00:11<00:00, 6957.80 examples/s]" - } - }, - "3f892dabebbd4cea9655d8d67a6ddcf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "485cdf7d85c24e18a326d9d2696df6fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4422b0d89b684c97b7a39585240b1565": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b415c90d3e714869aab57bcc846ffcbd", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6f9fcefc9874cc396217532193be5a0", - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4482b685ec2046ff99e821d5812fa87f": { + "4b91090317f045f881f5bc8e8259664f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4342,13 +4572,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c74ca08d7b814b20a73ab0f1e0e42c7a", + "layout": "IPY_MODEL_b219644003684dcebada8d9341eea420", "placeholder": "", - "style": "IPY_MODEL_322a6ae990c24e08b29eaa52921c7c58", - "value": " 5.15k/5.15k [00:00<00:00, 624kB/s]" + "style": "IPY_MODEL_50d5f1c9b647435ea6b40a1f66e76940", + "value": " 4.42M/4.42M [00:00<00:00, 90.5MB/s]" } }, - "4684a1b6755249708c18b9962f46003c": { + "4dabea8a73ab447a82bc545da28c5ad4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4363,22 +4593,59 @@ "description_width": "" } }, - "4807bd5e3c9744cd9c2d5e5db1a82f2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "4e828c58547c433594369d11b2e5559c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "49a782338f4740f8a369f79815b627fe": { + "50d5f1c9b647435ea6b40a1f66e76940": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4393,158 +4660,7 @@ "description_width": "" } }, - "4af36f269ccc4342ba05acfe0cd3c8b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_026956164d5d4873b9bf9743a8107a16", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_71f48a7436b24b2bb19377e74f8496b6", - "value": 4422102.0 - } - }, - "4ce4465ccf80406bbddc6f9b0a69af8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c80eaef0142740b085c54c5a6a738e0a", - "placeholder": "", - "style": "IPY_MODEL_81ee2832e3894c0dbd1116390074e079", - "value": " 4.42M/4.42M [00:00<00:00, 84.7MB/s]" - } - }, - "511295e3d3e640509ae95b01d9d5407c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1bf9177bbcf04497b1a054958e1f8201", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3886ae7a89fb428fa1f0a2e1edd51cdc", - "value": 5148.0 - } - }, - "5323fe1f677e4e61b22bc16a59b8eeb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e1b26fd71e924da696b7e30d06da20da", - "placeholder": "", - "style": "IPY_MODEL_73d26894ea8e4fa88cdce523c9f65f9b", - "value": " 3.13k/3.13k [00:00<00:00, 378kB/s]" - } - }, - "535ff4b614834109928b14b2795c012b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dfbfe3839fed4b16bea6aab7bb54a2da", - "placeholder": "", - "style": "IPY_MODEL_12fa881660494223873c0c672051b1b1", - "value": " 26.4M/26.4M [00:00<00:00, 109MB/s]" - } - }, - "55c7cd3f65e24090b84f2f223ddb915a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "57744a6374114af09fdbf844cde43c48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b31bd79e30da4958ae8a989dc378be01", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d92e3a39239c45c097462355b1fbe6bc", - "value": 60000.0 - } - }, - "5a2d80ad86fb4b31b063911e4b32cb34": { + "52cf32e2a5164b15b2dd9092007cb99b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4596,88 +4712,7 @@ "width": null } }, - "5a31b02de02540408c3a384711b170e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8cfc1b821673483eb3399e362e9cc7a4", - "placeholder": "", - "style": "IPY_MODEL_4684a1b6755249708c18b9962f46003c", - "value": "Map (num_proc=4): 100%" - } - }, - "5d1c98afd9ad4921a01ee4eb620aa87c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_86e2b056c1d5429183f5c3012cad8b1e", - "placeholder": "", - "style": "IPY_MODEL_261096147e4c44bd8c8c1051825092b6", - "value": " 10000/10000 [00:01<00:00, 7248.05 examples/s]" - } - }, - "60171fdb76664b9f948ba55ffb72e1ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "61b569e6e21341fd9cbfec22fba6eec1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_727f6084167946c5910c146bc6394335", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_70fe10a0a2584ddd8500bde5522e8736", - "value": 8845.0 - } - }, - "63491890556e42e88f2d4e0f3bc754be": { + "5395550674eb456eae9539d709abca05": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4729,7 +4764,7 @@ "width": null } }, - "6509a8a9778446ce8e92caf9f4c6ccbc": { + "54c3e30261cb4dbd99942b22f2d86573": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4781,7 +4816,97 @@ "width": null } }, - "6596b561a51347f68510a398a83e4e30": { + "54f566808f0640a099957676c9a409d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "55de14bca718448faf2cc672d611ffd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a5f6cb8a1f884740b6b790dd3ed523c9", + "placeholder": "", + "style": "IPY_MODEL_8dbdd50f718a418d8d002585a945e516", + "value": "Downloading builder script: 100%" + } + }, + "55f1dda94737477cb805237cc4ed2016": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "59ca56eec2a74c028f84c7f5638f7110": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99298e4abf3141ee94be575fa911db83", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_19c57893122b4e0cb11d488866448cf1", + "value": 29515.0 + } + }, + "5a4f602d25e04050ae0efbd40f42b3b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5b25c23ef47d45379c8dc956c8f245cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4833,28 +4958,7 @@ "width": null } }, - "662131ab3fa644fb9e2326247206c9b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8695472b19c149d29bacddf7685059cc", - "placeholder": "", - "style": "IPY_MODEL_f6d5ae042455476084eba55c8ca69818", - "value": "Downloading data: 100%" - } - }, - "66d6700270d24dcc823814d9409d0f81": { + "5d974ba2124d4d59b2842fef58fe41db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4869,14 +4973,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b148798a3de440f48272f1954dd30357", - "IPY_MODEL_b6994fb218fa4b288bc86ae4d004eb52", - "IPY_MODEL_eae520e7e7cd4127b85a82b7a0bb1979" + "IPY_MODEL_55de14bca718448faf2cc672d611ffd0", + "IPY_MODEL_f5289fe993fc456c898ff381cac9fd0e", + "IPY_MODEL_7d77fe88cfa443e0a9524b4a82b10301" ], - "layout": "IPY_MODEL_ab12bb02375f49e69ff71452fcba2a27" + "layout": "IPY_MODEL_9c1c1cfa9ed64d59b41ca027edb91c0e" } }, - "6882cfb9e10b42b890a95809b0f9090d": { + "5e28139575614aef8f3e6fb0091a2976": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4891,135 +4995,79 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1dd916376cee4c3a9328f3154791764c", + "layout": "IPY_MODEL_95fe1518db984332b9a89a262ec1bfb8", "placeholder": "", - "style": "IPY_MODEL_3f892dabebbd4cea9655d8d67a6ddcf1", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_b5d5b860f5064c7f8d4a33dcf297efb3", + "value": " 3.13k/3.13k [00:00<00:00, 429kB/s]" } }, - "69a7b0d7fa2a484b981d90f4babfded5": { + "616d9c202e704a2891c4383040ea6590": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2f7c8f05a84a43f18afd720e13bf2cf1", - "IPY_MODEL_adbdd34b99b84625875b3df3cf4cd57b", - "IPY_MODEL_e9ed7d2116be42c1b824785bbbe217c0" - ], - "layout": "IPY_MODEL_314335c3e5aa4f69bb66757fde2ad70d" - } - }, - "6b1cbb7a1d6e46ea8684e2b2761470ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e828c58547c433594369d11b2e5559c", + "placeholder": "", + "style": "IPY_MODEL_c841686c63d54fd5abc93bdd8a589cdb", + "value": " 29.5k/29.5k [00:00<00:00, 3.52MB/s]" } }, - "70fe10a0a2584ddd8500bde5522e8736": { + "62297532c4204fa0b4c622a34711269c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27f47e4a2ae4432aa4502a73ca44db87", + "placeholder": "", + "style": "IPY_MODEL_f1fb24373a5845f5aad547183691fc25", + "value": "Generating test split: 100%" } }, - "71f48a7436b24b2bb19377e74f8496b6": { + "62913c861b31450caeceff2aa694f584": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7264985b11834b768d4c466b2ecb2fe2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b25c23ef47d45379c8dc956c8f245cf", + "max": 3126.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f55577e804b4396ab1d827c3a041a0a", + "value": 3126.0 } }, - "727f6084167946c5910c146bc6394335": { + "674dcfc6abf94a7ebb1f35cafe672d6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5071,80 +5119,83 @@ "width": null } }, - "72851bab8ccb4de7a4b31026359ff829": { + "68154dae7c684dffb9aca8c318f42eeb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f2785c87549a4888adda223f7226e688", - "placeholder": "", - "style": "IPY_MODEL_0bf18ea01fab4b73a295553bae2d3f27", - "value": "Computing checksums: 100%" + "layout": "IPY_MODEL_835b554ca35a4d15b98ca03242f406d9", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4789f4131de241549a86ba4b24a0d37f", + "value": 4.0 } }, - "72fb4ffcda5d43a9aea200cdb82eb704": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "6c0b269e7f9a44a1bb6fe561eebb75ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "6d74278c1180426fbc76956a6e1e4da0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6fc90077e91d464a8d8dd4311baa4414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b672d8bb0c72458fbf0c2f80d55ad662", + "placeholder": "", + "style": "IPY_MODEL_2319ad33137c4acc9fc6445a0d285ff8", + "value": " 5.15k/5.15k [00:00<00:00, 606kB/s]" } }, - "73d26894ea8e4fa88cdce523c9f65f9b": { + "711a33d5e12442ce90c6a714ae9b4d6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5159,80 +5210,31 @@ "description_width": "" } }, - "7771df67f6d74f4da0154f8f658510c6": { + "71aa5242cebe4f6b81eb957a30ad6e91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_efcf21c1d26847c4bd65148dff8c2812", - "placeholder": "", - "style": "IPY_MODEL_130a0dfc8e8b4da4844d23b4ac307d0f", - "value": " 29.5k/29.5k [00:00<00:00, 3.19MB/s]" - } - }, - "7a5f77680fed4542926ab60893b2f664": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_3db7d07c007249a78c49c0241587f62c", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b977fa51b5904c6ab221b81ddbdd8e16", + "value": 4.0 } }, - "7c3d2dbefa494bf7b88922af24c1fcd3": { + "7243cda0d8a041ad88628570b940470e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5284,37 +5286,29 @@ "width": null } }, - "81ee2832e3894c0dbd1116390074e079": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "842da81243ba4d8f800054e52802512f": { + "72ecc5c7e9384c77a72c72ca2841a228": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b44bd305f594fbabd8757b2398163dd", + "IPY_MODEL_08a60c880f264d5ab36dc6967c1fe06e", + "IPY_MODEL_4b91090317f045f881f5bc8e8259664f" + ], + "layout": "IPY_MODEL_eefdff1cfcda48faafbfaf03be5bd75e" } }, - "84aa166fc89f43d3a9fc8b64674b2bef": { + "7823b15de4e14c48ac2c0c2602bfdb69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5366,7 +5360,7 @@ "width": null } }, - "8695472b19c149d29bacddf7685059cc": { + "78d4c8327a7f4672a14a55df00511bae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5418,7 +5412,28 @@ "width": null } }, - "86e2b056c1d5429183f5c3012cad8b1e": { + "7d77fe88cfa443e0a9524b4a82b10301": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7243cda0d8a041ad88628570b940470e", + "placeholder": "", + "style": "IPY_MODEL_25845c487b2e4df5913a3bdb4abc77d1", + "value": " 4.83k/4.83k [00:00<00:00, 599kB/s]" + } + }, + "833893bb623049d6847d3fbf14fd727a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5470,7 +5485,7 @@ "width": null } }, - "87b90b296e9a4ae196109e73414c3425": { + "835b554ca35a4d15b98ca03242f406d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5522,44 +5537,7 @@ "width": null } }, - "8a64abb1b69646898cea3d268ace6c8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8c8bfd3b024644fa9a0ed0bab1385734": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_662131ab3fa644fb9e2326247206c9b1", - "IPY_MODEL_9ce0f18e501f47a687882e418764d326", - "IPY_MODEL_7771df67f6d74f4da0154f8f658510c6" - ], - "layout": "IPY_MODEL_d8be76cbdaa149b2883e67b5ba1cc539" - } - }, - "8cfc1b821673483eb3399e362e9cc7a4": { + "83f1234cf7ac48cb842da2c7864d9102": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5598,135 +5576,20 @@ "max_width": null, "min_height": null, "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8e255c3b875d4209af8fa32b89623366": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_15b911213d8a4fd1a505bc9a36f0fcab", - "IPY_MODEL_e2234e34f4c0427db9f7a53fc29eaf8a", - "IPY_MODEL_5323fe1f677e4e61b22bc16a59b8eeb2" - ], - "layout": "IPY_MODEL_2f2b12ce0da24cb8a6c23411ceb2f4df" - } - }, - "8e2a56afb6ab46bfba1861c6363ab332": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8e920f2ab9df4659aaa2f4ad988947ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3434c60964b94cebb21021c1b6adf430", - "placeholder": "", - "style": "IPY_MODEL_348b0e75cc62469db559f1c8d05fc5a2", - "value": " 8.85k/8.85k [00:00<00:00, 1.08MB/s]" - } - }, - "8fa0b95ac89741919c88432dd6ef6097": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed001ee38c31476e922dd4aa8845dad8", - "placeholder": "", - "style": "IPY_MODEL_1e5cfa09d1c9416598d4f10f6143515f", - "value": "100%" - } - }, - "92d3df33944e4468a2edfdd6b1c79f03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "96d0269d3a54473ba36c8abeab431541": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c82df3e6f7534985b9ed7bc420af40c0", - "placeholder": "", - "style": "IPY_MODEL_49a782338f4740f8a369f79815b627fe", - "value": " 4/4 [00:00<00:00, 756.99it/s]" + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "999e380cfc554a25819aded60c6f3c0c": { + "8b58526922324719868fc159fc9ca06b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5778,52 +5641,81 @@ "width": null } }, - "9ce0f18e501f47a687882e418764d326": { + "8dbdd50f718a418d8d002585a945e516": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9003cbe226b2487d84c0290bb8b9c557": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9261dab3cd20476a824eac8ec600445b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b1cae6ffbab342eebd57dad6848fa23f", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0267e800f3a54dc99e64dc4c2a8b0b4c", - "value": 29515.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37795adc87514ac28f665a009bd76777", + "IPY_MODEL_36dfdcdec11b4330942806794277609b", + "IPY_MODEL_6fc90077e91d464a8d8dd4311baa4414" + ], + "layout": "IPY_MODEL_833893bb623049d6847d3fbf14fd727a" } }, - "9fa11ea2b5374d1b89620052642e3f0a": { + "937922e926af4ad7aeed93f1d5e8cff5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_87b90b296e9a4ae196109e73414c3425", - "placeholder": "", - "style": "IPY_MODEL_f4f9be5825164b4287d59c1ab94df8a1", - "value": " 60000/60000 [00:08<00:00, 7282.83 examples/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_046c64dc06734a9395da2146b5e2f322", + "IPY_MODEL_a81ad70b1d7e423aa68ed8e84f00aeea", + "IPY_MODEL_d93c9dc3d9f44717b34e80d74c6eafc6" + ], + "layout": "IPY_MODEL_674dcfc6abf94a7ebb1f35cafe672d6d" } }, - "a33373c34df34223a78c6890cb34b55a": { + "95fe1518db984332b9a89a262ec1bfb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5875,7 +5767,7 @@ "width": null } }, - "a6f9fcefc9874cc396217532193be5a0": { + "9797c628fdc34d5e9199175be4b45124": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -5891,7 +5783,29 @@ "description_width": "" } }, - "a720d9e36aee4ed3999cb08662633f8a": { + "984dbe060ae8480783767df972846114": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_62297532c4204fa0b4c622a34711269c", + "IPY_MODEL_3934f9714a184e41a8f0e910bb049def", + "IPY_MODEL_e706a7291d454adebfbd1886dd36c129" + ], + "layout": "IPY_MODEL_ab509774166a45c8b7f41e5f2b6d9e22" + } + }, + "99298e4abf3141ee94be575fa911db83": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5943,29 +5857,23 @@ "width": null } }, - "a8948bbcddfb41799a7d17999ddb3736": { + "9a6c4d759ca4469b92010890dff572ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6882cfb9e10b42b890a95809b0f9090d", - "IPY_MODEL_4af36f269ccc4342ba05acfe0cd3c8b3", - "IPY_MODEL_4ce4465ccf80406bbddc6f9b0a69af8a" - ], - "layout": "IPY_MODEL_6509a8a9778446ce8e92caf9f4c6ccbc" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ab12bb02375f49e69ff71452fcba2a27": { + "9c1c1cfa9ed64d59b41ca027edb91c0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6017,31 +5925,22 @@ "width": null } }, - "adbdd34b99b84625875b3df3cf4cd57b": { + "a205867470a746e8beef7987e024f2ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2235ae8942a244f287ea0665b0eb5e5c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_31b0670b12ff4112a7d818f96ee8d973", - "value": 4.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ae9684c140074bdda24fa627dbed3a1f": { + "a5f6cb8a1f884740b6b790dd3ed523c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6093,7 +5992,7 @@ "width": null } }, - "b148798a3de440f48272f1954dd30357": { + "a615c05483674cad94430ed87905fc65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6108,13 +6007,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_027d99a4144f4933a43fdd079a5d65fe", + "layout": "IPY_MODEL_ce7a35a982f24c0a8417a59e6868ce15", "placeholder": "", - "style": "IPY_MODEL_2fa926177c8e484d8acd75712cbc174b", - "value": "Downloading data files: 100%" + "style": "IPY_MODEL_711a33d5e12442ce90c6a714ae9b4d6b", + "value": " 4/4 [00:02<00:00, 1.83it/s]" } }, - "b1cae6ffbab342eebd57dad6848fa23f": { + "a696ca59311e4186b9fdc4aede6fca8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6166,7 +6065,7 @@ "width": null } }, - "b31bd79e30da4958ae8a989dc378be01": { + "a7fe39f15b5a49fc8c2b741b879d3560": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6218,7 +6117,53 @@ "width": null } }, - "b415c90d3e714869aab57bcc846ffcbd": { + "a81ad70b1d7e423aa68ed8e84f00aeea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e7af5be193a64d6b905ba17b7da2db13", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9797c628fdc34d5e9199175be4b45124", + "value": 26421880.0 + } + }, + "ab0d5bd357284691bdaa5b467c6d73e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f887d1c18d574f5b98206213f6f8367b", + "IPY_MODEL_71aa5242cebe4f6b81eb957a30ad6e91", + "IPY_MODEL_2855d7e1658d484ba4e02af7b2a8f7f1" + ], + "layout": "IPY_MODEL_1bee9cad96d8472d975511ed80680cf2" + } + }, + "ab509774166a45c8b7f41e5f2b6d9e22": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6270,7 +6215,59 @@ "width": null } }, - "b44866e6da5544ae8c35a50d927bc08e": { + "ad3e8f4378aa4f3cbe5c4f737e938442": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ae0ed21aee564660a97073ed8c67cd79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b0fd99da9f184ad9811bba3b067fb64f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_52cf32e2a5164b15b2dd9092007cb99b", + "placeholder": "", + "style": "IPY_MODEL_6c0b269e7f9a44a1bb6fe561eebb75ca", + "value": " 60000/60000 [00:10<00:00, 5511.93 examples/s]" + } + }, + "b219644003684dcebada8d9341eea420": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6310,67 +6307,19 @@ "min_height": null, "min_width": null, "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b6994fb218fa4b288bc86ae4d004eb52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7c3d2dbefa494bf7b88922af24c1fcd3", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0e67cfda686b4965b2aa2bef1d11cb99", - "value": 4.0 - } - }, - "b9369a58ae444a738111de4a80f7030b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cbe0dafd67b84c859c3388aa6b684800", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_225d4c137aee43c993778eed79537ad3", - "value": 4833.0 + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bd35a3bcd6704468b10ddfb3e6669f43": { + "b288c8cc232f4ddb9222c145cb93a3fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -6386,28 +6335,7 @@ "description_width": "" } }, - "bf9e54bf436d401695b9939b3516e29f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_999e380cfc554a25819aded60c6f3c0c", - "placeholder": "", - "style": "IPY_MODEL_c0748af33fd0443e8eaa7d2b324afe85", - "value": " 4.83k/4.83k [00:00<00:00, 575kB/s]" - } - }, - "c0748af33fd0443e8eaa7d2b324afe85": { + "b5d5b860f5064c7f8d4a33dcf297efb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6422,7 +6350,7 @@ "description_width": "" } }, - "c74ca08d7b814b20a73ab0f1e0e42c7a": { + "b672d8bb0c72458fbf0c2f80d55ad662": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6474,7 +6402,23 @@ "width": null } }, - "c80eaef0142740b085c54c5a6a738e0a": { + "b977fa51b5904c6ab221b81ddbdd8e16": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c17ce308bd5a4c8ebb2dfdc2c4c897bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6526,7 +6470,7 @@ "width": null } }, - "c8206aa5131043e3aa65a5a958943772": { + "c26773ff68d04889a3556252a6e26428": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6578,29 +6522,7 @@ "width": null } }, - "c8220f874e834f548cf1006a40c5fd63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8fa0b95ac89741919c88432dd6ef6097", - "IPY_MODEL_e703f8e1b1174f49b5ca5cb35d7872da", - "IPY_MODEL_ed3bc03f1f0d462a99bbedc8e16f4739" - ], - "layout": "IPY_MODEL_72fb4ffcda5d43a9aea200cdb82eb704" - } - }, - "c82df3e6f7534985b9ed7bc420af40c0": { + "c277b797ef864e23b2c6f2f55eeef1d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6652,7 +6574,59 @@ "width": null } }, - "c92aaf4fef68498d8fdf08ef0c8ad874": { + "c73b51f627964d20951793c56ea650b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c841686c63d54fd5abc93bdd8a589cdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c8a84572b45b4bf18b280071fb1b5164": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f66bb89ffb724a2bb2ff77d8145ae070", + "placeholder": "", + "style": "IPY_MODEL_f865015b07a84eac99be00092140e401", + "value": "Downloading readme: 100%" + } + }, + "cb70c30cc9ee4b018fc62d324c8c6ac4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6704,7 +6678,7 @@ "width": null } }, - "c9a6b0e18f134b369babf5cdc639b6f0": { + "cc29fbd11ce040d6a1564772d18c0338": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6756,7 +6730,7 @@ "width": null } }, - "cbe0dafd67b84c859c3388aa6b684800": { + "ce7a35a982f24c0a8417a59e6868ce15": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6808,53 +6782,70 @@ "width": null } }, - "ce156ad521324d34b90aab32d9e95500": { + "cef2cf64a53d4284bfe2b6ff287bbe9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1b7202a474e54066b1d64880daa71771", - "IPY_MODEL_61b569e6e21341fd9cbfec22fba6eec1", - "IPY_MODEL_8e920f2ab9df4659aaa2f4ad988947ec" - ], - "layout": "IPY_MODEL_b44866e6da5544ae8c35a50d927bc08e" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54c3e30261cb4dbd99942b22f2d86573", + "placeholder": "", + "style": "IPY_MODEL_a205867470a746e8beef7987e024f2ee", + "value": "Computing checksums: 100%" } }, - "d7a7fedc64254974b2b9a8f514abf73d": { + "d23e00c51e7242339d48f1ad195db29b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ae9684c140074bdda24fa627dbed3a1f", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_265c94e7a45d48caa6281bb270373df0", - "value": 4.0 + "layout": "IPY_MODEL_78d4c8327a7f4672a14a55df00511bae", + "placeholder": "", + "style": "IPY_MODEL_5a4f602d25e04050ae0efbd40f42b3b1", + "value": " 4/4 [00:00<00:00, 515.51it/s]" + } + }, + "d668fb8634904ef3934786687386da5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b58526922324719868fc159fc9ca06b", + "placeholder": "", + "style": "IPY_MODEL_12fd8a74f1874700b888772fc5e1fb77", + "value": "Downloading data files: 100%" } }, - "d8be76cbdaa149b2883e67b5ba1cc539": { + "d721c546977048d9b9ab9cc6ba5dbf32": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6906,23 +6897,108 @@ "width": null } }, - "d92e3a39239c45c097462355b1fbe6bc": { + "d750b33dbdb34bd0b045189dacd95b5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "db9ba7b88773400d9a06154910c5e750": { + "d80a8c99472440cbbe64cc7ddc73bdcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc5acefb1ecd43dd862efff61ae39c68", + "placeholder": "", + "style": "IPY_MODEL_0144165cf63c4bb7bdf8ee6a12361e43", + "value": " 60000/60000 [00:28<00:00, 2137.66it/s]" + } + }, + "d93c9dc3d9f44717b34e80d74c6eafc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4716c9f6610f4d9cbc802a6e23852629", + "placeholder": "", + "style": "IPY_MODEL_9003cbe226b2487d84c0290bb8b9c557", + "value": " 26.4M/26.4M [00:00<00:00, 118MB/s]" + } + }, + "d98617fc42f1489ab7ff06215522b3a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_144618e2eea9486d915db20e46f89c7a", + "IPY_MODEL_59ca56eec2a74c028f84c7f5638f7110", + "IPY_MODEL_616d9c202e704a2891c4383040ea6590" + ], + "layout": "IPY_MODEL_c17ce308bd5a4c8ebb2dfdc2c4c897bf" + } + }, + "da03bc4f8c8b460c8ac8cb168f36ad5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d668fb8634904ef3934786687386da5b", + "IPY_MODEL_3fda8c37f7b54cfcb220e1171b3942ef", + "IPY_MODEL_a615c05483674cad94430ed87905fc65" + ], + "layout": "IPY_MODEL_7823b15de4e14c48ac2c0c2602bfdb69" + } + }, + "dc5acefb1ecd43dd862efff61ae39c68": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6974,44 +7050,7 @@ "width": null } }, - "de3aeec56b064f03b87e9b7accdac452": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1146a0cf4b734353b53657dac5a56b98", - "IPY_MODEL_511295e3d3e640509ae95b01d9d5407c", - "IPY_MODEL_4482b685ec2046ff99e821d5812fa87f" - ], - "layout": "IPY_MODEL_84aa166fc89f43d3a9fc8b64674b2bef" - } - }, - "df2bc52b852c4be1b4bff921a9010718": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "df5ae742be134703877ffbd70d8abd81": { + "e0a594ef9b4a4ef6905b05777d47a100": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -7026,14 +7065,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_11ea86ab596947b69d2f994064ac1736", - "IPY_MODEL_4422b0d89b684c97b7a39585240b1565", - "IPY_MODEL_9fa11ea2b5374d1b89620052642e3f0a" + "IPY_MODEL_2cc633a7261a4f9e954ab7c6635c3e7e", + "IPY_MODEL_38dc4866faf74be18ce360d5e1d8254e", + "IPY_MODEL_f9ae0f065be94878835f3b8d1ed89bee" ], - "layout": "IPY_MODEL_0265fcb97d0a4a46872d5f114c876ef5" + "layout": "IPY_MODEL_f09f3c49f9ea442bb41b7db3c1e655bd" } }, - "dfbfe3839fed4b16bea6aab7bb54a2da": { + "e0b8bcdc66c5495a90ae03e9971d4135": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7085,31 +7124,65 @@ "width": null } }, - "e146f6bc0f564ec5972f31583930e448": { + "e6a98c6e8c574fa5a1727415c5b1f0ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fff13ae0ee854b2db74d68b5ef768572", + "IPY_MODEL_62913c861b31450caeceff2aa694f584", + "IPY_MODEL_5e28139575614aef8f3e6fb0091a2976" + ], + "layout": "IPY_MODEL_434eccf8a49249829adff31f4db6925d" + } + }, + "e706a7291d454adebfbd1886dd36c129": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ec3a01b6e72f4cf3a6166776f1f27783", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_55c7cd3f65e24090b84f2f223ddb915a", - "value": 10000.0 + "layout": "IPY_MODEL_a696ca59311e4186b9fdc4aede6fca8a", + "placeholder": "", + "style": "IPY_MODEL_41f4dfafd77243f69ba948da6544d1af", + "value": " 10000/10000 [00:01<00:00, 7622.52 examples/s]" + } + }, + "e72d0b38f8314487a6dffedcdaa975c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e1b26fd71e924da696b7e30d06da20da": { + "e7af5be193a64d6b905ba17b7da2db13": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7161,52 +7234,7 @@ "width": null } }, - "e2234e34f4c0427db9f7a53fc29eaf8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a2d80ad86fb4b31b063911e4b32cb34", - "max": 3126.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f3302580f9d14b70bafabf8c9b91d771", - "value": 3126.0 - } - }, - "e6a091d0735e4f50bac91aad411f0b43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_195cd29844f446bda516673f34f56ec7", - "placeholder": "", - "style": "IPY_MODEL_3616ba00dcc1468298c6dc9804c94d0e", - "value": "Generating test split: 100%" - } - }, - "e703f8e1b1174f49b5ca5cb35d7872da": { + "e8ab02071ba54cf4ae4f017f8fe2ecd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -7222,79 +7250,45 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_27f5b244f1034abfab9159523188f36e", + "layout": "IPY_MODEL_1f76466f059f465b8b0c3c780f0d3b20", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6b1cbb7a1d6e46ea8684e2b2761470ec", + "style": "IPY_MODEL_2821c8b60bde4029be4c3f238271494c", "value": 60000.0 } }, - "e83419d64ee64254acc38cdf3d20d41b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6a091d0735e4f50bac91aad411f0b43", - "IPY_MODEL_e146f6bc0f564ec5972f31583930e448", - "IPY_MODEL_5d1c98afd9ad4921a01ee4eb620aa87c" - ], - "layout": "IPY_MODEL_c92aaf4fef68498d8fdf08ef0c8ad874" - } - }, - "e9ed7d2116be42c1b824785bbbe217c0": { + "e90b68df016343c1a3867b5df1e97eb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2136572f392f483b879bba9ecbd9a632", - "placeholder": "", - "style": "IPY_MODEL_8e2a56afb6ab46bfba1861c6363ab332", - "value": " 4/4 [00:00<00:00, 3.84it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "eae520e7e7cd4127b85a82b7a0bb1979": { + "ea537851680d4316853705e4476422a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f3415558e8264a65a64f634bde5add94", - "placeholder": "", - "style": "IPY_MODEL_92d3df33944e4468a2edfdd6b1c79f03", - "value": " 4/4 [00:02<00:00, 1.66it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ec3a01b6e72f4cf3a6166776f1f27783": { + "eefdff1cfcda48faafbfaf03be5bd75e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7346,7 +7340,7 @@ "width": null } }, - "ed001ee38c31476e922dd4aa8845dad8": { + "f09f3c49f9ea442bb41b7db3c1e655bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7398,28 +7392,22 @@ "width": null } }, - "ed3bc03f1f0d462a99bbedc8e16f4739": { + "f1fb24373a5845f5aad547183691fc25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a720d9e36aee4ed3999cb08662633f8a", - "placeholder": "", - "style": "IPY_MODEL_0afadab36dce40f48bd97262e545ceb1", - "value": " 60000/60000 [00:28<00:00, 2037.85it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "efcf21c1d26847c4bd65148dff8c2812": { + "f3a43cab26aa4d3ea2abdff5b09f0d8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7471,7 +7459,7 @@ "width": null } }, - "f058c21ace754cffa21a21f17cf4c752": { + "f443a765957d41e08f2c7f87b72ca818": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7523,7 +7511,31 @@ "width": null } }, - "f2785c87549a4888adda223f7226e688": { + "f5289fe993fc456c898ff381cac9fd0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83f1234cf7ac48cb842da2c7864d9102", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b288c8cc232f4ddb9222c145cb93a3fc", + "value": 4833.0 + } + }, + "f66bb89ffb724a2bb2ff77d8145ae070": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7575,7 +7587,7 @@ "width": null } }, - "f3302580f9d14b70bafabf8c9b91d771": { + "f6bbb9c5efca474f87286b38d83b5b1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7591,7 +7603,7 @@ "description_width": "" } }, - "f3415558e8264a65a64f634bde5add94": { + "f813ae2306fa45608678267cf8e18133": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7643,7 +7655,7 @@ "width": null } }, - "f4f9be5825164b4287d59c1ab94df8a1": { + "f865015b07a84eac99be00092140e401": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7658,22 +7670,49 @@ "description_width": "" } }, - "f6d5ae042455476084eba55c8ca69818": { + "f887d1c18d574f5b98206213f6f8367b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5395550674eb456eae9539d709abca05", + "placeholder": "", + "style": "IPY_MODEL_ad3e8f4378aa4f3cbe5c4f737e938442", + "value": "Extracting data files: 100%" + } + }, + "f9ae0f065be94878835f3b8d1ed89bee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3a43cab26aa4d3ea2abdff5b09f0d8f", + "placeholder": "", + "style": "IPY_MODEL_39585d310ed9485ebc6e117f2da3ff3e", + "value": " 60000/60000 [00:07<00:00, 7640.65 examples/s]" } }, - "f7c8f23b6df44d79b9e93414f6c81bf8": { + "fa6110f3bd7e4f75b5c739b4c81cc619": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7688,56 +7727,25 @@ "description_width": "" } }, - "fd96553d34164d1aacebf60fc6320012": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "fff13ae0ee854b2db74d68b5ef768572": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0520c188ead94fbaaf2b08a6aa12572f", + "placeholder": "", + "style": "IPY_MODEL_ea537851680d4316853705e4476422a9", + "value": "Downloading metadata: 100%" } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index e2da9dfbf..75dd4bc2e 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:25.411643Z", - "iopub.status.busy": "2023-12-15T12:30:25.411454Z", - "iopub.status.idle": "2023-12-15T12:30:26.501782Z", - "shell.execute_reply": "2023-12-15T12:30:26.501173Z" + "iopub.execute_input": "2023-12-16T02:27:08.613967Z", + "iopub.status.busy": "2023-12-16T02:27:08.613777Z", + "iopub.status.idle": "2023-12-16T02:27:09.670740Z", + "shell.execute_reply": "2023-12-16T02:27:09.670073Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:26.504439Z", - "iopub.status.busy": "2023-12-15T12:30:26.504170Z", - "iopub.status.idle": "2023-12-15T12:30:26.770536Z", - "shell.execute_reply": "2023-12-15T12:30:26.769906Z" + "iopub.execute_input": "2023-12-16T02:27:09.673705Z", + "iopub.status.busy": "2023-12-16T02:27:09.673216Z", + "iopub.status.idle": "2023-12-16T02:27:09.933721Z", + "shell.execute_reply": "2023-12-16T02:27:09.933053Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:26.773338Z", - "iopub.status.busy": "2023-12-15T12:30:26.773127Z", - "iopub.status.idle": "2023-12-15T12:30:26.785158Z", - "shell.execute_reply": "2023-12-15T12:30:26.784668Z" + "iopub.execute_input": "2023-12-16T02:27:09.936583Z", + "iopub.status.busy": "2023-12-16T02:27:09.936355Z", + "iopub.status.idle": "2023-12-16T02:27:09.949733Z", + "shell.execute_reply": "2023-12-16T02:27:09.949095Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:26.787475Z", - "iopub.status.busy": "2023-12-15T12:30:26.787068Z", - "iopub.status.idle": "2023-12-15T12:30:27.018625Z", - "shell.execute_reply": "2023-12-15T12:30:27.017928Z" + "iopub.execute_input": "2023-12-16T02:27:09.952465Z", + "iopub.status.busy": "2023-12-16T02:27:09.951896Z", + "iopub.status.idle": "2023-12-16T02:27:10.181916Z", + "shell.execute_reply": "2023-12-16T02:27:10.181253Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:27.021367Z", - "iopub.status.busy": "2023-12-15T12:30:27.021115Z", - "iopub.status.idle": "2023-12-15T12:30:27.048451Z", - "shell.execute_reply": "2023-12-15T12:30:27.047809Z" + "iopub.execute_input": "2023-12-16T02:27:10.184901Z", + "iopub.status.busy": "2023-12-16T02:27:10.184456Z", + "iopub.status.idle": "2023-12-16T02:27:10.211369Z", + "shell.execute_reply": "2023-12-16T02:27:10.210892Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:27.051071Z", - "iopub.status.busy": "2023-12-15T12:30:27.050707Z", - "iopub.status.idle": "2023-12-15T12:30:28.344000Z", - "shell.execute_reply": "2023-12-15T12:30:28.343279Z" + "iopub.execute_input": "2023-12-16T02:27:10.213775Z", + "iopub.status.busy": "2023-12-16T02:27:10.213398Z", + "iopub.status.idle": "2023-12-16T02:27:11.484192Z", + "shell.execute_reply": "2023-12-16T02:27:11.483472Z" } }, "outputs": [ @@ -472,10 +472,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:28.346841Z", - "iopub.status.busy": "2023-12-15T12:30:28.346239Z", - "iopub.status.idle": "2023-12-15T12:30:28.364731Z", - "shell.execute_reply": "2023-12-15T12:30:28.364197Z" + "iopub.execute_input": "2023-12-16T02:27:11.487317Z", + "iopub.status.busy": "2023-12-16T02:27:11.486572Z", + "iopub.status.idle": "2023-12-16T02:27:11.505392Z", + "shell.execute_reply": "2023-12-16T02:27:11.504816Z" }, "scrolled": true }, @@ -618,10 +618,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:28.367127Z", - "iopub.status.busy": "2023-12-15T12:30:28.366905Z", - "iopub.status.idle": "2023-12-15T12:30:29.240179Z", - "shell.execute_reply": "2023-12-15T12:30:29.239457Z" + "iopub.execute_input": "2023-12-16T02:27:11.508023Z", + "iopub.status.busy": "2023-12-16T02:27:11.507642Z", + "iopub.status.idle": "2023-12-16T02:27:12.359126Z", + "shell.execute_reply": "2023-12-16T02:27:12.358418Z" }, "id": "AaHC5MRKjruT" }, @@ -740,10 +740,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.242960Z", - "iopub.status.busy": "2023-12-15T12:30:29.242744Z", - "iopub.status.idle": "2023-12-15T12:30:29.257473Z", - "shell.execute_reply": "2023-12-15T12:30:29.256934Z" + "iopub.execute_input": "2023-12-16T02:27:12.361966Z", + "iopub.status.busy": "2023-12-16T02:27:12.361476Z", + "iopub.status.idle": "2023-12-16T02:27:12.375817Z", + "shell.execute_reply": "2023-12-16T02:27:12.375277Z" }, "id": "Wy27rvyhjruU" }, @@ -792,10 +792,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.259865Z", - "iopub.status.busy": "2023-12-15T12:30:29.259662Z", - "iopub.status.idle": "2023-12-15T12:30:29.343252Z", - "shell.execute_reply": "2023-12-15T12:30:29.342596Z" + "iopub.execute_input": "2023-12-16T02:27:12.378352Z", + "iopub.status.busy": "2023-12-16T02:27:12.377870Z", + "iopub.status.idle": "2023-12-16T02:27:12.456361Z", + "shell.execute_reply": "2023-12-16T02:27:12.455739Z" }, "id": "Db8YHnyVjruU" }, @@ -902,10 +902,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.346201Z", - "iopub.status.busy": "2023-12-15T12:30:29.345923Z", - "iopub.status.idle": "2023-12-15T12:30:29.561955Z", - "shell.execute_reply": "2023-12-15T12:30:29.561269Z" + "iopub.execute_input": "2023-12-16T02:27:12.459124Z", + "iopub.status.busy": "2023-12-16T02:27:12.458716Z", + "iopub.status.idle": "2023-12-16T02:27:12.660733Z", + "shell.execute_reply": "2023-12-16T02:27:12.660088Z" }, "id": "iJqAHuS2jruV" }, @@ -942,10 +942,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.564703Z", - "iopub.status.busy": "2023-12-15T12:30:29.564508Z", - "iopub.status.idle": "2023-12-15T12:30:29.581443Z", - "shell.execute_reply": "2023-12-15T12:30:29.580945Z" + "iopub.execute_input": "2023-12-16T02:27:12.663221Z", + "iopub.status.busy": "2023-12-16T02:27:12.663015Z", + "iopub.status.idle": "2023-12-16T02:27:12.680103Z", + "shell.execute_reply": "2023-12-16T02:27:12.679592Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1007,10 +1007,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.583895Z", - "iopub.status.busy": "2023-12-15T12:30:29.583517Z", - "iopub.status.idle": "2023-12-15T12:30:29.593511Z", - "shell.execute_reply": "2023-12-15T12:30:29.592993Z" + "iopub.execute_input": "2023-12-16T02:27:12.682600Z", + "iopub.status.busy": "2023-12-16T02:27:12.682237Z", + "iopub.status.idle": "2023-12-16T02:27:12.691905Z", + "shell.execute_reply": "2023-12-16T02:27:12.691383Z" }, "id": "0lonvOYvjruV" }, @@ -1157,10 +1157,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.595684Z", - "iopub.status.busy": "2023-12-15T12:30:29.595478Z", - "iopub.status.idle": "2023-12-15T12:30:29.689401Z", - "shell.execute_reply": "2023-12-15T12:30:29.688688Z" + "iopub.execute_input": "2023-12-16T02:27:12.694100Z", + "iopub.status.busy": "2023-12-16T02:27:12.693904Z", + "iopub.status.idle": "2023-12-16T02:27:12.785748Z", + "shell.execute_reply": "2023-12-16T02:27:12.785128Z" }, "id": "MfqTCa3kjruV" }, @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.692281Z", - "iopub.status.busy": "2023-12-15T12:30:29.691788Z", - "iopub.status.idle": "2023-12-15T12:30:29.840669Z", - "shell.execute_reply": "2023-12-15T12:30:29.840045Z" + "iopub.execute_input": "2023-12-16T02:27:12.788472Z", + "iopub.status.busy": "2023-12-16T02:27:12.788218Z", + "iopub.status.idle": "2023-12-16T02:27:12.928264Z", + "shell.execute_reply": "2023-12-16T02:27:12.927554Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1304,10 +1304,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.843470Z", - "iopub.status.busy": "2023-12-15T12:30:29.842967Z", - "iopub.status.idle": "2023-12-15T12:30:29.847338Z", - "shell.execute_reply": "2023-12-15T12:30:29.846713Z" + "iopub.execute_input": "2023-12-16T02:27:12.930871Z", + "iopub.status.busy": "2023-12-16T02:27:12.930616Z", + "iopub.status.idle": "2023-12-16T02:27:12.934854Z", + "shell.execute_reply": "2023-12-16T02:27:12.934216Z" }, "id": "0rXP3ZPWjruW" }, @@ -1345,10 +1345,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.849907Z", - "iopub.status.busy": "2023-12-15T12:30:29.849460Z", - "iopub.status.idle": "2023-12-15T12:30:29.854023Z", - "shell.execute_reply": "2023-12-15T12:30:29.853475Z" + "iopub.execute_input": "2023-12-16T02:27:12.937376Z", + "iopub.status.busy": "2023-12-16T02:27:12.936920Z", + "iopub.status.idle": "2023-12-16T02:27:12.941782Z", + "shell.execute_reply": "2023-12-16T02:27:12.941249Z" }, "id": "-iRPe8KXjruW" }, @@ -1403,10 +1403,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.856491Z", - "iopub.status.busy": "2023-12-15T12:30:29.856130Z", - "iopub.status.idle": "2023-12-15T12:30:29.896562Z", - "shell.execute_reply": "2023-12-15T12:30:29.895907Z" + "iopub.execute_input": "2023-12-16T02:27:12.944151Z", + "iopub.status.busy": "2023-12-16T02:27:12.943769Z", + "iopub.status.idle": "2023-12-16T02:27:12.983319Z", + "shell.execute_reply": "2023-12-16T02:27:12.982774Z" }, "id": "ZpipUliyjruW" }, @@ -1457,10 +1457,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.899213Z", - "iopub.status.busy": "2023-12-15T12:30:29.898721Z", - "iopub.status.idle": "2023-12-15T12:30:29.946790Z", - "shell.execute_reply": "2023-12-15T12:30:29.946127Z" + "iopub.execute_input": "2023-12-16T02:27:12.985761Z", + "iopub.status.busy": "2023-12-16T02:27:12.985392Z", + "iopub.status.idle": "2023-12-16T02:27:13.031003Z", + "shell.execute_reply": "2023-12-16T02:27:13.030462Z" }, "id": "SLq-3q4xjruX" }, @@ -1529,10 +1529,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:29.949457Z", - "iopub.status.busy": "2023-12-15T12:30:29.948929Z", - "iopub.status.idle": "2023-12-15T12:30:30.050120Z", - "shell.execute_reply": "2023-12-15T12:30:30.049328Z" + "iopub.execute_input": "2023-12-16T02:27:13.033445Z", + "iopub.status.busy": "2023-12-16T02:27:13.033074Z", + "iopub.status.idle": "2023-12-16T02:27:13.129895Z", + "shell.execute_reply": "2023-12-16T02:27:13.129261Z" }, "id": "g5LHhhuqFbXK" }, @@ -1564,10 +1564,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.053586Z", - "iopub.status.busy": "2023-12-15T12:30:30.053176Z", - "iopub.status.idle": "2023-12-15T12:30:30.158106Z", - "shell.execute_reply": "2023-12-15T12:30:30.157384Z" + "iopub.execute_input": "2023-12-16T02:27:13.133236Z", + "iopub.status.busy": "2023-12-16T02:27:13.132819Z", + "iopub.status.idle": "2023-12-16T02:27:13.226793Z", + "shell.execute_reply": "2023-12-16T02:27:13.226065Z" }, "id": "p7w8F8ezBcet" }, @@ -1624,10 +1624,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.160758Z", - "iopub.status.busy": "2023-12-15T12:30:30.160487Z", - "iopub.status.idle": "2023-12-15T12:30:30.366745Z", - "shell.execute_reply": "2023-12-15T12:30:30.366070Z" + "iopub.execute_input": "2023-12-16T02:27:13.229478Z", + "iopub.status.busy": "2023-12-16T02:27:13.229214Z", + "iopub.status.idle": "2023-12-16T02:27:13.429272Z", + "shell.execute_reply": "2023-12-16T02:27:13.428656Z" }, "id": "WETRL74tE_sU" }, @@ -1662,10 +1662,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.369399Z", - "iopub.status.busy": "2023-12-15T12:30:30.369025Z", - "iopub.status.idle": "2023-12-15T12:30:30.601082Z", - "shell.execute_reply": "2023-12-15T12:30:30.600376Z" + "iopub.execute_input": "2023-12-16T02:27:13.431581Z", + "iopub.status.busy": "2023-12-16T02:27:13.431375Z", + "iopub.status.idle": "2023-12-16T02:27:13.637861Z", + "shell.execute_reply": "2023-12-16T02:27:13.637163Z" }, "id": "kCfdx2gOLmXS" }, @@ -1827,10 +1827,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.604122Z", - "iopub.status.busy": "2023-12-15T12:30:30.603701Z", - "iopub.status.idle": "2023-12-15T12:30:30.610293Z", - "shell.execute_reply": "2023-12-15T12:30:30.609659Z" + "iopub.execute_input": "2023-12-16T02:27:13.640679Z", + "iopub.status.busy": "2023-12-16T02:27:13.640270Z", + "iopub.status.idle": "2023-12-16T02:27:13.646807Z", + "shell.execute_reply": "2023-12-16T02:27:13.646307Z" }, "id": "-uogYRWFYnuu" }, @@ -1884,10 +1884,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.612915Z", - "iopub.status.busy": "2023-12-15T12:30:30.612557Z", - "iopub.status.idle": "2023-12-15T12:30:30.823592Z", - "shell.execute_reply": "2023-12-15T12:30:30.822888Z" + "iopub.execute_input": "2023-12-16T02:27:13.649328Z", + "iopub.status.busy": "2023-12-16T02:27:13.648887Z", + "iopub.status.idle": "2023-12-16T02:27:13.855810Z", + "shell.execute_reply": "2023-12-16T02:27:13.855253Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1934,10 +1934,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:30.826309Z", - "iopub.status.busy": "2023-12-15T12:30:30.825916Z", - "iopub.status.idle": "2023-12-15T12:30:31.902791Z", - "shell.execute_reply": "2023-12-15T12:30:31.902170Z" + "iopub.execute_input": "2023-12-16T02:27:13.858428Z", + "iopub.status.busy": "2023-12-16T02:27:13.858013Z", + "iopub.status.idle": "2023-12-16T02:27:14.929871Z", + "shell.execute_reply": "2023-12-16T02:27:14.929207Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index f9cf78f1f..2edebcea6 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:36.874501Z", - "iopub.status.busy": "2023-12-15T12:30:36.874055Z", - "iopub.status.idle": "2023-12-15T12:30:37.884201Z", - "shell.execute_reply": "2023-12-15T12:30:37.883583Z" + "iopub.execute_input": "2023-12-16T02:27:20.073626Z", + "iopub.status.busy": "2023-12-16T02:27:20.073436Z", + "iopub.status.idle": "2023-12-16T02:27:21.070417Z", + "shell.execute_reply": "2023-12-16T02:27:21.069817Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.887220Z", - "iopub.status.busy": "2023-12-15T12:30:37.886692Z", - "iopub.status.idle": "2023-12-15T12:30:37.890031Z", - "shell.execute_reply": "2023-12-15T12:30:37.889507Z" + "iopub.execute_input": "2023-12-16T02:27:21.073459Z", + "iopub.status.busy": "2023-12-16T02:27:21.073055Z", + "iopub.status.idle": "2023-12-16T02:27:21.076279Z", + "shell.execute_reply": "2023-12-16T02:27:21.075718Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.892561Z", - "iopub.status.busy": "2023-12-15T12:30:37.892138Z", - "iopub.status.idle": "2023-12-15T12:30:37.901113Z", - "shell.execute_reply": "2023-12-15T12:30:37.900497Z" + "iopub.execute_input": "2023-12-16T02:27:21.078865Z", + "iopub.status.busy": "2023-12-16T02:27:21.078501Z", + "iopub.status.idle": "2023-12-16T02:27:21.087252Z", + "shell.execute_reply": "2023-12-16T02:27:21.086710Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.903691Z", - "iopub.status.busy": "2023-12-15T12:30:37.903211Z", - "iopub.status.idle": "2023-12-15T12:30:37.958749Z", - "shell.execute_reply": "2023-12-15T12:30:37.958098Z" + "iopub.execute_input": "2023-12-16T02:27:21.089679Z", + "iopub.status.busy": "2023-12-16T02:27:21.089318Z", + "iopub.status.idle": "2023-12-16T02:27:21.138477Z", + "shell.execute_reply": "2023-12-16T02:27:21.137932Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.961472Z", - "iopub.status.busy": "2023-12-15T12:30:37.961020Z", - "iopub.status.idle": "2023-12-15T12:30:37.980885Z", - "shell.execute_reply": "2023-12-15T12:30:37.980356Z" + "iopub.execute_input": "2023-12-16T02:27:21.140825Z", + "iopub.status.busy": "2023-12-16T02:27:21.140455Z", + "iopub.status.idle": "2023-12-16T02:27:21.158976Z", + "shell.execute_reply": "2023-12-16T02:27:21.158351Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.983405Z", - "iopub.status.busy": "2023-12-15T12:30:37.982924Z", - "iopub.status.idle": "2023-12-15T12:30:37.987052Z", - "shell.execute_reply": "2023-12-15T12:30:37.986553Z" + "iopub.execute_input": "2023-12-16T02:27:21.161446Z", + "iopub.status.busy": "2023-12-16T02:27:21.161107Z", + "iopub.status.idle": "2023-12-16T02:27:21.165165Z", + "shell.execute_reply": "2023-12-16T02:27:21.164553Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:37.989677Z", - "iopub.status.busy": "2023-12-15T12:30:37.989329Z", - "iopub.status.idle": "2023-12-15T12:30:38.017201Z", - "shell.execute_reply": "2023-12-15T12:30:38.016697Z" + "iopub.execute_input": "2023-12-16T02:27:21.167794Z", + "iopub.status.busy": "2023-12-16T02:27:21.167334Z", + "iopub.status.idle": "2023-12-16T02:27:21.197436Z", + "shell.execute_reply": "2023-12-16T02:27:21.196947Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:38.019678Z", - "iopub.status.busy": "2023-12-15T12:30:38.019297Z", - "iopub.status.idle": "2023-12-15T12:30:38.046962Z", - "shell.execute_reply": "2023-12-15T12:30:38.046349Z" + "iopub.execute_input": "2023-12-16T02:27:21.200030Z", + "iopub.status.busy": "2023-12-16T02:27:21.199655Z", + "iopub.status.idle": "2023-12-16T02:27:21.227173Z", + "shell.execute_reply": "2023-12-16T02:27:21.226699Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:38.049700Z", - "iopub.status.busy": "2023-12-15T12:30:38.049350Z", - "iopub.status.idle": "2023-12-15T12:30:39.349590Z", - "shell.execute_reply": "2023-12-15T12:30:39.348932Z" + "iopub.execute_input": "2023-12-16T02:27:21.229619Z", + "iopub.status.busy": "2023-12-16T02:27:21.229264Z", + "iopub.status.idle": "2023-12-16T02:27:22.517326Z", + "shell.execute_reply": "2023-12-16T02:27:22.516713Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.352825Z", - "iopub.status.busy": "2023-12-15T12:30:39.352227Z", - "iopub.status.idle": "2023-12-15T12:30:39.359737Z", - "shell.execute_reply": "2023-12-15T12:30:39.359118Z" + "iopub.execute_input": "2023-12-16T02:27:22.520551Z", + "iopub.status.busy": "2023-12-16T02:27:22.520012Z", + "iopub.status.idle": "2023-12-16T02:27:22.527203Z", + "shell.execute_reply": "2023-12-16T02:27:22.526609Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.362382Z", - "iopub.status.busy": "2023-12-15T12:30:39.361995Z", - "iopub.status.idle": "2023-12-15T12:30:39.376046Z", - "shell.execute_reply": "2023-12-15T12:30:39.375509Z" + "iopub.execute_input": "2023-12-16T02:27:22.529640Z", + "iopub.status.busy": "2023-12-16T02:27:22.529278Z", + "iopub.status.idle": "2023-12-16T02:27:22.542983Z", + "shell.execute_reply": "2023-12-16T02:27:22.542402Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.378461Z", - "iopub.status.busy": "2023-12-15T12:30:39.378103Z", - "iopub.status.idle": "2023-12-15T12:30:39.384915Z", - "shell.execute_reply": "2023-12-15T12:30:39.384348Z" + "iopub.execute_input": "2023-12-16T02:27:22.545353Z", + "iopub.status.busy": "2023-12-16T02:27:22.544979Z", + "iopub.status.idle": "2023-12-16T02:27:22.551848Z", + "shell.execute_reply": "2023-12-16T02:27:22.551336Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.387508Z", - "iopub.status.busy": "2023-12-15T12:30:39.387049Z", - "iopub.status.idle": "2023-12-15T12:30:39.390058Z", - "shell.execute_reply": "2023-12-15T12:30:39.389533Z" + "iopub.execute_input": "2023-12-16T02:27:22.554365Z", + "iopub.status.busy": "2023-12-16T02:27:22.553918Z", + "iopub.status.idle": "2023-12-16T02:27:22.556928Z", + "shell.execute_reply": "2023-12-16T02:27:22.556312Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.392504Z", - "iopub.status.busy": "2023-12-15T12:30:39.392143Z", - "iopub.status.idle": "2023-12-15T12:30:39.395978Z", - "shell.execute_reply": "2023-12-15T12:30:39.395363Z" + "iopub.execute_input": "2023-12-16T02:27:22.559468Z", + "iopub.status.busy": "2023-12-16T02:27:22.558983Z", + "iopub.status.idle": "2023-12-16T02:27:22.563297Z", + "shell.execute_reply": "2023-12-16T02:27:22.562656Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.398543Z", - "iopub.status.busy": "2023-12-15T12:30:39.398173Z", - "iopub.status.idle": "2023-12-15T12:30:39.401639Z", - "shell.execute_reply": "2023-12-15T12:30:39.401144Z" + "iopub.execute_input": "2023-12-16T02:27:22.565833Z", + "iopub.status.busy": "2023-12-16T02:27:22.565479Z", + "iopub.status.idle": "2023-12-16T02:27:22.568226Z", + "shell.execute_reply": "2023-12-16T02:27:22.567684Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.404042Z", - "iopub.status.busy": "2023-12-15T12:30:39.403670Z", - "iopub.status.idle": "2023-12-15T12:30:39.408567Z", - "shell.execute_reply": "2023-12-15T12:30:39.408025Z" + "iopub.execute_input": "2023-12-16T02:27:22.570558Z", + "iopub.status.busy": "2023-12-16T02:27:22.570221Z", + "iopub.status.idle": "2023-12-16T02:27:22.575096Z", + "shell.execute_reply": "2023-12-16T02:27:22.574474Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.410938Z", - "iopub.status.busy": "2023-12-15T12:30:39.410565Z", - "iopub.status.idle": "2023-12-15T12:30:39.443878Z", - "shell.execute_reply": "2023-12-15T12:30:39.443366Z" + "iopub.execute_input": "2023-12-16T02:27:22.577598Z", + "iopub.status.busy": "2023-12-16T02:27:22.577240Z", + "iopub.status.idle": "2023-12-16T02:27:22.609801Z", + "shell.execute_reply": "2023-12-16T02:27:22.609297Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:39.446471Z", - "iopub.status.busy": "2023-12-15T12:30:39.446097Z", - "iopub.status.idle": "2023-12-15T12:30:39.451050Z", - "shell.execute_reply": "2023-12-15T12:30:39.450495Z" + "iopub.execute_input": "2023-12-16T02:27:22.612306Z", + "iopub.status.busy": "2023-12-16T02:27:22.611951Z", + "iopub.status.idle": "2023-12-16T02:27:22.616806Z", + "shell.execute_reply": "2023-12-16T02:27:22.616179Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index e547ac4c5..195bcbbf7 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:44.224783Z", - "iopub.status.busy": "2023-12-15T12:30:44.224326Z", - "iopub.status.idle": "2023-12-15T12:30:45.306219Z", - "shell.execute_reply": "2023-12-15T12:30:45.305611Z" + "iopub.execute_input": "2023-12-16T02:27:28.242033Z", + "iopub.status.busy": "2023-12-16T02:27:28.241586Z", + "iopub.status.idle": "2023-12-16T02:27:29.287455Z", + "shell.execute_reply": "2023-12-16T02:27:29.286822Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:45.309207Z", - "iopub.status.busy": "2023-12-15T12:30:45.308709Z", - "iopub.status.idle": "2023-12-15T12:30:45.595481Z", - "shell.execute_reply": "2023-12-15T12:30:45.594843Z" + "iopub.execute_input": "2023-12-16T02:27:29.290072Z", + "iopub.status.busy": "2023-12-16T02:27:29.289800Z", + "iopub.status.idle": "2023-12-16T02:27:29.566680Z", + "shell.execute_reply": "2023-12-16T02:27:29.566085Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:45.598567Z", - "iopub.status.busy": "2023-12-15T12:30:45.598174Z", - "iopub.status.idle": "2023-12-15T12:30:45.612530Z", - "shell.execute_reply": "2023-12-15T12:30:45.612028Z" + "iopub.execute_input": "2023-12-16T02:27:29.569589Z", + "iopub.status.busy": "2023-12-16T02:27:29.569203Z", + "iopub.status.idle": "2023-12-16T02:27:29.583415Z", + "shell.execute_reply": "2023-12-16T02:27:29.582889Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:45.614765Z", - "iopub.status.busy": "2023-12-15T12:30:45.614566Z", - "iopub.status.idle": "2023-12-15T12:30:48.247804Z", - "shell.execute_reply": "2023-12-15T12:30:48.247136Z" + "iopub.execute_input": "2023-12-16T02:27:29.585824Z", + "iopub.status.busy": "2023-12-16T02:27:29.585412Z", + "iopub.status.idle": "2023-12-16T02:27:32.237917Z", + "shell.execute_reply": "2023-12-16T02:27:32.237263Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:48.250570Z", - "iopub.status.busy": "2023-12-15T12:30:48.250164Z", - "iopub.status.idle": "2023-12-15T12:30:49.800885Z", - "shell.execute_reply": "2023-12-15T12:30:49.800265Z" + "iopub.execute_input": "2023-12-16T02:27:32.240624Z", + "iopub.status.busy": "2023-12-16T02:27:32.240261Z", + "iopub.status.idle": "2023-12-16T02:27:33.791581Z", + "shell.execute_reply": "2023-12-16T02:27:33.790967Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:49.803637Z", - "iopub.status.busy": "2023-12-15T12:30:49.803432Z", - "iopub.status.idle": "2023-12-15T12:30:49.821998Z", - "shell.execute_reply": "2023-12-15T12:30:49.821481Z" + "iopub.execute_input": "2023-12-16T02:27:33.794368Z", + "iopub.status.busy": "2023-12-16T02:27:33.793995Z", + "iopub.status.idle": "2023-12-16T02:27:33.814140Z", + "shell.execute_reply": "2023-12-16T02:27:33.813641Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:49.824397Z", - "iopub.status.busy": "2023-12-15T12:30:49.824014Z", - "iopub.status.idle": "2023-12-15T12:30:51.131442Z", - "shell.execute_reply": "2023-12-15T12:30:51.130747Z" + "iopub.execute_input": "2023-12-16T02:27:33.816471Z", + "iopub.status.busy": "2023-12-16T02:27:33.816102Z", + "iopub.status.idle": "2023-12-16T02:27:35.075461Z", + "shell.execute_reply": "2023-12-16T02:27:35.074776Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:51.134501Z", - "iopub.status.busy": "2023-12-15T12:30:51.133806Z", - "iopub.status.idle": "2023-12-15T12:30:53.938117Z", - "shell.execute_reply": "2023-12-15T12:30:53.937463Z" + "iopub.execute_input": "2023-12-16T02:27:35.078661Z", + "iopub.status.busy": "2023-12-16T02:27:35.077992Z", + "iopub.status.idle": "2023-12-16T02:27:37.843686Z", + "shell.execute_reply": "2023-12-16T02:27:37.843050Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:53.940649Z", - "iopub.status.busy": "2023-12-15T12:30:53.940395Z", - "iopub.status.idle": "2023-12-15T12:30:53.945571Z", - "shell.execute_reply": "2023-12-15T12:30:53.945065Z" + "iopub.execute_input": "2023-12-16T02:27:37.846402Z", + "iopub.status.busy": "2023-12-16T02:27:37.846012Z", + "iopub.status.idle": "2023-12-16T02:27:37.850660Z", + "shell.execute_reply": "2023-12-16T02:27:37.850137Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:53.947809Z", - "iopub.status.busy": "2023-12-15T12:30:53.947610Z", - "iopub.status.idle": "2023-12-15T12:30:53.951801Z", - "shell.execute_reply": "2023-12-15T12:30:53.951257Z" + "iopub.execute_input": "2023-12-16T02:27:37.853171Z", + "iopub.status.busy": "2023-12-16T02:27:37.852802Z", + "iopub.status.idle": "2023-12-16T02:27:37.856826Z", + "shell.execute_reply": "2023-12-16T02:27:37.856280Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:53.954037Z", - "iopub.status.busy": "2023-12-15T12:30:53.953836Z", - "iopub.status.idle": "2023-12-15T12:30:53.957754Z", - "shell.execute_reply": "2023-12-15T12:30:53.957265Z" + "iopub.execute_input": "2023-12-16T02:27:37.859187Z", + "iopub.status.busy": "2023-12-16T02:27:37.858816Z", + "iopub.status.idle": "2023-12-16T02:27:37.862206Z", + "shell.execute_reply": "2023-12-16T02:27:37.861670Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 05d26ad8f..ad473f874 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:58.794142Z", - "iopub.status.busy": "2023-12-15T12:30:58.793768Z", - "iopub.status.idle": "2023-12-15T12:30:59.882180Z", - "shell.execute_reply": "2023-12-15T12:30:59.881553Z" + "iopub.execute_input": "2023-12-16T02:27:43.034500Z", + "iopub.status.busy": "2023-12-16T02:27:43.034318Z", + "iopub.status.idle": "2023-12-16T02:27:44.089260Z", + "shell.execute_reply": "2023-12-16T02:27:44.088666Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:30:59.885117Z", - "iopub.status.busy": "2023-12-15T12:30:59.884666Z", - "iopub.status.idle": "2023-12-15T12:31:01.348989Z", - "shell.execute_reply": "2023-12-15T12:31:01.348125Z" + "iopub.execute_input": "2023-12-16T02:27:44.092268Z", + "iopub.status.busy": "2023-12-16T02:27:44.091644Z", + "iopub.status.idle": "2023-12-16T02:27:45.652305Z", + "shell.execute_reply": "2023-12-16T02:27:45.651582Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.352344Z", - "iopub.status.busy": "2023-12-15T12:31:01.351800Z", - "iopub.status.idle": "2023-12-15T12:31:01.355301Z", - "shell.execute_reply": "2023-12-15T12:31:01.354658Z" + "iopub.execute_input": "2023-12-16T02:27:45.655465Z", + "iopub.status.busy": "2023-12-16T02:27:45.654980Z", + "iopub.status.idle": "2023-12-16T02:27:45.658343Z", + "shell.execute_reply": "2023-12-16T02:27:45.657741Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.357952Z", - "iopub.status.busy": "2023-12-15T12:31:01.357758Z", - "iopub.status.idle": "2023-12-15T12:31:01.363963Z", - "shell.execute_reply": "2023-12-15T12:31:01.363356Z" + "iopub.execute_input": "2023-12-16T02:27:45.660845Z", + "iopub.status.busy": "2023-12-16T02:27:45.660474Z", + "iopub.status.idle": "2023-12-16T02:27:45.666069Z", + "shell.execute_reply": "2023-12-16T02:27:45.665479Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.366568Z", - "iopub.status.busy": "2023-12-15T12:31:01.366191Z", - "iopub.status.idle": "2023-12-15T12:31:01.973263Z", - "shell.execute_reply": "2023-12-15T12:31:01.972578Z" + "iopub.execute_input": "2023-12-16T02:27:45.668688Z", + "iopub.status.busy": "2023-12-16T02:27:45.668211Z", + "iopub.status.idle": "2023-12-16T02:27:46.265508Z", + "shell.execute_reply": "2023-12-16T02:27:46.264835Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.976313Z", - "iopub.status.busy": "2023-12-15T12:31:01.976089Z", - "iopub.status.idle": "2023-12-15T12:31:01.982522Z", - "shell.execute_reply": "2023-12-15T12:31:01.982044Z" + "iopub.execute_input": "2023-12-16T02:27:46.268035Z", + "iopub.status.busy": "2023-12-16T02:27:46.267683Z", + "iopub.status.idle": "2023-12-16T02:27:46.273619Z", + "shell.execute_reply": "2023-12-16T02:27:46.273104Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.984802Z", - "iopub.status.busy": "2023-12-15T12:31:01.984606Z", - "iopub.status.idle": "2023-12-15T12:31:01.988971Z", - "shell.execute_reply": "2023-12-15T12:31:01.988332Z" + "iopub.execute_input": "2023-12-16T02:27:46.275940Z", + "iopub.status.busy": "2023-12-16T02:27:46.275576Z", + "iopub.status.idle": "2023-12-16T02:27:46.279675Z", + "shell.execute_reply": "2023-12-16T02:27:46.279050Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:01.991281Z", - "iopub.status.busy": "2023-12-15T12:31:01.991067Z", - "iopub.status.idle": "2023-12-15T12:31:02.590531Z", - "shell.execute_reply": "2023-12-15T12:31:02.589786Z" + "iopub.execute_input": "2023-12-16T02:27:46.282157Z", + "iopub.status.busy": "2023-12-16T02:27:46.281868Z", + "iopub.status.idle": "2023-12-16T02:27:46.857244Z", + "shell.execute_reply": "2023-12-16T02:27:46.856573Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:02.593361Z", - "iopub.status.busy": "2023-12-15T12:31:02.592883Z", - "iopub.status.idle": "2023-12-15T12:31:02.740845Z", - "shell.execute_reply": "2023-12-15T12:31:02.740167Z" + "iopub.execute_input": "2023-12-16T02:27:46.860236Z", + "iopub.status.busy": "2023-12-16T02:27:46.859772Z", + "iopub.status.idle": "2023-12-16T02:27:46.959883Z", + "shell.execute_reply": "2023-12-16T02:27:46.959356Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:02.743380Z", - "iopub.status.busy": "2023-12-15T12:31:02.743171Z", - "iopub.status.idle": "2023-12-15T12:31:02.747994Z", - "shell.execute_reply": "2023-12-15T12:31:02.747459Z" + "iopub.execute_input": "2023-12-16T02:27:46.962079Z", + "iopub.status.busy": "2023-12-16T02:27:46.961879Z", + "iopub.status.idle": "2023-12-16T02:27:46.966350Z", + "shell.execute_reply": "2023-12-16T02:27:46.965751Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:02.750198Z", - "iopub.status.busy": "2023-12-15T12:31:02.750000Z", - "iopub.status.idle": "2023-12-15T12:31:03.127395Z", - "shell.execute_reply": "2023-12-15T12:31:03.126699Z" + "iopub.execute_input": "2023-12-16T02:27:46.968687Z", + "iopub.status.busy": "2023-12-16T02:27:46.968485Z", + "iopub.status.idle": "2023-12-16T02:27:47.344024Z", + "shell.execute_reply": "2023-12-16T02:27:47.343470Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:03.130716Z", - "iopub.status.busy": "2023-12-15T12:31:03.130247Z", - "iopub.status.idle": "2023-12-15T12:31:03.468711Z", - "shell.execute_reply": "2023-12-15T12:31:03.468045Z" + "iopub.execute_input": "2023-12-16T02:27:47.346463Z", + "iopub.status.busy": "2023-12-16T02:27:47.346258Z", + "iopub.status.idle": "2023-12-16T02:27:47.680628Z", + "shell.execute_reply": "2023-12-16T02:27:47.680056Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:03.472156Z", - "iopub.status.busy": "2023-12-15T12:31:03.471673Z", - "iopub.status.idle": "2023-12-15T12:31:03.858267Z", - "shell.execute_reply": "2023-12-15T12:31:03.857607Z" + "iopub.execute_input": "2023-12-16T02:27:47.683100Z", + "iopub.status.busy": "2023-12-16T02:27:47.682897Z", + "iopub.status.idle": "2023-12-16T02:27:48.064712Z", + "shell.execute_reply": "2023-12-16T02:27:48.064073Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:03.861932Z", - "iopub.status.busy": "2023-12-15T12:31:03.861538Z", - "iopub.status.idle": "2023-12-15T12:31:04.325679Z", - "shell.execute_reply": "2023-12-15T12:31:04.324992Z" + "iopub.execute_input": "2023-12-16T02:27:48.067236Z", + "iopub.status.busy": "2023-12-16T02:27:48.067029Z", + "iopub.status.idle": "2023-12-16T02:27:48.526916Z", + "shell.execute_reply": "2023-12-16T02:27:48.526306Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:04.330485Z", - "iopub.status.busy": "2023-12-15T12:31:04.330054Z", - "iopub.status.idle": "2023-12-15T12:31:04.786614Z", - "shell.execute_reply": "2023-12-15T12:31:04.785930Z" + "iopub.execute_input": "2023-12-16T02:27:48.531279Z", + "iopub.status.busy": "2023-12-16T02:27:48.530828Z", + "iopub.status.idle": "2023-12-16T02:27:48.981188Z", + "shell.execute_reply": "2023-12-16T02:27:48.980534Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:04.790138Z", - "iopub.status.busy": "2023-12-15T12:31:04.789706Z", - "iopub.status.idle": "2023-12-15T12:31:05.120382Z", - "shell.execute_reply": "2023-12-15T12:31:05.119761Z" + "iopub.execute_input": "2023-12-16T02:27:48.984880Z", + "iopub.status.busy": "2023-12-16T02:27:48.984478Z", + "iopub.status.idle": "2023-12-16T02:27:49.303387Z", + "shell.execute_reply": "2023-12-16T02:27:49.302816Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:05.123163Z", - "iopub.status.busy": "2023-12-15T12:31:05.122756Z", - "iopub.status.idle": "2023-12-15T12:31:05.322994Z", - "shell.execute_reply": "2023-12-15T12:31:05.322309Z" + "iopub.execute_input": "2023-12-16T02:27:49.306135Z", + "iopub.status.busy": "2023-12-16T02:27:49.305645Z", + "iopub.status.idle": "2023-12-16T02:27:49.504030Z", + "shell.execute_reply": "2023-12-16T02:27:49.503452Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:31:05.325648Z", - "iopub.status.busy": "2023-12-15T12:31:05.325164Z", - "iopub.status.idle": "2023-12-15T12:31:05.329129Z", - "shell.execute_reply": "2023-12-15T12:31:05.328608Z" + "iopub.execute_input": "2023-12-16T02:27:49.506825Z", + "iopub.status.busy": "2023-12-16T02:27:49.506451Z", + "iopub.status.idle": "2023-12-16T02:27:49.510182Z", + "shell.execute_reply": "2023-12-16T02:27:49.509668Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 16fd6f510..38d9fd45b 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -931,7 +931,7 @@
-100%|██████████| 4997817/4997817 [00:29<00:00, 167966.98it/s]
+100%|██████████| 4997817/4997817 [00:28<00:00, 175849.25it/s]
Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True
or False
mask as find_label_issues()
.
This dataset has 10 classes.
-Classes: {'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'lost_or_stolen_phone'}
+Classes: {'supported_cards_and_currencies', 'card_about_to_expire', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'change_pin', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed'}
Let’s print the first example in the train set.
diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index ad45256d6..bfe6f4e82 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:08.122264Z", - "iopub.status.busy": "2023-12-15T12:36:08.122067Z", - "iopub.status.idle": "2023-12-15T12:36:10.217463Z", - "shell.execute_reply": "2023-12-15T12:36:10.216832Z" + "iopub.execute_input": "2023-12-16T02:32:40.251986Z", + "iopub.status.busy": "2023-12-16T02:32:40.251503Z", + "iopub.status.idle": "2023-12-16T02:32:42.270235Z", + "shell.execute_reply": "2023-12-16T02:32:42.269638Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@f3a65b8c18643e3fb9626988d606f839f8daea9b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7b720c8fd8110b057608caed9e43de221ff608c5\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.220398Z", - "iopub.status.busy": "2023-12-15T12:36:10.220054Z", - "iopub.status.idle": "2023-12-15T12:36:10.223722Z", - "shell.execute_reply": "2023-12-15T12:36:10.223164Z" + "iopub.execute_input": "2023-12-16T02:32:42.273226Z", + "iopub.status.busy": "2023-12-16T02:32:42.272744Z", + "iopub.status.idle": "2023-12-16T02:32:42.276218Z", + "shell.execute_reply": "2023-12-16T02:32:42.275628Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.226125Z", - "iopub.status.busy": "2023-12-15T12:36:10.225756Z", - "iopub.status.idle": "2023-12-15T12:36:10.229013Z", - "shell.execute_reply": "2023-12-15T12:36:10.228472Z" + "iopub.execute_input": "2023-12-16T02:32:42.278591Z", + "iopub.status.busy": "2023-12-16T02:32:42.278242Z", + "iopub.status.idle": "2023-12-16T02:32:42.281416Z", + "shell.execute_reply": "2023-12-16T02:32:42.280863Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.231579Z", - "iopub.status.busy": "2023-12-15T12:36:10.231191Z", - "iopub.status.idle": "2023-12-15T12:36:10.278823Z", - "shell.execute_reply": "2023-12-15T12:36:10.278190Z" + "iopub.execute_input": "2023-12-16T02:32:42.283739Z", + "iopub.status.busy": "2023-12-16T02:32:42.283385Z", + "iopub.status.idle": "2023-12-16T02:32:42.332655Z", + "shell.execute_reply": "2023-12-16T02:32:42.332143Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.281448Z", - "iopub.status.busy": "2023-12-15T12:36:10.281001Z", - "iopub.status.idle": "2023-12-15T12:36:10.284860Z", - "shell.execute_reply": "2023-12-15T12:36:10.284267Z" + "iopub.execute_input": "2023-12-16T02:32:42.334965Z", + "iopub.status.busy": "2023-12-16T02:32:42.334673Z", + "iopub.status.idle": "2023-12-16T02:32:42.338229Z", + "shell.execute_reply": "2023-12-16T02:32:42.337691Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.287308Z", - "iopub.status.busy": "2023-12-15T12:36:10.286919Z", - "iopub.status.idle": "2023-12-15T12:36:10.290659Z", - "shell.execute_reply": "2023-12-15T12:36:10.290080Z" + "iopub.execute_input": "2023-12-16T02:32:42.340690Z", + "iopub.status.busy": "2023-12-16T02:32:42.340323Z", + "iopub.status.idle": "2023-12-16T02:32:42.343985Z", + "shell.execute_reply": "2023-12-16T02:32:42.343379Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'lost_or_stolen_phone'}\n" + "Classes: {'supported_cards_and_currencies', 'card_about_to_expire', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'change_pin', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.293099Z", - "iopub.status.busy": "2023-12-15T12:36:10.292736Z", - "iopub.status.idle": "2023-12-15T12:36:10.296627Z", - "shell.execute_reply": "2023-12-15T12:36:10.296093Z" + "iopub.execute_input": "2023-12-16T02:32:42.346305Z", + "iopub.status.busy": "2023-12-16T02:32:42.345940Z", + "iopub.status.idle": "2023-12-16T02:32:42.349382Z", + "shell.execute_reply": "2023-12-16T02:32:42.348750Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.299152Z", - "iopub.status.busy": "2023-12-15T12:36:10.298759Z", - "iopub.status.idle": "2023-12-15T12:36:10.302181Z", - "shell.execute_reply": "2023-12-15T12:36:10.301642Z" + "iopub.execute_input": "2023-12-16T02:32:42.351823Z", + "iopub.status.busy": "2023-12-16T02:32:42.351450Z", + "iopub.status.idle": "2023-12-16T02:32:42.355509Z", + "shell.execute_reply": "2023-12-16T02:32:42.354986Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:10.304706Z", - "iopub.status.busy": "2023-12-15T12:36:10.304344Z", - "iopub.status.idle": "2023-12-15T12:36:19.037060Z", - "shell.execute_reply": "2023-12-15T12:36:19.036391Z" + "iopub.execute_input": "2023-12-16T02:32:42.357902Z", + "iopub.status.busy": "2023-12-16T02:32:42.357533Z", + "iopub.status.idle": "2023-12-16T02:32:50.978103Z", + "shell.execute_reply": "2023-12-16T02:32:50.977368Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:19.040434Z", - "iopub.status.busy": "2023-12-15T12:36:19.039969Z", - "iopub.status.idle": "2023-12-15T12:36:19.043259Z", - "shell.execute_reply": "2023-12-15T12:36:19.042717Z" + "iopub.execute_input": "2023-12-16T02:32:50.981367Z", + "iopub.status.busy": "2023-12-16T02:32:50.981135Z", + "iopub.status.idle": "2023-12-16T02:32:50.984231Z", + "shell.execute_reply": "2023-12-16T02:32:50.983597Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:19.045630Z", - "iopub.status.busy": "2023-12-15T12:36:19.045260Z", - "iopub.status.idle": "2023-12-15T12:36:19.048026Z", - "shell.execute_reply": "2023-12-15T12:36:19.047458Z" + "iopub.execute_input": "2023-12-16T02:32:50.986724Z", + "iopub.status.busy": "2023-12-16T02:32:50.986273Z", + "iopub.status.idle": "2023-12-16T02:32:50.989243Z", + "shell.execute_reply": "2023-12-16T02:32:50.988634Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:19.050404Z", - "iopub.status.busy": "2023-12-15T12:36:19.050039Z", - "iopub.status.idle": "2023-12-15T12:36:21.273504Z", - "shell.execute_reply": "2023-12-15T12:36:21.272621Z" + "iopub.execute_input": "2023-12-16T02:32:50.991455Z", + "iopub.status.busy": "2023-12-16T02:32:50.991206Z", + "iopub.status.idle": "2023-12-16T02:32:53.188887Z", + "shell.execute_reply": "2023-12-16T02:32:53.188128Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.277436Z", - "iopub.status.busy": "2023-12-15T12:36:21.276609Z", - "iopub.status.idle": "2023-12-15T12:36:21.285122Z", - "shell.execute_reply": "2023-12-15T12:36:21.284508Z" + "iopub.execute_input": "2023-12-16T02:32:53.192522Z", + "iopub.status.busy": "2023-12-16T02:32:53.191777Z", + "iopub.status.idle": "2023-12-16T02:32:53.199983Z", + "shell.execute_reply": "2023-12-16T02:32:53.199371Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.287768Z", - "iopub.status.busy": "2023-12-15T12:36:21.287449Z", - "iopub.status.idle": "2023-12-15T12:36:21.291612Z", - "shell.execute_reply": "2023-12-15T12:36:21.291029Z" + "iopub.execute_input": "2023-12-16T02:32:53.202426Z", + "iopub.status.busy": "2023-12-16T02:32:53.201971Z", + "iopub.status.idle": "2023-12-16T02:32:53.206457Z", + "shell.execute_reply": "2023-12-16T02:32:53.205805Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.294090Z", - "iopub.status.busy": "2023-12-15T12:36:21.293762Z", - "iopub.status.idle": "2023-12-15T12:36:21.297513Z", - "shell.execute_reply": "2023-12-15T12:36:21.296879Z" + "iopub.execute_input": "2023-12-16T02:32:53.208974Z", + "iopub.status.busy": "2023-12-16T02:32:53.208499Z", + "iopub.status.idle": "2023-12-16T02:32:53.212207Z", + "shell.execute_reply": "2023-12-16T02:32:53.211580Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.300094Z", - "iopub.status.busy": "2023-12-15T12:36:21.299744Z", - "iopub.status.idle": "2023-12-15T12:36:21.303125Z", - "shell.execute_reply": "2023-12-15T12:36:21.302542Z" + "iopub.execute_input": "2023-12-16T02:32:53.214679Z", + "iopub.status.busy": "2023-12-16T02:32:53.214218Z", + "iopub.status.idle": "2023-12-16T02:32:53.217586Z", + "shell.execute_reply": "2023-12-16T02:32:53.216953Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.305804Z", - "iopub.status.busy": "2023-12-15T12:36:21.305435Z", - "iopub.status.idle": "2023-12-15T12:36:21.313553Z", - "shell.execute_reply": "2023-12-15T12:36:21.312878Z" + "iopub.execute_input": "2023-12-16T02:32:53.220101Z", + "iopub.status.busy": "2023-12-16T02:32:53.219738Z", + "iopub.status.idle": "2023-12-16T02:32:53.226975Z", + "shell.execute_reply": "2023-12-16T02:32:53.226359Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.316295Z", - "iopub.status.busy": "2023-12-15T12:36:21.315828Z", - "iopub.status.idle": "2023-12-15T12:36:21.560250Z", - "shell.execute_reply": "2023-12-15T12:36:21.559599Z" + "iopub.execute_input": "2023-12-16T02:32:53.229411Z", + "iopub.status.busy": "2023-12-16T02:32:53.229064Z", + "iopub.status.idle": "2023-12-16T02:32:53.499469Z", + "shell.execute_reply": "2023-12-16T02:32:53.498840Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.563470Z", - "iopub.status.busy": "2023-12-15T12:36:21.563046Z", - "iopub.status.idle": "2023-12-15T12:36:21.865886Z", - "shell.execute_reply": "2023-12-15T12:36:21.865216Z" + "iopub.execute_input": "2023-12-16T02:32:53.502593Z", + "iopub.status.busy": "2023-12-16T02:32:53.502146Z", + "iopub.status.idle": "2023-12-16T02:32:53.780474Z", + "shell.execute_reply": "2023-12-16T02:32:53.779891Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-15T12:36:21.870271Z", - "iopub.status.busy": "2023-12-15T12:36:21.869079Z", - "iopub.status.idle": "2023-12-15T12:36:21.874870Z", - "shell.execute_reply": "2023-12-15T12:36:21.874265Z" + "iopub.execute_input": "2023-12-16T02:32:53.783461Z", + "iopub.status.busy": "2023-12-16T02:32:53.783006Z", + "iopub.status.idle": "2023-12-16T02:32:53.787040Z", + "shell.execute_reply": "2023-12-16T02:32:53.786460Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 5c93ad32b..54af81341 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -862,16 +862,16 @@
---2023-12-15 12:36:27-- https://data.deepai.org/conll2003.zip
-Resolving data.deepai.org (data.deepai.org)... 169.150.236.100, 2400:52e0:1a00::1067:1
-Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.
+--2023-12-16 02:32:59-- https://data.deepai.org/conll2003.zip
+Resolving data.deepai.org (data.deepai.org)... 185.93.1.247, 2400:52e0:1a00::940:1
+Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 982975 (960K) [application/zip]
Saving to: ‘conll2003.zip’
-conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.06s
+conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s
-2023-12-15 12:36:27 (15.2 MB/s) - ‘conll2003.zip’ saved [982975/982975]
+2023-12-16 02:32:59 (93.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]
mkdir: cannot create directory ‘data’: File exists
Archive: conll2003.zip
@@ -879,16 +879,16 @@ 1. Install required dependencies and download data